PostgreSQL Source Code git master
walsender.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * walsender.c
4 *
5 * The WAL sender process (walsender) is new as of Postgres 9.0. It takes
6 * care of sending XLOG from the primary server to a single recipient.
7 * (Note that there can be more than one walsender process concurrently.)
8 * It is started by the postmaster when the walreceiver of a standby server
9 * connects to the primary server and requests XLOG streaming replication.
10 *
11 * A walsender is similar to a regular backend, ie. there is a one-to-one
12 * relationship between a connection and a walsender process, but instead
13 * of processing SQL queries, it understands a small set of special
14 * replication-mode commands. The START_REPLICATION command begins streaming
15 * WAL to the client. While streaming, the walsender keeps reading XLOG
16 * records from the disk and sends them to the standby server over the
17 * COPY protocol, until either side ends the replication by exiting COPY
18 * mode (or until the connection is closed).
19 *
20 * Normal termination is by SIGTERM, which instructs the walsender to
21 * close the connection and exit(0) at the next convenient moment. Emergency
22 * termination is by SIGQUIT; like any backend, the walsender will simply
23 * abort and exit on SIGQUIT. A close of the connection and a FATAL error
24 * are treated as not a crash but approximately normal termination;
25 * the walsender will exit quickly without sending any more XLOG records.
26 *
27 * If the server is shut down, checkpointer sends us
28 * PROCSIG_WALSND_INIT_STOPPING after all regular backends have exited. If
29 * the backend is idle or runs an SQL query this causes the backend to
30 * shutdown, if logical replication is in progress all existing WAL records
31 * are processed followed by a shutdown. Otherwise this causes the walsender
32 * to switch to the "stopping" state. In this state, the walsender will reject
33 * any further replication commands. The checkpointer begins the shutdown
34 * checkpoint once all walsenders are confirmed as stopping. When the shutdown
35 * checkpoint finishes, the postmaster sends us SIGUSR2. This instructs
36 * walsender to send any outstanding WAL, including the shutdown checkpoint
37 * record, wait for it to be replicated to the standby, and then exit.
38 *
39 *
40 * Portions Copyright (c) 2010-2025, PostgreSQL Global Development Group
41 *
42 * IDENTIFICATION
43 * src/backend/replication/walsender.c
44 *
45 *-------------------------------------------------------------------------
46 */
47#include "postgres.h"
48
49#include <signal.h>
50#include <unistd.h>
51
52#include "access/timeline.h"
53#include "access/transam.h"
54#include "access/xact.h"
56#include "access/xlogreader.h"
57#include "access/xlogrecovery.h"
58#include "access/xlogutils.h"
59#include "backup/basebackup.h"
61#include "catalog/pg_authid.h"
62#include "catalog/pg_type.h"
63#include "commands/dbcommands.h"
64#include "commands/defrem.h"
65#include "funcapi.h"
66#include "libpq/libpq.h"
67#include "libpq/pqformat.h"
68#include "miscadmin.h"
69#include "nodes/replnodes.h"
70#include "pgstat.h"
72#include "replication/decode.h"
73#include "replication/logical.h"
75#include "replication/slot.h"
77#include "replication/syncrep.h"
82#include "storage/fd.h"
83#include "storage/ipc.h"
84#include "storage/pmsignal.h"
85#include "storage/proc.h"
86#include "tcop/dest.h"
87#include "tcop/tcopprot.h"
88#include "utils/acl.h"
89#include "utils/builtins.h"
90#include "utils/guc.h"
91#include "utils/memutils.h"
92#include "utils/pg_lsn.h"
93#include "utils/ps_status.h"
94#include "utils/timeout.h"
95#include "utils/timestamp.h"
96
97/*
98 * Maximum data payload in a WAL data message. Must be >= XLOG_BLCKSZ.
99 *
100 * We don't have a good idea of what a good value would be; there's some
101 * overhead per message in both walsender and walreceiver, but on the other
102 * hand sending large batches makes walsender less responsive to signals
103 * because signals are checked only between messages. 128kB (with
104 * default 8k blocks) seems like a reasonable guess for now.
105 */
106#define MAX_SEND_SIZE (XLOG_BLCKSZ * 16)
107
108/* Array of WalSnds in shared memory */
110
111/* My slot in the shared memory array */
113
114/* Global state */
115bool am_walsender = false; /* Am I a walsender process? */
116bool am_cascading_walsender = false; /* Am I cascading WAL to another
117 * standby? */
118bool am_db_walsender = false; /* Connected to a database? */
119
120/* GUC variables */
121int max_wal_senders = 10; /* the maximum number of concurrent
122 * walsenders */
123int wal_sender_timeout = 60 * 1000; /* maximum time to send one WAL
124 * data message */
126
127/*
128 * State for WalSndWakeupRequest
129 */
130bool wake_wal_senders = false;
131
132/*
133 * xlogreader used for replication. Note that a WAL sender doing physical
134 * replication does not need xlogreader to read WAL, but it needs one to
135 * keep a state of its work.
136 */
138
139/*
140 * If the UPLOAD_MANIFEST command is used to provide a backup manifest in
141 * preparation for an incremental backup, uploaded_manifest will be point
142 * to an object containing information about its contexts, and
143 * uploaded_manifest_mcxt will point to the memory context that contains
144 * that object and all of its subordinate data. Otherwise, both values will
145 * be NULL.
146 */
149
150/*
151 * These variables keep track of the state of the timeline we're currently
152 * sending. sendTimeLine identifies the timeline. If sendTimeLineIsHistoric,
153 * the timeline is not the latest timeline on this server, and the server's
154 * history forked off from that timeline at sendTimeLineValidUpto.
155 */
158static bool sendTimeLineIsHistoric = false;
160
161/*
162 * How far have we sent WAL already? This is also advertised in
163 * MyWalSnd->sentPtr. (Actually, this is the next WAL location to send.)
164 */
166
167/* Buffers for constructing outgoing messages and processing reply messages. */
171
172/* Timestamp of last ProcessRepliesIfAny(). */
174
175/*
176 * Timestamp of last ProcessRepliesIfAny() that saw a reply from the
177 * standby. Set to 0 if wal_sender_timeout doesn't need to be active.
178 */
180
181/* Have we sent a heartbeat message asking for reply, since last reply? */
182static bool waiting_for_ping_response = false;
183
184/*
185 * While streaming WAL in Copy mode, streamingDoneSending is set to true
186 * after we have sent CopyDone. We should not send any more CopyData messages
187 * after that. streamingDoneReceiving is set to true when we receive CopyDone
188 * from the other end. When both become true, it's time to exit Copy mode.
189 */
192
193/* Are we there yet? */
194static bool WalSndCaughtUp = false;
195
196/* Flags set by signal handlers for later service in main loop */
197static volatile sig_atomic_t got_SIGUSR2 = false;
198static volatile sig_atomic_t got_STOPPING = false;
199
200/*
201 * This is set while we are streaming. When not set
202 * PROCSIG_WALSND_INIT_STOPPING signal will be handled like SIGTERM. When set,
203 * the main loop is responsible for checking got_STOPPING and terminating when
204 * it's set (after streaming any remaining WAL).
205 */
206static volatile sig_atomic_t replication_active = false;
207
209
210/* A sample associating a WAL location with the time it was written. */
211typedef struct
212{
216
217/* The size of our buffer of time samples. */
218#define LAG_TRACKER_BUFFER_SIZE 8192
219
220/* A mechanism for tracking replication lag. */
221typedef struct
222{
226 int read_heads[NUM_SYNC_REP_WAIT_MODE];
228} LagTracker;
229
231
232/* Signal handlers */
234
235/* Prototypes for private functions */
236typedef void (*WalSndSendDataCallback) (void);
237static void WalSndLoop(WalSndSendDataCallback send_data);
238static void InitWalSenderSlot(void);
239static void WalSndKill(int code, Datum arg);
241static void XLogSendPhysical(void);
242static void XLogSendLogical(void);
243static void WalSndDone(WalSndSendDataCallback send_data);
244static void IdentifySystem(void);
245static void UploadManifest(void);
246static bool HandleUploadManifestPacket(StringInfo buf, off_t *offset,
251static void StartReplication(StartReplicationCmd *cmd);
253static void ProcessStandbyMessage(void);
254static void ProcessStandbyReplyMessage(void);
255static void ProcessStandbyHSFeedbackMessage(void);
256static void ProcessRepliesIfAny(void);
257static void ProcessPendingWrites(void);
258static void WalSndKeepalive(bool requestReply, XLogRecPtr writePtr);
259static void WalSndKeepaliveIfNecessary(void);
260static void WalSndCheckTimeOut(void);
262static void WalSndWait(uint32 socket_events, long timeout, uint32 wait_event);
263static void WalSndPrepareWrite(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write);
264static void WalSndWriteData(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write);
266 bool skipped_xact);
268static void LagTrackerWrite(XLogRecPtr lsn, TimestampTz local_flush_time);
269static TimeOffset LagTrackerRead(int head, XLogRecPtr lsn, TimestampTz now);
271
272static void WalSndSegmentOpen(XLogReaderState *state, XLogSegNo nextSegNo,
273 TimeLineID *tli_p);
274
275
276/* Initialize walsender process before entering the main command loop */
277void
278InitWalSender(void)
279{
281
282 /* Create a per-walsender data structure in shared memory */
284
285 /* need resource owner for e.g. basebackups */
287
288 /*
289 * Let postmaster know that we're a WAL sender. Once we've declared us as
290 * a WAL sender process, postmaster will let us outlive the bgwriter and
291 * kill us last in the shutdown sequence, so we get a chance to stream all
292 * remaining WAL at shutdown, including the shutdown checkpoint. Note that
293 * there's no going back, and we mustn't write any WAL records after this.
294 */
297
298 /*
299 * If the client didn't specify a database to connect to, show in PGPROC
300 * that our advertised xmin should affect vacuum horizons in all
301 * databases. This allows physical replication clients to send hot
302 * standby feedback that will delay vacuum cleanup in all databases.
303 */
305 {
307 LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
310 LWLockRelease(ProcArrayLock);
311 }
312
313 /* Initialize empty timestamp buffer for lag tracking. */
315}
316
317/*
318 * Clean up after an error.
319 *
320 * WAL sender processes don't use transactions like regular backends do.
321 * This function does any cleanup required after an error in a WAL sender
322 * process, similar to what transaction abort does in a regular backend.
323 */
324void
326{
330
331 if (xlogreader != NULL && xlogreader->seg.ws_file >= 0)
333
334 if (MyReplicationSlot != NULL)
336
338
339 replication_active = false;
340
341 /*
342 * If there is a transaction in progress, it will clean up our
343 * ResourceOwner, but if a replication command set up a resource owner
344 * without a transaction, we've got to clean that up now.
345 */
348
350 proc_exit(0);
351
352 /* Revert back to startup state */
354}
355
356/*
357 * Handle a client's connection abort in an orderly manner.
358 */
359static void
360WalSndShutdown(void)
361{
362 /*
363 * Reset whereToSendOutput to prevent ereport from attempting to send any
364 * more messages to the standby.
365 */
368
369 proc_exit(0);
370 abort(); /* keep the compiler quiet */
371}
372
373/*
374 * Handle the IDENTIFY_SYSTEM command.
375 */
376static void
378{
379 char sysid[32];
380 char xloc[MAXFNAMELEN];
381 XLogRecPtr logptr;
382 char *dbname = NULL;
384 TupOutputState *tstate;
385 TupleDesc tupdesc;
386 Datum values[4];
387 bool nulls[4] = {0};
388 TimeLineID currTLI;
389
390 /*
391 * Reply with a result set with one row, four columns. First col is system
392 * ID, second is timeline ID, third is current xlog location and the
393 * fourth contains the database name if we are connected to one.
394 */
395
396 snprintf(sysid, sizeof(sysid), UINT64_FORMAT,
398
401 logptr = GetStandbyFlushRecPtr(&currTLI);
402 else
403 logptr = GetFlushRecPtr(&currTLI);
404
405 snprintf(xloc, sizeof(xloc), "%X/%X", LSN_FORMAT_ARGS(logptr));
406
408 {
410
411 /* syscache access needs a transaction env. */
414 /* copy dbname out of TX context */
417 }
418
420
421 /* need a tuple descriptor representing four columns */
422 tupdesc = CreateTemplateTupleDesc(4);
423 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "systemid",
424 TEXTOID, -1, 0);
425 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "timeline",
426 INT8OID, -1, 0);
427 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "xlogpos",
428 TEXTOID, -1, 0);
429 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 4, "dbname",
430 TEXTOID, -1, 0);
431
432 /* prepare for projection of tuples */
433 tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
434
435 /* column 1: system identifier */
436 values[0] = CStringGetTextDatum(sysid);
437
438 /* column 2: timeline */
439 values[1] = Int64GetDatum(currTLI);
440
441 /* column 3: wal location */
442 values[2] = CStringGetTextDatum(xloc);
443
444 /* column 4: database name, or NULL if none */
445 if (dbname)
447 else
448 nulls[3] = true;
449
450 /* send it to dest */
451 do_tup_output(tstate, values, nulls);
452
453 end_tup_output(tstate);
454}
455
456/* Handle READ_REPLICATION_SLOT command */
457static void
459{
460#define READ_REPLICATION_SLOT_COLS 3
461 ReplicationSlot *slot;
463 TupOutputState *tstate;
464 TupleDesc tupdesc;
466 bool nulls[READ_REPLICATION_SLOT_COLS];
467
469 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "slot_type",
470 TEXTOID, -1, 0);
471 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "restart_lsn",
472 TEXTOID, -1, 0);
473 /* TimeLineID is unsigned, so int4 is not wide enough. */
474 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "restart_tli",
475 INT8OID, -1, 0);
476
477 memset(nulls, true, READ_REPLICATION_SLOT_COLS * sizeof(bool));
478
479 LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
480 slot = SearchNamedReplicationSlot(cmd->slotname, false);
481 if (slot == NULL || !slot->in_use)
482 {
483 LWLockRelease(ReplicationSlotControlLock);
484 }
485 else
486 {
487 ReplicationSlot slot_contents;
488 int i = 0;
489
490 /* Copy slot contents while holding spinlock */
491 SpinLockAcquire(&slot->mutex);
492 slot_contents = *slot;
493 SpinLockRelease(&slot->mutex);
494 LWLockRelease(ReplicationSlotControlLock);
495
496 if (OidIsValid(slot_contents.data.database))
498 errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
499 errmsg("cannot use %s with a logical replication slot",
500 "READ_REPLICATION_SLOT"));
501
502 /* slot type */
503 values[i] = CStringGetTextDatum("physical");
504 nulls[i] = false;
505 i++;
506
507 /* start LSN */
508 if (!XLogRecPtrIsInvalid(slot_contents.data.restart_lsn))
509 {
510 char xloc[64];
511
512 snprintf(xloc, sizeof(xloc), "%X/%X",
513 LSN_FORMAT_ARGS(slot_contents.data.restart_lsn));
515 nulls[i] = false;
516 }
517 i++;
518
519 /* timeline this WAL was produced on */
520 if (!XLogRecPtrIsInvalid(slot_contents.data.restart_lsn))
521 {
522 TimeLineID slots_position_timeline;
523 TimeLineID current_timeline;
524 List *timeline_history = NIL;
525
526 /*
527 * While in recovery, use as timeline the currently-replaying one
528 * to get the LSN position's history.
529 */
530 if (RecoveryInProgress())
531 (void) GetXLogReplayRecPtr(&current_timeline);
532 else
533 current_timeline = GetWALInsertionTimeLine();
534
535 timeline_history = readTimeLineHistory(current_timeline);
536 slots_position_timeline = tliOfPointInHistory(slot_contents.data.restart_lsn,
537 timeline_history);
538 values[i] = Int64GetDatum((int64) slots_position_timeline);
539 nulls[i] = false;
540 }
541 i++;
542
544 }
545
547 tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
548 do_tup_output(tstate, values, nulls);
549 end_tup_output(tstate);
550}
551
552
553/*
554 * Handle TIMELINE_HISTORY command.
555 */
556static void
558{
560 TupleDesc tupdesc;
562 char histfname[MAXFNAMELEN];
563 char path[MAXPGPATH];
564 int fd;
565 off_t histfilelen;
566 off_t bytesleft;
567 Size len;
568
570
571 /*
572 * Reply with a result set with one row, and two columns. The first col is
573 * the name of the history file, 2nd is the contents.
574 */
575 tupdesc = CreateTemplateTupleDesc(2);
576 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "filename", TEXTOID, -1, 0);
577 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "content", TEXTOID, -1, 0);
578
579 TLHistoryFileName(histfname, cmd->timeline);
580 TLHistoryFilePath(path, cmd->timeline);
581
582 /* Send a RowDescription message */
583 dest->rStartup(dest, CMD_SELECT, tupdesc);
584
585 /* Send a DataRow message */
587 pq_sendint16(&buf, 2); /* # of columns */
588 len = strlen(histfname);
589 pq_sendint32(&buf, len); /* col1 len */
590 pq_sendbytes(&buf, histfname, len);
591
592 fd = OpenTransientFile(path, O_RDONLY | PG_BINARY);
593 if (fd < 0)
596 errmsg("could not open file \"%s\": %m", path)));
597
598 /* Determine file length and send it to client */
599 histfilelen = lseek(fd, 0, SEEK_END);
600 if (histfilelen < 0)
603 errmsg("could not seek to end of file \"%s\": %m", path)));
604 if (lseek(fd, 0, SEEK_SET) != 0)
607 errmsg("could not seek to beginning of file \"%s\": %m", path)));
608
609 pq_sendint32(&buf, histfilelen); /* col2 len */
610
611 bytesleft = histfilelen;
612 while (bytesleft > 0)
613 {
614 PGAlignedBlock rbuf;
615 int nread;
616
617 pgstat_report_wait_start(WAIT_EVENT_WALSENDER_TIMELINE_HISTORY_READ);
618 nread = read(fd, rbuf.data, sizeof(rbuf));
620 if (nread < 0)
623 errmsg("could not read file \"%s\": %m",
624 path)));
625 else if (nread == 0)
628 errmsg("could not read file \"%s\": read %d of %zu",
629 path, nread, (Size) bytesleft)));
630
631 pq_sendbytes(&buf, rbuf.data, nread);
632 bytesleft -= nread;
633 }
634
635 if (CloseTransientFile(fd) != 0)
638 errmsg("could not close file \"%s\": %m", path)));
639
641}
642
643/*
644 * Handle UPLOAD_MANIFEST command.
645 */
646static void
648{
649 MemoryContext mcxt;
651 off_t offset = 0;
653
654 /*
655 * parsing the manifest will use the cryptohash stuff, which requires a
656 * resource owner
657 */
660 CurrentResourceOwner == NULL);
662
663 /* Prepare to read manifest data into a temporary context. */
665 "incremental backup information",
668
669 /* Send a CopyInResponse message */
671 pq_sendbyte(&buf, 0);
672 pq_sendint16(&buf, 0);
674 pq_flush();
675
676 /* Receive packets from client until done. */
677 while (HandleUploadManifestPacket(&buf, &offset, ib))
678 ;
679
680 /* Finish up manifest processing. */
682
683 /*
684 * Discard any old manifest information and arrange to preserve the new
685 * information we just got.
686 *
687 * We assume that MemoryContextDelete and MemoryContextSetParent won't
688 * fail, and thus we shouldn't end up bailing out of here in such a way as
689 * to leave dangling pointers.
690 */
691 if (uploaded_manifest_mcxt != NULL)
696
697 /* clean up the resource owner we created */
699}
700
701/*
702 * Process one packet received during the handling of an UPLOAD_MANIFEST
703 * operation.
704 *
705 * 'buf' is scratch space. This function expects it to be initialized, doesn't
706 * care what the current contents are, and may override them with completely
707 * new contents.
708 *
709 * The return value is true if the caller should continue processing
710 * additional packets and false if the UPLOAD_MANIFEST operation is complete.
711 */
712static bool
715{
716 int mtype;
717 int maxmsglen;
718
720
722 mtype = pq_getbyte();
723 if (mtype == EOF)
725 (errcode(ERRCODE_CONNECTION_FAILURE),
726 errmsg("unexpected EOF on client connection with an open transaction")));
727
728 switch (mtype)
729 {
730 case 'd': /* CopyData */
731 maxmsglen = PQ_LARGE_MESSAGE_LIMIT;
732 break;
733 case 'c': /* CopyDone */
734 case 'f': /* CopyFail */
735 case 'H': /* Flush */
736 case 'S': /* Sync */
737 maxmsglen = PQ_SMALL_MESSAGE_LIMIT;
738 break;
739 default:
741 (errcode(ERRCODE_PROTOCOL_VIOLATION),
742 errmsg("unexpected message type 0x%02X during COPY from stdin",
743 mtype)));
744 maxmsglen = 0; /* keep compiler quiet */
745 break;
746 }
747
748 /* Now collect the message body */
749 if (pq_getmessage(buf, maxmsglen))
751 (errcode(ERRCODE_CONNECTION_FAILURE),
752 errmsg("unexpected EOF on client connection with an open transaction")));
754
755 /* Process the message */
756 switch (mtype)
757 {
758 case 'd': /* CopyData */
759 AppendIncrementalManifestData(ib, buf->data, buf->len);
760 return true;
761
762 case 'c': /* CopyDone */
763 return false;
764
765 case 'H': /* Sync */
766 case 'S': /* Flush */
767 /* Ignore these while in CopyOut mode as we do elsewhere. */
768 return true;
769
770 case 'f':
772 (errcode(ERRCODE_QUERY_CANCELED),
773 errmsg("COPY from stdin failed: %s",
775 }
776
777 /* Not reached. */
778 Assert(false);
779 return false;
780}
781
782/*
783 * Handle START_REPLICATION command.
784 *
785 * At the moment, this never returns, but an ereport(ERROR) will take us back
786 * to the main loop.
787 */
788static void
790{
792 XLogRecPtr FlushPtr;
793 TimeLineID FlushTLI;
794
795 /* create xlogreader for physical replication */
796 xlogreader =
798 XL_ROUTINE(.segment_open = WalSndSegmentOpen,
799 .segment_close = wal_segment_close),
800 NULL);
801
802 if (!xlogreader)
804 (errcode(ERRCODE_OUT_OF_MEMORY),
805 errmsg("out of memory"),
806 errdetail("Failed while allocating a WAL reading processor.")));
807
808 /*
809 * We assume here that we're logging enough information in the WAL for
810 * log-shipping, since this is checked in PostmasterMain().
811 *
812 * NOTE: wal_level can only change at shutdown, so in most cases it is
813 * difficult for there to be WAL data that we can still see that was
814 * written at wal_level='minimal'.
815 */
816
817 if (cmd->slotname)
818 {
822 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
823 errmsg("cannot use a logical replication slot for physical replication")));
824
825 /*
826 * We don't need to verify the slot's restart_lsn here; instead we
827 * rely on the caller requesting the starting point to use. If the
828 * WAL segment doesn't exist, we'll fail later.
829 */
830 }
831
832 /*
833 * Select the timeline. If it was given explicitly by the client, use
834 * that. Otherwise use the timeline of the last replayed record.
835 */
838 FlushPtr = GetStandbyFlushRecPtr(&FlushTLI);
839 else
840 FlushPtr = GetFlushRecPtr(&FlushTLI);
841
842 if (cmd->timeline != 0)
843 {
844 XLogRecPtr switchpoint;
845
846 sendTimeLine = cmd->timeline;
847 if (sendTimeLine == FlushTLI)
848 {
851 }
852 else
853 {
854 List *timeLineHistory;
855
857
858 /*
859 * Check that the timeline the client requested exists, and the
860 * requested start location is on that timeline.
861 */
862 timeLineHistory = readTimeLineHistory(FlushTLI);
863 switchpoint = tliSwitchPoint(cmd->timeline, timeLineHistory,
865 list_free_deep(timeLineHistory);
866
867 /*
868 * Found the requested timeline in the history. Check that
869 * requested startpoint is on that timeline in our history.
870 *
871 * This is quite loose on purpose. We only check that we didn't
872 * fork off the requested timeline before the switchpoint. We
873 * don't check that we switched *to* it before the requested
874 * starting point. This is because the client can legitimately
875 * request to start replication from the beginning of the WAL
876 * segment that contains switchpoint, but on the new timeline, so
877 * that it doesn't end up with a partial segment. If you ask for
878 * too old a starting point, you'll get an error later when we
879 * fail to find the requested WAL segment in pg_wal.
880 *
881 * XXX: we could be more strict here and only allow a startpoint
882 * that's older than the switchpoint, if it's still in the same
883 * WAL segment.
884 */
885 if (!XLogRecPtrIsInvalid(switchpoint) &&
886 switchpoint < cmd->startpoint)
887 {
889 (errmsg("requested starting point %X/%X on timeline %u is not in this server's history",
891 cmd->timeline),
892 errdetail("This server's history forked from timeline %u at %X/%X.",
893 cmd->timeline,
894 LSN_FORMAT_ARGS(switchpoint))));
895 }
896 sendTimeLineValidUpto = switchpoint;
897 }
898 }
899 else
900 {
901 sendTimeLine = FlushTLI;
904 }
905
907
908 /* If there is nothing to stream, don't even enter COPY mode */
910 {
911 /*
912 * When we first start replication the standby will be behind the
913 * primary. For some applications, for example synchronous
914 * replication, it is important to have a clear state for this initial
915 * catchup mode, so we can trigger actions when we change streaming
916 * state later. We may stay in this state for a long time, which is
917 * exactly why we want to be able to monitor whether or not we are
918 * still here.
919 */
921
922 /* Send a CopyBothResponse message, and start streaming */
924 pq_sendbyte(&buf, 0);
925 pq_sendint16(&buf, 0);
927 pq_flush();
928
929 /*
930 * Don't allow a request to stream from a future point in WAL that
931 * hasn't been flushed to disk in this server yet.
932 */
933 if (FlushPtr < cmd->startpoint)
934 {
936 (errmsg("requested starting point %X/%X is ahead of the WAL flush position of this server %X/%X",
938 LSN_FORMAT_ARGS(FlushPtr))));
939 }
940
941 /* Start streaming from the requested point */
942 sentPtr = cmd->startpoint;
943
944 /* Initialize shared memory status, too */
948
950
951 /* Main loop of walsender */
952 replication_active = true;
953
955
956 replication_active = false;
957 if (got_STOPPING)
958 proc_exit(0);
960
962 }
963
964 if (cmd->slotname)
966
967 /*
968 * Copy is finished now. Send a single-row result set indicating the next
969 * timeline.
970 */
972 {
973 char startpos_str[8 + 1 + 8 + 1];
975 TupOutputState *tstate;
976 TupleDesc tupdesc;
977 Datum values[2];
978 bool nulls[2] = {0};
979
980 snprintf(startpos_str, sizeof(startpos_str), "%X/%X",
982
984
985 /*
986 * Need a tuple descriptor representing two columns. int8 may seem
987 * like a surprising data type for this, but in theory int4 would not
988 * be wide enough for this, as TimeLineID is unsigned.
989 */
990 tupdesc = CreateTemplateTupleDesc(2);
991 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "next_tli",
992 INT8OID, -1, 0);
993 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "next_tli_startpos",
994 TEXTOID, -1, 0);
995
996 /* prepare for projection of tuple */
997 tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
998
1000 values[1] = CStringGetTextDatum(startpos_str);
1001
1002 /* send it to dest */
1003 do_tup_output(tstate, values, nulls);
1004
1005 end_tup_output(tstate);
1006 }
1007
1008 /* Send CommandComplete message */
1009 EndReplicationCommand("START_STREAMING");
1010}
1011
1012/*
1013 * XLogReaderRoutine->page_read callback for logical decoding contexts, as a
1014 * walsender process.
1015 *
1016 * Inside the walsender we can do better than read_local_xlog_page,
1017 * which has to do a plain sleep/busy loop, because the walsender's latch gets
1018 * set every time WAL is flushed.
1019 */
1020static int
1022 XLogRecPtr targetRecPtr, char *cur_page)
1023{
1024 XLogRecPtr flushptr;
1025 int count;
1026 WALReadError errinfo;
1027 XLogSegNo segno;
1028 TimeLineID currTLI;
1029
1030 /*
1031 * Make sure we have enough WAL available before retrieving the current
1032 * timeline.
1033 */
1034 flushptr = WalSndWaitForWal(targetPagePtr + reqLen);
1035
1036 /* Fail if not enough (implies we are going to shut down) */
1037 if (flushptr < targetPagePtr + reqLen)
1038 return -1;
1039
1040 /*
1041 * Since logical decoding is also permitted on a standby server, we need
1042 * to check if the server is in recovery to decide how to get the current
1043 * timeline ID (so that it also covers the promotion or timeline change
1044 * cases). We must determine am_cascading_walsender after waiting for the
1045 * required WAL so that it is correct when the walsender wakes up after a
1046 * promotion.
1047 */
1049
1051 GetXLogReplayRecPtr(&currTLI);
1052 else
1053 currTLI = GetWALInsertionTimeLine();
1054
1055 XLogReadDetermineTimeline(state, targetPagePtr, reqLen, currTLI);
1056 sendTimeLineIsHistoric = (state->currTLI != currTLI);
1057 sendTimeLine = state->currTLI;
1058 sendTimeLineValidUpto = state->currTLIValidUntil;
1059 sendTimeLineNextTLI = state->nextTLI;
1060
1061 if (targetPagePtr + XLOG_BLCKSZ <= flushptr)
1062 count = XLOG_BLCKSZ; /* more than one block available */
1063 else
1064 count = flushptr - targetPagePtr; /* part of the page available */
1065
1066 /* now actually read the data, we know it's there */
1067 if (!WALRead(state,
1068 cur_page,
1069 targetPagePtr,
1070 count,
1071 currTLI, /* Pass the current TLI because only
1072 * WalSndSegmentOpen controls whether new TLI
1073 * is needed. */
1074 &errinfo))
1075 WALReadRaiseError(&errinfo);
1076
1077 /*
1078 * After reading into the buffer, check that what we read was valid. We do
1079 * this after reading, because even though the segment was present when we
1080 * opened it, it might get recycled or removed while we read it. The
1081 * read() succeeds in that case, but the data we tried to read might
1082 * already have been overwritten with new WAL records.
1083 */
1084 XLByteToSeg(targetPagePtr, segno, state->segcxt.ws_segsize);
1085 CheckXLogRemoved(segno, state->seg.ws_tli);
1086
1087 return count;
1088}
1089
1090/*
1091 * Process extra options given to CREATE_REPLICATION_SLOT.
1092 */
1093static void
1095 bool *reserve_wal,
1096 CRSSnapshotAction *snapshot_action,
1097 bool *two_phase, bool *failover)
1098{
1099 ListCell *lc;
1100 bool snapshot_action_given = false;
1101 bool reserve_wal_given = false;
1102 bool two_phase_given = false;
1103 bool failover_given = false;
1104
1105 /* Parse options */
1106 foreach(lc, cmd->options)
1107 {
1108 DefElem *defel = (DefElem *) lfirst(lc);
1109
1110 if (strcmp(defel->defname, "snapshot") == 0)
1111 {
1112 char *action;
1113
1114 if (snapshot_action_given || cmd->kind != REPLICATION_KIND_LOGICAL)
1115 ereport(ERROR,
1116 (errcode(ERRCODE_SYNTAX_ERROR),
1117 errmsg("conflicting or redundant options")));
1118
1119 action = defGetString(defel);
1120 snapshot_action_given = true;
1121
1122 if (strcmp(action, "export") == 0)
1123 *snapshot_action = CRS_EXPORT_SNAPSHOT;
1124 else if (strcmp(action, "nothing") == 0)
1125 *snapshot_action = CRS_NOEXPORT_SNAPSHOT;
1126 else if (strcmp(action, "use") == 0)
1127 *snapshot_action = CRS_USE_SNAPSHOT;
1128 else
1129 ereport(ERROR,
1130 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1131 errmsg("unrecognized value for CREATE_REPLICATION_SLOT option \"%s\": \"%s\"",
1132 defel->defname, action)));
1133 }
1134 else if (strcmp(defel->defname, "reserve_wal") == 0)
1135 {
1136 if (reserve_wal_given || cmd->kind != REPLICATION_KIND_PHYSICAL)
1137 ereport(ERROR,
1138 (errcode(ERRCODE_SYNTAX_ERROR),
1139 errmsg("conflicting or redundant options")));
1140
1141 reserve_wal_given = true;
1142 *reserve_wal = defGetBoolean(defel);
1143 }
1144 else if (strcmp(defel->defname, "two_phase") == 0)
1145 {
1146 if (two_phase_given || cmd->kind != REPLICATION_KIND_LOGICAL)
1147 ereport(ERROR,
1148 (errcode(ERRCODE_SYNTAX_ERROR),
1149 errmsg("conflicting or redundant options")));
1150 two_phase_given = true;
1151 *two_phase = defGetBoolean(defel);
1152 }
1153 else if (strcmp(defel->defname, "failover") == 0)
1154 {
1155 if (failover_given || cmd->kind != REPLICATION_KIND_LOGICAL)
1156 ereport(ERROR,
1157 (errcode(ERRCODE_SYNTAX_ERROR),
1158 errmsg("conflicting or redundant options")));
1159 failover_given = true;
1160 *failover = defGetBoolean(defel);
1161 }
1162 else
1163 elog(ERROR, "unrecognized option: %s", defel->defname);
1164 }
1165}
1166
1167/*
1168 * Create a new replication slot.
1169 */
1170static void
1172{
1173 const char *snapshot_name = NULL;
1174 char xloc[MAXFNAMELEN];
1175 char *slot_name;
1176 bool reserve_wal = false;
1177 bool two_phase = false;
1178 bool failover = false;
1179 CRSSnapshotAction snapshot_action = CRS_EXPORT_SNAPSHOT;
1181 TupOutputState *tstate;
1182 TupleDesc tupdesc;
1183 Datum values[4];
1184 bool nulls[4] = {0};
1185
1187
1188 parseCreateReplSlotOptions(cmd, &reserve_wal, &snapshot_action, &two_phase,
1189 &failover);
1190
1191 if (cmd->kind == REPLICATION_KIND_PHYSICAL)
1192 {
1193 ReplicationSlotCreate(cmd->slotname, false,
1195 false, false, false);
1196
1197 if (reserve_wal)
1198 {
1200
1202
1203 /* Write this slot to disk if it's a permanent one. */
1204 if (!cmd->temporary)
1206 }
1207 }
1208 else
1209 {
1211 bool need_full_snapshot = false;
1212
1214
1216
1217 /*
1218 * Initially create persistent slot as ephemeral - that allows us to
1219 * nicely handle errors during initialization because it'll get
1220 * dropped if this transaction fails. We'll make it persistent at the
1221 * end. Temporary slots can be created as temporary from beginning as
1222 * they get dropped on error as well.
1223 */
1226 two_phase, failover, false);
1227
1228 /*
1229 * Do options check early so that we can bail before calling the
1230 * DecodingContextFindStartpoint which can take long time.
1231 */
1232 if (snapshot_action == CRS_EXPORT_SNAPSHOT)
1233 {
1234 if (IsTransactionBlock())
1235 ereport(ERROR,
1236 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1237 (errmsg("%s must not be called inside a transaction",
1238 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'export')")));
1239
1240 need_full_snapshot = true;
1241 }
1242 else if (snapshot_action == CRS_USE_SNAPSHOT)
1243 {
1244 if (!IsTransactionBlock())
1245 ereport(ERROR,
1246 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1247 (errmsg("%s must be called inside a transaction",
1248 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1249
1251 ereport(ERROR,
1252 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1253 (errmsg("%s must be called in REPEATABLE READ isolation mode transaction",
1254 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1255 if (!XactReadOnly)
1256 ereport(ERROR,
1257 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1258 (errmsg("%s must be called in a read-only transaction",
1259 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1260
1261 if (FirstSnapshotSet)
1262 ereport(ERROR,
1263 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1264 (errmsg("%s must be called before any query",
1265 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1266
1267 if (IsSubTransaction())
1268 ereport(ERROR,
1269 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1270 (errmsg("%s must not be called in a subtransaction",
1271 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1272
1273 need_full_snapshot = true;
1274 }
1275
1276 ctx = CreateInitDecodingContext(cmd->plugin, NIL, need_full_snapshot,
1279 .segment_open = WalSndSegmentOpen,
1280 .segment_close = wal_segment_close),
1283
1284 /*
1285 * Signal that we don't need the timeout mechanism. We're just
1286 * creating the replication slot and don't yet accept feedback
1287 * messages or send keepalives. As we possibly need to wait for
1288 * further WAL the walsender would otherwise possibly be killed too
1289 * soon.
1290 */
1292
1293 /* build initial snapshot, might take a while */
1295
1296 /*
1297 * Export or use the snapshot if we've been asked to do so.
1298 *
1299 * NB. We will convert the snapbuild.c kind of snapshot to normal
1300 * snapshot when doing this.
1301 */
1302 if (snapshot_action == CRS_EXPORT_SNAPSHOT)
1303 {
1304 snapshot_name = SnapBuildExportSnapshot(ctx->snapshot_builder);
1305 }
1306 else if (snapshot_action == CRS_USE_SNAPSHOT)
1307 {
1308 Snapshot snap;
1309
1312 }
1313
1314 /* don't need the decoding context anymore */
1316
1317 if (!cmd->temporary)
1319 }
1320
1321 snprintf(xloc, sizeof(xloc), "%X/%X",
1323
1325
1326 /*----------
1327 * Need a tuple descriptor representing four columns:
1328 * - first field: the slot name
1329 * - second field: LSN at which we became consistent
1330 * - third field: exported snapshot's name
1331 * - fourth field: output plugin
1332 */
1333 tupdesc = CreateTemplateTupleDesc(4);
1334 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "slot_name",
1335 TEXTOID, -1, 0);
1336 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "consistent_point",
1337 TEXTOID, -1, 0);
1338 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "snapshot_name",
1339 TEXTOID, -1, 0);
1340 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 4, "output_plugin",
1341 TEXTOID, -1, 0);
1342
1343 /* prepare for projection of tuples */
1344 tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
1345
1346 /* slot_name */
1347 slot_name = NameStr(MyReplicationSlot->data.name);
1348 values[0] = CStringGetTextDatum(slot_name);
1349
1350 /* consistent wal location */
1351 values[1] = CStringGetTextDatum(xloc);
1352
1353 /* snapshot name, or NULL if none */
1354 if (snapshot_name != NULL)
1355 values[2] = CStringGetTextDatum(snapshot_name);
1356 else
1357 nulls[2] = true;
1358
1359 /* plugin, or NULL if none */
1360 if (cmd->plugin != NULL)
1362 else
1363 nulls[3] = true;
1364
1365 /* send it to dest */
1366 do_tup_output(tstate, values, nulls);
1367 end_tup_output(tstate);
1368
1370}
1371
1372/*
1373 * Get rid of a replication slot that is no longer wanted.
1374 */
1375static void
1377{
1378 ReplicationSlotDrop(cmd->slotname, !cmd->wait);
1379}
1380
1381/*
1382 * Change the definition of a replication slot.
1383 */
1384static void
1386{
1387 bool failover_given = false;
1388 bool two_phase_given = false;
1389 bool failover;
1390 bool two_phase;
1391
1392 /* Parse options */
1393 foreach_ptr(DefElem, defel, cmd->options)
1394 {
1395 if (strcmp(defel->defname, "failover") == 0)
1396 {
1397 if (failover_given)
1398 ereport(ERROR,
1399 (errcode(ERRCODE_SYNTAX_ERROR),
1400 errmsg("conflicting or redundant options")));
1401 failover_given = true;
1402 failover = defGetBoolean(defel);
1403 }
1404 else if (strcmp(defel->defname, "two_phase") == 0)
1405 {
1406 if (two_phase_given)
1407 ereport(ERROR,
1408 (errcode(ERRCODE_SYNTAX_ERROR),
1409 errmsg("conflicting or redundant options")));
1410 two_phase_given = true;
1411 two_phase = defGetBoolean(defel);
1412 }
1413 else
1414 elog(ERROR, "unrecognized option: %s", defel->defname);
1415 }
1416
1418 failover_given ? &failover : NULL,
1419 two_phase_given ? &two_phase : NULL);
1420}
1421
1422/*
1423 * Load previously initiated logical slot and prepare for sending data (via
1424 * WalSndLoop).
1425 */
1426static void
1428{
1430 QueryCompletion qc;
1431
1432 /* make sure that our requirements are still fulfilled */
1434
1436
1437 ReplicationSlotAcquire(cmd->slotname, true);
1438
1439 /*
1440 * Force a disconnect, so that the decoding code doesn't need to care
1441 * about an eventual switch from running in recovery, to running in a
1442 * normal environment. Client code is expected to handle reconnects.
1443 */
1445 {
1446 ereport(LOG,
1447 (errmsg("terminating walsender process after promotion")));
1448 got_STOPPING = true;
1449 }
1450
1451 /*
1452 * Create our decoding context, making it start at the previously ack'ed
1453 * position.
1454 *
1455 * Do this before sending a CopyBothResponse message, so that any errors
1456 * are reported early.
1457 */
1459 CreateDecodingContext(cmd->startpoint, cmd->options, false,
1461 .segment_open = WalSndSegmentOpen,
1462 .segment_close = wal_segment_close),
1466
1468
1469 /* Send a CopyBothResponse message, and start streaming */
1471 pq_sendbyte(&buf, 0);
1472 pq_sendint16(&buf, 0);
1474 pq_flush();
1475
1476 /* Start reading WAL from the oldest required WAL. */
1479
1480 /*
1481 * Report the location after which we'll send out further commits as the
1482 * current sentPtr.
1483 */
1485
1486 /* Also update the sent position status in shared memory */
1490
1491 replication_active = true;
1492
1494
1495 /* Main loop of walsender */
1497
1500
1501 replication_active = false;
1502 if (got_STOPPING)
1503 proc_exit(0);
1505
1506 /* Get out of COPY mode (CommandComplete). */
1507 SetQueryCompletion(&qc, CMDTAG_COPY, 0);
1508 EndCommand(&qc, DestRemote, false);
1509}
1510
1511/*
1512 * LogicalDecodingContext 'prepare_write' callback.
1513 *
1514 * Prepare a write into a StringInfo.
1515 *
1516 * Don't do anything lasting in here, it's quite possible that nothing will be done
1517 * with the data.
1518 */
1519static void
1521{
1522 /* can't have sync rep confused by sending the same LSN several times */
1523 if (!last_write)
1524 lsn = InvalidXLogRecPtr;
1525
1526 resetStringInfo(ctx->out);
1527
1528 pq_sendbyte(ctx->out, 'w');
1529 pq_sendint64(ctx->out, lsn); /* dataStart */
1530 pq_sendint64(ctx->out, lsn); /* walEnd */
1531
1532 /*
1533 * Fill out the sendtime later, just as it's done in XLogSendPhysical, but
1534 * reserve space here.
1535 */
1536 pq_sendint64(ctx->out, 0); /* sendtime */
1537}
1538
1539/*
1540 * LogicalDecodingContext 'write' callback.
1541 *
1542 * Actually write out data previously prepared by WalSndPrepareWrite out to
1543 * the network. Take as long as needed, but process replies from the other
1544 * side and check timeouts during that.
1545 */
1546static void
1548 bool last_write)
1549{
1551
1552 /*
1553 * Fill the send timestamp last, so that it is taken as late as possible.
1554 * This is somewhat ugly, but the protocol is set as it's already used for
1555 * several releases by streaming physical replication.
1556 */
1560 memcpy(&ctx->out->data[1 + sizeof(int64) + sizeof(int64)],
1561 tmpbuf.data, sizeof(int64));
1562
1563 /* output previously gathered data in a CopyData packet */
1564 pq_putmessage_noblock('d', ctx->out->data, ctx->out->len);
1565
1567
1568 /* Try to flush pending output to the client */
1569 if (pq_flush_if_writable() != 0)
1571
1572 /* Try taking fast path unless we get too close to walsender timeout. */
1574 wal_sender_timeout / 2) &&
1576 {
1577 return;
1578 }
1579
1580 /* If we have pending write here, go to slow path */
1582}
1583
1584/*
1585 * Wait until there is no pending write. Also process replies from the other
1586 * side and check timeouts during that.
1587 */
1588static void
1590{
1591 for (;;)
1592 {
1593 long sleeptime;
1594
1595 /* Check for input from the client */
1597
1598 /* die if timeout was reached */
1600
1601 /* Send keepalive if the time has come */
1603
1604 if (!pq_is_send_pending())
1605 break;
1606
1608
1609 /* Sleep until something happens or we time out */
1611 WAIT_EVENT_WAL_SENDER_WRITE_DATA);
1612
1613 /* Clear any already-pending wakeups */
1615
1617
1618 /* Process any requests or signals received recently */
1620 {
1621 ConfigReloadPending = false;
1624 }
1625
1626 /* Try to flush pending output to the client */
1627 if (pq_flush_if_writable() != 0)
1629 }
1630
1631 /* reactivate latch so WalSndLoop knows to continue */
1633}
1634
1635/*
1636 * LogicalDecodingContext 'update_progress' callback.
1637 *
1638 * Write the current position to the lag tracker (see XLogSendPhysical).
1639 *
1640 * When skipping empty transactions, send a keepalive message if necessary.
1641 */
1642static void
1644 bool skipped_xact)
1645{
1646 static TimestampTz sendTime = 0;
1648 bool pending_writes = false;
1649 bool end_xact = ctx->end_xact;
1650
1651 /*
1652 * Track lag no more than once per WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS to
1653 * avoid flooding the lag tracker when we commit frequently.
1654 *
1655 * We don't have a mechanism to get the ack for any LSN other than end
1656 * xact LSN from the downstream. So, we track lag only for end of
1657 * transaction LSN.
1658 */
1659#define WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS 1000
1660 if (end_xact && TimestampDifferenceExceeds(sendTime, now,
1662 {
1663 LagTrackerWrite(lsn, now);
1664 sendTime = now;
1665 }
1666
1667 /*
1668 * When skipping empty transactions in synchronous replication, we send a
1669 * keepalive message to avoid delaying such transactions.
1670 *
1671 * It is okay to check sync_standbys_defined flag without lock here as in
1672 * the worst case we will just send an extra keepalive message when it is
1673 * really not required.
1674 */
1675 if (skipped_xact &&
1676 SyncRepRequested() &&
1677 ((volatile WalSndCtlData *) WalSndCtl)->sync_standbys_defined)
1678 {
1679 WalSndKeepalive(false, lsn);
1680
1681 /* Try to flush pending output to the client */
1682 if (pq_flush_if_writable() != 0)
1684
1685 /* If we have pending write here, make sure it's actually flushed */
1686 if (pq_is_send_pending())
1687 pending_writes = true;
1688 }
1689
1690 /*
1691 * Process pending writes if any or try to send a keepalive if required.
1692 * We don't need to try sending keep alive messages at the transaction end
1693 * as that will be done at a later point in time. This is required only
1694 * for large transactions where we don't send any changes to the
1695 * downstream and the receiver can timeout due to that.
1696 */
1697 if (pending_writes || (!end_xact &&
1699 wal_sender_timeout / 2)))
1701}
1702
1703/*
1704 * Wake up the logical walsender processes with logical failover slots if the
1705 * currently acquired physical slot is specified in synchronized_standby_slots GUC.
1706 */
1707void
1709{
1711
1712 /*
1713 * If we are running in a standby, there is no need to wake up walsenders.
1714 * This is because we do not support syncing slots to cascading standbys,
1715 * so, there are no walsenders waiting for standbys to catch up.
1716 */
1717 if (RecoveryInProgress())
1718 return;
1719
1722}
1723
1724/*
1725 * Returns true if not all standbys have caught up to the flushed position
1726 * (flushed_lsn) when the current acquired slot is a logical failover
1727 * slot and we are streaming; otherwise, returns false.
1728 *
1729 * If returning true, the function sets the appropriate wait event in
1730 * wait_event; otherwise, wait_event is set to 0.
1731 */
1732static bool
1733NeedToWaitForStandbys(XLogRecPtr flushed_lsn, uint32 *wait_event)
1734{
1735 int elevel = got_STOPPING ? ERROR : WARNING;
1736 bool failover_slot;
1737
1738 failover_slot = (replication_active && MyReplicationSlot->data.failover);
1739
1740 /*
1741 * Note that after receiving the shutdown signal, an ERROR is reported if
1742 * any slots are dropped, invalidated, or inactive. This measure is taken
1743 * to prevent the walsender from waiting indefinitely.
1744 */
1745 if (failover_slot && !StandbySlotsHaveCaughtup(flushed_lsn, elevel))
1746 {
1747 *wait_event = WAIT_EVENT_WAIT_FOR_STANDBY_CONFIRMATION;
1748 return true;
1749 }
1750
1751 *wait_event = 0;
1752 return false;
1753}
1754
1755/*
1756 * Returns true if we need to wait for WALs to be flushed to disk, or if not
1757 * all standbys have caught up to the flushed position (flushed_lsn) when the
1758 * current acquired slot is a logical failover slot and we are
1759 * streaming; otherwise, returns false.
1760 *
1761 * If returning true, the function sets the appropriate wait event in
1762 * wait_event; otherwise, wait_event is set to 0.
1763 */
1764static bool
1766 uint32 *wait_event)
1767{
1768 /* Check if we need to wait for WALs to be flushed to disk */
1769 if (target_lsn > flushed_lsn)
1770 {
1771 *wait_event = WAIT_EVENT_WAL_SENDER_WAIT_FOR_WAL;
1772 return true;
1773 }
1774
1775 /* Check if the standby slots have caught up to the flushed position */
1776 return NeedToWaitForStandbys(flushed_lsn, wait_event);
1777}
1778
1779/*
1780 * Wait till WAL < loc is flushed to disk so it can be safely sent to client.
1781 *
1782 * If the walsender holds a logical failover slot, we also wait for all the
1783 * specified streaming replication standby servers to confirm receipt of WAL
1784 * up to RecentFlushPtr. It is beneficial to wait here for the confirmation
1785 * up to RecentFlushPtr rather than waiting before transmitting each change
1786 * to logical subscribers, which is already covered by RecentFlushPtr.
1787 *
1788 * Returns end LSN of flushed WAL. Normally this will be >= loc, but if we
1789 * detect a shutdown request (either from postmaster or client) we will return
1790 * early, so caller must always check.
1791 */
1792static XLogRecPtr
1794{
1795 int wakeEvents;
1796 uint32 wait_event = 0;
1797 static XLogRecPtr RecentFlushPtr = InvalidXLogRecPtr;
1798
1799 /*
1800 * Fast path to avoid acquiring the spinlock in case we already know we
1801 * have enough WAL available and all the standby servers have confirmed
1802 * receipt of WAL up to RecentFlushPtr. This is particularly interesting
1803 * if we're far behind.
1804 */
1805 if (!XLogRecPtrIsInvalid(RecentFlushPtr) &&
1806 !NeedToWaitForWal(loc, RecentFlushPtr, &wait_event))
1807 return RecentFlushPtr;
1808
1809 /*
1810 * Within the loop, we wait for the necessary WALs to be flushed to disk
1811 * first, followed by waiting for standbys to catch up if there are enough
1812 * WALs (see NeedToWaitForWal()) or upon receiving the shutdown signal.
1813 */
1814 for (;;)
1815 {
1816 bool wait_for_standby_at_stop = false;
1817 long sleeptime;
1818
1819 /* Clear any already-pending wakeups */
1821
1823
1824 /* Process any requests or signals received recently */
1826 {
1827 ConfigReloadPending = false;
1830 }
1831
1832 /* Check for input from the client */
1834
1835 /*
1836 * If we're shutting down, trigger pending WAL to be written out,
1837 * otherwise we'd possibly end up waiting for WAL that never gets
1838 * written, because walwriter has shut down already.
1839 */
1840 if (got_STOPPING)
1842
1843 /*
1844 * To avoid the scenario where standbys need to catch up to a newer
1845 * WAL location in each iteration, we update our idea of the currently
1846 * flushed position only if we are not waiting for standbys to catch
1847 * up.
1848 */
1849 if (wait_event != WAIT_EVENT_WAIT_FOR_STANDBY_CONFIRMATION)
1850 {
1851 if (!RecoveryInProgress())
1852 RecentFlushPtr = GetFlushRecPtr(NULL);
1853 else
1854 RecentFlushPtr = GetXLogReplayRecPtr(NULL);
1855 }
1856
1857 /*
1858 * If postmaster asked us to stop and the standby slots have caught up
1859 * to the flushed position, don't wait anymore.
1860 *
1861 * It's important to do this check after the recomputation of
1862 * RecentFlushPtr, so we can send all remaining data before shutting
1863 * down.
1864 */
1865 if (got_STOPPING)
1866 {
1867 if (NeedToWaitForStandbys(RecentFlushPtr, &wait_event))
1868 wait_for_standby_at_stop = true;
1869 else
1870 break;
1871 }
1872
1873 /*
1874 * We only send regular messages to the client for full decoded
1875 * transactions, but a synchronous replication and walsender shutdown
1876 * possibly are waiting for a later location. So, before sleeping, we
1877 * send a ping containing the flush location. If the receiver is
1878 * otherwise idle, this keepalive will trigger a reply. Processing the
1879 * reply will update these MyWalSnd locations.
1880 */
1881 if (MyWalSnd->flush < sentPtr &&
1882 MyWalSnd->write < sentPtr &&
1885
1886 /*
1887 * Exit the loop if already caught up and doesn't need to wait for
1888 * standby slots.
1889 */
1890 if (!wait_for_standby_at_stop &&
1891 !NeedToWaitForWal(loc, RecentFlushPtr, &wait_event))
1892 break;
1893
1894 /*
1895 * Waiting for new WAL or waiting for standbys to catch up. Since we
1896 * need to wait, we're now caught up.
1897 */
1898 WalSndCaughtUp = true;
1899
1900 /*
1901 * Try to flush any pending output to the client.
1902 */
1903 if (pq_flush_if_writable() != 0)
1905
1906 /*
1907 * If we have received CopyDone from the client, sent CopyDone
1908 * ourselves, and the output buffer is empty, it's time to exit
1909 * streaming, so fail the current WAL fetch request.
1910 */
1913 break;
1914
1915 /* die if timeout was reached */
1917
1918 /* Send keepalive if the time has come */
1920
1921 /*
1922 * Sleep until something happens or we time out. Also wait for the
1923 * socket becoming writable, if there's still pending output.
1924 * Otherwise we might sit on sendable output data while waiting for
1925 * new WAL to be generated. (But if we have nothing to send, we don't
1926 * want to wake on socket-writable.)
1927 */
1929
1930 wakeEvents = WL_SOCKET_READABLE;
1931
1932 if (pq_is_send_pending())
1933 wakeEvents |= WL_SOCKET_WRITEABLE;
1934
1935 Assert(wait_event != 0);
1936
1937 WalSndWait(wakeEvents, sleeptime, wait_event);
1938 }
1939
1940 /* reactivate latch so WalSndLoop knows to continue */
1942 return RecentFlushPtr;
1943}
1944
1945/*
1946 * Execute an incoming replication command.
1947 *
1948 * Returns true if the cmd_string was recognized as WalSender command, false
1949 * if not.
1950 */
1951bool
1952exec_replication_command(const char *cmd_string)
1953{
1954 yyscan_t scanner;
1955 int parse_rc;
1956 Node *cmd_node;
1957 const char *cmdtag;
1958 MemoryContext cmd_context;
1959 MemoryContext old_context;
1960
1961 /*
1962 * If WAL sender has been told that shutdown is getting close, switch its
1963 * status accordingly to handle the next replication commands correctly.
1964 */
1965 if (got_STOPPING)
1967
1968 /*
1969 * Throw error if in stopping mode. We need prevent commands that could
1970 * generate WAL while the shutdown checkpoint is being written. To be
1971 * safe, we just prohibit all new commands.
1972 */
1974 ereport(ERROR,
1975 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1976 errmsg("cannot execute new commands while WAL sender is in stopping mode")));
1977
1978 /*
1979 * CREATE_REPLICATION_SLOT ... LOGICAL exports a snapshot until the next
1980 * command arrives. Clean up the old stuff if there's anything.
1981 */
1983
1985
1986 /*
1987 * Prepare to parse and execute the command.
1988 */
1990 "Replication command context",
1992 old_context = MemoryContextSwitchTo(cmd_context);
1993
1994 replication_scanner_init(cmd_string, &scanner);
1995
1996 /*
1997 * Is it a WalSender command?
1998 */
2000 {
2001 /* Nope; clean up and get out. */
2003
2004 MemoryContextSwitchTo(old_context);
2005 MemoryContextDelete(cmd_context);
2006
2007 /* XXX this is a pretty random place to make this check */
2008 if (MyDatabaseId == InvalidOid)
2009 ereport(ERROR,
2010 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2011 errmsg("cannot execute SQL commands in WAL sender for physical replication")));
2012
2013 /* Tell the caller that this wasn't a WalSender command. */
2014 return false;
2015 }
2016
2017 /*
2018 * Looks like a WalSender command, so parse it.
2019 */
2020 parse_rc = replication_yyparse(scanner);
2021 if (parse_rc != 0)
2022 ereport(ERROR,
2023 (errcode(ERRCODE_SYNTAX_ERROR),
2024 errmsg_internal("replication command parser returned %d",
2025 parse_rc)));
2027
2028 cmd_node = replication_parse_result;
2029
2030 /*
2031 * Report query to various monitoring facilities. For this purpose, we
2032 * report replication commands just like SQL commands.
2033 */
2034 debug_query_string = cmd_string;
2035
2037
2038 /*
2039 * Log replication command if log_replication_commands is enabled. Even
2040 * when it's disabled, log the command with DEBUG1 level for backward
2041 * compatibility.
2042 */
2044 (errmsg("received replication command: %s", cmd_string)));
2045
2046 /*
2047 * Disallow replication commands in aborted transaction blocks.
2048 */
2050 ereport(ERROR,
2051 (errcode(ERRCODE_IN_FAILED_SQL_TRANSACTION),
2052 errmsg("current transaction is aborted, "
2053 "commands ignored until end of transaction block")));
2054
2056
2057 /*
2058 * Allocate buffers that will be used for each outgoing and incoming
2059 * message. We do this just once per command to reduce palloc overhead.
2060 */
2064
2065 switch (cmd_node->type)
2066 {
2067 case T_IdentifySystemCmd:
2068 cmdtag = "IDENTIFY_SYSTEM";
2069 set_ps_display(cmdtag);
2071 EndReplicationCommand(cmdtag);
2072 break;
2073
2074 case T_ReadReplicationSlotCmd:
2075 cmdtag = "READ_REPLICATION_SLOT";
2076 set_ps_display(cmdtag);
2078 EndReplicationCommand(cmdtag);
2079 break;
2080
2081 case T_BaseBackupCmd:
2082 cmdtag = "BASE_BACKUP";
2083 set_ps_display(cmdtag);
2084 PreventInTransactionBlock(true, cmdtag);
2086 EndReplicationCommand(cmdtag);
2087 break;
2088
2089 case T_CreateReplicationSlotCmd:
2090 cmdtag = "CREATE_REPLICATION_SLOT";
2091 set_ps_display(cmdtag);
2093 EndReplicationCommand(cmdtag);
2094 break;
2095
2096 case T_DropReplicationSlotCmd:
2097 cmdtag = "DROP_REPLICATION_SLOT";
2098 set_ps_display(cmdtag);
2100 EndReplicationCommand(cmdtag);
2101 break;
2102
2103 case T_AlterReplicationSlotCmd:
2104 cmdtag = "ALTER_REPLICATION_SLOT";
2105 set_ps_display(cmdtag);
2107 EndReplicationCommand(cmdtag);
2108 break;
2109
2110 case T_StartReplicationCmd:
2111 {
2112 StartReplicationCmd *cmd = (StartReplicationCmd *) cmd_node;
2113
2114 cmdtag = "START_REPLICATION";
2115 set_ps_display(cmdtag);
2116 PreventInTransactionBlock(true, cmdtag);
2117
2118 if (cmd->kind == REPLICATION_KIND_PHYSICAL)
2119 StartReplication(cmd);
2120 else
2122
2123 /* dupe, but necessary per libpqrcv_endstreaming */
2124 EndReplicationCommand(cmdtag);
2125
2126 Assert(xlogreader != NULL);
2127 break;
2128 }
2129
2130 case T_TimeLineHistoryCmd:
2131 cmdtag = "TIMELINE_HISTORY";
2132 set_ps_display(cmdtag);
2133 PreventInTransactionBlock(true, cmdtag);
2135 EndReplicationCommand(cmdtag);
2136 break;
2137
2138 case T_VariableShowStmt:
2139 {
2141 VariableShowStmt *n = (VariableShowStmt *) cmd_node;
2142
2143 cmdtag = "SHOW";
2144 set_ps_display(cmdtag);
2145
2146 /* syscache access needs a transaction environment */
2148 GetPGVariable(n->name, dest);
2150 EndReplicationCommand(cmdtag);
2151 }
2152 break;
2153
2154 case T_UploadManifestCmd:
2155 cmdtag = "UPLOAD_MANIFEST";
2156 set_ps_display(cmdtag);
2157 PreventInTransactionBlock(true, cmdtag);
2159 EndReplicationCommand(cmdtag);
2160 break;
2161
2162 default:
2163 elog(ERROR, "unrecognized replication command node tag: %u",
2164 cmd_node->type);
2165 }
2166
2167 /* done */
2168 MemoryContextSwitchTo(old_context);
2169 MemoryContextDelete(cmd_context);
2170
2171 /*
2172 * We need not update ps display or pg_stat_activity, because PostgresMain
2173 * will reset those to "idle". But we must reset debug_query_string to
2174 * ensure it doesn't become a dangling pointer.
2175 */
2176 debug_query_string = NULL;
2177
2178 return true;
2179}
2180
2181/*
2182 * Process any incoming messages while streaming. Also checks if the remote
2183 * end has closed the connection.
2184 */
2185static void
2187{
2188 unsigned char firstchar;
2189 int maxmsglen;
2190 int r;
2191 bool received = false;
2192
2194
2195 /*
2196 * If we already received a CopyDone from the frontend, any subsequent
2197 * message is the beginning of a new command, and should be processed in
2198 * the main processing loop.
2199 */
2200 while (!streamingDoneReceiving)
2201 {
2203 r = pq_getbyte_if_available(&firstchar);
2204 if (r < 0)
2205 {
2206 /* unexpected error or EOF */
2208 (errcode(ERRCODE_PROTOCOL_VIOLATION),
2209 errmsg("unexpected EOF on standby connection")));
2210 proc_exit(0);
2211 }
2212 if (r == 0)
2213 {
2214 /* no data available without blocking */
2215 pq_endmsgread();
2216 break;
2217 }
2218
2219 /* Validate message type and set packet size limit */
2220 switch (firstchar)
2221 {
2222 case PqMsg_CopyData:
2223 maxmsglen = PQ_LARGE_MESSAGE_LIMIT;
2224 break;
2225 case PqMsg_CopyDone:
2226 case PqMsg_Terminate:
2227 maxmsglen = PQ_SMALL_MESSAGE_LIMIT;
2228 break;
2229 default:
2230 ereport(FATAL,
2231 (errcode(ERRCODE_PROTOCOL_VIOLATION),
2232 errmsg("invalid standby message type \"%c\"",
2233 firstchar)));
2234 maxmsglen = 0; /* keep compiler quiet */
2235 break;
2236 }
2237
2238 /* Read the message contents */
2240 if (pq_getmessage(&reply_message, maxmsglen))
2241 {
2243 (errcode(ERRCODE_PROTOCOL_VIOLATION),
2244 errmsg("unexpected EOF on standby connection")));
2245 proc_exit(0);
2246 }
2247
2248 /* ... and process it */
2249 switch (firstchar)
2250 {
2251 /*
2252 * 'd' means a standby reply wrapped in a CopyData packet.
2253 */
2254 case PqMsg_CopyData:
2256 received = true;
2257 break;
2258
2259 /*
2260 * CopyDone means the standby requested to finish streaming.
2261 * Reply with CopyDone, if we had not sent that already.
2262 */
2263 case PqMsg_CopyDone:
2265 {
2266 pq_putmessage_noblock('c', NULL, 0);
2267 streamingDoneSending = true;
2268 }
2269
2271 received = true;
2272 break;
2273
2274 /*
2275 * 'X' means that the standby is closing down the socket.
2276 */
2277 case PqMsg_Terminate:
2278 proc_exit(0);
2279
2280 default:
2281 Assert(false); /* NOT REACHED */
2282 }
2283 }
2284
2285 /*
2286 * Save the last reply timestamp if we've received at least one reply.
2287 */
2288 if (received)
2289 {
2292 }
2293}
2294
2295/*
2296 * Process a status update message received from standby.
2297 */
2298static void
2300{
2301 char msgtype;
2302
2303 /*
2304 * Check message type from the first byte.
2305 */
2306 msgtype = pq_getmsgbyte(&reply_message);
2307
2308 switch (msgtype)
2309 {
2310 case 'r':
2312 break;
2313
2314 case 'h':
2316 break;
2317
2318 default:
2320 (errcode(ERRCODE_PROTOCOL_VIOLATION),
2321 errmsg("unexpected message type \"%c\"", msgtype)));
2322 proc_exit(0);
2323 }
2324}
2325
2326/*
2327 * Remember that a walreceiver just confirmed receipt of lsn `lsn`.
2328 */
2329static void
2331{
2332 bool changed = false;
2334
2335 Assert(lsn != InvalidXLogRecPtr);
2336 SpinLockAcquire(&slot->mutex);
2337 if (slot->data.restart_lsn != lsn)
2338 {
2339 changed = true;
2340 slot->data.restart_lsn = lsn;
2341 }
2342 SpinLockRelease(&slot->mutex);
2343
2344 if (changed)
2345 {
2349 }
2350
2351 /*
2352 * One could argue that the slot should be saved to disk now, but that'd
2353 * be energy wasted - the worst thing lost information could cause here is
2354 * to give wrong information in a statistics view - we'll just potentially
2355 * be more conservative in removing files.
2356 */
2357}
2358
2359/*
2360 * Regular reply from standby advising of WAL locations on standby server.
2361 */
2362static void
2364{
2365 XLogRecPtr writePtr,
2366 flushPtr,
2367 applyPtr;
2368 bool replyRequested;
2369 TimeOffset writeLag,
2370 flushLag,
2371 applyLag;
2372 bool clearLagTimes;
2374 TimestampTz replyTime;
2375
2376 static bool fullyAppliedLastTime = false;
2377
2378 /* the caller already consumed the msgtype byte */
2379 writePtr = pq_getmsgint64(&reply_message);
2380 flushPtr = pq_getmsgint64(&reply_message);
2381 applyPtr = pq_getmsgint64(&reply_message);
2382 replyTime = pq_getmsgint64(&reply_message);
2383 replyRequested = pq_getmsgbyte(&reply_message);
2384
2386 {
2387 char *replyTimeStr;
2388
2389 /* Copy because timestamptz_to_str returns a static buffer */
2390 replyTimeStr = pstrdup(timestamptz_to_str(replyTime));
2391
2392 elog(DEBUG2, "write %X/%X flush %X/%X apply %X/%X%s reply_time %s",
2393 LSN_FORMAT_ARGS(writePtr),
2394 LSN_FORMAT_ARGS(flushPtr),
2395 LSN_FORMAT_ARGS(applyPtr),
2396 replyRequested ? " (reply requested)" : "",
2397 replyTimeStr);
2398
2399 pfree(replyTimeStr);
2400 }
2401
2402 /* See if we can compute the round-trip lag for these positions. */
2404 writeLag = LagTrackerRead(SYNC_REP_WAIT_WRITE, writePtr, now);
2405 flushLag = LagTrackerRead(SYNC_REP_WAIT_FLUSH, flushPtr, now);
2406 applyLag = LagTrackerRead(SYNC_REP_WAIT_APPLY, applyPtr, now);
2407
2408 /*
2409 * If the standby reports that it has fully replayed the WAL in two
2410 * consecutive reply messages, then the second such message must result
2411 * from wal_receiver_status_interval expiring on the standby. This is a
2412 * convenient time to forget the lag times measured when it last
2413 * wrote/flushed/applied a WAL record, to avoid displaying stale lag data
2414 * until more WAL traffic arrives.
2415 */
2416 clearLagTimes = false;
2417 if (applyPtr == sentPtr)
2418 {
2419 if (fullyAppliedLastTime)
2420 clearLagTimes = true;
2421 fullyAppliedLastTime = true;
2422 }
2423 else
2424 fullyAppliedLastTime = false;
2425
2426 /* Send a reply if the standby requested one. */
2427 if (replyRequested)
2429
2430 /*
2431 * Update shared state for this WalSender process based on reply data from
2432 * standby.
2433 */
2434 {
2435 WalSnd *walsnd = MyWalSnd;
2436
2437 SpinLockAcquire(&walsnd->mutex);
2438 walsnd->write = writePtr;
2439 walsnd->flush = flushPtr;
2440 walsnd->apply = applyPtr;
2441 if (writeLag != -1 || clearLagTimes)
2442 walsnd->writeLag = writeLag;
2443 if (flushLag != -1 || clearLagTimes)
2444 walsnd->flushLag = flushLag;
2445 if (applyLag != -1 || clearLagTimes)
2446 walsnd->applyLag = applyLag;
2447 walsnd->replyTime = replyTime;
2448 SpinLockRelease(&walsnd->mutex);
2449 }
2450
2453
2454 /*
2455 * Advance our local xmin horizon when the client confirmed a flush.
2456 */
2457 if (MyReplicationSlot && flushPtr != InvalidXLogRecPtr)
2458 {
2461 else
2463 }
2464}
2465
2466/* compute new replication slot xmin horizon if needed */
2467static void
2469{
2470 bool changed = false;
2472
2473 SpinLockAcquire(&slot->mutex);
2475
2476 /*
2477 * For physical replication we don't need the interlock provided by xmin
2478 * and effective_xmin since the consequences of a missed increase are
2479 * limited to query cancellations, so set both at once.
2480 */
2481 if (!TransactionIdIsNormal(slot->data.xmin) ||
2482 !TransactionIdIsNormal(feedbackXmin) ||
2483 TransactionIdPrecedes(slot->data.xmin, feedbackXmin))
2484 {
2485 changed = true;
2486 slot->data.xmin = feedbackXmin;
2487 slot->effective_xmin = feedbackXmin;
2488 }
2490 !TransactionIdIsNormal(feedbackCatalogXmin) ||
2491 TransactionIdPrecedes(slot->data.catalog_xmin, feedbackCatalogXmin))
2492 {
2493 changed = true;
2494 slot->data.catalog_xmin = feedbackCatalogXmin;
2495 slot->effective_catalog_xmin = feedbackCatalogXmin;
2496 }
2497 SpinLockRelease(&slot->mutex);
2498
2499 if (changed)
2500 {
2503 }
2504}
2505
2506/*
2507 * Check that the provided xmin/epoch are sane, that is, not in the future
2508 * and not so far back as to be already wrapped around.
2509 *
2510 * Epoch of nextXid should be same as standby, or if the counter has
2511 * wrapped, then one greater than standby.
2512 *
2513 * This check doesn't care about whether clog exists for these xids
2514 * at all.
2515 */
2516static bool
2518{
2519 FullTransactionId nextFullXid;
2520 TransactionId nextXid;
2521 uint32 nextEpoch;
2522
2523 nextFullXid = ReadNextFullTransactionId();
2524 nextXid = XidFromFullTransactionId(nextFullXid);
2525 nextEpoch = EpochFromFullTransactionId(nextFullXid);
2526
2527 if (xid <= nextXid)
2528 {
2529 if (epoch != nextEpoch)
2530 return false;
2531 }
2532 else
2533 {
2534 if (epoch + 1 != nextEpoch)
2535 return false;
2536 }
2537
2538 if (!TransactionIdPrecedesOrEquals(xid, nextXid))
2539 return false; /* epoch OK, but it's wrapped around */
2540
2541 return true;
2542}
2543
2544/*
2545 * Hot Standby feedback
2546 */
2547static void
2549{
2550 TransactionId feedbackXmin;
2551 uint32 feedbackEpoch;
2552 TransactionId feedbackCatalogXmin;
2553 uint32 feedbackCatalogEpoch;
2554 TimestampTz replyTime;
2555
2556 /*
2557 * Decipher the reply message. The caller already consumed the msgtype
2558 * byte. See XLogWalRcvSendHSFeedback() in walreceiver.c for the creation
2559 * of this message.
2560 */
2561 replyTime = pq_getmsgint64(&reply_message);
2562 feedbackXmin = pq_getmsgint(&reply_message, 4);
2563 feedbackEpoch = pq_getmsgint(&reply_message, 4);
2564 feedbackCatalogXmin = pq_getmsgint(&reply_message, 4);
2565 feedbackCatalogEpoch = pq_getmsgint(&reply_message, 4);
2566
2568 {
2569 char *replyTimeStr;
2570
2571 /* Copy because timestamptz_to_str returns a static buffer */
2572 replyTimeStr = pstrdup(timestamptz_to_str(replyTime));
2573
2574 elog(DEBUG2, "hot standby feedback xmin %u epoch %u, catalog_xmin %u epoch %u reply_time %s",
2575 feedbackXmin,
2576 feedbackEpoch,
2577 feedbackCatalogXmin,
2578 feedbackCatalogEpoch,
2579 replyTimeStr);
2580
2581 pfree(replyTimeStr);
2582 }
2583
2584 /*
2585 * Update shared state for this WalSender process based on reply data from
2586 * standby.
2587 */
2588 {
2589 WalSnd *walsnd = MyWalSnd;
2590
2591 SpinLockAcquire(&walsnd->mutex);
2592 walsnd->replyTime = replyTime;
2593 SpinLockRelease(&walsnd->mutex);
2594 }
2595
2596 /*
2597 * Unset WalSender's xmins if the feedback message values are invalid.
2598 * This happens when the downstream turned hot_standby_feedback off.
2599 */
2600 if (!TransactionIdIsNormal(feedbackXmin)
2601 && !TransactionIdIsNormal(feedbackCatalogXmin))
2602 {
2604 if (MyReplicationSlot != NULL)
2605 PhysicalReplicationSlotNewXmin(feedbackXmin, feedbackCatalogXmin);
2606 return;
2607 }
2608
2609 /*
2610 * Check that the provided xmin/epoch are sane, that is, not in the future
2611 * and not so far back as to be already wrapped around. Ignore if not.
2612 */
2613 if (TransactionIdIsNormal(feedbackXmin) &&
2614 !TransactionIdInRecentPast(feedbackXmin, feedbackEpoch))
2615 return;
2616
2617 if (TransactionIdIsNormal(feedbackCatalogXmin) &&
2618 !TransactionIdInRecentPast(feedbackCatalogXmin, feedbackCatalogEpoch))
2619 return;
2620
2621 /*
2622 * Set the WalSender's xmin equal to the standby's requested xmin, so that
2623 * the xmin will be taken into account by GetSnapshotData() /
2624 * ComputeXidHorizons(). This will hold back the removal of dead rows and
2625 * thereby prevent the generation of cleanup conflicts on the standby
2626 * server.
2627 *
2628 * There is a small window for a race condition here: although we just
2629 * checked that feedbackXmin precedes nextXid, the nextXid could have
2630 * gotten advanced between our fetching it and applying the xmin below,
2631 * perhaps far enough to make feedbackXmin wrap around. In that case the
2632 * xmin we set here would be "in the future" and have no effect. No point
2633 * in worrying about this since it's too late to save the desired data
2634 * anyway. Assuming that the standby sends us an increasing sequence of
2635 * xmins, this could only happen during the first reply cycle, else our
2636 * own xmin would prevent nextXid from advancing so far.
2637 *
2638 * We don't bother taking the ProcArrayLock here. Setting the xmin field
2639 * is assumed atomic, and there's no real need to prevent concurrent
2640 * horizon determinations. (If we're moving our xmin forward, this is
2641 * obviously safe, and if we're moving it backwards, well, the data is at
2642 * risk already since a VACUUM could already have determined the horizon.)
2643 *
2644 * If we're using a replication slot we reserve the xmin via that,
2645 * otherwise via the walsender's PGPROC entry. We can only track the
2646 * catalog xmin separately when using a slot, so we store the least of the
2647 * two provided when not using a slot.
2648 *
2649 * XXX: It might make sense to generalize the ephemeral slot concept and
2650 * always use the slot mechanism to handle the feedback xmin.
2651 */
2652 if (MyReplicationSlot != NULL) /* XXX: persistency configurable? */
2653 PhysicalReplicationSlotNewXmin(feedbackXmin, feedbackCatalogXmin);
2654 else
2655 {
2656 if (TransactionIdIsNormal(feedbackCatalogXmin)
2657 && TransactionIdPrecedes(feedbackCatalogXmin, feedbackXmin))
2658 MyProc->xmin = feedbackCatalogXmin;
2659 else
2660 MyProc->xmin = feedbackXmin;
2661 }
2662}
2663
2664/*
2665 * Compute how long send/receive loops should sleep.
2666 *
2667 * If wal_sender_timeout is enabled we want to wake up in time to send
2668 * keepalives and to abort the connection if wal_sender_timeout has been
2669 * reached.
2670 */
2671static long
2673{
2674 long sleeptime = 10000; /* 10 s */
2675
2677 {
2678 TimestampTz wakeup_time;
2679
2680 /*
2681 * At the latest stop sleeping once wal_sender_timeout has been
2682 * reached.
2683 */
2686
2687 /*
2688 * If no ping has been sent yet, wakeup when it's time to do so.
2689 * WalSndKeepaliveIfNecessary() wants to send a keepalive once half of
2690 * the timeout passed without a response.
2691 */
2694 wal_sender_timeout / 2);
2695
2696 /* Compute relative time until wakeup. */
2697 sleeptime = TimestampDifferenceMilliseconds(now, wakeup_time);
2698 }
2699
2700 return sleeptime;
2701}
2702
2703/*
2704 * Check whether there have been responses by the client within
2705 * wal_sender_timeout and shutdown if not. Using last_processing as the
2706 * reference point avoids counting server-side stalls against the client.
2707 * However, a long server-side stall can make WalSndKeepaliveIfNecessary()
2708 * postdate last_processing by more than wal_sender_timeout. If that happens,
2709 * the client must reply almost immediately to avoid a timeout. This rarely
2710 * affects the default configuration, under which clients spontaneously send a
2711 * message every standby_message_timeout = wal_sender_timeout/6 = 10s. We
2712 * could eliminate that problem by recognizing timeout expiration at
2713 * wal_sender_timeout/2 after the keepalive.
2714 */
2715static void
2717{
2718 TimestampTz timeout;
2719
2720 /* don't bail out if we're doing something that doesn't require timeouts */
2721 if (last_reply_timestamp <= 0)
2722 return;
2723
2726
2727 if (wal_sender_timeout > 0 && last_processing >= timeout)
2728 {
2729 /*
2730 * Since typically expiration of replication timeout means
2731 * communication problem, we don't send the error message to the
2732 * standby.
2733 */
2735 (errmsg("terminating walsender process due to replication timeout")));
2736
2738 }
2739}
2740
2741/* Main loop of walsender process that streams the WAL over Copy messages. */
2742static void
2744{
2745 /*
2746 * Initialize the last reply timestamp. That enables timeout processing
2747 * from hereon.
2748 */
2751
2752 /*
2753 * Loop until we reach the end of this timeline or the client requests to
2754 * stop streaming.
2755 */
2756 for (;;)
2757 {
2758 /* Clear any already-pending wakeups */
2760
2762
2763 /* Process any requests or signals received recently */
2765 {
2766 ConfigReloadPending = false;
2769 }
2770
2771 /* Check for input from the client */
2773
2774 /*
2775 * If we have received CopyDone from the client, sent CopyDone
2776 * ourselves, and the output buffer is empty, it's time to exit
2777 * streaming.
2778 */
2781 break;
2782
2783 /*
2784 * If we don't have any pending data in the output buffer, try to send
2785 * some more. If there is some, we don't bother to call send_data
2786 * again until we've flushed it ... but we'd better assume we are not
2787 * caught up.
2788 */
2789 if (!pq_is_send_pending())
2790 send_data();
2791 else
2792 WalSndCaughtUp = false;
2793
2794 /* Try to flush pending output to the client */
2795 if (pq_flush_if_writable() != 0)
2797
2798 /* If nothing remains to be sent right now ... */
2800 {
2801 /*
2802 * If we're in catchup state, move to streaming. This is an
2803 * important state change for users to know about, since before
2804 * this point data loss might occur if the primary dies and we
2805 * need to failover to the standby. The state change is also
2806 * important for synchronous replication, since commits that
2807 * started to wait at that point might wait for some time.
2808 */
2810 {
2812 (errmsg_internal("\"%s\" has now caught up with upstream server",
2815 }
2816
2817 /*
2818 * When SIGUSR2 arrives, we send any outstanding logs up to the
2819 * shutdown checkpoint record (i.e., the latest record), wait for
2820 * them to be replicated to the standby, and exit. This may be a
2821 * normal termination at shutdown, or a promotion, the walsender
2822 * is not sure which.
2823 */
2824 if (got_SIGUSR2)
2825 WalSndDone(send_data);
2826 }
2827
2828 /* Check for replication timeout. */
2830
2831 /* Send keepalive if the time has come */
2833
2834 /*
2835 * Block if we have unsent data. XXX For logical replication, let
2836 * WalSndWaitForWal() handle any other blocking; idle receivers need
2837 * its additional actions. For physical replication, also block if
2838 * caught up; its send_data does not block.
2839 */
2840 if ((WalSndCaughtUp && send_data != XLogSendLogical &&
2843 {
2844 long sleeptime;
2845 int wakeEvents;
2846
2848 wakeEvents = WL_SOCKET_READABLE;
2849 else
2850 wakeEvents = 0;
2851
2852 /*
2853 * Use fresh timestamp, not last_processing, to reduce the chance
2854 * of reaching wal_sender_timeout before sending a keepalive.
2855 */
2857
2858 if (pq_is_send_pending())
2859 wakeEvents |= WL_SOCKET_WRITEABLE;
2860
2861 /* Sleep until something happens or we time out */
2862 WalSndWait(wakeEvents, sleeptime, WAIT_EVENT_WAL_SENDER_MAIN);
2863 }
2864 }
2865}
2866
2867/* Initialize a per-walsender data structure for this walsender process */
2868static void
2870{
2871 int i;
2872
2873 /*
2874 * WalSndCtl should be set up already (we inherit this by fork() or
2875 * EXEC_BACKEND mechanism from the postmaster).
2876 */
2877 Assert(WalSndCtl != NULL);
2878 Assert(MyWalSnd == NULL);
2879
2880 /*
2881 * Find a free walsender slot and reserve it. This must not fail due to
2882 * the prior check for free WAL senders in InitProcess().
2883 */
2884 for (i = 0; i < max_wal_senders; i++)
2885 {
2886 WalSnd *walsnd = &WalSndCtl->walsnds[i];
2887
2888 SpinLockAcquire(&walsnd->mutex);
2889
2890 if (walsnd->pid != 0)
2891 {
2892 SpinLockRelease(&walsnd->mutex);
2893 continue;
2894 }
2895 else
2896 {
2897 /*
2898 * Found a free slot. Reserve it for us.
2899 */
2900 walsnd->pid = MyProcPid;
2901 walsnd->state = WALSNDSTATE_STARTUP;
2902 walsnd->sentPtr = InvalidXLogRecPtr;
2903 walsnd->needreload = false;
2904 walsnd->write = InvalidXLogRecPtr;
2905 walsnd->flush = InvalidXLogRecPtr;
2906 walsnd->apply = InvalidXLogRecPtr;
2907 walsnd->writeLag = -1;
2908 walsnd->flushLag = -1;
2909 walsnd->applyLag = -1;
2910 walsnd->sync_standby_priority = 0;
2911 walsnd->replyTime = 0;
2912
2913 /*
2914 * The kind assignment is done here and not in StartReplication()
2915 * and StartLogicalReplication(). Indeed, the logical walsender
2916 * needs to read WAL records (like snapshot of running
2917 * transactions) during the slot creation. So it needs to be woken
2918 * up based on its kind.
2919 *
2920 * The kind assignment could also be done in StartReplication(),
2921 * StartLogicalReplication() and CREATE_REPLICATION_SLOT but it
2922 * seems better to set it on one place.
2923 */
2924 if (MyDatabaseId == InvalidOid)
2926 else
2928
2929 SpinLockRelease(&walsnd->mutex);
2930 /* don't need the lock anymore */
2931 MyWalSnd = (WalSnd *) walsnd;
2932
2933 break;
2934 }
2935 }
2936
2937 Assert(MyWalSnd != NULL);
2938
2939 /* Arrange to clean up at walsender exit */
2941}
2942
2943/* Destroy the per-walsender data structure for this walsender process */
2944static void
2946{
2947 WalSnd *walsnd = MyWalSnd;
2948
2949 Assert(walsnd != NULL);
2950
2951 MyWalSnd = NULL;
2952
2953 SpinLockAcquire(&walsnd->mutex);
2954 /* Mark WalSnd struct as no longer being in use. */
2955 walsnd->pid = 0;
2956 SpinLockRelease(&walsnd->mutex);
2957}
2958
2959/* XLogReaderRoutine->segment_open callback */
2960static void
2962 TimeLineID *tli_p)
2963{
2964 char path[MAXPGPATH];
2965
2966 /*-------
2967 * When reading from a historic timeline, and there is a timeline switch
2968 * within this segment, read from the WAL segment belonging to the new
2969 * timeline.
2970 *
2971 * For example, imagine that this server is currently on timeline 5, and
2972 * we're streaming timeline 4. The switch from timeline 4 to 5 happened at
2973 * 0/13002088. In pg_wal, we have these files:
2974 *
2975 * ...
2976 * 000000040000000000000012
2977 * 000000040000000000000013
2978 * 000000050000000000000013
2979 * 000000050000000000000014
2980 * ...
2981 *
2982 * In this situation, when requested to send the WAL from segment 0x13, on
2983 * timeline 4, we read the WAL from file 000000050000000000000013. Archive
2984 * recovery prefers files from newer timelines, so if the segment was
2985 * restored from the archive on this server, the file belonging to the old
2986 * timeline, 000000040000000000000013, might not exist. Their contents are
2987 * equal up to the switchpoint, because at a timeline switch, the used
2988 * portion of the old segment is copied to the new file.
2989 */
2990 *tli_p = sendTimeLine;
2992 {
2993 XLogSegNo endSegNo;
2994
2995 XLByteToSeg(sendTimeLineValidUpto, endSegNo, state->segcxt.ws_segsize);
2996 if (nextSegNo == endSegNo)
2997 *tli_p = sendTimeLineNextTLI;
2998 }
2999
3000 XLogFilePath(path, *tli_p, nextSegNo, state->segcxt.ws_segsize);
3001 state->seg.ws_file = BasicOpenFile(path, O_RDONLY | PG_BINARY);
3002 if (state->seg.ws_file >= 0)
3003 return;
3004
3005 /*
3006 * If the file is not found, assume it's because the standby asked for a
3007 * too old WAL segment that has already been removed or recycled.
3008 */
3009 if (errno == ENOENT)
3010 {
3011 char xlogfname[MAXFNAMELEN];
3012 int save_errno = errno;
3013
3014 XLogFileName(xlogfname, *tli_p, nextSegNo, wal_segment_size);
3015 errno = save_errno;
3016 ereport(ERROR,
3018 errmsg("requested WAL segment %s has already been removed",
3019 xlogfname)));
3020 }
3021 else
3022 ereport(ERROR,
3024 errmsg("could not open file \"%s\": %m",
3025 path)));
3026}
3027
3028/*
3029 * Send out the WAL in its normal physical/stored form.
3030 *
3031 * Read up to MAX_SEND_SIZE bytes of WAL that's been flushed to disk,
3032 * but not yet sent to the client, and buffer it in the libpq output
3033 * buffer.
3034 *
3035 * If there is no unsent WAL remaining, WalSndCaughtUp is set to true,
3036 * otherwise WalSndCaughtUp is set to false.
3037 */
3038static void
3040{
3041 XLogRecPtr SendRqstPtr;
3042 XLogRecPtr startptr;
3043 XLogRecPtr endptr;
3044 Size nbytes;
3045 XLogSegNo segno;
3046 WALReadError errinfo;
3047 Size rbytes;
3048
3049 /* If requested switch the WAL sender to the stopping state. */
3050 if (got_STOPPING)
3052
3054 {
3055 WalSndCaughtUp = true;
3056 return;
3057 }
3058
3059 /* Figure out how far we can safely send the WAL. */
3061 {
3062 /*
3063 * Streaming an old timeline that's in this server's history, but is
3064 * not the one we're currently inserting or replaying. It can be
3065 * streamed up to the point where we switched off that timeline.
3066 */
3067 SendRqstPtr = sendTimeLineValidUpto;
3068 }
3069 else if (am_cascading_walsender)
3070 {
3071 TimeLineID SendRqstTLI;
3072
3073 /*
3074 * Streaming the latest timeline on a standby.
3075 *
3076 * Attempt to send all WAL that has already been replayed, so that we
3077 * know it's valid. If we're receiving WAL through streaming
3078 * replication, it's also OK to send any WAL that has been received
3079 * but not replayed.
3080 *
3081 * The timeline we're recovering from can change, or we can be
3082 * promoted. In either case, the current timeline becomes historic. We
3083 * need to detect that so that we don't try to stream past the point
3084 * where we switched to another timeline. We check for promotion or
3085 * timeline switch after calculating FlushPtr, to avoid a race
3086 * condition: if the timeline becomes historic just after we checked
3087 * that it was still current, it's still be OK to stream it up to the
3088 * FlushPtr that was calculated before it became historic.
3089 */
3090 bool becameHistoric = false;
3091
3092 SendRqstPtr = GetStandbyFlushRecPtr(&SendRqstTLI);
3093
3094 if (!RecoveryInProgress())
3095 {
3096 /* We have been promoted. */
3097 SendRqstTLI = GetWALInsertionTimeLine();
3098 am_cascading_walsender = false;
3099 becameHistoric = true;
3100 }
3101 else
3102 {
3103 /*
3104 * Still a cascading standby. But is the timeline we're sending
3105 * still the one recovery is recovering from?
3106 */
3107 if (sendTimeLine != SendRqstTLI)
3108 becameHistoric = true;
3109 }
3110
3111 if (becameHistoric)
3112 {
3113 /*
3114 * The timeline we were sending has become historic. Read the
3115 * timeline history file of the new timeline to see where exactly
3116 * we forked off from the timeline we were sending.
3117 */
3118 List *history;
3119
3120 history = readTimeLineHistory(SendRqstTLI);
3122
3124 list_free_deep(history);
3125
3127
3128 SendRqstPtr = sendTimeLineValidUpto;
3129 }
3130 }
3131 else
3132 {
3133 /*
3134 * Streaming the current timeline on a primary.
3135 *
3136 * Attempt to send all data that's already been written out and
3137 * fsync'd to disk. We cannot go further than what's been written out
3138 * given the current implementation of WALRead(). And in any case
3139 * it's unsafe to send WAL that is not securely down to disk on the
3140 * primary: if the primary subsequently crashes and restarts, standbys
3141 * must not have applied any WAL that got lost on the primary.
3142 */
3143 SendRqstPtr = GetFlushRecPtr(NULL);
3144 }
3145
3146 /*
3147 * Record the current system time as an approximation of the time at which
3148 * this WAL location was written for the purposes of lag tracking.
3149 *
3150 * In theory we could make XLogFlush() record a time in shmem whenever WAL
3151 * is flushed and we could get that time as well as the LSN when we call
3152 * GetFlushRecPtr() above (and likewise for the cascading standby
3153 * equivalent), but rather than putting any new code into the hot WAL path
3154 * it seems good enough to capture the time here. We should reach this
3155 * after XLogFlush() runs WalSndWakeupProcessRequests(), and although that
3156 * may take some time, we read the WAL flush pointer and take the time
3157 * very close to together here so that we'll get a later position if it is
3158 * still moving.
3159 *
3160 * Because LagTrackerWrite ignores samples when the LSN hasn't advanced,
3161 * this gives us a cheap approximation for the WAL flush time for this
3162 * LSN.
3163 *
3164 * Note that the LSN is not necessarily the LSN for the data contained in
3165 * the present message; it's the end of the WAL, which might be further
3166 * ahead. All the lag tracking machinery cares about is finding out when
3167 * that arbitrary LSN is eventually reported as written, flushed and
3168 * applied, so that it can measure the elapsed time.
3169 */
3170 LagTrackerWrite(SendRqstPtr, GetCurrentTimestamp());
3171
3172 /*
3173 * If this is a historic timeline and we've reached the point where we
3174 * forked to the next timeline, stop streaming.
3175 *
3176 * Note: We might already have sent WAL > sendTimeLineValidUpto. The
3177 * startup process will normally replay all WAL that has been received
3178 * from the primary, before promoting, but if the WAL streaming is
3179 * terminated at a WAL page boundary, the valid portion of the timeline
3180 * might end in the middle of a WAL record. We might've already sent the
3181 * first half of that partial WAL record to the cascading standby, so that
3182 * sentPtr > sendTimeLineValidUpto. That's OK; the cascading standby can't
3183 * replay the partial WAL record either, so it can still follow our
3184 * timeline switch.
3185 */
3187 {
3188 /* close the current file. */
3189 if (xlogreader->seg.ws_file >= 0)
3191
3192 /* Send CopyDone */
3193 pq_putmessage_noblock('c', NULL, 0);
3194 streamingDoneSending = true;
3195
3196 WalSndCaughtUp = true;
3197
3198 elog(DEBUG1, "walsender reached end of timeline at %X/%X (sent up to %X/%X)",
3201 return;
3202 }
3203
3204 /* Do we have any work to do? */
3205 Assert(sentPtr <= SendRqstPtr);
3206 if (SendRqstPtr <= sentPtr)
3207 {
3208 WalSndCaughtUp = true;
3209 return;
3210 }
3211
3212 /*
3213 * Figure out how much to send in one message. If there's no more than
3214 * MAX_SEND_SIZE bytes to send, send everything. Otherwise send
3215 * MAX_SEND_SIZE bytes, but round back to logfile or page boundary.
3216 *
3217 * The rounding is not only for performance reasons. Walreceiver relies on
3218 * the fact that we never split a WAL record across two messages. Since a
3219 * long WAL record is split at page boundary into continuation records,
3220 * page boundary is always a safe cut-off point. We also assume that
3221 * SendRqstPtr never points to the middle of a WAL record.
3222 */
3223 startptr = sentPtr;
3224 endptr = startptr;
3225 endptr += MAX_SEND_SIZE;
3226
3227 /* if we went beyond SendRqstPtr, back off */
3228 if (SendRqstPtr <= endptr)
3229 {
3230 endptr = SendRqstPtr;
3232 WalSndCaughtUp = false;
3233 else
3234 WalSndCaughtUp = true;
3235 }
3236 else
3237 {
3238 /* round down to page boundary. */
3239 endptr -= (endptr % XLOG_BLCKSZ);
3240 WalSndCaughtUp = false;
3241 }
3242
3243 nbytes = endptr - startptr;
3244 Assert(nbytes <= MAX_SEND_SIZE);
3245
3246 /*
3247 * OK to read and send the slice.
3248 */
3251
3252 pq_sendint64(&output_message, startptr); /* dataStart */
3253 pq_sendint64(&output_message, SendRqstPtr); /* walEnd */
3254 pq_sendint64(&output_message, 0); /* sendtime, filled in last */
3255
3256 /*
3257 * Read the log directly into the output buffer to avoid extra memcpy
3258 * calls.
3259 */
3261
3262retry:
3263 /* attempt to read WAL from WAL buffers first */
3265 startptr, nbytes, xlogreader->seg.ws_tli);
3266 output_message.len += rbytes;
3267 startptr += rbytes;
3268 nbytes -= rbytes;
3269
3270 /* now read the remaining WAL from WAL file */
3271 if (nbytes > 0 &&
3274 startptr,
3275 nbytes,
3276 xlogreader->seg.ws_tli, /* Pass the current TLI because
3277 * only WalSndSegmentOpen controls
3278 * whether new TLI is needed. */
3279 &errinfo))
3280 WALReadRaiseError(&errinfo);
3281
3282 /* See logical_read_xlog_page(). */
3283 XLByteToSeg(startptr, segno, xlogreader->segcxt.ws_segsize);
3285
3286 /*
3287 * During recovery, the currently-open WAL file might be replaced with the
3288 * file of the same name retrieved from archive. So we always need to
3289 * check what we read was valid after reading into the buffer. If it's
3290 * invalid, we try to open and read the file again.
3291 */
3293 {
3294 WalSnd *walsnd = MyWalSnd;
3295 bool reload;
3296
3297 SpinLockAcquire(&walsnd->mutex);
3298 reload = walsnd->needreload;
3299 walsnd->needreload = false;
3300 SpinLockRelease(&walsnd->mutex);
3301
3302 if (reload && xlogreader->seg.ws_file >= 0)
3303 {
3305
3306 goto retry;
3307 }
3308 }
3309
3310 output_message.len += nbytes;
3312
3313 /*
3314 * Fill the send timestamp last, so that it is taken as late as possible.
3315 */
3318 memcpy(&output_message.data[1 + sizeof(int64) + sizeof(int64)],
3319 tmpbuf.data, sizeof(int64));
3320
3322
3323 sentPtr = endptr;
3324
3325 /* Update shared memory status */
3326 {
3327 WalSnd *walsnd = MyWalSnd;
3328
3329 SpinLockAcquire(&walsnd->mutex);
3330 walsnd->sentPtr = sentPtr;
3331 SpinLockRelease(&walsnd->mutex);
3332 }
3333
3334 /* Report progress of XLOG streaming in PS display */
3336 {
3337 char activitymsg[50];
3338
3339 snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X",
3341 set_ps_display(activitymsg);
3342 }
3343}
3344
3345/*
3346 * Stream out logically decoded data.
3347 */
3348static void
3350{
3351 XLogRecord *record;
3352 char *errm;
3353
3354 /*
3355 * We'll use the current flush point to determine whether we've caught up.
3356 * This variable is static in order to cache it across calls. Caching is
3357 * helpful because GetFlushRecPtr() needs to acquire a heavily-contended
3358 * spinlock.
3359 */
3360 static XLogRecPtr flushPtr = InvalidXLogRecPtr;
3361
3362 /*
3363 * Don't know whether we've caught up yet. We'll set WalSndCaughtUp to
3364 * true in WalSndWaitForWal, if we're actually waiting. We also set to
3365 * true if XLogReadRecord() had to stop reading but WalSndWaitForWal
3366 * didn't wait - i.e. when we're shutting down.
3367 */
3368 WalSndCaughtUp = false;
3369
3370 record = XLogReadRecord(logical_decoding_ctx->reader, &errm);
3371
3372 /* xlog record was invalid */
3373 if (errm != NULL)
3374 elog(ERROR, "could not find record while sending logically-decoded data: %s",
3375 errm);
3376
3377 if (record != NULL)
3378 {
3379 /*
3380 * Note the lack of any call to LagTrackerWrite() which is handled by
3381 * WalSndUpdateProgress which is called by output plugin through
3382 * logical decoding write api.
3383 */
3385
3387 }
3388
3389 /*
3390 * If first time through in this session, initialize flushPtr. Otherwise,
3391 * we only need to update flushPtr if EndRecPtr is past it.
3392 */
3393 if (flushPtr == InvalidXLogRecPtr ||
3395 {
3397 flushPtr = GetStandbyFlushRecPtr(NULL);
3398 else
3399 flushPtr = GetFlushRecPtr(NULL);
3400 }
3401
3402 /* If EndRecPtr is still past our flushPtr, it means we caught up. */
3403 if (logical_decoding_ctx->reader->EndRecPtr >= flushPtr)
3404 WalSndCaughtUp = true;
3405
3406 /*
3407 * If we're caught up and have been requested to stop, have WalSndLoop()
3408 * terminate the connection in an orderly manner, after writing out all
3409 * the pending data.
3410 */
3412 got_SIGUSR2 = true;
3413
3414 /* Update shared memory status */
3415 {
3416 WalSnd *walsnd = MyWalSnd;
3417
3418 SpinLockAcquire(&walsnd->mutex);
3419 walsnd->sentPtr = sentPtr;
3420 SpinLockRelease(&walsnd->mutex);
3421 }
3422}
3423
3424/*
3425 * Shutdown if the sender is caught up.
3426 *
3427 * NB: This should only be called when the shutdown signal has been received
3428 * from postmaster.
3429 *
3430 * Note that if we determine that there's still more data to send, this
3431 * function will return control to the caller.
3432 */
3433static void
3435{
3436 XLogRecPtr replicatedPtr;
3437
3438 /* ... let's just be real sure we're caught up ... */
3439 send_data();
3440
3441 /*
3442 * To figure out whether all WAL has successfully been replicated, check
3443 * flush location if valid, write otherwise. Tools like pg_receivewal will
3444 * usually (unless in synchronous mode) return an invalid flush location.
3445 */
3446 replicatedPtr = XLogRecPtrIsInvalid(MyWalSnd->flush) ?
3448
3449 if (WalSndCaughtUp && sentPtr == replicatedPtr &&
3451 {
3452 QueryCompletion qc;
3453
3454 /* Inform the standby that XLOG streaming is done */
3455 SetQueryCompletion(&qc, CMDTAG_COPY, 0);
3456 EndCommand(&qc, DestRemote, false);
3457 pq_flush();
3458
3459 proc_exit(0);
3460 }
3463}
3464
3465/*
3466 * Returns the latest point in WAL that has been safely flushed to disk.
3467 * This should only be called when in recovery.
3468 *
3469 * This is called either by cascading walsender to find WAL position to be sent
3470 * to a cascaded standby or by slot synchronization operation to validate remote
3471 * slot's lsn before syncing it locally.
3472 *
3473 * As a side-effect, *tli is updated to the TLI of the last
3474 * replayed WAL record.
3475 */
3478{
3479 XLogRecPtr replayPtr;
3480 TimeLineID replayTLI;
3481 XLogRecPtr receivePtr;
3483 XLogRecPtr result;
3484
3486
3487 /*
3488 * We can safely send what's already been replayed. Also, if walreceiver
3489 * is streaming WAL from the same timeline, we can send anything that it
3490 * has streamed, but hasn't been replayed yet.
3491 */
3492
3493 receivePtr = GetWalRcvFlushRecPtr(NULL, &receiveTLI);
3494 replayPtr = GetXLogReplayRecPtr(&replayTLI);
3495
3496 if (tli)
3497 *tli = replayTLI;
3498
3499 result = replayPtr;
3500 if (receiveTLI == replayTLI && receivePtr > replayPtr)
3501 result = receivePtr;
3502
3503 return result;
3504}
3505
3506/*
3507 * Request walsenders to reload the currently-open WAL file
3508 */
3509void
3511{
3512 int i;
3513
3514 for (i = 0; i < max_wal_senders; i++)
3515 {
3516 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3517
3518 SpinLockAcquire(&walsnd->mutex);
3519 if (walsnd->pid == 0)
3520 {
3521 SpinLockRelease(&walsnd->mutex);
3522 continue;
3523 }
3524 walsnd->needreload = true;
3525 SpinLockRelease(&walsnd->mutex);
3526 }
3527}
3528
3529/*
3530 * Handle PROCSIG_WALSND_INIT_STOPPING signal.
3531 */
3532void
3534{
3536
3537 /*
3538 * If replication has not yet started, die like with SIGTERM. If
3539 * replication is active, only set a flag and wake up the main loop. It
3540 * will send any outstanding WAL, wait for it to be replicated to the
3541 * standby, and then exit gracefully.
3542 */
3543 if (!replication_active)
3544 kill(MyProcPid, SIGTERM);
3545 else
3546 got_STOPPING = true;
3547}
3548
3549/*
3550 * SIGUSR2: set flag to do a last cycle and shut down afterwards. The WAL
3551 * sender should already have been switched to WALSNDSTATE_STOPPING at
3552 * this point.
3553 */
3554static void
3556{
3557 got_SIGUSR2 = true;
3559}
3560
3561/* Set up signal handlers */
3562void
3564{
3565 /* Set up signal handlers */
3567 pqsignal(SIGINT, StatementCancelHandler); /* query cancel */
3568 pqsignal(SIGTERM, die); /* request shutdown */
3569 /* SIGQUIT handler was already set up by InitPostmasterChild */
3570 InitializeTimeouts(); /* establishes SIGALRM handler */
3571 pqsignal(SIGPIPE, SIG_IGN);
3573 pqsignal(SIGUSR2, WalSndLastCycleHandler); /* request a last cycle and
3574 * shutdown */
3575
3576 /* Reset some signals that are accepted by postmaster but not here */
3577 pqsignal(SIGCHLD, SIG_DFL);
3578}
3579
3580/* Report shared-memory space needed by WalSndShmemInit */
3581Size
3583{
3584 Size size = 0;
3585
3586 size = offsetof(WalSndCtlData, walsnds);
3588
3589 return size;
3590}
3591
3592/* Allocate and initialize walsender-related shared memory */
3593void
3595{
3596 bool found;
3597 int i;
3598
3600 ShmemInitStruct("Wal Sender Ctl", WalSndShmemSize(), &found);
3601
3602 if (!found)
3603 {
3604 /* First time through, so initialize */
3606
3607 for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; i++)
3609
3610 for (i = 0; i < max_wal_senders; i++)
3611 {
3612 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3613
3614 SpinLockInit(&walsnd->mutex);
3615 }
3616
3620 }
3621}
3622
3623/*
3624 * Wake up physical, logical or both kinds of walsenders
3625 *
3626 * The distinction between physical and logical walsenders is done, because:
3627 * - physical walsenders can't send data until it's been flushed
3628 * - logical walsenders on standby can't decode and send data until it's been
3629 * applied
3630 *
3631 * For cascading replication we need to wake up physical walsenders separately
3632 * from logical walsenders (see the comment before calling WalSndWakeup() in
3633 * ApplyWalRecord() for more details).
3634 *
3635 * This will be called inside critical sections, so throwing an error is not
3636 * advisable.
3637 */
3638void
3639WalSndWakeup(bool physical, bool logical)
3640{
3641 /*
3642 * Wake up all the walsenders waiting on WAL being flushed or replayed
3643 * respectively. Note that waiting walsender would have prepared to sleep
3644 * on the CV (i.e., added itself to the CV's waitlist) in WalSndWait()
3645 * before actually waiting.
3646 */
3647 if (physical)
3649
3650 if (logical)
3652}
3653
3654/*
3655 * Wait for readiness on the FeBe socket, or a timeout. The mask should be
3656 * composed of optional WL_SOCKET_WRITEABLE and WL_SOCKET_READABLE flags. Exit
3657 * on postmaster death.
3658 */
3659static void
3660WalSndWait(uint32 socket_events, long timeout, uint32 wait_event)
3661{
3662 WaitEvent event;
3663
3664 ModifyWaitEvent(FeBeWaitSet, FeBeWaitSetSocketPos, socket_events, NULL);
3665
3666 /*
3667 * We use a condition variable to efficiently wake up walsenders in
3668 * WalSndWakeup().
3669 *
3670 * Every walsender prepares to sleep on a shared memory CV. Note that it
3671 * just prepares to sleep on the CV (i.e., adds itself to the CV's
3672 * waitlist), but does not actually wait on the CV (IOW, it never calls
3673 * ConditionVariableSleep()). It still uses WaitEventSetWait() for
3674 * waiting, because we also need to wait for socket events. The processes
3675 * (startup process, walreceiver etc.) wanting to wake up walsenders use
3676 * ConditionVariableBroadcast(), which in turn calls SetLatch(), helping
3677 * walsenders come out of WaitEventSetWait().
3678 *
3679 * This approach is simple and efficient because, one doesn't have to loop
3680 * through all the walsenders slots, with a spinlock acquisition and
3681 * release for every iteration, just to wake up only the waiting
3682 * walsenders. It makes WalSndWakeup() callers' life easy.
3683 *
3684 * XXX: A desirable future improvement would be to add support for CVs
3685 * into WaitEventSetWait().
3686 *
3687 * And, we use separate shared memory CVs for physical and logical
3688 * walsenders for selective wake ups, see WalSndWakeup() for more details.
3689 *
3690 * If the wait event is WAIT_FOR_STANDBY_CONFIRMATION, wait on another CV
3691 * until awakened by physical walsenders after the walreceiver confirms
3692 * the receipt of the LSN.
3693 */
3694 if (wait_event == WAIT_EVENT_WAIT_FOR_STANDBY_CONFIRMATION)
3700
3701 if (WaitEventSetWait(FeBeWaitSet, timeout, &event, 1, wait_event) == 1 &&
3702 (event.events & WL_POSTMASTER_DEATH))
3703 {
3705 proc_exit(1);
3706 }
3707
3709}
3710
3711/*
3712 * Signal all walsenders to move to stopping state.
3713 *
3714 * This will trigger walsenders to move to a state where no further WAL can be
3715 * generated. See this file's header for details.
3716 */
3717void
3719{
3720 int i;
3721
3722 for (i = 0; i < max_wal_senders; i++)
3723 {
3724 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3725 pid_t pid;
3726
3727 SpinLockAcquire(&walsnd->mutex);
3728 pid = walsnd->pid;
3729 SpinLockRelease(&walsnd->mutex);
3730
3731 if (pid == 0)
3732 continue;
3733
3735 }
3736}
3737
3738/*
3739 * Wait that all the WAL senders have quit or reached the stopping state. This
3740 * is used by the checkpointer to control when the shutdown checkpoint can
3741 * safely be performed.
3742 */
3743void
3745{
3746 for (;;)
3747 {
3748 int i;
3749 bool all_stopped = true;
3750
3751 for (i = 0; i < max_wal_senders; i++)
3752 {
3753 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3754
3755 SpinLockAcquire(&walsnd->mutex);
3756
3757 if (walsnd->pid == 0)
3758 {
3759 SpinLockRelease(&walsnd->mutex);
3760 continue;
3761 }
3762
3763 if (walsnd->state != WALSNDSTATE_STOPPING)
3764 {
3765 all_stopped = false;
3766 SpinLockRelease(&walsnd->mutex);
3767 break;
3768 }
3769 SpinLockRelease(&walsnd->mutex);
3770 }
3771
3772 /* safe to leave if confirmation is done for all WAL senders */
3773 if (all_stopped)
3774 return;
3775
3776 pg_usleep(10000L); /* wait for 10 msec */
3777 }
3778}
3779
3780/* Set state for current walsender (only called in walsender) */
3781void
3783{
3784 WalSnd *walsnd = MyWalSnd;
3785
3787
3788 if (walsnd->state == state)
3789 return;
3790
3791 SpinLockAcquire(&walsnd->mutex);
3792 walsnd->state = state;
3793 SpinLockRelease(&walsnd->mutex);
3794}
3795
3796/*
3797 * Return a string constant representing the state. This is used
3798 * in system views, and should *not* be translated.
3799 */
3800static const char *
3802{
3803 switch (state)
3804 {
3806 return "startup";
3807 case WALSNDSTATE_BACKUP:
3808 return "backup";
3810 return "catchup";
3812 return "streaming";
3814 return "stopping";
3815 }
3816 return "UNKNOWN";
3817}
3818
3819static Interval *
3821{
3822 Interval *result = palloc(sizeof(Interval));
3823
3824 result->month = 0;
3825 result->day = 0;
3826 result->time = offset;
3827
3828 return result;
3829}
3830
3831/*
3832 * Returns activity of walsenders, including pids and xlog locations sent to
3833 * standby servers.
3834 */
3835Datum
3837{
3838#define PG_STAT_GET_WAL_SENDERS_COLS 12
3839 ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
3840 SyncRepStandbyData *sync_standbys;
3841 int num_standbys;
3842 int i;
3843
3844 InitMaterializedSRF(fcinfo, 0);
3845
3846 /*
3847 * Get the currently active synchronous standbys. This could be out of
3848 * date before we're done, but we'll use the data anyway.
3849 */
3850 num_standbys = SyncRepGetCandidateStandbys(&sync_standbys);
3851
3852 for (i = 0; i < max_wal_senders; i++)
3853 {
3854 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3855 XLogRecPtr sent_ptr;
3857 XLogRecPtr flush;
3858 XLogRecPtr apply;
3859 TimeOffset writeLag;
3860 TimeOffset flushLag;
3861 TimeOffset applyLag;
3862 int priority;
3863 int pid;
3865 TimestampTz replyTime;
3866 bool is_sync_standby;
3868 bool nulls[PG_STAT_GET_WAL_SENDERS_COLS] = {0};
3869 int j;
3870
3871 /* Collect data from shared memory */
3872 SpinLockAcquire(&walsnd->mutex);
3873 if (walsnd->pid == 0)
3874 {
3875 SpinLockRelease(&walsnd->mutex);
3876 continue;
3877 }
3878 pid = walsnd->pid;
3879 sent_ptr = walsnd->sentPtr;
3880 state = walsnd->state;
3881 write = walsnd->write;
3882 flush = walsnd->flush;
3883 apply = walsnd->apply;
3884 writeLag = walsnd->writeLag;
3885 flushLag = walsnd->flushLag;
3886 applyLag = walsnd->applyLag;
3887 priority = walsnd->sync_standby_priority;
3888 replyTime = walsnd->replyTime;
3889 SpinLockRelease(&walsnd->mutex);
3890
3891 /*
3892 * Detect whether walsender is/was considered synchronous. We can
3893 * provide some protection against stale data by checking the PID
3894 * along with walsnd_index.
3895 */
3896 is_sync_standby = false;
3897 for (j = 0; j < num_standbys; j++)
3898 {
3899 if (sync_standbys[j].walsnd_index == i &&
3900 sync_standbys[j].pid == pid)
3901 {
3902 is_sync_standby = true;
3903 break;
3904 }
3905 }
3906
3907 values[0] = Int32GetDatum(pid);
3908
3909 if (!has_privs_of_role(GetUserId(), ROLE_PG_READ_ALL_STATS))
3910 {
3911 /*
3912 * Only superusers and roles with privileges of pg_read_all_stats
3913 * can see details. Other users only get the pid value to know
3914 * it's a walsender, but no details.
3915 */
3916 MemSet(&nulls[1], true, PG_STAT_GET_WAL_SENDERS_COLS - 1);
3917 }
3918 else
3919 {
3921
3922 if (XLogRecPtrIsInvalid(sent_ptr))
3923 nulls[2] = true;
3924 values[2] = LSNGetDatum(sent_ptr);
3925
3927 nulls[3] = true;
3928 values[3] = LSNGetDatum(write);
3929
3930 if (XLogRecPtrIsInvalid(flush))
3931 nulls[4] = true;
3932 values[4] = LSNGetDatum(flush);
3933
3934 if (XLogRecPtrIsInvalid(apply))
3935 nulls[5] = true;
3936 values[5] = LSNGetDatum(apply);
3937
3938 /*
3939 * Treat a standby such as a pg_basebackup background process
3940 * which always returns an invalid flush location, as an
3941 * asynchronous standby.
3942 */
3943 priority = XLogRecPtrIsInvalid(flush) ? 0 : priority;
3944
3945 if (writeLag < 0)
3946 nulls[6] = true;
3947 else
3949
3950 if (flushLag < 0)
3951 nulls[7] = true;
3952 else
3954
3955 if (applyLag < 0)
3956 nulls[8] = true;
3957 else
3959
3960 values[9] = Int32GetDatum(priority);
3961
3962 /*
3963 * More easily understood version of standby state. This is purely
3964 * informational.
3965 *
3966 * In quorum-based sync replication, the role of each standby
3967 * listed in synchronous_standby_names can be changing very
3968 * frequently. Any standbys considered as "sync" at one moment can
3969 * be switched to "potential" ones at the next moment. So, it's
3970 * basically useless to report "sync" or "potential" as their sync
3971 * states. We report just "quorum" for them.
3972 */
3973 if (priority == 0)
3974 values[10] = CStringGetTextDatum("async");
3975 else if (is_sync_standby)
3977 CStringGetTextDatum("sync") : CStringGetTextDatum("quorum");
3978 else
3979 values[10] = CStringGetTextDatum("potential");
3980
3981 if (replyTime == 0)
3982 nulls[11] = true;
3983 else
3984 values[11] = TimestampTzGetDatum(replyTime);
3985 }
3986
3987 tuplestore_putvalues(rsinfo->setResult, rsinfo->setDesc,
3988 values, nulls);
3989 }
3990
3991 return (Datum) 0;
3992}
3993
3994/*
3995 * Send a keepalive message to standby.
3996 *
3997 * If requestReply is set, the message requests the other party to send
3998 * a message back to us, for heartbeat purposes. We also set a flag to
3999 * let nearby code know that we're waiting for that response, to avoid
4000 * repeated requests.
4001 *
4002 * writePtr is the location up to which the WAL is sent. It is essentially
4003 * the same as sentPtr but in some cases, we need to send keep alive before
4004 * sentPtr is updated like when skipping empty transactions.
4005 */
4006static void
4007WalSndKeepalive(bool requestReply, XLogRecPtr writePtr)
4008{
4009 elog(DEBUG2, "sending replication keepalive");
4010
4011 /* construct the message... */
4014 pq_sendint64(&output_message, XLogRecPtrIsInvalid(writePtr) ? sentPtr : writePtr);
4016 pq_sendbyte(&output_message, requestReply ? 1 : 0);
4017
4018 /* ... and send it wrapped in CopyData */
4020
4021 /* Set local flag */
4022 if (requestReply)
4024}
4025
4026/*
4027 * Send keepalive message if too much time has elapsed.
4028 */
4029static void
4031{
4032 TimestampTz ping_time;
4033
4034 /*
4035 * Don't send keepalive messages if timeouts are globally disabled or
4036 * we're doing something not partaking in timeouts.
4037 */
4039 return;
4040
4042 return;
4043
4044 /*
4045 * If half of wal_sender_timeout has lapsed without receiving any reply
4046 * from the standby, send a keep-alive message to the standby requesting
4047 * an immediate reply.
4048 */
4050 wal_sender_timeout / 2);
4051 if (last_processing >= ping_time)
4052 {
4054
4055 /* Try to flush pending output to the client */
4056 if (pq_flush_if_writable() != 0)
4058 }
4059}
4060
4061/*
4062 * Record the end of the WAL and the time it was flushed locally, so that
4063 * LagTrackerRead can compute the elapsed time (lag) when this WAL location is
4064 * eventually reported to have been written, flushed and applied by the
4065 * standby in a reply message.
4066 */
4067static void
4069{
4070 bool buffer_full;
4071 int new_write_head;
4072 int i;
4073
4074 if (!am_walsender)
4075 return;
4076
4077 /*
4078 * If the lsn hasn't advanced since last time, then do nothing. This way
4079 * we only record a new sample when new WAL has been written.
4080 */
4081 if (lag_tracker->last_lsn == lsn)
4082 return;
4083 lag_tracker->last_lsn = lsn;
4084
4085 /*
4086 * If advancing the write head of the circular buffer would crash into any
4087 * of the read heads, then the buffer is full. In other words, the
4088 * slowest reader (presumably apply) is the one that controls the release
4089 * of space.
4090 */
4091 new_write_head = (lag_tracker->write_head + 1) % LAG_TRACKER_BUFFER_SIZE;
4092 buffer_full = false;
4093 for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; ++i)
4094 {
4095 if (new_write_head == lag_tracker->read_heads[i])
4096 buffer_full = true;
4097 }
4098
4099 /*
4100 * If the buffer is full, for now we just rewind by one slot and overwrite
4101 * the last sample, as a simple (if somewhat uneven) way to lower the
4102 * sampling rate. There may be better adaptive compaction algorithms.
4103 */
4104 if (buffer_full)
4105 {
4106 new_write_head = lag_tracker->write_head;
4107 if (lag_tracker->write_head > 0)
4109 else
4111 }
4112
4113 /* Store a sample at the current write head position. */
4115 lag_tracker->buffer[lag_tracker->write_head].time = local_flush_time;
4116 lag_tracker->write_head = new_write_head;
4117}
4118
4119/*
4120 * Find out how much time has elapsed between the moment WAL location 'lsn'
4121 * (or the highest known earlier LSN) was flushed locally and the time 'now'.
4122 * We have a separate read head for each of the reported LSN locations we
4123 * receive in replies from standby; 'head' controls which read head is
4124 * used. Whenever a read head crosses an LSN which was written into the
4125 * lag buffer with LagTrackerWrite, we can use the associated timestamp to
4126 * find out the time this LSN (or an earlier one) was flushed locally, and
4127 * therefore compute the lag.
4128 *
4129 * Return -1 if no new sample data is available, and otherwise the elapsed
4130 * time in microseconds.
4131 */
4132static TimeOffset
4134{
4135 TimestampTz time = 0;
4136
4137 /* Read all unread samples up to this LSN or end of buffer. */
4138 while (lag_tracker->read_heads[head] != lag_tracker->write_head &&
4140 {
4142 lag_tracker->last_read[head] =
4144 lag_tracker->read_heads[head] =
4146 }
4147
4148 /*
4149 * If the lag tracker is empty, that means the standby has processed
4150 * everything we've ever sent so we should now clear 'last_read'. If we
4151 * didn't do that, we'd risk using a stale and irrelevant sample for
4152 * interpolation at the beginning of the next burst of WAL after a period
4153 * of idleness.
4154 */
4156 lag_tracker->last_read[head].time = 0;
4157
4158 if (time > now)
4159 {
4160 /* If the clock somehow went backwards, treat as not found. */
4161 return -1;
4162 }
4163 else if (time == 0)
4164 {
4165 /*
4166 * We didn't cross a time. If there is a future sample that we
4167 * haven't reached yet, and we've already reached at least one sample,
4168 * let's interpolate the local flushed time. This is mainly useful
4169 * for reporting a completely stuck apply position as having
4170 * increasing lag, since otherwise we'd have to wait for it to
4171 * eventually start moving again and cross one of our samples before
4172 * we can show the lag increasing.
4173 */
4175 {
4176 /* There are no future samples, so we can't interpolate. */
4177 return -1;
4178 }
4179 else if (lag_tracker->last_read[head].time != 0)
4180 {
4181 /* We can interpolate between last_read and the next sample. */
4182 double fraction;
4183 WalTimeSample prev = lag_tracker->last_read[head];
4185
4186 if (lsn < prev.lsn)
4187 {
4188 /*
4189 * Reported LSNs shouldn't normally go backwards, but it's
4190 * possible when there is a timeline change. Treat as not
4191 * found.
4192 */
4193 return -1;
4194 }
4195
4196 Assert(prev.lsn < next.lsn);
4197
4198 if (prev.time > next.time)
4199 {
4200 /* If the clock somehow went backwards, treat as not found. */
4201 return -1;
4202 }
4203
4204 /* See how far we are between the previous and next samples. */
4205 fraction =
4206 (double) (lsn - prev.lsn) / (double) (next.lsn - prev.lsn);
4207
4208 /* Scale the local flush time proportionally. */
4209 time = (TimestampTz)
4210 ((double) prev.time + (next.time - prev.time) * fraction);
4211 }
4212 else
4213 {
4214 /*
4215 * We have only a future sample, implying that we were entirely
4216 * caught up but and now there is a new burst of WAL and the
4217 * standby hasn't processed the first sample yet. Until the
4218 * standby reaches the future sample the best we can do is report
4219 * the hypothetical lag if that sample were to be replayed now.
4220 */
4222 }
4223 }
4224
4225 /* Return the elapsed time since local flush time in microseconds. */
4226 Assert(time != 0);
4227 return now - time;
4228}
bool has_privs_of_role(Oid member, Oid role)
Definition: acl.c:5268
int16 AttrNumber
Definition: attnum.h:21
List * readTimeLineHistory(TimeLineID targetTLI)
Definition: timeline.c:76
TimeLineID tliOfPointInHistory(XLogRecPtr ptr, List *history)
Definition: timeline.c:544
XLogRecPtr tliSwitchPoint(TimeLineID tli, List *history, TimeLineID *nextTLI)
Definition: timeline.c:572
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1756
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1780
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1644
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1843
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1608
void pgstat_report_activity(BackendState state, const char *cmd_str)
@ STATE_RUNNING
void SendBaseBackup(BaseBackupCmd *cmd, IncrementalBackupInfo *ib)
Definition: basebackup.c:990
void AppendIncrementalManifestData(IncrementalBackupInfo *ib, const char *data, int len)
IncrementalBackupInfo * CreateIncrementalBackupInfo(MemoryContext mcxt)
void FinalizeIncrementalManifest(IncrementalBackupInfo *ib)
static int32 next
Definition: blutils.c:219
static Datum values[MAXATTR]
Definition: bootstrap.c:151
#define CStringGetTextDatum(s)
Definition: builtins.h:97
#define NameStr(name)
Definition: c.h:703
#define SIGNAL_ARGS
Definition: c.h:1306
#define Assert(condition)
Definition: c.h:815
int64_t int64
Definition: c.h:485
#define PG_BINARY
Definition: c.h:1230
#define pg_attribute_noreturn()
Definition: c.h:239
#define UINT64_FORMAT
Definition: c.h:507
uint32_t uint32
Definition: c.h:488
#define MemSet(start, val, len)
Definition: c.h:977
uint32 TransactionId
Definition: c.h:609
#define OidIsValid(objectId)
Definition: c.h:732
size_t Size
Definition: c.h:562
static void SetQueryCompletion(QueryCompletion *qc, CommandTag commandTag, uint64 nprocessed)
Definition: cmdtag.h:37
bool ConditionVariableCancelSleep(void)
void ConditionVariableBroadcast(ConditionVariable *cv)
void ConditionVariablePrepareToSleep(ConditionVariable *cv)
void ConditionVariableInit(ConditionVariable *cv)
void * yyscan_t
Definition: cubedata.h:67
int64 TimestampTz
Definition: timestamp.h:39
int64 TimeOffset
Definition: timestamp.h:40
char * get_database_name(Oid dbid)
Definition: dbcommands.c:3187
void LogicalDecodingProcessRecord(LogicalDecodingContext *ctx, XLogReaderState *record)
Definition: decode.c:88
char * defGetString(DefElem *def)
Definition: define.c:35
bool defGetBoolean(DefElem *def)
Definition: define.c:94
void EndCommand(const QueryCompletion *qc, CommandDest dest, bool force_undecorated_output)
Definition: dest.c:169
DestReceiver * CreateDestReceiver(CommandDest dest)
Definition: dest.c:113
void EndReplicationCommand(const char *commandTag)
Definition: dest.c:205
@ DestRemote
Definition: dest.h:89
@ DestRemoteSimple
Definition: dest.h:91
@ DestNone
Definition: dest.h:87
struct cursor * cur
Definition: ecpg.c:29
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1157
int errcode_for_file_access(void)
Definition: elog.c:876
int errdetail(const char *fmt,...)
Definition: elog.c:1203
bool message_level_is_interesting(int elevel)
Definition: elog.c:272
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define LOG
Definition: elog.h:31
#define COMMERROR
Definition: elog.h:33
#define FATAL
Definition: elog.h:41
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
void do_tup_output(TupOutputState *tstate, const Datum *values, const bool *isnull)
Definition: execTuples.c:2462
const TupleTableSlotOps TTSOpsVirtual
Definition: execTuples.c:84
void end_tup_output(TupOutputState *tstate)
Definition: execTuples.c:2520
TupOutputState * begin_tup_output_tupdesc(DestReceiver *dest, TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:2442
int CloseTransientFile(int fd)
Definition: fd.c:2831
int BasicOpenFile(const char *fileName, int fileFlags)
Definition: fd.c:1086
int OpenTransientFile(const char *fileName, int fileFlags)
Definition: fd.c:2655
Datum Int64GetDatum(int64 X)
Definition: fmgr.c:1807
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
void InitMaterializedSRF(FunctionCallInfo fcinfo, bits32 flags)
Definition: funcapi.c:76
int MyProcPid
Definition: globals.c:46
struct Latch * MyLatch
Definition: globals.c:62
Oid MyDatabaseId
Definition: globals.c:93
void ProcessConfigFile(GucContext context)
Definition: guc-file.l:120
@ PGC_SIGHUP
Definition: guc.h:71
void GetPGVariable(const char *name, DestReceiver *dest)
Definition: guc_funcs.c:382
char * application_name
Definition: guc_tables.c:543
static void dlist_init(dlist_head *head)
Definition: ilist.h:314
#define write(a, b, c)
Definition: win32.h:14
#define read(a, b, c)
Definition: win32.h:13
volatile sig_atomic_t ConfigReloadPending
Definition: interrupt.c:27
void SignalHandlerForConfigReload(SIGNAL_ARGS)
Definition: interrupt.c:61
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:365
void proc_exit(int code)
Definition: ipc.c:104
int j
Definition: isn.c:73
int i
Definition: isn.c:72
void ModifyWaitEvent(WaitEventSet *set, int pos, uint32 events, Latch *latch)
Definition: latch.c:1043
void SetLatch(Latch *latch)
Definition: latch.c:632
int WaitEventSetWait(WaitEventSet *set, long timeout, WaitEvent *occurred_events, int nevents, uint32 wait_event_info)
Definition: latch.c:1418
void ResetLatch(Latch *latch)
Definition: latch.c:724
#define WL_SOCKET_READABLE
Definition: latch.h:128
#define WL_POSTMASTER_DEATH
Definition: latch.h:131
#define WL_SOCKET_WRITEABLE
Definition: latch.h:129
#define pq_flush()
Definition: libpq.h:46
#define PQ_SMALL_MESSAGE_LIMIT
Definition: libpq.h:30
#define pq_flush_if_writable()
Definition: libpq.h:47
#define pq_is_send_pending()
Definition: libpq.h:48
#define PQ_LARGE_MESSAGE_LIMIT
Definition: libpq.h:31
#define pq_putmessage_noblock(msgtype, s, len)
Definition: libpq.h:51
#define FeBeWaitSetSocketPos
Definition: libpq.h:63
void list_free_deep(List *list)
Definition: list.c:1560
void LogicalConfirmReceivedLocation(XLogRecPtr lsn)
Definition: logical.c:1837
void FreeDecodingContext(LogicalDecodingContext *ctx)
Definition: logical.c:694
LogicalDecodingContext * CreateDecodingContext(XLogRecPtr start_lsn, List *output_plugin_options, bool fast_forward, XLogReaderRoutine *xl_routine, LogicalOutputPluginWriterPrepareWrite prepare_write, LogicalOutputPluginWriterWrite do_write, LogicalOutputPluginWriterUpdateProgress update_progress)
Definition: logical.c:496
void DecodingContextFindStartpoint(LogicalDecodingContext *ctx)
Definition: logical.c:650
LogicalDecodingContext * CreateInitDecodingContext(const char *plugin, List *output_plugin_options, bool need_full_snapshot, XLogRecPtr restart_lsn, XLogReaderRoutine *xl_routine, LogicalOutputPluginWriterPrepareWrite prepare_write, LogicalOutputPluginWriterWrite do_write, LogicalOutputPluginWriterUpdateProgress update_progress)
Definition: logical.c:330
void CheckLogicalDecodingRequirements(void)
Definition: logical.c:109
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1168
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1781
void LWLockReleaseAll(void)
Definition: lwlock.c:1876
@ LW_SHARED
Definition: lwlock.h:115
@ LW_EXCLUSIVE
Definition: lwlock.h:114
char * MemoryContextStrdup(MemoryContext context, const char *string)
Definition: mcxt.c:1683
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1215
char * pstrdup(const char *in)
Definition: mcxt.c:1696
void MemoryContextSetParent(MemoryContext context, MemoryContext new_parent)
Definition: mcxt.c:637
void pfree(void *pointer)
Definition: mcxt.c:1521
MemoryContext TopMemoryContext
Definition: mcxt.c:149
void * palloc(Size size)
Definition: mcxt.c:1317
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
MemoryContext CacheMemoryContext
Definition: mcxt.c:152
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define HOLD_CANCEL_INTERRUPTS()
Definition: miscadmin.h:141
#define RESUME_CANCEL_INTERRUPTS()
Definition: miscadmin.h:143
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
Oid GetUserId(void)
Definition: miscinit.c:517
@ CMD_SELECT
Definition: nodes.h:265
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
void * arg
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:41
#define MAXPGPATH
const void size_t len
#define lfirst(lc)
Definition: pg_list.h:172
#define NIL
Definition: pg_list.h:68
#define foreach_ptr(type, var, lst)
Definition: pg_list.h:469
static Datum LSNGetDatum(XLogRecPtr X)
Definition: pg_lsn.h:28
static bool two_phase
#define die(msg)
static char * buf
Definition: pg_test_fsync.c:72
void SendPostmasterSignal(PMSignalReason reason)
Definition: pmsignal.c:165
void MarkPostmasterChildWalSender(void)
Definition: pmsignal.c:309
@ PMSIGNAL_ADVANCE_STATE_MACHINE
Definition: pmsignal.h:42
#define pqsignal
Definition: port.h:520
#define snprintf
Definition: port.h:238
void StatementCancelHandler(SIGNAL_ARGS)
Definition: postgres.c:3031
CommandDest whereToSendOutput
Definition: postgres.c:90
const char * debug_query_string
Definition: postgres.c:87
uintptr_t Datum
Definition: postgres.h:69
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:217
#define InvalidOid
Definition: postgres_ext.h:37
int pq_getbyte_if_available(unsigned char *c)
Definition: pqcomm.c:1004
int pq_getmessage(StringInfo s, int maxlen)
Definition: pqcomm.c:1203
WaitEventSet * FeBeWaitSet
Definition: pqcomm.c:166
void pq_endmsgread(void)
Definition: pqcomm.c:1165
int pq_getbyte(void)
Definition: pqcomm.c:964
void pq_startmsgread(void)
Definition: pqcomm.c:1141
unsigned int pq_getmsgint(StringInfo msg, int b)
Definition: pqformat.c:415
void pq_sendbytes(StringInfo buf, const void *data, int datalen)
Definition: pqformat.c:126
const char * pq_getmsgstring(StringInfo msg)
Definition: pqformat.c:579
void pq_endmessage(StringInfo buf)
Definition: pqformat.c:296
int pq_getmsgbyte(StringInfo msg)
Definition: pqformat.c:399
void pq_beginmessage(StringInfo buf, char msgtype)
Definition: pqformat.c:88
int64 pq_getmsgint64(StringInfo msg)
Definition: pqformat.c:453
void pq_endmessage_reuse(StringInfo buf)
Definition: pqformat.c:314
static void pq_sendint32(StringInfo buf, uint32 i)
Definition: pqformat.h:144
static void pq_sendbyte(StringInfo buf, uint8 byt)
Definition: pqformat.h:160
static void pq_sendint64(StringInfo buf, uint64 i)
Definition: pqformat.h:152
static void pq_sendint16(StringInfo buf, uint16 i)
Definition: pqformat.h:136
static int fd(const char *x, int i)
Definition: preproc-init.c:105
#define PROC_AFFECTS_ALL_HORIZONS
Definition: proc.h:62
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
int SendProcSignal(pid_t pid, ProcSignalReason reason, ProcNumber procNumber)
Definition: procsignal.c:281
void procsignal_sigusr1_handler(SIGNAL_ARGS)
Definition: procsignal.c:671
@ PROCSIG_WALSND_INIT_STOPPING
Definition: procsignal.h:35
#define PqMsg_CopyDone
Definition: protocol.h:64
#define PqMsg_CopyData
Definition: protocol.h:65
#define PqMsg_CopyInResponse
Definition: protocol.h:45
#define PqMsg_CopyBothResponse
Definition: protocol.h:54
#define PqMsg_DataRow
Definition: protocol.h:43
#define PqMsg_Terminate
Definition: protocol.h:28
bool update_process_title
Definition: ps_status.c:31
static void set_ps_display(const char *activity)
Definition: ps_status.h:40
bool replication_scanner_is_replication_command(yyscan_t yyscanner)
Definition: repl_scanner.l:295
void replication_scanner_finish(yyscan_t yyscanner)
Definition: repl_scanner.l:280
void replication_scanner_init(const char *str, yyscan_t *yyscannerp)
Definition: repl_scanner.l:264
@ REPLICATION_KIND_PHYSICAL
Definition: replnodes.h:22
@ REPLICATION_KIND_LOGICAL
Definition: replnodes.h:23
void ReleaseAuxProcessResources(bool isCommit)
Definition: resowner.c:1002
ResourceOwner CurrentResourceOwner
Definition: resowner.c:165
void CreateAuxProcessResourceOwner(void)
Definition: resowner.c:982
ResourceOwner AuxProcessResourceOwner
Definition: resowner.c:168
Size add_size(Size s1, Size s2)
Definition: shmem.c:488
Size mul_size(Size s1, Size s2)
Definition: shmem.c:505
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:382
void pg_usleep(long microsec)
Definition: signal.c:53
static pg_noinline void Size size
Definition: slab.c:607
void ReplicationSlotCreate(const char *name, bool db_specific, ReplicationSlotPersistency persistency, bool two_phase, bool failover, bool synced)
Definition: slot.c:309
void ReplicationSlotMarkDirty(void)
Definition: slot.c:1038
void ReplicationSlotReserveWal(void)
Definition: slot.c:1429
void ReplicationSlotAcquire(const char *name, bool nowait)
Definition: slot.c:540
void ReplicationSlotsComputeRequiredXmin(bool already_locked)
Definition: slot.c:1077
void ReplicationSlotPersist(void)
Definition: slot.c:1055
ReplicationSlot * MyReplicationSlot
Definition: slot.c:138
void ReplicationSlotDrop(const char *name, bool nowait)
Definition: slot.c:784
bool SlotExistsInSyncStandbySlots(const char *slot_name)
Definition: slot.c:2572
void ReplicationSlotSave(void)
Definition: slot.c:1020
ReplicationSlot * SearchNamedReplicationSlot(const char *name, bool need_lock)
Definition: slot.c:464
void ReplicationSlotAlter(const char *name, const bool *failover, const bool *two_phase)
Definition: slot.c:807
void ReplicationSlotRelease(void)
Definition: slot.c:652
bool StandbySlotsHaveCaughtup(XLogRecPtr wait_for_lsn, int elevel)
Definition: slot.c:2605
void ReplicationSlotsComputeRequiredLSN(void)
Definition: slot.c:1133
void ReplicationSlotCleanup(bool synced_only)
Definition: slot.c:745
@ RS_PERSISTENT
Definition: slot.h:38
@ RS_EPHEMERAL
Definition: slot.h:39
@ RS_TEMPORARY
Definition: slot.h:40
#define SlotIsPhysical(slot)
Definition: slot.h:216
#define SlotIsLogical(slot)
Definition: slot.h:217
bool IsSyncingReplicationSlots(void)
Definition: slotsync.c:1649
Snapshot SnapBuildInitialSnapshot(SnapBuild *builder)
Definition: snapbuild.c:440
const char * SnapBuildExportSnapshot(SnapBuild *builder)
Definition: snapbuild.c:539
void SnapBuildClearExportedSnapshot(void)
Definition: snapbuild.c:600
bool FirstSnapshotSet
Definition: snapmgr.c:133
void RestoreTransactionSnapshot(Snapshot snapshot, void *source_pgproc)
Definition: snapmgr.c:1784
#define SpinLockInit(lock)
Definition: spin.h:57
#define SpinLockRelease(lock)
Definition: spin.h:61
#define SpinLockAcquire(lock)
Definition: spin.h:59
PGPROC * MyProc
Definition: proc.c:66
PROC_HDR * ProcGlobal
Definition: proc.c:78
char * dbname
Definition: streamutil.c:50
void resetStringInfo(StringInfo str)
Definition: stringinfo.c:126
void enlargeStringInfo(StringInfo str, int needed)
Definition: stringinfo.c:337
void initStringInfo(StringInfo str)
Definition: stringinfo.c:97
ReplicationKind kind
Definition: replnodes.h:56
char * defname
Definition: parsenodes.h:826
int32 day
Definition: timestamp.h:51
int32 month
Definition: timestamp.h:52
TimeOffset time
Definition: timestamp.h:49
WalTimeSample buffer[LAG_TRACKER_BUFFER_SIZE]
Definition: walsender.c:224
int read_heads[NUM_SYNC_REP_WAIT_MODE]
Definition: walsender.c:226
WalTimeSample last_read[NUM_SYNC_REP_WAIT_MODE]
Definition: walsender.c:227
int write_head
Definition: walsender.c:225
XLogRecPtr last_lsn
Definition: walsender.c:223
Definition: pg_list.h:54
XLogReaderState * reader
Definition: logical.h:42
struct SnapBuild * snapshot_builder
Definition: logical.h:44
StringInfo out
Definition: logical.h:71
Definition: nodes.h:129
NodeTag type
Definition: nodes.h:130
TransactionId xmin
Definition: proc.h:177
uint8 statusFlags
Definition: proc.h:242
int pgxactoff
Definition: proc.h:184
uint8 * statusFlags
Definition: proc.h:386
TransactionId xmin
Definition: slot.h:85
TransactionId catalog_xmin
Definition: slot.h:93
XLogRecPtr restart_lsn
Definition: slot.h:96
XLogRecPtr confirmed_flush
Definition: slot.h:107
TransactionId effective_catalog_xmin
Definition: slot.h:178
slock_t mutex
Definition: slot.h:154
bool in_use
Definition: slot.h:157
TransactionId effective_xmin
Definition: slot.h:177
ReplicationSlotPersistentData data
Definition: slot.h:181
TupleDesc setDesc
Definition: execnodes.h:358
Tuplestorestate * setResult
Definition: execnodes.h:357
XLogRecPtr startpoint
Definition: replnodes.h:97
ReplicationKind kind
Definition: replnodes.h:94
TimeLineID timeline
Definition: replnodes.h:96
uint8 syncrep_method
Definition: syncrep.h:68
TimeLineID timeline
Definition: replnodes.h:120
TimeLineID ws_tli
Definition: xlogreader.h:49
uint32 events
Definition: latch.h:155
ConditionVariable wal_confirm_rcv_cv
WalSnd walsnds[FLEXIBLE_ARRAY_MEMBER]
ConditionVariable wal_replay_cv
dlist_head SyncRepQueue[NUM_SYNC_REP_WAIT_MODE]
ConditionVariable wal_flush_cv
TimeOffset writeLag
slock_t mutex
XLogRecPtr flush
XLogRecPtr sentPtr
TimeOffset flushLag
WalSndState state
ReplicationKind kind
XLogRecPtr write
TimeOffset applyLag
int sync_standby_priority
bool needreload
TimestampTz replyTime
XLogRecPtr apply
TimestampTz time
Definition: walsender.c:214
XLogRecPtr lsn
Definition: walsender.c:213
WALSegmentContext segcxt
Definition: xlogreader.h:271
XLogRecPtr EndRecPtr
Definition: xlogreader.h:207
WALOpenSegment seg
Definition: xlogreader.h:272
Definition: regguts.h:323
void SyncRepInitConfig(void)
Definition: syncrep.c:402
SyncRepConfigData * SyncRepConfig
Definition: syncrep.c:97
int SyncRepGetCandidateStandbys(SyncRepStandbyData **standbys)
Definition: syncrep.c:711
void SyncRepReleaseWaiters(void)
Definition: syncrep.c:431
#define SYNC_REP_PRIORITY
Definition: syncrep.h:35
#define NUM_SYNC_REP_WAIT_MODE
Definition: syncrep.h:27
#define SyncRepRequested()
Definition: syncrep.h:18
#define SYNC_REP_WAIT_WRITE
Definition: syncrep.h:23
#define SYNC_REP_WAIT_FLUSH
Definition: syncrep.h:24
#define SYNC_REP_WAIT_APPLY
Definition: syncrep.h:25
void InitializeTimeouts(void)
Definition: timeout.c:470
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
bool TransactionIdPrecedesOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.c:299
#define InvalidTransactionId
Definition: transam.h:31
#define EpochFromFullTransactionId(x)
Definition: transam.h:47
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:164
void TupleDescInitBuiltinEntry(TupleDesc desc, AttrNumber attributeNumber, const char *attributeName, Oid oidtypeid, int32 typmod, int attdim)
Definition: tupdesc.c:874
void tuplestore_putvalues(Tuplestorestate *state, TupleDesc tdesc, const Datum *values, const bool *isnull)
Definition: tuplestore.c:784
char data[BLCKSZ]
Definition: c.h:1076
static Datum TimestampTzGetDatum(TimestampTz X)
Definition: timestamp.h:52
static Datum IntervalPGetDatum(const Interval *X)
Definition: timestamp.h:58
#define TimestampTzPlusMilliseconds(tz, ms)
Definition: timestamp.h:85
FullTransactionId ReadNextFullTransactionId(void)
Definition: varsup.c:288
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:85
static void pgstat_report_wait_end(void)
Definition: wait_event.h:101
XLogRecPtr GetWalRcvFlushRecPtr(XLogRecPtr *latestChunkStart, TimeLineID *receiveTLI)
static void ProcessPendingWrites(void)
Definition: walsender.c:1589
static XLogRecPtr sentPtr
Definition: walsender.c:165
#define READ_REPLICATION_SLOT_COLS
static void AlterReplicationSlot(AlterReplicationSlotCmd *cmd)
Definition: walsender.c:1385
static void WalSndWait(uint32 socket_events, long timeout, uint32 wait_event)
Definition: walsender.c:3660
static void WalSndLastCycleHandler(SIGNAL_ARGS)
Definition: walsender.c:3555
static volatile sig_atomic_t got_SIGUSR2
Definition: walsender.c:197
static void WalSndCheckTimeOut(void)
Definition: walsender.c:2716
static void XLogSendPhysical(void)
Definition: walsender.c:3039
static void ProcessRepliesIfAny(void)
Definition: walsender.c:2186
static bool waiting_for_ping_response
Definition: walsender.c:182
void PhysicalWakeupLogicalWalSnd(void)
Definition: walsender.c:1708
static void SendTimeLineHistory(TimeLineHistoryCmd *cmd)
Definition: walsender.c:557
void WalSndErrorCleanup(void)
Definition: walsender.c:325
static void InitWalSenderSlot(void)
Definition: walsender.c:2869
static void parseCreateReplSlotOptions(CreateReplicationSlotCmd *cmd, bool *reserve_wal, CRSSnapshotAction *snapshot_action, bool *two_phase, bool *failover)
Definition: walsender.c:1094
WalSnd * MyWalSnd
Definition: walsender.c:112
static void ProcessStandbyHSFeedbackMessage(void)
Definition: walsender.c:2548
static void ReadReplicationSlot(ReadReplicationSlotCmd *cmd)
Definition: walsender.c:458
static StringInfoData tmpbuf
Definition: walsender.c:170
static void PhysicalReplicationSlotNewXmin(TransactionId feedbackXmin, TransactionId feedbackCatalogXmin)
Definition: walsender.c:2468
static LagTracker * lag_tracker
Definition: walsender.c:230
static void PhysicalConfirmReceivedLocation(XLogRecPtr lsn)
Definition: walsender.c:2330
static void IdentifySystem(void)
Definition: walsender.c:377
static void WalSndSegmentOpen(XLogReaderState *state, XLogSegNo nextSegNo, TimeLineID *tli_p)
Definition: walsender.c:2961
static StringInfoData reply_message
Definition: walsender.c:169
static void WalSndKeepaliveIfNecessary(void)
Definition: walsender.c:4030
bool am_walsender
Definition: walsender.c:115
void WalSndSetState(WalSndState state)
Definition: walsender.c:3782
static StringInfoData output_message
Definition: walsender.c:168
static TimeLineID sendTimeLine
Definition: walsender.c:156
static bool HandleUploadManifestPacket(StringInfo buf, off_t *offset, IncrementalBackupInfo *ib)
Definition: walsender.c:713
static void WalSndLoop(WalSndSendDataCallback send_data)
Definition: walsender.c:2743
static void WalSndWriteData(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write)
Definition: walsender.c:1547
void WalSndWakeup(bool physical, bool logical)
Definition: walsender.c:3639
static LogicalDecodingContext * logical_decoding_ctx
Definition: walsender.c:208
static void XLogSendLogical(void)
Definition: walsender.c:3349
void WalSndShmemInit(void)
Definition: walsender.c:3594
bool am_db_walsender
Definition: walsender.c:118
static volatile sig_atomic_t replication_active
Definition: walsender.c:206
static void UploadManifest(void)
Definition: walsender.c:647
bool wake_wal_senders
Definition: walsender.c:130
static volatile sig_atomic_t got_STOPPING
Definition: walsender.c:198
int max_wal_senders
Definition: walsender.c:121
static bool TransactionIdInRecentPast(TransactionId xid, uint32 epoch)
Definition: walsender.c:2517
static void WalSndUpdateProgress(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool skipped_xact)
Definition: walsender.c:1643
bool exec_replication_command(const char *cmd_string)
Definition: walsender.c:1952
#define WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS
static bool NeedToWaitForStandbys(XLogRecPtr flushed_lsn, uint32 *wait_event)
Definition: walsender.c:1733
#define PG_STAT_GET_WAL_SENDERS_COLS
void(* WalSndSendDataCallback)(void)
Definition: walsender.c:236
Datum pg_stat_get_wal_senders(PG_FUNCTION_ARGS)
Definition: walsender.c:3836
void WalSndInitStopping(void)
Definition: walsender.c:3718
void WalSndWaitStopping(void)
Definition: walsender.c:3744
static bool sendTimeLineIsHistoric
Definition: walsender.c:158
void WalSndRqstFileReload(void)
Definition: walsender.c:3510
static XLogRecPtr WalSndWaitForWal(XLogRecPtr loc)
Definition: walsender.c:1793
bool am_cascading_walsender
Definition: walsender.c:116
static TimestampTz last_processing
Definition: walsender.c:173
static bool NeedToWaitForWal(XLogRecPtr target_lsn, XLogRecPtr flushed_lsn, uint32 *wait_event)
Definition: walsender.c:1765
Size WalSndShmemSize(void)
Definition: walsender.c:3582
bool log_replication_commands
Definition: walsender.c:125
void HandleWalSndInitStopping(void)
Definition: walsender.c:3533
static TimeLineID sendTimeLineNextTLI
Definition: walsender.c:157
static MemoryContext uploaded_manifest_mcxt
Definition: walsender.c:148
static void CreateReplicationSlot(CreateReplicationSlotCmd *cmd)
Definition: walsender.c:1171
static int logical_read_xlog_page(XLogReaderState *state, XLogRecPtr targetPagePtr, int reqLen, XLogRecPtr targetRecPtr, char *cur_page)
Definition: walsender.c:1021
static void ProcessStandbyReplyMessage(void)
Definition: walsender.c:2363
static void WalSndKeepalive(bool requestReply, XLogRecPtr writePtr)
Definition: walsender.c:4007
static void LagTrackerWrite(XLogRecPtr lsn, TimestampTz local_flush_time)
Definition: walsender.c:4068
void WalSndSignals(void)
Definition: walsender.c:3563
static bool streamingDoneSending
Definition: walsender.c:190
static void StartLogicalReplication(StartReplicationCmd *cmd)
Definition: walsender.c:1427
static IncrementalBackupInfo * uploaded_manifest
Definition: walsender.c:147
static void WalSndShutdown(void)
Definition: walsender.c:240
static void WalSndKill(int code, Datum arg)
Definition: walsender.c:2945
int wal_sender_timeout
Definition: walsender.c:123
#define MAX_SEND_SIZE
Definition: walsender.c:106
static Interval * offset_to_interval(TimeOffset offset)
Definition: walsender.c:3820
static bool WalSndCaughtUp
Definition: walsender.c:194
static XLogRecPtr sendTimeLineValidUpto
Definition: walsender.c:159
static void ProcessStandbyMessage(void)
Definition: walsender.c:2299
static void WalSndPrepareWrite(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write)
Definition: walsender.c:1520
static void DropReplicationSlot(DropReplicationSlotCmd *cmd)
Definition: walsender.c:1376
#define LAG_TRACKER_BUFFER_SIZE
Definition: walsender.c:218
static const char * WalSndGetStateString(WalSndState state)
Definition: walsender.c:3801
static TimeOffset LagTrackerRead(int head, XLogRecPtr lsn, TimestampTz now)
Definition: walsender.c:4133
static long WalSndComputeSleeptime(TimestampTz now)
Definition: walsender.c:2672
static bool streamingDoneReceiving
Definition: walsender.c:191
static void StartReplication(StartReplicationCmd *cmd)
Definition: walsender.c:789
static void WalSndDone(WalSndSendDataCallback send_data)
Definition: walsender.c:3434
static XLogReaderState * xlogreader
Definition: walsender.c:137
static TimestampTz last_reply_timestamp
Definition: walsender.c:179
XLogRecPtr GetStandbyFlushRecPtr(TimeLineID *tli)
Definition: walsender.c:3477
WalSndCtlData * WalSndCtl
Definition: walsender.c:109
void InitWalSender(void)
CRSSnapshotAction
Definition: walsender.h:21
@ CRS_USE_SNAPSHOT
Definition: walsender.h:24
@ CRS_NOEXPORT_SNAPSHOT
Definition: walsender.h:23
@ CRS_EXPORT_SNAPSHOT
Definition: walsender.h:22
PGDLLIMPORT Node * replication_parse_result
WalSndState
@ WALSNDSTATE_STREAMING
@ WALSNDSTATE_BACKUP
@ WALSNDSTATE_CATCHUP
@ WALSNDSTATE_STARTUP
@ WALSNDSTATE_STOPPING
int replication_yyparse(yyscan_t yyscanner)
#define SIGCHLD
Definition: win32_port.h:168
#define SIGHUP
Definition: win32_port.h:158
#define SIGPIPE
Definition: win32_port.h:163
#define kill(pid, sig)
Definition: win32_port.h:493
#define SIGUSR1
Definition: win32_port.h:170
#define SIGUSR2
Definition: win32_port.h:171
static const unsigned __int64 epoch
bool IsTransactionOrTransactionBlock(void)
Definition: xact.c:4981
bool XactReadOnly
Definition: xact.c:81
void PreventInTransactionBlock(bool isTopLevel, const char *stmtType)
Definition: xact.c:3640
void StartTransactionCommand(void)
Definition: xact.c:3051
bool IsAbortedTransactionBlockState(void)
Definition: xact.c:406
int XactIsoLevel
Definition: xact.c:78
bool IsSubTransaction(void)
Definition: xact.c:5036
bool IsTransactionBlock(void)
Definition: xact.c:4963
void CommitTransactionCommand(void)
Definition: xact.c:3149
#define XACT_REPEATABLE_READ
Definition: xact.h:38
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4568
bool RecoveryInProgress(void)
Definition: xlog.c:6334
TimeLineID GetWALInsertionTimeLine(void)
Definition: xlog.c:6520
Size WALReadFromBuffers(char *dstbuf, XLogRecPtr startptr, Size count, TimeLineID tli)
Definition: xlog.c:1748
void CheckXLogRemoved(XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:3727
int wal_segment_size
Definition: xlog.c:143
XLogRecPtr GetFlushRecPtr(TimeLineID *insertTLI)
Definition: xlog.c:6499
bool XLogBackgroundFlush(void)
Definition: xlog.c:2990
#define MAXFNAMELEN
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
static void XLogFilePath(char *path, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
static void XLogFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
static void TLHistoryFilePath(char *path, TimeLineID tli)
static void TLHistoryFileName(char *fname, TimeLineID tli)
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
uint32 TimeLineID
Definition: xlogdefs.h:59
uint64 XLogSegNo
Definition: xlogdefs.h:48
XLogReaderState * XLogReaderAllocate(int wal_segment_size, const char *waldir, XLogReaderRoutine *routine, void *private_data)
Definition: xlogreader.c:106
bool WALRead(XLogReaderState *state, char *buf, XLogRecPtr startptr, Size count, TimeLineID tli, WALReadError *errinfo)
Definition: xlogreader.c:1503
XLogRecord * XLogReadRecord(XLogReaderState *state, char **errormsg)
Definition: xlogreader.c:389
void XLogBeginRead(XLogReaderState *state, XLogRecPtr RecPtr)
Definition: xlogreader.c:231
#define XL_ROUTINE(...)
Definition: xlogreader.h:117
static TimeLineID receiveTLI
Definition: xlogrecovery.c:263
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)
void wal_segment_close(XLogReaderState *state)
Definition: xlogutils.c:842
void XLogReadDetermineTimeline(XLogReaderState *state, XLogRecPtr wantPage, uint32 wantLength, TimeLineID currTLI)
Definition: xlogutils.c:718
void WALReadRaiseError(WALReadError *errinfo)
Definition: xlogutils.c:1020