PostgreSQL Source Code  git master
walsender.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * walsender.c
4  *
5  * The WAL sender process (walsender) is new as of Postgres 9.0. It takes
6  * care of sending XLOG from the primary server to a single recipient.
7  * (Note that there can be more than one walsender process concurrently.)
8  * It is started by the postmaster when the walreceiver of a standby server
9  * connects to the primary server and requests XLOG streaming replication.
10  *
11  * A walsender is similar to a regular backend, ie. there is a one-to-one
12  * relationship between a connection and a walsender process, but instead
13  * of processing SQL queries, it understands a small set of special
14  * replication-mode commands. The START_REPLICATION command begins streaming
15  * WAL to the client. While streaming, the walsender keeps reading XLOG
16  * records from the disk and sends them to the standby server over the
17  * COPY protocol, until either side ends the replication by exiting COPY
18  * mode (or until the connection is closed).
19  *
20  * Normal termination is by SIGTERM, which instructs the walsender to
21  * close the connection and exit(0) at the next convenient moment. Emergency
22  * termination is by SIGQUIT; like any backend, the walsender will simply
23  * abort and exit on SIGQUIT. A close of the connection and a FATAL error
24  * are treated as not a crash but approximately normal termination;
25  * the walsender will exit quickly without sending any more XLOG records.
26  *
27  * If the server is shut down, checkpointer sends us
28  * PROCSIG_WALSND_INIT_STOPPING after all regular backends have exited. If
29  * the backend is idle or runs an SQL query this causes the backend to
30  * shutdown, if logical replication is in progress all existing WAL records
31  * are processed followed by a shutdown. Otherwise this causes the walsender
32  * to switch to the "stopping" state. In this state, the walsender will reject
33  * any further replication commands. The checkpointer begins the shutdown
34  * checkpoint once all walsenders are confirmed as stopping. When the shutdown
35  * checkpoint finishes, the postmaster sends us SIGUSR2. This instructs
36  * walsender to send any outstanding WAL, including the shutdown checkpoint
37  * record, wait for it to be replicated to the standby, and then exit.
38  *
39  *
40  * Portions Copyright (c) 2010-2024, PostgreSQL Global Development Group
41  *
42  * IDENTIFICATION
43  * src/backend/replication/walsender.c
44  *
45  *-------------------------------------------------------------------------
46  */
47 #include "postgres.h"
48 
49 #include <signal.h>
50 #include <unistd.h>
51 
52 #include "access/timeline.h"
53 #include "access/transam.h"
54 #include "access/xact.h"
55 #include "access/xlog_internal.h"
56 #include "access/xlogreader.h"
57 #include "access/xlogrecovery.h"
58 #include "access/xlogutils.h"
59 #include "backup/basebackup.h"
61 #include "catalog/pg_authid.h"
62 #include "catalog/pg_type.h"
63 #include "commands/dbcommands.h"
64 #include "commands/defrem.h"
65 #include "funcapi.h"
66 #include "libpq/libpq.h"
67 #include "libpq/pqformat.h"
68 #include "miscadmin.h"
69 #include "nodes/replnodes.h"
70 #include "pgstat.h"
71 #include "postmaster/interrupt.h"
72 #include "replication/decode.h"
73 #include "replication/logical.h"
74 #include "replication/slotsync.h"
75 #include "replication/slot.h"
76 #include "replication/snapbuild.h"
77 #include "replication/syncrep.h"
79 #include "replication/walsender.h"
82 #include "storage/fd.h"
83 #include "storage/ipc.h"
84 #include "storage/pmsignal.h"
85 #include "storage/proc.h"
86 #include "tcop/dest.h"
87 #include "tcop/tcopprot.h"
88 #include "utils/acl.h"
89 #include "utils/builtins.h"
90 #include "utils/guc.h"
91 #include "utils/memutils.h"
92 #include "utils/pg_lsn.h"
93 #include "utils/ps_status.h"
94 #include "utils/timeout.h"
95 #include "utils/timestamp.h"
96 
97 /*
98  * Maximum data payload in a WAL data message. Must be >= XLOG_BLCKSZ.
99  *
100  * We don't have a good idea of what a good value would be; there's some
101  * overhead per message in both walsender and walreceiver, but on the other
102  * hand sending large batches makes walsender less responsive to signals
103  * because signals are checked only between messages. 128kB (with
104  * default 8k blocks) seems like a reasonable guess for now.
105  */
106 #define MAX_SEND_SIZE (XLOG_BLCKSZ * 16)
107 
108 /* Array of WalSnds in shared memory */
110 
111 /* My slot in the shared memory array */
112 WalSnd *MyWalSnd = NULL;
113 
114 /* Global state */
115 bool am_walsender = false; /* Am I a walsender process? */
116 bool am_cascading_walsender = false; /* Am I cascading WAL to another
117  * standby? */
118 bool am_db_walsender = false; /* Connected to a database? */
119 
120 /* GUC variables */
121 int max_wal_senders = 10; /* the maximum number of concurrent
122  * walsenders */
123 int wal_sender_timeout = 60 * 1000; /* maximum time to send one WAL
124  * data message */
126 
127 /*
128  * State for WalSndWakeupRequest
129  */
130 bool wake_wal_senders = false;
131 
132 /*
133  * xlogreader used for replication. Note that a WAL sender doing physical
134  * replication does not need xlogreader to read WAL, but it needs one to
135  * keep a state of its work.
136  */
138 
139 /*
140  * If the UPLOAD_MANIFEST command is used to provide a backup manifest in
141  * preparation for an incremental backup, uploaded_manifest will be point
142  * to an object containing information about its contexts, and
143  * uploaded_manifest_mcxt will point to the memory context that contains
144  * that object and all of its subordinate data. Otherwise, both values will
145  * be NULL.
146  */
149 
150 /*
151  * These variables keep track of the state of the timeline we're currently
152  * sending. sendTimeLine identifies the timeline. If sendTimeLineIsHistoric,
153  * the timeline is not the latest timeline on this server, and the server's
154  * history forked off from that timeline at sendTimeLineValidUpto.
155  */
158 static bool sendTimeLineIsHistoric = false;
160 
161 /*
162  * How far have we sent WAL already? This is also advertised in
163  * MyWalSnd->sentPtr. (Actually, this is the next WAL location to send.)
164  */
166 
167 /* Buffers for constructing outgoing messages and processing reply messages. */
171 
172 /* Timestamp of last ProcessRepliesIfAny(). */
174 
175 /*
176  * Timestamp of last ProcessRepliesIfAny() that saw a reply from the
177  * standby. Set to 0 if wal_sender_timeout doesn't need to be active.
178  */
180 
181 /* Have we sent a heartbeat message asking for reply, since last reply? */
182 static bool waiting_for_ping_response = false;
183 
184 /*
185  * While streaming WAL in Copy mode, streamingDoneSending is set to true
186  * after we have sent CopyDone. We should not send any more CopyData messages
187  * after that. streamingDoneReceiving is set to true when we receive CopyDone
188  * from the other end. When both become true, it's time to exit Copy mode.
189  */
192 
193 /* Are we there yet? */
194 static bool WalSndCaughtUp = false;
195 
196 /* Flags set by signal handlers for later service in main loop */
197 static volatile sig_atomic_t got_SIGUSR2 = false;
198 static volatile sig_atomic_t got_STOPPING = false;
199 
200 /*
201  * This is set while we are streaming. When not set
202  * PROCSIG_WALSND_INIT_STOPPING signal will be handled like SIGTERM. When set,
203  * the main loop is responsible for checking got_STOPPING and terminating when
204  * it's set (after streaming any remaining WAL).
205  */
206 static volatile sig_atomic_t replication_active = false;
207 
209 
210 /* A sample associating a WAL location with the time it was written. */
211 typedef struct
212 {
215 } WalTimeSample;
216 
217 /* The size of our buffer of time samples. */
218 #define LAG_TRACKER_BUFFER_SIZE 8192
219 
220 /* A mechanism for tracking replication lag. */
221 typedef struct
222 {
226  int read_heads[NUM_SYNC_REP_WAIT_MODE];
228 } LagTracker;
229 
231 
232 /* Signal handlers */
234 
235 /* Prototypes for private functions */
236 typedef void (*WalSndSendDataCallback) (void);
237 static void WalSndLoop(WalSndSendDataCallback send_data);
238 static void InitWalSenderSlot(void);
239 static void WalSndKill(int code, Datum arg);
241 static void XLogSendPhysical(void);
242 static void XLogSendLogical(void);
243 static void WalSndDone(WalSndSendDataCallback send_data);
244 static void IdentifySystem(void);
245 static void UploadManifest(void);
246 static bool HandleUploadManifestPacket(StringInfo buf, off_t *offset,
251 static void StartReplication(StartReplicationCmd *cmd);
253 static void ProcessStandbyMessage(void);
254 static void ProcessStandbyReplyMessage(void);
255 static void ProcessStandbyHSFeedbackMessage(void);
256 static void ProcessRepliesIfAny(void);
257 static void ProcessPendingWrites(void);
258 static void WalSndKeepalive(bool requestReply, XLogRecPtr writePtr);
259 static void WalSndKeepaliveIfNecessary(void);
260 static void WalSndCheckTimeOut(void);
262 static void WalSndWait(uint32 socket_events, long timeout, uint32 wait_event);
263 static void WalSndPrepareWrite(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write);
264 static void WalSndWriteData(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write);
266  bool skipped_xact);
268 static void LagTrackerWrite(XLogRecPtr lsn, TimestampTz local_flush_time);
269 static TimeOffset LagTrackerRead(int head, XLogRecPtr lsn, TimestampTz now);
271 
272 static void WalSndSegmentOpen(XLogReaderState *state, XLogSegNo nextSegNo,
273  TimeLineID *tli_p);
274 
275 
276 /* Initialize walsender process before entering the main command loop */
277 void
278 InitWalSender(void)
279 {
281 
282  /* Create a per-walsender data structure in shared memory */
284 
285  /*
286  * We don't currently need any ResourceOwner in a walsender process, but
287  * if we did, we could call CreateAuxProcessResourceOwner here.
288  */
289 
290  /*
291  * Let postmaster know that we're a WAL sender. Once we've declared us as
292  * a WAL sender process, postmaster will let us outlive the bgwriter and
293  * kill us last in the shutdown sequence, so we get a chance to stream all
294  * remaining WAL at shutdown, including the shutdown checkpoint. Note that
295  * there's no going back, and we mustn't write any WAL records after this.
296  */
299 
300  /*
301  * If the client didn't specify a database to connect to, show in PGPROC
302  * that our advertised xmin should affect vacuum horizons in all
303  * databases. This allows physical replication clients to send hot
304  * standby feedback that will delay vacuum cleanup in all databases.
305  */
306  if (MyDatabaseId == InvalidOid)
307  {
309  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
312  LWLockRelease(ProcArrayLock);
313  }
314 
315  /* Initialize empty timestamp buffer for lag tracking. */
317 }
318 
319 /*
320  * Clean up after an error.
321  *
322  * WAL sender processes don't use transactions like regular backends do.
323  * This function does any cleanup required after an error in a WAL sender
324  * process, similar to what transaction abort does in a regular backend.
325  */
326 void
328 {
332 
333  if (xlogreader != NULL && xlogreader->seg.ws_file >= 0)
335 
336  if (MyReplicationSlot != NULL)
338 
339  ReplicationSlotCleanup(false);
340 
341  replication_active = false;
342 
343  /*
344  * If there is a transaction in progress, it will clean up our
345  * ResourceOwner, but if a replication command set up a resource owner
346  * without a transaction, we've got to clean that up now.
347  */
349  WalSndResourceCleanup(false);
350 
351  if (got_STOPPING || got_SIGUSR2)
352  proc_exit(0);
353 
354  /* Revert back to startup state */
356 }
357 
358 /*
359  * Clean up any ResourceOwner we created.
360  */
361 void
362 WalSndResourceCleanup(bool isCommit)
363 {
364  ResourceOwner resowner;
365 
366  if (CurrentResourceOwner == NULL)
367  return;
368 
369  /*
370  * Deleting CurrentResourceOwner is not allowed, so we must save a pointer
371  * in a local variable and clear it first.
372  */
373  resowner = CurrentResourceOwner;
374  CurrentResourceOwner = NULL;
375 
376  /* Now we can release resources and delete it. */
377  ResourceOwnerRelease(resowner,
378  RESOURCE_RELEASE_BEFORE_LOCKS, isCommit, true);
379  ResourceOwnerRelease(resowner,
380  RESOURCE_RELEASE_LOCKS, isCommit, true);
381  ResourceOwnerRelease(resowner,
382  RESOURCE_RELEASE_AFTER_LOCKS, isCommit, true);
383  ResourceOwnerDelete(resowner);
384 }
385 
386 /*
387  * Handle a client's connection abort in an orderly manner.
388  */
389 static void
390 WalSndShutdown(void)
391 {
392  /*
393  * Reset whereToSendOutput to prevent ereport from attempting to send any
394  * more messages to the standby.
395  */
398 
399  proc_exit(0);
400  abort(); /* keep the compiler quiet */
401 }
402 
403 /*
404  * Handle the IDENTIFY_SYSTEM command.
405  */
406 static void
408 {
409  char sysid[32];
410  char xloc[MAXFNAMELEN];
411  XLogRecPtr logptr;
412  char *dbname = NULL;
414  TupOutputState *tstate;
415  TupleDesc tupdesc;
416  Datum values[4];
417  bool nulls[4] = {0};
418  TimeLineID currTLI;
419 
420  /*
421  * Reply with a result set with one row, four columns. First col is system
422  * ID, second is timeline ID, third is current xlog location and the
423  * fourth contains the database name if we are connected to one.
424  */
425 
426  snprintf(sysid, sizeof(sysid), UINT64_FORMAT,
428 
431  logptr = GetStandbyFlushRecPtr(&currTLI);
432  else
433  logptr = GetFlushRecPtr(&currTLI);
434 
435  snprintf(xloc, sizeof(xloc), "%X/%X", LSN_FORMAT_ARGS(logptr));
436 
437  if (MyDatabaseId != InvalidOid)
438  {
440 
441  /* syscache access needs a transaction env. */
444  /* copy dbname out of TX context */
447  }
448 
450 
451  /* need a tuple descriptor representing four columns */
452  tupdesc = CreateTemplateTupleDesc(4);
453  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "systemid",
454  TEXTOID, -1, 0);
455  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "timeline",
456  INT8OID, -1, 0);
457  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "xlogpos",
458  TEXTOID, -1, 0);
459  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 4, "dbname",
460  TEXTOID, -1, 0);
461 
462  /* prepare for projection of tuples */
463  tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
464 
465  /* column 1: system identifier */
466  values[0] = CStringGetTextDatum(sysid);
467 
468  /* column 2: timeline */
469  values[1] = Int64GetDatum(currTLI);
470 
471  /* column 3: wal location */
472  values[2] = CStringGetTextDatum(xloc);
473 
474  /* column 4: database name, or NULL if none */
475  if (dbname)
477  else
478  nulls[3] = true;
479 
480  /* send it to dest */
481  do_tup_output(tstate, values, nulls);
482 
483  end_tup_output(tstate);
484 }
485 
486 /* Handle READ_REPLICATION_SLOT command */
487 static void
489 {
490 #define READ_REPLICATION_SLOT_COLS 3
491  ReplicationSlot *slot;
493  TupOutputState *tstate;
494  TupleDesc tupdesc;
496  bool nulls[READ_REPLICATION_SLOT_COLS];
497 
499  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "slot_type",
500  TEXTOID, -1, 0);
501  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "restart_lsn",
502  TEXTOID, -1, 0);
503  /* TimeLineID is unsigned, so int4 is not wide enough. */
504  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "restart_tli",
505  INT8OID, -1, 0);
506 
507  memset(nulls, true, READ_REPLICATION_SLOT_COLS * sizeof(bool));
508 
509  LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
510  slot = SearchNamedReplicationSlot(cmd->slotname, false);
511  if (slot == NULL || !slot->in_use)
512  {
513  LWLockRelease(ReplicationSlotControlLock);
514  }
515  else
516  {
517  ReplicationSlot slot_contents;
518  int i = 0;
519 
520  /* Copy slot contents while holding spinlock */
521  SpinLockAcquire(&slot->mutex);
522  slot_contents = *slot;
523  SpinLockRelease(&slot->mutex);
524  LWLockRelease(ReplicationSlotControlLock);
525 
526  if (OidIsValid(slot_contents.data.database))
527  ereport(ERROR,
528  errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
529  errmsg("cannot use %s with a logical replication slot",
530  "READ_REPLICATION_SLOT"));
531 
532  /* slot type */
533  values[i] = CStringGetTextDatum("physical");
534  nulls[i] = false;
535  i++;
536 
537  /* start LSN */
538  if (!XLogRecPtrIsInvalid(slot_contents.data.restart_lsn))
539  {
540  char xloc[64];
541 
542  snprintf(xloc, sizeof(xloc), "%X/%X",
543  LSN_FORMAT_ARGS(slot_contents.data.restart_lsn));
544  values[i] = CStringGetTextDatum(xloc);
545  nulls[i] = false;
546  }
547  i++;
548 
549  /* timeline this WAL was produced on */
550  if (!XLogRecPtrIsInvalid(slot_contents.data.restart_lsn))
551  {
552  TimeLineID slots_position_timeline;
553  TimeLineID current_timeline;
554  List *timeline_history = NIL;
555 
556  /*
557  * While in recovery, use as timeline the currently-replaying one
558  * to get the LSN position's history.
559  */
560  if (RecoveryInProgress())
561  (void) GetXLogReplayRecPtr(&current_timeline);
562  else
563  current_timeline = GetWALInsertionTimeLine();
564 
565  timeline_history = readTimeLineHistory(current_timeline);
566  slots_position_timeline = tliOfPointInHistory(slot_contents.data.restart_lsn,
567  timeline_history);
568  values[i] = Int64GetDatum((int64) slots_position_timeline);
569  nulls[i] = false;
570  }
571  i++;
572 
574  }
575 
577  tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
578  do_tup_output(tstate, values, nulls);
579  end_tup_output(tstate);
580 }
581 
582 
583 /*
584  * Handle TIMELINE_HISTORY command.
585  */
586 static void
588 {
590  TupleDesc tupdesc;
592  char histfname[MAXFNAMELEN];
593  char path[MAXPGPATH];
594  int fd;
595  off_t histfilelen;
596  off_t bytesleft;
597  Size len;
598 
600 
601  /*
602  * Reply with a result set with one row, and two columns. The first col is
603  * the name of the history file, 2nd is the contents.
604  */
605  tupdesc = CreateTemplateTupleDesc(2);
606  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "filename", TEXTOID, -1, 0);
607  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "content", TEXTOID, -1, 0);
608 
609  TLHistoryFileName(histfname, cmd->timeline);
610  TLHistoryFilePath(path, cmd->timeline);
611 
612  /* Send a RowDescription message */
613  dest->rStartup(dest, CMD_SELECT, tupdesc);
614 
615  /* Send a DataRow message */
617  pq_sendint16(&buf, 2); /* # of columns */
618  len = strlen(histfname);
619  pq_sendint32(&buf, len); /* col1 len */
620  pq_sendbytes(&buf, histfname, len);
621 
622  fd = OpenTransientFile(path, O_RDONLY | PG_BINARY);
623  if (fd < 0)
624  ereport(ERROR,
626  errmsg("could not open file \"%s\": %m", path)));
627 
628  /* Determine file length and send it to client */
629  histfilelen = lseek(fd, 0, SEEK_END);
630  if (histfilelen < 0)
631  ereport(ERROR,
633  errmsg("could not seek to end of file \"%s\": %m", path)));
634  if (lseek(fd, 0, SEEK_SET) != 0)
635  ereport(ERROR,
637  errmsg("could not seek to beginning of file \"%s\": %m", path)));
638 
639  pq_sendint32(&buf, histfilelen); /* col2 len */
640 
641  bytesleft = histfilelen;
642  while (bytesleft > 0)
643  {
644  PGAlignedBlock rbuf;
645  int nread;
646 
647  pgstat_report_wait_start(WAIT_EVENT_WALSENDER_TIMELINE_HISTORY_READ);
648  nread = read(fd, rbuf.data, sizeof(rbuf));
650  if (nread < 0)
651  ereport(ERROR,
653  errmsg("could not read file \"%s\": %m",
654  path)));
655  else if (nread == 0)
656  ereport(ERROR,
658  errmsg("could not read file \"%s\": read %d of %zu",
659  path, nread, (Size) bytesleft)));
660 
661  pq_sendbytes(&buf, rbuf.data, nread);
662  bytesleft -= nread;
663  }
664 
665  if (CloseTransientFile(fd) != 0)
666  ereport(ERROR,
668  errmsg("could not close file \"%s\": %m", path)));
669 
670  pq_endmessage(&buf);
671 }
672 
673 /*
674  * Handle UPLOAD_MANIFEST command.
675  */
676 static void
678 {
679  MemoryContext mcxt;
681  off_t offset = 0;
683 
684  /*
685  * parsing the manifest will use the cryptohash stuff, which requires a
686  * resource owner
687  */
688  Assert(CurrentResourceOwner == NULL);
689  CurrentResourceOwner = ResourceOwnerCreate(NULL, "base backup");
690 
691  /* Prepare to read manifest data into a temporary context. */
693  "incremental backup information",
695  ib = CreateIncrementalBackupInfo(mcxt);
696 
697  /* Send a CopyInResponse message */
699  pq_sendbyte(&buf, 0);
700  pq_sendint16(&buf, 0);
702  pq_flush();
703 
704  /* Receive packets from client until done. */
705  while (HandleUploadManifestPacket(&buf, &offset, ib))
706  ;
707 
708  /* Finish up manifest processing. */
710 
711  /*
712  * Discard any old manifest information and arrange to preserve the new
713  * information we just got.
714  *
715  * We assume that MemoryContextDelete and MemoryContextSetParent won't
716  * fail, and thus we shouldn't end up bailing out of here in such a way as
717  * to leave dangling pointers.
718  */
719  if (uploaded_manifest_mcxt != NULL)
722  uploaded_manifest = ib;
723  uploaded_manifest_mcxt = mcxt;
724 
725  /* clean up the resource owner we created */
726  WalSndResourceCleanup(true);
727 }
728 
729 /*
730  * Process one packet received during the handling of an UPLOAD_MANIFEST
731  * operation.
732  *
733  * 'buf' is scratch space. This function expects it to be initialized, doesn't
734  * care what the current contents are, and may override them with completely
735  * new contents.
736  *
737  * The return value is true if the caller should continue processing
738  * additional packets and false if the UPLOAD_MANIFEST operation is complete.
739  */
740 static bool
743 {
744  int mtype;
745  int maxmsglen;
746 
748 
749  pq_startmsgread();
750  mtype = pq_getbyte();
751  if (mtype == EOF)
752  ereport(ERROR,
753  (errcode(ERRCODE_CONNECTION_FAILURE),
754  errmsg("unexpected EOF on client connection with an open transaction")));
755 
756  switch (mtype)
757  {
758  case 'd': /* CopyData */
759  maxmsglen = PQ_LARGE_MESSAGE_LIMIT;
760  break;
761  case 'c': /* CopyDone */
762  case 'f': /* CopyFail */
763  case 'H': /* Flush */
764  case 'S': /* Sync */
765  maxmsglen = PQ_SMALL_MESSAGE_LIMIT;
766  break;
767  default:
768  ereport(ERROR,
769  (errcode(ERRCODE_PROTOCOL_VIOLATION),
770  errmsg("unexpected message type 0x%02X during COPY from stdin",
771  mtype)));
772  maxmsglen = 0; /* keep compiler quiet */
773  break;
774  }
775 
776  /* Now collect the message body */
777  if (pq_getmessage(buf, maxmsglen))
778  ereport(ERROR,
779  (errcode(ERRCODE_CONNECTION_FAILURE),
780  errmsg("unexpected EOF on client connection with an open transaction")));
782 
783  /* Process the message */
784  switch (mtype)
785  {
786  case 'd': /* CopyData */
787  AppendIncrementalManifestData(ib, buf->data, buf->len);
788  return true;
789 
790  case 'c': /* CopyDone */
791  return false;
792 
793  case 'H': /* Sync */
794  case 'S': /* Flush */
795  /* Ignore these while in CopyOut mode as we do elsewhere. */
796  return true;
797 
798  case 'f':
799  ereport(ERROR,
800  (errcode(ERRCODE_QUERY_CANCELED),
801  errmsg("COPY from stdin failed: %s",
802  pq_getmsgstring(buf))));
803  }
804 
805  /* Not reached. */
806  Assert(false);
807  return false;
808 }
809 
810 /*
811  * Handle START_REPLICATION command.
812  *
813  * At the moment, this never returns, but an ereport(ERROR) will take us back
814  * to the main loop.
815  */
816 static void
818 {
820  XLogRecPtr FlushPtr;
821  TimeLineID FlushTLI;
822 
823  /* create xlogreader for physical replication */
824  xlogreader =
826  XL_ROUTINE(.segment_open = WalSndSegmentOpen,
827  .segment_close = wal_segment_close),
828  NULL);
829 
830  if (!xlogreader)
831  ereport(ERROR,
832  (errcode(ERRCODE_OUT_OF_MEMORY),
833  errmsg("out of memory"),
834  errdetail("Failed while allocating a WAL reading processor.")));
835 
836  /*
837  * We assume here that we're logging enough information in the WAL for
838  * log-shipping, since this is checked in PostmasterMain().
839  *
840  * NOTE: wal_level can only change at shutdown, so in most cases it is
841  * difficult for there to be WAL data that we can still see that was
842  * written at wal_level='minimal'.
843  */
844 
845  if (cmd->slotname)
846  {
847  ReplicationSlotAcquire(cmd->slotname, true);
849  ereport(ERROR,
850  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
851  errmsg("cannot use a logical replication slot for physical replication")));
852 
853  /*
854  * We don't need to verify the slot's restart_lsn here; instead we
855  * rely on the caller requesting the starting point to use. If the
856  * WAL segment doesn't exist, we'll fail later.
857  */
858  }
859 
860  /*
861  * Select the timeline. If it was given explicitly by the client, use
862  * that. Otherwise use the timeline of the last replayed record.
863  */
866  FlushPtr = GetStandbyFlushRecPtr(&FlushTLI);
867  else
868  FlushPtr = GetFlushRecPtr(&FlushTLI);
869 
870  if (cmd->timeline != 0)
871  {
872  XLogRecPtr switchpoint;
873 
874  sendTimeLine = cmd->timeline;
875  if (sendTimeLine == FlushTLI)
876  {
877  sendTimeLineIsHistoric = false;
879  }
880  else
881  {
882  List *timeLineHistory;
883 
884  sendTimeLineIsHistoric = true;
885 
886  /*
887  * Check that the timeline the client requested exists, and the
888  * requested start location is on that timeline.
889  */
890  timeLineHistory = readTimeLineHistory(FlushTLI);
891  switchpoint = tliSwitchPoint(cmd->timeline, timeLineHistory,
893  list_free_deep(timeLineHistory);
894 
895  /*
896  * Found the requested timeline in the history. Check that
897  * requested startpoint is on that timeline in our history.
898  *
899  * This is quite loose on purpose. We only check that we didn't
900  * fork off the requested timeline before the switchpoint. We
901  * don't check that we switched *to* it before the requested
902  * starting point. This is because the client can legitimately
903  * request to start replication from the beginning of the WAL
904  * segment that contains switchpoint, but on the new timeline, so
905  * that it doesn't end up with a partial segment. If you ask for
906  * too old a starting point, you'll get an error later when we
907  * fail to find the requested WAL segment in pg_wal.
908  *
909  * XXX: we could be more strict here and only allow a startpoint
910  * that's older than the switchpoint, if it's still in the same
911  * WAL segment.
912  */
913  if (!XLogRecPtrIsInvalid(switchpoint) &&
914  switchpoint < cmd->startpoint)
915  {
916  ereport(ERROR,
917  (errmsg("requested starting point %X/%X on timeline %u is not in this server's history",
919  cmd->timeline),
920  errdetail("This server's history forked from timeline %u at %X/%X.",
921  cmd->timeline,
922  LSN_FORMAT_ARGS(switchpoint))));
923  }
924  sendTimeLineValidUpto = switchpoint;
925  }
926  }
927  else
928  {
929  sendTimeLine = FlushTLI;
931  sendTimeLineIsHistoric = false;
932  }
933 
935 
936  /* If there is nothing to stream, don't even enter COPY mode */
938  {
939  /*
940  * When we first start replication the standby will be behind the
941  * primary. For some applications, for example synchronous
942  * replication, it is important to have a clear state for this initial
943  * catchup mode, so we can trigger actions when we change streaming
944  * state later. We may stay in this state for a long time, which is
945  * exactly why we want to be able to monitor whether or not we are
946  * still here.
947  */
949 
950  /* Send a CopyBothResponse message, and start streaming */
952  pq_sendbyte(&buf, 0);
953  pq_sendint16(&buf, 0);
954  pq_endmessage(&buf);
955  pq_flush();
956 
957  /*
958  * Don't allow a request to stream from a future point in WAL that
959  * hasn't been flushed to disk in this server yet.
960  */
961  if (FlushPtr < cmd->startpoint)
962  {
963  ereport(ERROR,
964  (errmsg("requested starting point %X/%X is ahead of the WAL flush position of this server %X/%X",
966  LSN_FORMAT_ARGS(FlushPtr))));
967  }
968 
969  /* Start streaming from the requested point */
970  sentPtr = cmd->startpoint;
971 
972  /* Initialize shared memory status, too */
976 
978 
979  /* Main loop of walsender */
980  replication_active = true;
981 
983 
984  replication_active = false;
985  if (got_STOPPING)
986  proc_exit(0);
988 
990  }
991 
992  if (cmd->slotname)
994 
995  /*
996  * Copy is finished now. Send a single-row result set indicating the next
997  * timeline.
998  */
1000  {
1001  char startpos_str[8 + 1 + 8 + 1];
1002  DestReceiver *dest;
1003  TupOutputState *tstate;
1004  TupleDesc tupdesc;
1005  Datum values[2];
1006  bool nulls[2] = {0};
1007 
1008  snprintf(startpos_str, sizeof(startpos_str), "%X/%X",
1010 
1012 
1013  /*
1014  * Need a tuple descriptor representing two columns. int8 may seem
1015  * like a surprising data type for this, but in theory int4 would not
1016  * be wide enough for this, as TimeLineID is unsigned.
1017  */
1018  tupdesc = CreateTemplateTupleDesc(2);
1019  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "next_tli",
1020  INT8OID, -1, 0);
1021  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "next_tli_startpos",
1022  TEXTOID, -1, 0);
1023 
1024  /* prepare for projection of tuple */
1025  tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
1026 
1028  values[1] = CStringGetTextDatum(startpos_str);
1029 
1030  /* send it to dest */
1031  do_tup_output(tstate, values, nulls);
1032 
1033  end_tup_output(tstate);
1034  }
1035 
1036  /* Send CommandComplete message */
1037  EndReplicationCommand("START_STREAMING");
1038 }
1039 
1040 /*
1041  * XLogReaderRoutine->page_read callback for logical decoding contexts, as a
1042  * walsender process.
1043  *
1044  * Inside the walsender we can do better than read_local_xlog_page,
1045  * which has to do a plain sleep/busy loop, because the walsender's latch gets
1046  * set every time WAL is flushed.
1047  */
1048 static int
1050  XLogRecPtr targetRecPtr, char *cur_page)
1051 {
1052  XLogRecPtr flushptr;
1053  int count;
1054  WALReadError errinfo;
1055  XLogSegNo segno;
1056  TimeLineID currTLI;
1057 
1058  /*
1059  * Make sure we have enough WAL available before retrieving the current
1060  * timeline.
1061  */
1062  flushptr = WalSndWaitForWal(targetPagePtr + reqLen);
1063 
1064  /* Fail if not enough (implies we are going to shut down) */
1065  if (flushptr < targetPagePtr + reqLen)
1066  return -1;
1067 
1068  /*
1069  * Since logical decoding is also permitted on a standby server, we need
1070  * to check if the server is in recovery to decide how to get the current
1071  * timeline ID (so that it also covers the promotion or timeline change
1072  * cases). We must determine am_cascading_walsender after waiting for the
1073  * required WAL so that it is correct when the walsender wakes up after a
1074  * promotion.
1075  */
1077 
1079  GetXLogReplayRecPtr(&currTLI);
1080  else
1081  currTLI = GetWALInsertionTimeLine();
1082 
1083  XLogReadDetermineTimeline(state, targetPagePtr, reqLen, currTLI);
1084  sendTimeLineIsHistoric = (state->currTLI != currTLI);
1085  sendTimeLine = state->currTLI;
1086  sendTimeLineValidUpto = state->currTLIValidUntil;
1087  sendTimeLineNextTLI = state->nextTLI;
1088 
1089  if (targetPagePtr + XLOG_BLCKSZ <= flushptr)
1090  count = XLOG_BLCKSZ; /* more than one block available */
1091  else
1092  count = flushptr - targetPagePtr; /* part of the page available */
1093 
1094  /* now actually read the data, we know it's there */
1095  if (!WALRead(state,
1096  cur_page,
1097  targetPagePtr,
1098  count,
1099  currTLI, /* Pass the current TLI because only
1100  * WalSndSegmentOpen controls whether new TLI
1101  * is needed. */
1102  &errinfo))
1103  WALReadRaiseError(&errinfo);
1104 
1105  /*
1106  * After reading into the buffer, check that what we read was valid. We do
1107  * this after reading, because even though the segment was present when we
1108  * opened it, it might get recycled or removed while we read it. The
1109  * read() succeeds in that case, but the data we tried to read might
1110  * already have been overwritten with new WAL records.
1111  */
1112  XLByteToSeg(targetPagePtr, segno, state->segcxt.ws_segsize);
1113  CheckXLogRemoved(segno, state->seg.ws_tli);
1114 
1115  return count;
1116 }
1117 
1118 /*
1119  * Process extra options given to CREATE_REPLICATION_SLOT.
1120  */
1121 static void
1123  bool *reserve_wal,
1124  CRSSnapshotAction *snapshot_action,
1125  bool *two_phase, bool *failover)
1126 {
1127  ListCell *lc;
1128  bool snapshot_action_given = false;
1129  bool reserve_wal_given = false;
1130  bool two_phase_given = false;
1131  bool failover_given = false;
1132 
1133  /* Parse options */
1134  foreach(lc, cmd->options)
1135  {
1136  DefElem *defel = (DefElem *) lfirst(lc);
1137 
1138  if (strcmp(defel->defname, "snapshot") == 0)
1139  {
1140  char *action;
1141 
1142  if (snapshot_action_given || cmd->kind != REPLICATION_KIND_LOGICAL)
1143  ereport(ERROR,
1144  (errcode(ERRCODE_SYNTAX_ERROR),
1145  errmsg("conflicting or redundant options")));
1146 
1147  action = defGetString(defel);
1148  snapshot_action_given = true;
1149 
1150  if (strcmp(action, "export") == 0)
1151  *snapshot_action = CRS_EXPORT_SNAPSHOT;
1152  else if (strcmp(action, "nothing") == 0)
1153  *snapshot_action = CRS_NOEXPORT_SNAPSHOT;
1154  else if (strcmp(action, "use") == 0)
1155  *snapshot_action = CRS_USE_SNAPSHOT;
1156  else
1157  ereport(ERROR,
1158  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1159  errmsg("unrecognized value for CREATE_REPLICATION_SLOT option \"%s\": \"%s\"",
1160  defel->defname, action)));
1161  }
1162  else if (strcmp(defel->defname, "reserve_wal") == 0)
1163  {
1164  if (reserve_wal_given || cmd->kind != REPLICATION_KIND_PHYSICAL)
1165  ereport(ERROR,
1166  (errcode(ERRCODE_SYNTAX_ERROR),
1167  errmsg("conflicting or redundant options")));
1168 
1169  reserve_wal_given = true;
1170  *reserve_wal = defGetBoolean(defel);
1171  }
1172  else if (strcmp(defel->defname, "two_phase") == 0)
1173  {
1174  if (two_phase_given || cmd->kind != REPLICATION_KIND_LOGICAL)
1175  ereport(ERROR,
1176  (errcode(ERRCODE_SYNTAX_ERROR),
1177  errmsg("conflicting or redundant options")));
1178  two_phase_given = true;
1179  *two_phase = defGetBoolean(defel);
1180  }
1181  else if (strcmp(defel->defname, "failover") == 0)
1182  {
1183  if (failover_given || cmd->kind != REPLICATION_KIND_LOGICAL)
1184  ereport(ERROR,
1185  (errcode(ERRCODE_SYNTAX_ERROR),
1186  errmsg("conflicting or redundant options")));
1187  failover_given = true;
1188  *failover = defGetBoolean(defel);
1189  }
1190  else
1191  elog(ERROR, "unrecognized option: %s", defel->defname);
1192  }
1193 }
1194 
1195 /*
1196  * Create a new replication slot.
1197  */
1198 static void
1200 {
1201  const char *snapshot_name = NULL;
1202  char xloc[MAXFNAMELEN];
1203  char *slot_name;
1204  bool reserve_wal = false;
1205  bool two_phase = false;
1206  bool failover = false;
1207  CRSSnapshotAction snapshot_action = CRS_EXPORT_SNAPSHOT;
1208  DestReceiver *dest;
1209  TupOutputState *tstate;
1210  TupleDesc tupdesc;
1211  Datum values[4];
1212  bool nulls[4] = {0};
1213 
1215 
1216  parseCreateReplSlotOptions(cmd, &reserve_wal, &snapshot_action, &two_phase,
1217  &failover);
1218 
1219  if (cmd->kind == REPLICATION_KIND_PHYSICAL)
1220  {
1221  ReplicationSlotCreate(cmd->slotname, false,
1223  false, false, false);
1224 
1225  if (reserve_wal)
1226  {
1228 
1230 
1231  /* Write this slot to disk if it's a permanent one. */
1232  if (!cmd->temporary)
1234  }
1235  }
1236  else
1237  {
1239  bool need_full_snapshot = false;
1240 
1242 
1244 
1245  /*
1246  * Initially create persistent slot as ephemeral - that allows us to
1247  * nicely handle errors during initialization because it'll get
1248  * dropped if this transaction fails. We'll make it persistent at the
1249  * end. Temporary slots can be created as temporary from beginning as
1250  * they get dropped on error as well.
1251  */
1252  ReplicationSlotCreate(cmd->slotname, true,
1254  two_phase, failover, false);
1255 
1256  /*
1257  * Do options check early so that we can bail before calling the
1258  * DecodingContextFindStartpoint which can take long time.
1259  */
1260  if (snapshot_action == CRS_EXPORT_SNAPSHOT)
1261  {
1262  if (IsTransactionBlock())
1263  ereport(ERROR,
1264  /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1265  (errmsg("%s must not be called inside a transaction",
1266  "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'export')")));
1267 
1268  need_full_snapshot = true;
1269  }
1270  else if (snapshot_action == CRS_USE_SNAPSHOT)
1271  {
1272  if (!IsTransactionBlock())
1273  ereport(ERROR,
1274  /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1275  (errmsg("%s must be called inside a transaction",
1276  "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1277 
1279  ereport(ERROR,
1280  /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1281  (errmsg("%s must be called in REPEATABLE READ isolation mode transaction",
1282  "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1283  if (!XactReadOnly)
1284  ereport(ERROR,
1285  /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1286  (errmsg("%s must be called in a read-only transaction",
1287  "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1288 
1289  if (FirstSnapshotSet)
1290  ereport(ERROR,
1291  /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1292  (errmsg("%s must be called before any query",
1293  "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1294 
1295  if (IsSubTransaction())
1296  ereport(ERROR,
1297  /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1298  (errmsg("%s must not be called in a subtransaction",
1299  "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1300 
1301  need_full_snapshot = true;
1302  }
1303 
1304  ctx = CreateInitDecodingContext(cmd->plugin, NIL, need_full_snapshot,
1306  XL_ROUTINE(.page_read = logical_read_xlog_page,
1307  .segment_open = WalSndSegmentOpen,
1308  .segment_close = wal_segment_close),
1311 
1312  /*
1313  * Signal that we don't need the timeout mechanism. We're just
1314  * creating the replication slot and don't yet accept feedback
1315  * messages or send keepalives. As we possibly need to wait for
1316  * further WAL the walsender would otherwise possibly be killed too
1317  * soon.
1318  */
1320 
1321  /* build initial snapshot, might take a while */
1323 
1324  /*
1325  * Export or use the snapshot if we've been asked to do so.
1326  *
1327  * NB. We will convert the snapbuild.c kind of snapshot to normal
1328  * snapshot when doing this.
1329  */
1330  if (snapshot_action == CRS_EXPORT_SNAPSHOT)
1331  {
1332  snapshot_name = SnapBuildExportSnapshot(ctx->snapshot_builder);
1333  }
1334  else if (snapshot_action == CRS_USE_SNAPSHOT)
1335  {
1336  Snapshot snap;
1337 
1340  }
1341 
1342  /* don't need the decoding context anymore */
1343  FreeDecodingContext(ctx);
1344 
1345  if (!cmd->temporary)
1347  }
1348 
1349  snprintf(xloc, sizeof(xloc), "%X/%X",
1351 
1353 
1354  /*----------
1355  * Need a tuple descriptor representing four columns:
1356  * - first field: the slot name
1357  * - second field: LSN at which we became consistent
1358  * - third field: exported snapshot's name
1359  * - fourth field: output plugin
1360  */
1361  tupdesc = CreateTemplateTupleDesc(4);
1362  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "slot_name",
1363  TEXTOID, -1, 0);
1364  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "consistent_point",
1365  TEXTOID, -1, 0);
1366  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "snapshot_name",
1367  TEXTOID, -1, 0);
1368  TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 4, "output_plugin",
1369  TEXTOID, -1, 0);
1370 
1371  /* prepare for projection of tuples */
1372  tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
1373 
1374  /* slot_name */
1375  slot_name = NameStr(MyReplicationSlot->data.name);
1376  values[0] = CStringGetTextDatum(slot_name);
1377 
1378  /* consistent wal location */
1379  values[1] = CStringGetTextDatum(xloc);
1380 
1381  /* snapshot name, or NULL if none */
1382  if (snapshot_name != NULL)
1383  values[2] = CStringGetTextDatum(snapshot_name);
1384  else
1385  nulls[2] = true;
1386 
1387  /* plugin, or NULL if none */
1388  if (cmd->plugin != NULL)
1389  values[3] = CStringGetTextDatum(cmd->plugin);
1390  else
1391  nulls[3] = true;
1392 
1393  /* send it to dest */
1394  do_tup_output(tstate, values, nulls);
1395  end_tup_output(tstate);
1396 
1398 }
1399 
1400 /*
1401  * Get rid of a replication slot that is no longer wanted.
1402  */
1403 static void
1405 {
1406  ReplicationSlotDrop(cmd->slotname, !cmd->wait);
1407 }
1408 
1409 /*
1410  * Change the definition of a replication slot.
1411  */
1412 static void
1414 {
1415  bool failover_given = false;
1416  bool two_phase_given = false;
1417  bool failover;
1418  bool two_phase;
1419 
1420  /* Parse options */
1421  foreach_ptr(DefElem, defel, cmd->options)
1422  {
1423  if (strcmp(defel->defname, "failover") == 0)
1424  {
1425  if (failover_given)
1426  ereport(ERROR,
1427  (errcode(ERRCODE_SYNTAX_ERROR),
1428  errmsg("conflicting or redundant options")));
1429  failover_given = true;
1430  failover = defGetBoolean(defel);
1431  }
1432  else if (strcmp(defel->defname, "two_phase") == 0)
1433  {
1434  if (two_phase_given)
1435  ereport(ERROR,
1436  (errcode(ERRCODE_SYNTAX_ERROR),
1437  errmsg("conflicting or redundant options")));
1438  two_phase_given = true;
1439  two_phase = defGetBoolean(defel);
1440  }
1441  else
1442  elog(ERROR, "unrecognized option: %s", defel->defname);
1443  }
1444 
1446  failover_given ? &failover : NULL,
1447  two_phase_given ? &two_phase : NULL);
1448 }
1449 
1450 /*
1451  * Load previously initiated logical slot and prepare for sending data (via
1452  * WalSndLoop).
1453  */
1454 static void
1456 {
1458  QueryCompletion qc;
1459 
1460  /* make sure that our requirements are still fulfilled */
1462 
1464 
1465  ReplicationSlotAcquire(cmd->slotname, true);
1466 
1467  /*
1468  * Force a disconnect, so that the decoding code doesn't need to care
1469  * about an eventual switch from running in recovery, to running in a
1470  * normal environment. Client code is expected to handle reconnects.
1471  */
1473  {
1474  ereport(LOG,
1475  (errmsg("terminating walsender process after promotion")));
1476  got_STOPPING = true;
1477  }
1478 
1479  /*
1480  * Create our decoding context, making it start at the previously ack'ed
1481  * position.
1482  *
1483  * Do this before sending a CopyBothResponse message, so that any errors
1484  * are reported early.
1485  */
1487  CreateDecodingContext(cmd->startpoint, cmd->options, false,
1488  XL_ROUTINE(.page_read = logical_read_xlog_page,
1489  .segment_open = WalSndSegmentOpen,
1490  .segment_close = wal_segment_close),
1494 
1496 
1497  /* Send a CopyBothResponse message, and start streaming */
1499  pq_sendbyte(&buf, 0);
1500  pq_sendint16(&buf, 0);
1501  pq_endmessage(&buf);
1502  pq_flush();
1503 
1504  /* Start reading WAL from the oldest required WAL. */
1507 
1508  /*
1509  * Report the location after which we'll send out further commits as the
1510  * current sentPtr.
1511  */
1513 
1514  /* Also update the sent position status in shared memory */
1518 
1519  replication_active = true;
1520 
1522 
1523  /* Main loop of walsender */
1525 
1528 
1529  replication_active = false;
1530  if (got_STOPPING)
1531  proc_exit(0);
1533 
1534  /* Get out of COPY mode (CommandComplete). */
1535  SetQueryCompletion(&qc, CMDTAG_COPY, 0);
1536  EndCommand(&qc, DestRemote, false);
1537 }
1538 
1539 /*
1540  * LogicalDecodingContext 'prepare_write' callback.
1541  *
1542  * Prepare a write into a StringInfo.
1543  *
1544  * Don't do anything lasting in here, it's quite possible that nothing will be done
1545  * with the data.
1546  */
1547 static void
1549 {
1550  /* can't have sync rep confused by sending the same LSN several times */
1551  if (!last_write)
1552  lsn = InvalidXLogRecPtr;
1553 
1554  resetStringInfo(ctx->out);
1555 
1556  pq_sendbyte(ctx->out, 'w');
1557  pq_sendint64(ctx->out, lsn); /* dataStart */
1558  pq_sendint64(ctx->out, lsn); /* walEnd */
1559 
1560  /*
1561  * Fill out the sendtime later, just as it's done in XLogSendPhysical, but
1562  * reserve space here.
1563  */
1564  pq_sendint64(ctx->out, 0); /* sendtime */
1565 }
1566 
1567 /*
1568  * LogicalDecodingContext 'write' callback.
1569  *
1570  * Actually write out data previously prepared by WalSndPrepareWrite out to
1571  * the network. Take as long as needed, but process replies from the other
1572  * side and check timeouts during that.
1573  */
1574 static void
1576  bool last_write)
1577 {
1578  TimestampTz now;
1579 
1580  /*
1581  * Fill the send timestamp last, so that it is taken as late as possible.
1582  * This is somewhat ugly, but the protocol is set as it's already used for
1583  * several releases by streaming physical replication.
1584  */
1587  pq_sendint64(&tmpbuf, now);
1588  memcpy(&ctx->out->data[1 + sizeof(int64) + sizeof(int64)],
1589  tmpbuf.data, sizeof(int64));
1590 
1591  /* output previously gathered data in a CopyData packet */
1592  pq_putmessage_noblock('d', ctx->out->data, ctx->out->len);
1593 
1595 
1596  /* Try to flush pending output to the client */
1597  if (pq_flush_if_writable() != 0)
1598  WalSndShutdown();
1599 
1600  /* Try taking fast path unless we get too close to walsender timeout. */
1602  wal_sender_timeout / 2) &&
1603  !pq_is_send_pending())
1604  {
1605  return;
1606  }
1607 
1608  /* If we have pending write here, go to slow path */
1610 }
1611 
1612 /*
1613  * Wait until there is no pending write. Also process replies from the other
1614  * side and check timeouts during that.
1615  */
1616 static void
1618 {
1619  for (;;)
1620  {
1621  long sleeptime;
1622 
1623  /* Check for input from the client */
1625 
1626  /* die if timeout was reached */
1628 
1629  /* Send keepalive if the time has come */
1631 
1632  if (!pq_is_send_pending())
1633  break;
1634 
1636 
1637  /* Sleep until something happens or we time out */
1639  WAIT_EVENT_WAL_SENDER_WRITE_DATA);
1640 
1641  /* Clear any already-pending wakeups */
1643 
1645 
1646  /* Process any requests or signals received recently */
1647  if (ConfigReloadPending)
1648  {
1649  ConfigReloadPending = false;
1652  }
1653 
1654  /* Try to flush pending output to the client */
1655  if (pq_flush_if_writable() != 0)
1656  WalSndShutdown();
1657  }
1658 
1659  /* reactivate latch so WalSndLoop knows to continue */
1660  SetLatch(MyLatch);
1661 }
1662 
1663 /*
1664  * LogicalDecodingContext 'update_progress' callback.
1665  *
1666  * Write the current position to the lag tracker (see XLogSendPhysical).
1667  *
1668  * When skipping empty transactions, send a keepalive message if necessary.
1669  */
1670 static void
1672  bool skipped_xact)
1673 {
1674  static TimestampTz sendTime = 0;
1676  bool pending_writes = false;
1677  bool end_xact = ctx->end_xact;
1678 
1679  /*
1680  * Track lag no more than once per WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS to
1681  * avoid flooding the lag tracker when we commit frequently.
1682  *
1683  * We don't have a mechanism to get the ack for any LSN other than end
1684  * xact LSN from the downstream. So, we track lag only for end of
1685  * transaction LSN.
1686  */
1687 #define WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS 1000
1688  if (end_xact && TimestampDifferenceExceeds(sendTime, now,
1690  {
1691  LagTrackerWrite(lsn, now);
1692  sendTime = now;
1693  }
1694 
1695  /*
1696  * When skipping empty transactions in synchronous replication, we send a
1697  * keepalive message to avoid delaying such transactions.
1698  *
1699  * It is okay to check sync_standbys_defined flag without lock here as in
1700  * the worst case we will just send an extra keepalive message when it is
1701  * really not required.
1702  */
1703  if (skipped_xact &&
1704  SyncRepRequested() &&
1705  ((volatile WalSndCtlData *) WalSndCtl)->sync_standbys_defined)
1706  {
1707  WalSndKeepalive(false, lsn);
1708 
1709  /* Try to flush pending output to the client */
1710  if (pq_flush_if_writable() != 0)
1711  WalSndShutdown();
1712 
1713  /* If we have pending write here, make sure it's actually flushed */
1714  if (pq_is_send_pending())
1715  pending_writes = true;
1716  }
1717 
1718  /*
1719  * Process pending writes if any or try to send a keepalive if required.
1720  * We don't need to try sending keep alive messages at the transaction end
1721  * as that will be done at a later point in time. This is required only
1722  * for large transactions where we don't send any changes to the
1723  * downstream and the receiver can timeout due to that.
1724  */
1725  if (pending_writes || (!end_xact &&
1727  wal_sender_timeout / 2)))
1729 }
1730 
1731 /*
1732  * Wake up the logical walsender processes with logical failover slots if the
1733  * currently acquired physical slot is specified in synchronized_standby_slots GUC.
1734  */
1735 void
1737 {
1739 
1740  /*
1741  * If we are running in a standby, there is no need to wake up walsenders.
1742  * This is because we do not support syncing slots to cascading standbys,
1743  * so, there are no walsenders waiting for standbys to catch up.
1744  */
1745  if (RecoveryInProgress())
1746  return;
1747 
1750 }
1751 
1752 /*
1753  * Returns true if not all standbys have caught up to the flushed position
1754  * (flushed_lsn) when the current acquired slot is a logical failover
1755  * slot and we are streaming; otherwise, returns false.
1756  *
1757  * If returning true, the function sets the appropriate wait event in
1758  * wait_event; otherwise, wait_event is set to 0.
1759  */
1760 static bool
1761 NeedToWaitForStandbys(XLogRecPtr flushed_lsn, uint32 *wait_event)
1762 {
1763  int elevel = got_STOPPING ? ERROR : WARNING;
1764  bool failover_slot;
1765 
1766  failover_slot = (replication_active && MyReplicationSlot->data.failover);
1767 
1768  /*
1769  * Note that after receiving the shutdown signal, an ERROR is reported if
1770  * any slots are dropped, invalidated, or inactive. This measure is taken
1771  * to prevent the walsender from waiting indefinitely.
1772  */
1773  if (failover_slot && !StandbySlotsHaveCaughtup(flushed_lsn, elevel))
1774  {
1775  *wait_event = WAIT_EVENT_WAIT_FOR_STANDBY_CONFIRMATION;
1776  return true;
1777  }
1778 
1779  *wait_event = 0;
1780  return false;
1781 }
1782 
1783 /*
1784  * Returns true if we need to wait for WALs to be flushed to disk, or if not
1785  * all standbys have caught up to the flushed position (flushed_lsn) when the
1786  * current acquired slot is a logical failover slot and we are
1787  * streaming; otherwise, returns false.
1788  *
1789  * If returning true, the function sets the appropriate wait event in
1790  * wait_event; otherwise, wait_event is set to 0.
1791  */
1792 static bool
1793 NeedToWaitForWal(XLogRecPtr target_lsn, XLogRecPtr flushed_lsn,
1794  uint32 *wait_event)
1795 {
1796  /* Check if we need to wait for WALs to be flushed to disk */
1797  if (target_lsn > flushed_lsn)
1798  {
1799  *wait_event = WAIT_EVENT_WAL_SENDER_WAIT_FOR_WAL;
1800  return true;
1801  }
1802 
1803  /* Check if the standby slots have caught up to the flushed position */
1804  return NeedToWaitForStandbys(flushed_lsn, wait_event);
1805 }
1806 
1807 /*
1808  * Wait till WAL < loc is flushed to disk so it can be safely sent to client.
1809  *
1810  * If the walsender holds a logical failover slot, we also wait for all the
1811  * specified streaming replication standby servers to confirm receipt of WAL
1812  * up to RecentFlushPtr. It is beneficial to wait here for the confirmation
1813  * up to RecentFlushPtr rather than waiting before transmitting each change
1814  * to logical subscribers, which is already covered by RecentFlushPtr.
1815  *
1816  * Returns end LSN of flushed WAL. Normally this will be >= loc, but if we
1817  * detect a shutdown request (either from postmaster or client) we will return
1818  * early, so caller must always check.
1819  */
1820 static XLogRecPtr
1822 {
1823  int wakeEvents;
1824  uint32 wait_event = 0;
1825  static XLogRecPtr RecentFlushPtr = InvalidXLogRecPtr;
1826 
1827  /*
1828  * Fast path to avoid acquiring the spinlock in case we already know we
1829  * have enough WAL available and all the standby servers have confirmed
1830  * receipt of WAL up to RecentFlushPtr. This is particularly interesting
1831  * if we're far behind.
1832  */
1833  if (!XLogRecPtrIsInvalid(RecentFlushPtr) &&
1834  !NeedToWaitForWal(loc, RecentFlushPtr, &wait_event))
1835  return RecentFlushPtr;
1836 
1837  /*
1838  * Within the loop, we wait for the necessary WALs to be flushed to disk
1839  * first, followed by waiting for standbys to catch up if there are enough
1840  * WALs (see NeedToWaitForWal()) or upon receiving the shutdown signal.
1841  */
1842  for (;;)
1843  {
1844  bool wait_for_standby_at_stop = false;
1845  long sleeptime;
1846 
1847  /* Clear any already-pending wakeups */
1849 
1851 
1852  /* Process any requests or signals received recently */
1853  if (ConfigReloadPending)
1854  {
1855  ConfigReloadPending = false;
1858  }
1859 
1860  /* Check for input from the client */
1862 
1863  /*
1864  * If we're shutting down, trigger pending WAL to be written out,
1865  * otherwise we'd possibly end up waiting for WAL that never gets
1866  * written, because walwriter has shut down already.
1867  */
1868  if (got_STOPPING)
1870 
1871  /*
1872  * To avoid the scenario where standbys need to catch up to a newer
1873  * WAL location in each iteration, we update our idea of the currently
1874  * flushed position only if we are not waiting for standbys to catch
1875  * up.
1876  */
1877  if (wait_event != WAIT_EVENT_WAIT_FOR_STANDBY_CONFIRMATION)
1878  {
1879  if (!RecoveryInProgress())
1880  RecentFlushPtr = GetFlushRecPtr(NULL);
1881  else
1882  RecentFlushPtr = GetXLogReplayRecPtr(NULL);
1883  }
1884 
1885  /*
1886  * If postmaster asked us to stop and the standby slots have caught up
1887  * to the flushed position, don't wait anymore.
1888  *
1889  * It's important to do this check after the recomputation of
1890  * RecentFlushPtr, so we can send all remaining data before shutting
1891  * down.
1892  */
1893  if (got_STOPPING)
1894  {
1895  if (NeedToWaitForStandbys(RecentFlushPtr, &wait_event))
1896  wait_for_standby_at_stop = true;
1897  else
1898  break;
1899  }
1900 
1901  /*
1902  * We only send regular messages to the client for full decoded
1903  * transactions, but a synchronous replication and walsender shutdown
1904  * possibly are waiting for a later location. So, before sleeping, we
1905  * send a ping containing the flush location. If the receiver is
1906  * otherwise idle, this keepalive will trigger a reply. Processing the
1907  * reply will update these MyWalSnd locations.
1908  */
1909  if (MyWalSnd->flush < sentPtr &&
1910  MyWalSnd->write < sentPtr &&
1913 
1914  /*
1915  * Exit the loop if already caught up and doesn't need to wait for
1916  * standby slots.
1917  */
1918  if (!wait_for_standby_at_stop &&
1919  !NeedToWaitForWal(loc, RecentFlushPtr, &wait_event))
1920  break;
1921 
1922  /*
1923  * Waiting for new WAL or waiting for standbys to catch up. Since we
1924  * need to wait, we're now caught up.
1925  */
1926  WalSndCaughtUp = true;
1927 
1928  /*
1929  * Try to flush any pending output to the client.
1930  */
1931  if (pq_flush_if_writable() != 0)
1932  WalSndShutdown();
1933 
1934  /*
1935  * If we have received CopyDone from the client, sent CopyDone
1936  * ourselves, and the output buffer is empty, it's time to exit
1937  * streaming, so fail the current WAL fetch request.
1938  */
1940  !pq_is_send_pending())
1941  break;
1942 
1943  /* die if timeout was reached */
1945 
1946  /* Send keepalive if the time has come */
1948 
1949  /*
1950  * Sleep until something happens or we time out. Also wait for the
1951  * socket becoming writable, if there's still pending output.
1952  * Otherwise we might sit on sendable output data while waiting for
1953  * new WAL to be generated. (But if we have nothing to send, we don't
1954  * want to wake on socket-writable.)
1955  */
1957 
1958  wakeEvents = WL_SOCKET_READABLE;
1959 
1960  if (pq_is_send_pending())
1961  wakeEvents |= WL_SOCKET_WRITEABLE;
1962 
1963  Assert(wait_event != 0);
1964 
1965  WalSndWait(wakeEvents, sleeptime, wait_event);
1966  }
1967 
1968  /* reactivate latch so WalSndLoop knows to continue */
1969  SetLatch(MyLatch);
1970  return RecentFlushPtr;
1971 }
1972 
1973 /*
1974  * Execute an incoming replication command.
1975  *
1976  * Returns true if the cmd_string was recognized as WalSender command, false
1977  * if not.
1978  */
1979 bool
1980 exec_replication_command(const char *cmd_string)
1981 {
1982  int parse_rc;
1983  Node *cmd_node;
1984  const char *cmdtag;
1985  MemoryContext cmd_context;
1986  MemoryContext old_context;
1987 
1988  /*
1989  * If WAL sender has been told that shutdown is getting close, switch its
1990  * status accordingly to handle the next replication commands correctly.
1991  */
1992  if (got_STOPPING)
1994 
1995  /*
1996  * Throw error if in stopping mode. We need prevent commands that could
1997  * generate WAL while the shutdown checkpoint is being written. To be
1998  * safe, we just prohibit all new commands.
1999  */
2001  ereport(ERROR,
2002  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
2003  errmsg("cannot execute new commands while WAL sender is in stopping mode")));
2004 
2005  /*
2006  * CREATE_REPLICATION_SLOT ... LOGICAL exports a snapshot until the next
2007  * command arrives. Clean up the old stuff if there's anything.
2008  */
2010 
2012 
2013  /*
2014  * Prepare to parse and execute the command.
2015  */
2017  "Replication command context",
2019  old_context = MemoryContextSwitchTo(cmd_context);
2020 
2021  replication_scanner_init(cmd_string);
2022 
2023  /*
2024  * Is it a WalSender command?
2025  */
2027  {
2028  /* Nope; clean up and get out. */
2030 
2031  MemoryContextSwitchTo(old_context);
2032  MemoryContextDelete(cmd_context);
2033 
2034  /* XXX this is a pretty random place to make this check */
2035  if (MyDatabaseId == InvalidOid)
2036  ereport(ERROR,
2037  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2038  errmsg("cannot execute SQL commands in WAL sender for physical replication")));
2039 
2040  /* Tell the caller that this wasn't a WalSender command. */
2041  return false;
2042  }
2043 
2044  /*
2045  * Looks like a WalSender command, so parse it.
2046  */
2047  parse_rc = replication_yyparse();
2048  if (parse_rc != 0)
2049  ereport(ERROR,
2050  (errcode(ERRCODE_SYNTAX_ERROR),
2051  errmsg_internal("replication command parser returned %d",
2052  parse_rc)));
2054 
2055  cmd_node = replication_parse_result;
2056 
2057  /*
2058  * Report query to various monitoring facilities. For this purpose, we
2059  * report replication commands just like SQL commands.
2060  */
2061  debug_query_string = cmd_string;
2062 
2064 
2065  /*
2066  * Log replication command if log_replication_commands is enabled. Even
2067  * when it's disabled, log the command with DEBUG1 level for backward
2068  * compatibility.
2069  */
2071  (errmsg("received replication command: %s", cmd_string)));
2072 
2073  /*
2074  * Disallow replication commands in aborted transaction blocks.
2075  */
2077  ereport(ERROR,
2078  (errcode(ERRCODE_IN_FAILED_SQL_TRANSACTION),
2079  errmsg("current transaction is aborted, "
2080  "commands ignored until end of transaction block")));
2081 
2083 
2084  /*
2085  * Allocate buffers that will be used for each outgoing and incoming
2086  * message. We do this just once per command to reduce palloc overhead.
2087  */
2091 
2092  switch (cmd_node->type)
2093  {
2094  case T_IdentifySystemCmd:
2095  cmdtag = "IDENTIFY_SYSTEM";
2096  set_ps_display(cmdtag);
2097  IdentifySystem();
2098  EndReplicationCommand(cmdtag);
2099  break;
2100 
2101  case T_ReadReplicationSlotCmd:
2102  cmdtag = "READ_REPLICATION_SLOT";
2103  set_ps_display(cmdtag);
2105  EndReplicationCommand(cmdtag);
2106  break;
2107 
2108  case T_BaseBackupCmd:
2109  cmdtag = "BASE_BACKUP";
2110  set_ps_display(cmdtag);
2111  PreventInTransactionBlock(true, cmdtag);
2113  EndReplicationCommand(cmdtag);
2114  break;
2115 
2116  case T_CreateReplicationSlotCmd:
2117  cmdtag = "CREATE_REPLICATION_SLOT";
2118  set_ps_display(cmdtag);
2120  EndReplicationCommand(cmdtag);
2121  break;
2122 
2123  case T_DropReplicationSlotCmd:
2124  cmdtag = "DROP_REPLICATION_SLOT";
2125  set_ps_display(cmdtag);
2127  EndReplicationCommand(cmdtag);
2128  break;
2129 
2130  case T_AlterReplicationSlotCmd:
2131  cmdtag = "ALTER_REPLICATION_SLOT";
2132  set_ps_display(cmdtag);
2134  EndReplicationCommand(cmdtag);
2135  break;
2136 
2137  case T_StartReplicationCmd:
2138  {
2139  StartReplicationCmd *cmd = (StartReplicationCmd *) cmd_node;
2140 
2141  cmdtag = "START_REPLICATION";
2142  set_ps_display(cmdtag);
2143  PreventInTransactionBlock(true, cmdtag);
2144 
2145  if (cmd->kind == REPLICATION_KIND_PHYSICAL)
2146  StartReplication(cmd);
2147  else
2149 
2150  /* dupe, but necessary per libpqrcv_endstreaming */
2151  EndReplicationCommand(cmdtag);
2152 
2153  Assert(xlogreader != NULL);
2154  break;
2155  }
2156 
2157  case T_TimeLineHistoryCmd:
2158  cmdtag = "TIMELINE_HISTORY";
2159  set_ps_display(cmdtag);
2160  PreventInTransactionBlock(true, cmdtag);
2162  EndReplicationCommand(cmdtag);
2163  break;
2164 
2165  case T_VariableShowStmt:
2166  {
2168  VariableShowStmt *n = (VariableShowStmt *) cmd_node;
2169 
2170  cmdtag = "SHOW";
2171  set_ps_display(cmdtag);
2172 
2173  /* syscache access needs a transaction environment */
2175  GetPGVariable(n->name, dest);
2177  EndReplicationCommand(cmdtag);
2178  }
2179  break;
2180 
2181  case T_UploadManifestCmd:
2182  cmdtag = "UPLOAD_MANIFEST";
2183  set_ps_display(cmdtag);
2184  PreventInTransactionBlock(true, cmdtag);
2185  UploadManifest();
2186  EndReplicationCommand(cmdtag);
2187  break;
2188 
2189  default:
2190  elog(ERROR, "unrecognized replication command node tag: %u",
2191  cmd_node->type);
2192  }
2193 
2194  /* done */
2195  MemoryContextSwitchTo(old_context);
2196  MemoryContextDelete(cmd_context);
2197 
2198  /*
2199  * We need not update ps display or pg_stat_activity, because PostgresMain
2200  * will reset those to "idle". But we must reset debug_query_string to
2201  * ensure it doesn't become a dangling pointer.
2202  */
2203  debug_query_string = NULL;
2204 
2205  return true;
2206 }
2207 
2208 /*
2209  * Process any incoming messages while streaming. Also checks if the remote
2210  * end has closed the connection.
2211  */
2212 static void
2214 {
2215  unsigned char firstchar;
2216  int maxmsglen;
2217  int r;
2218  bool received = false;
2219 
2221 
2222  /*
2223  * If we already received a CopyDone from the frontend, any subsequent
2224  * message is the beginning of a new command, and should be processed in
2225  * the main processing loop.
2226  */
2227  while (!streamingDoneReceiving)
2228  {
2229  pq_startmsgread();
2230  r = pq_getbyte_if_available(&firstchar);
2231  if (r < 0)
2232  {
2233  /* unexpected error or EOF */
2235  (errcode(ERRCODE_PROTOCOL_VIOLATION),
2236  errmsg("unexpected EOF on standby connection")));
2237  proc_exit(0);
2238  }
2239  if (r == 0)
2240  {
2241  /* no data available without blocking */
2242  pq_endmsgread();
2243  break;
2244  }
2245 
2246  /* Validate message type and set packet size limit */
2247  switch (firstchar)
2248  {
2249  case PqMsg_CopyData:
2250  maxmsglen = PQ_LARGE_MESSAGE_LIMIT;
2251  break;
2252  case PqMsg_CopyDone:
2253  case PqMsg_Terminate:
2254  maxmsglen = PQ_SMALL_MESSAGE_LIMIT;
2255  break;
2256  default:
2257  ereport(FATAL,
2258  (errcode(ERRCODE_PROTOCOL_VIOLATION),
2259  errmsg("invalid standby message type \"%c\"",
2260  firstchar)));
2261  maxmsglen = 0; /* keep compiler quiet */
2262  break;
2263  }
2264 
2265  /* Read the message contents */
2267  if (pq_getmessage(&reply_message, maxmsglen))
2268  {
2270  (errcode(ERRCODE_PROTOCOL_VIOLATION),
2271  errmsg("unexpected EOF on standby connection")));
2272  proc_exit(0);
2273  }
2274 
2275  /* ... and process it */
2276  switch (firstchar)
2277  {
2278  /*
2279  * 'd' means a standby reply wrapped in a CopyData packet.
2280  */
2281  case PqMsg_CopyData:
2283  received = true;
2284  break;
2285 
2286  /*
2287  * CopyDone means the standby requested to finish streaming.
2288  * Reply with CopyDone, if we had not sent that already.
2289  */
2290  case PqMsg_CopyDone:
2291  if (!streamingDoneSending)
2292  {
2293  pq_putmessage_noblock('c', NULL, 0);
2294  streamingDoneSending = true;
2295  }
2296 
2297  streamingDoneReceiving = true;
2298  received = true;
2299  break;
2300 
2301  /*
2302  * 'X' means that the standby is closing down the socket.
2303  */
2304  case PqMsg_Terminate:
2305  proc_exit(0);
2306 
2307  default:
2308  Assert(false); /* NOT REACHED */
2309  }
2310  }
2311 
2312  /*
2313  * Save the last reply timestamp if we've received at least one reply.
2314  */
2315  if (received)
2316  {
2318  waiting_for_ping_response = false;
2319  }
2320 }
2321 
2322 /*
2323  * Process a status update message received from standby.
2324  */
2325 static void
2327 {
2328  char msgtype;
2329 
2330  /*
2331  * Check message type from the first byte.
2332  */
2333  msgtype = pq_getmsgbyte(&reply_message);
2334 
2335  switch (msgtype)
2336  {
2337  case 'r':
2339  break;
2340 
2341  case 'h':
2343  break;
2344 
2345  default:
2347  (errcode(ERRCODE_PROTOCOL_VIOLATION),
2348  errmsg("unexpected message type \"%c\"", msgtype)));
2349  proc_exit(0);
2350  }
2351 }
2352 
2353 /*
2354  * Remember that a walreceiver just confirmed receipt of lsn `lsn`.
2355  */
2356 static void
2358 {
2359  bool changed = false;
2361 
2362  Assert(lsn != InvalidXLogRecPtr);
2363  SpinLockAcquire(&slot->mutex);
2364  if (slot->data.restart_lsn != lsn)
2365  {
2366  changed = true;
2367  slot->data.restart_lsn = lsn;
2368  }
2369  SpinLockRelease(&slot->mutex);
2370 
2371  if (changed)
2372  {
2376  }
2377 
2378  /*
2379  * One could argue that the slot should be saved to disk now, but that'd
2380  * be energy wasted - the worst thing lost information could cause here is
2381  * to give wrong information in a statistics view - we'll just potentially
2382  * be more conservative in removing files.
2383  */
2384 }
2385 
2386 /*
2387  * Regular reply from standby advising of WAL locations on standby server.
2388  */
2389 static void
2391 {
2392  XLogRecPtr writePtr,
2393  flushPtr,
2394  applyPtr;
2395  bool replyRequested;
2396  TimeOffset writeLag,
2397  flushLag,
2398  applyLag;
2399  bool clearLagTimes;
2400  TimestampTz now;
2401  TimestampTz replyTime;
2402 
2403  static bool fullyAppliedLastTime = false;
2404 
2405  /* the caller already consumed the msgtype byte */
2406  writePtr = pq_getmsgint64(&reply_message);
2407  flushPtr = pq_getmsgint64(&reply_message);
2408  applyPtr = pq_getmsgint64(&reply_message);
2409  replyTime = pq_getmsgint64(&reply_message);
2410  replyRequested = pq_getmsgbyte(&reply_message);
2411 
2413  {
2414  char *replyTimeStr;
2415 
2416  /* Copy because timestamptz_to_str returns a static buffer */
2417  replyTimeStr = pstrdup(timestamptz_to_str(replyTime));
2418 
2419  elog(DEBUG2, "write %X/%X flush %X/%X apply %X/%X%s reply_time %s",
2420  LSN_FORMAT_ARGS(writePtr),
2421  LSN_FORMAT_ARGS(flushPtr),
2422  LSN_FORMAT_ARGS(applyPtr),
2423  replyRequested ? " (reply requested)" : "",
2424  replyTimeStr);
2425 
2426  pfree(replyTimeStr);
2427  }
2428 
2429  /* See if we can compute the round-trip lag for these positions. */
2431  writeLag = LagTrackerRead(SYNC_REP_WAIT_WRITE, writePtr, now);
2432  flushLag = LagTrackerRead(SYNC_REP_WAIT_FLUSH, flushPtr, now);
2433  applyLag = LagTrackerRead(SYNC_REP_WAIT_APPLY, applyPtr, now);
2434 
2435  /*
2436  * If the standby reports that it has fully replayed the WAL in two
2437  * consecutive reply messages, then the second such message must result
2438  * from wal_receiver_status_interval expiring on the standby. This is a
2439  * convenient time to forget the lag times measured when it last
2440  * wrote/flushed/applied a WAL record, to avoid displaying stale lag data
2441  * until more WAL traffic arrives.
2442  */
2443  clearLagTimes = false;
2444  if (applyPtr == sentPtr)
2445  {
2446  if (fullyAppliedLastTime)
2447  clearLagTimes = true;
2448  fullyAppliedLastTime = true;
2449  }
2450  else
2451  fullyAppliedLastTime = false;
2452 
2453  /* Send a reply if the standby requested one. */
2454  if (replyRequested)
2456 
2457  /*
2458  * Update shared state for this WalSender process based on reply data from
2459  * standby.
2460  */
2461  {
2462  WalSnd *walsnd = MyWalSnd;
2463 
2464  SpinLockAcquire(&walsnd->mutex);
2465  walsnd->write = writePtr;
2466  walsnd->flush = flushPtr;
2467  walsnd->apply = applyPtr;
2468  if (writeLag != -1 || clearLagTimes)
2469  walsnd->writeLag = writeLag;
2470  if (flushLag != -1 || clearLagTimes)
2471  walsnd->flushLag = flushLag;
2472  if (applyLag != -1 || clearLagTimes)
2473  walsnd->applyLag = applyLag;
2474  walsnd->replyTime = replyTime;
2475  SpinLockRelease(&walsnd->mutex);
2476  }
2477 
2480 
2481  /*
2482  * Advance our local xmin horizon when the client confirmed a flush.
2483  */
2484  if (MyReplicationSlot && flushPtr != InvalidXLogRecPtr)
2485  {
2488  else
2490  }
2491 }
2492 
2493 /* compute new replication slot xmin horizon if needed */
2494 static void
2496 {
2497  bool changed = false;
2499 
2500  SpinLockAcquire(&slot->mutex);
2502 
2503  /*
2504  * For physical replication we don't need the interlock provided by xmin
2505  * and effective_xmin since the consequences of a missed increase are
2506  * limited to query cancellations, so set both at once.
2507  */
2508  if (!TransactionIdIsNormal(slot->data.xmin) ||
2509  !TransactionIdIsNormal(feedbackXmin) ||
2510  TransactionIdPrecedes(slot->data.xmin, feedbackXmin))
2511  {
2512  changed = true;
2513  slot->data.xmin = feedbackXmin;
2514  slot->effective_xmin = feedbackXmin;
2515  }
2516  if (!TransactionIdIsNormal(slot->data.catalog_xmin) ||
2517  !TransactionIdIsNormal(feedbackCatalogXmin) ||
2518  TransactionIdPrecedes(slot->data.catalog_xmin, feedbackCatalogXmin))
2519  {
2520  changed = true;
2521  slot->data.catalog_xmin = feedbackCatalogXmin;
2522  slot->effective_catalog_xmin = feedbackCatalogXmin;
2523  }
2524  SpinLockRelease(&slot->mutex);
2525 
2526  if (changed)
2527  {
2530  }
2531 }
2532 
2533 /*
2534  * Check that the provided xmin/epoch are sane, that is, not in the future
2535  * and not so far back as to be already wrapped around.
2536  *
2537  * Epoch of nextXid should be same as standby, or if the counter has
2538  * wrapped, then one greater than standby.
2539  *
2540  * This check doesn't care about whether clog exists for these xids
2541  * at all.
2542  */
2543 static bool
2545 {
2546  FullTransactionId nextFullXid;
2547  TransactionId nextXid;
2548  uint32 nextEpoch;
2549 
2550  nextFullXid = ReadNextFullTransactionId();
2551  nextXid = XidFromFullTransactionId(nextFullXid);
2552  nextEpoch = EpochFromFullTransactionId(nextFullXid);
2553 
2554  if (xid <= nextXid)
2555  {
2556  if (epoch != nextEpoch)
2557  return false;
2558  }
2559  else
2560  {
2561  if (epoch + 1 != nextEpoch)
2562  return false;
2563  }
2564 
2565  if (!TransactionIdPrecedesOrEquals(xid, nextXid))
2566  return false; /* epoch OK, but it's wrapped around */
2567 
2568  return true;
2569 }
2570 
2571 /*
2572  * Hot Standby feedback
2573  */
2574 static void
2576 {
2577  TransactionId feedbackXmin;
2578  uint32 feedbackEpoch;
2579  TransactionId feedbackCatalogXmin;
2580  uint32 feedbackCatalogEpoch;
2581  TimestampTz replyTime;
2582 
2583  /*
2584  * Decipher the reply message. The caller already consumed the msgtype
2585  * byte. See XLogWalRcvSendHSFeedback() in walreceiver.c for the creation
2586  * of this message.
2587  */
2588  replyTime = pq_getmsgint64(&reply_message);
2589  feedbackXmin = pq_getmsgint(&reply_message, 4);
2590  feedbackEpoch = pq_getmsgint(&reply_message, 4);
2591  feedbackCatalogXmin = pq_getmsgint(&reply_message, 4);
2592  feedbackCatalogEpoch = pq_getmsgint(&reply_message, 4);
2593 
2595  {
2596  char *replyTimeStr;
2597 
2598  /* Copy because timestamptz_to_str returns a static buffer */
2599  replyTimeStr = pstrdup(timestamptz_to_str(replyTime));
2600 
2601  elog(DEBUG2, "hot standby feedback xmin %u epoch %u, catalog_xmin %u epoch %u reply_time %s",
2602  feedbackXmin,
2603  feedbackEpoch,
2604  feedbackCatalogXmin,
2605  feedbackCatalogEpoch,
2606  replyTimeStr);
2607 
2608  pfree(replyTimeStr);
2609  }
2610 
2611  /*
2612  * Update shared state for this WalSender process based on reply data from
2613  * standby.
2614  */
2615  {
2616  WalSnd *walsnd = MyWalSnd;
2617 
2618  SpinLockAcquire(&walsnd->mutex);
2619  walsnd->replyTime = replyTime;
2620  SpinLockRelease(&walsnd->mutex);
2621  }
2622 
2623  /*
2624  * Unset WalSender's xmins if the feedback message values are invalid.
2625  * This happens when the downstream turned hot_standby_feedback off.
2626  */
2627  if (!TransactionIdIsNormal(feedbackXmin)
2628  && !TransactionIdIsNormal(feedbackCatalogXmin))
2629  {
2631  if (MyReplicationSlot != NULL)
2632  PhysicalReplicationSlotNewXmin(feedbackXmin, feedbackCatalogXmin);
2633  return;
2634  }
2635 
2636  /*
2637  * Check that the provided xmin/epoch are sane, that is, not in the future
2638  * and not so far back as to be already wrapped around. Ignore if not.
2639  */
2640  if (TransactionIdIsNormal(feedbackXmin) &&
2641  !TransactionIdInRecentPast(feedbackXmin, feedbackEpoch))
2642  return;
2643 
2644  if (TransactionIdIsNormal(feedbackCatalogXmin) &&
2645  !TransactionIdInRecentPast(feedbackCatalogXmin, feedbackCatalogEpoch))
2646  return;
2647 
2648  /*
2649  * Set the WalSender's xmin equal to the standby's requested xmin, so that
2650  * the xmin will be taken into account by GetSnapshotData() /
2651  * ComputeXidHorizons(). This will hold back the removal of dead rows and
2652  * thereby prevent the generation of cleanup conflicts on the standby
2653  * server.
2654  *
2655  * There is a small window for a race condition here: although we just
2656  * checked that feedbackXmin precedes nextXid, the nextXid could have
2657  * gotten advanced between our fetching it and applying the xmin below,
2658  * perhaps far enough to make feedbackXmin wrap around. In that case the
2659  * xmin we set here would be "in the future" and have no effect. No point
2660  * in worrying about this since it's too late to save the desired data
2661  * anyway. Assuming that the standby sends us an increasing sequence of
2662  * xmins, this could only happen during the first reply cycle, else our
2663  * own xmin would prevent nextXid from advancing so far.
2664  *
2665  * We don't bother taking the ProcArrayLock here. Setting the xmin field
2666  * is assumed atomic, and there's no real need to prevent concurrent
2667  * horizon determinations. (If we're moving our xmin forward, this is
2668  * obviously safe, and if we're moving it backwards, well, the data is at
2669  * risk already since a VACUUM could already have determined the horizon.)
2670  *
2671  * If we're using a replication slot we reserve the xmin via that,
2672  * otherwise via the walsender's PGPROC entry. We can only track the
2673  * catalog xmin separately when using a slot, so we store the least of the
2674  * two provided when not using a slot.
2675  *
2676  * XXX: It might make sense to generalize the ephemeral slot concept and
2677  * always use the slot mechanism to handle the feedback xmin.
2678  */
2679  if (MyReplicationSlot != NULL) /* XXX: persistency configurable? */
2680  PhysicalReplicationSlotNewXmin(feedbackXmin, feedbackCatalogXmin);
2681  else
2682  {
2683  if (TransactionIdIsNormal(feedbackCatalogXmin)
2684  && TransactionIdPrecedes(feedbackCatalogXmin, feedbackXmin))
2685  MyProc->xmin = feedbackCatalogXmin;
2686  else
2687  MyProc->xmin = feedbackXmin;
2688  }
2689 }
2690 
2691 /*
2692  * Compute how long send/receive loops should sleep.
2693  *
2694  * If wal_sender_timeout is enabled we want to wake up in time to send
2695  * keepalives and to abort the connection if wal_sender_timeout has been
2696  * reached.
2697  */
2698 static long
2700 {
2701  long sleeptime = 10000; /* 10 s */
2702 
2704  {
2705  TimestampTz wakeup_time;
2706 
2707  /*
2708  * At the latest stop sleeping once wal_sender_timeout has been
2709  * reached.
2710  */
2713 
2714  /*
2715  * If no ping has been sent yet, wakeup when it's time to do so.
2716  * WalSndKeepaliveIfNecessary() wants to send a keepalive once half of
2717  * the timeout passed without a response.
2718  */
2721  wal_sender_timeout / 2);
2722 
2723  /* Compute relative time until wakeup. */
2724  sleeptime = TimestampDifferenceMilliseconds(now, wakeup_time);
2725  }
2726 
2727  return sleeptime;
2728 }
2729 
2730 /*
2731  * Check whether there have been responses by the client within
2732  * wal_sender_timeout and shutdown if not. Using last_processing as the
2733  * reference point avoids counting server-side stalls against the client.
2734  * However, a long server-side stall can make WalSndKeepaliveIfNecessary()
2735  * postdate last_processing by more than wal_sender_timeout. If that happens,
2736  * the client must reply almost immediately to avoid a timeout. This rarely
2737  * affects the default configuration, under which clients spontaneously send a
2738  * message every standby_message_timeout = wal_sender_timeout/6 = 10s. We
2739  * could eliminate that problem by recognizing timeout expiration at
2740  * wal_sender_timeout/2 after the keepalive.
2741  */
2742 static void
2744 {
2745  TimestampTz timeout;
2746 
2747  /* don't bail out if we're doing something that doesn't require timeouts */
2748  if (last_reply_timestamp <= 0)
2749  return;
2750 
2753 
2754  if (wal_sender_timeout > 0 && last_processing >= timeout)
2755  {
2756  /*
2757  * Since typically expiration of replication timeout means
2758  * communication problem, we don't send the error message to the
2759  * standby.
2760  */
2762  (errmsg("terminating walsender process due to replication timeout")));
2763 
2764  WalSndShutdown();
2765  }
2766 }
2767 
2768 /* Main loop of walsender process that streams the WAL over Copy messages. */
2769 static void
2771 {
2772  /*
2773  * Initialize the last reply timestamp. That enables timeout processing
2774  * from hereon.
2775  */
2777  waiting_for_ping_response = false;
2778 
2779  /*
2780  * Loop until we reach the end of this timeline or the client requests to
2781  * stop streaming.
2782  */
2783  for (;;)
2784  {
2785  /* Clear any already-pending wakeups */
2787 
2789 
2790  /* Process any requests or signals received recently */
2791  if (ConfigReloadPending)
2792  {
2793  ConfigReloadPending = false;
2796  }
2797 
2798  /* Check for input from the client */
2800 
2801  /*
2802  * If we have received CopyDone from the client, sent CopyDone
2803  * ourselves, and the output buffer is empty, it's time to exit
2804  * streaming.
2805  */
2807  !pq_is_send_pending())
2808  break;
2809 
2810  /*
2811  * If we don't have any pending data in the output buffer, try to send
2812  * some more. If there is some, we don't bother to call send_data
2813  * again until we've flushed it ... but we'd better assume we are not
2814  * caught up.
2815  */
2816  if (!pq_is_send_pending())
2817  send_data();
2818  else
2819  WalSndCaughtUp = false;
2820 
2821  /* Try to flush pending output to the client */
2822  if (pq_flush_if_writable() != 0)
2823  WalSndShutdown();
2824 
2825  /* If nothing remains to be sent right now ... */
2827  {
2828  /*
2829  * If we're in catchup state, move to streaming. This is an
2830  * important state change for users to know about, since before
2831  * this point data loss might occur if the primary dies and we
2832  * need to failover to the standby. The state change is also
2833  * important for synchronous replication, since commits that
2834  * started to wait at that point might wait for some time.
2835  */
2837  {
2838  ereport(DEBUG1,
2839  (errmsg_internal("\"%s\" has now caught up with upstream server",
2840  application_name)));
2842  }
2843 
2844  /*
2845  * When SIGUSR2 arrives, we send any outstanding logs up to the
2846  * shutdown checkpoint record (i.e., the latest record), wait for
2847  * them to be replicated to the standby, and exit. This may be a
2848  * normal termination at shutdown, or a promotion, the walsender
2849  * is not sure which.
2850  */
2851  if (got_SIGUSR2)
2852  WalSndDone(send_data);
2853  }
2854 
2855  /* Check for replication timeout. */
2857 
2858  /* Send keepalive if the time has come */
2860 
2861  /*
2862  * Block if we have unsent data. XXX For logical replication, let
2863  * WalSndWaitForWal() handle any other blocking; idle receivers need
2864  * its additional actions. For physical replication, also block if
2865  * caught up; its send_data does not block.
2866  */
2867  if ((WalSndCaughtUp && send_data != XLogSendLogical &&
2870  {
2871  long sleeptime;
2872  int wakeEvents;
2873 
2875  wakeEvents = WL_SOCKET_READABLE;
2876  else
2877  wakeEvents = 0;
2878 
2879  /*
2880  * Use fresh timestamp, not last_processing, to reduce the chance
2881  * of reaching wal_sender_timeout before sending a keepalive.
2882  */
2884 
2885  if (pq_is_send_pending())
2886  wakeEvents |= WL_SOCKET_WRITEABLE;
2887 
2888  /* Sleep until something happens or we time out */
2889  WalSndWait(wakeEvents, sleeptime, WAIT_EVENT_WAL_SENDER_MAIN);
2890  }
2891  }
2892 }
2893 
2894 /* Initialize a per-walsender data structure for this walsender process */
2895 static void
2897 {
2898  int i;
2899 
2900  /*
2901  * WalSndCtl should be set up already (we inherit this by fork() or
2902  * EXEC_BACKEND mechanism from the postmaster).
2903  */
2904  Assert(WalSndCtl != NULL);
2905  Assert(MyWalSnd == NULL);
2906 
2907  /*
2908  * Find a free walsender slot and reserve it. This must not fail due to
2909  * the prior check for free WAL senders in InitProcess().
2910  */
2911  for (i = 0; i < max_wal_senders; i++)
2912  {
2913  WalSnd *walsnd = &WalSndCtl->walsnds[i];
2914 
2915  SpinLockAcquire(&walsnd->mutex);
2916 
2917  if (walsnd->pid != 0)
2918  {
2919  SpinLockRelease(&walsnd->mutex);
2920  continue;
2921  }
2922  else
2923  {
2924  /*
2925  * Found a free slot. Reserve it for us.
2926  */
2927  walsnd->pid = MyProcPid;
2928  walsnd->state = WALSNDSTATE_STARTUP;
2929  walsnd->sentPtr = InvalidXLogRecPtr;
2930  walsnd->needreload = false;
2931  walsnd->write = InvalidXLogRecPtr;
2932  walsnd->flush = InvalidXLogRecPtr;
2933  walsnd->apply = InvalidXLogRecPtr;
2934  walsnd->writeLag = -1;
2935  walsnd->flushLag = -1;
2936  walsnd->applyLag = -1;
2937  walsnd->sync_standby_priority = 0;
2938  walsnd->latch = &MyProc->procLatch;
2939  walsnd->replyTime = 0;
2940 
2941  /*
2942  * The kind assignment is done here and not in StartReplication()
2943  * and StartLogicalReplication(). Indeed, the logical walsender
2944  * needs to read WAL records (like snapshot of running
2945  * transactions) during the slot creation. So it needs to be woken
2946  * up based on its kind.
2947  *
2948  * The kind assignment could also be done in StartReplication(),
2949  * StartLogicalReplication() and CREATE_REPLICATION_SLOT but it
2950  * seems better to set it on one place.
2951  */
2952  if (MyDatabaseId == InvalidOid)
2953  walsnd->kind = REPLICATION_KIND_PHYSICAL;
2954  else
2955  walsnd->kind = REPLICATION_KIND_LOGICAL;
2956 
2957  SpinLockRelease(&walsnd->mutex);
2958  /* don't need the lock anymore */
2959  MyWalSnd = (WalSnd *) walsnd;
2960 
2961  break;
2962  }
2963  }
2964 
2965  Assert(MyWalSnd != NULL);
2966 
2967  /* Arrange to clean up at walsender exit */
2969 }
2970 
2971 /* Destroy the per-walsender data structure for this walsender process */
2972 static void
2974 {
2975  WalSnd *walsnd = MyWalSnd;
2976 
2977  Assert(walsnd != NULL);
2978 
2979  MyWalSnd = NULL;
2980 
2981  SpinLockAcquire(&walsnd->mutex);
2982  /* clear latch while holding the spinlock, so it can safely be read */
2983  walsnd->latch = NULL;
2984  /* Mark WalSnd struct as no longer being in use. */
2985  walsnd->pid = 0;
2986  SpinLockRelease(&walsnd->mutex);
2987 }
2988 
2989 /* XLogReaderRoutine->segment_open callback */
2990 static void
2992  TimeLineID *tli_p)
2993 {
2994  char path[MAXPGPATH];
2995 
2996  /*-------
2997  * When reading from a historic timeline, and there is a timeline switch
2998  * within this segment, read from the WAL segment belonging to the new
2999  * timeline.
3000  *
3001  * For example, imagine that this server is currently on timeline 5, and
3002  * we're streaming timeline 4. The switch from timeline 4 to 5 happened at
3003  * 0/13002088. In pg_wal, we have these files:
3004  *
3005  * ...
3006  * 000000040000000000000012
3007  * 000000040000000000000013
3008  * 000000050000000000000013
3009  * 000000050000000000000014
3010  * ...
3011  *
3012  * In this situation, when requested to send the WAL from segment 0x13, on
3013  * timeline 4, we read the WAL from file 000000050000000000000013. Archive
3014  * recovery prefers files from newer timelines, so if the segment was
3015  * restored from the archive on this server, the file belonging to the old
3016  * timeline, 000000040000000000000013, might not exist. Their contents are
3017  * equal up to the switchpoint, because at a timeline switch, the used
3018  * portion of the old segment is copied to the new file.
3019  */
3020  *tli_p = sendTimeLine;
3022  {
3023  XLogSegNo endSegNo;
3024 
3025  XLByteToSeg(sendTimeLineValidUpto, endSegNo, state->segcxt.ws_segsize);
3026  if (nextSegNo == endSegNo)
3027  *tli_p = sendTimeLineNextTLI;
3028  }
3029 
3030  XLogFilePath(path, *tli_p, nextSegNo, state->segcxt.ws_segsize);
3031  state->seg.ws_file = BasicOpenFile(path, O_RDONLY | PG_BINARY);
3032  if (state->seg.ws_file >= 0)
3033  return;
3034 
3035  /*
3036  * If the file is not found, assume it's because the standby asked for a
3037  * too old WAL segment that has already been removed or recycled.
3038  */
3039  if (errno == ENOENT)
3040  {
3041  char xlogfname[MAXFNAMELEN];
3042  int save_errno = errno;
3043 
3044  XLogFileName(xlogfname, *tli_p, nextSegNo, wal_segment_size);
3045  errno = save_errno;
3046  ereport(ERROR,
3048  errmsg("requested WAL segment %s has already been removed",
3049  xlogfname)));
3050  }
3051  else
3052  ereport(ERROR,
3054  errmsg("could not open file \"%s\": %m",
3055  path)));
3056 }
3057 
3058 /*
3059  * Send out the WAL in its normal physical/stored form.
3060  *
3061  * Read up to MAX_SEND_SIZE bytes of WAL that's been flushed to disk,
3062  * but not yet sent to the client, and buffer it in the libpq output
3063  * buffer.
3064  *
3065  * If there is no unsent WAL remaining, WalSndCaughtUp is set to true,
3066  * otherwise WalSndCaughtUp is set to false.
3067  */
3068 static void
3070 {
3071  XLogRecPtr SendRqstPtr;
3072  XLogRecPtr startptr;
3073  XLogRecPtr endptr;
3074  Size nbytes;
3075  XLogSegNo segno;
3076  WALReadError errinfo;
3077  Size rbytes;
3078 
3079  /* If requested switch the WAL sender to the stopping state. */
3080  if (got_STOPPING)
3082 
3084  {
3085  WalSndCaughtUp = true;
3086  return;
3087  }
3088 
3089  /* Figure out how far we can safely send the WAL. */
3091  {
3092  /*
3093  * Streaming an old timeline that's in this server's history, but is
3094  * not the one we're currently inserting or replaying. It can be
3095  * streamed up to the point where we switched off that timeline.
3096  */
3097  SendRqstPtr = sendTimeLineValidUpto;
3098  }
3099  else if (am_cascading_walsender)
3100  {
3101  TimeLineID SendRqstTLI;
3102 
3103  /*
3104  * Streaming the latest timeline on a standby.
3105  *
3106  * Attempt to send all WAL that has already been replayed, so that we
3107  * know it's valid. If we're receiving WAL through streaming
3108  * replication, it's also OK to send any WAL that has been received
3109  * but not replayed.
3110  *
3111  * The timeline we're recovering from can change, or we can be
3112  * promoted. In either case, the current timeline becomes historic. We
3113  * need to detect that so that we don't try to stream past the point
3114  * where we switched to another timeline. We check for promotion or
3115  * timeline switch after calculating FlushPtr, to avoid a race
3116  * condition: if the timeline becomes historic just after we checked
3117  * that it was still current, it's still be OK to stream it up to the
3118  * FlushPtr that was calculated before it became historic.
3119  */
3120  bool becameHistoric = false;
3121 
3122  SendRqstPtr = GetStandbyFlushRecPtr(&SendRqstTLI);
3123 
3124  if (!RecoveryInProgress())
3125  {
3126  /* We have been promoted. */
3127  SendRqstTLI = GetWALInsertionTimeLine();
3128  am_cascading_walsender = false;
3129  becameHistoric = true;
3130  }
3131  else
3132  {
3133  /*
3134  * Still a cascading standby. But is the timeline we're sending
3135  * still the one recovery is recovering from?
3136  */
3137  if (sendTimeLine != SendRqstTLI)
3138  becameHistoric = true;
3139  }
3140 
3141  if (becameHistoric)
3142  {
3143  /*
3144  * The timeline we were sending has become historic. Read the
3145  * timeline history file of the new timeline to see where exactly
3146  * we forked off from the timeline we were sending.
3147  */
3148  List *history;
3149 
3150  history = readTimeLineHistory(SendRqstTLI);
3152 
3154  list_free_deep(history);
3155 
3156  sendTimeLineIsHistoric = true;
3157 
3158  SendRqstPtr = sendTimeLineValidUpto;
3159  }
3160  }
3161  else
3162  {
3163  /*
3164  * Streaming the current timeline on a primary.
3165  *
3166  * Attempt to send all data that's already been written out and
3167  * fsync'd to disk. We cannot go further than what's been written out
3168  * given the current implementation of WALRead(). And in any case
3169  * it's unsafe to send WAL that is not securely down to disk on the
3170  * primary: if the primary subsequently crashes and restarts, standbys
3171  * must not have applied any WAL that got lost on the primary.
3172  */
3173  SendRqstPtr = GetFlushRecPtr(NULL);
3174  }
3175 
3176  /*
3177  * Record the current system time as an approximation of the time at which
3178  * this WAL location was written for the purposes of lag tracking.
3179  *
3180  * In theory we could make XLogFlush() record a time in shmem whenever WAL
3181  * is flushed and we could get that time as well as the LSN when we call
3182  * GetFlushRecPtr() above (and likewise for the cascading standby
3183  * equivalent), but rather than putting any new code into the hot WAL path
3184  * it seems good enough to capture the time here. We should reach this
3185  * after XLogFlush() runs WalSndWakeupProcessRequests(), and although that
3186  * may take some time, we read the WAL flush pointer and take the time
3187  * very close to together here so that we'll get a later position if it is
3188  * still moving.
3189  *
3190  * Because LagTrackerWrite ignores samples when the LSN hasn't advanced,
3191  * this gives us a cheap approximation for the WAL flush time for this
3192  * LSN.
3193  *
3194  * Note that the LSN is not necessarily the LSN for the data contained in
3195  * the present message; it's the end of the WAL, which might be further
3196  * ahead. All the lag tracking machinery cares about is finding out when
3197  * that arbitrary LSN is eventually reported as written, flushed and
3198  * applied, so that it can measure the elapsed time.
3199  */
3200  LagTrackerWrite(SendRqstPtr, GetCurrentTimestamp());
3201 
3202  /*
3203  * If this is a historic timeline and we've reached the point where we
3204  * forked to the next timeline, stop streaming.
3205  *
3206  * Note: We might already have sent WAL > sendTimeLineValidUpto. The
3207  * startup process will normally replay all WAL that has been received
3208  * from the primary, before promoting, but if the WAL streaming is
3209  * terminated at a WAL page boundary, the valid portion of the timeline
3210  * might end in the middle of a WAL record. We might've already sent the
3211  * first half of that partial WAL record to the cascading standby, so that
3212  * sentPtr > sendTimeLineValidUpto. That's OK; the cascading standby can't
3213  * replay the partial WAL record either, so it can still follow our
3214  * timeline switch.
3215  */
3217  {
3218  /* close the current file. */
3219  if (xlogreader->seg.ws_file >= 0)
3221 
3222  /* Send CopyDone */
3223  pq_putmessage_noblock('c', NULL, 0);
3224  streamingDoneSending = true;
3225 
3226  WalSndCaughtUp = true;
3227 
3228  elog(DEBUG1, "walsender reached end of timeline at %X/%X (sent up to %X/%X)",
3231  return;
3232  }
3233 
3234  /* Do we have any work to do? */
3235  Assert(sentPtr <= SendRqstPtr);
3236  if (SendRqstPtr <= sentPtr)
3237  {
3238  WalSndCaughtUp = true;
3239  return;
3240  }
3241 
3242  /*
3243  * Figure out how much to send in one message. If there's no more than
3244  * MAX_SEND_SIZE bytes to send, send everything. Otherwise send
3245  * MAX_SEND_SIZE bytes, but round back to logfile or page boundary.
3246  *
3247  * The rounding is not only for performance reasons. Walreceiver relies on
3248  * the fact that we never split a WAL record across two messages. Since a
3249  * long WAL record is split at page boundary into continuation records,
3250  * page boundary is always a safe cut-off point. We also assume that
3251  * SendRqstPtr never points to the middle of a WAL record.
3252  */
3253  startptr = sentPtr;
3254  endptr = startptr;
3255  endptr += MAX_SEND_SIZE;
3256 
3257  /* if we went beyond SendRqstPtr, back off */
3258  if (SendRqstPtr <= endptr)
3259  {
3260  endptr = SendRqstPtr;
3262  WalSndCaughtUp = false;
3263  else
3264  WalSndCaughtUp = true;
3265  }
3266  else
3267  {
3268  /* round down to page boundary. */
3269  endptr -= (endptr % XLOG_BLCKSZ);
3270  WalSndCaughtUp = false;
3271  }
3272 
3273  nbytes = endptr - startptr;
3274  Assert(nbytes <= MAX_SEND_SIZE);
3275 
3276  /*
3277  * OK to read and send the slice.
3278  */
3280  pq_sendbyte(&output_message, 'w');
3281 
3282  pq_sendint64(&output_message, startptr); /* dataStart */
3283  pq_sendint64(&output_message, SendRqstPtr); /* walEnd */
3284  pq_sendint64(&output_message, 0); /* sendtime, filled in last */
3285 
3286  /*
3287  * Read the log directly into the output buffer to avoid extra memcpy
3288  * calls.
3289  */
3291 
3292 retry:
3293  /* attempt to read WAL from WAL buffers first */
3295  startptr, nbytes, xlogreader->seg.ws_tli);
3296  output_message.len += rbytes;
3297  startptr += rbytes;
3298  nbytes -= rbytes;
3299 
3300  /* now read the remaining WAL from WAL file */
3301  if (nbytes > 0 &&
3304  startptr,
3305  nbytes,
3306  xlogreader->seg.ws_tli, /* Pass the current TLI because
3307  * only WalSndSegmentOpen controls
3308  * whether new TLI is needed. */
3309  &errinfo))
3310  WALReadRaiseError(&errinfo);
3311 
3312  /* See logical_read_xlog_page(). */
3313  XLByteToSeg(startptr, segno, xlogreader->segcxt.ws_segsize);
3315 
3316  /*
3317  * During recovery, the currently-open WAL file might be replaced with the
3318  * file of the same name retrieved from archive. So we always need to
3319  * check what we read was valid after reading into the buffer. If it's
3320  * invalid, we try to open and read the file again.
3321  */
3323  {
3324  WalSnd *walsnd = MyWalSnd;
3325  bool reload;
3326 
3327  SpinLockAcquire(&walsnd->mutex);
3328  reload = walsnd->needreload;
3329  walsnd->needreload = false;
3330  SpinLockRelease(&walsnd->mutex);
3331 
3332  if (reload && xlogreader->seg.ws_file >= 0)
3333  {
3335 
3336  goto retry;
3337  }
3338  }
3339 
3340  output_message.len += nbytes;
3342 
3343  /*
3344  * Fill the send timestamp last, so that it is taken as late as possible.
3345  */
3348  memcpy(&output_message.data[1 + sizeof(int64) + sizeof(int64)],
3349  tmpbuf.data, sizeof(int64));
3350 
3352 
3353  sentPtr = endptr;
3354 
3355  /* Update shared memory status */
3356  {
3357  WalSnd *walsnd = MyWalSnd;
3358 
3359  SpinLockAcquire(&walsnd->mutex);
3360  walsnd->sentPtr = sentPtr;
3361  SpinLockRelease(&walsnd->mutex);
3362  }
3363 
3364  /* Report progress of XLOG streaming in PS display */
3366  {
3367  char activitymsg[50];
3368 
3369  snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X",
3371  set_ps_display(activitymsg);
3372  }
3373 }
3374 
3375 /*
3376  * Stream out logically decoded data.
3377  */
3378 static void
3380 {
3381  XLogRecord *record;
3382  char *errm;
3383 
3384  /*
3385  * We'll use the current flush point to determine whether we've caught up.
3386  * This variable is static in order to cache it across calls. Caching is
3387  * helpful because GetFlushRecPtr() needs to acquire a heavily-contended
3388  * spinlock.
3389  */
3390  static XLogRecPtr flushPtr = InvalidXLogRecPtr;
3391 
3392  /*
3393  * Don't know whether we've caught up yet. We'll set WalSndCaughtUp to
3394  * true in WalSndWaitForWal, if we're actually waiting. We also set to
3395  * true if XLogReadRecord() had to stop reading but WalSndWaitForWal
3396  * didn't wait - i.e. when we're shutting down.
3397  */
3398  WalSndCaughtUp = false;
3399 
3400  record = XLogReadRecord(logical_decoding_ctx->reader, &errm);
3401 
3402  /* xlog record was invalid */
3403  if (errm != NULL)
3404  elog(ERROR, "could not find record while sending logically-decoded data: %s",
3405  errm);
3406 
3407  if (record != NULL)
3408  {
3409  /*
3410  * Note the lack of any call to LagTrackerWrite() which is handled by
3411  * WalSndUpdateProgress which is called by output plugin through
3412  * logical decoding write api.
3413  */
3415 
3417  }
3418 
3419  /*
3420  * If first time through in this session, initialize flushPtr. Otherwise,
3421  * we only need to update flushPtr if EndRecPtr is past it.
3422  */
3423  if (flushPtr == InvalidXLogRecPtr ||
3424  logical_decoding_ctx->reader->EndRecPtr >= flushPtr)
3425  {
3427  flushPtr = GetStandbyFlushRecPtr(NULL);
3428  else
3429  flushPtr = GetFlushRecPtr(NULL);
3430  }
3431 
3432  /* If EndRecPtr is still past our flushPtr, it means we caught up. */
3433  if (logical_decoding_ctx->reader->EndRecPtr >= flushPtr)
3434  WalSndCaughtUp = true;
3435 
3436  /*
3437  * If we're caught up and have been requested to stop, have WalSndLoop()
3438  * terminate the connection in an orderly manner, after writing out all
3439  * the pending data.
3440  */
3442  got_SIGUSR2 = true;
3443 
3444  /* Update shared memory status */
3445  {
3446  WalSnd *walsnd = MyWalSnd;
3447 
3448  SpinLockAcquire(&walsnd->mutex);
3449  walsnd->sentPtr = sentPtr;
3450  SpinLockRelease(&walsnd->mutex);
3451  }
3452 }
3453 
3454 /*
3455  * Shutdown if the sender is caught up.
3456  *
3457  * NB: This should only be called when the shutdown signal has been received
3458  * from postmaster.
3459  *
3460  * Note that if we determine that there's still more data to send, this
3461  * function will return control to the caller.
3462  */
3463 static void
3465 {
3466  XLogRecPtr replicatedPtr;
3467 
3468  /* ... let's just be real sure we're caught up ... */
3469  send_data();
3470 
3471  /*
3472  * To figure out whether all WAL has successfully been replicated, check
3473  * flush location if valid, write otherwise. Tools like pg_receivewal will
3474  * usually (unless in synchronous mode) return an invalid flush location.
3475  */
3476  replicatedPtr = XLogRecPtrIsInvalid(MyWalSnd->flush) ?
3478 
3479  if (WalSndCaughtUp && sentPtr == replicatedPtr &&
3480  !pq_is_send_pending())
3481  {
3482  QueryCompletion qc;
3483 
3484  /* Inform the standby that XLOG streaming is done */
3485  SetQueryCompletion(&qc, CMDTAG_COPY, 0);
3486  EndCommand(&qc, DestRemote, false);
3487  pq_flush();
3488 
3489  proc_exit(0);
3490  }
3493 }
3494 
3495 /*
3496  * Returns the latest point in WAL that has been safely flushed to disk.
3497  * This should only be called when in recovery.
3498  *
3499  * This is called either by cascading walsender to find WAL position to be sent
3500  * to a cascaded standby or by slot synchronization operation to validate remote
3501  * slot's lsn before syncing it locally.
3502  *
3503  * As a side-effect, *tli is updated to the TLI of the last
3504  * replayed WAL record.
3505  */
3506 XLogRecPtr
3508 {
3509  XLogRecPtr replayPtr;
3510  TimeLineID replayTLI;
3511  XLogRecPtr receivePtr;
3513  XLogRecPtr result;
3514 
3516 
3517  /*
3518  * We can safely send what's already been replayed. Also, if walreceiver
3519  * is streaming WAL from the same timeline, we can send anything that it
3520  * has streamed, but hasn't been replayed yet.
3521  */
3522 
3523  receivePtr = GetWalRcvFlushRecPtr(NULL, &receiveTLI);
3524  replayPtr = GetXLogReplayRecPtr(&replayTLI);
3525 
3526  if (tli)
3527  *tli = replayTLI;
3528 
3529  result = replayPtr;
3530  if (receiveTLI == replayTLI && receivePtr > replayPtr)
3531  result = receivePtr;
3532 
3533  return result;
3534 }
3535 
3536 /*
3537  * Request walsenders to reload the currently-open WAL file
3538  */
3539 void
3541 {
3542  int i;
3543 
3544  for (i = 0; i < max_wal_senders; i++)
3545  {
3546  WalSnd *walsnd = &WalSndCtl->walsnds[i];
3547 
3548  SpinLockAcquire(&walsnd->mutex);
3549  if (walsnd->pid == 0)
3550  {
3551  SpinLockRelease(&walsnd->mutex);
3552  continue;
3553  }
3554  walsnd->needreload = true;
3555  SpinLockRelease(&walsnd->mutex);
3556  }
3557 }
3558 
3559 /*
3560  * Handle PROCSIG_WALSND_INIT_STOPPING signal.
3561  */
3562 void
3564 {
3566 
3567  /*
3568  * If replication has not yet started, die like with SIGTERM. If
3569  * replication is active, only set a flag and wake up the main loop. It
3570  * will send any outstanding WAL, wait for it to be replicated to the
3571  * standby, and then exit gracefully.
3572  */
3573  if (!replication_active)
3574  kill(MyProcPid, SIGTERM);
3575  else
3576  got_STOPPING = true;
3577 }
3578 
3579 /*
3580  * SIGUSR2: set flag to do a last cycle and shut down afterwards. The WAL
3581  * sender should already have been switched to WALSNDSTATE_STOPPING at
3582  * this point.
3583  */
3584 static void
3586 {
3587  got_SIGUSR2 = true;
3588  SetLatch(MyLatch);
3589 }
3590 
3591 /* Set up signal handlers */
3592 void
3594 {
3595  /* Set up signal handlers */
3597  pqsignal(SIGINT, StatementCancelHandler); /* query cancel */
3598  pqsignal(SIGTERM, die); /* request shutdown */
3599  /* SIGQUIT handler was already set up by InitPostmasterChild */
3600  InitializeTimeouts(); /* establishes SIGALRM handler */
3603  pqsignal(SIGUSR2, WalSndLastCycleHandler); /* request a last cycle and
3604  * shutdown */
3605 
3606  /* Reset some signals that are accepted by postmaster but not here */
3608 }
3609 
3610 /* Report shared-memory space needed by WalSndShmemInit */
3611 Size
3613 {
3614  Size size = 0;
3615 
3616  size = offsetof(WalSndCtlData, walsnds);
3618 
3619  return size;
3620 }
3621 
3622 /* Allocate and initialize walsender-related shared memory */
3623 void
3625 {
3626  bool found;
3627  int i;
3628 
3629  WalSndCtl = (WalSndCtlData *)
3630  ShmemInitStruct("Wal Sender Ctl", WalSndShmemSize(), &found);
3631 
3632  if (!found)
3633  {
3634  /* First time through, so initialize */
3636 
3637  for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; i++)
3639 
3640  for (i = 0; i < max_wal_senders; i++)
3641  {
3642  WalSnd *walsnd = &WalSndCtl->walsnds[i];
3643 
3644  SpinLockInit(&walsnd->mutex);
3645  }
3646 
3650  }
3651 }
3652 
3653 /*
3654  * Wake up physical, logical or both kinds of walsenders
3655  *
3656  * The distinction between physical and logical walsenders is done, because:
3657  * - physical walsenders can't send data until it's been flushed
3658  * - logical walsenders on standby can't decode and send data until it's been
3659  * applied
3660  *
3661  * For cascading replication we need to wake up physical walsenders separately
3662  * from logical walsenders (see the comment before calling WalSndWakeup() in
3663  * ApplyWalRecord() for more details).
3664  *
3665  * This will be called inside critical sections, so throwing an error is not
3666  * advisable.
3667  */
3668 void
3669 WalSndWakeup(bool physical, bool logical)
3670 {
3671  /*
3672  * Wake up all the walsenders waiting on WAL being flushed or replayed
3673  * respectively. Note that waiting walsender would have prepared to sleep
3674  * on the CV (i.e., added itself to the CV's waitlist) in WalSndWait()
3675  * before actually waiting.
3676  */
3677  if (physical)
3679 
3680  if (logical)
3682 }
3683 
3684 /*
3685  * Wait for readiness on the FeBe socket, or a timeout. The mask should be
3686  * composed of optional WL_SOCKET_WRITEABLE and WL_SOCKET_READABLE flags. Exit
3687  * on postmaster death.
3688  */
3689 static void
3690 WalSndWait(uint32 socket_events, long timeout, uint32 wait_event)
3691 {
3692  WaitEvent event;
3693 
3694  ModifyWaitEvent(FeBeWaitSet, FeBeWaitSetSocketPos, socket_events, NULL);
3695 
3696  /*
3697  * We use a condition variable to efficiently wake up walsenders in
3698  * WalSndWakeup().
3699  *
3700  * Every walsender prepares to sleep on a shared memory CV. Note that it
3701  * just prepares to sleep on the CV (i.e., adds itself to the CV's
3702  * waitlist), but does not actually wait on the CV (IOW, it never calls
3703  * ConditionVariableSleep()). It still uses WaitEventSetWait() for
3704  * waiting, because we also need to wait for socket events. The processes
3705  * (startup process, walreceiver etc.) wanting to wake up walsenders use
3706  * ConditionVariableBroadcast(), which in turn calls SetLatch(), helping
3707  * walsenders come out of WaitEventSetWait().
3708  *
3709  * This approach is simple and efficient because, one doesn't have to loop
3710  * through all the walsenders slots, with a spinlock acquisition and
3711  * release for every iteration, just to wake up only the waiting
3712  * walsenders. It makes WalSndWakeup() callers' life easy.
3713  *
3714  * XXX: A desirable future improvement would be to add support for CVs
3715  * into WaitEventSetWait().
3716  *
3717  * And, we use separate shared memory CVs for physical and logical
3718  * walsenders for selective wake ups, see WalSndWakeup() for more details.
3719  *
3720  * If the wait event is WAIT_FOR_STANDBY_CONFIRMATION, wait on another CV
3721  * until awakened by physical walsenders after the walreceiver confirms
3722  * the receipt of the LSN.
3723  */
3724  if (wait_event == WAIT_EVENT_WAIT_FOR_STANDBY_CONFIRMATION)
3728  else if (MyWalSnd->kind == REPLICATION_KIND_LOGICAL)
3730 
3731  if (WaitEventSetWait(FeBeWaitSet, timeout, &event, 1, wait_event) == 1 &&
3732  (event.events & WL_POSTMASTER_DEATH))
3733  {
3735  proc_exit(1);
3736  }
3737 
3739 }
3740 
3741 /*
3742  * Signal all walsenders to move to stopping state.
3743  *
3744  * This will trigger walsenders to move to a state where no further WAL can be
3745  * generated. See this file's header for details.
3746  */
3747 void
3749 {
3750  int i;
3751 
3752  for (i = 0; i < max_wal_senders; i++)
3753  {
3754  WalSnd *walsnd = &WalSndCtl->walsnds[i];
3755  pid_t pid;
3756 
3757  SpinLockAcquire(&walsnd->mutex);
3758  pid = walsnd->pid;
3759  SpinLockRelease(&walsnd->mutex);
3760 
3761  if (pid == 0)
3762  continue;
3763 
3765  }
3766 }
3767 
3768 /*
3769  * Wait that all the WAL senders have quit or reached the stopping state. This
3770  * is used by the checkpointer to control when the shutdown checkpoint can
3771  * safely be performed.
3772  */
3773 void
3775 {
3776  for (;;)
3777  {
3778  int i;
3779  bool all_stopped = true;
3780 
3781  for (i = 0; i < max_wal_senders; i++)
3782  {
3783  WalSnd *walsnd = &WalSndCtl->walsnds[i];
3784 
3785  SpinLockAcquire(&walsnd->mutex);
3786 
3787  if (walsnd->pid == 0)
3788  {
3789  SpinLockRelease(&walsnd->mutex);
3790  continue;
3791  }
3792 
3793  if (walsnd->state != WALSNDSTATE_STOPPING)
3794  {
3795  all_stopped = false;
3796  SpinLockRelease(&walsnd->mutex);
3797  break;
3798  }
3799  SpinLockRelease(&walsnd->mutex);
3800  }
3801 
3802  /* safe to leave if confirmation is done for all WAL senders */
3803  if (all_stopped)
3804  return;
3805 
3806  pg_usleep(10000L); /* wait for 10 msec */
3807  }
3808 }
3809 
3810 /* Set state for current walsender (only called in walsender) */
3811 void
3813 {
3814  WalSnd *walsnd = MyWalSnd;
3815 
3817 
3818  if (walsnd->state == state)
3819  return;
3820 
3821  SpinLockAcquire(&walsnd->mutex);
3822  walsnd->state = state;
3823  SpinLockRelease(&walsnd->mutex);
3824 }
3825 
3826 /*
3827  * Return a string constant representing the state. This is used
3828  * in system views, and should *not* be translated.
3829  */
3830 static const char *
3832 {
3833  switch (state)
3834  {
3835  case WALSNDSTATE_STARTUP:
3836  return "startup";
3837  case WALSNDSTATE_BACKUP:
3838  return "backup";
3839  case WALSNDSTATE_CATCHUP:
3840  return "catchup";
3841  case WALSNDSTATE_STREAMING:
3842  return "streaming";
3843  case WALSNDSTATE_STOPPING:
3844  return "stopping";
3845  }
3846  return "UNKNOWN";
3847 }
3848 
3849 static Interval *
3851 {
3852  Interval *result = palloc(sizeof(Interval));
3853 
3854  result->month = 0;
3855  result->day = 0;
3856  result->time = offset;
3857 
3858  return result;
3859 }
3860 
3861 /*
3862  * Returns activity of walsenders, including pids and xlog locations sent to
3863  * standby servers.
3864  */
3865 Datum
3867 {
3868 #define PG_STAT_GET_WAL_SENDERS_COLS 12
3869  ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
3870  SyncRepStandbyData *sync_standbys;
3871  int num_standbys;
3872  int i;
3873 
3874  InitMaterializedSRF(fcinfo, 0);
3875 
3876  /*
3877  * Get the currently active synchronous standbys. This could be out of
3878  * date before we're done, but we'll use the data anyway.
3879  */
3880  num_standbys = SyncRepGetCandidateStandbys(&sync_standbys);
3881 
3882  for (i = 0; i < max_wal_senders; i++)
3883  {
3884  WalSnd *walsnd = &WalSndCtl->walsnds[i];
3885  XLogRecPtr sent_ptr;
3886  XLogRecPtr write;
3887  XLogRecPtr flush;
3888  XLogRecPtr apply;
3889  TimeOffset writeLag;
3890  TimeOffset flushLag;
3891  TimeOffset applyLag;
3892  int priority;
3893  int pid;
3895  TimestampTz replyTime;
3896  bool is_sync_standby;
3898  bool nulls[PG_STAT_GET_WAL_SENDERS_COLS] = {0};
3899  int j;
3900 
3901  /* Collect data from shared memory */
3902  SpinLockAcquire(&walsnd->mutex);
3903  if (walsnd->pid == 0)
3904  {
3905  SpinLockRelease(&walsnd->mutex);
3906  continue;
3907  }
3908  pid = walsnd->pid;
3909  sent_ptr = walsnd->sentPtr;
3910  state = walsnd->state;
3911  write = walsnd->write;
3912  flush = walsnd->flush;
3913  apply = walsnd->apply;
3914  writeLag = walsnd->writeLag;
3915  flushLag = walsnd->flushLag;
3916  applyLag = walsnd->applyLag;
3917  priority = walsnd->sync_standby_priority;
3918  replyTime = walsnd->replyTime;
3919  SpinLockRelease(&walsnd->mutex);
3920 
3921  /*
3922  * Detect whether walsender is/was considered synchronous. We can
3923  * provide some protection against stale data by checking the PID
3924  * along with walsnd_index.
3925  */
3926  is_sync_standby = false;
3927  for (j = 0; j < num_standbys; j++)
3928  {
3929  if (sync_standbys[j].walsnd_index == i &&
3930  sync_standbys[j].pid == pid)
3931  {
3932  is_sync_standby = true;
3933  break;
3934  }
3935  }
3936 
3937  values[0] = Int32GetDatum(pid);
3938 
3939  if (!has_privs_of_role(GetUserId(), ROLE_PG_READ_ALL_STATS))
3940  {
3941  /*
3942  * Only superusers and roles with privileges of pg_read_all_stats
3943  * can see details. Other users only get the pid value to know
3944  * it's a walsender, but no details.
3945  */
3946  MemSet(&nulls[1], true, PG_STAT_GET_WAL_SENDERS_COLS - 1);
3947  }
3948  else
3949  {
3951 
3952  if (XLogRecPtrIsInvalid(sent_ptr))
3953  nulls[2] = true;
3954  values[2] = LSNGetDatum(sent_ptr);
3955 
3957  nulls[3] = true;
3958  values[3] = LSNGetDatum(write);
3959 
3960  if (XLogRecPtrIsInvalid(flush))
3961  nulls[4] = true;
3962  values[4] = LSNGetDatum(flush);
3963 
3964  if (XLogRecPtrIsInvalid(apply))
3965  nulls[5] = true;
3966  values[5] = LSNGetDatum(apply);
3967 
3968  /*
3969  * Treat a standby such as a pg_basebackup background process
3970  * which always returns an invalid flush location, as an
3971  * asynchronous standby.
3972  */
3973  priority = XLogRecPtrIsInvalid(flush) ? 0 : priority;
3974 
3975  if (writeLag < 0)
3976  nulls[6] = true;
3977  else
3979 
3980  if (flushLag < 0)
3981  nulls[7] = true;
3982  else
3984 
3985  if (applyLag < 0)
3986  nulls[8] = true;
3987  else
3989 
3990  values[9] = Int32GetDatum(priority);
3991 
3992  /*
3993  * More easily understood version of standby state. This is purely
3994  * informational.
3995  *
3996  * In quorum-based sync replication, the role of each standby
3997  * listed in synchronous_standby_names can be changing very
3998  * frequently. Any standbys considered as "sync" at one moment can
3999  * be switched to "potential" ones at the next moment. So, it's
4000  * basically useless to report "sync" or "potential" as their sync
4001  * states. We report just "quorum" for them.
4002  */
4003  if (priority == 0)
4004  values[10] = CStringGetTextDatum("async");
4005  else if (is_sync_standby)
4007  CStringGetTextDatum("sync") : CStringGetTextDatum("quorum");
4008  else
4009  values[10] = CStringGetTextDatum("potential");
4010 
4011  if (replyTime == 0)
4012  nulls[11] = true;
4013  else
4014  values[11] = TimestampTzGetDatum(replyTime);
4015  }
4016 
4017  tuplestore_putvalues(rsinfo->setResult, rsinfo->setDesc,
4018  values, nulls);
4019  }
4020 
4021  return (Datum) 0;
4022 }
4023 
4024 /*
4025  * Send a keepalive message to standby.
4026  *
4027  * If requestReply is set, the message requests the other party to send
4028  * a message back to us, for heartbeat purposes. We also set a flag to
4029  * let nearby code know that we're waiting for that response, to avoid
4030  * repeated requests.
4031  *
4032  * writePtr is the location up to which the WAL is sent. It is essentially
4033  * the same as sentPtr but in some cases, we need to send keep alive before
4034  * sentPtr is updated like when skipping empty transactions.
4035  */
4036 static void
4037 WalSndKeepalive(bool requestReply, XLogRecPtr writePtr)
4038 {
4039  elog(DEBUG2, "sending replication keepalive");
4040 
4041  /* construct the message... */
4043  pq_sendbyte(&output_message, 'k');
4044  pq_sendint64(&output_message, XLogRecPtrIsInvalid(writePtr) ? sentPtr : writePtr);
4046  pq_sendbyte(&output_message, requestReply ? 1 : 0);
4047 
4048  /* ... and send it wrapped in CopyData */
4050 
4051  /* Set local flag */
4052  if (requestReply)
4054 }
4055 
4056 /*
4057  * Send keepalive message if too much time has elapsed.
4058  */
4059 static void
4061 {
4062  TimestampTz ping_time;
4063 
4064  /*
4065  * Don't send keepalive messages if timeouts are globally disabled or
4066  * we're doing something not partaking in timeouts.
4067  */
4068  if (wal_sender_timeout <= 0 || last_reply_timestamp <= 0)
4069  return;
4070 
4072  return;
4073 
4074  /*
4075  * If half of wal_sender_timeout has lapsed without receiving any reply
4076  * from the standby, send a keep-alive message to the standby requesting
4077  * an immediate reply.
4078  */
4080  wal_sender_timeout / 2);
4081  if (last_processing >= ping_time)
4082  {
4084 
4085  /* Try to flush pending output to the client */
4086  if (pq_flush_if_writable() != 0)
4087  WalSndShutdown();
4088  }
4089 }
4090 
4091 /*
4092  * Record the end of the WAL and the time it was flushed locally, so that
4093  * LagTrackerRead can compute the elapsed time (lag) when this WAL location is
4094  * eventually reported to have been written, flushed and applied by the
4095  * standby in a reply message.
4096  */
4097 static void
4099 {
4100  bool buffer_full;
4101  int new_write_head;
4102  int i;
4103 
4104  if (!am_walsender)
4105  return;
4106 
4107  /*
4108  * If the lsn hasn't advanced since last time, then do nothing. This way
4109  * we only record a new sample when new WAL has been written.
4110  */
4111  if (lag_tracker->last_lsn == lsn)
4112  return;
4113  lag_tracker->last_lsn = lsn;
4114 
4115  /*
4116  * If advancing the write head of the circular buffer would crash into any
4117  * of the read heads, then the buffer is full. In other words, the
4118  * slowest reader (presumably apply) is the one that controls the release
4119  * of space.
4120  */
4121  new_write_head = (lag_tracker->write_head + 1) % LAG_TRACKER_BUFFER_SIZE;
4122  buffer_full = false;
4123  for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; ++i)
4124  {
4125  if (new_write_head == lag_tracker->read_heads[i])
4126  buffer_full = true;
4127  }
4128 
4129  /*
4130  * If the buffer is full, for now we just rewind by one slot and overwrite
4131  * the last sample, as a simple (if somewhat uneven) way to lower the
4132  * sampling rate. There may be better adaptive compaction algorithms.
4133  */
4134  if (buffer_full)
4135  {
4136  new_write_head = lag_tracker->write_head;
4137  if (lag_tracker->write_head > 0)
4139  else
4141  }
4142 
4143  /* Store a sample at the current write head position. */
4145  lag_tracker->buffer[lag_tracker->write_head].time = local_flush_time;
4146  lag_tracker->write_head = new_write_head;
4147 }
4148 
4149 /*
4150  * Find out how much time has elapsed between the moment WAL location 'lsn'
4151  * (or the highest known earlier LSN) was flushed locally and the time 'now'.
4152  * We have a separate read head for each of the reported LSN locations we
4153  * receive in replies from standby; 'head' controls which read head is
4154  * used. Whenever a read head crosses an LSN which was written into the
4155  * lag buffer with LagTrackerWrite, we can use the associated timestamp to
4156  * find out the time this LSN (or an earlier one) was flushed locally, and
4157  * therefore compute the lag.
4158  *
4159  * Return -1 if no new sample data is available, and otherwise the elapsed
4160  * time in microseconds.
4161  */
4162 static TimeOffset
4164 {
4165  TimestampTz time = 0;
4166 
4167  /* Read all unread samples up to this LSN or end of buffer. */
4168  while (lag_tracker->read_heads[head] != lag_tracker->write_head &&
4169  lag_tracker->buffer[lag_tracker->read_heads[head]].lsn <= lsn)
4170  {
4171  time = lag_tracker->buffer[lag_tracker->read_heads[head]].time;
4172  lag_tracker->last_read[head] =
4174  lag_tracker->read_heads[head] =
4176  }
4177 
4178  /*
4179  * If the lag tracker is empty, that means the standby has processed
4180  * everything we've ever sent so we should now clear 'last_read'. If we
4181  * didn't do that, we'd risk using a stale and irrelevant sample for
4182  * interpolation at the beginning of the next burst of WAL after a period
4183  * of idleness.
4184  */
4186  lag_tracker->last_read[head].time = 0;
4187 
4188  if (time > now)
4189  {
4190  /* If the clock somehow went backwards, treat as not found. */
4191  return -1;
4192  }
4193  else if (time == 0)
4194  {
4195  /*
4196  * We didn't cross a time. If there is a future sample that we
4197  * haven't reached yet, and we've already reached at least one sample,
4198  * let's interpolate the local flushed time. This is mainly useful
4199  * for reporting a completely stuck apply position as having
4200  * increasing lag, since otherwise we'd have to wait for it to
4201  * eventually start moving again and cross one of our samples before
4202  * we can show the lag increasing.
4203  */
4205  {
4206  /* There are no future samples, so we can't interpolate. */
4207  return -1;
4208  }
4209  else if (lag_tracker->last_read[head].time != 0)
4210  {
4211  /* We can interpolate between last_read and the next sample. */
4212  double fraction;
4213  WalTimeSample prev = lag_tracker->last_read[head];
4215 
4216  if (lsn < prev.lsn)
4217  {
4218  /*
4219  * Reported LSNs shouldn't normally go backwards, but it's
4220  * possible when there is a timeline change. Treat as not
4221  * found.
4222  */
4223  return -1;
4224  }
4225 
4226  Assert(prev.lsn < next.lsn);
4227 
4228  if (prev.time > next.time)
4229  {
4230  /* If the clock somehow went backwards, treat as not found. */
4231  return -1;
4232  }
4233 
4234  /* See how far we are between the previous and next samples. */
4235  fraction =
4236  (double) (lsn - prev.lsn) / (double) (next.lsn - prev.lsn);
4237 
4238  /* Scale the local flush time proportionally. */
4239  time = (TimestampTz)
4240  ((double) prev.time + (next.time - prev.time) * fraction);
4241  }
4242  else
4243  {
4244  /*
4245  * We have only a future sample, implying that we were entirely
4246  * caught up but and now there is a new burst of WAL and the
4247  * standby hasn't processed the first sample yet. Until the
4248  * standby reaches the future sample the best we can do is report
4249  * the hypothetical lag if that sample were to be replayed now.
4250  */
4251  time = lag_tracker->buffer[lag_tracker->read_heads[head]].time;
4252  }
4253  }
4254 
4255  /* Return the elapsed time since local flush time in microseconds. */
4256  Assert(time != 0);
4257  return now - time;
4258 }
bool has_privs_of_role(Oid member, Oid role)
Definition: acl.c:5268
int16 AttrNumber
Definition: attnum.h:21
TimeLineID tliOfPointInHistory(XLogRecPtr ptr, List *history)
Definition: timeline.c:544
XLogRecPtr tliSwitchPoint(TimeLineID tli, List *history, TimeLineID *nextTLI)
Definition: timeline.c:572
List * readTimeLineHistory(TimeLineID targetTLI)
Definition: timeline.c:76
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1756
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1780
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1644
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1608
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1843
void pgstat_report_activity(BackendState state, const char *cmd_str)
@ STATE_RUNNING
void SendBaseBackup(BaseBackupCmd *cmd, IncrementalBackupInfo *ib)
Definition: basebackup.c:989
void AppendIncrementalManifestData(IncrementalBackupInfo *ib, const char *data, int len)
IncrementalBackupInfo * CreateIncrementalBackupInfo(MemoryContext mcxt)
void FinalizeIncrementalManifest(IncrementalBackupInfo *ib)
static int32 next
Definition: blutils.c:222
static Datum values[MAXATTR]
Definition: bootstrap.c:150
#define CStringGetTextDatum(s)
Definition: builtins.h:97
#define NameStr(name)
Definition: c.h:746
unsigned int uint32
Definition: c.h:506
#define SIGNAL_ARGS
Definition: c.h:1345
#define Assert(condition)
Definition: c.h:858
#define PG_BINARY
Definition: c.h:1273
#define pg_attribute_noreturn()
Definition: c.h:217
#define UINT64_FORMAT
Definition: c.h:549
#define MemSet(start, val, len)
Definition: c.h:1020
uint32 TransactionId
Definition: c.h:652
#define OidIsValid(objectId)
Definition: c.h:775
size_t Size
Definition: c.h:605
static void SetQueryCompletion(QueryCompletion *qc, CommandTag commandTag, uint64 nprocessed)
Definition: cmdtag.h:37
bool ConditionVariableCancelSleep(void)
void ConditionVariableBroadcast(ConditionVariable *cv)
void ConditionVariablePrepareToSleep(ConditionVariable *cv)
void ConditionVariableInit(ConditionVariable *cv)
int64 TimestampTz
Definition: timestamp.h:39
int64 TimeOffset
Definition: timestamp.h:40
char * get_database_name(Oid dbid)
Definition: dbcommands.c:3184
void LogicalDecodingProcessRecord(LogicalDecodingContext *ctx, XLogReaderState *record)
Definition: decode.c:88
bool defGetBoolean(DefElem *def)
Definition: define.c:107
char * defGetString(DefElem *def)
Definition: define.c:48
void EndCommand(const QueryCompletion *qc, CommandDest dest, bool force_undecorated_output)
Definition: dest.c:169
void EndReplicationCommand(const char *commandTag)
Definition: dest.c:205
DestReceiver * CreateDestReceiver(CommandDest dest)
Definition: dest.c:113
@ DestRemote
Definition: dest.h:89
@ DestRemoteSimple
Definition: dest.h:91
@ DestNone
Definition: dest.h:87
struct cursor * cur
Definition: ecpg.c:28
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1157
int errcode_for_file_access(void)
Definition: elog.c:876
int errdetail(const char *fmt,...)
Definition: elog.c:1203
bool message_level_is_interesting(int elevel)
Definition: elog.c:272
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define LOG
Definition: elog.h:31
#define COMMERROR
Definition: elog.h:33
#define FATAL
Definition: elog.h:41
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
void do_tup_output(TupOutputState *tstate, const Datum *values, const bool *isnull)
Definition: execTuples.c:2362
const TupleTableSlotOps TTSOpsVirtual
Definition: execTuples.c:84
void end_tup_output(TupOutputState *tstate)
Definition: execTuples.c:2420
TupOutputState * begin_tup_output_tupdesc(DestReceiver *dest, TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:2342
int CloseTransientFile(int fd)
Definition: fd.c:2832
int BasicOpenFile(const char *fileName, int fileFlags)
Definition: fd.c:1087
int OpenTransientFile(const char *fileName, int fileFlags)
Definition: fd.c:2656
Datum Int64GetDatum(int64 X)
Definition: fmgr.c:1807
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
void InitMaterializedSRF(FunctionCallInfo fcinfo, bits32 flags)
Definition: funcapi.c:76
int MyProcPid
Definition: globals.c:46
struct Latch * MyLatch
Definition: globals.c:62
Oid MyDatabaseId
Definition: globals.c:93
@ PGC_SIGHUP
Definition: guc.h:71
void ProcessConfigFile(GucContext context)
void GetPGVariable(const char *name, DestReceiver *dest)
Definition: guc_funcs.c:382
char * application_name
Definition: guc_tables.c:543
static void dlist_init(dlist_head *head)
Definition: ilist.h:314
#define write(a, b, c)
Definition: win32.h:14
#define read(a, b, c)
Definition: win32.h:13
volatile sig_atomic_t ConfigReloadPending
Definition: interrupt.c:27
void SignalHandlerForConfigReload(SIGNAL_ARGS)
Definition: interrupt.c:61
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:365
void proc_exit(int code)
Definition: ipc.c:104
int j
Definition: isn.c:74
int i
Definition: isn.c:73
void ModifyWaitEvent(WaitEventSet *set, int pos, uint32 events, Latch *latch)
Definition: latch.c:1049
void SetLatch(Latch *latch)
Definition: latch.c:632
int WaitEventSetWait(WaitEventSet *set, long timeout, WaitEvent *occurred_events, int nevents, uint32 wait_event_info)
Definition: latch.c:1424
void ResetLatch(Latch *latch)
Definition: latch.c:724
#define WL_SOCKET_READABLE
Definition: latch.h:128
#define WL_POSTMASTER_DEATH
Definition: latch.h:131
#define WL_SOCKET_WRITEABLE
Definition: latch.h:129
#define pq_flush()
Definition: libpq.h:46
#define PQ_SMALL_MESSAGE_LIMIT
Definition: libpq.h:30
#define pq_flush_if_writable()
Definition: libpq.h:47
#define pq_is_send_pending()
Definition: libpq.h:48
#define PQ_LARGE_MESSAGE_LIMIT
Definition: libpq.h:31
#define pq_putmessage_noblock(msgtype, s, len)
Definition: libpq.h:51
#define FeBeWaitSetSocketPos
Definition: libpq.h:63
void list_free_deep(List *list)
Definition: list.c:1560
void LogicalConfirmReceivedLocation(XLogRecPtr lsn)
Definition: logical.c:1835
void FreeDecodingContext(LogicalDecodingContext *ctx)
Definition: logical.c:694
void DecodingContextFindStartpoint(LogicalDecodingContext *ctx)
Definition: logical.c:650
void CheckLogicalDecodingRequirements(void)
Definition: logical.c:109
LogicalDecodingContext * CreateInitDecodingContext(const char *plugin, List *output_plugin_options, bool need_full_snapshot, XLogRecPtr restart_lsn, XLogReaderRoutine *xl_routine, LogicalOutputPluginWriterPrepareWrite prepare_write, LogicalOutputPluginWriterWrite do_write, LogicalOutputPluginWriterUpdateProgress update_progress)
Definition: logical.c:330
LogicalDecodingContext * CreateDecodingContext(XLogRecPtr start_lsn, List *output_plugin_options, bool fast_forward, XLogReaderRoutine *xl_routine, LogicalOutputPluginWriterPrepareWrite prepare_write, LogicalOutputPluginWriterWrite do_write, LogicalOutputPluginWriterUpdateProgress update_progress)
Definition: logical.c:496
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1168
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1781
void LWLockReleaseAll(void)
Definition: lwlock.c:1876
@ LW_SHARED
Definition: lwlock.h:115
@ LW_EXCLUSIVE
Definition: lwlock.h:114
void MemoryContextSetParent(MemoryContext context, MemoryContext new_parent)
Definition: mcxt.c:637
char * pstrdup(const char *in)
Definition: mcxt.c:1696
void pfree(void *pointer)
Definition: mcxt.c:1521
MemoryContext TopMemoryContext
Definition: mcxt.c:149
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1215
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
char * MemoryContextStrdup(MemoryContext context, const char *string)
Definition: mcxt.c:1683
MemoryContext CacheMemoryContext
Definition: mcxt.c:152
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
void * palloc(Size size)
Definition: mcxt.c:1317
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define HOLD_CANCEL_INTERRUPTS()
Definition: miscadmin.h:141
#define RESUME_CANCEL_INTERRUPTS()
Definition: miscadmin.h:143
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
Oid GetUserId(void)
Definition: miscinit.c:514
@ CMD_SELECT
Definition: nodes.h:265
void * arg
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:41
#define MAXPGPATH
const void size_t len
#define lfirst(lc)
Definition: pg_list.h:172
#define NIL
Definition: pg_list.h:68
#define foreach_ptr(type, var, lst)
Definition: pg_list.h:469
static Datum LSNGetDatum(XLogRecPtr X)
Definition: pg_lsn.h:28
static bool two_phase
#define die(msg)
static char * buf
Definition: pg_test_fsync.c:73
void SendPostmasterSignal(PMSignalReason reason)
Definition: pmsignal.c:181
void MarkPostmasterChildWalSender(void)
Definition: pmsignal.c:339
@ PMSIGNAL_ADVANCE_STATE_MACHINE
Definition: pmsignal.h:42
pqsigfunc pqsignal(int signo, pqsigfunc func)
#define snprintf
Definition: port.h:238
void StatementCancelHandler(SIGNAL_ARGS)
Definition: postgres.c:3035
CommandDest whereToSendOutput
Definition: postgres.c:91
const char * debug_query_string
Definition: postgres.c:88
uintptr_t Datum
Definition: postgres.h:64
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:212
#define InvalidOid
Definition: postgres_ext.h:36
int pq_getbyte_if_available(unsigned char *c)
Definition: pqcomm.c:1004
int pq_getmessage(StringInfo s, int maxlen)
Definition: pqcomm.c:1203
WaitEventSet * FeBeWaitSet
Definition: pqcomm.c:166
void pq_endmsgread(void)
Definition: pqcomm.c:1165
int pq_getbyte(void)
Definition: pqcomm.c:964
void pq_startmsgread(void)
Definition: pqcomm.c:1141
unsigned int pq_getmsgint(StringInfo msg, int b)
Definition: pqformat.c:415
void pq_sendbytes(StringInfo buf, const void *data, int datalen)
Definition: pqformat.c:126
const char * pq_getmsgstring(StringInfo msg)
Definition: pqformat.c:579
void pq_endmessage(StringInfo buf)
Definition: pqformat.c:296
int pq_getmsgbyte(StringInfo msg)
Definition: pqformat.c:399
void pq_beginmessage(StringInfo buf, char msgtype)
Definition: pqformat.c:88
int64 pq_getmsgint64(StringInfo msg)
Definition: pqformat.c:453
void pq_endmessage_reuse(StringInfo buf)
Definition: pqformat.c:314
static void pq_sendint32(StringInfo buf, uint32 i)
Definition: pqformat.h:144
static void pq_sendbyte(StringInfo buf, uint8 byt)
Definition: pqformat.h:160
static void pq_sendint64(StringInfo buf, uint64 i)
Definition: pqformat.h:152
static void pq_sendint16(StringInfo buf, uint16 i)
Definition: pqformat.h:136
static int fd(const char *x, int i)
Definition: preproc-init.c:105
#define PROC_AFFECTS_ALL_HORIZONS
Definition: proc.h:62
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
int SendProcSignal(pid_t pid, ProcSignalReason reason, ProcNumber procNumber)
Definition: procsignal.c:281
void procsignal_sigusr1_handler(SIGNAL_ARGS)
Definition: procsignal.c:671
@ PROCSIG_WALSND_INIT_STOPPING
Definition: procsignal.h:35
#define PqMsg_CopyDone
Definition: protocol.h:64
#define PqMsg_CopyData
Definition: protocol.h:65
#define PqMsg_CopyInResponse
Definition: protocol.h:45
#define PqMsg_CopyBothResponse
Definition: protocol.h:54
#define PqMsg_DataRow
Definition: protocol.h:43
#define PqMsg_Terminate
Definition: protocol.h:28
bool update_process_title
Definition: ps_status.c:29
static void set_ps_display(const char *activity)
Definition: ps_status.h:40
MemoryContextSwitchTo(old_ctx)
@ REPLICATION_KIND_PHYSICAL
Definition: replnodes.h:22
@ REPLICATION_KIND_LOGICAL
Definition: replnodes.h:23
ResourceOwner ResourceOwnerCreate(ResourceOwner parent, const char *name)
Definition: resowner.c:413
ResourceOwner CurrentResourceOwner
Definition: resowner.c:165
void ResourceOwnerRelease(ResourceOwner owner, ResourceReleasePhase phase, bool isCommit, bool isTopLevel)
Definition: resowner.c:648
void ResourceOwnerDelete(ResourceOwner owner)
Definition: resowner.c:854
@ RESOURCE_RELEASE_LOCKS
Definition: resowner.h:55
@ RESOURCE_RELEASE_BEFORE_LOCKS
Definition: resowner.h:54
@ RESOURCE_RELEASE_AFTER_LOCKS
Definition: resowner.h:56
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:387
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
void pg_usleep(long microsec)
Definition: signal.c:53
static pg_noinline void Size size
Definition: slab.c:607
ReplicationSlot * SearchNamedReplicationSlot(const char *name, bool need_lock)
Definition: slot.c:464
void ReplicationSlotCreate(const char *name, bool db_specific, ReplicationSlotPersistency persistency, bool two_phase, bool failover, bool synced)
Definition: slot.c:309
void ReplicationSlotMarkDirty(void)
Definition: slot.c:1038
void ReplicationSlotReserveWal(void)
Definition: slot.c:1429
void ReplicationSlotAcquire(const char *name, bool nowait)
Definition: slot.c:540
void ReplicationSlotsComputeRequiredXmin(bool already_locked)
Definition: slot.c:1077
void ReplicationSlotPersist(void)
Definition: slot.c:1055
ReplicationSlot * MyReplicationSlot
Definition: slot.c:138
void ReplicationSlotDrop(const char *name, bool nowait)
Definition: slot.c:784
bool SlotExistsInSyncStandbySlots(const char *slot_name)
Definition: slot.c:2575
void ReplicationSlotSave(void)
Definition: slot.c:1020
void ReplicationSlotAlter(const char *name, const bool *failover, const bool *two_phase)
Definition: slot.c:807
void ReplicationSlotRelease(void)
Definition: slot.c:652
bool StandbySlotsHaveCaughtup(XLogRecPtr wait_for_lsn, int elevel)
Definition: slot.c:2608
void ReplicationSlotsComputeRequiredLSN(void)
Definition: slot.c:1133
void ReplicationSlotCleanup(bool synced_only)
Definition: slot.c:745
@ RS_PERSISTENT
Definition: slot.h:38
@ RS_EPHEMERAL
Definition: slot.h:39
@ RS_TEMPORARY
Definition: slot.h:40
#define SlotIsPhysical(slot)
Definition: slot.h:212
#define SlotIsLogical(slot)
Definition: slot.h:213
bool IsSyncingReplicationSlots(void)
Definition: slotsync.c:1651
const char * SnapBuildExportSnapshot(SnapBuild *builder)
Definition: snapbuild.c:678
Snapshot SnapBuildInitialSnapshot(SnapBuild *builder)
Definition: snapbuild.c:579
void SnapBuildClearExportedSnapshot(void)
Definition: snapbuild.c:739
bool FirstSnapshotSet
Definition: snapmgr.c:135
void RestoreTransactionSnapshot(Snapshot snapshot, void *source_pgproc)
Definition: snapmgr.c:1840
#define SpinLockInit(lock)
Definition: spin.h:57
#define SpinLockRelease(lock)
Definition: spin.h:61
#define SpinLockAcquire(lock)
Definition: spin.h:59
PGPROC * MyProc
Definition: proc.c:67
PROC_HDR * ProcGlobal
Definition: proc.c:79
char * dbname
Definition: streamutil.c:52
void resetStringInfo(StringInfo str)
Definition: stringinfo.c:78
void enlargeStringInfo(StringInfo str, int needed)
Definition: stringinfo.c:289
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
ReplicationKind kind
Definition: replnodes.h:56
char * defname
Definition: parsenodes.h:817
int32 day
Definition: timestamp.h:51
int32 month
Definition: timestamp.h:52
TimeOffset time
Definition: timestamp.h:49
WalTimeSample buffer[LAG_TRACKER_BUFFER_SIZE]
Definition: walsender.c:224
int read_heads[NUM_SYNC_REP_WAIT_MODE]
Definition: walsender.c:226
WalTimeSample last_read[NUM_SYNC_REP_WAIT_MODE]
Definition: walsender.c:227
int write_head
Definition: walsender.c:225
XLogRecPtr last_lsn
Definition: walsender.c:223
Definition: pg_list.h:54
XLogReaderState * reader
Definition: logical.h:42
struct SnapBuild * snapshot_builder
Definition: logical.h:44
StringInfo out
Definition: logical.h:71
Definition: nodes.h:129
NodeTag type
Definition: nodes.h:130
TransactionId xmin
Definition: proc.h:172
uint8 statusFlags
Definition: proc.h:237
int pgxactoff
Definition: proc.h:179
Latch procLatch
Definition: proc.h:164
uint8 * statusFlags
Definition: proc.h:394
TransactionId xmin
Definition: slot.h:85
TransactionId catalog_xmin
Definition: slot.h:93
XLogRecPtr restart_lsn
Definition: slot.h:96
XLogRecPtr confirmed_flush
Definition: slot.h:107
TransactionId effective_catalog_xmin
Definition: slot.h:178
slock_t mutex
Definition: slot.h:154
bool in_use
Definition: slot.h:157
TransactionId effective_xmin
Definition: slot.h:177
ReplicationSlotPersistentData data
Definition: slot.h:181
TupleDesc setDesc
Definition: execnodes.h:343
Tuplestorestate * setResult
Definition: execnodes.h:342
XLogRecPtr startpoint
Definition: replnodes.h:97
ReplicationKind kind
Definition: replnodes.h:94
TimeLineID timeline
Definition: replnodes.h:96
uint8 syncrep_method
Definition: syncrep.h:68
TimeLineID timeline
Definition: replnodes.h:120
TimeLineID ws_tli
Definition: xlogreader.h:49
uint32 events
Definition: latch.h:155
ConditionVariable wal_confirm_rcv_cv
WalSnd walsnds[FLEXIBLE_ARRAY_MEMBER]
ConditionVariable wal_replay_cv
dlist_head SyncRepQueue[NUM_SYNC_REP_WAIT_MODE]
ConditionVariable wal_flush_cv
TimeOffset writeLag
slock_t mutex
XLogRecPtr flush
XLogRecPtr sentPtr
TimeOffset flushLag
WalSndState state
ReplicationKind kind
XLogRecPtr write
TimeOffset applyLag
int sync_standby_priority
bool needreload
Latch * latch
TimestampTz replyTime
XLogRecPtr apply
TimestampTz time
Definition: walsender.c:214
XLogRecPtr lsn
Definition: walsender.c:213
WALSegmentContext segcxt
Definition: xlogreader.h:271
XLogRecPtr EndRecPtr
Definition: xlogreader.h:207
WALOpenSegment seg
Definition: xlogreader.h:272
Definition: regguts.h:323
void SyncRepInitConfig(void)
Definition: syncrep.c:402
SyncRepConfigData * SyncRepConfig
Definition: syncrep.c:97
int SyncRepGetCandidateStandbys(SyncRepStandbyData **standbys)
Definition: syncrep.c:711
void SyncRepReleaseWaiters(void)
Definition: syncrep.c:431
#define SYNC_REP_PRIORITY
Definition: syncrep.h:35
#define NUM_SYNC_REP_WAIT_MODE
Definition: syncrep.h:27
#define SyncRepRequested()
Definition: syncrep.h:18
#define SYNC_REP_WAIT_WRITE
Definition: syncrep.h:23
#define SYNC_REP_WAIT_FLUSH
Definition: syncrep.h:24
#define SYNC_REP_WAIT_APPLY
Definition: syncrep.h:25
void InitializeTimeouts(void)
Definition: timeout.c:470
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
bool TransactionIdPrecedesOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.c:299
#define InvalidTransactionId
Definition: transam.h:31
#define EpochFromFullTransactionId(x)
Definition: transam.h:47
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:67
void TupleDescInitBuiltinEntry(TupleDesc desc, AttrNumber attributeNumber, const char *attributeName, Oid oidtypeid, int32 typmod, int attdim)
Definition: tupdesc.c:726
void tuplestore_putvalues(Tuplestorestate *state, TupleDesc tdesc, const Datum *values, const bool *isnull)
Definition: tuplestore.c:784
char data[BLCKSZ]
Definition: c.h:1119
static Datum TimestampTzGetDatum(TimestampTz X)
Definition: timestamp.h:52
static Datum IntervalPGetDatum(const Interval *X)
Definition: timestamp.h:58
#define TimestampTzPlusMilliseconds(tz, ms)
Definition: timestamp.h:85
FullTransactionId ReadNextFullTransactionId(void)
Definition: varsup.c:288
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:85
static void pgstat_report_wait_end(void)
Definition: wait_event.h:101
XLogRecPtr GetWalRcvFlushRecPtr(XLogRecPtr *latestChunkStart, TimeLineID *receiveTLI)
static void ProcessPendingWrites(void)
Definition: walsender.c:1617
static XLogRecPtr sentPtr
Definition: walsender.c:165
#define READ_REPLICATION_SLOT_COLS
static void AlterReplicationSlot(AlterReplicationSlotCmd *cmd)
Definition: walsender.c:1413
static Interval * offset_to_interval(TimeOffset offset)
Definition: walsender.c:3850
static void WalSndWait(uint32 socket_events, long timeout, uint32 wait_event)
Definition: walsender.c:3690
static void WalSndLastCycleHandler(SIGNAL_ARGS)
Definition: walsender.c:3585
static volatile sig_atomic_t got_SIGUSR2
Definition: walsender.c:197
static void WalSndCheckTimeOut(void)
Definition: walsender.c:2743
static void XLogSendPhysical(void)
Definition: walsender.c:3069
static void ProcessRepliesIfAny(void)
Definition: walsender.c:2213
static bool waiting_for_ping_response
Definition: walsender.c:182
void PhysicalWakeupLogicalWalSnd(void)
Definition: walsender.c:1736
static void SendTimeLineHistory(TimeLineHistoryCmd *cmd)
Definition: walsender.c:587
void WalSndErrorCleanup(void)
Definition: walsender.c:327
static void InitWalSenderSlot(void)
Definition: walsender.c:2896
static void parseCreateReplSlotOptions(CreateReplicationSlotCmd *cmd, bool *reserve_wal, CRSSnapshotAction *snapshot_action, bool *two_phase, bool *failover)
Definition: walsender.c:1122
WalSnd * MyWalSnd
Definition: walsender.c:112
static void ProcessStandbyHSFeedbackMessage(void)
Definition: walsender.c:2575
static void ReadReplicationSlot(ReadReplicationSlotCmd *cmd)
Definition: walsender.c:488
static StringInfoData tmpbuf
Definition: walsender.c:170
static void PhysicalReplicationSlotNewXmin(TransactionId feedbackXmin, TransactionId feedbackCatalogXmin)
Definition: walsender.c:2495
static LagTracker * lag_tracker
Definition: walsender.c:230
static void PhysicalConfirmReceivedLocation(XLogRecPtr lsn)
Definition: walsender.c:2357
static void IdentifySystem(void)
Definition: walsender.c:407
static void WalSndSegmentOpen(XLogReaderState *state, XLogSegNo nextSegNo, TimeLineID *tli_p)
Definition: walsender.c:2991
static StringInfoData reply_message
Definition: walsender.c:169
static void WalSndKeepaliveIfNecessary(void)
Definition: walsender.c:4060
bool am_walsender
Definition: walsender.c:115
void WalSndSetState(WalSndState state)
Definition: walsender.c:3812
static StringInfoData output_message
Definition: walsender.c:168
static TimeLineID sendTimeLine
Definition: walsender.c:156
static bool HandleUploadManifestPacket(StringInfo buf, off_t *offset, IncrementalBackupInfo *ib)
Definition: walsender.c:741
static void WalSndLoop(WalSndSendDataCallback send_data)
Definition: walsender.c:2770
static void WalSndWriteData(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write)
Definition: walsender.c:1575
void WalSndWakeup(bool physical, bool logical)
Definition: walsender.c:3669
static LogicalDecodingContext * logical_decoding_ctx
Definition: walsender.c:208
static void XLogSendLogical(void)
Definition: walsender.c:3379
void WalSndShmemInit(void)
Definition: walsender.c:3624
bool am_db_walsender
Definition: walsender.c:118
static volatile sig_atomic_t replication_active
Definition: walsender.c:206
static void UploadManifest(void)
Definition: walsender.c:677
bool wake_wal_senders
Definition: walsender.c:130
static volatile sig_atomic_t got_STOPPING
Definition: walsender.c:198
int max_wal_senders
Definition: walsender.c:121
static bool TransactionIdInRecentPast(TransactionId xid, uint32 epoch)
Definition: walsender.c:2544
static void WalSndUpdateProgress(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool skipped_xact)
Definition: walsender.c:1671
bool exec_replication_command(const char *cmd_string)
Definition: walsender.c:1980
#define WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS
static bool NeedToWaitForStandbys(XLogRecPtr flushed_lsn, uint32 *wait_event)
Definition: walsender.c:1761
#define PG_STAT_GET_WAL_SENDERS_COLS
void(* WalSndSendDataCallback)(void)
Definition: walsender.c:236
Datum pg_stat_get_wal_senders(PG_FUNCTION_ARGS)
Definition: walsender.c:3866
void WalSndInitStopping(void)
Definition: walsender.c:3748
void WalSndWaitStopping(void)
Definition: walsender.c:3774
static bool sendTimeLineIsHistoric
Definition: walsender.c:158
void WalSndResourceCleanup(bool isCommit)
Definition: walsender.c:362
void WalSndRqstFileReload(void)
Definition: walsender.c:3540
static XLogRecPtr WalSndWaitForWal(XLogRecPtr loc)
Definition: walsender.c:1821
bool am_cascading_walsender
Definition: walsender.c:116
static TimestampTz last_processing
Definition: walsender.c:173
static bool NeedToWaitForWal(XLogRecPtr target_lsn, XLogRecPtr flushed_lsn, uint32 *wait_event)
Definition: walsender.c:1793
Size WalSndShmemSize(void)
Definition: walsender.c:3612
bool log_replication_commands
Definition: walsender.c:125
void HandleWalSndInitStopping(void)
Definition: walsender.c:3563
static TimeLineID sendTimeLineNextTLI
Definition: walsender.c:157
static MemoryContext uploaded_manifest_mcxt
Definition: walsender.c:148
static void CreateReplicationSlot(CreateReplicationSlotCmd *cmd)
Definition: walsender.c:1199
static int logical_read_xlog_page(XLogReaderState *state, XLogRecPtr targetPagePtr, int reqLen, XLogRecPtr targetRecPtr, char *cur_page)
Definition: walsender.c:1049
static void ProcessStandbyReplyMessage(void)
Definition: walsender.c:2390
static void WalSndKeepalive(bool requestReply, XLogRecPtr writePtr)
Definition: walsender.c:4037
static void LagTrackerWrite(XLogRecPtr lsn, TimestampTz local_flush_time)
Definition: walsender.c:4098
void WalSndSignals(void)
Definition: walsender.c:3593
static bool streamingDoneSending
Definition: walsender.c:190
static void StartLogicalReplication(StartReplicationCmd *cmd)
Definition: walsender.c:1455
static IncrementalBackupInfo * uploaded_manifest
Definition: walsender.c:147
static void WalSndShutdown(void)
Definition: walsender.c:240
static void WalSndKill(int code, Datum arg)
Definition: walsender.c:2973
int wal_sender_timeout
Definition: walsender.c:123
#define MAX_SEND_SIZE
Definition: walsender.c:106
static bool WalSndCaughtUp
Definition: walsender.c:194
static XLogRecPtr sendTimeLineValidUpto
Definition: walsender.c:159
static void ProcessStandbyMessage(void)
Definition: walsender.c:2326
static void WalSndPrepareWrite(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write)
Definition: walsender.c:1548
static void DropReplicationSlot(DropReplicationSlotCmd *cmd)
Definition: walsender.c:1404
#define LAG_TRACKER_BUFFER_SIZE
Definition: walsender.c:218
static TimeOffset LagTrackerRead(int head, XLogRecPtr lsn, TimestampTz now)
Definition: walsender.c:4163
static long WalSndComputeSleeptime(TimestampTz now)
Definition: walsender.c:2699
static bool streamingDoneReceiving
Definition: walsender.c:191
static void StartReplication(StartReplicationCmd *cmd)
Definition: walsender.c:817
static void WalSndDone(WalSndSendDataCallback send_data)
Definition: walsender.c:3464
static const char * WalSndGetStateString(WalSndState state)
Definition: walsender.c:3831
static XLogReaderState * xlogreader
Definition: walsender.c:137
static TimestampTz last_reply_timestamp
Definition: walsender.c:179
XLogRecPtr GetStandbyFlushRecPtr(TimeLineID *tli)
Definition: walsender.c:3507
WalSndCtlData * WalSndCtl
Definition: walsender.c:109
void InitWalSender(void)
CRSSnapshotAction
Definition: walsender.h:21
@ CRS_USE_SNAPSHOT
Definition: walsender.h:24
@ CRS_NOEXPORT_SNAPSHOT
Definition: walsender.h:23
@ CRS_EXPORT_SNAPSHOT
Definition: walsender.h:22
PGDLLIMPORT Node * replication_parse_result
WalSndState
@ WALSNDSTATE_STREAMING
@ WALSNDSTATE_BACKUP
@ WALSNDSTATE_CATCHUP
@ WALSNDSTATE_STARTUP
@ WALSNDSTATE_STOPPING
void replication_scanner_finish(void)
int replication_yyparse(void)
void replication_scanner_init(const char *str)
bool replication_scanner_is_replication_command(void)
#define SIGCHLD
Definition: win32_port.h:178
#define SIGHUP
Definition: win32_port.h:168
#define SIG_DFL
Definition: win32_port.h:163
#define SIGPIPE
Definition: win32_port.h:173
#define kill(pid, sig)
Definition: win32_port.h:503
#define SIGUSR1
Definition: win32_port.h:180
#define SIGUSR2
Definition: win32_port.h:181
#define SIG_IGN
Definition: win32_port.h:165
static const unsigned __int64 epoch
bool IsTransactionOrTransactionBlock(void)
Definition: xact.c:4982
bool XactReadOnly
Definition: xact.c:81
void PreventInTransactionBlock(bool isTopLevel, const char *stmtType)
Definition: xact.c:3628
void StartTransactionCommand(void)
Definition: xact.c:3039
bool IsAbortedTransactionBlockState(void)
Definition: xact.c:406
int XactIsoLevel
Definition: xact.c:78
bool IsSubTransaction(void)
Definition: xact.c:5037
bool IsTransactionBlock(void)
Definition: xact.c:4964
void CommitTransactionCommand(void)
Definition: xact.c:3137
#define XACT_REPEATABLE_READ
Definition: xact.h:38
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4561
bool RecoveryInProgress(void)
Definition: xlog.c:6333
TimeLineID GetWALInsertionTimeLine(void)
Definition: xlog.c:6519
Size WALReadFromBuffers(char *dstbuf, XLogRecPtr startptr, Size count, TimeLineID tli)
Definition: xlog.c:1747
void CheckXLogRemoved(XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:3720
int wal_segment_size
Definition: xlog.c:142
XLogRecPtr GetFlushRecPtr(TimeLineID *insertTLI)
Definition: xlog.c:6498
bool XLogBackgroundFlush(void)
Definition: xlog.c:2983
#define MAXFNAMELEN
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
static void XLogFilePath(char *path, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
static void XLogFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
static void TLHistoryFilePath(char *path, TimeLineID tli)
static void TLHistoryFileName(char *fname, TimeLineID tli)
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
uint32 TimeLineID
Definition: xlogdefs.h:59
uint64 XLogSegNo
Definition: xlogdefs.h:48
XLogRecord * XLogReadRecord(XLogReaderState *state, char **errormsg)
Definition: xlogreader.c:389
bool WALRead(XLogReaderState *state, char *buf, XLogRecPtr startptr, Size count, TimeLineID tli, WALReadError *errinfo)
Definition: xlogreader.c:1503
XLogReaderState * XLogReaderAllocate(int wal_segment_size, const char *waldir, XLogReaderRoutine *routine, void *private_data)
Definition: xlogreader.c:106
void XLogBeginRead(XLogReaderState *state, XLogRecPtr RecPtr)
Definition: xlogreader.c:231
#define XL_ROUTINE(...)
Definition: xlogreader.h:117
static TimeLineID receiveTLI
Definition: xlogrecovery.c:264
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)
void wal_segment_close(XLogReaderState *state)
Definition: xlogutils.c:842
void XLogReadDetermineTimeline(XLogReaderState *state, XLogRecPtr wantPage, uint32 wantLength, TimeLineID currTLI)
Definition: xlogutils.c:718
void WALReadRaiseError(WALReadError *errinfo)
Definition: xlogutils.c:1020