PostgreSQL Source Code git master
walsender.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * walsender.c
4 *
5 * The WAL sender process (walsender) is new as of Postgres 9.0. It takes
6 * care of sending XLOG from the primary server to a single recipient.
7 * (Note that there can be more than one walsender process concurrently.)
8 * It is started by the postmaster when the walreceiver of a standby server
9 * connects to the primary server and requests XLOG streaming replication.
10 *
11 * A walsender is similar to a regular backend, ie. there is a one-to-one
12 * relationship between a connection and a walsender process, but instead
13 * of processing SQL queries, it understands a small set of special
14 * replication-mode commands. The START_REPLICATION command begins streaming
15 * WAL to the client. While streaming, the walsender keeps reading XLOG
16 * records from the disk and sends them to the standby server over the
17 * COPY protocol, until either side ends the replication by exiting COPY
18 * mode (or until the connection is closed).
19 *
20 * Normal termination is by SIGTERM, which instructs the walsender to
21 * close the connection and exit(0) at the next convenient moment. Emergency
22 * termination is by SIGQUIT; like any backend, the walsender will simply
23 * abort and exit on SIGQUIT. A close of the connection and a FATAL error
24 * are treated as not a crash but approximately normal termination;
25 * the walsender will exit quickly without sending any more XLOG records.
26 *
27 * If the server is shut down, checkpointer sends us
28 * PROCSIG_WALSND_INIT_STOPPING after all regular backends have exited. If
29 * the backend is idle or runs an SQL query this causes the backend to
30 * shutdown, if logical replication is in progress all existing WAL records
31 * are processed followed by a shutdown. Otherwise this causes the walsender
32 * to switch to the "stopping" state. In this state, the walsender will reject
33 * any further replication commands. The checkpointer begins the shutdown
34 * checkpoint once all walsenders are confirmed as stopping. When the shutdown
35 * checkpoint finishes, the postmaster sends us SIGUSR2. This instructs
36 * walsender to send any outstanding WAL, including the shutdown checkpoint
37 * record, wait for it to be replicated to the standby, and then exit.
38 *
39 *
40 * Portions Copyright (c) 2010-2026, PostgreSQL Global Development Group
41 *
42 * IDENTIFICATION
43 * src/backend/replication/walsender.c
44 *
45 *-------------------------------------------------------------------------
46 */
47#include "postgres.h"
48
49#include <signal.h>
50#include <unistd.h>
51
52#include "access/timeline.h"
53#include "access/transam.h"
54#include "access/twophase.h"
55#include "access/xact.h"
57#include "access/xlogreader.h"
58#include "access/xlogrecovery.h"
59#include "access/xlogutils.h"
60#include "backup/basebackup.h"
62#include "catalog/pg_authid.h"
63#include "catalog/pg_type.h"
64#include "commands/defrem.h"
65#include "funcapi.h"
66#include "libpq/libpq.h"
67#include "libpq/pqformat.h"
68#include "libpq/protocol.h"
69#include "miscadmin.h"
70#include "nodes/replnodes.h"
71#include "pgstat.h"
73#include "replication/decode.h"
74#include "replication/logical.h"
76#include "replication/slot.h"
78#include "replication/syncrep.h"
83#include "storage/aio_subsys.h"
84#include "storage/fd.h"
85#include "storage/ipc.h"
86#include "storage/pmsignal.h"
87#include "storage/proc.h"
88#include "storage/procarray.h"
89#include "tcop/dest.h"
90#include "tcop/tcopprot.h"
91#include "utils/acl.h"
92#include "utils/builtins.h"
93#include "utils/guc.h"
94#include "utils/lsyscache.h"
95#include "utils/memutils.h"
96#include "utils/pg_lsn.h"
98#include "utils/ps_status.h"
99#include "utils/timeout.h"
100#include "utils/timestamp.h"
101
102/* Minimum interval used by walsender for stats flushes, in ms */
103#define WALSENDER_STATS_FLUSH_INTERVAL 1000
104
105/*
106 * Maximum data payload in a WAL data message. Must be >= XLOG_BLCKSZ.
107 *
108 * We don't have a good idea of what a good value would be; there's some
109 * overhead per message in both walsender and walreceiver, but on the other
110 * hand sending large batches makes walsender less responsive to signals
111 * because signals are checked only between messages. 128kB (with
112 * default 8k blocks) seems like a reasonable guess for now.
113 */
114#define MAX_SEND_SIZE (XLOG_BLCKSZ * 16)
115
116/* Array of WalSnds in shared memory */
118
119/* My slot in the shared memory array */
121
122/* Global state */
123bool am_walsender = false; /* Am I a walsender process? */
124bool am_cascading_walsender = false; /* Am I cascading WAL to another
125 * standby? */
126bool am_db_walsender = false; /* Connected to a database? */
127
128/* GUC variables */
129int max_wal_senders = 10; /* the maximum number of concurrent
130 * walsenders */
131int wal_sender_timeout = 60 * 1000; /* maximum time to send one WAL
132 * data message */
134
135/*
136 * State for WalSndWakeupRequest
137 */
138bool wake_wal_senders = false;
139
140/*
141 * xlogreader used for replication. Note that a WAL sender doing physical
142 * replication does not need xlogreader to read WAL, but it needs one to
143 * keep a state of its work.
144 */
146
147/*
148 * If the UPLOAD_MANIFEST command is used to provide a backup manifest in
149 * preparation for an incremental backup, uploaded_manifest will be point
150 * to an object containing information about its contexts, and
151 * uploaded_manifest_mcxt will point to the memory context that contains
152 * that object and all of its subordinate data. Otherwise, both values will
153 * be NULL.
154 */
157
158/*
159 * These variables keep track of the state of the timeline we're currently
160 * sending. sendTimeLine identifies the timeline. If sendTimeLineIsHistoric,
161 * the timeline is not the latest timeline on this server, and the server's
162 * history forked off from that timeline at sendTimeLineValidUpto.
163 */
166static bool sendTimeLineIsHistoric = false;
168
169/*
170 * How far have we sent WAL already? This is also advertised in
171 * MyWalSnd->sentPtr. (Actually, this is the next WAL location to send.)
172 */
174
175/* Buffers for constructing outgoing messages and processing reply messages. */
179
180/* Timestamp of last ProcessRepliesIfAny(). */
182
183/*
184 * Timestamp of last ProcessRepliesIfAny() that saw a reply from the
185 * standby. Set to 0 if wal_sender_timeout doesn't need to be active.
186 */
188
189/* Have we sent a heartbeat message asking for reply, since last reply? */
190static bool waiting_for_ping_response = false;
191
192/*
193 * While streaming WAL in Copy mode, streamingDoneSending is set to true
194 * after we have sent CopyDone. We should not send any more CopyData messages
195 * after that. streamingDoneReceiving is set to true when we receive CopyDone
196 * from the other end. When both become true, it's time to exit Copy mode.
197 */
200
201/* Are we there yet? */
202static bool WalSndCaughtUp = false;
203
204/* Flags set by signal handlers for later service in main loop */
205static volatile sig_atomic_t got_SIGUSR2 = false;
206static volatile sig_atomic_t got_STOPPING = false;
207
208/*
209 * This is set while we are streaming. When not set
210 * PROCSIG_WALSND_INIT_STOPPING signal will be handled like SIGTERM. When set,
211 * the main loop is responsible for checking got_STOPPING and terminating when
212 * it's set (after streaming any remaining WAL).
213 */
214static volatile sig_atomic_t replication_active = false;
215
217
218/* A sample associating a WAL location with the time it was written. */
219typedef struct
220{
224
225/* The size of our buffer of time samples. */
226#define LAG_TRACKER_BUFFER_SIZE 8192
227
228/* A mechanism for tracking replication lag. */
229typedef struct
230{
234 int read_heads[NUM_SYNC_REP_WAIT_MODE];
236
237 /*
238 * Overflow entries for read heads that collide with the write head.
239 *
240 * When the cyclic buffer fills (write head is about to collide with a
241 * read head), we save that read head's current sample here and mark it as
242 * using overflow (read_heads[i] = -1). This allows the write head to
243 * continue advancing while the overflowed mode continues lag computation
244 * using the saved sample.
245 *
246 * Once the standby's reported LSN advances past the overflow entry's LSN,
247 * we transition back to normal buffer-based tracking.
248 */
250} LagTracker;
251
253
254/* Signal handlers */
256
257/* Prototypes for private functions */
258typedef void (*WalSndSendDataCallback) (void);
259static void WalSndLoop(WalSndSendDataCallback send_data);
260static void InitWalSenderSlot(void);
261static void WalSndKill(int code, Datum arg);
262pg_noreturn static void WalSndShutdown(void);
263static void XLogSendPhysical(void);
264static void XLogSendLogical(void);
265static void WalSndDone(WalSndSendDataCallback send_data);
266static void IdentifySystem(void);
267static void UploadManifest(void);
268static bool HandleUploadManifestPacket(StringInfo buf, off_t *offset,
273static void StartReplication(StartReplicationCmd *cmd);
275static void ProcessStandbyMessage(void);
276static void ProcessStandbyReplyMessage(void);
277static void ProcessStandbyHSFeedbackMessage(void);
278static void ProcessStandbyPSRequestMessage(void);
279static void ProcessRepliesIfAny(void);
280static void ProcessPendingWrites(void);
281static void WalSndKeepalive(bool requestReply, XLogRecPtr writePtr);
282static void WalSndKeepaliveIfNecessary(void);
283static void WalSndCheckTimeOut(void);
285static void WalSndWait(uint32 socket_events, long timeout, uint32 wait_event);
286static void WalSndPrepareWrite(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write);
287static void WalSndWriteData(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write);
289 bool skipped_xact);
291static void LagTrackerWrite(XLogRecPtr lsn, TimestampTz local_flush_time);
292static TimeOffset LagTrackerRead(int head, XLogRecPtr lsn, TimestampTz now);
294
295static void WalSndSegmentOpen(XLogReaderState *state, XLogSegNo nextSegNo,
296 TimeLineID *tli_p);
297
298
299/* Initialize walsender process before entering the main command loop */
300void
302{
304
305 /* Create a per-walsender data structure in shared memory */
307
308 /* need resource owner for e.g. basebackups */
310
311 /*
312 * Let postmaster know that we're a WAL sender. Once we've declared us as
313 * a WAL sender process, postmaster will let us outlive the bgwriter and
314 * kill us last in the shutdown sequence, so we get a chance to stream all
315 * remaining WAL at shutdown, including the shutdown checkpoint. Note that
316 * there's no going back, and we mustn't write any WAL records after this.
317 */
320
321 /*
322 * If the client didn't specify a database to connect to, show in PGPROC
323 * that our advertised xmin should affect vacuum horizons in all
324 * databases. This allows physical replication clients to send hot
325 * standby feedback that will delay vacuum cleanup in all databases.
326 */
328 {
330 LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
333 LWLockRelease(ProcArrayLock);
334 }
335
336 /* Initialize empty timestamp buffer for lag tracking. */
338}
339
340/*
341 * Clean up after an error.
342 *
343 * WAL sender processes don't use transactions like regular backends do.
344 * This function does any cleanup required after an error in a WAL sender
345 * process, similar to what transaction abort does in a regular backend.
346 */
347void
349{
354
355 if (xlogreader != NULL && xlogreader->seg.ws_file >= 0)
357
358 if (MyReplicationSlot != NULL)
360
362
363 replication_active = false;
364
365 /*
366 * If there is a transaction in progress, it will clean up our
367 * ResourceOwner, but if a replication command set up a resource owner
368 * without a transaction, we've got to clean that up now.
369 */
372
374 proc_exit(0);
375
376 /* Revert back to startup state */
378}
379
380/*
381 * Handle a client's connection abort in an orderly manner.
382 */
383static void
385{
386 /*
387 * Reset whereToSendOutput to prevent ereport from attempting to send any
388 * more messages to the standby.
389 */
392
393 proc_exit(0);
394 abort(); /* keep the compiler quiet */
395}
396
397/*
398 * Handle the IDENTIFY_SYSTEM command.
399 */
400static void
402{
403 char sysid[32];
404 char xloc[MAXFNAMELEN];
405 XLogRecPtr logptr;
406 char *dbname = NULL;
408 TupOutputState *tstate;
409 TupleDesc tupdesc;
410 Datum values[4];
411 bool nulls[4] = {0};
412 TimeLineID currTLI;
413
414 /*
415 * Reply with a result set with one row, four columns. First col is system
416 * ID, second is timeline ID, third is current xlog location and the
417 * fourth contains the database name if we are connected to one.
418 */
419
420 snprintf(sysid, sizeof(sysid), UINT64_FORMAT,
422
425 logptr = GetStandbyFlushRecPtr(&currTLI);
426 else
427 logptr = GetFlushRecPtr(&currTLI);
428
429 snprintf(xloc, sizeof(xloc), "%X/%08X", LSN_FORMAT_ARGS(logptr));
430
432 {
434
435 /* syscache access needs a transaction env. */
438 /* copy dbname out of TX context */
441 }
442
444
445 /* need a tuple descriptor representing four columns */
446 tupdesc = CreateTemplateTupleDesc(4);
447 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "systemid",
448 TEXTOID, -1, 0);
449 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "timeline",
450 INT8OID, -1, 0);
451 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "xlogpos",
452 TEXTOID, -1, 0);
453 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 4, "dbname",
454 TEXTOID, -1, 0);
455
456 /* prepare for projection of tuples */
457 tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
458
459 /* column 1: system identifier */
460 values[0] = CStringGetTextDatum(sysid);
461
462 /* column 2: timeline */
463 values[1] = Int64GetDatum(currTLI);
464
465 /* column 3: wal location */
466 values[2] = CStringGetTextDatum(xloc);
467
468 /* column 4: database name, or NULL if none */
469 if (dbname)
471 else
472 nulls[3] = true;
473
474 /* send it to dest */
475 do_tup_output(tstate, values, nulls);
476
477 end_tup_output(tstate);
478}
479
480/* Handle READ_REPLICATION_SLOT command */
481static void
483{
484#define READ_REPLICATION_SLOT_COLS 3
485 ReplicationSlot *slot;
487 TupOutputState *tstate;
488 TupleDesc tupdesc;
490 bool nulls[READ_REPLICATION_SLOT_COLS];
491
493 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "slot_type",
494 TEXTOID, -1, 0);
495 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "restart_lsn",
496 TEXTOID, -1, 0);
497 /* TimeLineID is unsigned, so int4 is not wide enough. */
498 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "restart_tli",
499 INT8OID, -1, 0);
500
501 memset(nulls, true, READ_REPLICATION_SLOT_COLS * sizeof(bool));
502
503 LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
504 slot = SearchNamedReplicationSlot(cmd->slotname, false);
505 if (slot == NULL || !slot->in_use)
506 {
507 LWLockRelease(ReplicationSlotControlLock);
508 }
509 else
510 {
511 ReplicationSlot slot_contents;
512 int i = 0;
513
514 /* Copy slot contents while holding spinlock */
515 SpinLockAcquire(&slot->mutex);
516 slot_contents = *slot;
517 SpinLockRelease(&slot->mutex);
518 LWLockRelease(ReplicationSlotControlLock);
519
520 if (OidIsValid(slot_contents.data.database))
522 errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
523 errmsg("cannot use %s with a logical replication slot",
524 "READ_REPLICATION_SLOT"));
525
526 /* slot type */
527 values[i] = CStringGetTextDatum("physical");
528 nulls[i] = false;
529 i++;
530
531 /* start LSN */
532 if (XLogRecPtrIsValid(slot_contents.data.restart_lsn))
533 {
534 char xloc[64];
535
536 snprintf(xloc, sizeof(xloc), "%X/%08X",
537 LSN_FORMAT_ARGS(slot_contents.data.restart_lsn));
539 nulls[i] = false;
540 }
541 i++;
542
543 /* timeline this WAL was produced on */
544 if (XLogRecPtrIsValid(slot_contents.data.restart_lsn))
545 {
546 TimeLineID slots_position_timeline;
547 TimeLineID current_timeline;
548 List *timeline_history = NIL;
549
550 /*
551 * While in recovery, use as timeline the currently-replaying one
552 * to get the LSN position's history.
553 */
554 if (RecoveryInProgress())
555 (void) GetXLogReplayRecPtr(&current_timeline);
556 else
557 current_timeline = GetWALInsertionTimeLine();
558
559 timeline_history = readTimeLineHistory(current_timeline);
560 slots_position_timeline = tliOfPointInHistory(slot_contents.data.restart_lsn,
561 timeline_history);
562 values[i] = Int64GetDatum((int64) slots_position_timeline);
563 nulls[i] = false;
564 }
565 i++;
566
568 }
569
571 tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
572 do_tup_output(tstate, values, nulls);
573 end_tup_output(tstate);
574}
575
576
577/*
578 * Handle TIMELINE_HISTORY command.
579 */
580static void
582{
584 TupleDesc tupdesc;
586 char histfname[MAXFNAMELEN];
587 char path[MAXPGPATH];
588 int fd;
589 off_t histfilelen;
590 off_t bytesleft;
591 Size len;
592
594
595 /*
596 * Reply with a result set with one row, and two columns. The first col is
597 * the name of the history file, 2nd is the contents.
598 */
599 tupdesc = CreateTemplateTupleDesc(2);
600 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "filename", TEXTOID, -1, 0);
601 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "content", TEXTOID, -1, 0);
602
603 TLHistoryFileName(histfname, cmd->timeline);
604 TLHistoryFilePath(path, cmd->timeline);
605
606 /* Send a RowDescription message */
607 dest->rStartup(dest, CMD_SELECT, tupdesc);
608
609 /* Send a DataRow message */
611 pq_sendint16(&buf, 2); /* # of columns */
612 len = strlen(histfname);
613 pq_sendint32(&buf, len); /* col1 len */
614 pq_sendbytes(&buf, histfname, len);
615
616 fd = OpenTransientFile(path, O_RDONLY | PG_BINARY);
617 if (fd < 0)
620 errmsg("could not open file \"%s\": %m", path)));
621
622 /* Determine file length and send it to client */
623 histfilelen = lseek(fd, 0, SEEK_END);
624 if (histfilelen < 0)
627 errmsg("could not seek to end of file \"%s\": %m", path)));
628 if (lseek(fd, 0, SEEK_SET) != 0)
631 errmsg("could not seek to beginning of file \"%s\": %m", path)));
632
633 pq_sendint32(&buf, histfilelen); /* col2 len */
634
635 bytesleft = histfilelen;
636 while (bytesleft > 0)
637 {
638 PGAlignedBlock rbuf;
639 int nread;
640
641 pgstat_report_wait_start(WAIT_EVENT_WALSENDER_TIMELINE_HISTORY_READ);
642 nread = read(fd, rbuf.data, sizeof(rbuf));
644 if (nread < 0)
647 errmsg("could not read file \"%s\": %m",
648 path)));
649 else if (nread == 0)
652 errmsg("could not read file \"%s\": read %d of %zu",
653 path, nread, (Size) bytesleft)));
654
655 pq_sendbytes(&buf, rbuf.data, nread);
656 bytesleft -= nread;
657 }
658
659 if (CloseTransientFile(fd) != 0)
662 errmsg("could not close file \"%s\": %m", path)));
663
665}
666
667/*
668 * Handle UPLOAD_MANIFEST command.
669 */
670static void
672{
673 MemoryContext mcxt;
675 off_t offset = 0;
677
678 /*
679 * parsing the manifest will use the cryptohash stuff, which requires a
680 * resource owner
681 */
684 CurrentResourceOwner == NULL);
686
687 /* Prepare to read manifest data into a temporary context. */
689 "incremental backup information",
692
693 /* Send a CopyInResponse message */
695 pq_sendbyte(&buf, 0);
696 pq_sendint16(&buf, 0);
698 pq_flush();
699
700 /* Receive packets from client until done. */
701 while (HandleUploadManifestPacket(&buf, &offset, ib))
702 ;
703
704 /* Finish up manifest processing. */
706
707 /*
708 * Discard any old manifest information and arrange to preserve the new
709 * information we just got.
710 *
711 * We assume that MemoryContextDelete and MemoryContextSetParent won't
712 * fail, and thus we shouldn't end up bailing out of here in such a way as
713 * to leave dangling pointers.
714 */
715 if (uploaded_manifest_mcxt != NULL)
720
721 /* clean up the resource owner we created */
723}
724
725/*
726 * Process one packet received during the handling of an UPLOAD_MANIFEST
727 * operation.
728 *
729 * 'buf' is scratch space. This function expects it to be initialized, doesn't
730 * care what the current contents are, and may override them with completely
731 * new contents.
732 *
733 * The return value is true if the caller should continue processing
734 * additional packets and false if the UPLOAD_MANIFEST operation is complete.
735 */
736static bool
739{
740 int mtype;
741 int maxmsglen;
742
744
746 mtype = pq_getbyte();
747 if (mtype == EOF)
749 (errcode(ERRCODE_CONNECTION_FAILURE),
750 errmsg("unexpected EOF on client connection with an open transaction")));
751
752 switch (mtype)
753 {
754 case PqMsg_CopyData:
755 maxmsglen = PQ_LARGE_MESSAGE_LIMIT;
756 break;
757 case PqMsg_CopyDone:
758 case PqMsg_CopyFail:
759 case PqMsg_Flush:
760 case PqMsg_Sync:
761 maxmsglen = PQ_SMALL_MESSAGE_LIMIT;
762 break;
763 default:
765 (errcode(ERRCODE_PROTOCOL_VIOLATION),
766 errmsg("unexpected message type 0x%02X during COPY from stdin",
767 mtype)));
768 maxmsglen = 0; /* keep compiler quiet */
769 break;
770 }
771
772 /* Now collect the message body */
773 if (pq_getmessage(buf, maxmsglen))
775 (errcode(ERRCODE_CONNECTION_FAILURE),
776 errmsg("unexpected EOF on client connection with an open transaction")));
778
779 /* Process the message */
780 switch (mtype)
781 {
782 case PqMsg_CopyData:
783 AppendIncrementalManifestData(ib, buf->data, buf->len);
784 return true;
785
786 case PqMsg_CopyDone:
787 return false;
788
789 case PqMsg_Sync:
790 case PqMsg_Flush:
791 /* Ignore these while in CopyOut mode as we do elsewhere. */
792 return true;
793
794 case PqMsg_CopyFail:
796 (errcode(ERRCODE_QUERY_CANCELED),
797 errmsg("COPY from stdin failed: %s",
799 }
800
801 /* Not reached. */
802 Assert(false);
803 return false;
804}
805
806/*
807 * Handle START_REPLICATION command.
808 *
809 * At the moment, this never returns, but an ereport(ERROR) will take us back
810 * to the main loop.
811 */
812static void
814{
816 XLogRecPtr FlushPtr;
817 TimeLineID FlushTLI;
818
819 /* create xlogreader for physical replication */
820 xlogreader =
822 XL_ROUTINE(.segment_open = WalSndSegmentOpen,
823 .segment_close = wal_segment_close),
824 NULL);
825
826 if (!xlogreader)
828 (errcode(ERRCODE_OUT_OF_MEMORY),
829 errmsg("out of memory"),
830 errdetail("Failed while allocating a WAL reading processor.")));
831
832 /*
833 * We assume here that we're logging enough information in the WAL for
834 * log-shipping, since this is checked in PostmasterMain().
835 *
836 * NOTE: wal_level can only change at shutdown, so in most cases it is
837 * difficult for there to be WAL data that we can still see that was
838 * written at wal_level='minimal'.
839 */
840
841 if (cmd->slotname)
842 {
843 ReplicationSlotAcquire(cmd->slotname, true, true);
846 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
847 errmsg("cannot use a logical replication slot for physical replication")));
848
849 /*
850 * We don't need to verify the slot's restart_lsn here; instead we
851 * rely on the caller requesting the starting point to use. If the
852 * WAL segment doesn't exist, we'll fail later.
853 */
854 }
855
856 /*
857 * Select the timeline. If it was given explicitly by the client, use
858 * that. Otherwise use the timeline of the last replayed record.
859 */
862 FlushPtr = GetStandbyFlushRecPtr(&FlushTLI);
863 else
864 FlushPtr = GetFlushRecPtr(&FlushTLI);
865
866 if (cmd->timeline != 0)
867 {
868 XLogRecPtr switchpoint;
869
870 sendTimeLine = cmd->timeline;
871 if (sendTimeLine == FlushTLI)
872 {
875 }
876 else
877 {
878 List *timeLineHistory;
879
881
882 /*
883 * Check that the timeline the client requested exists, and the
884 * requested start location is on that timeline.
885 */
886 timeLineHistory = readTimeLineHistory(FlushTLI);
887 switchpoint = tliSwitchPoint(cmd->timeline, timeLineHistory,
889 list_free_deep(timeLineHistory);
890
891 /*
892 * Found the requested timeline in the history. Check that
893 * requested startpoint is on that timeline in our history.
894 *
895 * This is quite loose on purpose. We only check that we didn't
896 * fork off the requested timeline before the switchpoint. We
897 * don't check that we switched *to* it before the requested
898 * starting point. This is because the client can legitimately
899 * request to start replication from the beginning of the WAL
900 * segment that contains switchpoint, but on the new timeline, so
901 * that it doesn't end up with a partial segment. If you ask for
902 * too old a starting point, you'll get an error later when we
903 * fail to find the requested WAL segment in pg_wal.
904 *
905 * XXX: we could be more strict here and only allow a startpoint
906 * that's older than the switchpoint, if it's still in the same
907 * WAL segment.
908 */
909 if (XLogRecPtrIsValid(switchpoint) &&
910 switchpoint < cmd->startpoint)
911 {
913 errmsg("requested starting point %X/%08X on timeline %u is not in this server's history",
915 cmd->timeline),
916 errdetail("This server's history forked from timeline %u at %X/%08X.",
917 cmd->timeline,
918 LSN_FORMAT_ARGS(switchpoint)));
919 }
920 sendTimeLineValidUpto = switchpoint;
921 }
922 }
923 else
924 {
925 sendTimeLine = FlushTLI;
928 }
929
931
932 /* If there is nothing to stream, don't even enter COPY mode */
934 {
935 /*
936 * When we first start replication the standby will be behind the
937 * primary. For some applications, for example synchronous
938 * replication, it is important to have a clear state for this initial
939 * catchup mode, so we can trigger actions when we change streaming
940 * state later. We may stay in this state for a long time, which is
941 * exactly why we want to be able to monitor whether or not we are
942 * still here.
943 */
945
946 /* Send a CopyBothResponse message, and start streaming */
948 pq_sendbyte(&buf, 0);
949 pq_sendint16(&buf, 0);
951 pq_flush();
952
953 /*
954 * Don't allow a request to stream from a future point in WAL that
955 * hasn't been flushed to disk in this server yet.
956 */
957 if (FlushPtr < cmd->startpoint)
958 {
960 errmsg("requested starting point %X/%08X is ahead of the WAL flush position of this server %X/%08X",
962 LSN_FORMAT_ARGS(FlushPtr)));
963 }
964
965 /* Start streaming from the requested point */
966 sentPtr = cmd->startpoint;
967
968 /* Initialize shared memory status, too */
972
974
975 /* Main loop of walsender */
976 replication_active = true;
977
979
980 replication_active = false;
981 if (got_STOPPING)
982 proc_exit(0);
984
986 }
987
988 if (cmd->slotname)
990
991 /*
992 * Copy is finished now. Send a single-row result set indicating the next
993 * timeline.
994 */
996 {
997 char startpos_str[8 + 1 + 8 + 1];
999 TupOutputState *tstate;
1000 TupleDesc tupdesc;
1001 Datum values[2];
1002 bool nulls[2] = {0};
1003
1004 snprintf(startpos_str, sizeof(startpos_str), "%X/%08X",
1006
1008
1009 /*
1010 * Need a tuple descriptor representing two columns. int8 may seem
1011 * like a surprising data type for this, but in theory int4 would not
1012 * be wide enough for this, as TimeLineID is unsigned.
1013 */
1014 tupdesc = CreateTemplateTupleDesc(2);
1015 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "next_tli",
1016 INT8OID, -1, 0);
1017 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "next_tli_startpos",
1018 TEXTOID, -1, 0);
1019
1020 /* prepare for projection of tuple */
1021 tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
1022
1024 values[1] = CStringGetTextDatum(startpos_str);
1025
1026 /* send it to dest */
1027 do_tup_output(tstate, values, nulls);
1028
1029 end_tup_output(tstate);
1030 }
1031
1032 /* Send CommandComplete message */
1033 EndReplicationCommand("START_STREAMING");
1034}
1035
1036/*
1037 * XLogReaderRoutine->page_read callback for logical decoding contexts, as a
1038 * walsender process.
1039 *
1040 * Inside the walsender we can do better than read_local_xlog_page,
1041 * which has to do a plain sleep/busy loop, because the walsender's latch gets
1042 * set every time WAL is flushed.
1043 */
1044static int
1046 XLogRecPtr targetRecPtr, char *cur_page)
1047{
1048 XLogRecPtr flushptr;
1049 int count;
1050 WALReadError errinfo;
1051 XLogSegNo segno;
1052 TimeLineID currTLI;
1053
1054 /*
1055 * Make sure we have enough WAL available before retrieving the current
1056 * timeline.
1057 */
1058 flushptr = WalSndWaitForWal(targetPagePtr + reqLen);
1059
1060 /* Fail if not enough (implies we are going to shut down) */
1061 if (flushptr < targetPagePtr + reqLen)
1062 return -1;
1063
1064 /*
1065 * Since logical decoding is also permitted on a standby server, we need
1066 * to check if the server is in recovery to decide how to get the current
1067 * timeline ID (so that it also covers the promotion or timeline change
1068 * cases). We must determine am_cascading_walsender after waiting for the
1069 * required WAL so that it is correct when the walsender wakes up after a
1070 * promotion.
1071 */
1073
1075 GetXLogReplayRecPtr(&currTLI);
1076 else
1077 currTLI = GetWALInsertionTimeLine();
1078
1079 XLogReadDetermineTimeline(state, targetPagePtr, reqLen, currTLI);
1080 sendTimeLineIsHistoric = (state->currTLI != currTLI);
1081 sendTimeLine = state->currTLI;
1082 sendTimeLineValidUpto = state->currTLIValidUntil;
1083 sendTimeLineNextTLI = state->nextTLI;
1084
1085 if (targetPagePtr + XLOG_BLCKSZ <= flushptr)
1086 count = XLOG_BLCKSZ; /* more than one block available */
1087 else
1088 count = flushptr - targetPagePtr; /* part of the page available */
1089
1090 /* now actually read the data, we know it's there */
1091 if (!WALRead(state,
1092 cur_page,
1093 targetPagePtr,
1094 count,
1095 currTLI, /* Pass the current TLI because only
1096 * WalSndSegmentOpen controls whether new TLI
1097 * is needed. */
1098 &errinfo))
1099 WALReadRaiseError(&errinfo);
1100
1101 /*
1102 * After reading into the buffer, check that what we read was valid. We do
1103 * this after reading, because even though the segment was present when we
1104 * opened it, it might get recycled or removed while we read it. The
1105 * read() succeeds in that case, but the data we tried to read might
1106 * already have been overwritten with new WAL records.
1107 */
1108 XLByteToSeg(targetPagePtr, segno, state->segcxt.ws_segsize);
1109 CheckXLogRemoved(segno, state->seg.ws_tli);
1110
1111 return count;
1112}
1113
1114/*
1115 * Process extra options given to CREATE_REPLICATION_SLOT.
1116 */
1117static void
1119 bool *reserve_wal,
1120 CRSSnapshotAction *snapshot_action,
1121 bool *two_phase, bool *failover)
1122{
1123 ListCell *lc;
1124 bool snapshot_action_given = false;
1125 bool reserve_wal_given = false;
1126 bool two_phase_given = false;
1127 bool failover_given = false;
1128
1129 /* Parse options */
1130 foreach(lc, cmd->options)
1131 {
1132 DefElem *defel = (DefElem *) lfirst(lc);
1133
1134 if (strcmp(defel->defname, "snapshot") == 0)
1135 {
1136 char *action;
1137
1138 if (snapshot_action_given || cmd->kind != REPLICATION_KIND_LOGICAL)
1139 ereport(ERROR,
1140 (errcode(ERRCODE_SYNTAX_ERROR),
1141 errmsg("conflicting or redundant options")));
1142
1143 action = defGetString(defel);
1144 snapshot_action_given = true;
1145
1146 if (strcmp(action, "export") == 0)
1147 *snapshot_action = CRS_EXPORT_SNAPSHOT;
1148 else if (strcmp(action, "nothing") == 0)
1149 *snapshot_action = CRS_NOEXPORT_SNAPSHOT;
1150 else if (strcmp(action, "use") == 0)
1151 *snapshot_action = CRS_USE_SNAPSHOT;
1152 else
1153 ereport(ERROR,
1154 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1155 errmsg("unrecognized value for %s option \"%s\": \"%s\"",
1156 "CREATE_REPLICATION_SLOT", defel->defname, action)));
1157 }
1158 else if (strcmp(defel->defname, "reserve_wal") == 0)
1159 {
1160 if (reserve_wal_given || cmd->kind != REPLICATION_KIND_PHYSICAL)
1161 ereport(ERROR,
1162 (errcode(ERRCODE_SYNTAX_ERROR),
1163 errmsg("conflicting or redundant options")));
1164
1165 reserve_wal_given = true;
1166 *reserve_wal = defGetBoolean(defel);
1167 }
1168 else if (strcmp(defel->defname, "two_phase") == 0)
1169 {
1170 if (two_phase_given || cmd->kind != REPLICATION_KIND_LOGICAL)
1171 ereport(ERROR,
1172 (errcode(ERRCODE_SYNTAX_ERROR),
1173 errmsg("conflicting or redundant options")));
1174 two_phase_given = true;
1175 *two_phase = defGetBoolean(defel);
1176 }
1177 else if (strcmp(defel->defname, "failover") == 0)
1178 {
1179 if (failover_given || cmd->kind != REPLICATION_KIND_LOGICAL)
1180 ereport(ERROR,
1181 (errcode(ERRCODE_SYNTAX_ERROR),
1182 errmsg("conflicting or redundant options")));
1183 failover_given = true;
1184 *failover = defGetBoolean(defel);
1185 }
1186 else
1187 elog(ERROR, "unrecognized option: %s", defel->defname);
1188 }
1189}
1190
1191/*
1192 * Create a new replication slot.
1193 */
1194static void
1196{
1197 const char *snapshot_name = NULL;
1198 char xloc[MAXFNAMELEN];
1199 char *slot_name;
1200 bool reserve_wal = false;
1201 bool two_phase = false;
1202 bool failover = false;
1203 CRSSnapshotAction snapshot_action = CRS_EXPORT_SNAPSHOT;
1205 TupOutputState *tstate;
1206 TupleDesc tupdesc;
1207 Datum values[4];
1208 bool nulls[4] = {0};
1209
1211
1212 parseCreateReplSlotOptions(cmd, &reserve_wal, &snapshot_action, &two_phase,
1213 &failover);
1214
1215 if (cmd->kind == REPLICATION_KIND_PHYSICAL)
1216 {
1217 ReplicationSlotCreate(cmd->slotname, false,
1219 false, false, false);
1220
1221 if (reserve_wal)
1222 {
1224
1226
1227 /* Write this slot to disk if it's a permanent one. */
1228 if (!cmd->temporary)
1230 }
1231 }
1232 else
1233 {
1235 bool need_full_snapshot = false;
1236
1238
1240
1241 /*
1242 * Initially create persistent slot as ephemeral - that allows us to
1243 * nicely handle errors during initialization because it'll get
1244 * dropped if this transaction fails. We'll make it persistent at the
1245 * end. Temporary slots can be created as temporary from beginning as
1246 * they get dropped on error as well.
1247 */
1250 two_phase, failover, false);
1251
1252 /*
1253 * Do options check early so that we can bail before calling the
1254 * DecodingContextFindStartpoint which can take long time.
1255 */
1256 if (snapshot_action == CRS_EXPORT_SNAPSHOT)
1257 {
1258 if (IsTransactionBlock())
1259 ereport(ERROR,
1260 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1261 (errmsg("%s must not be called inside a transaction",
1262 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'export')")));
1263
1264 need_full_snapshot = true;
1265 }
1266 else if (snapshot_action == CRS_USE_SNAPSHOT)
1267 {
1268 if (!IsTransactionBlock())
1269 ereport(ERROR,
1270 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1271 (errmsg("%s must be called inside a transaction",
1272 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1273
1275 ereport(ERROR,
1276 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1277 (errmsg("%s must be called in REPEATABLE READ isolation mode transaction",
1278 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1279 if (!XactReadOnly)
1280 ereport(ERROR,
1281 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1282 (errmsg("%s must be called in a read-only transaction",
1283 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1284
1285 if (FirstSnapshotSet)
1286 ereport(ERROR,
1287 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1288 (errmsg("%s must be called before any query",
1289 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1290
1291 if (IsSubTransaction())
1292 ereport(ERROR,
1293 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1294 (errmsg("%s must not be called in a subtransaction",
1295 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1296
1297 need_full_snapshot = true;
1298 }
1299
1300 /*
1301 * Ensure the logical decoding is enabled before initializing the
1302 * logical decoding context.
1303 */
1306
1307 ctx = CreateInitDecodingContext(cmd->plugin, NIL, need_full_snapshot,
1310 .segment_open = WalSndSegmentOpen,
1311 .segment_close = wal_segment_close),
1314
1315 /*
1316 * Signal that we don't need the timeout mechanism. We're just
1317 * creating the replication slot and don't yet accept feedback
1318 * messages or send keepalives. As we possibly need to wait for
1319 * further WAL the walsender would otherwise possibly be killed too
1320 * soon.
1321 */
1323
1324 /* build initial snapshot, might take a while */
1326
1327 /*
1328 * Export or use the snapshot if we've been asked to do so.
1329 *
1330 * NB. We will convert the snapbuild.c kind of snapshot to normal
1331 * snapshot when doing this.
1332 */
1333 if (snapshot_action == CRS_EXPORT_SNAPSHOT)
1334 {
1335 snapshot_name = SnapBuildExportSnapshot(ctx->snapshot_builder);
1336 }
1337 else if (snapshot_action == CRS_USE_SNAPSHOT)
1338 {
1339 Snapshot snap;
1340
1343 }
1344
1345 /* don't need the decoding context anymore */
1347
1348 if (!cmd->temporary)
1350 }
1351
1352 snprintf(xloc, sizeof(xloc), "%X/%08X",
1354
1356
1357 /*----------
1358 * Need a tuple descriptor representing four columns:
1359 * - first field: the slot name
1360 * - second field: LSN at which we became consistent
1361 * - third field: exported snapshot's name
1362 * - fourth field: output plugin
1363 */
1364 tupdesc = CreateTemplateTupleDesc(4);
1365 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "slot_name",
1366 TEXTOID, -1, 0);
1367 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "consistent_point",
1368 TEXTOID, -1, 0);
1369 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "snapshot_name",
1370 TEXTOID, -1, 0);
1371 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 4, "output_plugin",
1372 TEXTOID, -1, 0);
1373
1374 /* prepare for projection of tuples */
1375 tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
1376
1377 /* slot_name */
1378 slot_name = NameStr(MyReplicationSlot->data.name);
1379 values[0] = CStringGetTextDatum(slot_name);
1380
1381 /* consistent wal location */
1382 values[1] = CStringGetTextDatum(xloc);
1383
1384 /* snapshot name, or NULL if none */
1385 if (snapshot_name != NULL)
1386 values[2] = CStringGetTextDatum(snapshot_name);
1387 else
1388 nulls[2] = true;
1389
1390 /* plugin, or NULL if none */
1391 if (cmd->plugin != NULL)
1393 else
1394 nulls[3] = true;
1395
1396 /* send it to dest */
1397 do_tup_output(tstate, values, nulls);
1398 end_tup_output(tstate);
1399
1401}
1402
1403/*
1404 * Get rid of a replication slot that is no longer wanted.
1405 */
1406static void
1408{
1409 ReplicationSlotDrop(cmd->slotname, !cmd->wait);
1410}
1411
1412/*
1413 * Change the definition of a replication slot.
1414 */
1415static void
1417{
1418 bool failover_given = false;
1419 bool two_phase_given = false;
1420 bool failover;
1421 bool two_phase;
1422
1423 /* Parse options */
1424 foreach_ptr(DefElem, defel, cmd->options)
1425 {
1426 if (strcmp(defel->defname, "failover") == 0)
1427 {
1428 if (failover_given)
1429 ereport(ERROR,
1430 (errcode(ERRCODE_SYNTAX_ERROR),
1431 errmsg("conflicting or redundant options")));
1432 failover_given = true;
1433 failover = defGetBoolean(defel);
1434 }
1435 else if (strcmp(defel->defname, "two_phase") == 0)
1436 {
1437 if (two_phase_given)
1438 ereport(ERROR,
1439 (errcode(ERRCODE_SYNTAX_ERROR),
1440 errmsg("conflicting or redundant options")));
1441 two_phase_given = true;
1442 two_phase = defGetBoolean(defel);
1443 }
1444 else
1445 elog(ERROR, "unrecognized option: %s", defel->defname);
1446 }
1447
1449 failover_given ? &failover : NULL,
1450 two_phase_given ? &two_phase : NULL);
1451}
1452
1453/*
1454 * Load previously initiated logical slot and prepare for sending data (via
1455 * WalSndLoop).
1456 */
1457static void
1459{
1461 QueryCompletion qc;
1462
1463 /* make sure that our requirements are still fulfilled */
1465
1467
1468 ReplicationSlotAcquire(cmd->slotname, true, true);
1469
1470 /*
1471 * Force a disconnect, so that the decoding code doesn't need to care
1472 * about an eventual switch from running in recovery, to running in a
1473 * normal environment. Client code is expected to handle reconnects.
1474 */
1476 {
1477 ereport(LOG,
1478 (errmsg("terminating walsender process after promotion")));
1479 got_STOPPING = true;
1480 }
1481
1482 /*
1483 * Create our decoding context, making it start at the previously ack'ed
1484 * position.
1485 *
1486 * Do this before sending a CopyBothResponse message, so that any errors
1487 * are reported early.
1488 */
1490 CreateDecodingContext(cmd->startpoint, cmd->options, false,
1492 .segment_open = WalSndSegmentOpen,
1493 .segment_close = wal_segment_close),
1497
1499
1500 /* Send a CopyBothResponse message, and start streaming */
1502 pq_sendbyte(&buf, 0);
1503 pq_sendint16(&buf, 0);
1505 pq_flush();
1506
1507 /* Start reading WAL from the oldest required WAL. */
1510
1511 /*
1512 * Report the location after which we'll send out further commits as the
1513 * current sentPtr.
1514 */
1516
1517 /* Also update the sent position status in shared memory */
1521
1522 replication_active = true;
1523
1525
1526 /* Main loop of walsender */
1528
1531
1532 replication_active = false;
1533 if (got_STOPPING)
1534 proc_exit(0);
1536
1537 /* Get out of COPY mode (CommandComplete). */
1538 SetQueryCompletion(&qc, CMDTAG_COPY, 0);
1539 EndCommand(&qc, DestRemote, false);
1540}
1541
1542/*
1543 * LogicalDecodingContext 'prepare_write' callback.
1544 *
1545 * Prepare a write into a StringInfo.
1546 *
1547 * Don't do anything lasting in here, it's quite possible that nothing will be done
1548 * with the data.
1549 */
1550static void
1552{
1553 /* can't have sync rep confused by sending the same LSN several times */
1554 if (!last_write)
1555 lsn = InvalidXLogRecPtr;
1556
1557 resetStringInfo(ctx->out);
1558
1560 pq_sendint64(ctx->out, lsn); /* dataStart */
1561 pq_sendint64(ctx->out, lsn); /* walEnd */
1562
1563 /*
1564 * Fill out the sendtime later, just as it's done in XLogSendPhysical, but
1565 * reserve space here.
1566 */
1567 pq_sendint64(ctx->out, 0); /* sendtime */
1568}
1569
1570/*
1571 * LogicalDecodingContext 'write' callback.
1572 *
1573 * Actually write out data previously prepared by WalSndPrepareWrite out to
1574 * the network. Take as long as needed, but process replies from the other
1575 * side and check timeouts during that.
1576 */
1577static void
1579 bool last_write)
1580{
1582
1583 /*
1584 * Fill the send timestamp last, so that it is taken as late as possible.
1585 * This is somewhat ugly, but the protocol is set as it's already used for
1586 * several releases by streaming physical replication.
1587 */
1591 memcpy(&ctx->out->data[1 + sizeof(int64) + sizeof(int64)],
1592 tmpbuf.data, sizeof(int64));
1593
1594 /* output previously gathered data in a CopyData packet */
1596
1598
1599 /* Try to flush pending output to the client */
1600 if (pq_flush_if_writable() != 0)
1602
1603 /* Try taking fast path unless we get too close to walsender timeout. */
1605 wal_sender_timeout / 2) &&
1607 {
1608 return;
1609 }
1610
1611 /* If we have pending write here, go to slow path */
1613}
1614
1615/*
1616 * Wait until there is no pending write. Also process replies from the other
1617 * side and check timeouts during that.
1618 */
1619static void
1621{
1622 for (;;)
1623 {
1624 long sleeptime;
1625
1626 /* Check for input from the client */
1628
1629 /* die if timeout was reached */
1631
1632 /* Send keepalive if the time has come */
1634
1635 if (!pq_is_send_pending())
1636 break;
1637
1639
1640 /* Sleep until something happens or we time out */
1642 WAIT_EVENT_WAL_SENDER_WRITE_DATA);
1643
1644 /* Clear any already-pending wakeups */
1646
1648
1649 /* Process any requests or signals received recently */
1651 {
1652 ConfigReloadPending = false;
1655 }
1656
1657 /* Try to flush pending output to the client */
1658 if (pq_flush_if_writable() != 0)
1660 }
1661
1662 /* reactivate latch so WalSndLoop knows to continue */
1664}
1665
1666/*
1667 * LogicalDecodingContext 'update_progress' callback.
1668 *
1669 * Write the current position to the lag tracker (see XLogSendPhysical).
1670 *
1671 * When skipping empty transactions, send a keepalive message if necessary.
1672 */
1673static void
1675 bool skipped_xact)
1676{
1677 static TimestampTz sendTime = 0;
1679 bool pending_writes = false;
1680 bool end_xact = ctx->end_xact;
1681
1682 /*
1683 * Track lag no more than once per WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS to
1684 * avoid flooding the lag tracker when we commit frequently.
1685 *
1686 * We don't have a mechanism to get the ack for any LSN other than end
1687 * xact LSN from the downstream. So, we track lag only for end of
1688 * transaction LSN.
1689 */
1690#define WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS 1000
1691 if (end_xact && TimestampDifferenceExceeds(sendTime, now,
1693 {
1694 LagTrackerWrite(lsn, now);
1695 sendTime = now;
1696 }
1697
1698 /*
1699 * When skipping empty transactions in synchronous replication, we send a
1700 * keepalive message to avoid delaying such transactions.
1701 *
1702 * It is okay to check sync_standbys_status without lock here as in the
1703 * worst case we will just send an extra keepalive message when it is
1704 * really not required.
1705 */
1706 if (skipped_xact &&
1707 SyncRepRequested() &&
1708 (((volatile WalSndCtlData *) WalSndCtl)->sync_standbys_status & SYNC_STANDBY_DEFINED))
1709 {
1710 WalSndKeepalive(false, lsn);
1711
1712 /* Try to flush pending output to the client */
1713 if (pq_flush_if_writable() != 0)
1715
1716 /* If we have pending write here, make sure it's actually flushed */
1717 if (pq_is_send_pending())
1718 pending_writes = true;
1719 }
1720
1721 /*
1722 * Process pending writes if any or try to send a keepalive if required.
1723 * We don't need to try sending keep alive messages at the transaction end
1724 * as that will be done at a later point in time. This is required only
1725 * for large transactions where we don't send any changes to the
1726 * downstream and the receiver can timeout due to that.
1727 */
1728 if (pending_writes || (!end_xact &&
1730 wal_sender_timeout / 2)))
1732}
1733
1734/*
1735 * Wake up the logical walsender processes with logical failover slots if the
1736 * currently acquired physical slot is specified in synchronized_standby_slots GUC.
1737 */
1738void
1740{
1742
1743 /*
1744 * If we are running in a standby, there is no need to wake up walsenders.
1745 * This is because we do not support syncing slots to cascading standbys,
1746 * so, there are no walsenders waiting for standbys to catch up.
1747 */
1748 if (RecoveryInProgress())
1749 return;
1750
1753}
1754
1755/*
1756 * Returns true if not all standbys have caught up to the flushed position
1757 * (flushed_lsn) when the current acquired slot is a logical failover
1758 * slot and we are streaming; otherwise, returns false.
1759 *
1760 * If returning true, the function sets the appropriate wait event in
1761 * wait_event; otherwise, wait_event is set to 0.
1762 */
1763static bool
1764NeedToWaitForStandbys(XLogRecPtr flushed_lsn, uint32 *wait_event)
1765{
1766 int elevel = got_STOPPING ? ERROR : WARNING;
1767 bool failover_slot;
1768
1769 failover_slot = (replication_active && MyReplicationSlot->data.failover);
1770
1771 /*
1772 * Note that after receiving the shutdown signal, an ERROR is reported if
1773 * any slots are dropped, invalidated, or inactive. This measure is taken
1774 * to prevent the walsender from waiting indefinitely.
1775 */
1776 if (failover_slot && !StandbySlotsHaveCaughtup(flushed_lsn, elevel))
1777 {
1778 *wait_event = WAIT_EVENT_WAIT_FOR_STANDBY_CONFIRMATION;
1779 return true;
1780 }
1781
1782 *wait_event = 0;
1783 return false;
1784}
1785
1786/*
1787 * Returns true if we need to wait for WALs to be flushed to disk, or if not
1788 * all standbys have caught up to the flushed position (flushed_lsn) when the
1789 * current acquired slot is a logical failover slot and we are
1790 * streaming; otherwise, returns false.
1791 *
1792 * If returning true, the function sets the appropriate wait event in
1793 * wait_event; otherwise, wait_event is set to 0.
1794 */
1795static bool
1797 uint32 *wait_event)
1798{
1799 /* Check if we need to wait for WALs to be flushed to disk */
1800 if (target_lsn > flushed_lsn)
1801 {
1802 *wait_event = WAIT_EVENT_WAL_SENDER_WAIT_FOR_WAL;
1803 return true;
1804 }
1805
1806 /* Check if the standby slots have caught up to the flushed position */
1807 return NeedToWaitForStandbys(flushed_lsn, wait_event);
1808}
1809
1810/*
1811 * Wait till WAL < loc is flushed to disk so it can be safely sent to client.
1812 *
1813 * If the walsender holds a logical failover slot, we also wait for all the
1814 * specified streaming replication standby servers to confirm receipt of WAL
1815 * up to RecentFlushPtr. It is beneficial to wait here for the confirmation
1816 * up to RecentFlushPtr rather than waiting before transmitting each change
1817 * to logical subscribers, which is already covered by RecentFlushPtr.
1818 *
1819 * Returns end LSN of flushed WAL. Normally this will be >= loc, but if we
1820 * detect a shutdown request (either from postmaster or client) we will return
1821 * early, so caller must always check.
1822 */
1823static XLogRecPtr
1825{
1826 int wakeEvents;
1827 uint32 wait_event = 0;
1828 static XLogRecPtr RecentFlushPtr = InvalidXLogRecPtr;
1829 TimestampTz last_flush = 0;
1830
1831 /*
1832 * Fast path to avoid acquiring the spinlock in case we already know we
1833 * have enough WAL available and all the standby servers have confirmed
1834 * receipt of WAL up to RecentFlushPtr. This is particularly interesting
1835 * if we're far behind.
1836 */
1837 if (XLogRecPtrIsValid(RecentFlushPtr) &&
1838 !NeedToWaitForWal(loc, RecentFlushPtr, &wait_event))
1839 return RecentFlushPtr;
1840
1841 /*
1842 * Within the loop, we wait for the necessary WALs to be flushed to disk
1843 * first, followed by waiting for standbys to catch up if there are enough
1844 * WALs (see NeedToWaitForWal()) or upon receiving the shutdown signal.
1845 */
1846 for (;;)
1847 {
1848 bool wait_for_standby_at_stop = false;
1849 long sleeptime;
1851
1852 /* Clear any already-pending wakeups */
1854
1856
1857 /* Process any requests or signals received recently */
1859 {
1860 ConfigReloadPending = false;
1863 }
1864
1865 /* Check for input from the client */
1867
1868 /*
1869 * If we're shutting down, trigger pending WAL to be written out,
1870 * otherwise we'd possibly end up waiting for WAL that never gets
1871 * written, because walwriter has shut down already.
1872 */
1873 if (got_STOPPING)
1875
1876 /*
1877 * To avoid the scenario where standbys need to catch up to a newer
1878 * WAL location in each iteration, we update our idea of the currently
1879 * flushed position only if we are not waiting for standbys to catch
1880 * up.
1881 */
1882 if (wait_event != WAIT_EVENT_WAIT_FOR_STANDBY_CONFIRMATION)
1883 {
1884 if (!RecoveryInProgress())
1885 RecentFlushPtr = GetFlushRecPtr(NULL);
1886 else
1887 RecentFlushPtr = GetXLogReplayRecPtr(NULL);
1888 }
1889
1890 /*
1891 * If postmaster asked us to stop and the standby slots have caught up
1892 * to the flushed position, don't wait anymore.
1893 *
1894 * It's important to do this check after the recomputation of
1895 * RecentFlushPtr, so we can send all remaining data before shutting
1896 * down.
1897 */
1898 if (got_STOPPING)
1899 {
1900 if (NeedToWaitForStandbys(RecentFlushPtr, &wait_event))
1901 wait_for_standby_at_stop = true;
1902 else
1903 break;
1904 }
1905
1906 /*
1907 * We only send regular messages to the client for full decoded
1908 * transactions, but a synchronous replication and walsender shutdown
1909 * possibly are waiting for a later location. So, before sleeping, we
1910 * send a ping containing the flush location. If the receiver is
1911 * otherwise idle, this keepalive will trigger a reply. Processing the
1912 * reply will update these MyWalSnd locations.
1913 */
1914 if (MyWalSnd->flush < sentPtr &&
1915 MyWalSnd->write < sentPtr &&
1918
1919 /*
1920 * Exit the loop if already caught up and doesn't need to wait for
1921 * standby slots.
1922 */
1923 if (!wait_for_standby_at_stop &&
1924 !NeedToWaitForWal(loc, RecentFlushPtr, &wait_event))
1925 break;
1926
1927 /*
1928 * Waiting for new WAL or waiting for standbys to catch up. Since we
1929 * need to wait, we're now caught up.
1930 */
1931 WalSndCaughtUp = true;
1932
1933 /*
1934 * Try to flush any pending output to the client.
1935 */
1936 if (pq_flush_if_writable() != 0)
1938
1939 /*
1940 * If we have received CopyDone from the client, sent CopyDone
1941 * ourselves, and the output buffer is empty, it's time to exit
1942 * streaming, so fail the current WAL fetch request.
1943 */
1946 break;
1947
1948 /* die if timeout was reached */
1950
1951 /* Send keepalive if the time has come */
1953
1954 /*
1955 * Sleep until something happens or we time out. Also wait for the
1956 * socket becoming writable, if there's still pending output.
1957 * Otherwise we might sit on sendable output data while waiting for
1958 * new WAL to be generated. (But if we have nothing to send, we don't
1959 * want to wake on socket-writable.)
1960 */
1962 sleeptime = WalSndComputeSleeptime(now);
1963
1964 wakeEvents = WL_SOCKET_READABLE;
1965
1966 if (pq_is_send_pending())
1967 wakeEvents |= WL_SOCKET_WRITEABLE;
1968
1969 Assert(wait_event != 0);
1970
1971 /* Report IO statistics, if needed */
1972 if (TimestampDifferenceExceeds(last_flush, now,
1974 {
1975 pgstat_flush_io(false);
1977 last_flush = now;
1978 }
1979
1980 WalSndWait(wakeEvents, sleeptime, wait_event);
1981 }
1982
1983 /* reactivate latch so WalSndLoop knows to continue */
1985 return RecentFlushPtr;
1986}
1987
1988/*
1989 * Execute an incoming replication command.
1990 *
1991 * Returns true if the cmd_string was recognized as WalSender command, false
1992 * if not.
1993 */
1994bool
1995exec_replication_command(const char *cmd_string)
1996{
1997 yyscan_t scanner;
1998 int parse_rc;
1999 Node *cmd_node;
2000 const char *cmdtag;
2001 MemoryContext old_context = CurrentMemoryContext;
2002
2003 /* We save and re-use the cmd_context across calls */
2004 static MemoryContext cmd_context = NULL;
2005
2006 /*
2007 * If WAL sender has been told that shutdown is getting close, switch its
2008 * status accordingly to handle the next replication commands correctly.
2009 */
2010 if (got_STOPPING)
2012
2013 /*
2014 * Throw error if in stopping mode. We need prevent commands that could
2015 * generate WAL while the shutdown checkpoint is being written. To be
2016 * safe, we just prohibit all new commands.
2017 */
2019 ereport(ERROR,
2020 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
2021 errmsg("cannot execute new commands while WAL sender is in stopping mode")));
2022
2023 /*
2024 * CREATE_REPLICATION_SLOT ... LOGICAL exports a snapshot until the next
2025 * command arrives. Clean up the old stuff if there's anything.
2026 */
2028
2030
2031 /*
2032 * Prepare to parse and execute the command.
2033 *
2034 * Because replication command execution can involve beginning or ending
2035 * transactions, we need a working context that will survive that, so we
2036 * make it a child of TopMemoryContext. That in turn creates a hazard of
2037 * long-lived memory leaks if we lose track of the working context. We
2038 * deal with that by creating it only once per walsender, and resetting it
2039 * for each new command. (Normally this reset is a no-op, but if the
2040 * prior exec_replication_command call failed with an error, it won't be.)
2041 *
2042 * This is subtler than it looks. The transactions we manage can extend
2043 * across replication commands, indeed SnapBuildClearExportedSnapshot
2044 * might have just ended one. Because transaction exit will revert to the
2045 * memory context that was current at transaction start, we need to be
2046 * sure that that context is still valid. That motivates re-using the
2047 * same cmd_context rather than making a new one each time.
2048 */
2049 if (cmd_context == NULL)
2051 "Replication command context",
2053 else
2054 MemoryContextReset(cmd_context);
2055
2056 MemoryContextSwitchTo(cmd_context);
2057
2058 replication_scanner_init(cmd_string, &scanner);
2059
2060 /*
2061 * Is it a WalSender command?
2062 */
2064 {
2065 /* Nope; clean up and get out. */
2067
2068 MemoryContextSwitchTo(old_context);
2069 MemoryContextReset(cmd_context);
2070
2071 /* XXX this is a pretty random place to make this check */
2072 if (MyDatabaseId == InvalidOid)
2073 ereport(ERROR,
2074 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2075 errmsg("cannot execute SQL commands in WAL sender for physical replication")));
2076
2077 /* Tell the caller that this wasn't a WalSender command. */
2078 return false;
2079 }
2080
2081 /*
2082 * Looks like a WalSender command, so parse it.
2083 */
2084 parse_rc = replication_yyparse(&cmd_node, scanner);
2085 if (parse_rc != 0)
2086 ereport(ERROR,
2087 (errcode(ERRCODE_SYNTAX_ERROR),
2088 errmsg_internal("replication command parser returned %d",
2089 parse_rc)));
2091
2092 /*
2093 * Report query to various monitoring facilities. For this purpose, we
2094 * report replication commands just like SQL commands.
2095 */
2096 debug_query_string = cmd_string;
2097
2099
2100 /*
2101 * Log replication command if log_replication_commands is enabled. Even
2102 * when it's disabled, log the command with DEBUG1 level for backward
2103 * compatibility.
2104 */
2106 (errmsg("received replication command: %s", cmd_string)));
2107
2108 /*
2109 * Disallow replication commands in aborted transaction blocks.
2110 */
2112 ereport(ERROR,
2113 (errcode(ERRCODE_IN_FAILED_SQL_TRANSACTION),
2114 errmsg("current transaction is aborted, "
2115 "commands ignored until end of transaction block")));
2116
2118
2119 /*
2120 * Allocate buffers that will be used for each outgoing and incoming
2121 * message. We do this just once per command to reduce palloc overhead.
2122 */
2126
2127 switch (cmd_node->type)
2128 {
2129 case T_IdentifySystemCmd:
2130 cmdtag = "IDENTIFY_SYSTEM";
2131 set_ps_display(cmdtag);
2133 EndReplicationCommand(cmdtag);
2134 break;
2135
2136 case T_ReadReplicationSlotCmd:
2137 cmdtag = "READ_REPLICATION_SLOT";
2138 set_ps_display(cmdtag);
2140 EndReplicationCommand(cmdtag);
2141 break;
2142
2143 case T_BaseBackupCmd:
2144 cmdtag = "BASE_BACKUP";
2145 set_ps_display(cmdtag);
2146 PreventInTransactionBlock(true, cmdtag);
2148 EndReplicationCommand(cmdtag);
2149 break;
2150
2151 case T_CreateReplicationSlotCmd:
2152 cmdtag = "CREATE_REPLICATION_SLOT";
2153 set_ps_display(cmdtag);
2155 EndReplicationCommand(cmdtag);
2156 break;
2157
2158 case T_DropReplicationSlotCmd:
2159 cmdtag = "DROP_REPLICATION_SLOT";
2160 set_ps_display(cmdtag);
2162 EndReplicationCommand(cmdtag);
2163 break;
2164
2165 case T_AlterReplicationSlotCmd:
2166 cmdtag = "ALTER_REPLICATION_SLOT";
2167 set_ps_display(cmdtag);
2169 EndReplicationCommand(cmdtag);
2170 break;
2171
2172 case T_StartReplicationCmd:
2173 {
2174 StartReplicationCmd *cmd = (StartReplicationCmd *) cmd_node;
2175
2176 cmdtag = "START_REPLICATION";
2177 set_ps_display(cmdtag);
2178 PreventInTransactionBlock(true, cmdtag);
2179
2180 if (cmd->kind == REPLICATION_KIND_PHYSICAL)
2181 StartReplication(cmd);
2182 else
2184
2185 /* dupe, but necessary per libpqrcv_endstreaming */
2186 EndReplicationCommand(cmdtag);
2187
2188 Assert(xlogreader != NULL);
2189 break;
2190 }
2191
2192 case T_TimeLineHistoryCmd:
2193 cmdtag = "TIMELINE_HISTORY";
2194 set_ps_display(cmdtag);
2195 PreventInTransactionBlock(true, cmdtag);
2197 EndReplicationCommand(cmdtag);
2198 break;
2199
2200 case T_VariableShowStmt:
2201 {
2203 VariableShowStmt *n = (VariableShowStmt *) cmd_node;
2204
2205 cmdtag = "SHOW";
2206 set_ps_display(cmdtag);
2207
2208 /* syscache access needs a transaction environment */
2210 GetPGVariable(n->name, dest);
2212 EndReplicationCommand(cmdtag);
2213 }
2214 break;
2215
2216 case T_UploadManifestCmd:
2217 cmdtag = "UPLOAD_MANIFEST";
2218 set_ps_display(cmdtag);
2219 PreventInTransactionBlock(true, cmdtag);
2221 EndReplicationCommand(cmdtag);
2222 break;
2223
2224 default:
2225 elog(ERROR, "unrecognized replication command node tag: %u",
2226 cmd_node->type);
2227 }
2228
2229 /*
2230 * Done. Revert to caller's memory context, and clean out the cmd_context
2231 * to recover memory right away.
2232 */
2233 MemoryContextSwitchTo(old_context);
2234 MemoryContextReset(cmd_context);
2235
2236 /*
2237 * We need not update ps display or pg_stat_activity, because PostgresMain
2238 * will reset those to "idle". But we must reset debug_query_string to
2239 * ensure it doesn't become a dangling pointer.
2240 */
2241 debug_query_string = NULL;
2242
2243 return true;
2244}
2245
2246/*
2247 * Process any incoming messages while streaming. Also checks if the remote
2248 * end has closed the connection.
2249 */
2250static void
2252{
2253 unsigned char firstchar;
2254 int maxmsglen;
2255 int r;
2256 bool received = false;
2257
2259
2260 /*
2261 * If we already received a CopyDone from the frontend, any subsequent
2262 * message is the beginning of a new command, and should be processed in
2263 * the main processing loop.
2264 */
2265 while (!streamingDoneReceiving)
2266 {
2268 r = pq_getbyte_if_available(&firstchar);
2269 if (r < 0)
2270 {
2271 /* unexpected error or EOF */
2273 (errcode(ERRCODE_PROTOCOL_VIOLATION),
2274 errmsg("unexpected EOF on standby connection")));
2275 proc_exit(0);
2276 }
2277 if (r == 0)
2278 {
2279 /* no data available without blocking */
2280 pq_endmsgread();
2281 break;
2282 }
2283
2284 /* Validate message type and set packet size limit */
2285 switch (firstchar)
2286 {
2287 case PqMsg_CopyData:
2288 maxmsglen = PQ_LARGE_MESSAGE_LIMIT;
2289 break;
2290 case PqMsg_CopyDone:
2291 case PqMsg_Terminate:
2292 maxmsglen = PQ_SMALL_MESSAGE_LIMIT;
2293 break;
2294 default:
2295 ereport(FATAL,
2296 (errcode(ERRCODE_PROTOCOL_VIOLATION),
2297 errmsg("invalid standby message type \"%c\"",
2298 firstchar)));
2299 maxmsglen = 0; /* keep compiler quiet */
2300 break;
2301 }
2302
2303 /* Read the message contents */
2305 if (pq_getmessage(&reply_message, maxmsglen))
2306 {
2308 (errcode(ERRCODE_PROTOCOL_VIOLATION),
2309 errmsg("unexpected EOF on standby connection")));
2310 proc_exit(0);
2311 }
2312
2313 /* ... and process it */
2314 switch (firstchar)
2315 {
2316 /*
2317 * PqMsg_CopyData means a standby reply wrapped in a CopyData
2318 * packet.
2319 */
2320 case PqMsg_CopyData:
2322 received = true;
2323 break;
2324
2325 /*
2326 * PqMsg_CopyDone means the standby requested to finish
2327 * streaming. Reply with CopyDone, if we had not sent that
2328 * already.
2329 */
2330 case PqMsg_CopyDone:
2332 {
2334 streamingDoneSending = true;
2335 }
2336
2338 received = true;
2339 break;
2340
2341 /*
2342 * PqMsg_Terminate means that the standby is closing down the
2343 * socket.
2344 */
2345 case PqMsg_Terminate:
2346 proc_exit(0);
2347
2348 default:
2349 Assert(false); /* NOT REACHED */
2350 }
2351 }
2352
2353 /*
2354 * Save the last reply timestamp if we've received at least one reply.
2355 */
2356 if (received)
2357 {
2360 }
2361}
2362
2363/*
2364 * Process a status update message received from standby.
2365 */
2366static void
2368{
2369 char msgtype;
2370
2371 /*
2372 * Check message type from the first byte.
2373 */
2374 msgtype = pq_getmsgbyte(&reply_message);
2375
2376 switch (msgtype)
2377 {
2380 break;
2381
2384 break;
2385
2388 break;
2389
2390 default:
2392 (errcode(ERRCODE_PROTOCOL_VIOLATION),
2393 errmsg("unexpected message type \"%c\"", msgtype)));
2394 proc_exit(0);
2395 }
2396}
2397
2398/*
2399 * Remember that a walreceiver just confirmed receipt of lsn `lsn`.
2400 */
2401static void
2403{
2404 bool changed = false;
2406
2408 SpinLockAcquire(&slot->mutex);
2409 if (slot->data.restart_lsn != lsn)
2410 {
2411 changed = true;
2412 slot->data.restart_lsn = lsn;
2413 }
2414 SpinLockRelease(&slot->mutex);
2415
2416 if (changed)
2417 {
2421 }
2422
2423 /*
2424 * One could argue that the slot should be saved to disk now, but that'd
2425 * be energy wasted - the worst thing lost information could cause here is
2426 * to give wrong information in a statistics view - we'll just potentially
2427 * be more conservative in removing files.
2428 */
2429}
2430
2431/*
2432 * Regular reply from standby advising of WAL locations on standby server.
2433 */
2434static void
2436{
2437 XLogRecPtr writePtr,
2438 flushPtr,
2439 applyPtr;
2440 bool replyRequested;
2441 TimeOffset writeLag,
2442 flushLag,
2443 applyLag;
2444 bool clearLagTimes;
2446 TimestampTz replyTime;
2447
2448 static bool fullyAppliedLastTime = false;
2449
2450 /* the caller already consumed the msgtype byte */
2451 writePtr = pq_getmsgint64(&reply_message);
2452 flushPtr = pq_getmsgint64(&reply_message);
2453 applyPtr = pq_getmsgint64(&reply_message);
2454 replyTime = pq_getmsgint64(&reply_message);
2455 replyRequested = pq_getmsgbyte(&reply_message);
2456
2458 {
2459 char *replyTimeStr;
2460
2461 /* Copy because timestamptz_to_str returns a static buffer */
2462 replyTimeStr = pstrdup(timestamptz_to_str(replyTime));
2463
2464 elog(DEBUG2, "write %X/%08X flush %X/%08X apply %X/%08X%s reply_time %s",
2465 LSN_FORMAT_ARGS(writePtr),
2466 LSN_FORMAT_ARGS(flushPtr),
2467 LSN_FORMAT_ARGS(applyPtr),
2468 replyRequested ? " (reply requested)" : "",
2469 replyTimeStr);
2470
2471 pfree(replyTimeStr);
2472 }
2473
2474 /* See if we can compute the round-trip lag for these positions. */
2476 writeLag = LagTrackerRead(SYNC_REP_WAIT_WRITE, writePtr, now);
2477 flushLag = LagTrackerRead(SYNC_REP_WAIT_FLUSH, flushPtr, now);
2478 applyLag = LagTrackerRead(SYNC_REP_WAIT_APPLY, applyPtr, now);
2479
2480 /*
2481 * If the standby reports that it has fully replayed the WAL in two
2482 * consecutive reply messages, then the second such message must result
2483 * from wal_receiver_status_interval expiring on the standby. This is a
2484 * convenient time to forget the lag times measured when it last
2485 * wrote/flushed/applied a WAL record, to avoid displaying stale lag data
2486 * until more WAL traffic arrives.
2487 */
2488 clearLagTimes = false;
2489 if (applyPtr == sentPtr)
2490 {
2491 if (fullyAppliedLastTime)
2492 clearLagTimes = true;
2493 fullyAppliedLastTime = true;
2494 }
2495 else
2496 fullyAppliedLastTime = false;
2497
2498 /* Send a reply if the standby requested one. */
2499 if (replyRequested)
2501
2502 /*
2503 * Update shared state for this WalSender process based on reply data from
2504 * standby.
2505 */
2506 {
2507 WalSnd *walsnd = MyWalSnd;
2508
2509 SpinLockAcquire(&walsnd->mutex);
2510 walsnd->write = writePtr;
2511 walsnd->flush = flushPtr;
2512 walsnd->apply = applyPtr;
2513 if (writeLag != -1 || clearLagTimes)
2514 walsnd->writeLag = writeLag;
2515 if (flushLag != -1 || clearLagTimes)
2516 walsnd->flushLag = flushLag;
2517 if (applyLag != -1 || clearLagTimes)
2518 walsnd->applyLag = applyLag;
2519 walsnd->replyTime = replyTime;
2520 SpinLockRelease(&walsnd->mutex);
2521 }
2522
2525
2526 /*
2527 * Advance our local xmin horizon when the client confirmed a flush.
2528 */
2529 if (MyReplicationSlot && XLogRecPtrIsValid(flushPtr))
2530 {
2533 else
2535 }
2536}
2537
2538/* compute new replication slot xmin horizon if needed */
2539static void
2541{
2542 bool changed = false;
2544
2545 SpinLockAcquire(&slot->mutex);
2547
2548 /*
2549 * For physical replication we don't need the interlock provided by xmin
2550 * and effective_xmin since the consequences of a missed increase are
2551 * limited to query cancellations, so set both at once.
2552 */
2553 if (!TransactionIdIsNormal(slot->data.xmin) ||
2554 !TransactionIdIsNormal(feedbackXmin) ||
2555 TransactionIdPrecedes(slot->data.xmin, feedbackXmin))
2556 {
2557 changed = true;
2558 slot->data.xmin = feedbackXmin;
2559 slot->effective_xmin = feedbackXmin;
2560 }
2562 !TransactionIdIsNormal(feedbackCatalogXmin) ||
2563 TransactionIdPrecedes(slot->data.catalog_xmin, feedbackCatalogXmin))
2564 {
2565 changed = true;
2566 slot->data.catalog_xmin = feedbackCatalogXmin;
2567 slot->effective_catalog_xmin = feedbackCatalogXmin;
2568 }
2569 SpinLockRelease(&slot->mutex);
2570
2571 if (changed)
2572 {
2575 }
2576}
2577
2578/*
2579 * Check that the provided xmin/epoch are sane, that is, not in the future
2580 * and not so far back as to be already wrapped around.
2581 *
2582 * Epoch of nextXid should be same as standby, or if the counter has
2583 * wrapped, then one greater than standby.
2584 *
2585 * This check doesn't care about whether clog exists for these xids
2586 * at all.
2587 */
2588static bool
2590{
2591 FullTransactionId nextFullXid;
2592 TransactionId nextXid;
2593 uint32 nextEpoch;
2594
2595 nextFullXid = ReadNextFullTransactionId();
2596 nextXid = XidFromFullTransactionId(nextFullXid);
2597 nextEpoch = EpochFromFullTransactionId(nextFullXid);
2598
2599 if (xid <= nextXid)
2600 {
2601 if (epoch != nextEpoch)
2602 return false;
2603 }
2604 else
2605 {
2606 if (epoch + 1 != nextEpoch)
2607 return false;
2608 }
2609
2610 if (!TransactionIdPrecedesOrEquals(xid, nextXid))
2611 return false; /* epoch OK, but it's wrapped around */
2612
2613 return true;
2614}
2615
2616/*
2617 * Hot Standby feedback
2618 */
2619static void
2621{
2622 TransactionId feedbackXmin;
2623 uint32 feedbackEpoch;
2624 TransactionId feedbackCatalogXmin;
2625 uint32 feedbackCatalogEpoch;
2626 TimestampTz replyTime;
2627
2628 /*
2629 * Decipher the reply message. The caller already consumed the msgtype
2630 * byte. See XLogWalRcvSendHSFeedback() in walreceiver.c for the creation
2631 * of this message.
2632 */
2633 replyTime = pq_getmsgint64(&reply_message);
2634 feedbackXmin = pq_getmsgint(&reply_message, 4);
2635 feedbackEpoch = pq_getmsgint(&reply_message, 4);
2636 feedbackCatalogXmin = pq_getmsgint(&reply_message, 4);
2637 feedbackCatalogEpoch = pq_getmsgint(&reply_message, 4);
2638
2640 {
2641 char *replyTimeStr;
2642
2643 /* Copy because timestamptz_to_str returns a static buffer */
2644 replyTimeStr = pstrdup(timestamptz_to_str(replyTime));
2645
2646 elog(DEBUG2, "hot standby feedback xmin %u epoch %u, catalog_xmin %u epoch %u reply_time %s",
2647 feedbackXmin,
2648 feedbackEpoch,
2649 feedbackCatalogXmin,
2650 feedbackCatalogEpoch,
2651 replyTimeStr);
2652
2653 pfree(replyTimeStr);
2654 }
2655
2656 /*
2657 * Update shared state for this WalSender process based on reply data from
2658 * standby.
2659 */
2660 {
2661 WalSnd *walsnd = MyWalSnd;
2662
2663 SpinLockAcquire(&walsnd->mutex);
2664 walsnd->replyTime = replyTime;
2665 SpinLockRelease(&walsnd->mutex);
2666 }
2667
2668 /*
2669 * Unset WalSender's xmins if the feedback message values are invalid.
2670 * This happens when the downstream turned hot_standby_feedback off.
2671 */
2672 if (!TransactionIdIsNormal(feedbackXmin)
2673 && !TransactionIdIsNormal(feedbackCatalogXmin))
2674 {
2676 if (MyReplicationSlot != NULL)
2677 PhysicalReplicationSlotNewXmin(feedbackXmin, feedbackCatalogXmin);
2678 return;
2679 }
2680
2681 /*
2682 * Check that the provided xmin/epoch are sane, that is, not in the future
2683 * and not so far back as to be already wrapped around. Ignore if not.
2684 */
2685 if (TransactionIdIsNormal(feedbackXmin) &&
2686 !TransactionIdInRecentPast(feedbackXmin, feedbackEpoch))
2687 return;
2688
2689 if (TransactionIdIsNormal(feedbackCatalogXmin) &&
2690 !TransactionIdInRecentPast(feedbackCatalogXmin, feedbackCatalogEpoch))
2691 return;
2692
2693 /*
2694 * Set the WalSender's xmin equal to the standby's requested xmin, so that
2695 * the xmin will be taken into account by GetSnapshotData() /
2696 * ComputeXidHorizons(). This will hold back the removal of dead rows and
2697 * thereby prevent the generation of cleanup conflicts on the standby
2698 * server.
2699 *
2700 * There is a small window for a race condition here: although we just
2701 * checked that feedbackXmin precedes nextXid, the nextXid could have
2702 * gotten advanced between our fetching it and applying the xmin below,
2703 * perhaps far enough to make feedbackXmin wrap around. In that case the
2704 * xmin we set here would be "in the future" and have no effect. No point
2705 * in worrying about this since it's too late to save the desired data
2706 * anyway. Assuming that the standby sends us an increasing sequence of
2707 * xmins, this could only happen during the first reply cycle, else our
2708 * own xmin would prevent nextXid from advancing so far.
2709 *
2710 * We don't bother taking the ProcArrayLock here. Setting the xmin field
2711 * is assumed atomic, and there's no real need to prevent concurrent
2712 * horizon determinations. (If we're moving our xmin forward, this is
2713 * obviously safe, and if we're moving it backwards, well, the data is at
2714 * risk already since a VACUUM could already have determined the horizon.)
2715 *
2716 * If we're using a replication slot we reserve the xmin via that,
2717 * otherwise via the walsender's PGPROC entry. We can only track the
2718 * catalog xmin separately when using a slot, so we store the least of the
2719 * two provided when not using a slot.
2720 *
2721 * XXX: It might make sense to generalize the ephemeral slot concept and
2722 * always use the slot mechanism to handle the feedback xmin.
2723 */
2724 if (MyReplicationSlot != NULL) /* XXX: persistency configurable? */
2725 PhysicalReplicationSlotNewXmin(feedbackXmin, feedbackCatalogXmin);
2726 else
2727 {
2728 if (TransactionIdIsNormal(feedbackCatalogXmin)
2729 && TransactionIdPrecedes(feedbackCatalogXmin, feedbackXmin))
2730 MyProc->xmin = feedbackCatalogXmin;
2731 else
2732 MyProc->xmin = feedbackXmin;
2733 }
2734}
2735
2736/*
2737 * Process the request for a primary status update message.
2738 */
2739static void
2741{
2743 TransactionId oldestXidInCommit;
2744 TransactionId oldestGXidInCommit;
2745 FullTransactionId nextFullXid;
2746 FullTransactionId fullOldestXidInCommit;
2747 WalSnd *walsnd = MyWalSnd;
2748 TimestampTz replyTime;
2749
2750 /*
2751 * This shouldn't happen because we don't support getting primary status
2752 * message from standby.
2753 */
2754 if (RecoveryInProgress())
2755 elog(ERROR, "the primary status is unavailable during recovery");
2756
2757 replyTime = pq_getmsgint64(&reply_message);
2758
2759 /*
2760 * Update shared state for this WalSender process based on reply data from
2761 * standby.
2762 */
2763 SpinLockAcquire(&walsnd->mutex);
2764 walsnd->replyTime = replyTime;
2765 SpinLockRelease(&walsnd->mutex);
2766
2767 /*
2768 * Consider transactions in the current database, as only these are the
2769 * ones replicated.
2770 */
2771 oldestXidInCommit = GetOldestActiveTransactionId(true, false);
2772 oldestGXidInCommit = TwoPhaseGetOldestXidInCommit();
2773
2774 /*
2775 * Update the oldest xid for standby transmission if an older prepared
2776 * transaction exists and is currently in commit phase.
2777 */
2778 if (TransactionIdIsValid(oldestGXidInCommit) &&
2779 TransactionIdPrecedes(oldestGXidInCommit, oldestXidInCommit))
2780 oldestXidInCommit = oldestGXidInCommit;
2781
2782 nextFullXid = ReadNextFullTransactionId();
2783 fullOldestXidInCommit = FullTransactionIdFromAllowableAt(nextFullXid,
2784 oldestXidInCommit);
2785 lsn = GetXLogWriteRecPtr();
2786
2787 elog(DEBUG2, "sending primary status");
2788
2789 /* construct the message... */
2793 pq_sendint64(&output_message, (int64) U64FromFullTransactionId(fullOldestXidInCommit));
2796
2797 /* ... and send it wrapped in CopyData */
2799}
2800
2801/*
2802 * Compute how long send/receive loops should sleep.
2803 *
2804 * If wal_sender_timeout is enabled we want to wake up in time to send
2805 * keepalives and to abort the connection if wal_sender_timeout has been
2806 * reached.
2807 */
2808static long
2810{
2811 long sleeptime = 10000; /* 10 s */
2812
2814 {
2815 TimestampTz wakeup_time;
2816
2817 /*
2818 * At the latest stop sleeping once wal_sender_timeout has been
2819 * reached.
2820 */
2823
2824 /*
2825 * If no ping has been sent yet, wakeup when it's time to do so.
2826 * WalSndKeepaliveIfNecessary() wants to send a keepalive once half of
2827 * the timeout passed without a response.
2828 */
2831 wal_sender_timeout / 2);
2832
2833 /* Compute relative time until wakeup. */
2834 sleeptime = TimestampDifferenceMilliseconds(now, wakeup_time);
2835 }
2836
2837 return sleeptime;
2838}
2839
2840/*
2841 * Check whether there have been responses by the client within
2842 * wal_sender_timeout and shutdown if not. Using last_processing as the
2843 * reference point avoids counting server-side stalls against the client.
2844 * However, a long server-side stall can make WalSndKeepaliveIfNecessary()
2845 * postdate last_processing by more than wal_sender_timeout. If that happens,
2846 * the client must reply almost immediately to avoid a timeout. This rarely
2847 * affects the default configuration, under which clients spontaneously send a
2848 * message every standby_message_timeout = wal_sender_timeout/6 = 10s. We
2849 * could eliminate that problem by recognizing timeout expiration at
2850 * wal_sender_timeout/2 after the keepalive.
2851 */
2852static void
2854{
2855 TimestampTz timeout;
2856
2857 /* don't bail out if we're doing something that doesn't require timeouts */
2858 if (last_reply_timestamp <= 0)
2859 return;
2860
2863
2864 if (wal_sender_timeout > 0 && last_processing >= timeout)
2865 {
2866 /*
2867 * Since typically expiration of replication timeout means
2868 * communication problem, we don't send the error message to the
2869 * standby.
2870 */
2872 (errmsg("terminating walsender process due to replication timeout")));
2873
2875 }
2876}
2877
2878/* Main loop of walsender process that streams the WAL over Copy messages. */
2879static void
2881{
2882 TimestampTz last_flush = 0;
2883
2884 /*
2885 * Initialize the last reply timestamp. That enables timeout processing
2886 * from hereon.
2887 */
2890
2891 /*
2892 * Loop until we reach the end of this timeline or the client requests to
2893 * stop streaming.
2894 */
2895 for (;;)
2896 {
2897 /* Clear any already-pending wakeups */
2899
2901
2902 /* Process any requests or signals received recently */
2904 {
2905 ConfigReloadPending = false;
2908 }
2909
2910 /* Check for input from the client */
2912
2913 /*
2914 * If we have received CopyDone from the client, sent CopyDone
2915 * ourselves, and the output buffer is empty, it's time to exit
2916 * streaming.
2917 */
2920 break;
2921
2922 /*
2923 * If we don't have any pending data in the output buffer, try to send
2924 * some more. If there is some, we don't bother to call send_data
2925 * again until we've flushed it ... but we'd better assume we are not
2926 * caught up.
2927 */
2928 if (!pq_is_send_pending())
2929 send_data();
2930 else
2931 WalSndCaughtUp = false;
2932
2933 /* Try to flush pending output to the client */
2934 if (pq_flush_if_writable() != 0)
2936
2937 /* If nothing remains to be sent right now ... */
2939 {
2940 /*
2941 * If we're in catchup state, move to streaming. This is an
2942 * important state change for users to know about, since before
2943 * this point data loss might occur if the primary dies and we
2944 * need to failover to the standby. The state change is also
2945 * important for synchronous replication, since commits that
2946 * started to wait at that point might wait for some time.
2947 */
2949 {
2951 (errmsg_internal("\"%s\" has now caught up with upstream server",
2954 }
2955
2956 /*
2957 * When SIGUSR2 arrives, we send any outstanding logs up to the
2958 * shutdown checkpoint record (i.e., the latest record), wait for
2959 * them to be replicated to the standby, and exit. This may be a
2960 * normal termination at shutdown, or a promotion, the walsender
2961 * is not sure which.
2962 */
2963 if (got_SIGUSR2)
2964 WalSndDone(send_data);
2965 }
2966
2967 /* Check for replication timeout. */
2969
2970 /* Send keepalive if the time has come */
2972
2973 /*
2974 * Block if we have unsent data. XXX For logical replication, let
2975 * WalSndWaitForWal() handle any other blocking; idle receivers need
2976 * its additional actions. For physical replication, also block if
2977 * caught up; its send_data does not block.
2978 *
2979 * The IO statistics are reported in WalSndWaitForWal() for the
2980 * logical WAL senders.
2981 */
2982 if ((WalSndCaughtUp && send_data != XLogSendLogical &&
2985 {
2986 long sleeptime;
2987 int wakeEvents;
2989
2991 wakeEvents = WL_SOCKET_READABLE;
2992 else
2993 wakeEvents = 0;
2994
2995 /*
2996 * Use fresh timestamp, not last_processing, to reduce the chance
2997 * of reaching wal_sender_timeout before sending a keepalive.
2998 */
3000 sleeptime = WalSndComputeSleeptime(now);
3001
3002 if (pq_is_send_pending())
3003 wakeEvents |= WL_SOCKET_WRITEABLE;
3004
3005 /* Report IO statistics, if needed */
3006 if (TimestampDifferenceExceeds(last_flush, now,
3008 {
3009 pgstat_flush_io(false);
3011 last_flush = now;
3012 }
3013
3014 /* Sleep until something happens or we time out */
3015 WalSndWait(wakeEvents, sleeptime, WAIT_EVENT_WAL_SENDER_MAIN);
3016 }
3017 }
3018}
3019
3020/* Initialize a per-walsender data structure for this walsender process */
3021static void
3023{
3024 int i;
3025
3026 /*
3027 * WalSndCtl should be set up already (we inherit this by fork() or
3028 * EXEC_BACKEND mechanism from the postmaster).
3029 */
3030 Assert(WalSndCtl != NULL);
3031 Assert(MyWalSnd == NULL);
3032
3033 /*
3034 * Find a free walsender slot and reserve it. This must not fail due to
3035 * the prior check for free WAL senders in InitProcess().
3036 */
3037 for (i = 0; i < max_wal_senders; i++)
3038 {
3039 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3040
3041 SpinLockAcquire(&walsnd->mutex);
3042
3043 if (walsnd->pid != 0)
3044 {
3045 SpinLockRelease(&walsnd->mutex);
3046 continue;
3047 }
3048 else
3049 {
3050 /*
3051 * Found a free slot. Reserve it for us.
3052 */
3053 walsnd->pid = MyProcPid;
3054 walsnd->state = WALSNDSTATE_STARTUP;
3055 walsnd->sentPtr = InvalidXLogRecPtr;
3056 walsnd->needreload = false;
3057 walsnd->write = InvalidXLogRecPtr;
3058 walsnd->flush = InvalidXLogRecPtr;
3059 walsnd->apply = InvalidXLogRecPtr;
3060 walsnd->writeLag = -1;
3061 walsnd->flushLag = -1;
3062 walsnd->applyLag = -1;
3063 walsnd->sync_standby_priority = 0;
3064 walsnd->replyTime = 0;
3065
3066 /*
3067 * The kind assignment is done here and not in StartReplication()
3068 * and StartLogicalReplication(). Indeed, the logical walsender
3069 * needs to read WAL records (like snapshot of running
3070 * transactions) during the slot creation. So it needs to be woken
3071 * up based on its kind.
3072 *
3073 * The kind assignment could also be done in StartReplication(),
3074 * StartLogicalReplication() and CREATE_REPLICATION_SLOT but it
3075 * seems better to set it on one place.
3076 */
3077 if (MyDatabaseId == InvalidOid)
3079 else
3081
3082 SpinLockRelease(&walsnd->mutex);
3083 /* don't need the lock anymore */
3084 MyWalSnd = walsnd;
3085
3086 break;
3087 }
3088 }
3089
3090 Assert(MyWalSnd != NULL);
3091
3092 /* Arrange to clean up at walsender exit */
3094}
3095
3096/* Destroy the per-walsender data structure for this walsender process */
3097static void
3099{
3100 WalSnd *walsnd = MyWalSnd;
3101
3102 Assert(walsnd != NULL);
3103
3104 MyWalSnd = NULL;
3105
3106 SpinLockAcquire(&walsnd->mutex);
3107 /* Mark WalSnd struct as no longer being in use. */
3108 walsnd->pid = 0;
3109 SpinLockRelease(&walsnd->mutex);
3110}
3111
3112/* XLogReaderRoutine->segment_open callback */
3113static void
3115 TimeLineID *tli_p)
3116{
3117 char path[MAXPGPATH];
3118
3119 /*-------
3120 * When reading from a historic timeline, and there is a timeline switch
3121 * within this segment, read from the WAL segment belonging to the new
3122 * timeline.
3123 *
3124 * For example, imagine that this server is currently on timeline 5, and
3125 * we're streaming timeline 4. The switch from timeline 4 to 5 happened at
3126 * 0/13002088. In pg_wal, we have these files:
3127 *
3128 * ...
3129 * 000000040000000000000012
3130 * 000000040000000000000013
3131 * 000000050000000000000013
3132 * 000000050000000000000014
3133 * ...
3134 *
3135 * In this situation, when requested to send the WAL from segment 0x13, on
3136 * timeline 4, we read the WAL from file 000000050000000000000013. Archive
3137 * recovery prefers files from newer timelines, so if the segment was
3138 * restored from the archive on this server, the file belonging to the old
3139 * timeline, 000000040000000000000013, might not exist. Their contents are
3140 * equal up to the switchpoint, because at a timeline switch, the used
3141 * portion of the old segment is copied to the new file.
3142 */
3143 *tli_p = sendTimeLine;
3145 {
3146 XLogSegNo endSegNo;
3147
3148 XLByteToSeg(sendTimeLineValidUpto, endSegNo, state->segcxt.ws_segsize);
3149 if (nextSegNo == endSegNo)
3150 *tli_p = sendTimeLineNextTLI;
3151 }
3152
3153 XLogFilePath(path, *tli_p, nextSegNo, state->segcxt.ws_segsize);
3154 state->seg.ws_file = BasicOpenFile(path, O_RDONLY | PG_BINARY);
3155 if (state->seg.ws_file >= 0)
3156 return;
3157
3158 /*
3159 * If the file is not found, assume it's because the standby asked for a
3160 * too old WAL segment that has already been removed or recycled.
3161 */
3162 if (errno == ENOENT)
3163 {
3164 char xlogfname[MAXFNAMELEN];
3165 int save_errno = errno;
3166
3167 XLogFileName(xlogfname, *tli_p, nextSegNo, wal_segment_size);
3168 errno = save_errno;
3169 ereport(ERROR,
3171 errmsg("requested WAL segment %s has already been removed",
3172 xlogfname)));
3173 }
3174 else
3175 ereport(ERROR,
3177 errmsg("could not open file \"%s\": %m",
3178 path)));
3179}
3180
3181/*
3182 * Send out the WAL in its normal physical/stored form.
3183 *
3184 * Read up to MAX_SEND_SIZE bytes of WAL that's been flushed to disk,
3185 * but not yet sent to the client, and buffer it in the libpq output
3186 * buffer.
3187 *
3188 * If there is no unsent WAL remaining, WalSndCaughtUp is set to true,
3189 * otherwise WalSndCaughtUp is set to false.
3190 */
3191static void
3193{
3194 XLogRecPtr SendRqstPtr;
3195 XLogRecPtr startptr;
3196 XLogRecPtr endptr;
3197 Size nbytes;
3198 XLogSegNo segno;
3199 WALReadError errinfo;
3200 Size rbytes;
3201
3202 /* If requested switch the WAL sender to the stopping state. */
3203 if (got_STOPPING)
3205
3207 {
3208 WalSndCaughtUp = true;
3209 return;
3210 }
3211
3212 /* Figure out how far we can safely send the WAL. */
3214 {
3215 /*
3216 * Streaming an old timeline that's in this server's history, but is
3217 * not the one we're currently inserting or replaying. It can be
3218 * streamed up to the point where we switched off that timeline.
3219 */
3220 SendRqstPtr = sendTimeLineValidUpto;
3221 }
3222 else if (am_cascading_walsender)
3223 {
3224 TimeLineID SendRqstTLI;
3225
3226 /*
3227 * Streaming the latest timeline on a standby.
3228 *
3229 * Attempt to send all WAL that has already been replayed, so that we
3230 * know it's valid. If we're receiving WAL through streaming
3231 * replication, it's also OK to send any WAL that has been received
3232 * but not replayed.
3233 *
3234 * The timeline we're recovering from can change, or we can be
3235 * promoted. In either case, the current timeline becomes historic. We
3236 * need to detect that so that we don't try to stream past the point
3237 * where we switched to another timeline. We check for promotion or
3238 * timeline switch after calculating FlushPtr, to avoid a race
3239 * condition: if the timeline becomes historic just after we checked
3240 * that it was still current, it's still be OK to stream it up to the
3241 * FlushPtr that was calculated before it became historic.
3242 */
3243 bool becameHistoric = false;
3244
3245 SendRqstPtr = GetStandbyFlushRecPtr(&SendRqstTLI);
3246
3247 if (!RecoveryInProgress())
3248 {
3249 /* We have been promoted. */
3250 SendRqstTLI = GetWALInsertionTimeLine();
3251 am_cascading_walsender = false;
3252 becameHistoric = true;
3253 }
3254 else
3255 {
3256 /*
3257 * Still a cascading standby. But is the timeline we're sending
3258 * still the one recovery is recovering from?
3259 */
3260 if (sendTimeLine != SendRqstTLI)
3261 becameHistoric = true;
3262 }
3263
3264 if (becameHistoric)
3265 {
3266 /*
3267 * The timeline we were sending has become historic. Read the
3268 * timeline history file of the new timeline to see where exactly
3269 * we forked off from the timeline we were sending.
3270 */
3271 List *history;
3272
3273 history = readTimeLineHistory(SendRqstTLI);
3275
3277 list_free_deep(history);
3278
3280
3281 SendRqstPtr = sendTimeLineValidUpto;
3282 }
3283 }
3284 else
3285 {
3286 /*
3287 * Streaming the current timeline on a primary.
3288 *
3289 * Attempt to send all data that's already been written out and
3290 * fsync'd to disk. We cannot go further than what's been written out
3291 * given the current implementation of WALRead(). And in any case
3292 * it's unsafe to send WAL that is not securely down to disk on the
3293 * primary: if the primary subsequently crashes and restarts, standbys
3294 * must not have applied any WAL that got lost on the primary.
3295 */
3296 SendRqstPtr = GetFlushRecPtr(NULL);
3297 }
3298
3299 /*
3300 * Record the current system time as an approximation of the time at which
3301 * this WAL location was written for the purposes of lag tracking.
3302 *
3303 * In theory we could make XLogFlush() record a time in shmem whenever WAL
3304 * is flushed and we could get that time as well as the LSN when we call
3305 * GetFlushRecPtr() above (and likewise for the cascading standby
3306 * equivalent), but rather than putting any new code into the hot WAL path
3307 * it seems good enough to capture the time here. We should reach this
3308 * after XLogFlush() runs WalSndWakeupProcessRequests(), and although that
3309 * may take some time, we read the WAL flush pointer and take the time
3310 * very close to together here so that we'll get a later position if it is
3311 * still moving.
3312 *
3313 * Because LagTrackerWrite ignores samples when the LSN hasn't advanced,
3314 * this gives us a cheap approximation for the WAL flush time for this
3315 * LSN.
3316 *
3317 * Note that the LSN is not necessarily the LSN for the data contained in
3318 * the present message; it's the end of the WAL, which might be further
3319 * ahead. All the lag tracking machinery cares about is finding out when
3320 * that arbitrary LSN is eventually reported as written, flushed and
3321 * applied, so that it can measure the elapsed time.
3322 */
3323 LagTrackerWrite(SendRqstPtr, GetCurrentTimestamp());
3324
3325 /*
3326 * If this is a historic timeline and we've reached the point where we
3327 * forked to the next timeline, stop streaming.
3328 *
3329 * Note: We might already have sent WAL > sendTimeLineValidUpto. The
3330 * startup process will normally replay all WAL that has been received
3331 * from the primary, before promoting, but if the WAL streaming is
3332 * terminated at a WAL page boundary, the valid portion of the timeline
3333 * might end in the middle of a WAL record. We might've already sent the
3334 * first half of that partial WAL record to the cascading standby, so that
3335 * sentPtr > sendTimeLineValidUpto. That's OK; the cascading standby can't
3336 * replay the partial WAL record either, so it can still follow our
3337 * timeline switch.
3338 */
3340 {
3341 /* close the current file. */
3342 if (xlogreader->seg.ws_file >= 0)
3344
3345 /* Send CopyDone */
3347 streamingDoneSending = true;
3348
3349 WalSndCaughtUp = true;
3350
3351 elog(DEBUG1, "walsender reached end of timeline at %X/%08X (sent up to %X/%08X)",
3354 return;
3355 }
3356
3357 /* Do we have any work to do? */
3358 Assert(sentPtr <= SendRqstPtr);
3359 if (SendRqstPtr <= sentPtr)
3360 {
3361 WalSndCaughtUp = true;
3362 return;
3363 }
3364
3365 /*
3366 * Figure out how much to send in one message. If there's no more than
3367 * MAX_SEND_SIZE bytes to send, send everything. Otherwise send
3368 * MAX_SEND_SIZE bytes, but round back to logfile or page boundary.
3369 *
3370 * The rounding is not only for performance reasons. Walreceiver relies on
3371 * the fact that we never split a WAL record across two messages. Since a
3372 * long WAL record is split at page boundary into continuation records,
3373 * page boundary is always a safe cut-off point. We also assume that
3374 * SendRqstPtr never points to the middle of a WAL record.
3375 */
3376 startptr = sentPtr;
3377 endptr = startptr;
3378 endptr += MAX_SEND_SIZE;
3379
3380 /* if we went beyond SendRqstPtr, back off */
3381 if (SendRqstPtr <= endptr)
3382 {
3383 endptr = SendRqstPtr;
3385 WalSndCaughtUp = false;
3386 else
3387 WalSndCaughtUp = true;
3388 }
3389 else
3390 {
3391 /* round down to page boundary. */
3392 endptr -= (endptr % XLOG_BLCKSZ);
3393 WalSndCaughtUp = false;
3394 }
3395
3396 nbytes = endptr - startptr;
3397 Assert(nbytes <= MAX_SEND_SIZE);
3398
3399 /*
3400 * OK to read and send the slice.
3401 */
3404
3405 pq_sendint64(&output_message, startptr); /* dataStart */
3406 pq_sendint64(&output_message, SendRqstPtr); /* walEnd */
3407 pq_sendint64(&output_message, 0); /* sendtime, filled in last */
3408
3409 /*
3410 * Read the log directly into the output buffer to avoid extra memcpy
3411 * calls.
3412 */
3414
3415retry:
3416 /* attempt to read WAL from WAL buffers first */
3418 startptr, nbytes, xlogreader->seg.ws_tli);
3419 output_message.len += rbytes;
3420 startptr += rbytes;
3421 nbytes -= rbytes;
3422
3423 /* now read the remaining WAL from WAL file */
3424 if (nbytes > 0 &&
3427 startptr,
3428 nbytes,
3429 xlogreader->seg.ws_tli, /* Pass the current TLI because
3430 * only WalSndSegmentOpen controls
3431 * whether new TLI is needed. */
3432 &errinfo))
3433 WALReadRaiseError(&errinfo);
3434
3435 /* See logical_read_xlog_page(). */
3436 XLByteToSeg(startptr, segno, xlogreader->segcxt.ws_segsize);
3438
3439 /*
3440 * During recovery, the currently-open WAL file might be replaced with the
3441 * file of the same name retrieved from archive. So we always need to
3442 * check what we read was valid after reading into the buffer. If it's
3443 * invalid, we try to open and read the file again.
3444 */
3446 {
3447 WalSnd *walsnd = MyWalSnd;
3448 bool reload;
3449
3450 SpinLockAcquire(&walsnd->mutex);
3451 reload = walsnd->needreload;
3452 walsnd->needreload = false;
3453 SpinLockRelease(&walsnd->mutex);
3454
3455 if (reload && xlogreader->seg.ws_file >= 0)
3456 {
3458
3459 goto retry;
3460 }
3461 }
3462
3463 output_message.len += nbytes;
3465
3466 /*
3467 * Fill the send timestamp last, so that it is taken as late as possible.
3468 */
3471 memcpy(&output_message.data[1 + sizeof(int64) + sizeof(int64)],
3472 tmpbuf.data, sizeof(int64));
3473
3475
3476 sentPtr = endptr;
3477
3478 /* Update shared memory status */
3479 {
3480 WalSnd *walsnd = MyWalSnd;
3481
3482 SpinLockAcquire(&walsnd->mutex);
3483 walsnd->sentPtr = sentPtr;
3484 SpinLockRelease(&walsnd->mutex);
3485 }
3486
3487 /* Report progress of XLOG streaming in PS display */
3489 {
3490 char activitymsg[50];
3491
3492 snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%08X",
3494 set_ps_display(activitymsg);
3495 }
3496}
3497
3498/*
3499 * Stream out logically decoded data.
3500 */
3501static void
3503{
3504 XLogRecord *record;
3505 char *errm;
3506
3507 /*
3508 * We'll use the current flush point to determine whether we've caught up.
3509 * This variable is static in order to cache it across calls. Caching is
3510 * helpful because GetFlushRecPtr() needs to acquire a heavily-contended
3511 * spinlock.
3512 */
3513 static XLogRecPtr flushPtr = InvalidXLogRecPtr;
3514
3515 /*
3516 * Don't know whether we've caught up yet. We'll set WalSndCaughtUp to
3517 * true in WalSndWaitForWal, if we're actually waiting. We also set to
3518 * true if XLogReadRecord() had to stop reading but WalSndWaitForWal
3519 * didn't wait - i.e. when we're shutting down.
3520 */
3521 WalSndCaughtUp = false;
3522
3523 record = XLogReadRecord(logical_decoding_ctx->reader, &errm);
3524
3525 /* xlog record was invalid */
3526 if (errm != NULL)
3527 elog(ERROR, "could not find record while sending logically-decoded data: %s",
3528 errm);
3529
3530 if (record != NULL)
3531 {
3532 /*
3533 * Note the lack of any call to LagTrackerWrite() which is handled by
3534 * WalSndUpdateProgress which is called by output plugin through
3535 * logical decoding write api.
3536 */
3538
3540 }
3541
3542 /*
3543 * If first time through in this session, initialize flushPtr. Otherwise,
3544 * we only need to update flushPtr if EndRecPtr is past it.
3545 */
3546 if (!XLogRecPtrIsValid(flushPtr) ||
3548 {
3549 /*
3550 * For cascading logical WAL senders, we use the replay LSN instead of
3551 * the flush LSN, since logical decoding on a standby only processes
3552 * WAL that has been replayed. This distinction becomes particularly
3553 * important during shutdown, as new WAL is no longer replayed and the
3554 * last replayed LSN marks the furthest point up to which decoding can
3555 * proceed.
3556 */
3558 flushPtr = GetXLogReplayRecPtr(NULL);
3559 else
3560 flushPtr = GetFlushRecPtr(NULL);
3561 }
3562
3563 /* If EndRecPtr is still past our flushPtr, it means we caught up. */
3564 if (logical_decoding_ctx->reader->EndRecPtr >= flushPtr)
3565 WalSndCaughtUp = true;
3566
3567 /*
3568 * If we're caught up and have been requested to stop, have WalSndLoop()
3569 * terminate the connection in an orderly manner, after writing out all
3570 * the pending data.
3571 */
3573 got_SIGUSR2 = true;
3574
3575 /* Update shared memory status */
3576 {
3577 WalSnd *walsnd = MyWalSnd;
3578
3579 SpinLockAcquire(&walsnd->mutex);
3580 walsnd->sentPtr = sentPtr;
3581 SpinLockRelease(&walsnd->mutex);
3582 }
3583}
3584
3585/*
3586 * Shutdown if the sender is caught up.
3587 *
3588 * NB: This should only be called when the shutdown signal has been received
3589 * from postmaster.
3590 *
3591 * Note that if we determine that there's still more data to send, this
3592 * function will return control to the caller.
3593 */
3594static void
3596{
3597 XLogRecPtr replicatedPtr;
3598
3599 /* ... let's just be real sure we're caught up ... */
3600 send_data();
3601
3602 /*
3603 * To figure out whether all WAL has successfully been replicated, check
3604 * flush location if valid, write otherwise. Tools like pg_receivewal will
3605 * usually (unless in synchronous mode) return an invalid flush location.
3606 */
3607 replicatedPtr = XLogRecPtrIsValid(MyWalSnd->flush) ?
3609
3610 if (WalSndCaughtUp && sentPtr == replicatedPtr &&
3612 {
3613 QueryCompletion qc;
3614
3615 /* Inform the standby that XLOG streaming is done */
3616 SetQueryCompletion(&qc, CMDTAG_COPY, 0);
3617 EndCommand(&qc, DestRemote, false);
3618 pq_flush();
3619
3620 proc_exit(0);
3621 }
3624}
3625
3626/*
3627 * Returns the latest point in WAL that has been safely flushed to disk.
3628 * This should only be called when in recovery.
3629 *
3630 * This is called either by cascading walsender to find WAL position to be sent
3631 * to a cascaded standby or by slot synchronization operation to validate remote
3632 * slot's lsn before syncing it locally.
3633 *
3634 * As a side-effect, *tli is updated to the TLI of the last
3635 * replayed WAL record.
3636 */
3639{
3640 XLogRecPtr replayPtr;
3641 TimeLineID replayTLI;
3642 XLogRecPtr receivePtr;
3644 XLogRecPtr result;
3645
3647
3648 /*
3649 * We can safely send what's already been replayed. Also, if walreceiver
3650 * is streaming WAL from the same timeline, we can send anything that it
3651 * has streamed, but hasn't been replayed yet.
3652 */
3653
3654 receivePtr = GetWalRcvFlushRecPtr(NULL, &receiveTLI);
3655 replayPtr = GetXLogReplayRecPtr(&replayTLI);
3656
3657 if (tli)
3658 *tli = replayTLI;
3659
3660 result = replayPtr;
3661 if (receiveTLI == replayTLI && receivePtr > replayPtr)
3662 result = receivePtr;
3663
3664 return result;
3665}
3666
3667/*
3668 * Request walsenders to reload the currently-open WAL file
3669 */
3670void
3672{
3673 int i;
3674
3675 for (i = 0; i < max_wal_senders; i++)
3676 {
3677 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3678
3679 SpinLockAcquire(&walsnd->mutex);
3680 if (walsnd->pid == 0)
3681 {
3682 SpinLockRelease(&walsnd->mutex);
3683 continue;
3684 }
3685 walsnd->needreload = true;
3686 SpinLockRelease(&walsnd->mutex);
3687 }
3688}
3689
3690/*
3691 * Handle PROCSIG_WALSND_INIT_STOPPING signal.
3692 */
3693void
3695{
3697
3698 /*
3699 * If replication has not yet started, die like with SIGTERM. If
3700 * replication is active, only set a flag and wake up the main loop. It
3701 * will send any outstanding WAL, wait for it to be replicated to the
3702 * standby, and then exit gracefully.
3703 */
3704 if (!replication_active)
3705 kill(MyProcPid, SIGTERM);
3706 else
3707 got_STOPPING = true;
3708}
3709
3710/*
3711 * SIGUSR2: set flag to do a last cycle and shut down afterwards. The WAL
3712 * sender should already have been switched to WALSNDSTATE_STOPPING at
3713 * this point.
3714 */
3715static void
3717{
3718 got_SIGUSR2 = true;
3720}
3721
3722/* Set up signal handlers */
3723void
3725{
3726 /* Set up signal handlers */
3728 pqsignal(SIGINT, StatementCancelHandler); /* query cancel */
3729 pqsignal(SIGTERM, die); /* request shutdown */
3730 /* SIGQUIT handler was already set up by InitPostmasterChild */
3731 InitializeTimeouts(); /* establishes SIGALRM handler */
3732 pqsignal(SIGPIPE, SIG_IGN);
3734 pqsignal(SIGUSR2, WalSndLastCycleHandler); /* request a last cycle and
3735 * shutdown */
3736
3737 /* Reset some signals that are accepted by postmaster but not here */
3738 pqsignal(SIGCHLD, SIG_DFL);
3739}
3740
3741/* Report shared-memory space needed by WalSndShmemInit */
3742Size
3744{
3745 Size size = 0;
3746
3747 size = offsetof(WalSndCtlData, walsnds);
3748 size = add_size(size, mul_size(max_wal_senders, sizeof(WalSnd)));
3749
3750 return size;
3751}
3752
3753/* Allocate and initialize walsender-related shared memory */
3754void
3756{
3757 bool found;
3758 int i;
3759
3761 ShmemInitStruct("Wal Sender Ctl", WalSndShmemSize(), &found);
3762
3763 if (!found)
3764 {
3765 /* First time through, so initialize */
3767
3768 for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; i++)
3770
3771 for (i = 0; i < max_wal_senders; i++)
3772 {
3773 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3774
3775 SpinLockInit(&walsnd->mutex);
3776 }
3777
3781 }
3782}
3783
3784/*
3785 * Wake up physical, logical or both kinds of walsenders
3786 *
3787 * The distinction between physical and logical walsenders is done, because:
3788 * - physical walsenders can't send data until it's been flushed
3789 * - logical walsenders on standby can't decode and send data until it's been
3790 * applied
3791 *
3792 * For cascading replication we need to wake up physical walsenders separately
3793 * from logical walsenders (see the comment before calling WalSndWakeup() in
3794 * ApplyWalRecord() for more details).
3795 *
3796 * This will be called inside critical sections, so throwing an error is not
3797 * advisable.
3798 */
3799void
3800WalSndWakeup(bool physical, bool logical)
3801{
3802 /*
3803 * Wake up all the walsenders waiting on WAL being flushed or replayed
3804 * respectively. Note that waiting walsender would have prepared to sleep
3805 * on the CV (i.e., added itself to the CV's waitlist) in WalSndWait()
3806 * before actually waiting.
3807 */
3808 if (physical)
3810
3811 if (logical)
3813}
3814
3815/*
3816 * Wait for readiness on the FeBe socket, or a timeout. The mask should be
3817 * composed of optional WL_SOCKET_WRITEABLE and WL_SOCKET_READABLE flags. Exit
3818 * on postmaster death.
3819 */
3820static void
3821WalSndWait(uint32 socket_events, long timeout, uint32 wait_event)
3822{
3823 WaitEvent event;
3824
3825 ModifyWaitEvent(FeBeWaitSet, FeBeWaitSetSocketPos, socket_events, NULL);
3826
3827 /*
3828 * We use a condition variable to efficiently wake up walsenders in
3829 * WalSndWakeup().
3830 *
3831 * Every walsender prepares to sleep on a shared memory CV. Note that it
3832 * just prepares to sleep on the CV (i.e., adds itself to the CV's
3833 * waitlist), but does not actually wait on the CV (IOW, it never calls
3834 * ConditionVariableSleep()). It still uses WaitEventSetWait() for
3835 * waiting, because we also need to wait for socket events. The processes
3836 * (startup process, walreceiver etc.) wanting to wake up walsenders use
3837 * ConditionVariableBroadcast(), which in turn calls SetLatch(), helping
3838 * walsenders come out of WaitEventSetWait().
3839 *
3840 * This approach is simple and efficient because, one doesn't have to loop
3841 * through all the walsenders slots, with a spinlock acquisition and
3842 * release for every iteration, just to wake up only the waiting
3843 * walsenders. It makes WalSndWakeup() callers' life easy.
3844 *
3845 * XXX: A desirable future improvement would be to add support for CVs
3846 * into WaitEventSetWait().
3847 *
3848 * And, we use separate shared memory CVs for physical and logical
3849 * walsenders for selective wake ups, see WalSndWakeup() for more details.
3850 *
3851 * If the wait event is WAIT_FOR_STANDBY_CONFIRMATION, wait on another CV
3852 * until awakened by physical walsenders after the walreceiver confirms
3853 * the receipt of the LSN.
3854 */
3855 if (wait_event == WAIT_EVENT_WAIT_FOR_STANDBY_CONFIRMATION)
3861
3862 if (WaitEventSetWait(FeBeWaitSet, timeout, &event, 1, wait_event) == 1 &&
3863 (event.events & WL_POSTMASTER_DEATH))
3864 {
3866 proc_exit(1);
3867 }
3868
3870}
3871
3872/*
3873 * Signal all walsenders to move to stopping state.
3874 *
3875 * This will trigger walsenders to move to a state where no further WAL can be
3876 * generated. See this file's header for details.
3877 */
3878void
3880{
3881 int i;
3882
3883 for (i = 0; i < max_wal_senders; i++)
3884 {
3885 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3886 pid_t pid;
3887
3888 SpinLockAcquire(&walsnd->mutex);
3889 pid = walsnd->pid;
3890 SpinLockRelease(&walsnd->mutex);
3891
3892 if (pid == 0)
3893 continue;
3894
3896 }
3897}
3898
3899/*
3900 * Wait that all the WAL senders have quit or reached the stopping state. This
3901 * is used by the checkpointer to control when the shutdown checkpoint can
3902 * safely be performed.
3903 */
3904void
3906{
3907 for (;;)
3908 {
3909 int i;
3910 bool all_stopped = true;
3911
3912 for (i = 0; i < max_wal_senders; i++)
3913 {
3914 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3915
3916 SpinLockAcquire(&walsnd->mutex);
3917
3918 if (walsnd->pid == 0)
3919 {
3920 SpinLockRelease(&walsnd->mutex);
3921 continue;
3922 }
3923
3924 if (walsnd->state != WALSNDSTATE_STOPPING)
3925 {
3926 all_stopped = false;
3927 SpinLockRelease(&walsnd->mutex);
3928 break;
3929 }
3930 SpinLockRelease(&walsnd->mutex);
3931 }
3932
3933 /* safe to leave if confirmation is done for all WAL senders */
3934 if (all_stopped)
3935 return;
3936
3937 pg_usleep(10000L); /* wait for 10 msec */
3938 }
3939}
3940
3941/* Set state for current walsender (only called in walsender) */
3942void
3944{
3945 WalSnd *walsnd = MyWalSnd;
3946
3948
3949 if (walsnd->state == state)
3950 return;
3951
3952 SpinLockAcquire(&walsnd->mutex);
3953 walsnd->state = state;
3954 SpinLockRelease(&walsnd->mutex);
3955}
3956
3957/*
3958 * Return a string constant representing the state. This is used
3959 * in system views, and should *not* be translated.
3960 */
3961static const char *
3963{
3964 switch (state)
3965 {
3967 return "startup";
3968 case WALSNDSTATE_BACKUP:
3969 return "backup";
3971 return "catchup";
3973 return "streaming";
3975 return "stopping";
3976 }
3977 return "UNKNOWN";
3978}
3979
3980static Interval *
3982{
3983 Interval *result = palloc_object(Interval);
3984
3985 result->month = 0;
3986 result->day = 0;
3987 result->time = offset;
3988
3989 return result;
3990}
3991
3992/*
3993 * Returns activity of walsenders, including pids and xlog locations sent to
3994 * standby servers.
3995 */
3996Datum
3998{
3999#define PG_STAT_GET_WAL_SENDERS_COLS 12
4000 ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
4001 SyncRepStandbyData *sync_standbys;
4002 int num_standbys;
4003 int i;
4004
4005 InitMaterializedSRF(fcinfo, 0);
4006
4007 /*
4008 * Get the currently active synchronous standbys. This could be out of
4009 * date before we're done, but we'll use the data anyway.
4010 */
4011 num_standbys = SyncRepGetCandidateStandbys(&sync_standbys);
4012
4013 for (i = 0; i < max_wal_senders; i++)
4014 {
4015 WalSnd *walsnd = &WalSndCtl->walsnds[i];
4016 XLogRecPtr sent_ptr;
4018 XLogRecPtr flush;
4019 XLogRecPtr apply;
4020 TimeOffset writeLag;
4021 TimeOffset flushLag;
4022 TimeOffset applyLag;
4023 int priority;
4024 int pid;
4026 TimestampTz replyTime;
4027 bool is_sync_standby;
4029 bool nulls[PG_STAT_GET_WAL_SENDERS_COLS] = {0};
4030 int j;
4031
4032 /* Collect data from shared memory */
4033 SpinLockAcquire(&walsnd->mutex);
4034 if (walsnd->pid == 0)
4035 {
4036 SpinLockRelease(&walsnd->mutex);
4037 continue;
4038 }
4039 pid = walsnd->pid;
4040 sent_ptr = walsnd->sentPtr;
4041 state = walsnd->state;
4042 write = walsnd->write;
4043 flush = walsnd->flush;
4044 apply = walsnd->apply;
4045 writeLag = walsnd->writeLag;
4046 flushLag = walsnd->flushLag;
4047 applyLag = walsnd->applyLag;
4048 priority = walsnd->sync_standby_priority;
4049 replyTime = walsnd->replyTime;
4050 SpinLockRelease(&walsnd->mutex);
4051
4052 /*
4053 * Detect whether walsender is/was considered synchronous. We can
4054 * provide some protection against stale data by checking the PID
4055 * along with walsnd_index.
4056 */
4057 is_sync_standby = false;
4058 for (j = 0; j < num_standbys; j++)
4059 {
4060 if (sync_standbys[j].walsnd_index == i &&
4061 sync_standbys[j].pid == pid)
4062 {
4063 is_sync_standby = true;
4064 break;
4065 }
4066 }
4067
4068 values[0] = Int32GetDatum(pid);
4069
4070 if (!has_privs_of_role(GetUserId(), ROLE_PG_READ_ALL_STATS))
4071 {
4072 /*
4073 * Only superusers and roles with privileges of pg_read_all_stats
4074 * can see details. Other users only get the pid value to know
4075 * it's a walsender, but no details.
4076 */
4077 MemSet(&nulls[1], true, PG_STAT_GET_WAL_SENDERS_COLS - 1);
4078 }
4079 else
4080 {
4082
4083 if (!XLogRecPtrIsValid(sent_ptr))
4084 nulls[2] = true;
4085 values[2] = LSNGetDatum(sent_ptr);
4086
4088 nulls[3] = true;
4089 values[3] = LSNGetDatum(write);
4090
4091 if (!XLogRecPtrIsValid(flush))
4092 nulls[4] = true;
4093 values[4] = LSNGetDatum(flush);
4094
4095 if (!XLogRecPtrIsValid(apply))
4096 nulls[5] = true;
4097 values[5] = LSNGetDatum(apply);
4098
4099 /*
4100 * Treat a standby such as a pg_basebackup background process
4101 * which always returns an invalid flush location, as an
4102 * asynchronous standby.
4103 */
4104 priority = XLogRecPtrIsValid(flush) ? priority : 0;
4105
4106 if (writeLag < 0)
4107 nulls[6] = true;
4108 else
4110
4111 if (flushLag < 0)
4112 nulls[7] = true;
4113 else
4115
4116 if (applyLag < 0)
4117 nulls[8] = true;
4118 else
4120
4121 values[9] = Int32GetDatum(priority);
4122
4123 /*
4124 * More easily understood version of standby state. This is purely
4125 * informational.
4126 *
4127 * In quorum-based sync replication, the role of each standby
4128 * listed in synchronous_standby_names can be changing very
4129 * frequently. Any standbys considered as "sync" at one moment can
4130 * be switched to "potential" ones at the next moment. So, it's
4131 * basically useless to report "sync" or "potential" as their sync
4132 * states. We report just "quorum" for them.
4133 */
4134 if (priority == 0)
4135 values[10] = CStringGetTextDatum("async");
4136 else if (is_sync_standby)
4138 CStringGetTextDatum("sync") : CStringGetTextDatum("quorum");
4139 else
4140 values[10] = CStringGetTextDatum("potential");
4141
4142 if (replyTime == 0)
4143 nulls[11] = true;
4144 else
4145 values[11] = TimestampTzGetDatum(replyTime);
4146 }
4147
4148 tuplestore_putvalues(rsinfo->setResult, rsinfo->setDesc,
4149 values, nulls);
4150 }
4151
4152 return (Datum) 0;
4153}
4154
4155/*
4156 * Send a keepalive message to standby.
4157 *
4158 * If requestReply is set, the message requests the other party to send
4159 * a message back to us, for heartbeat purposes. We also set a flag to
4160 * let nearby code know that we're waiting for that response, to avoid
4161 * repeated requests.
4162 *
4163 * writePtr is the location up to which the WAL is sent. It is essentially
4164 * the same as sentPtr but in some cases, we need to send keep alive before
4165 * sentPtr is updated like when skipping empty transactions.
4166 */
4167static void
4168WalSndKeepalive(bool requestReply, XLogRecPtr writePtr)
4169{
4170 elog(DEBUG2, "sending replication keepalive");
4171
4172 /* construct the message... */
4175 pq_sendint64(&output_message, XLogRecPtrIsValid(writePtr) ? writePtr : sentPtr);
4177 pq_sendbyte(&output_message, requestReply ? 1 : 0);
4178
4179 /* ... and send it wrapped in CopyData */
4181
4182 /* Set local flag */
4183 if (requestReply)
4185}
4186
4187/*
4188 * Send keepalive message if too much time has elapsed.
4189 */
4190static void
4192{
4193 TimestampTz ping_time;
4194
4195 /*
4196 * Don't send keepalive messages if timeouts are globally disabled or
4197 * we're doing something not partaking in timeouts.
4198 */
4200 return;
4201
4203 return;
4204
4205 /*
4206 * If half of wal_sender_timeout has lapsed without receiving any reply
4207 * from the standby, send a keep-alive message to the standby requesting
4208 * an immediate reply.
4209 */
4211 wal_sender_timeout / 2);
4212 if (last_processing >= ping_time)
4213 {
4215
4216 /* Try to flush pending output to the client */
4217 if (pq_flush_if_writable() != 0)
4219 }
4220}
4221
4222/*
4223 * Record the end of the WAL and the time it was flushed locally, so that
4224 * LagTrackerRead can compute the elapsed time (lag) when this WAL location is
4225 * eventually reported to have been written, flushed and applied by the
4226 * standby in a reply message.
4227 */
4228static void
4230{
4231 int new_write_head;
4232 int i;
4233
4234 if (!am_walsender)
4235 return;
4236
4237 /*
4238 * If the lsn hasn't advanced since last time, then do nothing. This way
4239 * we only record a new sample when new WAL has been written.
4240 */
4241 if (lag_tracker->last_lsn == lsn)
4242 return;
4243 lag_tracker->last_lsn = lsn;
4244
4245 /*
4246 * If advancing the write head of the circular buffer would crash into any
4247 * of the read heads, then the buffer is full. In other words, the
4248 * slowest reader (presumably apply) is the one that controls the release
4249 * of space.
4250 */
4251 new_write_head = (lag_tracker->write_head + 1) % LAG_TRACKER_BUFFER_SIZE;
4252 for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; ++i)
4253 {
4254 /*
4255 * If the buffer is full, move the slowest reader to a separate
4256 * overflow entry and free its space in the buffer so the write head
4257 * can advance.
4258 */
4259 if (new_write_head == lag_tracker->read_heads[i])
4260 {
4263 lag_tracker->read_heads[i] = -1;
4264 }
4265 }
4266
4267 /* Store a sample at the current write head position. */
4269 lag_tracker->buffer[lag_tracker->write_head].time = local_flush_time;
4270 lag_tracker->write_head = new_write_head;
4271}
4272
4273/*
4274 * Find out how much time has elapsed between the moment WAL location 'lsn'
4275 * (or the highest known earlier LSN) was flushed locally and the time 'now'.
4276 * We have a separate read head for each of the reported LSN locations we
4277 * receive in replies from standby; 'head' controls which read head is
4278 * used. Whenever a read head crosses an LSN which was written into the
4279 * lag buffer with LagTrackerWrite, we can use the associated timestamp to
4280 * find out the time this LSN (or an earlier one) was flushed locally, and
4281 * therefore compute the lag.
4282 *
4283 * Return -1 if no new sample data is available, and otherwise the elapsed
4284 * time in microseconds.
4285 */
4286static TimeOffset
4288{
4289 TimestampTz time = 0;
4290
4291 /*
4292 * If 'lsn' has not passed the WAL position stored in the overflow entry,
4293 * return the elapsed time (in microseconds) since the saved local flush
4294 * time. If the flush time is in the future (due to clock drift), return
4295 * -1 to treat as no valid sample.
4296 *
4297 * Otherwise, switch back to using the buffer to control the read head and
4298 * compute the elapsed time. The read head is then reset to point to the
4299 * oldest entry in the buffer.
4300 */
4301 if (lag_tracker->read_heads[head] == -1)
4302 {
4303 if (lag_tracker->overflowed[head].lsn > lsn)
4304 return (now >= lag_tracker->overflowed[head].time) ?
4305 now - lag_tracker->overflowed[head].time : -1;
4306
4307 time = lag_tracker->overflowed[head].time;
4309 lag_tracker->read_heads[head] =
4311 }
4312
4313 /* Read all unread samples up to this LSN or end of buffer. */
4314 while (lag_tracker->read_heads[head] != lag_tracker->write_head &&
4316 {
4318 lag_tracker->last_read[head] =
4320 lag_tracker->read_heads[head] =
4322 }
4323
4324 /*
4325 * If the lag tracker is empty, that means the standby has processed
4326 * everything we've ever sent so we should now clear 'last_read'. If we
4327 * didn't do that, we'd risk using a stale and irrelevant sample for
4328 * interpolation at the beginning of the next burst of WAL after a period
4329 * of idleness.
4330 */
4332 lag_tracker->last_read[head].time = 0;
4333
4334 if (time > now)
4335 {
4336 /* If the clock somehow went backwards, treat as not found. */
4337 return -1;
4338 }
4339 else if (time == 0)
4340 {
4341 /*
4342 * We didn't cross a time. If there is a future sample that we
4343 * haven't reached yet, and we've already reached at least one sample,
4344 * let's interpolate the local flushed time. This is mainly useful
4345 * for reporting a completely stuck apply position as having
4346 * increasing lag, since otherwise we'd have to wait for it to
4347 * eventually start moving again and cross one of our samples before
4348 * we can show the lag increasing.
4349 */
4351 {
4352 /* There are no future samples, so we can't interpolate. */
4353 return -1;
4354 }
4355 else if (lag_tracker->last_read[head].time != 0)
4356 {
4357 /* We can interpolate between last_read and the next sample. */
4358 double fraction;
4359 WalTimeSample prev = lag_tracker->last_read[head];
4361
4362 if (lsn < prev.lsn)
4363 {
4364 /*
4365 * Reported LSNs shouldn't normally go backwards, but it's
4366 * possible when there is a timeline change. Treat as not
4367 * found.
4368 */
4369 return -1;
4370 }
4371
4372 Assert(prev.lsn < next.lsn);
4373
4374 if (prev.time > next.time)
4375 {
4376 /* If the clock somehow went backwards, treat as not found. */
4377 return -1;
4378 }
4379
4380 /* See how far we are between the previous and next samples. */
4381 fraction =
4382 (double) (lsn - prev.lsn) / (double) (next.lsn - prev.lsn);
4383
4384 /* Scale the local flush time proportionally. */
4385 time = (TimestampTz)
4386 ((double) prev.time + (next.time - prev.time) * fraction);
4387 }
4388 else
4389 {
4390 /*
4391 * We have only a future sample, implying that we were entirely
4392 * caught up but and now there is a new burst of WAL and the
4393 * standby hasn't processed the first sample yet. Until the
4394 * standby reaches the future sample the best we can do is report
4395 * the hypothetical lag if that sample were to be replayed now.
4396 */
4398 }
4399 }
4400
4401 /* Return the elapsed time since local flush time in microseconds. */
4402 Assert(time != 0);
4403 return now - time;
4404}
bool has_privs_of_role(Oid member, Oid role)
Definition: acl.c:5284
void pgaio_error_cleanup(void)
Definition: aio.c:1165
int16 AttrNumber
Definition: attnum.h:21
List * readTimeLineHistory(TimeLineID targetTLI)
Definition: timeline.c:76
TimeLineID tliOfPointInHistory(XLogRecPtr ptr, List *history)
Definition: timeline.c:544
XLogRecPtr tliSwitchPoint(TimeLineID tli, List *history, TimeLineID *nextTLI)
Definition: timeline.c:572
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1757
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1781
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1645
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1862
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1609
void pgstat_report_activity(BackendState state, const char *cmd_str)
@ STATE_RUNNING
void SendBaseBackup(BaseBackupCmd *cmd, IncrementalBackupInfo *ib)
Definition: basebackup.c:990
void AppendIncrementalManifestData(IncrementalBackupInfo *ib, const char *data, int len)
IncrementalBackupInfo * CreateIncrementalBackupInfo(MemoryContext mcxt)
void FinalizeIncrementalManifest(IncrementalBackupInfo *ib)
static int32 next
Definition: blutils.c:225
static Datum values[MAXATTR]
Definition: bootstrap.c:153
#define CStringGetTextDatum(s)
Definition: builtins.h:97
#define NameStr(name)
Definition: c.h:765
#define pg_noreturn
Definition: c.h:170
#define SIGNAL_ARGS
Definition: c.h:1326
int64_t int64
Definition: c.h:549
#define PG_BINARY
Definition: c.h:1250
#define UINT64_FORMAT
Definition: c.h:571
uint32_t uint32
Definition: c.h:552
#define MemSet(start, val, len)
Definition: c.h:1011
uint32 TransactionId
Definition: c.h:671
#define OidIsValid(objectId)
Definition: c.h:788
size_t Size
Definition: c.h:624
static void SetQueryCompletion(QueryCompletion *qc, CommandTag commandTag, uint64 nprocessed)
Definition: cmdtag.h:37
bool ConditionVariableCancelSleep(void)
void ConditionVariableBroadcast(ConditionVariable *cv)
void ConditionVariablePrepareToSleep(ConditionVariable *cv)
void ConditionVariableInit(ConditionVariable *cv)
void * yyscan_t
Definition: cubedata.h:65
int64 TimestampTz
Definition: timestamp.h:39
int64 TimeOffset
Definition: timestamp.h:40
void LogicalDecodingProcessRecord(LogicalDecodingContext *ctx, XLogReaderState *record)
Definition: decode.c:88
char * defGetString(DefElem *def)
Definition: define.c:35
bool defGetBoolean(DefElem *def)
Definition: define.c:94
void EndCommand(const QueryCompletion *qc, CommandDest dest, bool force_undecorated_output)
Definition: dest.c:169
DestReceiver * CreateDestReceiver(CommandDest dest)
Definition: dest.c:113
void EndReplicationCommand(const char *commandTag)
Definition: dest.c:205
@ DestRemote
Definition: dest.h:89
@ DestRemoteSimple
Definition: dest.h:91
@ DestNone
Definition: dest.h:87
struct cursor * cur
Definition: ecpg.c:29
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errcode_for_file_access(void)
Definition: elog.c:886
int errdetail(const char *fmt,...)
Definition: elog.c:1216
bool message_level_is_interesting(int elevel)
Definition: elog.c:273
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define LOG
Definition: elog.h:31
#define COMMERROR
Definition: elog.h:33
#define FATAL
Definition: elog.h:41
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
void do_tup_output(TupOutputState *tstate, const Datum *values, const bool *isnull)
Definition: execTuples.c:2464
const TupleTableSlotOps TTSOpsVirtual
Definition: execTuples.c:84
void end_tup_output(TupOutputState *tstate)
Definition: execTuples.c:2522
TupOutputState * begin_tup_output_tupdesc(DestReceiver *dest, TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:2444
int CloseTransientFile(int fd)
Definition: fd.c:2851
int BasicOpenFile(const char *fileName, int fileFlags)
Definition: fd.c:1086
int OpenTransientFile(const char *fileName, int fileFlags)
Definition: fd.c:2674
#define palloc_object(type)
Definition: fe_memutils.h:74
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
void InitMaterializedSRF(FunctionCallInfo fcinfo, bits32 flags)
Definition: funcapi.c:76
int MyProcPid
Definition: globals.c:47
struct Latch * MyLatch
Definition: globals.c:63
Oid MyDatabaseId
Definition: globals.c:94
void ProcessConfigFile(GucContext context)
Definition: guc-file.l:120
@ PGC_SIGHUP
Definition: guc.h:75
void GetPGVariable(const char *name, DestReceiver *dest)
Definition: guc_funcs.c:408
char * application_name
Definition: guc_tables.c:561
Assert(PointerIsAligned(start, uint64))
static void dlist_init(dlist_head *head)
Definition: ilist.h:314
#define write(a, b, c)
Definition: win32.h:14
#define read(a, b, c)
Definition: win32.h:13
volatile sig_atomic_t ConfigReloadPending
Definition: interrupt.c:27
void SignalHandlerForConfigReload(SIGNAL_ARGS)
Definition: interrupt.c:61
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:365
void proc_exit(int code)
Definition: ipc.c:104
int j
Definition: isn.c:78
int i
Definition: isn.c:77
void SetLatch(Latch *latch)
Definition: latch.c:290
void ResetLatch(Latch *latch)
Definition: latch.c:374
#define pq_flush()
Definition: libpq.h:46
#define PQ_SMALL_MESSAGE_LIMIT
Definition: libpq.h:30
#define pq_flush_if_writable()
Definition: libpq.h:47
#define pq_is_send_pending()
Definition: libpq.h:48
#define PQ_LARGE_MESSAGE_LIMIT
Definition: libpq.h:31
#define pq_putmessage_noblock(msgtype, s, len)
Definition: libpq.h:51
#define FeBeWaitSetSocketPos
Definition: libpq.h:63
void list_free_deep(List *list)
Definition: list.c:1560
void LogicalConfirmReceivedLocation(XLogRecPtr lsn)
Definition: logical.c:1811
void FreeDecodingContext(LogicalDecodingContext *ctx)
Definition: logical.c:668
LogicalDecodingContext * CreateDecodingContext(XLogRecPtr start_lsn, List *output_plugin_options, bool fast_forward, XLogReaderRoutine *xl_routine, LogicalOutputPluginWriterPrepareWrite prepare_write, LogicalOutputPluginWriterWrite do_write, LogicalOutputPluginWriterUpdateProgress update_progress)
Definition: logical.c:489
void DecodingContextFindStartpoint(LogicalDecodingContext *ctx)
Definition: logical.c:624
LogicalDecodingContext * CreateInitDecodingContext(const char *plugin, List *output_plugin_options, bool need_full_snapshot, XLogRecPtr restart_lsn, XLogReaderRoutine *xl_routine, LogicalOutputPluginWriterPrepareWrite prepare_write, LogicalOutputPluginWriterWrite do_write, LogicalOutputPluginWriterUpdateProgress update_progress)
Definition: logical.c:321
void CheckLogicalDecodingRequirements(void)
Definition: logical.c:111
bool IsLogicalDecodingEnabled(void)
Definition: logicalctl.c:204
void EnsureLogicalDecodingEnabled(void)
Definition: logicalctl.c:305
char * get_database_name(Oid dbid)
Definition: lsyscache.c:1242
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1178
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1898
void LWLockReleaseAll(void)
Definition: lwlock.c:1949
@ LW_SHARED
Definition: lwlock.h:113
@ LW_EXCLUSIVE
Definition: lwlock.h:112
char * MemoryContextStrdup(MemoryContext context, const char *string)
Definition: mcxt.c:1768
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:403
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1266
char * pstrdup(const char *in)
Definition: mcxt.c:1781
void MemoryContextSetParent(MemoryContext context, MemoryContext new_parent)
Definition: mcxt.c:686
void pfree(void *pointer)
Definition: mcxt.c:1616
MemoryContext TopMemoryContext
Definition: mcxt.c:166
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
MemoryContext CacheMemoryContext
Definition: mcxt.c:169
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:472
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define HOLD_CANCEL_INTERRUPTS()
Definition: miscadmin.h:142
#define RESUME_CANCEL_INTERRUPTS()
Definition: miscadmin.h:144
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
Oid GetUserId(void)
Definition: miscinit.c:469
@ CMD_SELECT
Definition: nodes.h:275
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
void * arg
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:42
#define MAXPGPATH
const void size_t len
#define lfirst(lc)
Definition: pg_list.h:172
#define NIL
Definition: pg_list.h:68
#define foreach_ptr(type, var, lst)
Definition: pg_list.h:469
static Datum LSNGetDatum(XLogRecPtr X)
Definition: pg_lsn.h:31
static bool two_phase
static bool failover
static char buf[DEFAULT_XLOG_SEG_SIZE]
Definition: pg_test_fsync.c:71
#define die(msg)
Definition: pg_test_fsync.c:99
bool pgstat_flush_backend(bool nowait, bits32 flags)
#define PGSTAT_BACKEND_FLUSH_IO
void pgstat_flush_io(bool nowait)
Definition: pgstat_io.c:175
void SendPostmasterSignal(PMSignalReason reason)
Definition: pmsignal.c:165
void MarkPostmasterChildWalSender(void)
Definition: pmsignal.c:309
@ PMSIGNAL_ADVANCE_STATE_MACHINE
Definition: pmsignal.h:43
#define pqsignal
Definition: port.h:551
#define snprintf
Definition: port.h:260
void StatementCancelHandler(SIGNAL_ARGS)
Definition: postgres.c:3062
CommandDest whereToSendOutput
Definition: postgres.c:92
const char * debug_query_string
Definition: postgres.c:89
static Datum Int64GetDatum(int64 X)
Definition: postgres.h:403
uint64_t Datum
Definition: postgres.h:70
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:222
#define InvalidOid
Definition: postgres_ext.h:37
int pq_getbyte_if_available(unsigned char *c)
Definition: pqcomm.c:1003
int pq_getmessage(StringInfo s, int maxlen)
Definition: pqcomm.c:1203
WaitEventSet * FeBeWaitSet
Definition: pqcomm.c:166
void pq_endmsgread(void)
Definition: pqcomm.c:1165
int pq_getbyte(void)
Definition: pqcomm.c:963
void pq_startmsgread(void)
Definition: pqcomm.c:1141
unsigned int pq_getmsgint(StringInfo msg, int b)
Definition: pqformat.c:414
void pq_sendbytes(StringInfo buf, const void *data, int datalen)
Definition: pqformat.c:126
const char * pq_getmsgstring(StringInfo msg)
Definition: pqformat.c:578
void pq_endmessage(StringInfo buf)
Definition: pqformat.c:296
int pq_getmsgbyte(StringInfo msg)
Definition: pqformat.c:398
void pq_beginmessage(StringInfo buf, char msgtype)
Definition: pqformat.c:88
int64 pq_getmsgint64(StringInfo msg)
Definition: pqformat.c:452
void pq_endmessage_reuse(StringInfo buf)
Definition: pqformat.c:313
static void pq_sendint32(StringInfo buf, uint32 i)
Definition: pqformat.h:144
static void pq_sendbyte(StringInfo buf, uint8 byt)
Definition: pqformat.h:160
static void pq_sendint64(StringInfo buf, uint64 i)
Definition: pqformat.h:152
static void pq_sendint16(StringInfo buf, uint16 i)
Definition: pqformat.h:136
static int fd(const char *x, int i)
Definition: preproc-init.c:105
#define PROC_AFFECTS_ALL_HORIZONS
Definition: proc.h:62
TransactionId GetOldestActiveTransactionId(bool inCommitOnly, bool allDbs)
Definition: procarray.c:2835
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
int SendProcSignal(pid_t pid, ProcSignalReason reason, ProcNumber procNumber)
Definition: procsignal.c:284
void procsignal_sigusr1_handler(SIGNAL_ARGS)
Definition: procsignal.c:677
@ PROCSIG_WALSND_INIT_STOPPING
Definition: procsignal.h:35
#define PqReplMsg_WALData
Definition: protocol.h:77
#define PqMsg_CopyDone
Definition: protocol.h:64
#define PqMsg_CopyData
Definition: protocol.h:65
#define PqReplMsg_PrimaryStatusRequest
Definition: protocol.h:83
#define PqReplMsg_Keepalive
Definition: protocol.h:75
#define PqMsg_CopyInResponse
Definition: protocol.h:45
#define PqMsg_CopyBothResponse
Definition: protocol.h:54
#define PqReplMsg_PrimaryStatusUpdate
Definition: protocol.h:76
#define PqReplMsg_HotStandbyFeedback
Definition: protocol.h:82
#define PqMsg_Sync
Definition: protocol.h:27
#define PqMsg_CopyFail
Definition: protocol.h:29
#define PqMsg_Flush
Definition: protocol.h:24
#define PqMsg_DataRow
Definition: protocol.h:43
#define PqMsg_Terminate
Definition: protocol.h:28
#define PqReplMsg_StandbyStatusUpdate
Definition: protocol.h:84
bool update_process_title
Definition: ps_status.c:31
static void set_ps_display(const char *activity)
Definition: ps_status.h:40
bool replication_scanner_is_replication_command(yyscan_t yyscanner)
Definition: repl_scanner.l:299
void replication_scanner_finish(yyscan_t yyscanner)
Definition: repl_scanner.l:284
void replication_scanner_init(const char *str, yyscan_t *yyscannerp)
Definition: repl_scanner.l:268
@ REPLICATION_KIND_PHYSICAL
Definition: replnodes.h:22
@ REPLICATION_KIND_LOGICAL
Definition: replnodes.h:23
void ReleaseAuxProcessResources(bool isCommit)
Definition: resowner.c:1016
ResourceOwner CurrentResourceOwner
Definition: resowner.c:173
void CreateAuxProcessResourceOwner(void)
Definition: resowner.c:996
ResourceOwner AuxProcessResourceOwner
Definition: resowner.c:176
Size add_size(Size s1, Size s2)
Definition: shmem.c:495
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:389
void pg_usleep(long microsec)
Definition: signal.c:53
void ReplicationSlotAcquire(const char *name, bool nowait, bool error_if_invalid)
Definition: slot.c:620
void ReplicationSlotCreate(const char *name, bool db_specific, ReplicationSlotPersistency persistency, bool two_phase, bool failover, bool synced)
Definition: slot.c:378
void ReplicationSlotMarkDirty(void)
Definition: slot.c:1173
void ReplicationSlotReserveWal(void)
Definition: slot.c:1693
void ReplicationSlotsComputeRequiredXmin(bool already_locked)
Definition: slot.c:1215
void ReplicationSlotPersist(void)
Definition: slot.c:1190
ReplicationSlot * MyReplicationSlot
Definition: slot.c:148
void ReplicationSlotDrop(const char *name, bool nowait)
Definition: slot.c:909
bool SlotExistsInSyncStandbySlots(const char *slot_name)
Definition: slot.c:3050
void ReplicationSlotSave(void)
Definition: slot.c:1155
ReplicationSlot * SearchNamedReplicationSlot(const char *name, bool need_lock)
Definition: slot.c:540
void ReplicationSlotAlter(const char *name, const bool *failover, const bool *two_phase)
Definition: slot.c:949
void ReplicationSlotRelease(void)
Definition: slot.c:758
bool StandbySlotsHaveCaughtup(XLogRecPtr wait_for_lsn, int elevel)
Definition: slot.c:3083
void ReplicationSlotsComputeRequiredLSN(void)
Definition: slot.c:1297
void ReplicationSlotCleanup(bool synced_only)
Definition: slot.c:857
@ RS_PERSISTENT
Definition: slot.h:45
@ RS_EPHEMERAL
Definition: slot.h:46
@ RS_TEMPORARY
Definition: slot.h:47
#define SlotIsPhysical(slot)
Definition: slot.h:284
#define SlotIsLogical(slot)
Definition: slot.h:285
bool IsSyncingReplicationSlots(void)
Definition: slotsync.c:1882
Snapshot SnapBuildInitialSnapshot(SnapBuild *builder)
Definition: snapbuild.c:440
const char * SnapBuildExportSnapshot(SnapBuild *builder)
Definition: snapbuild.c:538
void SnapBuildClearExportedSnapshot(void)
Definition: snapbuild.c:599
bool FirstSnapshotSet
Definition: snapmgr.c:193
void RestoreTransactionSnapshot(Snapshot snapshot, PGPROC *source_pgproc)
Definition: snapmgr.c:1853
#define SpinLockInit(lock)
Definition: spin.h:57
#define SpinLockRelease(lock)
Definition: spin.h:61
#define SpinLockAcquire(lock)
Definition: spin.h:59
PGPROC * MyProc
Definition: proc.c:67
PROC_HDR * ProcGlobal
Definition: proc.c:79
char * dbname
Definition: streamutil.c:49
void resetStringInfo(StringInfo str)
Definition: stringinfo.c:126
void enlargeStringInfo(StringInfo str, int needed)
Definition: stringinfo.c:337
void initStringInfo(StringInfo str)
Definition: stringinfo.c:97
ReplicationKind kind
Definition: replnodes.h:56
char * defname
Definition: parsenodes.h:844
int32 day
Definition: timestamp.h:51
int32 month
Definition: timestamp.h:52
TimeOffset time
Definition: timestamp.h:49
WalTimeSample buffer[LAG_TRACKER_BUFFER_SIZE]
Definition: walsender.c:232
int read_heads[NUM_SYNC_REP_WAIT_MODE]
Definition: walsender.c:234
WalTimeSample last_read[NUM_SYNC_REP_WAIT_MODE]
Definition: walsender.c:235
int write_head
Definition: walsender.c:233
XLogRecPtr last_lsn
Definition: walsender.c:231
WalTimeSample overflowed[NUM_SYNC_REP_WAIT_MODE]
Definition: walsender.c:249
Definition: pg_list.h:54
XLogReaderState * reader
Definition: logical.h:42
struct SnapBuild * snapshot_builder
Definition: logical.h:44
StringInfo out
Definition: logical.h:71
Definition: nodes.h:135
NodeTag type
Definition: nodes.h:136
char data[BLCKSZ]
Definition: c.h:1108
TransactionId xmin
Definition: proc.h:194
uint8 statusFlags
Definition: proc.h:259
int pgxactoff
Definition: proc.h:201
uint8 * statusFlags
Definition: proc.h:403
TransactionId xmin
Definition: slot.h:114
TransactionId catalog_xmin
Definition: slot.h:122
XLogRecPtr confirmed_flush
Definition: slot.h:136
TransactionId effective_catalog_xmin
Definition: slot.h:207
slock_t mutex
Definition: slot.h:183
bool in_use
Definition: slot.h:186
TransactionId effective_xmin
Definition: slot.h:206
ReplicationSlotPersistentData data
Definition: slot.h:210
TupleDesc setDesc
Definition: execnodes.h:364
Tuplestorestate * setResult
Definition: execnodes.h:363
XLogRecPtr startpoint
Definition: replnodes.h:97
ReplicationKind kind
Definition: replnodes.h:94
TimeLineID timeline
Definition: replnodes.h:96
uint8 syncrep_method
Definition: syncrep.h:68
TimeLineID timeline
Definition: replnodes.h:120
TimeLineID ws_tli
Definition: xlogreader.h:49
uint32 events
Definition: waiteventset.h:62
ConditionVariable wal_confirm_rcv_cv
WalSnd walsnds[FLEXIBLE_ARRAY_MEMBER]
ConditionVariable wal_replay_cv
dlist_head SyncRepQueue[NUM_SYNC_REP_WAIT_MODE]
ConditionVariable wal_flush_cv
TimeOffset writeLag
slock_t mutex
XLogRecPtr flush
XLogRecPtr sentPtr
TimeOffset flushLag
WalSndState state
ReplicationKind kind
XLogRecPtr write
TimeOffset applyLag
int sync_standby_priority
bool needreload
TimestampTz replyTime
XLogRecPtr apply
TimestampTz time
Definition: walsender.c:222
XLogRecPtr lsn
Definition: walsender.c:221
WALSegmentContext segcxt
Definition: xlogreader.h:270
XLogRecPtr EndRecPtr
Definition: xlogreader.h:206
WALOpenSegment seg
Definition: xlogreader.h:271
Definition: regguts.h:323
void SyncRepInitConfig(void)
Definition: syncrep.c:445
SyncRepConfigData * SyncRepConfig
Definition: syncrep.c:97
int SyncRepGetCandidateStandbys(SyncRepStandbyData **standbys)
Definition: syncrep.c:754
void SyncRepReleaseWaiters(void)
Definition: syncrep.c:474
#define SYNC_REP_PRIORITY
Definition: syncrep.h:35
#define NUM_SYNC_REP_WAIT_MODE
Definition: syncrep.h:27
#define SyncRepRequested()
Definition: syncrep.h:18
#define SYNC_REP_WAIT_WRITE
Definition: syncrep.h:23
#define SYNC_REP_WAIT_FLUSH
Definition: syncrep.h:24
#define SYNC_REP_WAIT_APPLY
Definition: syncrep.h:25
void InitializeTimeouts(void)
Definition: timeout.c:470
#define InvalidTransactionId
Definition: transam.h:31
static FullTransactionId FullTransactionIdFromAllowableAt(FullTransactionId nextFullXid, TransactionId xid)
Definition: transam.h:443
#define EpochFromFullTransactionId(x)
Definition: transam.h:47
#define U64FromFullTransactionId(x)
Definition: transam.h:49
static bool TransactionIdPrecedesOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.h:282
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define TransactionIdIsValid(xid)
Definition: transam.h:41
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
static bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.h:263
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:182
void TupleDescInitBuiltinEntry(TupleDesc desc, AttrNumber attributeNumber, const char *attributeName, Oid oidtypeid, int32 typmod, int attdim)
Definition: tupdesc.c:918
void tuplestore_putvalues(Tuplestorestate *state, TupleDesc tdesc, const Datum *values, const bool *isnull)
Definition: tuplestore.c:784
TransactionId TwoPhaseGetOldestXidInCommit(void)
Definition: twophase.c:2829
static Datum TimestampTzGetDatum(TimestampTz X)
Definition: timestamp.h:52
static Datum IntervalPGetDatum(const Interval *X)
Definition: timestamp.h:58
#define TimestampTzPlusMilliseconds(tz, ms)
Definition: timestamp.h:85
FullTransactionId ReadNextFullTransactionId(void)
Definition: varsup.c:288
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:69
static void pgstat_report_wait_end(void)
Definition: wait_event.h:85
void ModifyWaitEvent(WaitEventSet *set, int pos, uint32 events, Latch *latch)
Definition: waiteventset.c:655
int WaitEventSetWait(WaitEventSet *set, long timeout, WaitEvent *occurred_events, int nevents, uint32 wait_event_info)
#define WL_SOCKET_READABLE
Definition: waiteventset.h:35
#define WL_POSTMASTER_DEATH
Definition: waiteventset.h:38
#define WL_SOCKET_WRITEABLE
Definition: waiteventset.h:36
XLogRecPtr GetWalRcvFlushRecPtr(XLogRecPtr *latestChunkStart, TimeLineID *receiveTLI)
static void ProcessPendingWrites(void)
Definition: walsender.c:1620
static XLogRecPtr sentPtr
Definition: walsender.c:173
#define READ_REPLICATION_SLOT_COLS
static void AlterReplicationSlot(AlterReplicationSlotCmd *cmd)
Definition: walsender.c:1416
static void WalSndWait(uint32 socket_events, long timeout, uint32 wait_event)
Definition: walsender.c:3821
static void WalSndLastCycleHandler(SIGNAL_ARGS)
Definition: walsender.c:3716
static volatile sig_atomic_t got_SIGUSR2
Definition: walsender.c:205
static void WalSndCheckTimeOut(void)
Definition: walsender.c:2853
static void XLogSendPhysical(void)
Definition: walsender.c:3192
static void ProcessRepliesIfAny(void)
Definition: walsender.c:2251
static bool waiting_for_ping_response
Definition: walsender.c:190
void PhysicalWakeupLogicalWalSnd(void)
Definition: walsender.c:1739
static void SendTimeLineHistory(TimeLineHistoryCmd *cmd)
Definition: walsender.c:581
void WalSndErrorCleanup(void)
Definition: walsender.c:348
static void InitWalSenderSlot(void)
Definition: walsender.c:3022
static void parseCreateReplSlotOptions(CreateReplicationSlotCmd *cmd, bool *reserve_wal, CRSSnapshotAction *snapshot_action, bool *two_phase, bool *failover)
Definition: walsender.c:1118
WalSnd * MyWalSnd
Definition: walsender.c:120
static void ProcessStandbyHSFeedbackMessage(void)
Definition: walsender.c:2620
static void ReadReplicationSlot(ReadReplicationSlotCmd *cmd)
Definition: walsender.c:482
static StringInfoData tmpbuf
Definition: walsender.c:178
static void PhysicalReplicationSlotNewXmin(TransactionId feedbackXmin, TransactionId feedbackCatalogXmin)
Definition: walsender.c:2540
static LagTracker * lag_tracker
Definition: walsender.c:252
static void PhysicalConfirmReceivedLocation(XLogRecPtr lsn)
Definition: walsender.c:2402
static void IdentifySystem(void)
Definition: walsender.c:401
static void WalSndSegmentOpen(XLogReaderState *state, XLogSegNo nextSegNo, TimeLineID *tli_p)
Definition: walsender.c:3114
static StringInfoData reply_message
Definition: walsender.c:177
static void WalSndKeepaliveIfNecessary(void)
Definition: walsender.c:4191
bool am_walsender
Definition: walsender.c:123
void WalSndSetState(WalSndState state)
Definition: walsender.c:3943
static StringInfoData output_message
Definition: walsender.c:176
static TimeLineID sendTimeLine
Definition: walsender.c:164
static bool HandleUploadManifestPacket(StringInfo buf, off_t *offset, IncrementalBackupInfo *ib)
Definition: walsender.c:737
static void WalSndLoop(WalSndSendDataCallback send_data)
Definition: walsender.c:2880
static void WalSndWriteData(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write)
Definition: walsender.c:1578
void WalSndWakeup(bool physical, bool logical)
Definition: walsender.c:3800
static LogicalDecodingContext * logical_decoding_ctx
Definition: walsender.c:216
static void XLogSendLogical(void)
Definition: walsender.c:3502
void WalSndShmemInit(void)
Definition: walsender.c:3755
bool am_db_walsender
Definition: walsender.c:126
static volatile sig_atomic_t replication_active
Definition: walsender.c:214
static void UploadManifest(void)
Definition: walsender.c:671
bool wake_wal_senders
Definition: walsender.c:138
static volatile sig_atomic_t got_STOPPING
Definition: walsender.c:206
int max_wal_senders
Definition: walsender.c:129
static bool TransactionIdInRecentPast(TransactionId xid, uint32 epoch)
Definition: walsender.c:2589
static void WalSndUpdateProgress(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool skipped_xact)
Definition: walsender.c:1674
bool exec_replication_command(const char *cmd_string)
Definition: walsender.c:1995
#define WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS
static bool NeedToWaitForStandbys(XLogRecPtr flushed_lsn, uint32 *wait_event)
Definition: walsender.c:1764
void InitWalSender(void)
Definition: walsender.c:301
#define PG_STAT_GET_WAL_SENDERS_COLS
void(* WalSndSendDataCallback)(void)
Definition: walsender.c:258
Datum pg_stat_get_wal_senders(PG_FUNCTION_ARGS)
Definition: walsender.c:3997
void WalSndInitStopping(void)
Definition: walsender.c:3879
void WalSndWaitStopping(void)
Definition: walsender.c:3905
static bool sendTimeLineIsHistoric
Definition: walsender.c:166
void WalSndRqstFileReload(void)
Definition: walsender.c:3671
static XLogRecPtr WalSndWaitForWal(XLogRecPtr loc)
Definition: walsender.c:1824
bool am_cascading_walsender
Definition: walsender.c:124
static TimestampTz last_processing
Definition: walsender.c:181
static bool NeedToWaitForWal(XLogRecPtr target_lsn, XLogRecPtr flushed_lsn, uint32 *wait_event)
Definition: walsender.c:1796
Size WalSndShmemSize(void)
Definition: walsender.c:3743
bool log_replication_commands
Definition: walsender.c:133
void HandleWalSndInitStopping(void)
Definition: walsender.c:3694
static TimeLineID sendTimeLineNextTLI
Definition: walsender.c:165
static MemoryContext uploaded_manifest_mcxt
Definition: walsender.c:156
static void CreateReplicationSlot(CreateReplicationSlotCmd *cmd)
Definition: walsender.c:1195
static int logical_read_xlog_page(XLogReaderState *state, XLogRecPtr targetPagePtr, int reqLen, XLogRecPtr targetRecPtr, char *cur_page)
Definition: walsender.c:1045
static void ProcessStandbyPSRequestMessage(void)
Definition: walsender.c:2740
static void ProcessStandbyReplyMessage(void)
Definition: walsender.c:2435
static void WalSndKeepalive(bool requestReply, XLogRecPtr writePtr)
Definition: walsender.c:4168
static void LagTrackerWrite(XLogRecPtr lsn, TimestampTz local_flush_time)
Definition: walsender.c:4229
#define WALSENDER_STATS_FLUSH_INTERVAL
Definition: walsender.c:103
void WalSndSignals(void)
Definition: walsender.c:3724
static bool streamingDoneSending
Definition: walsender.c:198
static void StartLogicalReplication(StartReplicationCmd *cmd)
Definition: walsender.c:1458
static IncrementalBackupInfo * uploaded_manifest
Definition: walsender.c:155
static pg_noreturn void WalSndShutdown(void)
Definition: walsender.c:384
static void WalSndKill(int code, Datum arg)
Definition: walsender.c:3098
int wal_sender_timeout
Definition: walsender.c:131
#define MAX_SEND_SIZE
Definition: walsender.c:114
static Interval * offset_to_interval(TimeOffset offset)
Definition: walsender.c:3981
static bool WalSndCaughtUp
Definition: walsender.c:202
static XLogRecPtr sendTimeLineValidUpto
Definition: walsender.c:167
static void ProcessStandbyMessage(void)
Definition: walsender.c:2367
static void WalSndPrepareWrite(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write)
Definition: walsender.c:1551
static void DropReplicationSlot(DropReplicationSlotCmd *cmd)
Definition: walsender.c:1407
#define LAG_TRACKER_BUFFER_SIZE
Definition: walsender.c:226
static const char * WalSndGetStateString(WalSndState state)
Definition: walsender.c:3962
static TimeOffset LagTrackerRead(int head, XLogRecPtr lsn, TimestampTz now)
Definition: walsender.c:4287
static long WalSndComputeSleeptime(TimestampTz now)
Definition: walsender.c:2809
static bool streamingDoneReceiving
Definition: walsender.c:199
static void StartReplication(StartReplicationCmd *cmd)
Definition: walsender.c:813
static void WalSndDone(WalSndSendDataCallback send_data)
Definition: walsender.c:3595
static XLogReaderState * xlogreader
Definition: walsender.c:145
static TimestampTz last_reply_timestamp
Definition: walsender.c:187
XLogRecPtr GetStandbyFlushRecPtr(TimeLineID *tli)
Definition: walsender.c:3638
WalSndCtlData * WalSndCtl
Definition: walsender.c:117
CRSSnapshotAction
Definition: walsender.h:21
@ CRS_USE_SNAPSHOT
Definition: walsender.h:24
@ CRS_NOEXPORT_SNAPSHOT
Definition: walsender.h:23
@ CRS_EXPORT_SNAPSHOT
Definition: walsender.h:22
#define SYNC_STANDBY_DEFINED
WalSndState
@ WALSNDSTATE_STREAMING
@ WALSNDSTATE_BACKUP
@ WALSNDSTATE_CATCHUP
@ WALSNDSTATE_STARTUP
@ WALSNDSTATE_STOPPING
int replication_yyparse(Node **replication_parse_result_p, yyscan_t yyscanner)
#define SIGCHLD
Definition: win32_port.h:168
#define SIGHUP
Definition: win32_port.h:158
#define SIGPIPE
Definition: win32_port.h:163
#define kill(pid, sig)
Definition: win32_port.h:490
#define SIGUSR1
Definition: win32_port.h:170
#define SIGUSR2
Definition: win32_port.h:171
static const unsigned __int64 epoch
bool IsTransactionOrTransactionBlock(void)
Definition: xact.c:5011
bool XactReadOnly
Definition: xact.c:83
void PreventInTransactionBlock(bool isTopLevel, const char *stmtType)
Definition: xact.c:3669
void StartTransactionCommand(void)
Definition: xact.c:3080
bool IsAbortedTransactionBlockState(void)
Definition: xact.c:408
int XactIsoLevel
Definition: xact.c:80
bool IsSubTransaction(void)
Definition: xact.c:5066
bool IsTransactionBlock(void)
Definition: xact.c:4993
void CommitTransactionCommand(void)
Definition: xact.c:3178
#define XACT_REPEATABLE_READ
Definition: xact.h:38
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4628
bool RecoveryInProgress(void)
Definition: xlog.c:6461
TimeLineID GetWALInsertionTimeLine(void)
Definition: xlog.c:6647
Size WALReadFromBuffers(char *dstbuf, XLogRecPtr startptr, Size count, TimeLineID tli)
Definition: xlog.c:1755
void CheckXLogRemoved(XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:3765
int wal_segment_size
Definition: xlog.c:146
XLogRecPtr GetFlushRecPtr(TimeLineID *insertTLI)
Definition: xlog.c:6626
XLogRecPtr GetXLogWriteRecPtr(void)
Definition: xlog.c:9612
bool XLogBackgroundFlush(void)
Definition: xlog.c:2989
#define MAXFNAMELEN
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
static void XLogFilePath(char *path, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
static void XLogFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
static void TLHistoryFilePath(char *path, TimeLineID tli)
static void TLHistoryFileName(char *fname, TimeLineID tli)
#define XLogRecPtrIsValid(r)
Definition: xlogdefs.h:29
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:47
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
uint32 TimeLineID
Definition: xlogdefs.h:63
uint64 XLogSegNo
Definition: xlogdefs.h:52
XLogReaderState * XLogReaderAllocate(int wal_segment_size, const char *waldir, XLogReaderRoutine *routine, void *private_data)
Definition: xlogreader.c:107
bool WALRead(XLogReaderState *state, char *buf, XLogRecPtr startptr, Size count, TimeLineID tli, WALReadError *errinfo)
Definition: xlogreader.c:1514
XLogRecord * XLogReadRecord(XLogReaderState *state, char **errormsg)
Definition: xlogreader.c:390
void XLogBeginRead(XLogReaderState *state, XLogRecPtr RecPtr)
Definition: xlogreader.c:232
#define XL_ROUTINE(...)
Definition: xlogreader.h:117
static TimeLineID receiveTLI
Definition: xlogrecovery.c:266
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)
void wal_segment_close(XLogReaderState *state)
Definition: xlogutils.c:831
void XLogReadDetermineTimeline(XLogReaderState *state, XLogRecPtr wantPage, uint32 wantLength, TimeLineID currTLI)
Definition: xlogutils.c:707
void WALReadRaiseError(WALReadError *errinfo)
Definition: xlogutils.c:1011