PostgreSQL Source Code  git master
execTuples.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * execTuples.c
4  * Routines dealing with TupleTableSlots. These are used for resource
5  * management associated with tuples (eg, releasing buffer pins for
6  * tuples in disk buffers, or freeing the memory occupied by transient
7  * tuples). Slots also provide access abstraction that lets us implement
8  * "virtual" tuples to reduce data-copying overhead.
9  *
10  * Routines dealing with the type information for tuples. Currently,
11  * the type information for a tuple is an array of FormData_pg_attribute.
12  * This information is needed by routines manipulating tuples
13  * (getattribute, formtuple, etc.).
14  *
15  *
16  * EXAMPLE OF HOW TABLE ROUTINES WORK
17  * Suppose we have a query such as SELECT emp.name FROM emp and we have
18  * a single SeqScan node in the query plan.
19  *
20  * At ExecutorStart()
21  * ----------------
22  *
23  * - ExecInitSeqScan() calls ExecInitScanTupleSlot() to construct a
24  * TupleTableSlots for the tuples returned by the access method, and
25  * ExecInitResultTypeTL() to define the node's return
26  * type. ExecAssignScanProjectionInfo() will, if necessary, create
27  * another TupleTableSlot for the tuples resulting from performing
28  * target list projections.
29  *
30  * During ExecutorRun()
31  * ----------------
32  * - SeqNext() calls ExecStoreBufferHeapTuple() to place the tuple
33  * returned by the access method into the scan tuple slot.
34  *
35  * - ExecSeqScan() (via ExecScan), if necessary, calls ExecProject(),
36  * putting the result of the projection in the result tuple slot. If
37  * not necessary, it directly returns the slot returned by SeqNext().
38  *
39  * - ExecutePlan() calls the output function.
40  *
41  * The important thing to watch in the executor code is how pointers
42  * to the slots containing tuples are passed instead of the tuples
43  * themselves. This facilitates the communication of related information
44  * (such as whether or not a tuple should be pfreed, what buffer contains
45  * this tuple, the tuple's tuple descriptor, etc). It also allows us
46  * to avoid physically constructing projection tuples in many cases.
47  *
48  *
49  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
50  * Portions Copyright (c) 1994, Regents of the University of California
51  *
52  *
53  * IDENTIFICATION
54  * src/backend/executor/execTuples.c
55  *
56  *-------------------------------------------------------------------------
57  */
58 #include "postgres.h"
59 
60 #include "access/heaptoast.h"
61 #include "access/htup_details.h"
62 #include "access/tupdesc_details.h"
63 #include "catalog/pg_type.h"
64 #include "funcapi.h"
65 #include "nodes/nodeFuncs.h"
66 #include "storage/bufmgr.h"
67 #include "utils/builtins.h"
68 #include "utils/expandeddatum.h"
69 #include "utils/lsyscache.h"
70 #include "utils/typcache.h"
71 
72 static TupleDesc ExecTypeFromTLInternal(List *targetList,
73  bool skipjunk);
75  int natts);
76 static inline void tts_buffer_heap_store_tuple(TupleTableSlot *slot,
77  HeapTuple tuple,
78  Buffer buffer,
79  bool transfer_pin);
80 static void tts_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, bool shouldFree);
81 
82 
87 
88 
89 /*
90  * TupleTableSlotOps implementations.
91  */
92 
93 /*
94  * TupleTableSlotOps implementation for VirtualTupleTableSlot.
95  */
96 static void
98 {
99 }
100 
101 static void
103 {
104 }
105 
106 static void
108 {
109  if (unlikely(TTS_SHOULDFREE(slot)))
110  {
112 
113  pfree(vslot->data);
114  vslot->data = NULL;
115 
116  slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
117  }
118 
119  slot->tts_nvalid = 0;
120  slot->tts_flags |= TTS_FLAG_EMPTY;
122 }
123 
124 /*
125  * Attribute values are readily available in tts_values and tts_isnull array
126  * in a VirtualTupleTableSlot. So there should be no need to call either of the
127  * following two functions.
128  */
129 static void
131 {
132  elog(ERROR, "getsomeattrs is not required to be called on a virtual tuple table slot");
133 }
134 
135 static Datum
137 {
138  elog(ERROR, "virtual tuple table slot does not have system attributes");
139 
140  return 0; /* silence compiler warnings */
141 }
142 
143 /*
144  * To materialize a virtual slot all the datums that aren't passed by value
145  * have to be copied into the slot's memory context. To do so, compute the
146  * required size, and allocate enough memory to store all attributes. That's
147  * good for cache hit ratio, but more importantly requires only memory
148  * allocation/deallocation.
149  */
150 static void
152 {
154  TupleDesc desc = slot->tts_tupleDescriptor;
155  Size sz = 0;
156  char *data;
157 
158  /* already materialized */
159  if (TTS_SHOULDFREE(slot))
160  return;
161 
162  /* compute size of memory required */
163  for (int natt = 0; natt < desc->natts; natt++)
164  {
165  Form_pg_attribute att = TupleDescAttr(desc, natt);
166  Datum val;
167 
168  if (att->attbyval || slot->tts_isnull[natt])
169  continue;
170 
171  val = slot->tts_values[natt];
172 
173  if (att->attlen == -1 &&
175  {
176  /*
177  * We want to flatten the expanded value so that the materialized
178  * slot doesn't depend on it.
179  */
180  sz = att_align_nominal(sz, att->attalign);
181  sz += EOH_get_flat_size(DatumGetEOHP(val));
182  }
183  else
184  {
185  sz = att_align_nominal(sz, att->attalign);
186  sz = att_addlength_datum(sz, att->attlen, val);
187  }
188  }
189 
190  /* all data is byval */
191  if (sz == 0)
192  return;
193 
194  /* allocate memory */
195  vslot->data = data = MemoryContextAlloc(slot->tts_mcxt, sz);
197 
198  /* and copy all attributes into the pre-allocated space */
199  for (int natt = 0; natt < desc->natts; natt++)
200  {
201  Form_pg_attribute att = TupleDescAttr(desc, natt);
202  Datum val;
203 
204  if (att->attbyval || slot->tts_isnull[natt])
205  continue;
206 
207  val = slot->tts_values[natt];
208 
209  if (att->attlen == -1 &&
211  {
212  Size data_length;
213 
214  /*
215  * We want to flatten the expanded value so that the materialized
216  * slot doesn't depend on it.
217  */
219 
220  data = (char *) att_align_nominal(data,
221  att->attalign);
222  data_length = EOH_get_flat_size(eoh);
223  EOH_flatten_into(eoh, data, data_length);
224 
225  slot->tts_values[natt] = PointerGetDatum(data);
226  data += data_length;
227  }
228  else
229  {
230  Size data_length = 0;
231 
232  data = (char *) att_align_nominal(data, att->attalign);
233  data_length = att_addlength_datum(data_length, att->attlen, val);
234 
235  memcpy(data, DatumGetPointer(val), data_length);
236 
237  slot->tts_values[natt] = PointerGetDatum(data);
238  data += data_length;
239  }
240  }
241 }
242 
243 static void
245 {
246  TupleDesc srcdesc = srcslot->tts_tupleDescriptor;
247 
248  Assert(srcdesc->natts <= dstslot->tts_tupleDescriptor->natts);
249 
250  tts_virtual_clear(dstslot);
251 
252  slot_getallattrs(srcslot);
253 
254  for (int natt = 0; natt < srcdesc->natts; natt++)
255  {
256  dstslot->tts_values[natt] = srcslot->tts_values[natt];
257  dstslot->tts_isnull[natt] = srcslot->tts_isnull[natt];
258  }
259 
260  dstslot->tts_nvalid = srcdesc->natts;
261  dstslot->tts_flags &= ~TTS_FLAG_EMPTY;
262 
263  /* make sure storage doesn't depend on external memory */
264  tts_virtual_materialize(dstslot);
265 }
266 
267 static HeapTuple
269 {
270  Assert(!TTS_EMPTY(slot));
271 
273  slot->tts_values,
274  slot->tts_isnull);
275 }
276 
277 static MinimalTuple
279 {
280  Assert(!TTS_EMPTY(slot));
281 
283  slot->tts_values,
284  slot->tts_isnull);
285 }
286 
287 
288 /*
289  * TupleTableSlotOps implementation for HeapTupleTableSlot.
290  */
291 
292 static void
294 {
295 }
296 
297 static void
299 {
300 }
301 
302 static void
304 {
305  HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
306 
307  /* Free the memory for the heap tuple if it's allowed. */
308  if (TTS_SHOULDFREE(slot))
309  {
310  heap_freetuple(hslot->tuple);
311  slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
312  }
313 
314  slot->tts_nvalid = 0;
315  slot->tts_flags |= TTS_FLAG_EMPTY;
317  hslot->off = 0;
318  hslot->tuple = NULL;
319 }
320 
321 static void
323 {
324  HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
325 
326  Assert(!TTS_EMPTY(slot));
327 
328  slot_deform_heap_tuple(slot, hslot->tuple, &hslot->off, natts);
329 }
330 
331 static Datum
332 tts_heap_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
333 {
334  HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
335 
336  Assert(!TTS_EMPTY(slot));
337 
338  return heap_getsysattr(hslot->tuple, attnum,
339  slot->tts_tupleDescriptor, isnull);
340 }
341 
342 static void
344 {
345  HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
346  MemoryContext oldContext;
347 
348  Assert(!TTS_EMPTY(slot));
349 
350  /* If slot has its tuple already materialized, nothing to do. */
351  if (TTS_SHOULDFREE(slot))
352  return;
353 
354  oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
355 
356  /*
357  * Have to deform from scratch, otherwise tts_values[] entries could point
358  * into the non-materialized tuple (which might be gone when accessed).
359  */
360  slot->tts_nvalid = 0;
361  hslot->off = 0;
362 
363  if (!hslot->tuple)
365  slot->tts_values,
366  slot->tts_isnull);
367  else
368  {
369  /*
370  * The tuple contained in this slot is not allocated in the memory
371  * context of the given slot (else it would have TTS_SHOULDFREE set).
372  * Copy the tuple into the given slot's memory context.
373  */
374  hslot->tuple = heap_copytuple(hslot->tuple);
375  }
376 
378 
379  MemoryContextSwitchTo(oldContext);
380 }
381 
382 static void
384 {
385  HeapTuple tuple;
386  MemoryContext oldcontext;
387 
388  oldcontext = MemoryContextSwitchTo(dstslot->tts_mcxt);
389  tuple = ExecCopySlotHeapTuple(srcslot);
390  MemoryContextSwitchTo(oldcontext);
391 
392  ExecStoreHeapTuple(tuple, dstslot, true);
393 }
394 
395 static HeapTuple
397 {
398  HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
399 
400  Assert(!TTS_EMPTY(slot));
401  if (!hslot->tuple)
402  tts_heap_materialize(slot);
403 
404  return hslot->tuple;
405 }
406 
407 static HeapTuple
409 {
410  HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
411 
412  Assert(!TTS_EMPTY(slot));
413  if (!hslot->tuple)
414  tts_heap_materialize(slot);
415 
416  return heap_copytuple(hslot->tuple);
417 }
418 
419 static MinimalTuple
421 {
422  HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
423 
424  if (!hslot->tuple)
425  tts_heap_materialize(slot);
426 
427  return minimal_tuple_from_heap_tuple(hslot->tuple);
428 }
429 
430 static void
431 tts_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, bool shouldFree)
432 {
433  HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
434 
435  tts_heap_clear(slot);
436 
437  slot->tts_nvalid = 0;
438  hslot->tuple = tuple;
439  hslot->off = 0;
441  slot->tts_tid = tuple->t_self;
442 
443  if (shouldFree)
445 }
446 
447 
448 /*
449  * TupleTableSlotOps implementation for MinimalTupleTableSlot.
450  */
451 
452 static void
454 {
456 
457  /*
458  * Initialize the heap tuple pointer to access attributes of the minimal
459  * tuple contained in the slot as if its a heap tuple.
460  */
461  mslot->tuple = &mslot->minhdr;
462 }
463 
464 static void
466 {
467 }
468 
469 static void
471 {
473 
474  if (TTS_SHOULDFREE(slot))
475  {
477  slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
478  }
479 
480  slot->tts_nvalid = 0;
481  slot->tts_flags |= TTS_FLAG_EMPTY;
483  mslot->off = 0;
484  mslot->mintuple = NULL;
485 }
486 
487 static void
489 {
491 
492  Assert(!TTS_EMPTY(slot));
493 
494  slot_deform_heap_tuple(slot, mslot->tuple, &mslot->off, natts);
495 }
496 
497 static Datum
499 {
500  elog(ERROR, "minimal tuple table slot does not have system attributes");
501 
502  return 0; /* silence compiler warnings */
503 }
504 
505 static void
507 {
509  MemoryContext oldContext;
510 
511  Assert(!TTS_EMPTY(slot));
512 
513  /* If slot has its tuple already materialized, nothing to do. */
514  if (TTS_SHOULDFREE(slot))
515  return;
516 
517  oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
518 
519  /*
520  * Have to deform from scratch, otherwise tts_values[] entries could point
521  * into the non-materialized tuple (which might be gone when accessed).
522  */
523  slot->tts_nvalid = 0;
524  mslot->off = 0;
525 
526  if (!mslot->mintuple)
527  {
529  slot->tts_values,
530  slot->tts_isnull);
531  }
532  else
533  {
534  /*
535  * The minimal tuple contained in this slot is not allocated in the
536  * memory context of the given slot (else it would have TTS_SHOULDFREE
537  * set). Copy the minimal tuple into the given slot's memory context.
538  */
539  mslot->mintuple = heap_copy_minimal_tuple(mslot->mintuple);
540  }
541 
543 
544  Assert(mslot->tuple == &mslot->minhdr);
545 
546  mslot->minhdr.t_len = mslot->mintuple->t_len + MINIMAL_TUPLE_OFFSET;
547  mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mslot->mintuple - MINIMAL_TUPLE_OFFSET);
548 
549  MemoryContextSwitchTo(oldContext);
550 }
551 
552 static void
554 {
555  MemoryContext oldcontext;
556  MinimalTuple mintuple;
557 
558  oldcontext = MemoryContextSwitchTo(dstslot->tts_mcxt);
559  mintuple = ExecCopySlotMinimalTuple(srcslot);
560  MemoryContextSwitchTo(oldcontext);
561 
562  ExecStoreMinimalTuple(mintuple, dstslot, true);
563 }
564 
565 static MinimalTuple
567 {
569 
570  if (!mslot->mintuple)
572 
573  return mslot->mintuple;
574 }
575 
576 static HeapTuple
578 {
580 
581  if (!mslot->mintuple)
583 
585 }
586 
587 static MinimalTuple
589 {
591 
592  if (!mslot->mintuple)
594 
595  return heap_copy_minimal_tuple(mslot->mintuple);
596 }
597 
598 static void
600 {
602 
603  tts_minimal_clear(slot);
604 
605  Assert(!TTS_SHOULDFREE(slot));
606  Assert(TTS_EMPTY(slot));
607 
608  slot->tts_flags &= ~TTS_FLAG_EMPTY;
609  slot->tts_nvalid = 0;
610  mslot->off = 0;
611 
612  mslot->mintuple = mtup;
613  Assert(mslot->tuple == &mslot->minhdr);
614  mslot->minhdr.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
615  mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);
616  /* no need to set t_self or t_tableOid since we won't allow access */
617 
618  if (shouldFree)
620 }
621 
622 
623 /*
624  * TupleTableSlotOps implementation for BufferHeapTupleTableSlot.
625  */
626 
627 static void
629 {
630 }
631 
632 static void
634 {
635 }
636 
637 static void
639 {
641 
642  /*
643  * Free the memory for heap tuple if allowed. A tuple coming from buffer
644  * can never be freed. But we may have materialized a tuple from buffer.
645  * Such a tuple can be freed.
646  */
647  if (TTS_SHOULDFREE(slot))
648  {
649  /* We should have unpinned the buffer while materializing the tuple. */
650  Assert(!BufferIsValid(bslot->buffer));
651 
652  heap_freetuple(bslot->base.tuple);
653  slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
654  }
655 
656  if (BufferIsValid(bslot->buffer))
657  ReleaseBuffer(bslot->buffer);
658 
659  slot->tts_nvalid = 0;
660  slot->tts_flags |= TTS_FLAG_EMPTY;
662  bslot->base.tuple = NULL;
663  bslot->base.off = 0;
664  bslot->buffer = InvalidBuffer;
665 }
666 
667 static void
669 {
671 
672  Assert(!TTS_EMPTY(slot));
673 
674  slot_deform_heap_tuple(slot, bslot->base.tuple, &bslot->base.off, natts);
675 }
676 
677 static Datum
679 {
681 
682  Assert(!TTS_EMPTY(slot));
683 
684  return heap_getsysattr(bslot->base.tuple, attnum,
685  slot->tts_tupleDescriptor, isnull);
686 }
687 
688 static void
690 {
692  MemoryContext oldContext;
693 
694  Assert(!TTS_EMPTY(slot));
695 
696  /* If slot has its tuple already materialized, nothing to do. */
697  if (TTS_SHOULDFREE(slot))
698  return;
699 
700  oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
701 
702  /*
703  * Have to deform from scratch, otherwise tts_values[] entries could point
704  * into the non-materialized tuple (which might be gone when accessed).
705  */
706  bslot->base.off = 0;
707  slot->tts_nvalid = 0;
708 
709  if (!bslot->base.tuple)
710  {
711  /*
712  * Normally BufferHeapTupleTableSlot should have a tuple + buffer
713  * associated with it, unless it's materialized (which would've
714  * returned above). But when it's useful to allow storing virtual
715  * tuples in a buffer slot, which then also needs to be
716  * materializable.
717  */
719  slot->tts_values,
720  slot->tts_isnull);
721  }
722  else
723  {
724  bslot->base.tuple = heap_copytuple(bslot->base.tuple);
725 
726  /*
727  * A heap tuple stored in a BufferHeapTupleTableSlot should have a
728  * buffer associated with it, unless it's materialized or virtual.
729  */
730  if (likely(BufferIsValid(bslot->buffer)))
731  ReleaseBuffer(bslot->buffer);
732  bslot->buffer = InvalidBuffer;
733  }
734 
735  /*
736  * We don't set TTS_FLAG_SHOULDFREE until after releasing the buffer, if
737  * any. This avoids having a transient state that would fall foul of our
738  * assertions that a slot with TTS_FLAG_SHOULDFREE doesn't own a buffer.
739  * In the unlikely event that ReleaseBuffer() above errors out, we'd
740  * effectively leak the copied tuple, but that seems fairly harmless.
741  */
743 
744  MemoryContextSwitchTo(oldContext);
745 }
746 
747 static void
749 {
750  BufferHeapTupleTableSlot *bsrcslot = (BufferHeapTupleTableSlot *) srcslot;
751  BufferHeapTupleTableSlot *bdstslot = (BufferHeapTupleTableSlot *) dstslot;
752 
753  /*
754  * If the source slot is of a different kind, or is a buffer slot that has
755  * been materialized / is virtual, make a new copy of the tuple. Otherwise
756  * make a new reference to the in-buffer tuple.
757  */
758  if (dstslot->tts_ops != srcslot->tts_ops ||
759  TTS_SHOULDFREE(srcslot) ||
760  !bsrcslot->base.tuple)
761  {
762  MemoryContext oldContext;
763 
764  ExecClearTuple(dstslot);
765  dstslot->tts_flags &= ~TTS_FLAG_EMPTY;
766  oldContext = MemoryContextSwitchTo(dstslot->tts_mcxt);
767  bdstslot->base.tuple = ExecCopySlotHeapTuple(srcslot);
768  dstslot->tts_flags |= TTS_FLAG_SHOULDFREE;
769  MemoryContextSwitchTo(oldContext);
770  }
771  else
772  {
773  Assert(BufferIsValid(bsrcslot->buffer));
774 
775  tts_buffer_heap_store_tuple(dstslot, bsrcslot->base.tuple,
776  bsrcslot->buffer, false);
777 
778  /*
779  * The HeapTupleData portion of the source tuple might be shorter
780  * lived than the destination slot. Therefore copy the HeapTuple into
781  * our slot's tupdata, which is guaranteed to live long enough (but
782  * will still point into the buffer).
783  */
784  memcpy(&bdstslot->base.tupdata, bdstslot->base.tuple, sizeof(HeapTupleData));
785  bdstslot->base.tuple = &bdstslot->base.tupdata;
786  }
787 }
788 
789 static HeapTuple
791 {
793 
794  Assert(!TTS_EMPTY(slot));
795 
796  if (!bslot->base.tuple)
798 
799  return bslot->base.tuple;
800 }
801 
802 static HeapTuple
804 {
806 
807  Assert(!TTS_EMPTY(slot));
808 
809  if (!bslot->base.tuple)
811 
812  return heap_copytuple(bslot->base.tuple);
813 }
814 
815 static MinimalTuple
817 {
819 
820  Assert(!TTS_EMPTY(slot));
821 
822  if (!bslot->base.tuple)
824 
826 }
827 
828 static inline void
830  Buffer buffer, bool transfer_pin)
831 {
833 
834  if (TTS_SHOULDFREE(slot))
835  {
836  /* materialized slot shouldn't have a buffer to release */
837  Assert(!BufferIsValid(bslot->buffer));
838 
839  heap_freetuple(bslot->base.tuple);
840  slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
841  }
842 
843  slot->tts_flags &= ~TTS_FLAG_EMPTY;
844  slot->tts_nvalid = 0;
845  bslot->base.tuple = tuple;
846  bslot->base.off = 0;
847  slot->tts_tid = tuple->t_self;
848 
849  /*
850  * If tuple is on a disk page, keep the page pinned as long as we hold a
851  * pointer into it. We assume the caller already has such a pin. If
852  * transfer_pin is true, we'll transfer that pin to this slot, if not
853  * we'll pin it again ourselves.
854  *
855  * This is coded to optimize the case where the slot previously held a
856  * tuple on the same disk page: in that case releasing and re-acquiring
857  * the pin is a waste of cycles. This is a common situation during
858  * seqscans, so it's worth troubling over.
859  */
860  if (bslot->buffer != buffer)
861  {
862  if (BufferIsValid(bslot->buffer))
863  ReleaseBuffer(bslot->buffer);
864 
865  bslot->buffer = buffer;
866 
867  if (!transfer_pin && BufferIsValid(buffer))
868  IncrBufferRefCount(buffer);
869  }
870  else if (transfer_pin && BufferIsValid(buffer))
871  {
872  /*
873  * In transfer_pin mode the caller won't know about the same-page
874  * optimization, so we gotta release its pin.
875  */
876  ReleaseBuffer(buffer);
877  }
878 }
879 
880 /*
881  * slot_deform_heap_tuple
882  * Given a TupleTableSlot, extract data from the slot's physical tuple
883  * into its Datum/isnull arrays. Data is extracted up through the
884  * natts'th column (caller must ensure this is a legal column number).
885  *
886  * This is essentially an incremental version of heap_deform_tuple:
887  * on each call we extract attributes up to the one needed, without
888  * re-computing information about previously extracted attributes.
889  * slot->tts_nvalid is the number of attributes already extracted.
890  *
891  * This is marked as always inline, so the different offp for different types
892  * of slots gets optimized away.
893  */
894 static pg_attribute_always_inline void
896  int natts)
897 {
898  TupleDesc tupleDesc = slot->tts_tupleDescriptor;
899  Datum *values = slot->tts_values;
900  bool *isnull = slot->tts_isnull;
901  HeapTupleHeader tup = tuple->t_data;
902  bool hasnulls = HeapTupleHasNulls(tuple);
903  int attnum;
904  char *tp; /* ptr to tuple data */
905  uint32 off; /* offset in tuple data */
906  bits8 *bp = tup->t_bits; /* ptr to null bitmap in tuple */
907  bool slow; /* can we use/set attcacheoff? */
908 
909  /* We can only fetch as many attributes as the tuple has. */
910  natts = Min(HeapTupleHeaderGetNatts(tuple->t_data), natts);
911 
912  /*
913  * Check whether the first call for this tuple, and initialize or restore
914  * loop state.
915  */
916  attnum = slot->tts_nvalid;
917  if (attnum == 0)
918  {
919  /* Start from the first attribute */
920  off = 0;
921  slow = false;
922  }
923  else
924  {
925  /* Restore state from previous execution */
926  off = *offp;
927  slow = TTS_SLOW(slot);
928  }
929 
930  tp = (char *) tup + tup->t_hoff;
931 
932  for (; attnum < natts; attnum++)
933  {
934  Form_pg_attribute thisatt = TupleDescAttr(tupleDesc, attnum);
935 
936  if (hasnulls && att_isnull(attnum, bp))
937  {
938  values[attnum] = (Datum) 0;
939  isnull[attnum] = true;
940  slow = true; /* can't use attcacheoff anymore */
941  continue;
942  }
943 
944  isnull[attnum] = false;
945 
946  if (!slow && thisatt->attcacheoff >= 0)
947  off = thisatt->attcacheoff;
948  else if (thisatt->attlen == -1)
949  {
950  /*
951  * We can only cache the offset for a varlena attribute if the
952  * offset is already suitably aligned, so that there would be no
953  * pad bytes in any case: then the offset will be valid for either
954  * an aligned or unaligned value.
955  */
956  if (!slow &&
957  off == att_align_nominal(off, thisatt->attalign))
958  thisatt->attcacheoff = off;
959  else
960  {
961  off = att_align_pointer(off, thisatt->attalign, -1,
962  tp + off);
963  slow = true;
964  }
965  }
966  else
967  {
968  /* not varlena, so safe to use att_align_nominal */
969  off = att_align_nominal(off, thisatt->attalign);
970 
971  if (!slow)
972  thisatt->attcacheoff = off;
973  }
974 
975  values[attnum] = fetchatt(thisatt, tp + off);
976 
977  off = att_addlength_pointer(off, thisatt->attlen, tp + off);
978 
979  if (thisatt->attlen <= 0)
980  slow = true; /* can't use attcacheoff anymore */
981  }
982 
983  /*
984  * Save state for next execution
985  */
986  slot->tts_nvalid = attnum;
987  *offp = off;
988  if (slow)
989  slot->tts_flags |= TTS_FLAG_SLOW;
990  else
991  slot->tts_flags &= ~TTS_FLAG_SLOW;
992 }
993 
994 
995 const TupleTableSlotOps TTSOpsVirtual = {
998  .release = tts_virtual_release,
999  .clear = tts_virtual_clear,
1000  .getsomeattrs = tts_virtual_getsomeattrs,
1001  .getsysattr = tts_virtual_getsysattr,
1002  .materialize = tts_virtual_materialize,
1003  .copyslot = tts_virtual_copyslot,
1004 
1005  /*
1006  * A virtual tuple table slot can not "own" a heap tuple or a minimal
1007  * tuple.
1008  */
1009  .get_heap_tuple = NULL,
1010  .get_minimal_tuple = NULL,
1011  .copy_heap_tuple = tts_virtual_copy_heap_tuple,
1012  .copy_minimal_tuple = tts_virtual_copy_minimal_tuple
1013 };
1014 
1015 const TupleTableSlotOps TTSOpsHeapTuple = {
1017  .init = tts_heap_init,
1018  .release = tts_heap_release,
1019  .clear = tts_heap_clear,
1020  .getsomeattrs = tts_heap_getsomeattrs,
1021  .getsysattr = tts_heap_getsysattr,
1022  .materialize = tts_heap_materialize,
1023  .copyslot = tts_heap_copyslot,
1024  .get_heap_tuple = tts_heap_get_heap_tuple,
1025 
1026  /* A heap tuple table slot can not "own" a minimal tuple. */
1027  .get_minimal_tuple = NULL,
1028  .copy_heap_tuple = tts_heap_copy_heap_tuple,
1029  .copy_minimal_tuple = tts_heap_copy_minimal_tuple
1030 };
1031 
1032 const TupleTableSlotOps TTSOpsMinimalTuple = {
1035  .release = tts_minimal_release,
1036  .clear = tts_minimal_clear,
1037  .getsomeattrs = tts_minimal_getsomeattrs,
1038  .getsysattr = tts_minimal_getsysattr,
1039  .materialize = tts_minimal_materialize,
1040  .copyslot = tts_minimal_copyslot,
1041 
1042  /* A minimal tuple table slot can not "own" a heap tuple. */
1043  .get_heap_tuple = NULL,
1044  .get_minimal_tuple = tts_minimal_get_minimal_tuple,
1045  .copy_heap_tuple = tts_minimal_copy_heap_tuple,
1046  .copy_minimal_tuple = tts_minimal_copy_minimal_tuple
1047 };
1048 
1049 const TupleTableSlotOps TTSOpsBufferHeapTuple = {
1052  .release = tts_buffer_heap_release,
1053  .clear = tts_buffer_heap_clear,
1054  .getsomeattrs = tts_buffer_heap_getsomeattrs,
1055  .getsysattr = tts_buffer_heap_getsysattr,
1056  .materialize = tts_buffer_heap_materialize,
1057  .copyslot = tts_buffer_heap_copyslot,
1058  .get_heap_tuple = tts_buffer_heap_get_heap_tuple,
1059 
1060  /* A buffer heap tuple table slot can not "own" a minimal tuple. */
1061  .get_minimal_tuple = NULL,
1062  .copy_heap_tuple = tts_buffer_heap_copy_heap_tuple,
1063  .copy_minimal_tuple = tts_buffer_heap_copy_minimal_tuple
1064 };
1065 
1066 
1067 /* ----------------------------------------------------------------
1068  * tuple table create/delete functions
1069  * ----------------------------------------------------------------
1070  */
1071 
1072 /* --------------------------------
1073  * MakeTupleTableSlot
1074  *
1075  * Basic routine to make an empty TupleTableSlot of given
1076  * TupleTableSlotType. If tupleDesc is specified the slot's descriptor is
1077  * fixed for its lifetime, gaining some efficiency. If that's
1078  * undesirable, pass NULL.
1079  * --------------------------------
1080  */
1083  const TupleTableSlotOps *tts_ops)
1084 {
1085  Size basesz,
1086  allocsz;
1087  TupleTableSlot *slot;
1088 
1089  basesz = tts_ops->base_slot_size;
1090 
1091  /*
1092  * When a fixed descriptor is specified, we can reduce overhead by
1093  * allocating the entire slot in one go.
1094  */
1095  if (tupleDesc)
1096  allocsz = MAXALIGN(basesz) +
1097  MAXALIGN(tupleDesc->natts * sizeof(Datum)) +
1098  MAXALIGN(tupleDesc->natts * sizeof(bool));
1099  else
1100  allocsz = basesz;
1101 
1102  slot = palloc0(allocsz);
1103  /* const for optimization purposes, OK to modify at allocation time */
1104  *((const TupleTableSlotOps **) &slot->tts_ops) = tts_ops;
1105  slot->type = T_TupleTableSlot;
1106  slot->tts_flags |= TTS_FLAG_EMPTY;
1107  if (tupleDesc != NULL)
1108  slot->tts_flags |= TTS_FLAG_FIXED;
1109  slot->tts_tupleDescriptor = tupleDesc;
1111  slot->tts_nvalid = 0;
1112 
1113  if (tupleDesc != NULL)
1114  {
1115  slot->tts_values = (Datum *)
1116  (((char *) slot)
1117  + MAXALIGN(basesz));
1118  slot->tts_isnull = (bool *)
1119  (((char *) slot)
1120  + MAXALIGN(basesz)
1121  + MAXALIGN(tupleDesc->natts * sizeof(Datum)));
1122 
1123  PinTupleDesc(tupleDesc);
1124  }
1125 
1126  /*
1127  * And allow slot type specific initialization.
1128  */
1129  slot->tts_ops->init(slot);
1130 
1131  return slot;
1132 }
1133 
1134 /* --------------------------------
1135  * ExecAllocTableSlot
1136  *
1137  * Create a tuple table slot within a tuple table (which is just a List).
1138  * --------------------------------
1139  */
1141 ExecAllocTableSlot(List **tupleTable, TupleDesc desc,
1142  const TupleTableSlotOps *tts_ops)
1143 {
1144  TupleTableSlot *slot = MakeTupleTableSlot(desc, tts_ops);
1145 
1146  *tupleTable = lappend(*tupleTable, slot);
1147 
1148  return slot;
1149 }
1150 
1151 /* --------------------------------
1152  * ExecResetTupleTable
1153  *
1154  * This releases any resources (buffer pins, tupdesc refcounts)
1155  * held by the tuple table, and optionally releases the memory
1156  * occupied by the tuple table data structure.
1157  * It is expected that this routine be called by ExecEndPlan().
1158  * --------------------------------
1159  */
1160 void
1161 ExecResetTupleTable(List *tupleTable, /* tuple table */
1162  bool shouldFree) /* true if we should free memory */
1163 {
1164  ListCell *lc;
1165 
1166  foreach(lc, tupleTable)
1167  {
1169 
1170  /* Always release resources and reset the slot to empty */
1171  ExecClearTuple(slot);
1172  slot->tts_ops->release(slot);
1173  if (slot->tts_tupleDescriptor)
1174  {
1176  slot->tts_tupleDescriptor = NULL;
1177  }
1178 
1179  /* If shouldFree, release memory occupied by the slot itself */
1180  if (shouldFree)
1181  {
1182  if (!TTS_FIXED(slot))
1183  {
1184  if (slot->tts_values)
1185  pfree(slot->tts_values);
1186  if (slot->tts_isnull)
1187  pfree(slot->tts_isnull);
1188  }
1189  pfree(slot);
1190  }
1191  }
1192 
1193  /* If shouldFree, release the list structure */
1194  if (shouldFree)
1195  list_free(tupleTable);
1196 }
1197 
1198 /* --------------------------------
1199  * MakeSingleTupleTableSlot
1200  *
1201  * This is a convenience routine for operations that need a standalone
1202  * TupleTableSlot not gotten from the main executor tuple table. It makes
1203  * a single slot of given TupleTableSlotType and initializes it to use the
1204  * given tuple descriptor.
1205  * --------------------------------
1206  */
1209  const TupleTableSlotOps *tts_ops)
1210 {
1211  TupleTableSlot *slot = MakeTupleTableSlot(tupdesc, tts_ops);
1212 
1213  return slot;
1214 }
1215 
1216 /* --------------------------------
1217  * ExecDropSingleTupleTableSlot
1218  *
1219  * Release a TupleTableSlot made with MakeSingleTupleTableSlot.
1220  * DON'T use this on a slot that's part of a tuple table list!
1221  * --------------------------------
1222  */
1223 void
1225 {
1226  /* This should match ExecResetTupleTable's processing of one slot */
1227  Assert(IsA(slot, TupleTableSlot));
1228  ExecClearTuple(slot);
1229  slot->tts_ops->release(slot);
1230  if (slot->tts_tupleDescriptor)
1232  if (!TTS_FIXED(slot))
1233  {
1234  if (slot->tts_values)
1235  pfree(slot->tts_values);
1236  if (slot->tts_isnull)
1237  pfree(slot->tts_isnull);
1238  }
1239  pfree(slot);
1240 }
1241 
1242 
1243 /* ----------------------------------------------------------------
1244  * tuple table slot accessor functions
1245  * ----------------------------------------------------------------
1246  */
1247 
1248 /* --------------------------------
1249  * ExecSetSlotDescriptor
1250  *
1251  * This function is used to set the tuple descriptor associated
1252  * with the slot's tuple. The passed descriptor must have lifespan
1253  * at least equal to the slot's. If it is a reference-counted descriptor
1254  * then the reference count is incremented for as long as the slot holds
1255  * a reference.
1256  * --------------------------------
1257  */
1258 void
1259 ExecSetSlotDescriptor(TupleTableSlot *slot, /* slot to change */
1260  TupleDesc tupdesc) /* new tuple descriptor */
1261 {
1262  Assert(!TTS_FIXED(slot));
1263 
1264  /* For safety, make sure slot is empty before changing it */
1265  ExecClearTuple(slot);
1266 
1267  /*
1268  * Release any old descriptor. Also release old Datum/isnull arrays if
1269  * present (we don't bother to check if they could be re-used).
1270  */
1271  if (slot->tts_tupleDescriptor)
1273 
1274  if (slot->tts_values)
1275  pfree(slot->tts_values);
1276  if (slot->tts_isnull)
1277  pfree(slot->tts_isnull);
1278 
1279  /*
1280  * Install the new descriptor; if it's refcounted, bump its refcount.
1281  */
1282  slot->tts_tupleDescriptor = tupdesc;
1283  PinTupleDesc(tupdesc);
1284 
1285  /*
1286  * Allocate Datum/isnull arrays of the appropriate size. These must have
1287  * the same lifetime as the slot, so allocate in the slot's own context.
1288  */
1289  slot->tts_values = (Datum *)
1290  MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(Datum));
1291  slot->tts_isnull = (bool *)
1292  MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(bool));
1293 }
1294 
1295 /* --------------------------------
1296  * ExecStoreHeapTuple
1297  *
1298  * This function is used to store an on-the-fly physical tuple into a specified
1299  * slot in the tuple table.
1300  *
1301  * tuple: tuple to store
1302  * slot: TTSOpsHeapTuple type slot to store it in
1303  * shouldFree: true if ExecClearTuple should pfree() the tuple
1304  * when done with it
1305  *
1306  * shouldFree is normally set 'true' for tuples constructed on-the-fly. But it
1307  * can be 'false' when the referenced tuple is held in a tuple table slot
1308  * belonging to a lower-level executor Proc node. In this case the lower-level
1309  * slot retains ownership and responsibility for eventually releasing the
1310  * tuple. When this method is used, we must be certain that the upper-level
1311  * Proc node will lose interest in the tuple sooner than the lower-level one
1312  * does! If you're not certain, copy the lower-level tuple with heap_copytuple
1313  * and let the upper-level table slot assume ownership of the copy!
1314  *
1315  * Return value is just the passed-in slot pointer.
1316  *
1317  * If the target slot is not guaranteed to be TTSOpsHeapTuple type slot, use
1318  * the, more expensive, ExecForceStoreHeapTuple().
1319  * --------------------------------
1320  */
1323  TupleTableSlot *slot,
1324  bool shouldFree)
1325 {
1326  /*
1327  * sanity checks
1328  */
1329  Assert(tuple != NULL);
1330  Assert(slot != NULL);
1331  Assert(slot->tts_tupleDescriptor != NULL);
1332 
1333  if (unlikely(!TTS_IS_HEAPTUPLE(slot)))
1334  elog(ERROR, "trying to store a heap tuple into wrong type of slot");
1335  tts_heap_store_tuple(slot, tuple, shouldFree);
1336 
1337  slot->tts_tableOid = tuple->t_tableOid;
1338 
1339  return slot;
1340 }
1341 
1342 /* --------------------------------
1343  * ExecStoreBufferHeapTuple
1344  *
1345  * This function is used to store an on-disk physical tuple from a buffer
1346  * into a specified slot in the tuple table.
1347  *
1348  * tuple: tuple to store
1349  * slot: TTSOpsBufferHeapTuple type slot to store it in
1350  * buffer: disk buffer if tuple is in a disk page, else InvalidBuffer
1351  *
1352  * The tuple table code acquires a pin on the buffer which is held until the
1353  * slot is cleared, so that the tuple won't go away on us.
1354  *
1355  * Return value is just the passed-in slot pointer.
1356  *
1357  * If the target slot is not guaranteed to be TTSOpsBufferHeapTuple type slot,
1358  * use the, more expensive, ExecForceStoreHeapTuple().
1359  * --------------------------------
1360  */
1363  TupleTableSlot *slot,
1364  Buffer buffer)
1365 {
1366  /*
1367  * sanity checks
1368  */
1369  Assert(tuple != NULL);
1370  Assert(slot != NULL);
1371  Assert(slot->tts_tupleDescriptor != NULL);
1372  Assert(BufferIsValid(buffer));
1373 
1374  if (unlikely(!TTS_IS_BUFFERTUPLE(slot)))
1375  elog(ERROR, "trying to store an on-disk heap tuple into wrong type of slot");
1376  tts_buffer_heap_store_tuple(slot, tuple, buffer, false);
1377 
1378  slot->tts_tableOid = tuple->t_tableOid;
1379 
1380  return slot;
1381 }
1382 
1383 /*
1384  * Like ExecStoreBufferHeapTuple, but transfer an existing pin from the caller
1385  * to the slot, i.e. the caller doesn't need to, and may not, release the pin.
1386  */
1389  TupleTableSlot *slot,
1390  Buffer buffer)
1391 {
1392  /*
1393  * sanity checks
1394  */
1395  Assert(tuple != NULL);
1396  Assert(slot != NULL);
1397  Assert(slot->tts_tupleDescriptor != NULL);
1398  Assert(BufferIsValid(buffer));
1399 
1400  if (unlikely(!TTS_IS_BUFFERTUPLE(slot)))
1401  elog(ERROR, "trying to store an on-disk heap tuple into wrong type of slot");
1402  tts_buffer_heap_store_tuple(slot, tuple, buffer, true);
1403 
1404  slot->tts_tableOid = tuple->t_tableOid;
1405 
1406  return slot;
1407 }
1408 
1409 /*
1410  * Store a minimal tuple into TTSOpsMinimalTuple type slot.
1411  *
1412  * If the target slot is not guaranteed to be TTSOpsMinimalTuple type slot,
1413  * use the, more expensive, ExecForceStoreMinimalTuple().
1414  */
1417  TupleTableSlot *slot,
1418  bool shouldFree)
1419 {
1420  /*
1421  * sanity checks
1422  */
1423  Assert(mtup != NULL);
1424  Assert(slot != NULL);
1425  Assert(slot->tts_tupleDescriptor != NULL);
1426 
1427  if (unlikely(!TTS_IS_MINIMALTUPLE(slot)))
1428  elog(ERROR, "trying to store a minimal tuple into wrong type of slot");
1429  tts_minimal_store_tuple(slot, mtup, shouldFree);
1430 
1431  return slot;
1432 }
1433 
1434 /*
1435  * Store a HeapTuple into any kind of slot, performing conversion if
1436  * necessary.
1437  */
1438 void
1440  TupleTableSlot *slot,
1441  bool shouldFree)
1442 {
1443  if (TTS_IS_HEAPTUPLE(slot))
1444  {
1445  ExecStoreHeapTuple(tuple, slot, shouldFree);
1446  }
1447  else if (TTS_IS_BUFFERTUPLE(slot))
1448  {
1449  MemoryContext oldContext;
1451 
1452  ExecClearTuple(slot);
1453  slot->tts_flags &= ~TTS_FLAG_EMPTY;
1454  oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
1455  bslot->base.tuple = heap_copytuple(tuple);
1456  slot->tts_flags |= TTS_FLAG_SHOULDFREE;
1457  MemoryContextSwitchTo(oldContext);
1458 
1459  if (shouldFree)
1460  pfree(tuple);
1461  }
1462  else
1463  {
1464  ExecClearTuple(slot);
1466  slot->tts_values, slot->tts_isnull);
1467  ExecStoreVirtualTuple(slot);
1468 
1469  if (shouldFree)
1470  {
1471  ExecMaterializeSlot(slot);
1472  pfree(tuple);
1473  }
1474  }
1475 }
1476 
1477 /*
1478  * Store a MinimalTuple into any kind of slot, performing conversion if
1479  * necessary.
1480  */
1481 void
1483  TupleTableSlot *slot,
1484  bool shouldFree)
1485 {
1486  if (TTS_IS_MINIMALTUPLE(slot))
1487  {
1488  tts_minimal_store_tuple(slot, mtup, shouldFree);
1489  }
1490  else
1491  {
1492  HeapTupleData htup;
1493 
1494  ExecClearTuple(slot);
1495 
1496  htup.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
1497  htup.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);
1499  slot->tts_values, slot->tts_isnull);
1500  ExecStoreVirtualTuple(slot);
1501 
1502  if (shouldFree)
1503  {
1504  ExecMaterializeSlot(slot);
1505  pfree(mtup);
1506  }
1507  }
1508 }
1509 
1510 /* --------------------------------
1511  * ExecStoreVirtualTuple
1512  * Mark a slot as containing a virtual tuple.
1513  *
1514  * The protocol for loading a slot with virtual tuple data is:
1515  * * Call ExecClearTuple to mark the slot empty.
1516  * * Store data into the Datum/isnull arrays.
1517  * * Call ExecStoreVirtualTuple to mark the slot valid.
1518  * This is a bit unclean but it avoids one round of data copying.
1519  * --------------------------------
1520  */
1523 {
1524  /*
1525  * sanity checks
1526  */
1527  Assert(slot != NULL);
1528  Assert(slot->tts_tupleDescriptor != NULL);
1529  Assert(TTS_EMPTY(slot));
1530 
1531  slot->tts_flags &= ~TTS_FLAG_EMPTY;
1532  slot->tts_nvalid = slot->tts_tupleDescriptor->natts;
1533 
1534  return slot;
1535 }
1536 
1537 /* --------------------------------
1538  * ExecStoreAllNullTuple
1539  * Set up the slot to contain a null in every column.
1540  *
1541  * At first glance this might sound just like ExecClearTuple, but it's
1542  * entirely different: the slot ends up full, not empty.
1543  * --------------------------------
1544  */
1547 {
1548  /*
1549  * sanity checks
1550  */
1551  Assert(slot != NULL);
1552  Assert(slot->tts_tupleDescriptor != NULL);
1553 
1554  /* Clear any old contents */
1555  ExecClearTuple(slot);
1556 
1557  /*
1558  * Fill all the columns of the virtual tuple with nulls
1559  */
1560  MemSet(slot->tts_values, 0,
1561  slot->tts_tupleDescriptor->natts * sizeof(Datum));
1562  memset(slot->tts_isnull, true,
1563  slot->tts_tupleDescriptor->natts * sizeof(bool));
1564 
1565  return ExecStoreVirtualTuple(slot);
1566 }
1567 
1568 /*
1569  * Store a HeapTuple in datum form, into a slot. That always requires
1570  * deforming it and storing it in virtual form.
1571  *
1572  * Until the slot is materialized, the contents of the slot depend on the
1573  * datum.
1574  */
1575 void
1577 {
1578  HeapTupleData tuple = {0};
1579  HeapTupleHeader td;
1580 
1581  td = DatumGetHeapTupleHeader(data);
1582 
1584  tuple.t_self = td->t_ctid;
1585  tuple.t_data = td;
1586 
1587  ExecClearTuple(slot);
1588 
1589  heap_deform_tuple(&tuple, slot->tts_tupleDescriptor,
1590  slot->tts_values, slot->tts_isnull);
1591  ExecStoreVirtualTuple(slot);
1592 }
1593 
1594 /*
1595  * ExecFetchSlotHeapTuple - fetch HeapTuple representing the slot's content
1596  *
1597  * The returned HeapTuple represents the slot's content as closely as
1598  * possible.
1599  *
1600  * If materialize is true, the contents of the slots will be made independent
1601  * from the underlying storage (i.e. all buffer pins are released, memory is
1602  * allocated in the slot's context).
1603  *
1604  * If shouldFree is not-NULL it'll be set to true if the returned tuple has
1605  * been allocated in the calling memory context, and must be freed by the
1606  * caller (via explicit pfree() or a memory context reset).
1607  *
1608  * NB: If materialize is true, modifications of the returned tuple are
1609  * allowed. But it depends on the type of the slot whether such modifications
1610  * will also affect the slot's contents. While that is not the nicest
1611  * behaviour, all such modifications are in the process of being removed.
1612  */
1613 HeapTuple
1614 ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree)
1615 {
1616  /*
1617  * sanity checks
1618  */
1619  Assert(slot != NULL);
1620  Assert(!TTS_EMPTY(slot));
1621 
1622  /* Materialize the tuple so that the slot "owns" it, if requested. */
1623  if (materialize)
1624  slot->tts_ops->materialize(slot);
1625 
1626  if (slot->tts_ops->get_heap_tuple == NULL)
1627  {
1628  if (shouldFree)
1629  *shouldFree = true;
1630  return slot->tts_ops->copy_heap_tuple(slot);
1631  }
1632  else
1633  {
1634  if (shouldFree)
1635  *shouldFree = false;
1636  return slot->tts_ops->get_heap_tuple(slot);
1637  }
1638 }
1639 
1640 /* --------------------------------
1641  * ExecFetchSlotMinimalTuple
1642  * Fetch the slot's minimal physical tuple.
1643  *
1644  * If the given tuple table slot can hold a minimal tuple, indicated by a
1645  * non-NULL get_minimal_tuple callback, the function returns the minimal
1646  * tuple returned by that callback. It assumes that the minimal tuple
1647  * returned by the callback is "owned" by the slot i.e. the slot is
1648  * responsible for freeing the memory consumed by the tuple. Hence it sets
1649  * *shouldFree to false, indicating that the caller should not free the
1650  * memory consumed by the minimal tuple. In this case the returned minimal
1651  * tuple should be considered as read-only.
1652  *
1653  * If that callback is not supported, it calls copy_minimal_tuple callback
1654  * which is expected to return a copy of minimal tuple representing the
1655  * contents of the slot. In this case *shouldFree is set to true,
1656  * indicating the caller that it should free the memory consumed by the
1657  * minimal tuple. In this case the returned minimal tuple may be written
1658  * up.
1659  * --------------------------------
1660  */
1663  bool *shouldFree)
1664 {
1665  /*
1666  * sanity checks
1667  */
1668  Assert(slot != NULL);
1669  Assert(!TTS_EMPTY(slot));
1670 
1671  if (slot->tts_ops->get_minimal_tuple)
1672  {
1673  if (shouldFree)
1674  *shouldFree = false;
1675  return slot->tts_ops->get_minimal_tuple(slot);
1676  }
1677  else
1678  {
1679  if (shouldFree)
1680  *shouldFree = true;
1681  return slot->tts_ops->copy_minimal_tuple(slot);
1682  }
1683 }
1684 
1685 /* --------------------------------
1686  * ExecFetchSlotHeapTupleDatum
1687  * Fetch the slot's tuple as a composite-type Datum.
1688  *
1689  * The result is always freshly palloc'd in the caller's memory context.
1690  * --------------------------------
1691  */
1692 Datum
1694 {
1695  HeapTuple tup;
1696  TupleDesc tupdesc;
1697  bool shouldFree;
1698  Datum ret;
1699 
1700  /* Fetch slot's contents in regular-physical-tuple form */
1701  tup = ExecFetchSlotHeapTuple(slot, false, &shouldFree);
1702  tupdesc = slot->tts_tupleDescriptor;
1703 
1704  /* Convert to Datum form */
1705  ret = heap_copy_tuple_as_datum(tup, tupdesc);
1706 
1707  if (shouldFree)
1708  pfree(tup);
1709 
1710  return ret;
1711 }
1712 
1713 /* ----------------------------------------------------------------
1714  * convenience initialization routines
1715  * ----------------------------------------------------------------
1716  */
1717 
1718 /* ----------------
1719  * ExecInitResultTypeTL
1720  *
1721  * Initialize result type, using the plan node's targetlist.
1722  * ----------------
1723  */
1724 void
1726 {
1727  TupleDesc tupDesc = ExecTypeFromTL(planstate->plan->targetlist);
1728 
1729  planstate->ps_ResultTupleDesc = tupDesc;
1730 }
1731 
1732 /* --------------------------------
1733  * ExecInit{Result,Scan,Extra}TupleSlot[TL]
1734  *
1735  * These are convenience routines to initialize the specified slot
1736  * in nodes inheriting the appropriate state. ExecInitExtraTupleSlot
1737  * is used for initializing special-purpose slots.
1738  * --------------------------------
1739  */
1740 
1741 /* ----------------
1742  * ExecInitResultTupleSlotTL
1743  *
1744  * Initialize result tuple slot, using the tuple descriptor previously
1745  * computed with ExecInitResultTypeTL().
1746  * ----------------
1747  */
1748 void
1750 {
1751  TupleTableSlot *slot;
1752 
1753  slot = ExecAllocTableSlot(&planstate->state->es_tupleTable,
1754  planstate->ps_ResultTupleDesc, tts_ops);
1755  planstate->ps_ResultTupleSlot = slot;
1756 
1757  planstate->resultopsfixed = planstate->ps_ResultTupleDesc != NULL;
1758  planstate->resultops = tts_ops;
1759  planstate->resultopsset = true;
1760 }
1761 
1762 /* ----------------
1763  * ExecInitResultTupleSlotTL
1764  *
1765  * Initialize result tuple slot, using the plan node's targetlist.
1766  * ----------------
1767  */
1768 void
1770  const TupleTableSlotOps *tts_ops)
1771 {
1772  ExecInitResultTypeTL(planstate);
1773  ExecInitResultSlot(planstate, tts_ops);
1774 }
1775 
1776 /* ----------------
1777  * ExecInitScanTupleSlot
1778  * ----------------
1779  */
1780 void
1782  TupleDesc tupledesc, const TupleTableSlotOps *tts_ops)
1783 {
1784  scanstate->ss_ScanTupleSlot = ExecAllocTableSlot(&estate->es_tupleTable,
1785  tupledesc, tts_ops);
1786  scanstate->ps.scandesc = tupledesc;
1787  scanstate->ps.scanopsfixed = tupledesc != NULL;
1788  scanstate->ps.scanops = tts_ops;
1789  scanstate->ps.scanopsset = true;
1790 }
1791 
1792 /* ----------------
1793  * ExecInitExtraTupleSlot
1794  *
1795  * Return a newly created slot. If tupledesc is non-NULL the slot will have
1796  * that as its fixed tupledesc. Otherwise the caller needs to use
1797  * ExecSetSlotDescriptor() to set the descriptor before use.
1798  * ----------------
1799  */
1802  TupleDesc tupledesc,
1803  const TupleTableSlotOps *tts_ops)
1804 {
1805  return ExecAllocTableSlot(&estate->es_tupleTable, tupledesc, tts_ops);
1806 }
1807 
1808 /* ----------------
1809  * ExecInitNullTupleSlot
1810  *
1811  * Build a slot containing an all-nulls tuple of the given type.
1812  * This is used as a substitute for an input tuple when performing an
1813  * outer join.
1814  * ----------------
1815  */
1818  const TupleTableSlotOps *tts_ops)
1819 {
1820  TupleTableSlot *slot = ExecInitExtraTupleSlot(estate, tupType, tts_ops);
1821 
1822  return ExecStoreAllNullTuple(slot);
1823 }
1824 
1825 /* ---------------------------------------------------------------
1826  * Routines for setting/accessing attributes in a slot.
1827  * ---------------------------------------------------------------
1828  */
1829 
1830 /*
1831  * Fill in missing values for a TupleTableSlot.
1832  *
1833  * This is only exposed because it's needed for JIT compiled tuple
1834  * deforming. That exception aside, there should be no callers outside of this
1835  * file.
1836  */
1837 void
1838 slot_getmissingattrs(TupleTableSlot *slot, int startAttNum, int lastAttNum)
1839 {
1840  AttrMissing *attrmiss = NULL;
1841 
1842  if (slot->tts_tupleDescriptor->constr)
1843  attrmiss = slot->tts_tupleDescriptor->constr->missing;
1844 
1845  if (!attrmiss)
1846  {
1847  /* no missing values array at all, so just fill everything in as NULL */
1848  memset(slot->tts_values + startAttNum, 0,
1849  (lastAttNum - startAttNum) * sizeof(Datum));
1850  memset(slot->tts_isnull + startAttNum, 1,
1851  (lastAttNum - startAttNum) * sizeof(bool));
1852  }
1853  else
1854  {
1855  int missattnum;
1856 
1857  /* if there is a missing values array we must process them one by one */
1858  for (missattnum = startAttNum;
1859  missattnum < lastAttNum;
1860  missattnum++)
1861  {
1862  slot->tts_values[missattnum] = attrmiss[missattnum].am_value;
1863  slot->tts_isnull[missattnum] = !attrmiss[missattnum].am_present;
1864  }
1865  }
1866 }
1867 
1868 /*
1869  * slot_getsomeattrs_int - workhorse for slot_getsomeattrs()
1870  */
1871 void
1873 {
1874  /* Check for caller errors */
1875  Assert(slot->tts_nvalid < attnum); /* checked in slot_getsomeattrs */
1876  Assert(attnum > 0);
1877 
1878  if (unlikely(attnum > slot->tts_tupleDescriptor->natts))
1879  elog(ERROR, "invalid attribute number %d", attnum);
1880 
1881  /* Fetch as many attributes as possible from the underlying tuple. */
1882  slot->tts_ops->getsomeattrs(slot, attnum);
1883 
1884  /*
1885  * If the underlying tuple doesn't have enough attributes, tuple
1886  * descriptor must have the missing attributes.
1887  */
1888  if (unlikely(slot->tts_nvalid < attnum))
1889  {
1890  slot_getmissingattrs(slot, slot->tts_nvalid, attnum);
1891  slot->tts_nvalid = attnum;
1892  }
1893 }
1894 
1895 /* ----------------------------------------------------------------
1896  * ExecTypeFromTL
1897  *
1898  * Generate a tuple descriptor for the result tuple of a targetlist.
1899  * (A parse/plan tlist must be passed, not an ExprState tlist.)
1900  * Note that resjunk columns, if any, are included in the result.
1901  *
1902  * Currently there are about 4 different places where we create
1903  * TupleDescriptors. They should all be merged, or perhaps
1904  * be rewritten to call BuildDesc().
1905  * ----------------------------------------------------------------
1906  */
1907 TupleDesc
1908 ExecTypeFromTL(List *targetList)
1909 {
1910  return ExecTypeFromTLInternal(targetList, false);
1911 }
1912 
1913 /* ----------------------------------------------------------------
1914  * ExecCleanTypeFromTL
1915  *
1916  * Same as above, but resjunk columns are omitted from the result.
1917  * ----------------------------------------------------------------
1918  */
1919 TupleDesc
1921 {
1922  return ExecTypeFromTLInternal(targetList, true);
1923 }
1924 
1925 static TupleDesc
1926 ExecTypeFromTLInternal(List *targetList, bool skipjunk)
1927 {
1928  TupleDesc typeInfo;
1929  ListCell *l;
1930  int len;
1931  int cur_resno = 1;
1932 
1933  if (skipjunk)
1934  len = ExecCleanTargetListLength(targetList);
1935  else
1936  len = ExecTargetListLength(targetList);
1937  typeInfo = CreateTemplateTupleDesc(len);
1938 
1939  foreach(l, targetList)
1940  {
1941  TargetEntry *tle = lfirst(l);
1942 
1943  if (skipjunk && tle->resjunk)
1944  continue;
1945  TupleDescInitEntry(typeInfo,
1946  cur_resno,
1947  tle->resname,
1948  exprType((Node *) tle->expr),
1949  exprTypmod((Node *) tle->expr),
1950  0);
1951  TupleDescInitEntryCollation(typeInfo,
1952  cur_resno,
1953  exprCollation((Node *) tle->expr));
1954  cur_resno++;
1955  }
1956 
1957  return typeInfo;
1958 }
1959 
1960 /*
1961  * ExecTypeFromExprList - build a tuple descriptor from a list of Exprs
1962  *
1963  * This is roughly like ExecTypeFromTL, but we work from bare expressions
1964  * not TargetEntrys. No names are attached to the tupledesc's columns.
1965  */
1966 TupleDesc
1968 {
1969  TupleDesc typeInfo;
1970  ListCell *lc;
1971  int cur_resno = 1;
1972 
1973  typeInfo = CreateTemplateTupleDesc(list_length(exprList));
1974 
1975  foreach(lc, exprList)
1976  {
1977  Node *e = lfirst(lc);
1978 
1979  TupleDescInitEntry(typeInfo,
1980  cur_resno,
1981  NULL,
1982  exprType(e),
1983  exprTypmod(e),
1984  0);
1985  TupleDescInitEntryCollation(typeInfo,
1986  cur_resno,
1987  exprCollation(e));
1988  cur_resno++;
1989  }
1990 
1991  return typeInfo;
1992 }
1993 
1994 /*
1995  * ExecTypeSetColNames - set column names in a TupleDesc
1996  *
1997  * Column names must be provided as an alias list (list of String nodes).
1998  *
1999  * For some callers, the supplied tupdesc has a named rowtype (not RECORD)
2000  * and it is moderately likely that the alias list matches the column names
2001  * already present in the tupdesc. If we do change any column names then
2002  * we must reset the tupdesc's type to anonymous RECORD; but we avoid doing
2003  * so if no names change.
2004  */
2005 void
2006 ExecTypeSetColNames(TupleDesc typeInfo, List *namesList)
2007 {
2008  bool modified = false;
2009  int colno = 0;
2010  ListCell *lc;
2011 
2012  foreach(lc, namesList)
2013  {
2014  char *cname = strVal(lfirst(lc));
2015  Form_pg_attribute attr;
2016 
2017  /* Guard against too-long names list */
2018  if (colno >= typeInfo->natts)
2019  break;
2020  attr = TupleDescAttr(typeInfo, colno);
2021  colno++;
2022 
2023  /* Ignore empty aliases (these must be for dropped columns) */
2024  if (cname[0] == '\0')
2025  continue;
2026 
2027  /* Change tupdesc only if alias is actually different */
2028  if (strcmp(cname, NameStr(attr->attname)) != 0)
2029  {
2030  namestrcpy(&(attr->attname), cname);
2031  modified = true;
2032  }
2033  }
2034 
2035  /* If we modified the tupdesc, it's now a new record type */
2036  if (modified)
2037  {
2038  typeInfo->tdtypeid = RECORDOID;
2039  typeInfo->tdtypmod = -1;
2040  }
2041 }
2042 
2043 /*
2044  * BlessTupleDesc - make a completed tuple descriptor useful for SRFs
2045  *
2046  * Rowtype Datums returned by a function must contain valid type information.
2047  * This happens "for free" if the tupdesc came from a relcache entry, but
2048  * not if we have manufactured a tupdesc for a transient RECORD datatype.
2049  * In that case we have to notify typcache.c of the existence of the type.
2050  */
2051 TupleDesc
2053 {
2054  if (tupdesc->tdtypeid == RECORDOID &&
2055  tupdesc->tdtypmod < 0)
2056  assign_record_type_typmod(tupdesc);
2057 
2058  return tupdesc; /* just for notational convenience */
2059 }
2060 
2061 /*
2062  * TupleDescGetAttInMetadata - Build an AttInMetadata structure based on the
2063  * supplied TupleDesc. AttInMetadata can be used in conjunction with C strings
2064  * to produce a properly formed tuple.
2065  */
2066 AttInMetadata *
2068 {
2069  int natts = tupdesc->natts;
2070  int i;
2071  Oid atttypeid;
2072  Oid attinfuncid;
2073  FmgrInfo *attinfuncinfo;
2074  Oid *attioparams;
2075  int32 *atttypmods;
2076  AttInMetadata *attinmeta;
2077 
2078  attinmeta = (AttInMetadata *) palloc(sizeof(AttInMetadata));
2079 
2080  /* "Bless" the tupledesc so that we can make rowtype datums with it */
2081  attinmeta->tupdesc = BlessTupleDesc(tupdesc);
2082 
2083  /*
2084  * Gather info needed later to call the "in" function for each attribute
2085  */
2086  attinfuncinfo = (FmgrInfo *) palloc0(natts * sizeof(FmgrInfo));
2087  attioparams = (Oid *) palloc0(natts * sizeof(Oid));
2088  atttypmods = (int32 *) palloc0(natts * sizeof(int32));
2089 
2090  for (i = 0; i < natts; i++)
2091  {
2092  Form_pg_attribute att = TupleDescAttr(tupdesc, i);
2093 
2094  /* Ignore dropped attributes */
2095  if (!att->attisdropped)
2096  {
2097  atttypeid = att->atttypid;
2098  getTypeInputInfo(atttypeid, &attinfuncid, &attioparams[i]);
2099  fmgr_info(attinfuncid, &attinfuncinfo[i]);
2100  atttypmods[i] = att->atttypmod;
2101  }
2102  }
2103  attinmeta->attinfuncs = attinfuncinfo;
2104  attinmeta->attioparams = attioparams;
2105  attinmeta->atttypmods = atttypmods;
2106 
2107  return attinmeta;
2108 }
2109 
2110 /*
2111  * BuildTupleFromCStrings - build a HeapTuple given user data in C string form.
2112  * values is an array of C strings, one for each attribute of the return tuple.
2113  * A NULL string pointer indicates we want to create a NULL field.
2114  */
2115 HeapTuple
2117 {
2118  TupleDesc tupdesc = attinmeta->tupdesc;
2119  int natts = tupdesc->natts;
2120  Datum *dvalues;
2121  bool *nulls;
2122  int i;
2123  HeapTuple tuple;
2124 
2125  dvalues = (Datum *) palloc(natts * sizeof(Datum));
2126  nulls = (bool *) palloc(natts * sizeof(bool));
2127 
2128  /*
2129  * Call the "in" function for each non-dropped attribute, even for nulls,
2130  * to support domains.
2131  */
2132  for (i = 0; i < natts; i++)
2133  {
2134  if (!TupleDescAttr(tupdesc, i)->attisdropped)
2135  {
2136  /* Non-dropped attributes */
2137  dvalues[i] = InputFunctionCall(&attinmeta->attinfuncs[i],
2138  values[i],
2139  attinmeta->attioparams[i],
2140  attinmeta->atttypmods[i]);
2141  if (values[i] != NULL)
2142  nulls[i] = false;
2143  else
2144  nulls[i] = true;
2145  }
2146  else
2147  {
2148  /* Handle dropped attributes by setting to NULL */
2149  dvalues[i] = (Datum) 0;
2150  nulls[i] = true;
2151  }
2152  }
2153 
2154  /*
2155  * Form a tuple
2156  */
2157  tuple = heap_form_tuple(tupdesc, dvalues, nulls);
2158 
2159  /*
2160  * Release locally palloc'd space. XXX would probably be good to pfree
2161  * values of pass-by-reference datums, as well.
2162  */
2163  pfree(dvalues);
2164  pfree(nulls);
2165 
2166  return tuple;
2167 }
2168 
2169 /*
2170  * HeapTupleHeaderGetDatum - convert a HeapTupleHeader pointer to a Datum.
2171  *
2172  * This must *not* get applied to an on-disk tuple; the tuple should be
2173  * freshly made by heap_form_tuple or some wrapper routine for it (such as
2174  * BuildTupleFromCStrings). Be sure also that the tupledesc used to build
2175  * the tuple has a properly "blessed" rowtype.
2176  *
2177  * Formerly this was a macro equivalent to PointerGetDatum, relying on the
2178  * fact that heap_form_tuple fills in the appropriate tuple header fields
2179  * for a composite Datum. However, we now require that composite Datums not
2180  * contain any external TOAST pointers. We do not want heap_form_tuple itself
2181  * to enforce that; more specifically, the rule applies only to actual Datums
2182  * and not to HeapTuple structures. Therefore, HeapTupleHeaderGetDatum is
2183  * now a function that detects whether there are externally-toasted fields
2184  * and constructs a new tuple with inlined fields if so. We still need
2185  * heap_form_tuple to insert the Datum header fields, because otherwise this
2186  * code would have no way to obtain a tupledesc for the tuple.
2187  *
2188  * Note that if we do build a new tuple, it's palloc'd in the current
2189  * memory context. Beware of code that changes context between the initial
2190  * heap_form_tuple/etc call and calling HeapTuple(Header)GetDatum.
2191  *
2192  * For performance-critical callers, it could be worthwhile to take extra
2193  * steps to ensure that there aren't TOAST pointers in the output of
2194  * heap_form_tuple to begin with. It's likely however that the costs of the
2195  * typcache lookup and tuple disassembly/reassembly are swamped by TOAST
2196  * dereference costs, so that the benefits of such extra effort would be
2197  * minimal.
2198  *
2199  * XXX it would likely be better to create wrapper functions that produce
2200  * a composite Datum from the field values in one step. However, there's
2201  * enough code using the existing APIs that we couldn't get rid of this
2202  * hack anytime soon.
2203  */
2204 Datum
2206 {
2207  Datum result;
2208  TupleDesc tupDesc;
2209 
2210  /* No work if there are no external TOAST pointers in the tuple */
2211  if (!HeapTupleHeaderHasExternal(tuple))
2212  return PointerGetDatum(tuple);
2213 
2214  /* Use the type data saved by heap_form_tuple to look up the rowtype */
2216  HeapTupleHeaderGetTypMod(tuple));
2217 
2218  /* And do the flattening */
2219  result = toast_flatten_tuple_to_datum(tuple,
2221  tupDesc);
2222 
2223  ReleaseTupleDesc(tupDesc);
2224 
2225  return result;
2226 }
2227 
2228 
2229 /*
2230  * Functions for sending tuples to the frontend (or other specified destination)
2231  * as though it is a SELECT result. These are used by utility commands that
2232  * need to project directly to the destination and don't need or want full
2233  * table function capability. Currently used by EXPLAIN and SHOW ALL.
2234  */
2237  TupleDesc tupdesc,
2238  const TupleTableSlotOps *tts_ops)
2239 {
2240  TupOutputState *tstate;
2241 
2242  tstate = (TupOutputState *) palloc(sizeof(TupOutputState));
2243 
2244  tstate->slot = MakeSingleTupleTableSlot(tupdesc, tts_ops);
2245  tstate->dest = dest;
2246 
2247  tstate->dest->rStartup(tstate->dest, (int) CMD_SELECT, tupdesc);
2248 
2249  return tstate;
2250 }
2251 
2252 /*
2253  * write a single tuple
2254  */
2255 void
2256 do_tup_output(TupOutputState *tstate, Datum *values, bool *isnull)
2257 {
2258  TupleTableSlot *slot = tstate->slot;
2259  int natts = slot->tts_tupleDescriptor->natts;
2260 
2261  /* make sure the slot is clear */
2262  ExecClearTuple(slot);
2263 
2264  /* insert data */
2265  memcpy(slot->tts_values, values, natts * sizeof(Datum));
2266  memcpy(slot->tts_isnull, isnull, natts * sizeof(bool));
2267 
2268  /* mark slot as containing a virtual tuple */
2269  ExecStoreVirtualTuple(slot);
2270 
2271  /* send the tuple to the receiver */
2272  (void) tstate->dest->receiveSlot(slot, tstate->dest);
2273 
2274  /* clean up */
2275  ExecClearTuple(slot);
2276 }
2277 
2278 /*
2279  * write a chunk of text, breaking at newline characters
2280  *
2281  * Should only be used with a single-TEXT-attribute tupdesc.
2282  */
2283 void
2284 do_text_output_multiline(TupOutputState *tstate, const char *txt)
2285 {
2286  Datum values[1];
2287  bool isnull[1] = {false};
2288 
2289  while (*txt)
2290  {
2291  const char *eol;
2292  int len;
2293 
2294  eol = strchr(txt, '\n');
2295  if (eol)
2296  {
2297  len = eol - txt;
2298  eol++;
2299  }
2300  else
2301  {
2302  len = strlen(txt);
2303  eol = txt + len;
2304  }
2305 
2306  values[0] = PointerGetDatum(cstring_to_text_with_len(txt, len));
2307  do_tup_output(tstate, values, isnull);
2308  pfree(DatumGetPointer(values[0]));
2309  txt = eol;
2310  }
2311 }
2312 
2313 void
2315 {
2316  tstate->dest->rShutdown(tstate->dest);
2317  /* note that destroying the dest is not ours to do */
2319  pfree(tstate);
2320 }
static void tts_buffer_heap_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
Definition: execTuples.c:748
#define TTS_FIXED(slot)
Definition: tuptable.h:109
bool(* receiveSlot)(TupleTableSlot *slot, DestReceiver *self)
Definition: dest.h:118
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:680
Oid tts_tableOid
Definition: tuptable.h:131
static void tts_buffer_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, Buffer buffer, bool transfer_pin)
Definition: execTuples.c:829
Definition: fmgr.h:56
int ExecTargetListLength(List *targetlist)
Definition: execUtils.c:1075
#define TTS_FLAG_EMPTY
Definition: tuptable.h:96
#define IsA(nodeptr, _type_)
Definition: nodes.h:576
TupleTableSlot * ExecStoreMinimalTuple(MinimalTuple mtup, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1416
#define likely(x)
Definition: c.h:207
TupleTableSlot * ExecInitExtraTupleSlot(EState *estate, TupleDesc tupledesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1801
#define att_align_nominal(cur_offset, attalign)
Definition: tupmacs.h:146
#define VARATT_IS_EXTERNAL_EXPANDED(PTR)
Definition: postgres.h:322
TupleDesc lookup_rowtype_tupdesc(Oid type_id, int32 typmod)
Definition: typcache.c:1652
static void tts_minimal_materialize(TupleTableSlot *slot)
Definition: execTuples.c:506
static TupleTableSlot * ExecClearTuple(TupleTableSlot *slot)
Definition: tuptable.h:425
bits8 t_bits[FLEXIBLE_ARRAY_MEMBER]
Definition: htup_details.h:177
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:44
TupleDesc ExecCleanTypeFromTL(List *targetList)
Definition: execTuples.c:1920
TupleTableSlot * ExecStoreAllNullTuple(TupleTableSlot *slot)
Definition: execTuples.c:1546
HeapTuple(* copy_heap_tuple)(TupleTableSlot *slot)
Definition: tuptable.h:206
static HeapTuple tts_buffer_heap_get_heap_tuple(TupleTableSlot *slot)
Definition: execTuples.c:790
TupleTableSlot * MakeSingleTupleTableSlot(TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1208
static void tts_heap_materialize(TupleTableSlot *slot)
Definition: execTuples.c:343
static TupleDesc ExecTypeFromTLInternal(List *targetList, bool skipjunk)
Definition: execTuples.c:1926
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:275
#define TTS_EMPTY(slot)
Definition: tuptable.h:97
#define att_isnull(ATT, BITS)
Definition: tupmacs.h:23
#define PointerGetDatum(X)
Definition: postgres.h:556
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
#define TTS_SHOULDFREE(slot)
Definition: tuptable.h:101
MinimalTuple ExecFetchSlotMinimalTuple(TupleTableSlot *slot, bool *shouldFree)
Definition: execTuples.c:1662
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
const TupleTableSlotOps TTSOpsBufferHeapTuple
Definition: execTuples.c:86
static HeapTuple tts_virtual_copy_heap_tuple(TupleTableSlot *slot)
Definition: execTuples.c:268
static void tts_minimal_getsomeattrs(TupleTableSlot *slot, int natts)
Definition: execTuples.c:488
static MinimalTuple tts_buffer_heap_copy_minimal_tuple(TupleTableSlot *slot)
Definition: execTuples.c:816
#define Min(x, y)
Definition: c.h:905
const TupleTableSlotOps TTSOpsVirtual
Definition: execTuples.c:83
void do_tup_output(TupOutputState *tstate, Datum *values, bool *isnull)
Definition: execTuples.c:2256
static void tts_minimal_init(TupleTableSlot *slot)
Definition: execTuples.c:453
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
#define TTS_FLAG_SHOULDFREE
Definition: tuptable.h:100
#define InvalidBuffer
Definition: buf.h:25
#define TTS_IS_MINIMALTUPLE(slot)
Definition: tuptable.h:230
Definition: nodes.h:525
#define strVal(v)
Definition: value.h:54
const TupleTableSlotOps *const tts_ops
Definition: tuptable.h:122
HeapTuple tuple
Definition: tuptable.h:250
#define MemSet(start, val, len)
Definition: c.h:956
void(* release)(TupleTableSlot *slot)
Definition: tuptable.h:144
MemoryContext tts_mcxt
Definition: tuptable.h:129
Datum * tts_values
Definition: tuptable.h:126
int32 * atttypmods
Definition: funcapi.h:48
TupleTableSlot * ss_ScanTupleSlot
Definition: execnodes.h:1334
void ReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:3365
TupleTableSlot * slot
Definition: executor.h:458
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
EState * state
Definition: execnodes.h:942
struct VirtualTupleTableSlot VirtualTupleTableSlot
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1338
unsigned int Oid
Definition: postgres_ext.h:31
static void tts_heap_clear(TupleTableSlot *slot)
Definition: execTuples.c:303
char * resname
Definition: primnodes.h:1395
int namestrcpy(Name name, const char *str)
Definition: name.c:250
static Datum tts_heap_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: execTuples.c:332
#define DatumGetHeapTupleHeader(X)
Definition: fmgr.h:289
MinimalTuple heap_copy_minimal_tuple(MinimalTuple mtup)
Definition: heaptuple.c:1439
Oid * attioparams
Definition: funcapi.h:45
static HeapTuple tts_minimal_copy_heap_tuple(TupleTableSlot *slot)
Definition: execTuples.c:577
static MinimalTuple tts_minimal_get_minimal_tuple(TupleTableSlot *slot)
Definition: execTuples.c:566
#define fetchatt(A, T)
Definition: tupmacs.h:39
void ExecForceStoreHeapTuple(HeapTuple tuple, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1439
const TupleTableSlotOps * resultops
Definition: execnodes.h:1015
signed int int32
Definition: c.h:347
HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
Definition: execTuples.c:2116
void assign_record_type_typmod(TupleDesc tupDesc)
Definition: typcache.c:1772
HeapTupleHeader t_data
Definition: htup.h:68
#define HeapTupleHeaderGetTypMod(tup)
Definition: htup_details.h:468
static pg_attribute_always_inline void slot_deform_heap_tuple(TupleTableSlot *slot, HeapTuple tuple, uint32 *offp, int natts)
Definition: execTuples.c:895
NodeTag type
Definition: tuptable.h:117
PlanState ps
Definition: execnodes.h:1331
uint16 tts_flags
Definition: tuptable.h:119
static Datum tts_buffer_heap_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: execTuples.c:678
TupleTableSlot * ps_ResultTupleSlot
Definition: execnodes.h:978
static HeapTuple tts_heap_get_heap_tuple(TupleTableSlot *slot)
Definition: execTuples.c:396
void pfree(void *pointer)
Definition: mcxt.c:1056
static void tts_virtual_getsomeattrs(TupleTableSlot *slot, int natts)
Definition: execTuples.c:130
bool resjunk
Definition: primnodes.h:1400
void end_tup_output(TupOutputState *tstate)
Definition: execTuples.c:2314
struct HeapTupleTableSlot HeapTupleTableSlot
#define ERROR
Definition: elog.h:43
Datum heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: heaptuple.c:627
void ExecForceStoreMinimalTuple(MinimalTuple mtup, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1482
void heap_free_minimal_tuple(MinimalTuple mtup)
Definition: heaptuple.c:1427
#define HeapTupleHeaderGetNatts(tup)
Definition: htup_details.h:531
HeapTuple(* get_heap_tuple)(TupleTableSlot *slot)
Definition: tuptable.h:188
int32 tdtypmod
Definition: tupdesc.h:83
void fmgr_info(Oid functionId, FmgrInfo *finfo)
Definition: fmgr.c:124
static void tts_virtual_init(TupleTableSlot *slot)
Definition: execTuples.c:97
ItemPointerData t_ctid
Definition: htup_details.h:160
void(* rStartup)(DestReceiver *self, int operation, TupleDesc typeinfo)
Definition: dest.h:121
TupOutputState * begin_tup_output_tupdesc(DestReceiver *dest, TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:2236
ItemPointerData t_self
Definition: htup.h:65
void TupleDescInitEntryCollation(TupleDesc desc, AttrNumber attributeNumber, Oid collationid)
Definition: tupdesc.c:769
static void slot_getallattrs(TupleTableSlot *slot)
Definition: tuptable.h:354
void(* init)(TupleTableSlot *slot)
Definition: tuptable.h:141
#define lfirst_node(type, lc)
Definition: pg_list.h:193
TupleDesc BlessTupleDesc(TupleDesc tupdesc)
Definition: execTuples.c:2052
uint32 t_len
Definition: htup.h:64
#define HeapTupleHasNulls(tuple)
Definition: htup_details.h:661
void ExecInitScanTupleSlot(EState *estate, ScanState *scanstate, TupleDesc tupledesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1781
static HeapTuple tts_buffer_heap_copy_heap_tuple(TupleTableSlot *slot)
Definition: execTuples.c:803
const TupleTableSlotOps * scanops
Definition: execnodes.h:1012
static MinimalTuple ExecCopySlotMinimalTuple(TupleTableSlot *slot)
Definition: tuptable.h:463
static Datum tts_virtual_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: execTuples.c:136
text * cstring_to_text_with_len(const char *s, int len)
Definition: varlena.c:183
bool * tts_isnull
Definition: tuptable.h:128
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1224
TupleConstr * constr
Definition: tupdesc.h:85
static MinimalTuple tts_minimal_copy_minimal_tuple(TupleTableSlot *slot)
Definition: execTuples.c:588
void ExecInitResultTypeTL(PlanState *planstate)
Definition: execTuples.c:1725
static void tts_heap_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
Definition: execTuples.c:383
TupleDesc tupdesc
Definition: funcapi.h:39
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:200
static void tts_buffer_heap_init(TupleTableSlot *slot)
Definition: execTuples.c:628
unsigned int uint32
Definition: c.h:359
Oid t_tableOid
Definition: htup.h:66
MinimalTuple(* get_minimal_tuple)(TupleTableSlot *slot)
Definition: tuptable.h:196
MemoryContext CurrentMemoryContext
Definition: mcxt.c:38
Size EOH_get_flat_size(ExpandedObjectHeader *eohptr)
Definition: expandeddatum.c:75
void TupleDescInitEntry(TupleDesc desc, AttrNumber attributeNumber, const char *attributeName, Oid oidtypeid, int32 typmod, int attdim)
Definition: tupdesc.c:603
#define init()
static Datum tts_minimal_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: execTuples.c:498
#define att_addlength_pointer(cur_offset, attlen, attptr)
Definition: tupmacs.h:174
void getTypeInputInfo(Oid type, Oid *typInput, Oid *typIOParam)
Definition: lsyscache.c:2641
bool resultopsset
Definition: execnodes.h:1023
HeapTuple ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree)
Definition: execTuples.c:1614
TupleTableSlot * ExecAllocTableSlot(List **tupleTable, TupleDesc desc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1141
Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc)
Definition: heaptuple.c:984
void ExecStoreHeapTupleDatum(Datum data, TupleTableSlot *slot)
Definition: execTuples.c:1576
static void tts_minimal_store_tuple(TupleTableSlot *slot, MinimalTuple mtup, bool shouldFree)
Definition: execTuples.c:599
struct BufferHeapTupleTableSlot BufferHeapTupleTableSlot
List * lappend(List *list, void *datum)
Definition: list.c:322
int ExecCleanTargetListLength(List *targetlist)
Definition: execUtils.c:1085
MinimalTuple heap_form_minimal_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1356
static void tts_heap_release(TupleTableSlot *slot)
Definition: execTuples.c:298
ExpandedObjectHeader * DatumGetEOHP(Datum d)
Definition: expandeddatum.c:29
TupleDesc ps_ResultTupleDesc
Definition: execnodes.h:977
HeapTuple heap_tuple_from_minimal_tuple(MinimalTuple mtup)
Definition: heaptuple.c:1458
TupleDesc tts_tupleDescriptor
Definition: tuptable.h:124
uint8 bits8
Definition: c.h:366
List * es_tupleTable
Definition: execnodes.h:552
void do_text_output_multiline(TupOutputState *tstate, const char *txt)
Definition: execTuples.c:2284
void ExecResetTupleTable(List *tupleTable, bool shouldFree)
Definition: execTuples.c:1161
void * palloc0(Size size)
Definition: mcxt.c:980
uintptr_t Datum
Definition: postgres.h:367
static void tts_minimal_release(TupleTableSlot *slot)
Definition: execTuples.c:465
#define TTS_IS_BUFFERTUPLE(slot)
Definition: tuptable.h:231
void ExecSetSlotDescriptor(TupleTableSlot *slot, TupleDesc tupdesc)
Definition: execTuples.c:1259
TupleDesc scandesc
Definition: execnodes.h:987
static void tts_virtual_materialize(TupleTableSlot *slot)
Definition: execTuples.c:151
static MinimalTuple tts_heap_copy_minimal_tuple(TupleTableSlot *slot)
Definition: execTuples.c:420
AttInMetadata * TupleDescGetAttInMetadata(TupleDesc tupdesc)
Definition: execTuples.c:2067
void EOH_flatten_into(ExpandedObjectHeader *eohptr, void *result, Size allocated_size)
Definition: expandeddatum.c:81
#define att_align_pointer(cur_offset, attalign, attlen, attptr)
Definition: tupmacs.h:124
#define HeapTupleHeaderGetTypeId(tup)
Definition: htup_details.h:458
TupleTableSlot * ExecStoreBufferHeapTuple(HeapTuple tuple, TupleTableSlot *slot, Buffer buffer)
Definition: execTuples.c:1362
static void tts_buffer_heap_clear(TupleTableSlot *slot)
Definition: execTuples.c:638
#define HeapTupleHeaderHasExternal(tup)
Definition: htup_details.h:539
TupleTableSlot * MakeTupleTableSlot(TupleDesc tupleDesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1082
static void ExecMaterializeSlot(TupleTableSlot *slot)
Definition: tuptable.h:443
static MinimalTuple tts_virtual_copy_minimal_tuple(TupleTableSlot *slot)
Definition: execTuples.c:278
Datum InputFunctionCall(FmgrInfo *flinfo, char *str, Oid typioparam, int32 typmod)
Definition: fmgr.c:1531
Plan * plan
Definition: execnodes.h:940
int16 attnum
Definition: pg_attribute.h:79
static HeapTuple ExecCopySlotHeapTuple(TupleTableSlot *slot)
Definition: tuptable.h:452
struct MinimalTupleTableSlot MinimalTupleTableSlot
MinimalTuple(* copy_minimal_tuple)(TupleTableSlot *slot)
Definition: tuptable.h:216
static void tts_buffer_heap_getsomeattrs(TupleTableSlot *slot, int natts)
Definition: execTuples.c:668
bool scanopsfixed
Definition: execnodes.h:1016
Datum toast_flatten_tuple_to_datum(HeapTupleHeader tup, uint32 tup_len, TupleDesc tupleDesc)
Definition: heaptoast.c:442
static void tts_minimal_clear(TupleTableSlot *slot)
Definition: execTuples.c:470
#define TTS_IS_HEAPTUPLE(slot)
Definition: tuptable.h:229
#define Assert(condition)
Definition: c.h:733
#define lfirst(lc)
Definition: pg_list.h:190
static void tts_heap_init(TupleTableSlot *slot)
Definition: execTuples.c:293
TupleTableSlot * ExecInitNullTupleSlot(EState *estate, TupleDesc tupType, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1817
void ExecInitResultSlot(PlanState *planstate, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1749
static void tts_minimal_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
Definition: execTuples.c:553
Expr * expr
Definition: primnodes.h:1393
#define TTS_FLAG_FIXED
Definition: tuptable.h:108
size_t Size
Definition: c.h:467
static void tts_virtual_clear(TupleTableSlot *slot)
Definition: execTuples.c:107
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
static int list_length(const List *l)
Definition: pg_list.h:169
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:719
TupleDesc ExecTypeFromTL(List *targetList)
Definition: execTuples.c:1908
#define MAXALIGN(LEN)
Definition: c.h:686
#define BufferIsValid(bufnum)
Definition: bufmgr.h:113
void ExecInitResultTupleSlotTL(PlanState *planstate, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1769
void(* getsomeattrs)(TupleTableSlot *slot, int natts)
Definition: tuptable.h:161
bool scanopsset
Definition: execnodes.h:1020
static void tts_heap_getsomeattrs(TupleTableSlot *slot, int natts)
Definition: execTuples.c:322
#define MINIMAL_TUPLE_OFFSET
Definition: htup_details.h:619
TupleTableSlot * ExecStorePinnedBufferHeapTuple(HeapTuple tuple, TupleTableSlot *slot, Buffer buffer)
Definition: execTuples.c:1388
void(* materialize)(TupleTableSlot *slot)
Definition: tuptable.h:174
void(* rShutdown)(DestReceiver *self)
Definition: dest.h:124
List * targetlist
Definition: plannodes.h:140
#define DatumGetPointer(X)
Definition: postgres.h:549
static void tts_buffer_heap_materialize(TupleTableSlot *slot)
Definition: execTuples.c:689
#define PinTupleDesc(tupdesc)
Definition: tupdesc.h:116
struct AttrMissing * missing
Definition: tupdesc.h:41
void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc, Datum *values, bool *isnull)
Definition: heaptuple.c:1249
static Datum values[MAXATTR]
Definition: bootstrap.c:167
bool resultopsfixed
Definition: execnodes.h:1019
Oid tdtypeid
Definition: tupdesc.h:82
MinimalTuple mintuple
Definition: tuptable.h:283
#define TTS_SLOW(slot)
Definition: tuptable.h:105
e
Definition: preproc-init.c:82
#define ItemPointerSetInvalid(pointer)
Definition: itemptr.h:172
#define att_addlength_datum(cur_offset, attlen, attdatum)
Definition: tupmacs.h:162
MinimalTuple minimal_tuple_from_heap_tuple(HeapTuple htup)
Definition: heaptuple.c:1480
Datum HeapTupleHeaderGetDatum(HeapTupleHeader tuple)
Definition: execTuples.c:2205
TupleDesc ExecTypeFromExprList(List *exprList)
Definition: execTuples.c:1967
void * palloc(Size size)
Definition: mcxt.c:949
static void tts_virtual_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
Definition: execTuples.c:244
void slot_getmissingattrs(TupleTableSlot *slot, int startAttNum, int lastAttNum)
Definition: execTuples.c:1838
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:796
static HeapTuple tts_heap_copy_heap_tuple(TupleTableSlot *slot)
Definition: execTuples.c:408
void list_free(List *list)
Definition: list.c:1377
#define elog(elevel,...)
Definition: elog.h:228
int i
const TupleTableSlotOps TTSOpsHeapTuple
Definition: execTuples.c:84
#define NameStr(name)
Definition: c.h:610
HeapTupleData minhdr
Definition: tuptable.h:284
static void tts_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, bool shouldFree)
Definition: execTuples.c:431
#define pg_attribute_always_inline
Definition: c.h:164
void slot_getsomeattrs_int(TupleTableSlot *slot, int attnum)
Definition: execTuples.c:1872
#define unlikely(x)
Definition: c.h:208
FmgrInfo * attinfuncs
Definition: funcapi.h:42
AttrNumber tts_nvalid
Definition: tuptable.h:121
HeapTupleTableSlot base
Definition: tuptable.h:259
DestReceiver * dest
Definition: executor.h:459
static void tts_buffer_heap_release(TupleTableSlot *slot)
Definition: execTuples.c:633
#define ReleaseTupleDesc(tupdesc)
Definition: tupdesc.h:122
HeapTupleData tupdata
Definition: tuptable.h:253
Definition: pg_list.h:50
ItemPointerData tts_tid
Definition: tuptable.h:130
int Buffer
Definition: buf.h:23
Datum ExecFetchSlotHeapTupleDatum(TupleTableSlot *slot)
Definition: execTuples.c:1693
void ExecTypeSetColNames(TupleDesc typeInfo, List *namesList)
Definition: execTuples.c:2006
long val
Definition: informix.c:684
const TupleTableSlotOps TTSOpsMinimalTuple
Definition: execTuples.c:85
void IncrBufferRefCount(Buffer buffer)
Definition: bufmgr.c:3403
TupleTableSlot * ExecStoreHeapTuple(HeapTuple tuple, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1322
TupleTableSlot * ExecStoreVirtualTuple(TupleTableSlot *slot)
Definition: execTuples.c:1522
#define TTS_FLAG_SLOW
Definition: tuptable.h:104
static void tts_virtual_release(TupleTableSlot *slot)
Definition: execTuples.c:102
#define HeapTupleHeaderGetDatumLength(tup)
Definition: htup_details.h:452
size_t base_slot_size
Definition: tuptable.h:138