PostgreSQL Source Code  git master
tuptable.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * tuptable.h
4  * tuple table support stuff
5  *
6  *
7  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * src/include/executor/tuptable.h
11  *
12  *-------------------------------------------------------------------------
13  */
14 #ifndef TUPTABLE_H
15 #define TUPTABLE_H
16 
17 #include "access/htup.h"
18 #include "access/htup_details.h"
19 #include "access/sysattr.h"
20 #include "access/tupdesc.h"
21 #include "storage/buf.h"
22 
23 /*----------
24  * The executor stores tuples in a "tuple table" which is a List of
25  * independent TupleTableSlots.
26  *
27  * There's various different types of tuple table slots, each being able to
28  * store different types of tuples. Additional types of slots can be added
29  * without modifying core code. The type of a slot is determined by the
30  * TupleTableSlotOps* passed to the slot creation routine. The builtin types
31  * of slots are
32  *
33  * 1. physical tuple in a disk buffer page (TTSOpsBufferHeapTuple)
34  * 2. physical tuple constructed in palloc'ed memory (TTSOpsHeapTuple)
35  * 3. "minimal" physical tuple constructed in palloc'ed memory
36  * (TTSOpsMinimalTuple)
37  * 4. "virtual" tuple consisting of Datum/isnull arrays (TTSOpsVirtual)
38  *
39  *
40  * The first two cases are similar in that they both deal with "materialized"
41  * tuples, but resource management is different. For a tuple in a disk page
42  * we need to hold a pin on the buffer until the TupleTableSlot's reference
43  * to the tuple is dropped; while for a palloc'd tuple we usually want the
44  * tuple pfree'd when the TupleTableSlot's reference is dropped.
45  *
46  * A "minimal" tuple is handled similarly to a palloc'd regular tuple.
47  * At present, minimal tuples never are stored in buffers, so there is no
48  * parallel to case 1. Note that a minimal tuple has no "system columns".
49  *
50  * A "virtual" tuple is an optimization used to minimize physical data copying
51  * in a nest of plan nodes. Until materialized pass-by-reference Datums in
52  * the slot point to storage that is not directly associated with the
53  * TupleTableSlot; generally they will point to part of a tuple stored in a
54  * lower plan node's output TupleTableSlot, or to a function result
55  * constructed in a plan node's per-tuple econtext. It is the responsibility
56  * of the generating plan node to be sure these resources are not released for
57  * as long as the virtual tuple needs to be valid or is materialized. Note
58  * also that a virtual tuple does not have any "system columns".
59  *
60  * The Datum/isnull arrays of a TupleTableSlot serve double duty. For virtual
61  * slots they are the authoritative data. For the other builtin slots,
62  * the arrays contain data extracted from the tuple. (In this state, any
63  * pass-by-reference Datums point into the physical tuple.) The extracted
64  * information is built "lazily", ie, only as needed. This serves to avoid
65  * repeated extraction of data from the physical tuple.
66  *
67  * A TupleTableSlot can also be "empty", indicated by flag TTS_FLAG_EMPTY set
68  * in tts_flags, holding no valid data. This is the only valid state for a
69  * freshly-created slot that has not yet had a tuple descriptor assigned to
70  * it. In this state, TTS_FLAG_SHOULDFREE should not be set in tts_flags and
71  * tts_nvalid should be set to zero.
72  *
73  * The tupleDescriptor is simply referenced, not copied, by the TupleTableSlot
74  * code. The caller of ExecSetSlotDescriptor() is responsible for providing
75  * a descriptor that will live as long as the slot does. (Typically, both
76  * slots and descriptors are in per-query memory and are freed by memory
77  * context deallocation at query end; so it's not worth providing any extra
78  * mechanism to do more. However, the slot will increment the tupdesc
79  * reference count if a reference-counted tupdesc is supplied.)
80  *
81  * When TTS_FLAG_SHOULDFREE is set in tts_flags, the physical tuple is "owned"
82  * by the slot and should be freed when the slot's reference to the tuple is
83  * dropped.
84  *
85  * tts_values/tts_isnull are allocated either when the slot is created (when
86  * the descriptor is provided), or when a descriptor is assigned to the slot;
87  * they are of length equal to the descriptor's natts.
88  *
89  * The TTS_FLAG_SLOW flag is saved state for
90  * slot_deform_heap_tuple, and should not be touched by any other code.
91  *----------
92  */
93 
94 /* true = slot is empty */
95 #define TTS_FLAG_EMPTY (1 << 1)
96 #define TTS_EMPTY(slot) (((slot)->tts_flags & TTS_FLAG_EMPTY) != 0)
97 
98 /* should pfree tuple "owned" by the slot? */
99 #define TTS_FLAG_SHOULDFREE (1 << 2)
100 #define TTS_SHOULDFREE(slot) (((slot)->tts_flags & TTS_FLAG_SHOULDFREE) != 0)
101 
102 /* saved state for slot_deform_heap_tuple */
103 #define TTS_FLAG_SLOW (1 << 3)
104 #define TTS_SLOW(slot) (((slot)->tts_flags & TTS_FLAG_SLOW) != 0)
105 
106 /* fixed tuple descriptor */
107 #define TTS_FLAG_FIXED (1 << 4)
108 #define TTS_FIXED(slot) (((slot)->tts_flags & TTS_FLAG_FIXED) != 0)
109 
110 struct TupleTableSlotOps;
111 typedef struct TupleTableSlotOps TupleTableSlotOps;
112 
113 /* base tuple table slot type */
114 typedef struct TupleTableSlot
115 {
117 #define FIELDNO_TUPLETABLESLOT_FLAGS 1
118  uint16 tts_flags; /* Boolean states */
119 #define FIELDNO_TUPLETABLESLOT_NVALID 2
120  AttrNumber tts_nvalid; /* # of valid values in tts_values */
121  const TupleTableSlotOps *const tts_ops; /* implementation of slot */
122 #define FIELDNO_TUPLETABLESLOT_TUPLEDESCRIPTOR 4
123  TupleDesc tts_tupleDescriptor; /* slot's tuple descriptor */
124 #define FIELDNO_TUPLETABLESLOT_VALUES 5
125  Datum *tts_values; /* current per-attribute values */
126 #define FIELDNO_TUPLETABLESLOT_ISNULL 6
127  bool *tts_isnull; /* current per-attribute isnull flags */
128  MemoryContext tts_mcxt; /* slot itself is in this context */
129  ItemPointerData tts_tid; /* stored tuple's tid */
130  Oid tts_tableOid; /* table oid of tuple */
132 
133 /* routines for a TupleTableSlot implementation */
135 {
136  /* Minimum size of the slot */
138 
139  /* Initialization. */
140  void (*init) (TupleTableSlot *slot);
141 
142  /* Destruction. */
143  void (*release) (TupleTableSlot *slot);
144 
145  /*
146  * Clear the contents of the slot. Only the contents are expected to be
147  * cleared and not the tuple descriptor. Typically an implementation of
148  * this callback should free the memory allocated for the tuple contained
149  * in the slot.
150  */
151  void (*clear) (TupleTableSlot *slot);
152 
153  /*
154  * Fill up first natts entries of tts_values and tts_isnull arrays with
155  * values from the tuple contained in the slot. The function may be called
156  * with natts more than the number of attributes available in the tuple,
157  * in which case it should set tts_nvalid to the number of returned
158  * columns.
159  */
160  void (*getsomeattrs) (TupleTableSlot *slot, int natts);
161 
162  /*
163  * Returns value of the given system attribute as a datum and sets isnull
164  * to false, if it's not NULL. Throws an error if the slot type does not
165  * support system attributes.
166  */
167  Datum (*getsysattr) (TupleTableSlot *slot, int attnum, bool *isnull);
168 
169  /*
170  * Check if the tuple is created by the current transaction. Throws an
171  * error if the slot doesn't contain the storage tuple.
172  */
174 
175  /*
176  * Make the contents of the slot solely depend on the slot, and not on
177  * underlying resources (like another memory context, buffers, etc).
178  */
179  void (*materialize) (TupleTableSlot *slot);
180 
181  /*
182  * Copy the contents of the source slot into the destination slot's own
183  * context. Invoked using callback of the destination slot. 'dstslot' and
184  * 'srcslot' can be assumed to have the same number of attributes.
185  */
186  void (*copyslot) (TupleTableSlot *dstslot, TupleTableSlot *srcslot);
187 
188  /*
189  * Return a heap tuple "owned" by the slot. It is slot's responsibility to
190  * free the memory consumed by the heap tuple. If the slot can not "own" a
191  * heap tuple, it should not implement this callback and should set it as
192  * NULL.
193  */
195 
196  /*
197  * Return a minimal tuple "owned" by the slot. It is slot's responsibility
198  * to free the memory consumed by the minimal tuple. If the slot can not
199  * "own" a minimal tuple, it should not implement this callback and should
200  * set it as NULL.
201  */
203 
204  /*
205  * Return a copy of heap tuple representing the contents of the slot. The
206  * copy needs to be palloc'd in the current memory context. The slot
207  * itself is expected to remain unaffected. It is *not* expected to have
208  * meaningful "system columns" in the copy. The copy is not be "owned" by
209  * the slot i.e. the caller has to take responsibility to free memory
210  * consumed by the slot.
211  */
213 
214  /*
215  * Return a copy of minimal tuple representing the contents of the slot.
216  * The copy needs to be palloc'd in the current memory context. The slot
217  * itself is expected to remain unaffected. It is *not* expected to have
218  * meaningful "system columns" in the copy. The copy is not be "owned" by
219  * the slot i.e. the caller has to take responsibility to free memory
220  * consumed by the slot.
221  */
223 };
224 
225 /*
226  * Predefined TupleTableSlotOps for various types of TupleTableSlotOps. The
227  * same are used to identify the type of a given slot.
228  */
233 
234 #define TTS_IS_VIRTUAL(slot) ((slot)->tts_ops == &TTSOpsVirtual)
235 #define TTS_IS_HEAPTUPLE(slot) ((slot)->tts_ops == &TTSOpsHeapTuple)
236 #define TTS_IS_MINIMALTUPLE(slot) ((slot)->tts_ops == &TTSOpsMinimalTuple)
237 #define TTS_IS_BUFFERTUPLE(slot) ((slot)->tts_ops == &TTSOpsBufferHeapTuple)
238 
239 
240 /*
241  * Tuple table slot implementations.
242  */
243 
244 typedef struct VirtualTupleTableSlot
245 {
246  pg_node_attr(abstract)
247 
248  TupleTableSlot base;
249 
250  char *data; /* data for materialized slots */
252 
253 typedef struct HeapTupleTableSlot
254 {
255  pg_node_attr(abstract)
256 
257  TupleTableSlot base;
258 
259 #define FIELDNO_HEAPTUPLETABLESLOT_TUPLE 1
260  HeapTuple tuple; /* physical tuple */
261 #define FIELDNO_HEAPTUPLETABLESLOT_OFF 2
262  uint32 off; /* saved state for slot_deform_heap_tuple */
263  HeapTupleData tupdata; /* optional workspace for storing tuple */
265 
266 /* heap tuple residing in a buffer */
268 {
269  pg_node_attr(abstract)
270 
271  HeapTupleTableSlot base;
272 
273  /*
274  * If buffer is not InvalidBuffer, then the slot is holding a pin on the
275  * indicated buffer page; drop the pin when we release the slot's
276  * reference to that buffer. (TTS_FLAG_SHOULDFREE should not be set in
277  * such a case, since presumably base.tuple is pointing into the buffer.)
278  */
279  Buffer buffer; /* tuple's buffer, or InvalidBuffer */
281 
282 typedef struct MinimalTupleTableSlot
283 {
284  pg_node_attr(abstract)
285 
286  TupleTableSlot base;
287 
288  /*
289  * In a minimal slot tuple points at minhdr and the fields of that struct
290  * are set correctly for access to the minimal tuple; in particular,
291  * minhdr.t_data points MINIMAL_TUPLE_OFFSET bytes before mintuple. This
292  * allows column extraction to treat the case identically to regular
293  * physical tuples.
294  */
295 #define FIELDNO_MINIMALTUPLETABLESLOT_TUPLE 1
296  HeapTuple tuple; /* tuple wrapper */
297  MinimalTuple mintuple; /* minimal tuple, or NULL if none */
298  HeapTupleData minhdr; /* workspace for minimal-tuple-only case */
299 #define FIELDNO_MINIMALTUPLETABLESLOT_OFF 4
300  uint32 off; /* saved state for slot_deform_heap_tuple */
302 
303 /*
304  * TupIsNull -- is a TupleTableSlot empty?
305  */
306 #define TupIsNull(slot) \
307  ((slot) == NULL || TTS_EMPTY(slot))
308 
309 /* in executor/execTuples.c */
311  const TupleTableSlotOps *tts_ops);
312 extern TupleTableSlot *ExecAllocTableSlot(List **tupleTable, TupleDesc desc,
313  const TupleTableSlotOps *tts_ops);
314 extern void ExecResetTupleTable(List *tupleTable, bool shouldFree);
316  const TupleTableSlotOps *tts_ops);
318 extern void ExecSetSlotDescriptor(TupleTableSlot *slot, TupleDesc tupdesc);
320  TupleTableSlot *slot,
321  bool shouldFree);
322 extern void ExecForceStoreHeapTuple(HeapTuple tuple,
323  TupleTableSlot *slot,
324  bool shouldFree);
326  TupleTableSlot *slot,
327  Buffer buffer);
329  TupleTableSlot *slot,
330  Buffer buffer);
332  TupleTableSlot *slot,
333  bool shouldFree);
335  bool shouldFree);
339 extern HeapTuple ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree);
341  bool *shouldFree);
343 extern void slot_getmissingattrs(TupleTableSlot *slot, int startAttNum,
344  int lastAttNum);
345 extern void slot_getsomeattrs_int(TupleTableSlot *slot, int attnum);
346 
347 
348 #ifndef FRONTEND
349 
350 /*
351  * This function forces the entries of the slot's Datum/isnull arrays to be
352  * valid at least up through the attnum'th entry.
353  */
354 static inline void
356 {
357  if (slot->tts_nvalid < attnum)
359 }
360 
361 /*
362  * slot_getallattrs
363  * This function forces all the entries of the slot's Datum/isnull
364  * arrays to be valid. The caller may then extract data directly
365  * from those arrays instead of using slot_getattr.
366  */
367 static inline void
369 {
371 }
372 
373 
374 /*
375  * slot_attisnull
376  *
377  * Detect whether an attribute of the slot is null, without actually fetching
378  * it.
379  */
380 static inline bool
382 {
383  Assert(attnum > 0);
384 
385  if (attnum > slot->tts_nvalid)
386  slot_getsomeattrs(slot, attnum);
387 
388  return slot->tts_isnull[attnum - 1];
389 }
390 
391 /*
392  * slot_getattr - fetch one attribute of the slot's contents.
393  */
394 static inline Datum
396  bool *isnull)
397 {
398  Assert(attnum > 0);
399 
400  if (attnum > slot->tts_nvalid)
401  slot_getsomeattrs(slot, attnum);
402 
403  *isnull = slot->tts_isnull[attnum - 1];
404 
405  return slot->tts_values[attnum - 1];
406 }
407 
408 /*
409  * slot_getsysattr - fetch a system attribute of the slot's current tuple.
410  *
411  * If the slot type does not contain system attributes, this will throw an
412  * error. Hence before calling this function, callers should make sure that
413  * the slot type is the one that supports system attributes.
414  */
415 static inline Datum
416 slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
417 {
418  Assert(attnum < 0); /* caller error */
419 
421  {
422  *isnull = false;
423  return ObjectIdGetDatum(slot->tts_tableOid);
424  }
426  {
427  *isnull = false;
428  return PointerGetDatum(&slot->tts_tid);
429  }
430 
431  /* Fetch the system attribute from the underlying tuple. */
432  return slot->tts_ops->getsysattr(slot, attnum, isnull);
433 }
434 
435 /*
436  * slot_is_current_xact_tuple - check if the slot's current tuple is created
437  * by the current transaction.
438  *
439  * If the slot does not contain a storage tuple, this will throw an error.
440  * Hence before calling this function, callers should make sure that the
441  * slot type supports storage tuples and that there is currently one inside
442  * the slot.
443  */
444 static inline bool
446 {
447  return slot->tts_ops->is_current_xact_tuple(slot);
448 }
449 
450 /*
451  * ExecClearTuple - clear the slot's contents
452  */
453 static inline TupleTableSlot *
455 {
456  slot->tts_ops->clear(slot);
457 
458  return slot;
459 }
460 
461 /* ExecMaterializeSlot - force a slot into the "materialized" state.
462  *
463  * This causes the slot's tuple to be a local copy not dependent on any
464  * external storage (i.e. pointing into a Buffer, or having allocations in
465  * another memory context).
466  *
467  * A typical use for this operation is to prepare a computed tuple for being
468  * stored on disk. The original data may or may not be virtual, but in any
469  * case we need a private copy for heap_insert to scribble on.
470  */
471 static inline void
473 {
474  slot->tts_ops->materialize(slot);
475 }
476 
477 /*
478  * ExecCopySlotHeapTuple - return HeapTuple allocated in caller's context
479  */
480 static inline HeapTuple
482 {
483  Assert(!TTS_EMPTY(slot));
484 
485  return slot->tts_ops->copy_heap_tuple(slot);
486 }
487 
488 /*
489  * ExecCopySlotMinimalTuple - return MinimalTuple allocated in caller's context
490  */
491 static inline MinimalTuple
493 {
494  return slot->tts_ops->copy_minimal_tuple(slot);
495 }
496 
497 /*
498  * ExecCopySlot - copy one slot's contents into another.
499  *
500  * If a source's system attributes are supposed to be accessed in the target
501  * slot, the target slot and source slot types need to match.
502  *
503  * Currently, 'dstslot' and 'srcslot' must have the same number of attributes.
504  * Future work could see this relaxed to allow the source to contain
505  * additional attributes and have the code here only copy over the leading
506  * attributes.
507  */
508 static inline TupleTableSlot *
510 {
511  Assert(!TTS_EMPTY(srcslot));
512  Assert(srcslot != dstslot);
513  Assert(dstslot->tts_tupleDescriptor->natts ==
514  srcslot->tts_tupleDescriptor->natts);
515 
516  dstslot->tts_ops->copyslot(dstslot, srcslot);
517 
518  return dstslot;
519 }
520 
521 #endif /* FRONTEND */
522 
523 #endif /* TUPTABLE_H */
int16 AttrNumber
Definition: attnum.h:21
int Buffer
Definition: buf.h:23
unsigned short uint16
Definition: c.h:505
unsigned int uint32
Definition: c.h:506
#define PGDLLIMPORT
Definition: c.h:1316
#define Assert(condition)
Definition: c.h:858
unsigned char bool
Definition: c.h:456
HeapTupleData * HeapTuple
Definition: htup.h:71
MinimalTupleData * MinimalTuple
Definition: htup.h:27
NodeTag
Definition: nodes.h:27
int16 attnum
Definition: pg_attribute.h:74
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
unsigned int Oid
Definition: postgres_ext.h:31
pg_node_attr(abstract) HeapTupleTableSlot base
pg_node_attr(abstract) TupleTableSlot base
HeapTupleData tupdata
Definition: tuptable.h:263
HeapTuple tuple
Definition: tuptable.h:260
Definition: pg_list.h:54
HeapTupleData minhdr
Definition: tuptable.h:298
pg_node_attr(abstract) TupleTableSlot base
MinimalTuple mintuple
Definition: tuptable.h:297
Datum(* getsysattr)(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:167
size_t base_slot_size
Definition: tuptable.h:137
bool(* is_current_xact_tuple)(TupleTableSlot *slot)
Definition: tuptable.h:173
HeapTuple(* get_heap_tuple)(TupleTableSlot *slot)
Definition: tuptable.h:194
void(* init)(TupleTableSlot *slot)
Definition: tuptable.h:140
void(* copyslot)(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
Definition: tuptable.h:186
MinimalTuple(* copy_minimal_tuple)(TupleTableSlot *slot)
Definition: tuptable.h:222
void(* getsomeattrs)(TupleTableSlot *slot, int natts)
Definition: tuptable.h:160
HeapTuple(* copy_heap_tuple)(TupleTableSlot *slot)
Definition: tuptable.h:212
MinimalTuple(* get_minimal_tuple)(TupleTableSlot *slot)
Definition: tuptable.h:202
void(* clear)(TupleTableSlot *slot)
Definition: tuptable.h:151
void(* materialize)(TupleTableSlot *slot)
Definition: tuptable.h:179
void(* release)(TupleTableSlot *slot)
Definition: tuptable.h:143
Oid tts_tableOid
Definition: tuptable.h:130
TupleDesc tts_tupleDescriptor
Definition: tuptable.h:123
const TupleTableSlotOps *const tts_ops
Definition: tuptable.h:121
NodeTag type
Definition: tuptable.h:116
MemoryContext tts_mcxt
Definition: tuptable.h:128
AttrNumber tts_nvalid
Definition: tuptable.h:120
bool * tts_isnull
Definition: tuptable.h:127
ItemPointerData tts_tid
Definition: tuptable.h:129
Datum * tts_values
Definition: tuptable.h:125
uint16 tts_flags
Definition: tuptable.h:118
pg_node_attr(abstract) TupleTableSlot base
#define TableOidAttributeNumber
Definition: sysattr.h:26
#define SelfItemPointerAttributeNumber
Definition: sysattr.h:21
PGDLLIMPORT const TupleTableSlotOps TTSOpsMinimalTuple
Definition: execTuples.c:86
void ExecResetTupleTable(List *tupleTable, bool shouldFree)
Definition: execTuples.c:1278
struct TupleTableSlot TupleTableSlot
TupleTableSlot * MakeTupleTableSlot(TupleDesc tupleDesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1199
static MinimalTuple ExecCopySlotMinimalTuple(TupleTableSlot *slot)
Definition: tuptable.h:492
static TupleTableSlot * ExecClearTuple(TupleTableSlot *slot)
Definition: tuptable.h:454
TupleTableSlot * ExecStoreVirtualTuple(TupleTableSlot *slot)
Definition: execTuples.c:1639
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1341
#define TTS_EMPTY(slot)
Definition: tuptable.h:96
TupleTableSlot * ExecStoreBufferHeapTuple(HeapTuple tuple, TupleTableSlot *slot, Buffer buffer)
Definition: execTuples.c:1479
static void slot_getsomeattrs(TupleTableSlot *slot, int attnum)
Definition: tuptable.h:355
struct MinimalTupleTableSlot MinimalTupleTableSlot
static TupleTableSlot * ExecCopySlot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
Definition: tuptable.h:509
void ExecForceStoreMinimalTuple(MinimalTuple mtup, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1599
static HeapTuple ExecCopySlotHeapTuple(TupleTableSlot *slot)
Definition: tuptable.h:481
MinimalTuple ExecFetchSlotMinimalTuple(TupleTableSlot *slot, bool *shouldFree)
Definition: execTuples.c:1779
TupleTableSlot * ExecStoreAllNullTuple(TupleTableSlot *slot)
Definition: execTuples.c:1663
static Datum slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:416
TupleTableSlot * ExecStoreMinimalTuple(MinimalTuple mtup, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1533
PGDLLIMPORT const TupleTableSlotOps TTSOpsVirtual
Definition: execTuples.c:84
HeapTuple ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree)
Definition: execTuples.c:1731
void slot_getmissingattrs(TupleTableSlot *slot, int startAttNum, int lastAttNum)
Definition: execTuples.c:1955
static Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:395
TupleTableSlot * ExecStoreHeapTuple(HeapTuple tuple, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1439
static bool slot_is_current_xact_tuple(TupleTableSlot *slot)
Definition: tuptable.h:445
void ExecStoreHeapTupleDatum(Datum data, TupleTableSlot *slot)
Definition: execTuples.c:1693
void ExecSetSlotDescriptor(TupleTableSlot *slot, TupleDesc tupdesc)
Definition: execTuples.c:1376
PGDLLIMPORT const TupleTableSlotOps TTSOpsHeapTuple
Definition: execTuples.c:85
Datum ExecFetchSlotHeapTupleDatum(TupleTableSlot *slot)
Definition: execTuples.c:1810
static void slot_getallattrs(TupleTableSlot *slot)
Definition: tuptable.h:368
void slot_getsomeattrs_int(TupleTableSlot *slot, int attnum)
Definition: execTuples.c:1989
struct HeapTupleTableSlot HeapTupleTableSlot
TupleTableSlot * ExecStorePinnedBufferHeapTuple(HeapTuple tuple, TupleTableSlot *slot, Buffer buffer)
Definition: execTuples.c:1505
PGDLLIMPORT const TupleTableSlotOps TTSOpsBufferHeapTuple
Definition: execTuples.c:87
static void ExecMaterializeSlot(TupleTableSlot *slot)
Definition: tuptable.h:472
TupleTableSlot * ExecAllocTableSlot(List **tupleTable, TupleDesc desc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1258
static bool slot_attisnull(TupleTableSlot *slot, int attnum)
Definition: tuptable.h:381
TupleTableSlot * MakeSingleTupleTableSlot(TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1325
void ExecForceStoreHeapTuple(HeapTuple tuple, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1556