PostgreSQL Source Code git master
predicate.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * predicate.c
4 * POSTGRES predicate locking
5 * to support full serializable transaction isolation
6 *
7 *
8 * The approach taken is to implement Serializable Snapshot Isolation (SSI)
9 * as initially described in this paper:
10 *
11 * Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008.
12 * Serializable isolation for snapshot databases.
13 * In SIGMOD '08: Proceedings of the 2008 ACM SIGMOD
14 * international conference on Management of data,
15 * pages 729-738, New York, NY, USA. ACM.
16 * http://doi.acm.org/10.1145/1376616.1376690
17 *
18 * and further elaborated in Cahill's doctoral thesis:
19 *
20 * Michael James Cahill. 2009.
21 * Serializable Isolation for Snapshot Databases.
22 * Sydney Digital Theses.
23 * University of Sydney, School of Information Technologies.
24 * http://hdl.handle.net/2123/5353
25 *
26 *
27 * Predicate locks for Serializable Snapshot Isolation (SSI) are SIREAD
28 * locks, which are so different from normal locks that a distinct set of
29 * structures is required to handle them. They are needed to detect
30 * rw-conflicts when the read happens before the write. (When the write
31 * occurs first, the reading transaction can check for a conflict by
32 * examining the MVCC data.)
33 *
34 * (1) Besides tuples actually read, they must cover ranges of tuples
35 * which would have been read based on the predicate. This will
36 * require modelling the predicates through locks against database
37 * objects such as pages, index ranges, or entire tables.
38 *
39 * (2) They must be kept in RAM for quick access. Because of this, it
40 * isn't possible to always maintain tuple-level granularity -- when
41 * the space allocated to store these approaches exhaustion, a
42 * request for a lock may need to scan for situations where a single
43 * transaction holds many fine-grained locks which can be coalesced
44 * into a single coarser-grained lock.
45 *
46 * (3) They never block anything; they are more like flags than locks
47 * in that regard; although they refer to database objects and are
48 * used to identify rw-conflicts with normal write locks.
49 *
50 * (4) While they are associated with a transaction, they must survive
51 * a successful COMMIT of that transaction, and remain until all
52 * overlapping transactions complete. This even means that they
53 * must survive termination of the transaction's process. If a
54 * top level transaction is rolled back, however, it is immediately
55 * flagged so that it can be ignored, and its SIREAD locks can be
56 * released any time after that.
57 *
58 * (5) The only transactions which create SIREAD locks or check for
59 * conflicts with them are serializable transactions.
60 *
61 * (6) When a write lock for a top level transaction is found to cover
62 * an existing SIREAD lock for the same transaction, the SIREAD lock
63 * can be deleted.
64 *
65 * (7) A write from a serializable transaction must ensure that an xact
66 * record exists for the transaction, with the same lifespan (until
67 * all concurrent transaction complete or the transaction is rolled
68 * back) so that rw-dependencies to that transaction can be
69 * detected.
70 *
71 * We use an optimization for read-only transactions. Under certain
72 * circumstances, a read-only transaction's snapshot can be shown to
73 * never have conflicts with other transactions. This is referred to
74 * as a "safe" snapshot (and one known not to be is "unsafe").
75 * However, it can't be determined whether a snapshot is safe until
76 * all concurrent read/write transactions complete.
77 *
78 * Once a read-only transaction is known to have a safe snapshot, it
79 * can release its predicate locks and exempt itself from further
80 * predicate lock tracking. READ ONLY DEFERRABLE transactions run only
81 * on safe snapshots, waiting as necessary for one to be available.
82 *
83 *
84 * Lightweight locks to manage access to the predicate locking shared
85 * memory objects must be taken in this order, and should be released in
86 * reverse order:
87 *
88 * SerializableFinishedListLock
89 * - Protects the list of transactions which have completed but which
90 * may yet matter because they overlap still-active transactions.
91 *
92 * SerializablePredicateListLock
93 * - Protects the linked list of locks held by a transaction. Note
94 * that the locks themselves are also covered by the partition
95 * locks of their respective lock targets; this lock only affects
96 * the linked list connecting the locks related to a transaction.
97 * - All transactions share this single lock (with no partitioning).
98 * - There is never a need for a process other than the one running
99 * an active transaction to walk the list of locks held by that
100 * transaction, except parallel query workers sharing the leader's
101 * transaction. In the parallel case, an extra per-sxact lock is
102 * taken; see below.
103 * - It is relatively infrequent that another process needs to
104 * modify the list for a transaction, but it does happen for such
105 * things as index page splits for pages with predicate locks and
106 * freeing of predicate locked pages by a vacuum process. When
107 * removing a lock in such cases, the lock itself contains the
108 * pointers needed to remove it from the list. When adding a
109 * lock in such cases, the lock can be added using the anchor in
110 * the transaction structure. Neither requires walking the list.
111 * - Cleaning up the list for a terminated transaction is sometimes
112 * not done on a retail basis, in which case no lock is required.
113 * - Due to the above, a process accessing its active transaction's
114 * list always uses a shared lock, regardless of whether it is
115 * walking or maintaining the list. This improves concurrency
116 * for the common access patterns.
117 * - A process which needs to alter the list of a transaction other
118 * than its own active transaction must acquire an exclusive
119 * lock.
120 *
121 * SERIALIZABLEXACT's member 'perXactPredicateListLock'
122 * - Protects the linked list of predicate locks held by a transaction.
123 * Only needed for parallel mode, where multiple backends share the
124 * same SERIALIZABLEXACT object. Not needed if
125 * SerializablePredicateListLock is held exclusively.
126 *
127 * PredicateLockHashPartitionLock(hashcode)
128 * - The same lock protects a target, all locks on that target, and
129 * the linked list of locks on the target.
130 * - When more than one is needed, acquire in ascending address order.
131 * - When all are needed (rare), acquire in ascending index order with
132 * PredicateLockHashPartitionLockByIndex(index).
133 *
134 * SerializableXactHashLock
135 * - Protects both PredXact and SerializableXidHash.
136 *
137 * SerialControlLock
138 * - Protects SerialControlData members
139 *
140 * SLRU per-bank locks
141 * - Protects SerialSlruCtl
142 *
143 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
144 * Portions Copyright (c) 1994, Regents of the University of California
145 *
146 *
147 * IDENTIFICATION
148 * src/backend/storage/lmgr/predicate.c
149 *
150 *-------------------------------------------------------------------------
151 */
152/*
153 * INTERFACE ROUTINES
154 *
155 * housekeeping for setting up shared memory predicate lock structures
156 * PredicateLockShmemInit(void)
157 * PredicateLockShmemSize(void)
158 *
159 * predicate lock reporting
160 * GetPredicateLockStatusData(void)
161 * PageIsPredicateLocked(Relation relation, BlockNumber blkno)
162 *
163 * predicate lock maintenance
164 * GetSerializableTransactionSnapshot(Snapshot snapshot)
165 * SetSerializableTransactionSnapshot(Snapshot snapshot,
166 * VirtualTransactionId *sourcevxid)
167 * RegisterPredicateLockingXid(void)
168 * PredicateLockRelation(Relation relation, Snapshot snapshot)
169 * PredicateLockPage(Relation relation, BlockNumber blkno,
170 * Snapshot snapshot)
171 * PredicateLockTID(Relation relation, const ItemPointerData *tid, Snapshot snapshot,
172 * TransactionId tuple_xid)
173 * PredicateLockPageSplit(Relation relation, BlockNumber oldblkno,
174 * BlockNumber newblkno)
175 * PredicateLockPageCombine(Relation relation, BlockNumber oldblkno,
176 * BlockNumber newblkno)
177 * TransferPredicateLocksToHeapRelation(Relation relation)
178 * ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe)
179 *
180 * conflict detection (may also trigger rollback)
181 * CheckForSerializableConflictOut(Relation relation, TransactionId xid,
182 * Snapshot snapshot)
183 * CheckForSerializableConflictIn(Relation relation, const ItemPointerData *tid,
184 * BlockNumber blkno)
185 * CheckTableForSerializableConflictIn(Relation relation)
186 *
187 * final rollback checking
188 * PreCommit_CheckForSerializationFailure(void)
189 *
190 * two-phase commit support
191 * AtPrepare_PredicateLocks(void);
192 * PostPrepare_PredicateLocks(TransactionId xid);
193 * PredicateLockTwoPhaseFinish(TransactionId xid, bool isCommit);
194 * predicatelock_twophase_recover(FullTransactionId fxid, uint16 info,
195 * void *recdata, uint32 len);
196 */
197
198#include "postgres.h"
199
200#include "access/parallel.h"
201#include "access/slru.h"
202#include "access/transam.h"
203#include "access/twophase.h"
204#include "access/twophase_rmgr.h"
205#include "access/xact.h"
206#include "access/xlog.h"
207#include "miscadmin.h"
208#include "pgstat.h"
209#include "port/pg_lfind.h"
210#include "storage/predicate.h"
212#include "storage/proc.h"
213#include "storage/procarray.h"
214#include "utils/guc_hooks.h"
215#include "utils/rel.h"
216#include "utils/snapmgr.h"
217
218/* Uncomment the next line to test the graceful degradation code. */
219/* #define TEST_SUMMARIZE_SERIAL */
220
221/*
222 * Test the most selective fields first, for performance.
223 *
224 * a is covered by b if all of the following hold:
225 * 1) a.database = b.database
226 * 2) a.relation = b.relation
227 * 3) b.offset is invalid (b is page-granularity or higher)
228 * 4) either of the following:
229 * 4a) a.offset is valid (a is tuple-granularity) and a.page = b.page
230 * or 4b) a.offset is invalid and b.page is invalid (a is
231 * page-granularity and b is relation-granularity
232 */
233#define TargetTagIsCoveredBy(covered_target, covering_target) \
234 ((GET_PREDICATELOCKTARGETTAG_RELATION(covered_target) == /* (2) */ \
235 GET_PREDICATELOCKTARGETTAG_RELATION(covering_target)) \
236 && (GET_PREDICATELOCKTARGETTAG_OFFSET(covering_target) == \
237 InvalidOffsetNumber) /* (3) */ \
238 && (((GET_PREDICATELOCKTARGETTAG_OFFSET(covered_target) != \
239 InvalidOffsetNumber) /* (4a) */ \
240 && (GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) == \
241 GET_PREDICATELOCKTARGETTAG_PAGE(covered_target))) \
242 || ((GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) == \
243 InvalidBlockNumber) /* (4b) */ \
244 && (GET_PREDICATELOCKTARGETTAG_PAGE(covered_target) \
245 != InvalidBlockNumber))) \
246 && (GET_PREDICATELOCKTARGETTAG_DB(covered_target) == /* (1) */ \
247 GET_PREDICATELOCKTARGETTAG_DB(covering_target)))
248
249/*
250 * The predicate locking target and lock shared hash tables are partitioned to
251 * reduce contention. To determine which partition a given target belongs to,
252 * compute the tag's hash code with PredicateLockTargetTagHashCode(), then
253 * apply one of these macros.
254 * NB: NUM_PREDICATELOCK_PARTITIONS must be a power of 2!
255 */
256#define PredicateLockHashPartition(hashcode) \
257 ((hashcode) % NUM_PREDICATELOCK_PARTITIONS)
258#define PredicateLockHashPartitionLock(hashcode) \
259 (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + \
260 PredicateLockHashPartition(hashcode)].lock)
261#define PredicateLockHashPartitionLockByIndex(i) \
262 (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + (i)].lock)
263
264#define NPREDICATELOCKTARGETENTS() \
265 mul_size(max_predicate_locks_per_xact, add_size(MaxBackends, max_prepared_xacts))
266
267#define SxactIsOnFinishedList(sxact) (!dlist_node_is_detached(&(sxact)->finishedLink))
268
269/*
270 * Note that a sxact is marked "prepared" once it has passed
271 * PreCommit_CheckForSerializationFailure, even if it isn't using
272 * 2PC. This is the point at which it can no longer be aborted.
273 *
274 * The PREPARED flag remains set after commit, so SxactIsCommitted
275 * implies SxactIsPrepared.
276 */
277#define SxactIsCommitted(sxact) (((sxact)->flags & SXACT_FLAG_COMMITTED) != 0)
278#define SxactIsPrepared(sxact) (((sxact)->flags & SXACT_FLAG_PREPARED) != 0)
279#define SxactIsRolledBack(sxact) (((sxact)->flags & SXACT_FLAG_ROLLED_BACK) != 0)
280#define SxactIsDoomed(sxact) (((sxact)->flags & SXACT_FLAG_DOOMED) != 0)
281#define SxactIsReadOnly(sxact) (((sxact)->flags & SXACT_FLAG_READ_ONLY) != 0)
282#define SxactHasSummaryConflictIn(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_IN) != 0)
283#define SxactHasSummaryConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_OUT) != 0)
284/*
285 * The following macro actually means that the specified transaction has a
286 * conflict out *to a transaction which committed ahead of it*. It's hard
287 * to get that into a name of a reasonable length.
288 */
289#define SxactHasConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_CONFLICT_OUT) != 0)
290#define SxactIsDeferrableWaiting(sxact) (((sxact)->flags & SXACT_FLAG_DEFERRABLE_WAITING) != 0)
291#define SxactIsROSafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_SAFE) != 0)
292#define SxactIsROUnsafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_UNSAFE) != 0)
293#define SxactIsPartiallyReleased(sxact) (((sxact)->flags & SXACT_FLAG_PARTIALLY_RELEASED) != 0)
294
295/*
296 * Compute the hash code associated with a PREDICATELOCKTARGETTAG.
297 *
298 * To avoid unnecessary recomputations of the hash code, we try to do this
299 * just once per function, and then pass it around as needed. Aside from
300 * passing the hashcode to hash_search_with_hash_value(), we can extract
301 * the lock partition number from the hashcode.
302 */
303#define PredicateLockTargetTagHashCode(predicatelocktargettag) \
304 get_hash_value(PredicateLockTargetHash, predicatelocktargettag)
305
306/*
307 * Given a predicate lock tag, and the hash for its target,
308 * compute the lock hash.
309 *
310 * To make the hash code also depend on the transaction, we xor the sxid
311 * struct's address into the hash code, left-shifted so that the
312 * partition-number bits don't change. Since this is only a hash, we
313 * don't care if we lose high-order bits of the address; use an
314 * intermediate variable to suppress cast-pointer-to-int warnings.
315 */
316#define PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash) \
317 ((targethash) ^ ((uint32) PointerGetDatum((predicatelocktag)->myXact)) \
318 << LOG2_NUM_PREDICATELOCK_PARTITIONS)
319
320
321/*
322 * The SLRU buffer area through which we access the old xids.
323 */
325
326#define SerialSlruCtl (&SerialSlruCtlData)
327
328#define SERIAL_PAGESIZE BLCKSZ
329#define SERIAL_ENTRYSIZE sizeof(SerCommitSeqNo)
330#define SERIAL_ENTRIESPERPAGE (SERIAL_PAGESIZE / SERIAL_ENTRYSIZE)
331
332/*
333 * Set maximum pages based on the number needed to track all transactions.
334 */
335#define SERIAL_MAX_PAGE (MaxTransactionId / SERIAL_ENTRIESPERPAGE)
336
337#define SerialNextPage(page) (((page) >= SERIAL_MAX_PAGE) ? 0 : (page) + 1)
338
339#define SerialValue(slotno, xid) (*((SerCommitSeqNo *) \
340 (SerialSlruCtl->shared->page_buffer[slotno] + \
341 ((((uint32) (xid)) % SERIAL_ENTRIESPERPAGE) * SERIAL_ENTRYSIZE))))
342
343#define SerialPage(xid) (((uint32) (xid)) / SERIAL_ENTRIESPERPAGE)
344
345typedef struct SerialControlData
346{
347 int64 headPage; /* newest initialized page */
348 TransactionId headXid; /* newest valid Xid in the SLRU */
349 TransactionId tailXid; /* oldest xmin we might be interested in */
351
353
355
356/*
357 * When the oldest committed transaction on the "finished" list is moved to
358 * SLRU, its predicate locks will be moved to this "dummy" transaction,
359 * collapsing duplicate targets. When a duplicate is found, the later
360 * commitSeqNo is used.
361 */
363
364
365/*
366 * These configuration variables are used to set the predicate lock table size
367 * and to control promotion of predicate locks to coarser granularity in an
368 * attempt to degrade performance (mostly as false positive serialization
369 * failure) gracefully in the face of memory pressure.
370 */
371int max_predicate_locks_per_xact; /* in guc_tables.c */
372int max_predicate_locks_per_relation; /* in guc_tables.c */
373int max_predicate_locks_per_page; /* in guc_tables.c */
374
375/*
376 * This provides a list of objects in order to track transactions
377 * participating in predicate locking. Entries in the list are fixed size,
378 * and reside in shared memory. The memory address of an entry must remain
379 * fixed during its lifetime. The list will be protected from concurrent
380 * update externally; no provision is made in this code to manage that. The
381 * number of entries in the list, and the size allowed for each entry is
382 * fixed upon creation.
383 */
385
386/*
387 * This provides a pool of RWConflict data elements to use in conflict lists
388 * between transactions.
389 */
391
392/*
393 * The predicate locking hash tables are in shared memory.
394 * Each backend keeps pointers to them.
395 */
400
401/*
402 * Tag for a dummy entry in PredicateLockTargetHash. By temporarily removing
403 * this entry, you can ensure that there's enough scratch space available for
404 * inserting one entry in the hash table. This is an otherwise-invalid tag.
405 */
406static const PREDICATELOCKTARGETTAG ScratchTargetTag = {0, 0, 0, 0};
409
410/*
411 * The local hash table used to determine when to combine multiple fine-
412 * grained locks into a single courser-grained lock.
413 */
415
416/*
417 * Keep a pointer to the currently-running serializable transaction (if any)
418 * for quick reference. Also, remember if we have written anything that could
419 * cause a rw-conflict.
420 */
422static bool MyXactDidWrite = false;
423
424/*
425 * The SXACT_FLAG_RO_UNSAFE optimization might lead us to release
426 * MySerializableXact early. If that happens in a parallel query, the leader
427 * needs to defer the destruction of the SERIALIZABLEXACT until end of
428 * transaction, because the workers still have a reference to it. In that
429 * case, the leader stores it here.
430 */
432
433/* local functions */
434
435static SERIALIZABLEXACT *CreatePredXact(void);
436static void ReleasePredXact(SERIALIZABLEXACT *sxact);
437
438static bool RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer);
439static void SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer);
440static void SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact, SERIALIZABLEXACT *activeXact);
441static void ReleaseRWConflict(RWConflict conflict);
442static void FlagSxactUnsafe(SERIALIZABLEXACT *sxact);
443
444static bool SerialPagePrecedesLogically(int64 page1, int64 page2);
445static void SerialInit(void);
446static void SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo);
449
450static uint32 predicatelock_hash(const void *key, Size keysize);
451static void SummarizeOldestCommittedSxact(void);
452static Snapshot GetSafeSnapshot(Snapshot origSnapshot);
454 VirtualTransactionId *sourcevxid,
455 int sourcepid);
456static bool PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag);
458 PREDICATELOCKTARGETTAG *parent);
459static bool CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag);
460static void RemoveScratchTarget(bool lockheld);
461static void RestoreScratchTarget(bool lockheld);
463 uint32 targettaghash);
464static void DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag);
467static void DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag);
468static void CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag,
469 uint32 targettaghash,
470 SERIALIZABLEXACT *sxact);
471static void DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash);
473 PREDICATELOCKTARGETTAG newtargettag,
474 bool removeOld);
475static void PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag);
476static void DropAllPredicateLocksFromTable(Relation relation,
477 bool transfer);
478static void SetNewSxactGlobalXmin(void);
479static void ClearOldPredicateLocks(void);
480static void ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
481 bool summarize);
482static bool XidIsConcurrent(TransactionId xid);
484static void FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer);
486 SERIALIZABLEXACT *writer);
487static void CreateLocalPredicateLockHash(void);
488static void ReleasePredicateLocksLocal(void);
489
490
491/*------------------------------------------------------------------------*/
492
493/*
494 * Does this relation participate in predicate locking? Temporary and system
495 * relations are exempt.
496 */
497static inline bool
499{
500 return !(relation->rd_id < FirstUnpinnedObjectId ||
501 RelationUsesLocalBuffers(relation));
502}
503
504/*
505 * When a public interface method is called for a read, this is the test to
506 * see if we should do a quick return.
507 *
508 * Note: this function has side-effects! If this transaction has been flagged
509 * as RO-safe since the last call, we release all predicate locks and reset
510 * MySerializableXact. That makes subsequent calls to return quickly.
511 *
512 * This is marked as 'inline' to eliminate the function call overhead in the
513 * common case that serialization is not needed.
514 */
515static inline bool
517{
518 /* Nothing to do if this is not a serializable transaction */
520 return false;
521
522 /*
523 * Don't acquire locks or conflict when scanning with a special snapshot.
524 * This excludes things like CLUSTER and REINDEX. They use the wholesale
525 * functions TransferPredicateLocksToHeapRelation() and
526 * CheckTableForSerializableConflictIn() to participate in serialization,
527 * but the scans involved don't need serialization.
528 */
529 if (!IsMVCCSnapshot(snapshot))
530 return false;
531
532 /*
533 * Check if we have just become "RO-safe". If we have, immediately release
534 * all locks as they're not needed anymore. This also resets
535 * MySerializableXact, so that subsequent calls to this function can exit
536 * quickly.
537 *
538 * A transaction is flagged as RO_SAFE if all concurrent R/W transactions
539 * commit without having conflicts out to an earlier snapshot, thus
540 * ensuring that no conflicts are possible for this transaction.
541 */
543 {
544 ReleasePredicateLocks(false, true);
545 return false;
546 }
547
548 /* Check if the relation doesn't participate in predicate locking */
550 return false;
551
552 return true; /* no excuse to skip predicate locking */
553}
554
555/*
556 * Like SerializationNeededForRead(), but called on writes.
557 * The logic is the same, but there is no snapshot and we can't be RO-safe.
558 */
559static inline bool
561{
562 /* Nothing to do if this is not a serializable transaction */
564 return false;
565
566 /* Check if the relation doesn't participate in predicate locking */
568 return false;
569
570 return true; /* no excuse to skip predicate locking */
571}
572
573
574/*------------------------------------------------------------------------*/
575
576/*
577 * These functions are a simple implementation of a list for this specific
578 * type of struct. If there is ever a generalized shared memory list, we
579 * should probably switch to that.
580 */
581static SERIALIZABLEXACT *
583{
584 SERIALIZABLEXACT *sxact;
585
587 return NULL;
588
589 sxact = dlist_container(SERIALIZABLEXACT, xactLink,
592 return sxact;
593}
594
595static void
597{
598 Assert(ShmemAddrIsValid(sxact));
599
600 dlist_delete(&sxact->xactLink);
602}
603
604/*------------------------------------------------------------------------*/
605
606/*
607 * These functions manage primitive access to the RWConflict pool and lists.
608 */
609static bool
611{
612 dlist_iter iter;
613
614 Assert(reader != writer);
615
616 /* Check the ends of the purported conflict first. */
617 if (SxactIsDoomed(reader)
618 || SxactIsDoomed(writer)
619 || dlist_is_empty(&reader->outConflicts)
620 || dlist_is_empty(&writer->inConflicts))
621 return false;
622
623 /*
624 * A conflict is possible; walk the list to find out.
625 *
626 * The unconstify is needed as we have no const version of
627 * dlist_foreach().
628 */
629 dlist_foreach(iter, &unconstify(SERIALIZABLEXACT *, reader)->outConflicts)
630 {
631 RWConflict conflict =
632 dlist_container(RWConflictData, outLink, iter.cur);
633
634 if (conflict->sxactIn == writer)
635 return true;
636 }
637
638 /* No conflict found. */
639 return false;
640}
641
642static void
644{
645 RWConflict conflict;
646
647 Assert(reader != writer);
648 Assert(!RWConflictExists(reader, writer));
649
652 (errcode(ERRCODE_OUT_OF_MEMORY),
653 errmsg("not enough elements in RWConflictPool to record a read/write conflict"),
654 errhint("You might need to run fewer transactions at a time or increase \"max_connections\".")));
655
657 dlist_delete(&conflict->outLink);
658
659 conflict->sxactOut = reader;
660 conflict->sxactIn = writer;
661 dlist_push_tail(&reader->outConflicts, &conflict->outLink);
662 dlist_push_tail(&writer->inConflicts, &conflict->inLink);
663}
664
665static void
667 SERIALIZABLEXACT *activeXact)
668{
669 RWConflict conflict;
670
671 Assert(roXact != activeXact);
672 Assert(SxactIsReadOnly(roXact));
673 Assert(!SxactIsReadOnly(activeXact));
674
677 (errcode(ERRCODE_OUT_OF_MEMORY),
678 errmsg("not enough elements in RWConflictPool to record a potential read/write conflict"),
679 errhint("You might need to run fewer transactions at a time or increase \"max_connections\".")));
680
682 dlist_delete(&conflict->outLink);
683
684 conflict->sxactOut = activeXact;
685 conflict->sxactIn = roXact;
686 dlist_push_tail(&activeXact->possibleUnsafeConflicts, &conflict->outLink);
687 dlist_push_tail(&roXact->possibleUnsafeConflicts, &conflict->inLink);
688}
689
690static void
692{
693 dlist_delete(&conflict->inLink);
694 dlist_delete(&conflict->outLink);
696}
697
698static void
700{
702
703 Assert(SxactIsReadOnly(sxact));
704 Assert(!SxactIsROSafe(sxact));
705
706 sxact->flags |= SXACT_FLAG_RO_UNSAFE;
707
708 /*
709 * We know this isn't a safe snapshot, so we can stop looking for other
710 * potential conflicts.
711 */
713 {
714 RWConflict conflict =
715 dlist_container(RWConflictData, inLink, iter.cur);
716
717 Assert(!SxactIsReadOnly(conflict->sxactOut));
718 Assert(sxact == conflict->sxactIn);
719
720 ReleaseRWConflict(conflict);
721 }
722}
723
724/*------------------------------------------------------------------------*/
725
726/*
727 * Decide whether a Serial page number is "older" for truncation purposes.
728 * Analogous to CLOGPagePrecedes().
729 */
730static bool
732{
733 TransactionId xid1;
734 TransactionId xid2;
735
736 xid1 = ((TransactionId) page1) * SERIAL_ENTRIESPERPAGE;
737 xid1 += FirstNormalTransactionId + 1;
738 xid2 = ((TransactionId) page2) * SERIAL_ENTRIESPERPAGE;
739 xid2 += FirstNormalTransactionId + 1;
740
741 return (TransactionIdPrecedes(xid1, xid2) &&
743}
744
745#ifdef USE_ASSERT_CHECKING
746static void
747SerialPagePrecedesLogicallyUnitTests(void)
748{
749 int per_page = SERIAL_ENTRIESPERPAGE,
750 offset = per_page / 2;
751 int64 newestPage,
752 oldestPage,
753 headPage,
754 targetPage;
755 TransactionId newestXact,
756 oldestXact;
757
758 /* GetNewTransactionId() has assigned the last XID it can safely use. */
759 newestPage = 2 * SLRU_PAGES_PER_SEGMENT - 1; /* nothing special */
760 newestXact = newestPage * per_page + offset;
761 Assert(newestXact / per_page == newestPage);
762 oldestXact = newestXact + 1;
763 oldestXact -= 1U << 31;
764 oldestPage = oldestXact / per_page;
765
766 /*
767 * In this scenario, the SLRU headPage pertains to the last ~1000 XIDs
768 * assigned. oldestXact finishes, ~2B XIDs having elapsed since it
769 * started. Further transactions cause us to summarize oldestXact to
770 * tailPage. Function must return false so SerialAdd() doesn't zero
771 * tailPage (which may contain entries for other old, recently-finished
772 * XIDs) and half the SLRU. Reaching this requires burning ~2B XIDs in
773 * single-user mode, a negligible possibility.
774 */
775 headPage = newestPage;
776 targetPage = oldestPage;
778
779 /*
780 * In this scenario, the SLRU headPage pertains to oldestXact. We're
781 * summarizing an XID near newestXact. (Assume few other XIDs used
782 * SERIALIZABLE, hence the minimal headPage advancement. Assume
783 * oldestXact was long-running and only recently reached the SLRU.)
784 * Function must return true to make SerialAdd() create targetPage.
785 *
786 * Today's implementation mishandles this case, but it doesn't matter
787 * enough to fix. Verify that the defect affects just one page by
788 * asserting correct treatment of its prior page. Reaching this case
789 * requires burning ~2B XIDs in single-user mode, a negligible
790 * possibility. Moreover, if it does happen, the consequence would be
791 * mild, namely a new transaction failing in SimpleLruReadPage().
792 */
793 headPage = oldestPage;
794 targetPage = newestPage;
796#if 0
798#endif
799}
800#endif
801
802/*
803 * Initialize for the tracking of old serializable committed xids.
804 */
805static void
807{
808 bool found;
809
810 /*
811 * Set up SLRU management of the pg_serial data.
812 */
814 SimpleLruInit(SerialSlruCtl, "serializable",
815 serializable_buffers, 0, "pg_serial",
816 LWTRANCHE_SERIAL_BUFFER, LWTRANCHE_SERIAL_SLRU,
817 SYNC_HANDLER_NONE, false);
818#ifdef USE_ASSERT_CHECKING
819 SerialPagePrecedesLogicallyUnitTests();
820#endif
822
823 /*
824 * Create or attach to the SerialControl structure.
825 */
827 ShmemInitStruct("SerialControlData", sizeof(SerialControlData), &found);
828
829 Assert(found == IsUnderPostmaster);
830 if (!found)
831 {
832 /*
833 * Set control information to reflect empty SLRU.
834 */
835 LWLockAcquire(SerialControlLock, LW_EXCLUSIVE);
839 LWLockRelease(SerialControlLock);
840 }
841}
842
843/*
844 * GUC check_hook for serializable_buffers
845 */
846bool
848{
849 return check_slru_buffers("serializable_buffers", newval);
850}
851
852/*
853 * Record a committed read write serializable xid and the minimum
854 * commitSeqNo of any transactions to which this xid had a rw-conflict out.
855 * An invalid commitSeqNo means that there were no conflicts out from xid.
856 */
857static void
858SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo)
859{
861 int64 targetPage;
862 int slotno;
863 int64 firstZeroPage;
864 bool isNewPage;
865 LWLock *lock;
866
868
869 targetPage = SerialPage(xid);
870 lock = SimpleLruGetBankLock(SerialSlruCtl, targetPage);
871
872 /*
873 * In this routine, we must hold both SerialControlLock and the SLRU bank
874 * lock simultaneously while making the SLRU data catch up with the new
875 * state that we determine.
876 */
877 LWLockAcquire(SerialControlLock, LW_EXCLUSIVE);
878
879 /*
880 * If 'xid' is older than the global xmin (== tailXid), there's no need to
881 * store it, after all. This can happen if the oldest transaction holding
882 * back the global xmin just finished, making 'xid' uninteresting, but
883 * ClearOldPredicateLocks() has not yet run.
884 */
887 {
888 LWLockRelease(SerialControlLock);
889 return;
890 }
891
892 /*
893 * If the SLRU is currently unused, zero out the whole active region from
894 * tailXid to headXid before taking it into use. Otherwise zero out only
895 * any new pages that enter the tailXid-headXid range as we advance
896 * headXid.
897 */
898 if (serialControl->headPage < 0)
899 {
900 firstZeroPage = SerialPage(tailXid);
901 isNewPage = true;
902 }
903 else
904 {
905 firstZeroPage = SerialNextPage(serialControl->headPage);
907 targetPage);
908 }
909
912 serialControl->headXid = xid;
913 if (isNewPage)
914 serialControl->headPage = targetPage;
915
916 if (isNewPage)
917 {
918 /* Initialize intervening pages; might involve trading locks */
919 for (;;)
920 {
921 lock = SimpleLruGetBankLock(SerialSlruCtl, firstZeroPage);
923 slotno = SimpleLruZeroPage(SerialSlruCtl, firstZeroPage);
924 if (firstZeroPage == targetPage)
925 break;
926 firstZeroPage = SerialNextPage(firstZeroPage);
927 LWLockRelease(lock);
928 }
929 }
930 else
931 {
933 slotno = SimpleLruReadPage(SerialSlruCtl, targetPage, true, xid);
934 }
935
936 SerialValue(slotno, xid) = minConflictCommitSeqNo;
937 SerialSlruCtl->shared->page_dirty[slotno] = true;
938
939 LWLockRelease(lock);
940 LWLockRelease(SerialControlLock);
941}
942
943/*
944 * Get the minimum commitSeqNo for any conflict out for the given xid. For
945 * a transaction which exists but has no conflict out, InvalidSerCommitSeqNo
946 * will be returned.
947 */
948static SerCommitSeqNo
950{
954 int slotno;
955
957
958 LWLockAcquire(SerialControlLock, LW_SHARED);
961 LWLockRelease(SerialControlLock);
962
964 return 0;
965
967
970 return 0;
971
972 /*
973 * The following function must be called without holding SLRU bank lock,
974 * but will return with that lock held, which must then be released.
975 */
977 SerialPage(xid), xid);
978 val = SerialValue(slotno, xid);
980 return val;
981}
982
983/*
984 * Call this whenever there is a new xmin for active serializable
985 * transactions. We don't need to keep information on transactions which
986 * precede that. InvalidTransactionId means none active, so everything in
987 * the SLRU can be discarded.
988 */
989static void
991{
992 LWLockAcquire(SerialControlLock, LW_EXCLUSIVE);
993
994 /*
995 * When no sxacts are active, nothing overlaps, set the xid values to
996 * invalid to show that there are no valid entries. Don't clear headPage,
997 * though. A new xmin might still land on that page, and we don't want to
998 * repeatedly zero out the same page.
999 */
1000 if (!TransactionIdIsValid(xid))
1001 {
1004 LWLockRelease(SerialControlLock);
1005 return;
1006 }
1007
1008 /*
1009 * When we're recovering prepared transactions, the global xmin might move
1010 * backwards depending on the order they're recovered. Normally that's not
1011 * OK, but during recovery no serializable transactions will commit, so
1012 * the SLRU is empty and we can get away with it.
1013 */
1014 if (RecoveryInProgress())
1015 {
1019 {
1020 serialControl->tailXid = xid;
1021 }
1022 LWLockRelease(SerialControlLock);
1023 return;
1024 }
1025
1028
1029 serialControl->tailXid = xid;
1030
1031 LWLockRelease(SerialControlLock);
1032}
1033
1034/*
1035 * Perform a checkpoint --- either during shutdown, or on-the-fly
1036 *
1037 * We don't have any data that needs to survive a restart, but this is a
1038 * convenient place to truncate the SLRU.
1039 */
1040void
1042{
1043 int64 truncateCutoffPage;
1044
1045 LWLockAcquire(SerialControlLock, LW_EXCLUSIVE);
1046
1047 /* Exit quickly if the SLRU is currently not in use. */
1048 if (serialControl->headPage < 0)
1049 {
1050 LWLockRelease(SerialControlLock);
1051 return;
1052 }
1053
1055 {
1056 int64 tailPage;
1057
1058 tailPage = SerialPage(serialControl->tailXid);
1059
1060 /*
1061 * It is possible for the tailXid to be ahead of the headXid. This
1062 * occurs if we checkpoint while there are in-progress serializable
1063 * transaction(s) advancing the tail but we are yet to summarize the
1064 * transactions. In this case, we cutoff up to the headPage and the
1065 * next summary will advance the headXid.
1066 */
1068 {
1069 /* We can truncate the SLRU up to the page containing tailXid */
1070 truncateCutoffPage = tailPage;
1071 }
1072 else
1073 truncateCutoffPage = serialControl->headPage;
1074 }
1075 else
1076 {
1077 /*----------
1078 * The SLRU is no longer needed. Truncate to head before we set head
1079 * invalid.
1080 *
1081 * XXX: It's possible that the SLRU is not needed again until XID
1082 * wrap-around has happened, so that the segment containing headPage
1083 * that we leave behind will appear to be new again. In that case it
1084 * won't be removed until XID horizon advances enough to make it
1085 * current again.
1086 *
1087 * XXX: This should happen in vac_truncate_clog(), not in checkpoints.
1088 * Consider this scenario, starting from a system with no in-progress
1089 * transactions and VACUUM FREEZE having maximized oldestXact:
1090 * - Start a SERIALIZABLE transaction.
1091 * - Start, finish, and summarize a SERIALIZABLE transaction, creating
1092 * one SLRU page.
1093 * - Consume XIDs to reach xidStopLimit.
1094 * - Finish all transactions. Due to the long-running SERIALIZABLE
1095 * transaction, earlier checkpoints did not touch headPage. The
1096 * next checkpoint will change it, but that checkpoint happens after
1097 * the end of the scenario.
1098 * - VACUUM to advance XID limits.
1099 * - Consume ~2M XIDs, crossing the former xidWrapLimit.
1100 * - Start, finish, and summarize a SERIALIZABLE transaction.
1101 * SerialAdd() declines to create the targetPage, because headPage
1102 * is not regarded as in the past relative to that targetPage. The
1103 * transaction instigating the summarize fails in
1104 * SimpleLruReadPage().
1105 */
1106 truncateCutoffPage = serialControl->headPage;
1107 serialControl->headPage = -1;
1108 }
1109
1110 LWLockRelease(SerialControlLock);
1111
1112 /*
1113 * Truncate away pages that are no longer required. Note that no
1114 * additional locking is required, because this is only called as part of
1115 * a checkpoint, and the validity limits have already been determined.
1116 */
1117 SimpleLruTruncate(SerialSlruCtl, truncateCutoffPage);
1118
1119 /*
1120 * Write dirty SLRU pages to disk
1121 *
1122 * This is not actually necessary from a correctness point of view. We do
1123 * it merely as a debugging aid.
1124 *
1125 * We're doing this after the truncation to avoid writing pages right
1126 * before deleting the file in which they sit, which would be completely
1127 * pointless.
1128 */
1130}
1131
1132/*------------------------------------------------------------------------*/
1133
1134/*
1135 * PredicateLockShmemInit -- Initialize the predicate locking data structures.
1136 *
1137 * This is called from CreateSharedMemoryAndSemaphores(), which see for
1138 * more comments. In the normal postmaster case, the shared hash tables
1139 * are created here. Backends inherit the pointers
1140 * to the shared tables via fork(). In the EXEC_BACKEND case, each
1141 * backend re-executes this code to obtain pointers to the already existing
1142 * shared hash tables.
1143 */
1144void
1146{
1147 HASHCTL info;
1148 int64 max_table_size;
1149 Size requestSize;
1150 bool found;
1151
1152#ifndef EXEC_BACKEND
1154#endif
1155
1156 /*
1157 * Compute size of predicate lock target hashtable. Note these
1158 * calculations must agree with PredicateLockShmemSize!
1159 */
1160 max_table_size = NPREDICATELOCKTARGETENTS();
1161
1162 /*
1163 * Allocate hash table for PREDICATELOCKTARGET structs. This stores
1164 * per-predicate-lock-target information.
1165 */
1166 info.keysize = sizeof(PREDICATELOCKTARGETTAG);
1167 info.entrysize = sizeof(PREDICATELOCKTARGET);
1169
1170 PredicateLockTargetHash = ShmemInitHash("PREDICATELOCKTARGET hash",
1171 max_table_size,
1172 max_table_size,
1173 &info,
1176
1177 /*
1178 * Reserve a dummy entry in the hash table; we use it to make sure there's
1179 * always one entry available when we need to split or combine a page,
1180 * because running out of space there could mean aborting a
1181 * non-serializable transaction.
1182 */
1183 if (!IsUnderPostmaster)
1184 {
1186 HASH_ENTER, &found);
1187 Assert(!found);
1188 }
1189
1190 /* Pre-calculate the hash and partition lock of the scratch entry */
1193
1194 /*
1195 * Allocate hash table for PREDICATELOCK structs. This stores per
1196 * xact-lock-of-a-target information.
1197 */
1198 info.keysize = sizeof(PREDICATELOCKTAG);
1199 info.entrysize = sizeof(PREDICATELOCK);
1200 info.hash = predicatelock_hash;
1202
1203 /* Assume an average of 2 xacts per target */
1204 max_table_size *= 2;
1205
1206 PredicateLockHash = ShmemInitHash("PREDICATELOCK hash",
1207 max_table_size,
1208 max_table_size,
1209 &info,
1212
1213 /*
1214 * Compute size for serializable transaction hashtable. Note these
1215 * calculations must agree with PredicateLockShmemSize!
1216 */
1217 max_table_size = (MaxBackends + max_prepared_xacts);
1218
1219 /*
1220 * Allocate a list to hold information on transactions participating in
1221 * predicate locking.
1222 *
1223 * Assume an average of 10 predicate locking transactions per backend.
1224 * This allows aggressive cleanup while detail is present before data must
1225 * be summarized for storage in SLRU and the "dummy" transaction.
1226 */
1227 max_table_size *= 10;
1228
1229 requestSize = add_size(PredXactListDataSize,
1230 (mul_size((Size) max_table_size,
1231 sizeof(SERIALIZABLEXACT))));
1232
1233 PredXact = ShmemInitStruct("PredXactList",
1234 requestSize,
1235 &found);
1236 Assert(found == IsUnderPostmaster);
1237 if (!found)
1238 {
1239 int i;
1240
1241 /* clean everything, both the header and the element */
1242 memset(PredXact, 0, requestSize);
1243
1254 /* Add all elements to available list, clean. */
1255 for (i = 0; i < max_table_size; i++)
1256 {
1258 LWTRANCHE_PER_XACT_PREDICATE_LIST);
1260 }
1277 }
1278 /* This never changes, so let's keep a local copy. */
1280
1281 /*
1282 * Allocate hash table for SERIALIZABLEXID structs. This stores per-xid
1283 * information for serializable transactions which have accessed data.
1284 */
1285 info.keysize = sizeof(SERIALIZABLEXIDTAG);
1286 info.entrysize = sizeof(SERIALIZABLEXID);
1287
1288 SerializableXidHash = ShmemInitHash("SERIALIZABLEXID hash",
1289 max_table_size,
1290 max_table_size,
1291 &info,
1294
1295 /*
1296 * Allocate space for tracking rw-conflicts in lists attached to the
1297 * transactions.
1298 *
1299 * Assume an average of 5 conflicts per transaction. Calculations suggest
1300 * that this will prevent resource exhaustion in even the most pessimal
1301 * loads up to max_connections = 200 with all 200 connections pounding the
1302 * database with serializable transactions. Beyond that, there may be
1303 * occasional transactions canceled when trying to flag conflicts. That's
1304 * probably OK.
1305 */
1306 max_table_size *= 5;
1307
1308 requestSize = RWConflictPoolHeaderDataSize +
1309 mul_size((Size) max_table_size,
1311
1312 RWConflictPool = ShmemInitStruct("RWConflictPool",
1313 requestSize,
1314 &found);
1315 Assert(found == IsUnderPostmaster);
1316 if (!found)
1317 {
1318 int i;
1319
1320 /* clean everything, including the elements */
1321 memset(RWConflictPool, 0, requestSize);
1322
1326 /* Add all elements to available list, clean. */
1327 for (i = 0; i < max_table_size; i++)
1328 {
1331 }
1332 }
1333
1334 /*
1335 * Create or attach to the header for the list of finished serializable
1336 * transactions.
1337 */
1339 ShmemInitStruct("FinishedSerializableTransactions",
1340 sizeof(dlist_head),
1341 &found);
1342 Assert(found == IsUnderPostmaster);
1343 if (!found)
1345
1346 /*
1347 * Initialize the SLRU storage for old committed serializable
1348 * transactions.
1349 */
1350 SerialInit();
1351}
1352
1353/*
1354 * Estimate shared-memory space used for predicate lock table
1355 */
1356Size
1358{
1359 Size size = 0;
1360 long max_table_size;
1361
1362 /* predicate lock target hash table */
1363 max_table_size = NPREDICATELOCKTARGETENTS();
1364 size = add_size(size, hash_estimate_size(max_table_size,
1365 sizeof(PREDICATELOCKTARGET)));
1366
1367 /* predicate lock hash table */
1368 max_table_size *= 2;
1369 size = add_size(size, hash_estimate_size(max_table_size,
1370 sizeof(PREDICATELOCK)));
1371
1372 /*
1373 * Since NPREDICATELOCKTARGETENTS is only an estimate, add 10% safety
1374 * margin.
1375 */
1376 size = add_size(size, size / 10);
1377
1378 /* transaction list */
1379 max_table_size = MaxBackends + max_prepared_xacts;
1380 max_table_size *= 10;
1381 size = add_size(size, PredXactListDataSize);
1382 size = add_size(size, mul_size((Size) max_table_size,
1383 sizeof(SERIALIZABLEXACT)));
1384
1385 /* transaction xid table */
1386 size = add_size(size, hash_estimate_size(max_table_size,
1387 sizeof(SERIALIZABLEXID)));
1388
1389 /* rw-conflict pool */
1390 max_table_size *= 5;
1392 size = add_size(size, mul_size((Size) max_table_size,
1394
1395 /* Head for list of finished serializable transactions. */
1396 size = add_size(size, sizeof(dlist_head));
1397
1398 /* Shared memory structures for SLRU tracking of old committed xids. */
1399 size = add_size(size, sizeof(SerialControlData));
1401
1402 return size;
1403}
1404
1405
1406/*
1407 * Compute the hash code associated with a PREDICATELOCKTAG.
1408 *
1409 * Because we want to use just one set of partition locks for both the
1410 * PREDICATELOCKTARGET and PREDICATELOCK hash tables, we have to make sure
1411 * that PREDICATELOCKs fall into the same partition number as their
1412 * associated PREDICATELOCKTARGETs. dynahash.c expects the partition number
1413 * to be the low-order bits of the hash code, and therefore a
1414 * PREDICATELOCKTAG's hash code must have the same low-order bits as the
1415 * associated PREDICATELOCKTARGETTAG's hash code. We achieve this with this
1416 * specialized hash function.
1417 */
1418static uint32
1419predicatelock_hash(const void *key, Size keysize)
1420{
1421 const PREDICATELOCKTAG *predicatelocktag = (const PREDICATELOCKTAG *) key;
1422 uint32 targethash;
1423
1424 Assert(keysize == sizeof(PREDICATELOCKTAG));
1425
1426 /* Look into the associated target object, and compute its hash code */
1427 targethash = PredicateLockTargetTagHashCode(&predicatelocktag->myTarget->tag);
1428
1429 return PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash);
1430}
1431
1432
1433/*
1434 * GetPredicateLockStatusData
1435 * Return a table containing the internal state of the predicate
1436 * lock manager for use in pg_lock_status.
1437 *
1438 * Like GetLockStatusData, this function tries to hold the partition LWLocks
1439 * for as short a time as possible by returning two arrays that simply
1440 * contain the PREDICATELOCKTARGETTAG and SERIALIZABLEXACT for each lock
1441 * table entry. Multiple copies of the same PREDICATELOCKTARGETTAG and
1442 * SERIALIZABLEXACT will likely appear.
1443 */
1446{
1448 int i;
1449 int els,
1450 el;
1451 HASH_SEQ_STATUS seqstat;
1452 PREDICATELOCK *predlock;
1453
1455
1456 /*
1457 * To ensure consistency, take simultaneous locks on all partition locks
1458 * in ascending order, then SerializableXactHashLock.
1459 */
1460 for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
1462 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
1463
1464 /* Get number of locks and allocate appropriately-sized arrays. */
1466 data->nelements = els;
1467 data->locktags = palloc_array(PREDICATELOCKTARGETTAG, els);
1468 data->xacts = palloc_array(SERIALIZABLEXACT, els);
1469
1470
1471 /* Scan through PredicateLockHash and copy contents */
1473
1474 el = 0;
1475
1476 while ((predlock = (PREDICATELOCK *) hash_seq_search(&seqstat)))
1477 {
1478 data->locktags[el] = predlock->tag.myTarget->tag;
1479 data->xacts[el] = *predlock->tag.myXact;
1480 el++;
1481 }
1482
1483 Assert(el == els);
1484
1485 /* Release locks in reverse order */
1486 LWLockRelease(SerializableXactHashLock);
1487 for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
1489
1490 return data;
1491}
1492
1493/*
1494 * Free up shared memory structures by pushing the oldest sxact (the one at
1495 * the front of the SummarizeOldestCommittedSxact queue) into summary form.
1496 * Each call will free exactly one SERIALIZABLEXACT structure and may also
1497 * free one or more of these structures: SERIALIZABLEXID, PREDICATELOCK,
1498 * PREDICATELOCKTARGET, RWConflictData.
1499 */
1500static void
1502{
1503 SERIALIZABLEXACT *sxact;
1504
1505 LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
1506
1507 /*
1508 * This function is only called if there are no sxact slots available.
1509 * Some of them must belong to old, already-finished transactions, so
1510 * there should be something in FinishedSerializableTransactions list that
1511 * we can summarize. However, there's a race condition: while we were not
1512 * holding any locks, a transaction might have ended and cleaned up all
1513 * the finished sxact entries already, freeing up their sxact slots. In
1514 * that case, we have nothing to do here. The caller will find one of the
1515 * slots released by the other backend when it retries.
1516 */
1518 {
1519 LWLockRelease(SerializableFinishedListLock);
1520 return;
1521 }
1522
1523 /*
1524 * Grab the first sxact off the finished list -- this will be the earliest
1525 * commit. Remove it from the list.
1526 */
1527 sxact = dlist_head_element(SERIALIZABLEXACT, finishedLink,
1530
1531 /* Add to SLRU summary information. */
1532 if (TransactionIdIsValid(sxact->topXid) && !SxactIsReadOnly(sxact))
1533 SerialAdd(sxact->topXid, SxactHasConflictOut(sxact)
1535
1536 /* Summarize and release the detail. */
1537 ReleaseOneSerializableXact(sxact, false, true);
1538
1539 LWLockRelease(SerializableFinishedListLock);
1540}
1541
1542/*
1543 * GetSafeSnapshot
1544 * Obtain and register a snapshot for a READ ONLY DEFERRABLE
1545 * transaction. Ensures that the snapshot is "safe", i.e. a
1546 * read-only transaction running on it can execute serializably
1547 * without further checks. This requires waiting for concurrent
1548 * transactions to complete, and retrying with a new snapshot if
1549 * one of them could possibly create a conflict.
1550 *
1551 * As with GetSerializableTransactionSnapshot (which this is a subroutine
1552 * for), the passed-in Snapshot pointer should reference a static data
1553 * area that can safely be passed to GetSnapshotData.
1554 */
1555static Snapshot
1557{
1558 Snapshot snapshot;
1559
1561
1562 while (true)
1563 {
1564 /*
1565 * GetSerializableTransactionSnapshotInt is going to call
1566 * GetSnapshotData, so we need to provide it the static snapshot area
1567 * our caller passed to us. The pointer returned is actually the same
1568 * one passed to it, but we avoid assuming that here.
1569 */
1570 snapshot = GetSerializableTransactionSnapshotInt(origSnapshot,
1571 NULL, InvalidPid);
1572
1574 return snapshot; /* no concurrent r/w xacts; it's safe */
1575
1576 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
1577
1578 /*
1579 * Wait for concurrent transactions to finish. Stop early if one of
1580 * them marked us as conflicted.
1581 */
1585 {
1586 LWLockRelease(SerializableXactHashLock);
1587 ProcWaitForSignal(WAIT_EVENT_SAFE_SNAPSHOT);
1588 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
1589 }
1590 MySerializableXact->flags &= ~SXACT_FLAG_DEFERRABLE_WAITING;
1591
1593 {
1594 LWLockRelease(SerializableXactHashLock);
1595 break; /* success */
1596 }
1597
1598 LWLockRelease(SerializableXactHashLock);
1599
1600 /* else, need to retry... */
1603 errmsg_internal("deferrable snapshot was unsafe; trying a new one")));
1604 ReleasePredicateLocks(false, false);
1605 }
1606
1607 /*
1608 * Now we have a safe snapshot, so we don't need to do any further checks.
1609 */
1611 ReleasePredicateLocks(false, true);
1612
1613 return snapshot;
1614}
1615
1616/*
1617 * GetSafeSnapshotBlockingPids
1618 * If the specified process is currently blocked in GetSafeSnapshot,
1619 * write the process IDs of all processes that it is blocked by
1620 * into the caller-supplied buffer output[]. The list is truncated at
1621 * output_size, and the number of PIDs written into the buffer is
1622 * returned. Returns zero if the given PID is not currently blocked
1623 * in GetSafeSnapshot.
1624 */
1625int
1626GetSafeSnapshotBlockingPids(int blocked_pid, int *output, int output_size)
1627{
1628 int num_written = 0;
1629 dlist_iter iter;
1630 SERIALIZABLEXACT *blocking_sxact = NULL;
1631
1632 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
1633
1634 /* Find blocked_pid's SERIALIZABLEXACT by linear search. */
1636 {
1637 SERIALIZABLEXACT *sxact =
1638 dlist_container(SERIALIZABLEXACT, xactLink, iter.cur);
1639
1640 if (sxact->pid == blocked_pid)
1641 {
1642 blocking_sxact = sxact;
1643 break;
1644 }
1645 }
1646
1647 /* Did we find it, and is it currently waiting in GetSafeSnapshot? */
1648 if (blocking_sxact != NULL && SxactIsDeferrableWaiting(blocking_sxact))
1649 {
1650 /* Traverse the list of possible unsafe conflicts collecting PIDs. */
1651 dlist_foreach(iter, &blocking_sxact->possibleUnsafeConflicts)
1652 {
1653 RWConflict possibleUnsafeConflict =
1654 dlist_container(RWConflictData, inLink, iter.cur);
1655
1656 output[num_written++] = possibleUnsafeConflict->sxactOut->pid;
1657
1658 if (num_written >= output_size)
1659 break;
1660 }
1661 }
1662
1663 LWLockRelease(SerializableXactHashLock);
1664
1665 return num_written;
1666}
1667
1668/*
1669 * Acquire a snapshot that can be used for the current transaction.
1670 *
1671 * Make sure we have a SERIALIZABLEXACT reference in MySerializableXact.
1672 * It should be current for this process and be contained in PredXact.
1673 *
1674 * The passed-in Snapshot pointer should reference a static data area that
1675 * can safely be passed to GetSnapshotData. The return value is actually
1676 * always this same pointer; no new snapshot data structure is allocated
1677 * within this function.
1678 */
1681{
1683
1684 /*
1685 * Can't use serializable mode while recovery is still active, as it is,
1686 * for example, on a hot standby. We could get here despite the check in
1687 * check_transaction_isolation() if default_transaction_isolation is set
1688 * to serializable, so phrase the hint accordingly.
1689 */
1690 if (RecoveryInProgress())
1691 ereport(ERROR,
1692 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1693 errmsg("cannot use serializable mode in a hot standby"),
1694 errdetail("\"default_transaction_isolation\" is set to \"serializable\"."),
1695 errhint("You can use \"SET default_transaction_isolation = 'repeatable read'\" to change the default.")));
1696
1697 /*
1698 * A special optimization is available for SERIALIZABLE READ ONLY
1699 * DEFERRABLE transactions -- we can wait for a suitable snapshot and
1700 * thereby avoid all SSI overhead once it's running.
1701 */
1703 return GetSafeSnapshot(snapshot);
1704
1706 NULL, InvalidPid);
1707}
1708
1709/*
1710 * Import a snapshot to be used for the current transaction.
1711 *
1712 * This is nearly the same as GetSerializableTransactionSnapshot, except that
1713 * we don't take a new snapshot, but rather use the data we're handed.
1714 *
1715 * The caller must have verified that the snapshot came from a serializable
1716 * transaction; and if we're read-write, the source transaction must not be
1717 * read-only.
1718 */
1719void
1721 VirtualTransactionId *sourcevxid,
1722 int sourcepid)
1723{
1725
1726 /*
1727 * If this is called by parallel.c in a parallel worker, we don't want to
1728 * create a SERIALIZABLEXACT just yet because the leader's
1729 * SERIALIZABLEXACT will be installed with AttachSerializableXact(). We
1730 * also don't want to reject SERIALIZABLE READ ONLY DEFERRABLE in this
1731 * case, because the leader has already determined that the snapshot it
1732 * has passed us is safe. So there is nothing for us to do.
1733 */
1734 if (IsParallelWorker())
1735 return;
1736
1737 /*
1738 * We do not allow SERIALIZABLE READ ONLY DEFERRABLE transactions to
1739 * import snapshots, since there's no way to wait for a safe snapshot when
1740 * we're using the snap we're told to. (XXX instead of throwing an error,
1741 * we could just ignore the XactDeferrable flag?)
1742 */
1744 ereport(ERROR,
1745 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1746 errmsg("a snapshot-importing transaction must not be READ ONLY DEFERRABLE")));
1747
1748 (void) GetSerializableTransactionSnapshotInt(snapshot, sourcevxid,
1749 sourcepid);
1750}
1751
1752/*
1753 * Guts of GetSerializableTransactionSnapshot
1754 *
1755 * If sourcevxid is valid, this is actually an import operation and we should
1756 * skip calling GetSnapshotData, because the snapshot contents are already
1757 * loaded up. HOWEVER: to avoid race conditions, we must check that the
1758 * source xact is still running after we acquire SerializableXactHashLock.
1759 * We do that by calling ProcArrayInstallImportedXmin.
1760 */
1761static Snapshot
1763 VirtualTransactionId *sourcevxid,
1764 int sourcepid)
1765{
1766 PGPROC *proc;
1768 SERIALIZABLEXACT *sxact,
1769 *othersxact;
1770
1771 /* We only do this for serializable transactions. Once. */
1773
1775
1776 /*
1777 * Since all parts of a serializable transaction must use the same
1778 * snapshot, it is too late to establish one after a parallel operation
1779 * has begun.
1780 */
1781 if (IsInParallelMode())
1782 elog(ERROR, "cannot establish serializable snapshot during a parallel operation");
1783
1784 proc = MyProc;
1785 Assert(proc != NULL);
1786 GET_VXID_FROM_PGPROC(vxid, *proc);
1787
1788 /*
1789 * First we get the sxact structure, which may involve looping and access
1790 * to the "finished" list to free a structure for use.
1791 *
1792 * We must hold SerializableXactHashLock when taking/checking the snapshot
1793 * to avoid race conditions, for much the same reasons that
1794 * GetSnapshotData takes the ProcArrayLock. Since we might have to
1795 * release SerializableXactHashLock to call SummarizeOldestCommittedSxact,
1796 * this means we have to create the sxact first, which is a bit annoying
1797 * (in particular, an elog(ERROR) in procarray.c would cause us to leak
1798 * the sxact). Consider refactoring to avoid this.
1799 */
1800#ifdef TEST_SUMMARIZE_SERIAL
1802#endif
1803 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
1804 do
1805 {
1806 sxact = CreatePredXact();
1807 /* If null, push out committed sxact to SLRU summary & retry. */
1808 if (!sxact)
1809 {
1810 LWLockRelease(SerializableXactHashLock);
1812 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
1813 }
1814 } while (!sxact);
1815
1816 /* Get the snapshot, or check that it's safe to use */
1817 if (!sourcevxid)
1818 snapshot = GetSnapshotData(snapshot);
1819 else if (!ProcArrayInstallImportedXmin(snapshot->xmin, sourcevxid))
1820 {
1821 ReleasePredXact(sxact);
1822 LWLockRelease(SerializableXactHashLock);
1823 ereport(ERROR,
1824 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1825 errmsg("could not import the requested snapshot"),
1826 errdetail("The source process with PID %d is not running anymore.",
1827 sourcepid)));
1828 }
1829
1830 /*
1831 * If there are no serializable transactions which are not read-only, we
1832 * can "opt out" of predicate locking and conflict checking for a
1833 * read-only transaction.
1834 *
1835 * The reason this is safe is that a read-only transaction can only become
1836 * part of a dangerous structure if it overlaps a writable transaction
1837 * which in turn overlaps a writable transaction which committed before
1838 * the read-only transaction started. A new writable transaction can
1839 * overlap this one, but it can't meet the other condition of overlapping
1840 * a transaction which committed before this one started.
1841 */
1843 {
1844 ReleasePredXact(sxact);
1845 LWLockRelease(SerializableXactHashLock);
1846 return snapshot;
1847 }
1848
1849 /* Initialize the structure. */
1850 sxact->vxid = vxid;
1854 dlist_init(&(sxact->outConflicts));
1855 dlist_init(&(sxact->inConflicts));
1859 sxact->xmin = snapshot->xmin;
1860 sxact->pid = MyProcPid;
1861 sxact->pgprocno = MyProcNumber;
1862 dlist_init(&sxact->predicateLocks);
1864 sxact->flags = 0;
1865 if (XactReadOnly)
1866 {
1867 dlist_iter iter;
1868
1869 sxact->flags |= SXACT_FLAG_READ_ONLY;
1870
1871 /*
1872 * Register all concurrent r/w transactions as possible conflicts; if
1873 * all of them commit without any outgoing conflicts to earlier
1874 * transactions then this snapshot can be deemed safe (and we can run
1875 * without tracking predicate locks).
1876 */
1878 {
1879 othersxact = dlist_container(SERIALIZABLEXACT, xactLink, iter.cur);
1880
1881 if (!SxactIsCommitted(othersxact)
1882 && !SxactIsDoomed(othersxact)
1883 && !SxactIsReadOnly(othersxact))
1884 {
1885 SetPossibleUnsafeConflict(sxact, othersxact);
1886 }
1887 }
1888
1889 /*
1890 * If we didn't find any possibly unsafe conflicts because every
1891 * uncommitted writable transaction turned out to be doomed, then we
1892 * can "opt out" immediately. See comments above the earlier check
1893 * for PredXact->WritableSxactCount == 0.
1894 */
1896 {
1897 ReleasePredXact(sxact);
1898 LWLockRelease(SerializableXactHashLock);
1899 return snapshot;
1900 }
1901 }
1902 else
1903 {
1907 }
1908
1909 /* Maintain serializable global xmin info. */
1911 {
1913 PredXact->SxactGlobalXmin = snapshot->xmin;
1915 SerialSetActiveSerXmin(snapshot->xmin);
1916 }
1917 else if (TransactionIdEquals(snapshot->xmin, PredXact->SxactGlobalXmin))
1918 {
1921 }
1922 else
1923 {
1925 }
1926
1927 MySerializableXact = sxact;
1928 MyXactDidWrite = false; /* haven't written anything yet */
1929
1930 LWLockRelease(SerializableXactHashLock);
1931
1933
1934 return snapshot;
1935}
1936
1937static void
1939{
1940 HASHCTL hash_ctl;
1941
1942 /* Initialize the backend-local hash table of parent locks */
1944 hash_ctl.keysize = sizeof(PREDICATELOCKTARGETTAG);
1945 hash_ctl.entrysize = sizeof(LOCALPREDICATELOCK);
1946 LocalPredicateLockHash = hash_create("Local predicate lock",
1948 &hash_ctl,
1950}
1951
1952/*
1953 * Register the top level XID in SerializableXidHash.
1954 * Also store it for easy reference in MySerializableXact.
1955 */
1956void
1958{
1959 SERIALIZABLEXIDTAG sxidtag;
1960 SERIALIZABLEXID *sxid;
1961 bool found;
1962
1963 /*
1964 * If we're not tracking predicate lock data for this transaction, we
1965 * should ignore the request and return quickly.
1966 */
1968 return;
1969
1970 /* We should have a valid XID and be at the top level. */
1972
1973 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
1974
1975 /* This should only be done once per transaction. */
1977
1979
1980 sxidtag.xid = xid;
1982 &sxidtag,
1983 HASH_ENTER, &found);
1984 Assert(!found);
1985
1986 /* Initialize the structure. */
1987 sxid->myXact = MySerializableXact;
1988 LWLockRelease(SerializableXactHashLock);
1989}
1990
1991
1992/*
1993 * Check whether there are any predicate locks held by any transaction
1994 * for the page at the given block number.
1995 *
1996 * Note that the transaction may be completed but not yet subject to
1997 * cleanup due to overlapping serializable transactions. This must
1998 * return valid information regardless of transaction isolation level.
1999 *
2000 * Also note that this doesn't check for a conflicting relation lock,
2001 * just a lock specifically on the given page.
2002 *
2003 * One use is to support proper behavior during GiST index vacuum.
2004 */
2005bool
2007{
2008 PREDICATELOCKTARGETTAG targettag;
2009 uint32 targettaghash;
2010 LWLock *partitionLock;
2011 PREDICATELOCKTARGET *target;
2012
2014 relation->rd_locator.dbOid,
2015 relation->rd_id,
2016 blkno);
2017
2018 targettaghash = PredicateLockTargetTagHashCode(&targettag);
2019 partitionLock = PredicateLockHashPartitionLock(targettaghash);
2020 LWLockAcquire(partitionLock, LW_SHARED);
2021 target = (PREDICATELOCKTARGET *)
2023 &targettag, targettaghash,
2024 HASH_FIND, NULL);
2025 LWLockRelease(partitionLock);
2026
2027 return (target != NULL);
2028}
2029
2030
2031/*
2032 * Check whether a particular lock is held by this transaction.
2033 *
2034 * Important note: this function may return false even if the lock is
2035 * being held, because it uses the local lock table which is not
2036 * updated if another transaction modifies our lock list (e.g. to
2037 * split an index page). It can also return true when a coarser
2038 * granularity lock that covers this target is being held. Be careful
2039 * to only use this function in circumstances where such errors are
2040 * acceptable!
2041 */
2042static bool
2044{
2045 LOCALPREDICATELOCK *lock;
2046
2047 /* check local hash table */
2049 targettag,
2050 HASH_FIND, NULL);
2051
2052 if (!lock)
2053 return false;
2054
2055 /*
2056 * Found entry in the table, but still need to check whether it's actually
2057 * held -- it could just be a parent of some held lock.
2058 */
2059 return lock->held;
2060}
2061
2062/*
2063 * Return the parent lock tag in the lock hierarchy: the next coarser
2064 * lock that covers the provided tag.
2065 *
2066 * Returns true and sets *parent to the parent tag if one exists,
2067 * returns false if none exists.
2068 */
2069static bool
2071 PREDICATELOCKTARGETTAG *parent)
2072{
2073 switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag))
2074 {
2076 /* relation locks have no parent lock */
2077 return false;
2078
2079 case PREDLOCKTAG_PAGE:
2080 /* parent lock is relation lock */
2084
2085 return true;
2086
2087 case PREDLOCKTAG_TUPLE:
2088 /* parent lock is page lock */
2093 return true;
2094 }
2095
2096 /* not reachable */
2097 Assert(false);
2098 return false;
2099}
2100
2101/*
2102 * Check whether the lock we are considering is already covered by a
2103 * coarser lock for our transaction.
2104 *
2105 * Like PredicateLockExists, this function might return a false
2106 * negative, but it will never return a false positive.
2107 */
2108static bool
2110{
2111 PREDICATELOCKTARGETTAG targettag,
2112 parenttag;
2113
2114 targettag = *newtargettag;
2115
2116 /* check parents iteratively until no more */
2117 while (GetParentPredicateLockTag(&targettag, &parenttag))
2118 {
2119 targettag = parenttag;
2120 if (PredicateLockExists(&targettag))
2121 return true;
2122 }
2123
2124 /* no more parents to check; lock is not covered */
2125 return false;
2126}
2127
2128/*
2129 * Remove the dummy entry from the predicate lock target hash, to free up some
2130 * scratch space. The caller must be holding SerializablePredicateListLock,
2131 * and must restore the entry with RestoreScratchTarget() before releasing the
2132 * lock.
2133 *
2134 * If lockheld is true, the caller is already holding the partition lock
2135 * of the partition containing the scratch entry.
2136 */
2137static void
2139{
2140 bool found;
2141
2142 Assert(LWLockHeldByMe(SerializablePredicateListLock));
2143
2144 if (!lockheld)
2149 HASH_REMOVE, &found);
2150 Assert(found);
2151 if (!lockheld)
2153}
2154
2155/*
2156 * Re-insert the dummy entry in predicate lock target hash.
2157 */
2158static void
2160{
2161 bool found;
2162
2163 Assert(LWLockHeldByMe(SerializablePredicateListLock));
2164
2165 if (!lockheld)
2170 HASH_ENTER, &found);
2171 Assert(!found);
2172 if (!lockheld)
2174}
2175
2176/*
2177 * Check whether the list of related predicate locks is empty for a
2178 * predicate lock target, and remove the target if it is.
2179 */
2180static void
2182{
2184
2185 Assert(LWLockHeldByMe(SerializablePredicateListLock));
2186
2187 /* Can't remove it until no locks at this target. */
2188 if (!dlist_is_empty(&target->predicateLocks))
2189 return;
2190
2191 /* Actually remove the target. */
2193 &target->tag,
2194 targettaghash,
2195 HASH_REMOVE, NULL);
2196 Assert(rmtarget == target);
2197}
2198
2199/*
2200 * Delete child target locks owned by this process.
2201 * This implementation is assuming that the usage of each target tag field
2202 * is uniform. No need to make this hard if we don't have to.
2203 *
2204 * We acquire an LWLock in the case of parallel mode, because worker
2205 * backends have access to the leader's SERIALIZABLEXACT. Otherwise,
2206 * we aren't acquiring LWLocks for the predicate lock or lock
2207 * target structures associated with this transaction unless we're going
2208 * to modify them, because no other process is permitted to modify our
2209 * locks.
2210 */
2211static void
2213{
2214 SERIALIZABLEXACT *sxact;
2215 PREDICATELOCK *predlock;
2216 dlist_mutable_iter iter;
2217
2218 LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
2219 sxact = MySerializableXact;
2220 if (IsInParallelMode())
2222
2224 {
2225 PREDICATELOCKTAG oldlocktag;
2226 PREDICATELOCKTARGET *oldtarget;
2227 PREDICATELOCKTARGETTAG oldtargettag;
2228
2229 predlock = dlist_container(PREDICATELOCK, xactLink, iter.cur);
2230
2231 oldlocktag = predlock->tag;
2232 Assert(oldlocktag.myXact == sxact);
2233 oldtarget = oldlocktag.myTarget;
2234 oldtargettag = oldtarget->tag;
2235
2236 if (TargetTagIsCoveredBy(oldtargettag, *newtargettag))
2237 {
2238 uint32 oldtargettaghash;
2239 LWLock *partitionLock;
2241
2242 oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag);
2243 partitionLock = PredicateLockHashPartitionLock(oldtargettaghash);
2244
2245 LWLockAcquire(partitionLock, LW_EXCLUSIVE);
2246
2247 dlist_delete(&predlock->xactLink);
2248 dlist_delete(&predlock->targetLink);
2249 rmpredlock = hash_search_with_hash_value
2251 &oldlocktag,
2253 oldtargettaghash),
2254 HASH_REMOVE, NULL);
2255 Assert(rmpredlock == predlock);
2256
2257 RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash);
2258
2259 LWLockRelease(partitionLock);
2260
2261 DecrementParentLocks(&oldtargettag);
2262 }
2263 }
2264 if (IsInParallelMode())
2266 LWLockRelease(SerializablePredicateListLock);
2267}
2268
2269/*
2270 * Returns the promotion limit for a given predicate lock target. This is the
2271 * max number of descendant locks allowed before promoting to the specified
2272 * tag. Note that the limit includes non-direct descendants (e.g., both tuples
2273 * and pages for a relation lock).
2274 *
2275 * Currently the default limit is 2 for a page lock, and half of the value of
2276 * max_pred_locks_per_transaction - 1 for a relation lock, to match behavior
2277 * of earlier releases when upgrading.
2278 *
2279 * TODO SSI: We should probably add additional GUCs to allow a maximum ratio
2280 * of page and tuple locks based on the pages in a relation, and the maximum
2281 * ratio of tuple locks to tuples in a page. This would provide more
2282 * generally "balanced" allocation of locks to where they are most useful,
2283 * while still allowing the absolute numbers to prevent one relation from
2284 * tying up all predicate lock resources.
2285 */
2286static int
2288{
2289 switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag))
2290 {
2296
2297 case PREDLOCKTAG_PAGE:
2299
2300 case PREDLOCKTAG_TUPLE:
2301
2302 /*
2303 * not reachable: nothing is finer-granularity than a tuple, so we
2304 * should never try to promote to it.
2305 */
2306 Assert(false);
2307 return 0;
2308 }
2309
2310 /* not reachable */
2311 Assert(false);
2312 return 0;
2313}
2314
2315/*
2316 * For all ancestors of a newly-acquired predicate lock, increment
2317 * their child count in the parent hash table. If any of them have
2318 * more descendants than their promotion threshold, acquire the
2319 * coarsest such lock.
2320 *
2321 * Returns true if a parent lock was acquired and false otherwise.
2322 */
2323static bool
2325{
2326 PREDICATELOCKTARGETTAG targettag,
2327 nexttag,
2328 promotiontag;
2329 LOCALPREDICATELOCK *parentlock;
2330 bool found,
2331 promote;
2332
2333 promote = false;
2334
2335 targettag = *reqtag;
2336
2337 /* check parents iteratively */
2338 while (GetParentPredicateLockTag(&targettag, &nexttag))
2339 {
2340 targettag = nexttag;
2342 &targettag,
2343 HASH_ENTER,
2344 &found);
2345 if (!found)
2346 {
2347 parentlock->held = false;
2348 parentlock->childLocks = 1;
2349 }
2350 else
2351 parentlock->childLocks++;
2352
2353 if (parentlock->childLocks >
2354 MaxPredicateChildLocks(&targettag))
2355 {
2356 /*
2357 * We should promote to this parent lock. Continue to check its
2358 * ancestors, however, both to get their child counts right and to
2359 * check whether we should just go ahead and promote to one of
2360 * them.
2361 */
2362 promotiontag = targettag;
2363 promote = true;
2364 }
2365 }
2366
2367 if (promote)
2368 {
2369 /* acquire coarsest ancestor eligible for promotion */
2370 PredicateLockAcquire(&promotiontag);
2371 return true;
2372 }
2373 else
2374 return false;
2375}
2376
2377/*
2378 * When releasing a lock, decrement the child count on all ancestor
2379 * locks.
2380 *
2381 * This is called only when releasing a lock via
2382 * DeleteChildTargetLocks (i.e. when a lock becomes redundant because
2383 * we've acquired its parent, possibly due to promotion) or when a new
2384 * MVCC write lock makes the predicate lock unnecessary. There's no
2385 * point in calling it when locks are released at transaction end, as
2386 * this information is no longer needed.
2387 */
2388static void
2390{
2391 PREDICATELOCKTARGETTAG parenttag,
2392 nexttag;
2393
2394 parenttag = *targettag;
2395
2396 while (GetParentPredicateLockTag(&parenttag, &nexttag))
2397 {
2398 uint32 targettaghash;
2399 LOCALPREDICATELOCK *parentlock,
2401
2402 parenttag = nexttag;
2403 targettaghash = PredicateLockTargetTagHashCode(&parenttag);
2404 parentlock = (LOCALPREDICATELOCK *)
2406 &parenttag, targettaghash,
2407 HASH_FIND, NULL);
2408
2409 /*
2410 * There's a small chance the parent lock doesn't exist in the lock
2411 * table. This can happen if we prematurely removed it because an
2412 * index split caused the child refcount to be off.
2413 */
2414 if (parentlock == NULL)
2415 continue;
2416
2417 parentlock->childLocks--;
2418
2419 /*
2420 * Under similar circumstances the parent lock's refcount might be
2421 * zero. This only happens if we're holding that lock (otherwise we
2422 * would have removed the entry).
2423 */
2424 if (parentlock->childLocks < 0)
2425 {
2426 Assert(parentlock->held);
2427 parentlock->childLocks = 0;
2428 }
2429
2430 if ((parentlock->childLocks == 0) && (!parentlock->held))
2431 {
2432 rmlock = (LOCALPREDICATELOCK *)
2434 &parenttag, targettaghash,
2435 HASH_REMOVE, NULL);
2436 Assert(rmlock == parentlock);
2437 }
2438 }
2439}
2440
2441/*
2442 * Indicate that a predicate lock on the given target is held by the
2443 * specified transaction. Has no effect if the lock is already held.
2444 *
2445 * This updates the lock table and the sxact's lock list, and creates
2446 * the lock target if necessary, but does *not* do anything related to
2447 * granularity promotion or the local lock table. See
2448 * PredicateLockAcquire for that.
2449 */
2450static void
2452 uint32 targettaghash,
2453 SERIALIZABLEXACT *sxact)
2454{
2455 PREDICATELOCKTARGET *target;
2456 PREDICATELOCKTAG locktag;
2457 PREDICATELOCK *lock;
2458 LWLock *partitionLock;
2459 bool found;
2460
2461 partitionLock = PredicateLockHashPartitionLock(targettaghash);
2462
2463 LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
2464 if (IsInParallelMode())
2466 LWLockAcquire(partitionLock, LW_EXCLUSIVE);
2467
2468 /* Make sure that the target is represented. */
2469 target = (PREDICATELOCKTARGET *)
2471 targettag, targettaghash,
2472 HASH_ENTER_NULL, &found);
2473 if (!target)
2474 ereport(ERROR,
2475 (errcode(ERRCODE_OUT_OF_MEMORY),
2476 errmsg("out of shared memory"),
2477 errhint("You might need to increase \"%s\".", "max_pred_locks_per_transaction")));
2478 if (!found)
2479 dlist_init(&target->predicateLocks);
2480
2481 /* We've got the sxact and target, make sure they're joined. */
2482 locktag.myTarget = target;
2483 locktag.myXact = sxact;
2484 lock = (PREDICATELOCK *)
2486 PredicateLockHashCodeFromTargetHashCode(&locktag, targettaghash),
2487 HASH_ENTER_NULL, &found);
2488 if (!lock)
2489 ereport(ERROR,
2490 (errcode(ERRCODE_OUT_OF_MEMORY),
2491 errmsg("out of shared memory"),
2492 errhint("You might need to increase \"%s\".", "max_pred_locks_per_transaction")));
2493
2494 if (!found)
2495 {
2496 dlist_push_tail(&target->predicateLocks, &lock->targetLink);
2497 dlist_push_tail(&sxact->predicateLocks, &lock->xactLink);
2499 }
2500
2501 LWLockRelease(partitionLock);
2502 if (IsInParallelMode())
2504 LWLockRelease(SerializablePredicateListLock);
2505}
2506
2507/*
2508 * Acquire a predicate lock on the specified target for the current
2509 * connection if not already held. This updates the local lock table
2510 * and uses it to implement granularity promotion. It will consolidate
2511 * multiple locks into a coarser lock if warranted, and will release
2512 * any finer-grained locks covered by the new one.
2513 */
2514static void
2516{
2517 uint32 targettaghash;
2518 bool found;
2519 LOCALPREDICATELOCK *locallock;
2520
2521 /* Do we have the lock already, or a covering lock? */
2522 if (PredicateLockExists(targettag))
2523 return;
2524
2525 if (CoarserLockCovers(targettag))
2526 return;
2527
2528 /* the same hash and LW lock apply to the lock target and the local lock. */
2529 targettaghash = PredicateLockTargetTagHashCode(targettag);
2530
2531 /* Acquire lock in local table */
2532 locallock = (LOCALPREDICATELOCK *)
2534 targettag, targettaghash,
2535 HASH_ENTER, &found);
2536 locallock->held = true;
2537 if (!found)
2538 locallock->childLocks = 0;
2539
2540 /* Actually create the lock */
2541 CreatePredicateLock(targettag, targettaghash, MySerializableXact);
2542
2543 /*
2544 * Lock has been acquired. Check whether it should be promoted to a
2545 * coarser granularity, or whether there are finer-granularity locks to
2546 * clean up.
2547 */
2549 {
2550 /*
2551 * Lock request was promoted to a coarser-granularity lock, and that
2552 * lock was acquired. It will delete this lock and any of its
2553 * children, so we're done.
2554 */
2555 }
2556 else
2557 {
2558 /* Clean up any finer-granularity locks */
2560 DeleteChildTargetLocks(targettag);
2561 }
2562}
2563
2564
2565/*
2566 * PredicateLockRelation
2567 *
2568 * Gets a predicate lock at the relation level.
2569 * Skip if not in full serializable transaction isolation level.
2570 * Skip if this is a temporary table.
2571 * Clear any finer-grained predicate locks this session has on the relation.
2572 */
2573void
2575{
2577
2578 if (!SerializationNeededForRead(relation, snapshot))
2579 return;
2580
2582 relation->rd_locator.dbOid,
2583 relation->rd_id);
2585}
2586
2587/*
2588 * PredicateLockPage
2589 *
2590 * Gets a predicate lock at the page level.
2591 * Skip if not in full serializable transaction isolation level.
2592 * Skip if this is a temporary table.
2593 * Skip if a coarser predicate lock already covers this page.
2594 * Clear any finer-grained predicate locks this session has on the relation.
2595 */
2596void
2598{
2600
2601 if (!SerializationNeededForRead(relation, snapshot))
2602 return;
2603
2605 relation->rd_locator.dbOid,
2606 relation->rd_id,
2607 blkno);
2609}
2610
2611/*
2612 * PredicateLockTID
2613 *
2614 * Gets a predicate lock at the tuple level.
2615 * Skip if not in full serializable transaction isolation level.
2616 * Skip if this is a temporary table.
2617 */
2618void
2619PredicateLockTID(Relation relation, const ItemPointerData *tid, Snapshot snapshot,
2620 TransactionId tuple_xid)
2621{
2623
2624 if (!SerializationNeededForRead(relation, snapshot))
2625 return;
2626
2627 /*
2628 * Return if this xact wrote it.
2629 */
2630 if (relation->rd_index == NULL)
2631 {
2632 /* If we wrote it; we already have a write lock. */
2634 return;
2635 }
2636
2637 /*
2638 * Do quick-but-not-definitive test for a relation lock first. This will
2639 * never cause a return when the relation is *not* locked, but will
2640 * occasionally let the check continue when there really *is* a relation
2641 * level lock.
2642 */
2644 relation->rd_locator.dbOid,
2645 relation->rd_id);
2646 if (PredicateLockExists(&tag))
2647 return;
2648
2650 relation->rd_locator.dbOid,
2651 relation->rd_id,
2655}
2656
2657
2658/*
2659 * DeleteLockTarget
2660 *
2661 * Remove a predicate lock target along with any locks held for it.
2662 *
2663 * Caller must hold SerializablePredicateListLock and the
2664 * appropriate hash partition lock for the target.
2665 */
2666static void
2668{
2669 dlist_mutable_iter iter;
2670
2671 Assert(LWLockHeldByMeInMode(SerializablePredicateListLock,
2672 LW_EXCLUSIVE));
2674
2675 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
2676
2677 dlist_foreach_modify(iter, &target->predicateLocks)
2678 {
2679 PREDICATELOCK *predlock =
2680 dlist_container(PREDICATELOCK, targetLink, iter.cur);
2681 bool found;
2682
2683 dlist_delete(&(predlock->xactLink));
2684 dlist_delete(&(predlock->targetLink));
2685
2688 &predlock->tag,
2690 targettaghash),
2691 HASH_REMOVE, &found);
2692 Assert(found);
2693 }
2694 LWLockRelease(SerializableXactHashLock);
2695
2696 /* Remove the target itself, if possible. */
2697 RemoveTargetIfNoLongerUsed(target, targettaghash);
2698}
2699
2700
2701/*
2702 * TransferPredicateLocksToNewTarget
2703 *
2704 * Move or copy all the predicate locks for a lock target, for use by
2705 * index page splits/combines and other things that create or replace
2706 * lock targets. If 'removeOld' is true, the old locks and the target
2707 * will be removed.
2708 *
2709 * Returns true on success, or false if we ran out of shared memory to
2710 * allocate the new target or locks. Guaranteed to always succeed if
2711 * removeOld is set (by using the scratch entry in PredicateLockTargetHash
2712 * for scratch space).
2713 *
2714 * Warning: the "removeOld" option should be used only with care,
2715 * because this function does not (indeed, can not) update other
2716 * backends' LocalPredicateLockHash. If we are only adding new
2717 * entries, this is not a problem: the local lock table is used only
2718 * as a hint, so missing entries for locks that are held are
2719 * OK. Having entries for locks that are no longer held, as can happen
2720 * when using "removeOld", is not in general OK. We can only use it
2721 * safely when replacing a lock with a coarser-granularity lock that
2722 * covers it, or if we are absolutely certain that no one will need to
2723 * refer to that lock in the future.
2724 *
2725 * Caller must hold SerializablePredicateListLock exclusively.
2726 */
2727static bool
2729 PREDICATELOCKTARGETTAG newtargettag,
2730 bool removeOld)
2731{
2732 uint32 oldtargettaghash;
2733 LWLock *oldpartitionLock;
2734 PREDICATELOCKTARGET *oldtarget;
2735 uint32 newtargettaghash;
2736 LWLock *newpartitionLock;
2737 bool found;
2738 bool outOfShmem = false;
2739
2740 Assert(LWLockHeldByMeInMode(SerializablePredicateListLock,
2741 LW_EXCLUSIVE));
2742
2743 oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag);
2744 newtargettaghash = PredicateLockTargetTagHashCode(&newtargettag);
2745 oldpartitionLock = PredicateLockHashPartitionLock(oldtargettaghash);
2746 newpartitionLock = PredicateLockHashPartitionLock(newtargettaghash);
2747
2748 if (removeOld)
2749 {
2750 /*
2751 * Remove the dummy entry to give us scratch space, so we know we'll
2752 * be able to create the new lock target.
2753 */
2754 RemoveScratchTarget(false);
2755 }
2756
2757 /*
2758 * We must get the partition locks in ascending sequence to avoid
2759 * deadlocks. If old and new partitions are the same, we must request the
2760 * lock only once.
2761 */
2762 if (oldpartitionLock < newpartitionLock)
2763 {
2764 LWLockAcquire(oldpartitionLock,
2765 (removeOld ? LW_EXCLUSIVE : LW_SHARED));
2766 LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
2767 }
2768 else if (oldpartitionLock > newpartitionLock)
2769 {
2770 LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
2771 LWLockAcquire(oldpartitionLock,
2772 (removeOld ? LW_EXCLUSIVE : LW_SHARED));
2773 }
2774 else
2775 LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
2776
2777 /*
2778 * Look for the old target. If not found, that's OK; no predicate locks
2779 * are affected, so we can just clean up and return. If it does exist,
2780 * walk its list of predicate locks and move or copy them to the new
2781 * target.
2782 */
2784 &oldtargettag,
2785 oldtargettaghash,
2786 HASH_FIND, NULL);
2787
2788 if (oldtarget)
2789 {
2790 PREDICATELOCKTARGET *newtarget;
2791 PREDICATELOCKTAG newpredlocktag;
2792 dlist_mutable_iter iter;
2793
2795 &newtargettag,
2796 newtargettaghash,
2797 HASH_ENTER_NULL, &found);
2798
2799 if (!newtarget)
2800 {
2801 /* Failed to allocate due to insufficient shmem */
2802 outOfShmem = true;
2803 goto exit;
2804 }
2805
2806 /* If we created a new entry, initialize it */
2807 if (!found)
2808 dlist_init(&newtarget->predicateLocks);
2809
2810 newpredlocktag.myTarget = newtarget;
2811
2812 /*
2813 * Loop through all the locks on the old target, replacing them with
2814 * locks on the new target.
2815 */
2816 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
2817
2818 dlist_foreach_modify(iter, &oldtarget->predicateLocks)
2819 {
2820 PREDICATELOCK *oldpredlock =
2821 dlist_container(PREDICATELOCK, targetLink, iter.cur);
2822 PREDICATELOCK *newpredlock;
2823 SerCommitSeqNo oldCommitSeqNo = oldpredlock->commitSeqNo;
2824
2825 newpredlocktag.myXact = oldpredlock->tag.myXact;
2826
2827 if (removeOld)
2828 {
2829 dlist_delete(&(oldpredlock->xactLink));
2830 dlist_delete(&(oldpredlock->targetLink));
2831
2834 &oldpredlock->tag,
2836 oldtargettaghash),
2837 HASH_REMOVE, &found);
2838 Assert(found);
2839 }
2840
2841 newpredlock = (PREDICATELOCK *)
2843 &newpredlocktag,
2845 newtargettaghash),
2847 &found);
2848 if (!newpredlock)
2849 {
2850 /* Out of shared memory. Undo what we've done so far. */
2851 LWLockRelease(SerializableXactHashLock);
2852 DeleteLockTarget(newtarget, newtargettaghash);
2853 outOfShmem = true;
2854 goto exit;
2855 }
2856 if (!found)
2857 {
2858 dlist_push_tail(&(newtarget->predicateLocks),
2859 &(newpredlock->targetLink));
2860 dlist_push_tail(&(newpredlocktag.myXact->predicateLocks),
2861 &(newpredlock->xactLink));
2862 newpredlock->commitSeqNo = oldCommitSeqNo;
2863 }
2864 else
2865 {
2866 if (newpredlock->commitSeqNo < oldCommitSeqNo)
2867 newpredlock->commitSeqNo = oldCommitSeqNo;
2868 }
2869
2870 Assert(newpredlock->commitSeqNo != 0);
2871 Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo)
2872 || (newpredlock->tag.myXact == OldCommittedSxact));
2873 }
2874 LWLockRelease(SerializableXactHashLock);
2875
2876 if (removeOld)
2877 {
2878 Assert(dlist_is_empty(&oldtarget->predicateLocks));
2879 RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash);
2880 }
2881 }
2882
2883
2884exit:
2885 /* Release partition locks in reverse order of acquisition. */
2886 if (oldpartitionLock < newpartitionLock)
2887 {
2888 LWLockRelease(newpartitionLock);
2889 LWLockRelease(oldpartitionLock);
2890 }
2891 else if (oldpartitionLock > newpartitionLock)
2892 {
2893 LWLockRelease(oldpartitionLock);
2894 LWLockRelease(newpartitionLock);
2895 }
2896 else
2897 LWLockRelease(newpartitionLock);
2898
2899 if (removeOld)
2900 {
2901 /* We shouldn't run out of memory if we're moving locks */
2902 Assert(!outOfShmem);
2903
2904 /* Put the scratch entry back */
2905 RestoreScratchTarget(false);
2906 }
2907
2908 return !outOfShmem;
2909}
2910
2911/*
2912 * Drop all predicate locks of any granularity from the specified relation,
2913 * which can be a heap relation or an index relation. If 'transfer' is true,
2914 * acquire a relation lock on the heap for any transactions with any lock(s)
2915 * on the specified relation.
2916 *
2917 * This requires grabbing a lot of LW locks and scanning the entire lock
2918 * target table for matches. That makes this more expensive than most
2919 * predicate lock management functions, but it will only be called for DDL
2920 * type commands that are expensive anyway, and there are fast returns when
2921 * no serializable transactions are active or the relation is temporary.
2922 *
2923 * We don't use the TransferPredicateLocksToNewTarget function because it
2924 * acquires its own locks on the partitions of the two targets involved,
2925 * and we'll already be holding all partition locks.
2926 *
2927 * We can't throw an error from here, because the call could be from a
2928 * transaction which is not serializable.
2929 *
2930 * NOTE: This is currently only called with transfer set to true, but that may
2931 * change. If we decide to clean up the locks from a table on commit of a
2932 * transaction which executed DROP TABLE, the false condition will be useful.
2933 */
2934static void
2936{
2937 HASH_SEQ_STATUS seqstat;
2938 PREDICATELOCKTARGET *oldtarget;
2939 PREDICATELOCKTARGET *heaptarget;
2940 Oid dbId;
2941 Oid relId;
2942 Oid heapId;
2943 int i;
2944 bool isIndex;
2945 bool found;
2946 uint32 heaptargettaghash;
2947
2948 /*
2949 * Bail out quickly if there are no serializable transactions running.
2950 * It's safe to check this without taking locks because the caller is
2951 * holding an ACCESS EXCLUSIVE lock on the relation. No new locks which
2952 * would matter here can be acquired while that is held.
2953 */
2955 return;
2956
2957 if (!PredicateLockingNeededForRelation(relation))
2958 return;
2959
2960 dbId = relation->rd_locator.dbOid;
2961 relId = relation->rd_id;
2962 if (relation->rd_index == NULL)
2963 {
2964 isIndex = false;
2965 heapId = relId;
2966 }
2967 else
2968 {
2969 isIndex = true;
2970 heapId = relation->rd_index->indrelid;
2971 }
2972 Assert(heapId != InvalidOid);
2973 Assert(transfer || !isIndex); /* index OID only makes sense with
2974 * transfer */
2975
2976 /* Retrieve first time needed, then keep. */
2977 heaptargettaghash = 0;
2978 heaptarget = NULL;
2979
2980 /* Acquire locks on all lock partitions */
2981 LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
2982 for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
2984 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
2985
2986 /*
2987 * Remove the dummy entry to give us scratch space, so we know we'll be
2988 * able to create the new lock target.
2989 */
2990 if (transfer)
2991 RemoveScratchTarget(true);
2992
2993 /* Scan through target map */
2995
2996 while ((oldtarget = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat)))
2997 {
2998 dlist_mutable_iter iter;
2999
3000 /*
3001 * Check whether this is a target which needs attention.
3002 */
3003 if (GET_PREDICATELOCKTARGETTAG_RELATION(oldtarget->tag) != relId)
3004 continue; /* wrong relation id */
3005 if (GET_PREDICATELOCKTARGETTAG_DB(oldtarget->tag) != dbId)
3006 continue; /* wrong database id */
3007 if (transfer && !isIndex
3009 continue; /* already the right lock */
3010
3011 /*
3012 * If we made it here, we have work to do. We make sure the heap
3013 * relation lock exists, then we walk the list of predicate locks for
3014 * the old target we found, moving all locks to the heap relation lock
3015 * -- unless they already hold that.
3016 */
3017
3018 /*
3019 * First make sure we have the heap relation target. We only need to
3020 * do this once.
3021 */
3022 if (transfer && heaptarget == NULL)
3023 {
3024 PREDICATELOCKTARGETTAG heaptargettag;
3025
3026 SET_PREDICATELOCKTARGETTAG_RELATION(heaptargettag, dbId, heapId);
3027 heaptargettaghash = PredicateLockTargetTagHashCode(&heaptargettag);
3029 &heaptargettag,
3030 heaptargettaghash,
3031 HASH_ENTER, &found);
3032 if (!found)
3033 dlist_init(&heaptarget->predicateLocks);
3034 }
3035
3036 /*
3037 * Loop through all the locks on the old target, replacing them with
3038 * locks on the new target.
3039 */
3040 dlist_foreach_modify(iter, &oldtarget->predicateLocks)
3041 {
3042 PREDICATELOCK *oldpredlock =
3043 dlist_container(PREDICATELOCK, targetLink, iter.cur);
3044 PREDICATELOCK *newpredlock;
3045 SerCommitSeqNo oldCommitSeqNo;
3046 SERIALIZABLEXACT *oldXact;
3047
3048 /*
3049 * Remove the old lock first. This avoids the chance of running
3050 * out of lock structure entries for the hash table.
3051 */
3052 oldCommitSeqNo = oldpredlock->commitSeqNo;
3053 oldXact = oldpredlock->tag.myXact;
3054
3055 dlist_delete(&(oldpredlock->xactLink));
3056
3057 /*
3058 * No need for retail delete from oldtarget list, we're removing
3059 * the whole target anyway.
3060 */
3062 &oldpredlock->tag,
3063 HASH_REMOVE, &found);
3064 Assert(found);
3065
3066 if (transfer)
3067 {
3068 PREDICATELOCKTAG newpredlocktag;
3069
3070 newpredlocktag.myTarget = heaptarget;
3071 newpredlocktag.myXact = oldXact;
3072 newpredlock = (PREDICATELOCK *)
3074 &newpredlocktag,
3076 heaptargettaghash),
3077 HASH_ENTER,
3078 &found);
3079 if (!found)
3080 {
3081 dlist_push_tail(&(heaptarget->predicateLocks),
3082 &(newpredlock->targetLink));
3083 dlist_push_tail(&(newpredlocktag.myXact->predicateLocks),
3084 &(newpredlock->xactLink));
3085 newpredlock->commitSeqNo = oldCommitSeqNo;
3086 }
3087 else
3088 {
3089 if (newpredlock->commitSeqNo < oldCommitSeqNo)
3090 newpredlock->commitSeqNo = oldCommitSeqNo;
3091 }
3092
3093 Assert(newpredlock->commitSeqNo != 0);
3094 Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo)
3095 || (newpredlock->tag.myXact == OldCommittedSxact));
3096 }
3097 }
3098
3100 &found);
3101 Assert(found);
3102 }
3103
3104 /* Put the scratch entry back */
3105 if (transfer)
3107
3108 /* Release locks in reverse order */
3109 LWLockRelease(SerializableXactHashLock);
3110 for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
3112 LWLockRelease(SerializablePredicateListLock);
3113}
3114
3115/*
3116 * TransferPredicateLocksToHeapRelation
3117 * For all transactions, transfer all predicate locks for the given
3118 * relation to a single relation lock on the heap.
3119 */
3120void
3122{
3123 DropAllPredicateLocksFromTable(relation, true);
3124}
3125
3126
3127/*
3128 * PredicateLockPageSplit
3129 *
3130 * Copies any predicate locks for the old page to the new page.
3131 * Skip if this is a temporary table or toast table.
3132 *
3133 * NOTE: A page split (or overflow) affects all serializable transactions,
3134 * even if it occurs in the context of another transaction isolation level.
3135 *
3136 * NOTE: This currently leaves the local copy of the locks without
3137 * information on the new lock which is in shared memory. This could cause
3138 * problems if enough page splits occur on locked pages without the processes
3139 * which hold the locks getting in and noticing.
3140 */
3141void
3143 BlockNumber newblkno)
3144{
3145 PREDICATELOCKTARGETTAG oldtargettag;
3146 PREDICATELOCKTARGETTAG newtargettag;
3147 bool success;
3148
3149 /*
3150 * Bail out quickly if there are no serializable transactions running.
3151 *
3152 * It's safe to do this check without taking any additional locks. Even if
3153 * a serializable transaction starts concurrently, we know it can't take
3154 * any SIREAD locks on the page being split because the caller is holding
3155 * the associated buffer page lock. Memory reordering isn't an issue; the
3156 * memory barrier in the LWLock acquisition guarantees that this read
3157 * occurs while the buffer page lock is held.
3158 */
3160 return;
3161
3162 if (!PredicateLockingNeededForRelation(relation))
3163 return;
3164
3165 Assert(oldblkno != newblkno);
3166 Assert(BlockNumberIsValid(oldblkno));
3167 Assert(BlockNumberIsValid(newblkno));
3168
3170 relation->rd_locator.dbOid,
3171 relation->rd_id,
3172 oldblkno);
3174 relation->rd_locator.dbOid,
3175 relation->rd_id,
3176 newblkno);
3177
3178 LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
3179
3180 /*
3181 * Try copying the locks over to the new page's tag, creating it if
3182 * necessary.
3183 */
3185 newtargettag,
3186 false);
3187
3188 if (!success)
3189 {
3190 /*
3191 * No more predicate lock entries are available. Failure isn't an
3192 * option here, so promote the page lock to a relation lock.
3193 */
3194
3195 /* Get the parent relation lock's lock tag */
3196 success = GetParentPredicateLockTag(&oldtargettag,
3197 &newtargettag);
3198 Assert(success);
3199
3200 /*
3201 * Move the locks to the parent. This shouldn't fail.
3202 *
3203 * Note that here we are removing locks held by other backends,
3204 * leading to a possible inconsistency in their local lock hash table.
3205 * This is OK because we're replacing it with a lock that covers the
3206 * old one.
3207 */
3209 newtargettag,
3210 true);
3211 Assert(success);
3212 }
3213
3214 LWLockRelease(SerializablePredicateListLock);
3215}
3216
3217/*
3218 * PredicateLockPageCombine
3219 *
3220 * Combines predicate locks for two existing pages.
3221 * Skip if this is a temporary table or toast table.
3222 *
3223 * NOTE: A page combine affects all serializable transactions, even if it
3224 * occurs in the context of another transaction isolation level.
3225 */
3226void
3228 BlockNumber newblkno)
3229{
3230 /*
3231 * Page combines differ from page splits in that we ought to be able to
3232 * remove the locks on the old page after transferring them to the new
3233 * page, instead of duplicating them. However, because we can't edit other
3234 * backends' local lock tables, removing the old lock would leave them
3235 * with an entry in their LocalPredicateLockHash for a lock they're not
3236 * holding, which isn't acceptable. So we wind up having to do the same
3237 * work as a page split, acquiring a lock on the new page and keeping the
3238 * old page locked too. That can lead to some false positives, but should
3239 * be rare in practice.
3240 */
3241 PredicateLockPageSplit(relation, oldblkno, newblkno);
3242}
3243
3244/*
3245 * Walk the list of in-progress serializable transactions and find the new
3246 * xmin.
3247 */
3248static void
3250{
3251 dlist_iter iter;
3252
3253 Assert(LWLockHeldByMe(SerializableXactHashLock));
3254
3257
3259 {
3260 SERIALIZABLEXACT *sxact =
3261 dlist_container(SERIALIZABLEXACT, xactLink, iter.cur);
3262
3263 if (!SxactIsRolledBack(sxact)
3264 && !SxactIsCommitted(sxact)
3265 && sxact != OldCommittedSxact)
3266 {
3267 Assert(sxact->xmin != InvalidTransactionId);
3269 || TransactionIdPrecedes(sxact->xmin,
3271 {
3272 PredXact->SxactGlobalXmin = sxact->xmin;
3274 }
3275 else if (TransactionIdEquals(sxact->xmin,
3278 }
3279 }
3280
3282}
3283
3284/*
3285 * ReleasePredicateLocks
3286 *
3287 * Releases predicate locks based on completion of the current transaction,
3288 * whether committed or rolled back. It can also be called for a read only
3289 * transaction when it becomes impossible for the transaction to become
3290 * part of a dangerous structure.
3291 *
3292 * We do nothing unless this is a serializable transaction.
3293 *
3294 * This method must ensure that shared memory hash tables are cleaned
3295 * up in some relatively timely fashion.
3296 *
3297 * If this transaction is committing and is holding any predicate locks,
3298 * it must be added to a list of completed serializable transactions still
3299 * holding locks.
3300 *
3301 * If isReadOnlySafe is true, then predicate locks are being released before
3302 * the end of the transaction because MySerializableXact has been determined
3303 * to be RO_SAFE. In non-parallel mode we can release it completely, but it
3304 * in parallel mode we partially release the SERIALIZABLEXACT and keep it
3305 * around until the end of the transaction, allowing each backend to clear its
3306 * MySerializableXact variable and benefit from the optimization in its own
3307 * time.
3308 */
3309void
3310ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe)
3311{
3312 bool partiallyReleasing = false;
3313 bool needToClear;
3314 SERIALIZABLEXACT *roXact;
3315 dlist_mutable_iter iter;
3316
3317 /*
3318 * We can't trust XactReadOnly here, because a transaction which started
3319 * as READ WRITE can show as READ ONLY later, e.g., within
3320 * subtransactions. We want to flag a transaction as READ ONLY if it
3321 * commits without writing so that de facto READ ONLY transactions get the
3322 * benefit of some RO optimizations, so we will use this local variable to
3323 * get some cleanup logic right which is based on whether the transaction
3324 * was declared READ ONLY at the top level.
3325 */
3326 bool topLevelIsDeclaredReadOnly;
3327
3328 /* We can't be both committing and releasing early due to RO_SAFE. */
3329 Assert(!(isCommit && isReadOnlySafe));
3330
3331 /* Are we at the end of a transaction, that is, a commit or abort? */
3332 if (!isReadOnlySafe)
3333 {
3334 /*
3335 * Parallel workers mustn't release predicate locks at the end of
3336 * their transaction. The leader will do that at the end of its
3337 * transaction.
3338 */
3339 if (IsParallelWorker())
3340 {
3342 return;
3343 }
3344
3345 /*
3346 * By the time the leader in a parallel query reaches end of
3347 * transaction, it has waited for all workers to exit.
3348 */
3350
3351 /*
3352 * If the leader in a parallel query earlier stashed a partially
3353 * released SERIALIZABLEXACT for final clean-up at end of transaction
3354 * (because workers might still have been accessing it), then it's
3355 * time to restore it.
3356 */
3358 {
3363 }
3364 }
3365
3367 {
3369 return;
3370 }
3371
3372 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
3373
3374 /*
3375 * If the transaction is committing, but it has been partially released
3376 * already, then treat this as a roll back. It was marked as rolled back.
3377 */
3379 isCommit = false;
3380
3381 /*
3382 * If we're called in the middle of a transaction because we discovered
3383 * that the SXACT_FLAG_RO_SAFE flag was set, then we'll partially release
3384 * it (that is, release the predicate locks and conflicts, but not the
3385 * SERIALIZABLEXACT itself) if we're the first backend to have noticed.
3386 */
3387 if (isReadOnlySafe && IsInParallelMode())
3388 {
3389 /*
3390 * The leader needs to stash a pointer to it, so that it can
3391 * completely release it at end-of-transaction.
3392 */
3393 if (!IsParallelWorker())
3395
3396 /*
3397 * The first backend to reach this condition will partially release
3398 * the SERIALIZABLEXACT. All others will just clear their
3399 * backend-local state so that they stop doing SSI checks for the rest
3400 * of the transaction.
3401 */
3403 {
3404 LWLockRelease(SerializableXactHashLock);
3406 return;
3407 }
3408 else
3409 {
3411 partiallyReleasing = true;
3412 /* ... and proceed to perform the partial release below. */
3413 }
3414 }
3416 Assert(!isCommit || !SxactIsDoomed(MySerializableXact));
3420
3421 /* may not be serializable during COMMIT/ROLLBACK PREPARED */
3423
3424 /* We'd better not already be on the cleanup list. */
3426
3427 topLevelIsDeclaredReadOnly = SxactIsReadOnly(MySerializableXact);
3428
3429 /*
3430 * We don't hold XidGenLock lock here, assuming that TransactionId is
3431 * atomic!
3432 *
3433 * If this value is changing, we don't care that much whether we get the
3434 * old or new value -- it is just used to determine how far
3435 * SxactGlobalXmin must advance before this transaction can be fully
3436 * cleaned up. The worst that could happen is we wait for one more
3437 * transaction to complete before freeing some RAM; correctness of visible
3438 * behavior is not affected.
3439 */
3441
3442 /*
3443 * If it's not a commit it's either a rollback or a read-only transaction
3444 * flagged SXACT_FLAG_RO_SAFE, and we can clear our locks immediately.
3445 */
3446 if (isCommit)
3447 {
3450 /* Recognize implicit read-only transaction (commit without write). */
3451 if (!MyXactDidWrite)
3453 }
3454 else
3455 {
3456 /*
3457 * The DOOMED flag indicates that we intend to roll back this
3458 * transaction and so it should not cause serialization failures for
3459 * other transactions that conflict with it. Note that this flag might
3460 * already be set, if another backend marked this transaction for
3461 * abort.
3462 *
3463 * The ROLLED_BACK flag further indicates that ReleasePredicateLocks
3464 * has been called, and so the SerializableXact is eligible for
3465 * cleanup. This means it should not be considered when calculating
3466 * SxactGlobalXmin.
3467 */
3470
3471 /*
3472 * If the transaction was previously prepared, but is now failing due
3473 * to a ROLLBACK PREPARED or (hopefully very rare) error after the
3474 * prepare, clear the prepared flag. This simplifies conflict
3475 * checking.
3476 */
3477 MySerializableXact->flags &= ~SXACT_FLAG_PREPARED;
3478 }
3479
3480 if (!topLevelIsDeclaredReadOnly)
3481 {
3483 if (--(PredXact->WritableSxactCount) == 0)
3484 {
3485 /*
3486 * Release predicate locks and rw-conflicts in for all committed
3487 * transactions. There are no longer any transactions which might
3488 * conflict with the locks and no chance for new transactions to
3489 * overlap. Similarly, existing conflicts in can't cause pivots,
3490 * and any conflicts in which could have completed a dangerous
3491 * structure would already have caused a rollback, so any
3492 * remaining ones must be benign.
3493 */
3495 }
3496 }
3497 else
3498 {
3499 /*
3500 * Read-only transactions: clear the list of transactions that might
3501 * make us unsafe. Note that we use 'inLink' for the iteration as
3502 * opposed to 'outLink' for the r/w xacts.
3503 */
3505 {
3506 RWConflict possibleUnsafeConflict =
3507 dlist_container(RWConflictData, inLink, iter.cur);
3508
3509 Assert(!SxactIsReadOnly(possibleUnsafeConflict->sxactOut));
3510 Assert(MySerializableXact == possibleUnsafeConflict->sxactIn);
3511
3512 ReleaseRWConflict(possibleUnsafeConflict);
3513 }
3514 }
3515
3516 /* Check for conflict out to old committed transactions. */
3517 if (isCommit
3520 {
3521 /*
3522 * we don't know which old committed transaction we conflicted with,
3523 * so be conservative and use FirstNormalSerCommitSeqNo here
3524 */
3528 }
3529
3530 /*
3531 * Release all outConflicts to committed transactions. If we're rolling
3532 * back clear them all. Set SXACT_FLAG_CONFLICT_OUT if any point to
3533 * previously committed transactions.
3534 */
3536 {
3537 RWConflict conflict =
3538 dlist_container(RWConflictData, outLink, iter.cur);
3539
3540 if (isCommit
3542 && SxactIsCommitted(conflict->sxactIn))
3543 {
3548 }
3549
3550 if (!isCommit
3551 || SxactIsCommitted(conflict->sxactIn)
3553 ReleaseRWConflict(conflict);
3554 }
3555
3556 /*
3557 * Release all inConflicts from committed and read-only transactions. If
3558 * we're rolling back, clear them all.
3559 */
3561 {
3562 RWConflict conflict =
3563 dlist_container(RWConflictData, inLink, iter.cur);
3564
3565 if (!isCommit
3566 || SxactIsCommitted(conflict->sxactOut)
3567 || SxactIsReadOnly(conflict->sxactOut))
3568 ReleaseRWConflict(conflict);
3569 }
3570
3571 if (!topLevelIsDeclaredReadOnly)
3572 {
3573 /*
3574 * Remove ourselves from the list of possible conflicts for concurrent
3575 * READ ONLY transactions, flagging them as unsafe if we have a
3576 * conflict out. If any are waiting DEFERRABLE transactions, wake them
3577 * up if they are known safe or known unsafe.
3578 */
3580 {
3581 RWConflict possibleUnsafeConflict =
3582 dlist_container(RWConflictData, outLink, iter.cur);
3583
3584 roXact = possibleUnsafeConflict->sxactIn;
3585 Assert(MySerializableXact == possibleUnsafeConflict->sxactOut);
3586 Assert(SxactIsReadOnly(roXact));
3587
3588 /* Mark conflicted if necessary. */
3589 if (isCommit
3593 <= roXact->SeqNo.lastCommitBeforeSnapshot))
3594 {
3595 /*
3596 * This releases possibleUnsafeConflict (as well as all other
3597 * possible conflicts for roXact)
3598 */
3599 FlagSxactUnsafe(roXact);
3600 }
3601 else
3602 {
3603 ReleaseRWConflict(possibleUnsafeConflict);
3604
3605 /*
3606 * If we were the last possible conflict, flag it safe. The
3607 * transaction can now safely release its predicate locks (but
3608 * that transaction's backend has to do that itself).
3609 */
3611 roXact->flags |= SXACT_FLAG_RO_SAFE;
3612 }
3613
3614 /*
3615 * Wake up the process for a waiting DEFERRABLE transaction if we
3616 * now know it's either safe or conflicted.
3617 */
3618 if (SxactIsDeferrableWaiting(roXact) &&
3619 (SxactIsROUnsafe(roXact) || SxactIsROSafe(roXact)))
3620 ProcSendSignal(roXact->pgprocno);
3621 }
3622 }
3623
3624 /*
3625 * Check whether it's time to clean up old transactions. This can only be
3626 * done when the last serializable transaction with the oldest xmin among
3627 * serializable transactions completes. We then find the "new oldest"
3628 * xmin and purge any transactions which finished before this transaction
3629 * was launched.
3630 *
3631 * For parallel queries in read-only transactions, it might run twice. We
3632 * only release the reference on the first call.
3633 */
3634 needToClear = false;
3635 if ((partiallyReleasing ||
3639 {
3641 if (--(PredXact->SxactGlobalXminCount) == 0)
3642 {
3644 needToClear = true;
3645 }
3646 }
3647
3648 LWLockRelease(SerializableXactHashLock);
3649
3650 LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
3651
3652 /* Add this to the list of transactions to check for later cleanup. */
3653 if (isCommit)
3656
3657 /*
3658 * If we're releasing a RO_SAFE transaction in parallel mode, we'll only
3659 * partially release it. That's necessary because other backends may have
3660 * a reference to it. The leader will release the SERIALIZABLEXACT itself
3661 * at the end of the transaction after workers have stopped running.
3662 */
3663 if (!isCommit)
3665 isReadOnlySafe && IsInParallelMode(),
3666 false);
3667
3668 LWLockRelease(SerializableFinishedListLock);
3669
3670 if (needToClear)
3672
3674}
3675
3676static void
3678{
3680 MyXactDidWrite = false;
3681
3682 /* Delete per-transaction lock table */
3683 if (LocalPredicateLockHash != NULL)
3684 {
3687 }
3688}
3689
3690/*
3691 * Clear old predicate locks, belonging to committed transactions that are no
3692 * longer interesting to any in-progress transaction.
3693 */
3694static void
3696{
3697 dlist_mutable_iter iter;
3698
3699 /*
3700 * Loop through finished transactions. They are in commit order, so we can
3701 * stop as soon as we find one that's still interesting.
3702 */
3703 LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
3704 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
3706 {
3707 SERIALIZABLEXACT *finishedSxact =
3708 dlist_container(SERIALIZABLEXACT, finishedLink, iter.cur);
3709
3713 {
3714 /*
3715 * This transaction committed before any in-progress transaction
3716 * took its snapshot. It's no longer interesting.
3717 */
3718 LWLockRelease(SerializableXactHashLock);
3719 dlist_delete_thoroughly(&finishedSxact->finishedLink);
3720 ReleaseOneSerializableXact(finishedSxact, false, false);
3721 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
3722 }
3723 else if (finishedSxact->commitSeqNo > PredXact->HavePartialClearedThrough
3724 && finishedSxact->commitSeqNo <= PredXact->CanPartialClearThrough)
3725 {
3726 /*
3727 * Any active transactions that took their snapshot before this
3728 * transaction committed are read-only, so we can clear part of
3729 * its state.
3730 */
3731 LWLockRelease(SerializableXactHashLock);
3732
3733 if (SxactIsReadOnly(finishedSxact))
3734 {
3735 /* A read-only transaction can be removed entirely */
3736 dlist_delete_thoroughly(&(finishedSxact->finishedLink));
3737 ReleaseOneSerializableXact(finishedSxact, false, false);
3738 }
3739 else
3740 {
3741 /*
3742 * A read-write transaction can only be partially cleared. We
3743 * need to keep the SERIALIZABLEXACT but can release the
3744 * SIREAD locks and conflicts in.
3745 */
3746 ReleaseOneSerializableXact(finishedSxact, true, false);
3747 }
3748
3750 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
3751 }
3752 else
3753 {
3754 /* Still interesting. */
3755 break;
3756 }
3757 }
3758 LWLockRelease(SerializableXactHashLock);
3759
3760 /*
3761 * Loop through predicate locks on dummy transaction for summarized data.
3762 */
3763 LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
3765 {
3766 PREDICATELOCK *predlock =
3767 dlist_container(PREDICATELOCK, xactLink, iter.cur);
3768 bool canDoPartialCleanup;
3769
3770 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
3771 Assert(predlock->commitSeqNo != 0);
3773 canDoPartialCleanup = (predlock->commitSeqNo <= PredXact->CanPartialClearThrough);
3774 LWLockRelease(SerializableXactHashLock);
3775
3776 /*
3777 * If this lock originally belonged to an old enough transaction, we
3778 * can release it.
3779 */
3780 if (canDoPartialCleanup)
3781 {
3782 PREDICATELOCKTAG tag;
3783 PREDICATELOCKTARGET *target;
3784 PREDICATELOCKTARGETTAG targettag;
3785 uint32 targettaghash;
3786 LWLock *partitionLock;
3787
3788 tag = predlock->tag;
3789 target = tag.myTarget;
3790 targettag = target->tag;
3791 targettaghash = PredicateLockTargetTagHashCode(&targettag);
3792 partitionLock = PredicateLockHashPartitionLock(targettaghash);
3793
3794 LWLockAcquire(partitionLock, LW_EXCLUSIVE);
3795
3796 dlist_delete(&(predlock->targetLink));
3797 dlist_delete(&(predlock->xactLink));
3798
3801 targettaghash),
3802 HASH_REMOVE, NULL);
3803 RemoveTargetIfNoLongerUsed(target, targettaghash);
3804
3805 LWLockRelease(partitionLock);
3806 }
3807 }
3808
3809 LWLockRelease(SerializablePredicateListLock);
3810 LWLockRelease(SerializableFinishedListLock);
3811}
3812
3813/*
3814 * This is the normal way to delete anything from any of the predicate
3815 * locking hash tables. Given a transaction which we know can be deleted:
3816 * delete all predicate locks held by that transaction and any predicate
3817 * lock targets which are now unreferenced by a lock; delete all conflicts
3818 * for the transaction; delete all xid values for the transaction; then
3819 * delete the transaction.
3820 *
3821 * When the partial flag is set, we can release all predicate locks and
3822 * in-conflict information -- we've established that there are no longer
3823 * any overlapping read write transactions for which this transaction could
3824 * matter -- but keep the transaction entry itself and any outConflicts.
3825 *
3826 * When the summarize flag is set, we've run short of room for sxact data
3827 * and must summarize to the SLRU. Predicate locks are transferred to a
3828 * dummy "old" transaction, with duplicate locks on a single target
3829 * collapsing to a single lock with the "latest" commitSeqNo from among
3830 * the conflicting locks..
3831 */
3832static void
3834 bool summarize)
3835{
3836 SERIALIZABLEXIDTAG sxidtag;
3837 dlist_mutable_iter iter;
3838
3839 Assert(sxact != NULL);
3840 Assert(SxactIsRolledBack(sxact) || SxactIsCommitted(sxact));
3841 Assert(partial || !SxactIsOnFinishedList(sxact));
3842 Assert(LWLockHeldByMe(SerializableFinishedListLock));
3843
3844 /*
3845 * First release all the predicate locks held by this xact (or transfer
3846 * them to OldCommittedSxact if summarize is true)
3847 */
3848 LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
3849 if (IsInParallelMode())
3852 {
3853 PREDICATELOCK *predlock =
3854 dlist_container(PREDICATELOCK, xactLink, iter.cur);
3855 PREDICATELOCKTAG tag;
3856 PREDICATELOCKTARGET *target;
3857 PREDICATELOCKTARGETTAG targettag;
3858 uint32 targettaghash;
3859 LWLock *partitionLock;
3860
3861 tag = predlock->tag;
3862 target = tag.myTarget;
3863 targettag = target->tag;
3864 targettaghash = PredicateLockTargetTagHashCode(&targettag);
3865 partitionLock = PredicateLockHashPartitionLock(targettaghash);
3866
3867 LWLockAcquire(partitionLock, LW_EXCLUSIVE);
3868
3869 dlist_delete(&predlock->targetLink);
3870
3873 targettaghash),
3874 HASH_REMOVE, NULL);
3875 if (summarize)
3876 {
3877 bool found;
3878
3879 /* Fold into dummy transaction list. */
3883 targettaghash),
3884 HASH_ENTER_NULL, &found);
3885 if (!predlock)
3886 ereport(ERROR,
3887 (errcode(ERRCODE_OUT_OF_MEMORY),
3888 errmsg("out of shared memory"),
3889 errhint("You might need to increase \"%s\".", "max_pred_locks_per_transaction")));
3890 if (found)
3891 {
3892 Assert(predlock->commitSeqNo != 0);
3894 if (predlock->commitSeqNo < sxact->commitSeqNo)
3895 predlock->commitSeqNo = sxact->commitSeqNo;
3896 }
3897 else
3898 {
3900 &predlock->targetLink);
3902 &predlock->xactLink);
3903 predlock->commitSeqNo = sxact->commitSeqNo;
3904 }
3905 }
3906 else
3907 RemoveTargetIfNoLongerUsed(target, targettaghash);
3908
3909 LWLockRelease(partitionLock);
3910 }
3911
3912 /*
3913 * Rather than retail removal, just re-init the head after we've run
3914 * through the list.
3915 */
3916 dlist_init(&sxact->predicateLocks);
3917
3918 if (IsInParallelMode())
3920 LWLockRelease(SerializablePredicateListLock);
3921
3922 sxidtag.xid = sxact->topXid;
3923 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
3924
3925 /* Release all outConflicts (unless 'partial' is true) */
3926 if (!partial)
3927 {
3928 dlist_foreach_modify(iter, &sxact->outConflicts)
3929 {
3930 RWConflict conflict =
3931 dlist_container(RWConflictData, outLink, iter.cur);
3932
3933 if (summarize)
3935 ReleaseRWConflict(conflict);
3936 }
3937 }
3938
3939 /* Release all inConflicts. */
3940 dlist_foreach_modify(iter, &sxact->inConflicts)
3941 {
3942 RWConflict conflict =
3943 dlist_container(RWConflictData, inLink, iter.cur);
3944
3945 if (summarize)
3947 ReleaseRWConflict(conflict);
3948 }
3949
3950 /* Finally, get rid of the xid and the record of the transaction itself. */
3951 if (!partial)
3952 {
3953 if (sxidtag.xid != InvalidTransactionId)
3955 ReleasePredXact(sxact);
3956 }
3957
3958 LWLockRelease(SerializableXactHashLock);
3959}
3960
3961/*
3962 * Tests whether the given top level transaction is concurrent with
3963 * (overlaps) our current transaction.
3964 *
3965 * We need to identify the top level transaction for SSI, anyway, so pass
3966 * that to this function to save the overhead of checking the snapshot's
3967 * subxip array.
3968 */
3969static bool
3971{
3972 Snapshot snap;
3973
3976
3977 snap = GetTransactionSnapshot();
3978
3979 if (TransactionIdPrecedes(xid, snap->xmin))
3980 return false;
3981
3982 if (TransactionIdFollowsOrEquals(xid, snap->xmax))
3983 return true;
3984
3985 return pg_lfind32(xid, snap->xip, snap->xcnt);
3986}
3987
3988bool
3990{
3991 if (!SerializationNeededForRead(relation, snapshot))
3992 return false;
3993
3994 /* Check if someone else has already decided that we need to die */
3996 {
3997 ereport(ERROR,
3999 errmsg("could not serialize access due to read/write dependencies among transactions"),
4000 errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking."),
4001 errhint("The transaction might succeed if retried.")));
4002 }
4003
4004 return true;
4005}
4006
4007/*
4008 * CheckForSerializableConflictOut
4009 * A table AM is reading a tuple that has been modified. If it determines
4010 * that the tuple version it is reading is not visible to us, it should
4011 * pass in the top level xid of the transaction that created it.
4012 * Otherwise, if it determines that it is visible to us but it has been
4013 * deleted or there is a newer version available due to an update, it
4014 * should pass in the top level xid of the modifying transaction.
4015 *
4016 * This function will check for overlap with our own transaction. If the given
4017 * xid is also serializable and the transactions overlap (i.e., they cannot see
4018 * each other's writes), then we have a conflict out.
4019 */
4020void
4022{
4023 SERIALIZABLEXIDTAG sxidtag;
4024 SERIALIZABLEXID *sxid;
4025 SERIALIZABLEXACT *sxact;
4026
4027 if (!SerializationNeededForRead(relation, snapshot))
4028 return;
4029
4030 /* Check if someone else has already decided that we need to die */
4032 {
4033 ereport(ERROR,
4035 errmsg("could not serialize access due to read/write dependencies among transactions"),
4036 errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking."),
4037 errhint("The transaction might succeed if retried.")));
4038 }
4040
4042 return;
4043
4044 /*
4045 * Find sxact or summarized info for the top level xid.
4046 */
4047 sxidtag.xid = xid;
4048 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
4049 sxid = (SERIALIZABLEXID *)
4050 hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
4051 if (!sxid)
4052 {
4053 /*
4054 * Transaction not found in "normal" SSI structures. Check whether it
4055 * got pushed out to SLRU storage for "old committed" transactions.
4056 */
4057 SerCommitSeqNo conflictCommitSeqNo;
4058
4059 conflictCommitSeqNo = SerialGetMinConflictCommitSeqNo(xid);
4060 if (conflictCommitSeqNo != 0)
4061 {
4062 if (conflictCommitSeqNo != InvalidSerCommitSeqNo
4064 || conflictCommitSeqNo
4066 ereport(ERROR,
4068 errmsg("could not serialize access due to read/write dependencies among transactions"),
4069 errdetail_internal("Reason code: Canceled on conflict out to old pivot %u.", xid),
4070 errhint("The transaction might succeed if retried.")));
4071
4074 ereport(ERROR,
4076 errmsg("could not serialize access due to read/write dependencies among transactions"),
4077 errdetail_internal("Reason code: Canceled on identification as a pivot, with conflict out to old committed transaction %u.", xid),
4078 errhint("The transaction might succeed if retried.")));
4079
4081 }
4082
4083 /* It's not serializable or otherwise not important. */
4084 LWLockRelease(SerializableXactHashLock);
4085 return;
4086 }
4087 sxact = sxid->myXact;
4088 Assert(TransactionIdEquals(sxact->topXid, xid));
4089 if (sxact == MySerializableXact || SxactIsDoomed(sxact))
4090 {
4091 /* Can't conflict with ourself or a transaction that will roll back. */
4092 LWLockRelease(SerializableXactHashLock);
4093 return;
4094 }
4095
4096 /*
4097 * We have a conflict out to a transaction which has a conflict out to a
4098 * summarized transaction. That summarized transaction must have
4099 * committed first, and we can't tell when it committed in relation to our
4100 * snapshot acquisition, so something needs to be canceled.
4101 */
4102 if (SxactHasSummaryConflictOut(sxact))
4103 {
4104 if (!SxactIsPrepared(sxact))
4105 {
4106 sxact->flags |= SXACT_FLAG_DOOMED;
4107 LWLockRelease(SerializableXactHashLock);
4108 return;
4109 }
4110 else
4111 {
4112 LWLockRelease(SerializableXactHashLock);
4113 ereport(ERROR,
4115 errmsg("could not serialize access due to read/write dependencies among transactions"),
4116 errdetail_internal("Reason code: Canceled on conflict out to old pivot."),
4117 errhint("The transaction might succeed if retried.")));
4118 }
4119 }
4120
4121 /*
4122 * If this is a read-only transaction and the writing transaction has
4123 * committed, and it doesn't have a rw-conflict to a transaction which
4124 * committed before it, no conflict.
4125 */
4127 && SxactIsCommitted(sxact)
4129 && (!SxactHasConflictOut(sxact)
4131 {
4132 /* Read-only transaction will appear to run first. No conflict. */
4133 LWLockRelease(SerializableXactHashLock);
4134 return;
4135 }
4136
4137 if (!XidIsConcurrent(xid))
4138 {
4139 /* This write was already in our snapshot; no conflict. */
4140 LWLockRelease(SerializableXactHashLock);
4141 return;
4142 }
4143
4145 {
4146 /* We don't want duplicate conflict records in the list. */
4147 LWLockRelease(SerializableXactHashLock);
4148 return;
4149 }
4150
4151 /*
4152 * Flag the conflict. But first, if this conflict creates a dangerous
4153 * structure, ereport an error.
4154 */
4156 LWLockRelease(SerializableXactHashLock);
4157}
4158
4159/*
4160 * Check a particular target for rw-dependency conflict in. A subroutine of
4161 * CheckForSerializableConflictIn().
4162 */
4163static void
4165{
4166 uint32 targettaghash;
4167 LWLock *partitionLock;
4168 PREDICATELOCKTARGET *target;
4169 PREDICATELOCK *mypredlock = NULL;
4170 PREDICATELOCKTAG mypredlocktag;
4171 dlist_mutable_iter iter;
4172
4174
4175 /*
4176 * The same hash and LW lock apply to the lock target and the lock itself.
4177 */
4178 targettaghash = PredicateLockTargetTagHashCode(targettag);
4179 partitionLock = PredicateLockHashPartitionLock(targettaghash);
4180 LWLockAcquire(partitionLock, LW_SHARED);
4181 target = (PREDICATELOCKTARGET *)
4183 targettag, targettaghash,
4184 HASH_FIND, NULL);
4185 if (!target)
4186 {
4187 /* Nothing has this target locked; we're done here. */
4188 LWLockRelease(partitionLock);
4189 return;
4190 }
4191
4192 /*
4193 * Each lock for an overlapping transaction represents a conflict: a
4194 * rw-dependency in to this transaction.
4195 */
4196 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
4197
4198 dlist_foreach_modify(iter, &target->predicateLocks)
4199 {
4200 PREDICATELOCK *predlock =
4201 dlist_container(PREDICATELOCK, targetLink, iter.cur);
4202 SERIALIZABLEXACT *sxact = predlock->tag.myXact;
4203
4204 if (sxact == MySerializableXact)
4205 {
4206 /*
4207 * If we're getting a write lock on a tuple, we don't need a
4208 * predicate (SIREAD) lock on the same tuple. We can safely remove
4209 * our SIREAD lock, but we'll defer doing so until after the loop
4210 * because that requires upgrading to an exclusive partition lock.
4211 *
4212 * We can't use this optimization within a subtransaction because
4213 * the subtransaction could roll back, and we would be left
4214 * without any lock at the top level.
4215 */
4216 if (!IsSubTransaction()
4217 && GET_PREDICATELOCKTARGETTAG_OFFSET(*targettag))
4218 {
4219 mypredlock = predlock;
4220 mypredlocktag = predlock->tag;
4221 }
4222 }
4223 else if (!SxactIsDoomed(sxact)
4224 && (!SxactIsCommitted(sxact)
4226 sxact->finishedBefore))
4228 {
4229 LWLockRelease(SerializableXactHashLock);
4230 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
4231
4232 /*
4233 * Re-check after getting exclusive lock because the other
4234 * transaction may have flagged a conflict.
4235 */
4236 if (!SxactIsDoomed(sxact)
4237 && (!SxactIsCommitted(sxact)
4239 sxact->finishedBefore))
4241 {
4243 }
4244
4245 LWLockRelease(SerializableXactHashLock);
4246 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
4247 }
4248 }
4249 LWLockRelease(SerializableXactHashLock);
4250 LWLockRelease(partitionLock);
4251
4252 /*
4253 * If we found one of our own SIREAD locks to remove, remove it now.
4254 *
4255 * At this point our transaction already has a RowExclusiveLock on the
4256 * relation, so we are OK to drop the predicate lock on the tuple, if
4257 * found, without fearing that another write against the tuple will occur
4258 * before the MVCC information makes it to the buffer.
4259 */
4260 if (mypredlock != NULL)
4261 {
4262 uint32 predlockhashcode;
4263 PREDICATELOCK *rmpredlock;
4264
4265 LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
4266 if (IsInParallelMode())
4268 LWLockAcquire(partitionLock, LW_EXCLUSIVE);
4269 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
4270
4271 /*
4272 * Remove the predicate lock from shared memory, if it wasn't removed
4273 * while the locks were released. One way that could happen is from
4274 * autovacuum cleaning up an index.
4275 */
4277 (&mypredlocktag, targettaghash);
4278 rmpredlock = (PREDICATELOCK *)
4280 &mypredlocktag,
4281 predlockhashcode,
4282 HASH_FIND, NULL);
4283 if (rmpredlock != NULL)
4284 {
4285 Assert(rmpredlock == mypredlock);
4286
4287 dlist_delete(&(mypredlock->targetLink));
4288 dlist_delete(&(mypredlock->xactLink));
4289
4290 rmpredlock = (PREDICATELOCK *)
4292 &mypredlocktag,
4293 predlockhashcode,
4294 HASH_REMOVE, NULL);
4295 Assert(rmpredlock == mypredlock);
4296
4297 RemoveTargetIfNoLongerUsed(target, targettaghash);
4298 }
4299
4300 LWLockRelease(SerializableXactHashLock);
4301 LWLockRelease(partitionLock);
4302 if (IsInParallelMode())
4304 LWLockRelease(SerializablePredicateListLock);
4305
4306 if (rmpredlock != NULL)
4307 {
4308 /*
4309 * Remove entry in local lock table if it exists. It's OK if it
4310 * doesn't exist; that means the lock was transferred to a new
4311 * target by a different backend.
4312 */
4314 targettag, targettaghash,
4315 HASH_REMOVE, NULL);
4316
4317 DecrementParentLocks(targettag);
4318 }
4319 }
4320}
4321
4322/*
4323 * CheckForSerializableConflictIn
4324 * We are writing the given tuple. If that indicates a rw-conflict
4325 * in from another serializable transaction, take appropriate action.
4326 *
4327 * Skip checking for any granularity for which a parameter is missing.
4328 *
4329 * A tuple update or delete is in conflict if we have a predicate lock
4330 * against the relation or page in which the tuple exists, or against the
4331 * tuple itself.
4332 */
4333void
4335{
4336 PREDICATELOCKTARGETTAG targettag;
4337
4338 if (!SerializationNeededForWrite(relation))
4339 return;
4340
4341 /* Check if someone else has already decided that we need to die */
4343 ereport(ERROR,
4345 errmsg("could not serialize access due to read/write dependencies among transactions"),
4346 errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict in checking."),
4347 errhint("The transaction might succeed if retried.")));
4348
4349 /*
4350 * We're doing a write which might cause rw-conflicts now or later.
4351 * Memorize that fact.
4352 */
4353 MyXactDidWrite = true;
4354
4355 /*
4356 * It is important that we check for locks from the finest granularity to
4357 * the coarsest granularity, so that granularity promotion doesn't cause
4358 * us to miss a lock. The new (coarser) lock will be acquired before the
4359 * old (finer) locks are released.
4360 *
4361 * It is not possible to take and hold a lock across the checks for all
4362 * granularities because each target could be in a separate partition.
4363 */
4364 if (tid != NULL)
4365 {
4367 relation->rd_locator.dbOid,
4368 relation->rd_id,
4371 CheckTargetForConflictsIn(&targettag);
4372 }
4373
4374 if (blkno != InvalidBlockNumber)
4375 {
4377 relation->rd_locator.dbOid,
4378 relation->rd_id,
4379 blkno);
4380 CheckTargetForConflictsIn(&targettag);
4381 }
4382
4384 relation->rd_locator.dbOid,
4385 relation->rd_id);
4386 CheckTargetForConflictsIn(&targettag);
4387}
4388
4389/*
4390 * CheckTableForSerializableConflictIn
4391 * The entire table is going through a DDL-style logical mass delete
4392 * like TRUNCATE or DROP TABLE. If that causes a rw-conflict in from
4393 * another serializable transaction, take appropriate action.
4394 *
4395 * While these operations do not operate entirely within the bounds of
4396 * snapshot isolation, they can occur inside a serializable transaction, and
4397 * will logically occur after any reads which saw rows which were destroyed
4398 * by these operations, so we do what we can to serialize properly under
4399 * SSI.
4400 *
4401 * The relation passed in must be a heap relation. Any predicate lock of any
4402 * granularity on the heap will cause a rw-conflict in to this transaction.
4403 * Predicate locks on indexes do not matter because they only exist to guard
4404 * against conflicting inserts into the index, and this is a mass *delete*.
4405 * When a table is truncated or dropped, the index will also be truncated
4406 * or dropped, and we'll deal with locks on the index when that happens.
4407 *
4408 * Dropping or truncating a table also needs to drop any existing predicate
4409 * locks on heap tuples or pages, because they're about to go away. This
4410 * should be done before altering the predicate locks because the transaction
4411 * could be rolled back because of a conflict, in which case the lock changes
4412 * are not needed. (At the moment, we don't actually bother to drop the
4413 * existing locks on a dropped or truncated table at the moment. That might
4414 * lead to some false positives, but it doesn't seem worth the trouble.)
4415 */
4416void
4418{
4419 HASH_SEQ_STATUS seqstat;
4420 PREDICATELOCKTARGET *target;
4421 Oid dbId;
4422 Oid heapId;
4423 int i;
4424
4425 /*
4426 * Bail out quickly if there are no serializable transactions running.
4427 * It's safe to check this without taking locks because the caller is
4428 * holding an ACCESS EXCLUSIVE lock on the relation. No new locks which
4429 * would matter here can be acquired while that is held.
4430 */
4432 return;
4433
4434 if (!SerializationNeededForWrite(relation))
4435 return;
4436
4437 /*
4438 * We're doing a write which might cause rw-conflicts now or later.
4439 * Memorize that fact.
4440 */
4441 MyXactDidWrite = true;
4442
4443 Assert(relation->rd_index == NULL); /* not an index relation */
4444
4445 dbId = relation->rd_locator.dbOid;
4446 heapId = relation->rd_id;
4447
4448 LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
4449 for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
4451 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
4452
4453 /* Scan through target list */
4455
4456 while ((target = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat)))
4457 {
4458 dlist_mutable_iter iter;
4459
4460 /*
4461 * Check whether this is a target which needs attention.
4462 */
4463 if (GET_PREDICATELOCKTARGETTAG_RELATION(target->tag) != heapId)
4464 continue; /* wrong relation id */
4465 if (GET_PREDICATELOCKTARGETTAG_DB(target->tag) != dbId)
4466 continue; /* wrong database id */
4467
4468 /*
4469 * Loop through locks for this target and flag conflicts.
4470 */
4471 dlist_foreach_modify(iter, &target->predicateLocks)
4472 {
4473 PREDICATELOCK *predlock =
4474 dlist_container(PREDICATELOCK, targetLink, iter.cur);
4475
4476 if (predlock->tag.myXact != MySerializableXact
4478 {
4480 }
4481 }
4482 }
4483
4484 /* Release locks in reverse order */
4485 LWLockRelease(SerializableXactHashLock);
4486 for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
4488 LWLockRelease(SerializablePredicateListLock);
4489}
4490
4491
4492/*
4493 * Flag a rw-dependency between two serializable transactions.
4494 *
4495 * The caller is responsible for ensuring that we have a LW lock on
4496 * the transaction hash table.
4497 */
4498static void
4500{
4501 Assert(reader != writer);
4502
4503 /* First, see if this conflict causes failure. */
4505
4506 /* Actually do the conflict flagging. */
4507 if (reader == OldCommittedSxact)
4509 else if (writer == OldCommittedSxact)
4511 else
4512 SetRWConflict(reader, writer);
4513}
4514
4515/*----------------------------------------------------------------------------
4516 * We are about to add a RW-edge to the dependency graph - check that we don't
4517 * introduce a dangerous structure by doing so, and abort one of the
4518 * transactions if so.
4519 *
4520 * A serialization failure can only occur if there is a dangerous structure
4521 * in the dependency graph:
4522 *
4523 * Tin ------> Tpivot ------> Tout
4524 * rw rw
4525 *
4526 * Furthermore, Tout must commit first.
4527 *
4528 * One more optimization is that if Tin is declared READ ONLY (or commits
4529 * without writing), we can only have a problem if Tout committed before Tin
4530 * acquired its snapshot.
4531 *----------------------------------------------------------------------------
4532 */
4533static void
4535 SERIALIZABLEXACT *writer)
4536{
4537 bool failure;
4538
4539 Assert(LWLockHeldByMe(SerializableXactHashLock));
4540
4541 failure = false;
4542
4543 /*------------------------------------------------------------------------
4544 * Check for already-committed writer with rw-conflict out flagged
4545 * (conflict-flag on W means that T2 committed before W):
4546 *
4547 * R ------> W ------> T2
4548 * rw rw
4549 *
4550 * That is a dangerous structure, so we must abort. (Since the writer
4551 * has already committed, we must be the reader)
4552 *------------------------------------------------------------------------
4553 */
4554 if (SxactIsCommitted(writer)
4555 && (SxactHasConflictOut(writer) || SxactHasSummaryConflictOut(writer)))
4556 failure = true;
4557
4558 /*------------------------------------------------------------------------
4559 * Check whether the writer has become a pivot with an out-conflict
4560 * committed transaction (T2), and T2 committed first:
4561 *
4562 * R ------> W ------> T2
4563 * rw rw
4564 *
4565 * Because T2 must've committed first, there is no anomaly if:
4566 * - the reader committed before T2
4567 * - the writer committed before T2
4568 * - the reader is a READ ONLY transaction and the reader was concurrent
4569 * with T2 (= reader acquired its snapshot before T2 committed)
4570 *
4571 * We also handle the case that T2 is prepared but not yet committed
4572 * here. In that case T2 has already checked for conflicts, so if it
4573 * commits first, making the above conflict real, it's too late for it
4574 * to abort.
4575 *------------------------------------------------------------------------
4576 */
4577 if (!failure && SxactHasSummaryConflictOut(writer))
4578 failure = true;
4579 else if (!failure)
4580 {
4581 dlist_iter iter;
4582
4583 dlist_foreach(iter, &writer->outConflicts)
4584 {
4585 RWConflict conflict =
4586 dlist_container(RWConflictData, outLink, iter.cur);
4587 SERIALIZABLEXACT *t2 = conflict->sxactIn;
4588
4589 if (SxactIsPrepared(t2)
4590 && (!SxactIsCommitted(reader)
4591 || t2->prepareSeqNo <= reader->commitSeqNo)
4592 && (!SxactIsCommitted(writer)
4593 || t2->prepareSeqNo <= writer->commitSeqNo)
4594 && (!SxactIsReadOnly(reader)
4595 || t2->prepareSeqNo <= reader->SeqNo.lastCommitBeforeSnapshot))
4596 {
4597 failure = true;
4598 break;
4599 }
4600 }
4601 }
4602
4603 /*------------------------------------------------------------------------
4604 * Check whether the reader has become a pivot with a writer
4605 * that's committed (or prepared):
4606 *
4607 * T0 ------> R ------> W
4608 * rw rw
4609 *
4610 * Because W must've committed first for an anomaly to occur, there is no
4611 * anomaly if:
4612 * - T0 committed before the writer
4613 * - T0 is READ ONLY, and overlaps the writer
4614 *------------------------------------------------------------------------
4615 */
4616 if (!failure && SxactIsPrepared(writer) && !SxactIsReadOnly(reader))
4617 {
4618 if (SxactHasSummaryConflictIn(reader))
4619 {
4620 failure = true;
4621 }
4622 else
4623 {
4624 dlist_iter iter;
4625
4626 /*
4627 * The unconstify is needed as we have no const version of
4628 * dlist_foreach().
4629 */
4630 dlist_foreach(iter, &unconstify(SERIALIZABLEXACT *, reader)->inConflicts)
4631 {
4632 const RWConflict conflict =
4633 dlist_container(RWConflictData, inLink, iter.cur);
4634 const SERIALIZABLEXACT *t0 = conflict->sxactOut;
4635
4636 if (!SxactIsDoomed(t0)
4637 && (!SxactIsCommitted(t0)
4638 || t0->commitSeqNo >= writer->prepareSeqNo)
4639 && (!SxactIsReadOnly(t0)
4640 || t0->SeqNo.lastCommitBeforeSnapshot >= writer->prepareSeqNo))
4641 {
4642 failure = true;
4643 break;
4644 }
4645 }
4646 }
4647 }
4648
4649 if (failure)
4650 {
4651 /*
4652 * We have to kill a transaction to avoid a possible anomaly from
4653 * occurring. If the writer is us, we can just ereport() to cause a
4654 * transaction abort. Otherwise we flag the writer for termination,
4655 * causing it to abort when it tries to commit. However, if the writer
4656 * is a prepared transaction, already prepared, we can't abort it
4657 * anymore, so we have to kill the reader instead.
4658 */
4659 if (MySerializableXact == writer)
4660 {
4661 LWLockRelease(SerializableXactHashLock);
4662 ereport(ERROR,
4664 errmsg("could not serialize access due to read/write dependencies among transactions"),
4665 errdetail_internal("Reason code: Canceled on identification as a pivot, during write."),
4666 errhint("The transaction might succeed if retried.")));
4667 }
4668 else if (SxactIsPrepared(writer))
4669 {
4670 LWLockRelease(SerializableXactHashLock);
4671
4672 /* if we're not the writer, we have to be the reader */
4673 Assert(MySerializableXact == reader);
4674 ereport(ERROR,
4676 errmsg("could not serialize access due to read/write dependencies among transactions"),
4677 errdetail_internal("Reason code: Canceled on conflict out to pivot %u, during read.", writer->topXid),
4678 errhint("The transaction might succeed if retried.")));
4679 }
4680 writer->flags |= SXACT_FLAG_DOOMED;
4681 }
4682}
4683
4684/*
4685 * PreCommit_CheckForSerializationFailure
4686 * Check for dangerous structures in a serializable transaction
4687 * at commit.
4688 *
4689 * We're checking for a dangerous structure as each conflict is recorded.
4690 * The only way we could have a problem at commit is if this is the "out"
4691 * side of a pivot, and neither the "in" side nor the pivot has yet
4692 * committed.
4693 *
4694 * If a dangerous structure is found, the pivot (the near conflict) is
4695 * marked for death, because rolling back another transaction might mean
4696 * that we fail without ever making progress. This transaction is
4697 * committing writes, so letting it commit ensures progress. If we
4698 * canceled the far conflict, it might immediately fail again on retry.
4699 */
4700void
4702{
4703 dlist_iter near_iter;
4704
4706 return;
4707
4709
4710 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
4711
4712 /*
4713 * Check if someone else has already decided that we need to die. Since
4714 * we set our own DOOMED flag when partially releasing, ignore in that
4715 * case.
4716 */
4719 {
4720 LWLockRelease(SerializableXactHashLock);
4721 ereport(ERROR,
4723 errmsg("could not serialize access due to read/write dependencies among transactions"),
4724 errdetail_internal("Reason code: Canceled on identification as a pivot, during commit attempt."),
4725 errhint("The transaction might succeed if retried.")));
4726 }
4727
4729 {
4730 RWConflict nearConflict =
4731 dlist_container(RWConflictData, inLink, near_iter.cur);
4732
4733 if (!SxactIsCommitted(nearConflict->sxactOut)
4734 && !SxactIsDoomed(nearConflict->sxactOut))
4735 {
4736 dlist_iter far_iter;
4737
4738 dlist_foreach(far_iter, &nearConflict->sxactOut->inConflicts)
4739 {
4740 RWConflict farConflict =
4741 dlist_container(RWConflictData, inLink, far_iter.cur);
4742
4743 if (farConflict->sxactOut == MySerializableXact
4744 || (!SxactIsCommitted(farConflict->sxactOut)
4745 && !SxactIsReadOnly(farConflict->sxactOut)
4746 && !SxactIsDoomed(farConflict->sxactOut)))
4747 {
4748 /*
4749 * Normally, we kill the pivot transaction to make sure we
4750 * make progress if the failing transaction is retried.
4751 * However, we can't kill it if it's already prepared, so
4752 * in that case we commit suicide instead.
4753 */
4754 if (SxactIsPrepared(nearConflict->sxactOut))
4755 {
4756 LWLockRelease(SerializableXactHashLock);
4757 ereport(ERROR,
4759 errmsg("could not serialize access due to read/write dependencies among transactions"),
4760 errdetail_internal("Reason code: Canceled on commit attempt with conflict in from prepared pivot."),
4761 errhint("The transaction might succeed if retried.")));
4762 }
4763 nearConflict->sxactOut->flags |= SXACT_FLAG_DOOMED;
4764 break;
4765 }
4766 }
4767 }
4768 }
4769
4772
4773 LWLockRelease(SerializableXactHashLock);
4774}
4775
4776/*------------------------------------------------------------------------*/
4777
4778/*
4779 * Two-phase commit support
4780 */
4781
4782/*
4783 * AtPrepare_Locks
4784 * Do the preparatory work for a PREPARE: make 2PC state file
4785 * records for all predicate locks currently held.
4786 */
4787void
4789{
4790 SERIALIZABLEXACT *sxact;
4792 TwoPhasePredicateXactRecord *xactRecord;
4793 TwoPhasePredicateLockRecord *lockRecord;
4794 dlist_iter iter;
4795
4796 sxact = MySerializableXact;
4797 xactRecord = &(record.data.xactRecord);
4798 lockRecord = &(record.data.lockRecord);
4799
4801 return;
4802
4803 /* Generate an xact record for our SERIALIZABLEXACT */
4805 xactRecord->xmin = MySerializableXact->xmin;
4806 xactRecord->flags = MySerializableXact->flags;
4807
4808 /*
4809 * Note that we don't include the list of conflicts in our out in the
4810 * statefile, because new conflicts can be added even after the
4811 * transaction prepares. We'll just make a conservative assumption during
4812 * recovery instead.
4813 */
4814
4816 &record, sizeof(record));
4817
4818 /*
4819 * Generate a lock record for each lock.
4820 *
4821 * To do this, we need to walk the predicate lock list in our sxact rather
4822 * than using the local predicate lock table because the latter is not
4823 * guaranteed to be accurate.
4824 */
4825 LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
4826
4827 /*
4828 * No need to take sxact->perXactPredicateListLock in parallel mode
4829 * because there cannot be any parallel workers running while we are
4830 * preparing a transaction.
4831 */
4833
4834 dlist_foreach(iter, &sxact->predicateLocks)
4835 {
4836 PREDICATELOCK *predlock =
4837 dlist_container(PREDICATELOCK, xactLink, iter.cur);
4838
4840 lockRecord->target = predlock->tag.myTarget->tag;
4841
4843 &record, sizeof(record));
4844 }
4845
4846 LWLockRelease(SerializablePredicateListLock);
4847}
4848
4849/*
4850 * PostPrepare_Locks
4851 * Clean up after successful PREPARE. Unlike the non-predicate
4852 * lock manager, we do not need to transfer locks to a dummy
4853 * PGPROC because our SERIALIZABLEXACT will stay around
4854 * anyway. We only need to clean up our local state.
4855 */
4856void
4858{
4860 return;
4861
4863
4866
4869
4871 MyXactDidWrite = false;
4872}
4873
4874/*
4875 * PredicateLockTwoPhaseFinish
4876 * Release a prepared transaction's predicate locks once it
4877 * commits or aborts.
4878 */
4879void
4881{
4882 SERIALIZABLEXID *sxid;
4883 SERIALIZABLEXIDTAG sxidtag;
4884
4885 sxidtag.xid = XidFromFullTransactionId(fxid);
4886
4887 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
4888 sxid = (SERIALIZABLEXID *)
4889 hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
4890 LWLockRelease(SerializableXactHashLock);
4891
4892 /* xid will not be found if it wasn't a serializable transaction */
4893 if (sxid == NULL)
4894 return;
4895
4896 /* Release its locks */
4897 MySerializableXact = sxid->myXact;
4898 MyXactDidWrite = true; /* conservatively assume that we wrote
4899 * something */
4900 ReleasePredicateLocks(isCommit, false);
4901}
4902
4903/*
4904 * Re-acquire a predicate lock belonging to a transaction that was prepared.
4905 */
4906void
4908 void *recdata, uint32 len)
4909{
4912
4914
4915 record = (TwoPhasePredicateRecord *) recdata;
4916
4918 (record->type == TWOPHASEPREDICATERECORD_LOCK));
4919
4920 if (record->type == TWOPHASEPREDICATERECORD_XACT)
4921 {
4922 /* Per-transaction record. Set up a SERIALIZABLEXACT. */
4923 TwoPhasePredicateXactRecord *xactRecord;
4924 SERIALIZABLEXACT *sxact;
4925 SERIALIZABLEXID *sxid;
4926 SERIALIZABLEXIDTAG sxidtag;
4927 bool found;
4928
4929 xactRecord = (TwoPhasePredicateXactRecord *) &record->data.xactRecord;
4930
4931 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
4932 sxact = CreatePredXact();
4933 if (!sxact)
4934 ereport(ERROR,
4935 (errcode(ERRCODE_OUT_OF_MEMORY),
4936 errmsg("out of shared memory")));
4937
4938 /* vxid for a prepared xact is INVALID_PROC_NUMBER/xid; no pid */
4941 sxact->pid = 0;
4943
4944 /* a prepared xact hasn't committed yet */
4948
4950
4951 /*
4952 * Don't need to track this; no transactions running at the time the
4953 * recovered xact started are still active, except possibly other
4954 * prepared xacts and we don't care whether those are RO_SAFE or not.
4955 */
4957
4958 dlist_init(&(sxact->predicateLocks));
4960
4961 sxact->topXid = xid;
4962 sxact->xmin = xactRecord->xmin;
4963 sxact->flags = xactRecord->flags;
4964 Assert(SxactIsPrepared(sxact));
4965 if (!SxactIsReadOnly(sxact))
4966 {
4970 }
4971
4972 /*
4973 * We don't know whether the transaction had any conflicts or not, so
4974 * we'll conservatively assume that it had both a conflict in and a
4975 * conflict out, and represent that with the summary conflict flags.
4976 */
4977 dlist_init(&(sxact->outConflicts));
4978 dlist_init(&(sxact->inConflicts));
4981
4982 /* Register the transaction's xid */
4983 sxidtag.xid = xid;
4985 &sxidtag,
4986 HASH_ENTER, &found);
4987 Assert(sxid != NULL);
4988 Assert(!found);
4989 sxid->myXact = sxact;
4990
4991 /*
4992 * Update global xmin. Note that this is a special case compared to
4993 * registering a normal transaction, because the global xmin might go
4994 * backwards. That's OK, because until recovery is over we're not
4995 * going to complete any transactions or create any non-prepared
4996 * transactions, so there's no danger of throwing away.
4997 */
5000 {
5001 PredXact->SxactGlobalXmin = sxact->xmin;
5004 }
5006 {
5009 }
5010
5011 LWLockRelease(SerializableXactHashLock);
5012 }
5013 else if (record->type == TWOPHASEPREDICATERECORD_LOCK)
5014 {
5015 /* Lock record. Recreate the PREDICATELOCK */
5016 TwoPhasePredicateLockRecord *lockRecord;
5017 SERIALIZABLEXID *sxid;
5018 SERIALIZABLEXACT *sxact;
5019 SERIALIZABLEXIDTAG sxidtag;
5020 uint32 targettaghash;
5021
5022 lockRecord = (TwoPhasePredicateLockRecord *) &record->data.lockRecord;
5023 targettaghash = PredicateLockTargetTagHashCode(&lockRecord->target);
5024
5025 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
5026 sxidtag.xid = xid;
5027 sxid = (SERIALIZABLEXID *)
5028 hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
5029 LWLockRelease(SerializableXactHashLock);
5030
5031 Assert(sxid != NULL);
5032 sxact = sxid->myXact;
5034
5035 CreatePredicateLock(&lockRecord->target, targettaghash, sxact);
5036 }
5037}
5038
5039/*
5040 * Prepare to share the current SERIALIZABLEXACT with parallel workers.
5041 * Return a handle object that can be used by AttachSerializableXact() in a
5042 * parallel worker.
5043 */
5046{
5047 return MySerializableXact;
5048}
5049
5050/*
5051 * Allow parallel workers to import the leader's SERIALIZABLEXACT.
5052 */
5053void
5055{
5056
5058
5062}
bool ParallelContextActive(void)
Definition: parallel.c:1024
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
static bool BlockNumberIsValid(BlockNumber blockNumber)
Definition: block.h:71
#define unconstify(underlying_type, expr)
Definition: c.h:1243
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:229
int64_t int64
Definition: c.h:549
uint16_t uint16
Definition: c.h:551
uint32_t uint32
Definition: c.h:552
uint32 LocalTransactionId
Definition: c.h:673
uint32 TransactionId
Definition: c.h:671
size_t Size
Definition: c.h:624
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:952
Size hash_estimate_size(int64 num_entries, Size entrysize)
Definition: dynahash.c:783
HTAB * hash_create(const char *tabname, int64 nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:358
void hash_destroy(HTAB *hashp)
Definition: dynahash.c:865
void * hash_search_with_hash_value(HTAB *hashp, const void *keyPtr, uint32 hashvalue, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:965
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1415
int64 hash_get_num_entries(HTAB *hashp)
Definition: dynahash.c:1336
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1380
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1243
int errdetail(const char *fmt,...)
Definition: elog.c:1216
int errhint(const char *fmt,...)
Definition: elog.c:1330
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define DEBUG2
Definition: elog.h:29
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
#define palloc_object(type)
Definition: fe_memutils.h:74
#define palloc_array(type, count)
Definition: fe_memutils.h:76
int MyProcPid
Definition: globals.c:47
ProcNumber MyProcNumber
Definition: globals.c:90
bool IsUnderPostmaster
Definition: globals.c:120
int MaxBackends
Definition: globals.c:146
int serializable_buffers
Definition: globals.c:165
#define newval
GucSource
Definition: guc.h:112
Assert(PointerIsAligned(start, uint64))
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_REMOVE
Definition: hsearch.h:115
@ HASH_ENTER
Definition: hsearch.h:114
@ HASH_ENTER_NULL
Definition: hsearch.h:116
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_FUNCTION
Definition: hsearch.h:98
#define HASH_BLOBS
Definition: hsearch.h:97
#define HASH_FIXED_SIZE
Definition: hsearch.h:105
#define HASH_PARTITION
Definition: hsearch.h:92
static dlist_node * dlist_pop_head_node(dlist_head *head)
Definition: ilist.h:450
#define dlist_foreach(iter, lhead)
Definition: ilist.h:623
static void dlist_init(dlist_head *head)
Definition: ilist.h:314
#define dlist_head_element(type, membername, lhead)
Definition: ilist.h:603
static void dlist_delete_thoroughly(dlist_node *node)
Definition: ilist.h:416
static void dlist_delete(dlist_node *node)
Definition: ilist.h:405
#define dlist_foreach_modify(iter, lhead)
Definition: ilist.h:640
static bool dlist_is_empty(const dlist_head *head)
Definition: ilist.h:336
static void dlist_push_tail(dlist_head *head, dlist_node *node)
Definition: ilist.h:364
static void dlist_node_init(dlist_node *node)
Definition: ilist.h:325
#define dlist_container(type, membername, ptr)
Definition: ilist.h:593
#define IsParallelWorker()
Definition: parallel.h:60
FILE * output
long val
Definition: informix.c:689
static bool success
Definition: initdb.c:187
int i
Definition: isn.c:77
static OffsetNumber ItemPointerGetOffsetNumber(const ItemPointerData *pointer)
Definition: itemptr.h:124
static BlockNumber ItemPointerGetBlockNumber(const ItemPointerData *pointer)
Definition: itemptr.h:103
#define GET_VXID_FROM_PGPROC(vxid_dst, proc)
Definition: lock.h:79
#define SetInvalidVirtualTransactionId(vxid)
Definition: lock.h:76
bool LWLockHeldByMe(LWLock *lock)
Definition: lwlock.c:1977
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1174
bool LWLockHeldByMeInMode(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:2021
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1894
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:698
@ LW_SHARED
Definition: lwlock.h:113
@ LW_EXCLUSIVE
Definition: lwlock.h:112
#define NUM_PREDICATELOCK_PARTITIONS
Definition: lwlock.h:99
#define InvalidPid
Definition: miscadmin.h:32
#define SLRU_PAGES_PER_SEGMENT
const void size_t len
const void * data
static bool pg_lfind32(uint32 key, const uint32 *base, uint32 nelem)
Definition: pg_lfind.h:153
static rewind_source * source
Definition: pg_rewind.c:89
#define ERRCODE_T_R_SERIALIZATION_FAILURE
Definition: pgbench.c:77
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
PredicateLockData * GetPredicateLockStatusData(void)
Definition: predicate.c:1445
void CheckPointPredicate(void)
Definition: predicate.c:1041
void PredicateLockPageSplit(Relation relation, BlockNumber oldblkno, BlockNumber newblkno)
Definition: predicate.c:3142
static void DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag)
Definition: predicate.c:2389
static HTAB * PredicateLockHash
Definition: predicate.c:398
static void SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact, SERIALIZABLEXACT *activeXact)
Definition: predicate.c:666
#define PredicateLockTargetTagHashCode(predicatelocktargettag)
Definition: predicate.c:303
static void SetNewSxactGlobalXmin(void)
Definition: predicate.c:3249
void CheckForSerializableConflictIn(Relation relation, const ItemPointerData *tid, BlockNumber blkno)
Definition: predicate.c:4334
#define SerialPage(xid)
Definition: predicate.c:343
static void ReleasePredXact(SERIALIZABLEXACT *sxact)
Definition: predicate.c:596
void SetSerializableTransactionSnapshot(Snapshot snapshot, VirtualTransactionId *sourcevxid, int sourcepid)
Definition: predicate.c:1720
static bool RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer)
Definition: predicate.c:610
static bool PredicateLockingNeededForRelation(Relation relation)
Definition: predicate.c:498
static bool SerializationNeededForRead(Relation relation, Snapshot snapshot)
Definition: predicate.c:516
static Snapshot GetSafeSnapshot(Snapshot origSnapshot)
Definition: predicate.c:1556
#define SxactIsCommitted(sxact)
Definition: predicate.c:277
static SerialControl serialControl
Definition: predicate.c:354
void PredicateLockPage(Relation relation, BlockNumber blkno, Snapshot snapshot)
Definition: predicate.c:2597
#define SxactIsROUnsafe(sxact)
Definition: predicate.c:292
static Snapshot GetSerializableTransactionSnapshotInt(Snapshot snapshot, VirtualTransactionId *sourcevxid, int sourcepid)
Definition: predicate.c:1762
static LWLock * ScratchPartitionLock
Definition: predicate.c:408
static void PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag)
Definition: predicate.c:2515
#define SxactIsDeferrableWaiting(sxact)
Definition: predicate.c:290
static void ReleasePredicateLocksLocal(void)
Definition: predicate.c:3677
static HTAB * LocalPredicateLockHash
Definition: predicate.c:414
int max_predicate_locks_per_page
Definition: predicate.c:373
struct SerialControlData * SerialControl
Definition: predicate.c:352
static PredXactList PredXact
Definition: predicate.c:384
static void SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer)
Definition: predicate.c:643
int GetSafeSnapshotBlockingPids(int blocked_pid, int *output, int output_size)
Definition: predicate.c:1626
static uint32 ScratchTargetTagHash
Definition: predicate.c:407
static void RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target, uint32 targettaghash)
Definition: predicate.c:2181
static uint32 predicatelock_hash(const void *key, Size keysize)
Definition: predicate.c:1419
void CheckForSerializableConflictOut(Relation relation, TransactionId xid, Snapshot snapshot)
Definition: predicate.c:4021
#define SxactIsReadOnly(sxact)
Definition: predicate.c:281
#define SerialNextPage(page)
Definition: predicate.c:337
static void DropAllPredicateLocksFromTable(Relation relation, bool transfer)
Definition: predicate.c:2935
bool PageIsPredicateLocked(Relation relation, BlockNumber blkno)
Definition: predicate.c:2006
static SlruCtlData SerialSlruCtlData
Definition: predicate.c:324
static void CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag, uint32 targettaghash, SERIALIZABLEXACT *sxact)
Definition: predicate.c:2451
static void SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo)
Definition: predicate.c:858
static void ClearOldPredicateLocks(void)
Definition: predicate.c:3695
#define SxactHasSummaryConflictIn(sxact)
Definition: predicate.c:282
static SERIALIZABLEXACT * CreatePredXact(void)
Definition: predicate.c:582
static bool GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag, PREDICATELOCKTARGETTAG *parent)
Definition: predicate.c:2070
#define PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash)
Definition: predicate.c:316
static void RestoreScratchTarget(bool lockheld)
Definition: predicate.c:2159
#define SerialValue(slotno, xid)
Definition: predicate.c:339
static void DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag)
Definition: predicate.c:2212
static void DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash)
Definition: predicate.c:2667
void PredicateLockTwoPhaseFinish(FullTransactionId fxid, bool isCommit)
Definition: predicate.c:4880
void predicatelock_twophase_recover(FullTransactionId fxid, uint16 info, void *recdata, uint32 len)
Definition: predicate.c:4907
static SERIALIZABLEXACT * OldCommittedSxact
Definition: predicate.c:362
#define SxactHasConflictOut(sxact)
Definition: predicate.c:289
static bool MyXactDidWrite
Definition: predicate.c:422
static int MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag)
Definition: predicate.c:2287
static void FlagSxactUnsafe(SERIALIZABLEXACT *sxact)
Definition: predicate.c:699
static void SerialInit(void)
Definition: predicate.c:806
void CheckTableForSerializableConflictIn(Relation relation)
Definition: predicate.c:4417
#define SxactIsPrepared(sxact)
Definition: predicate.c:278
void AttachSerializableXact(SerializableXactHandle handle)
Definition: predicate.c:5054
struct SerialControlData SerialControlData
SerializableXactHandle ShareSerializableXact(void)
Definition: predicate.c:5045
static bool PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag)
Definition: predicate.c:2043
static void RemoveScratchTarget(bool lockheld)
Definition: predicate.c:2138
#define SxactIsOnFinishedList(sxact)
Definition: predicate.c:267
#define SxactIsPartiallyReleased(sxact)
Definition: predicate.c:293
static void SerialSetActiveSerXmin(TransactionId xid)
Definition: predicate.c:990
static dlist_head * FinishedSerializableTransactions
Definition: predicate.c:399
static bool SerializationNeededForWrite(Relation relation)
Definition: predicate.c:560
static HTAB * SerializableXidHash
Definition: predicate.c:396
static bool CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag)
Definition: predicate.c:2324
void PredicateLockPageCombine(Relation relation, BlockNumber oldblkno, BlockNumber newblkno)
Definition: predicate.c:3227
static bool SerialPagePrecedesLogically(int64 page1, int64 page2)
Definition: predicate.c:731
static void CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag)
Definition: predicate.c:4164
int max_predicate_locks_per_relation
Definition: predicate.c:372
#define SxactIsROSafe(sxact)
Definition: predicate.c:291
void PreCommit_CheckForSerializationFailure(void)
Definition: predicate.c:4701
void ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe)
Definition: predicate.c:3310
static void FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer)
Definition: predicate.c:4499
static const PREDICATELOCKTARGETTAG ScratchTargetTag
Definition: predicate.c:406
#define PredicateLockHashPartitionLockByIndex(i)
Definition: predicate.c:261
static void OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer)
Definition: predicate.c:4534
static bool CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag)
Definition: predicate.c:2109
void PredicateLockRelation(Relation relation, Snapshot snapshot)
Definition: predicate.c:2574
static SERIALIZABLEXACT * MySerializableXact
Definition: predicate.c:421
void PredicateLockShmemInit(void)
Definition: predicate.c:1145
void PredicateLockTID(Relation relation, const ItemPointerData *tid, Snapshot snapshot, TransactionId tuple_xid)
Definition: predicate.c:2619
Size PredicateLockShmemSize(void)
Definition: predicate.c:1357
#define SxactIsDoomed(sxact)
Definition: predicate.c:280
#define NPREDICATELOCKTARGETENTS()
Definition: predicate.c:264
static SerCommitSeqNo SerialGetMinConflictCommitSeqNo(TransactionId xid)
Definition: predicate.c:949
static void SummarizeOldestCommittedSxact(void)
Definition: predicate.c:1501
bool check_serial_buffers(int *newval, void **extra, GucSource source)
Definition: predicate.c:847
void PostPrepare_PredicateLocks(FullTransactionId fxid)
Definition: predicate.c:4857
#define TargetTagIsCoveredBy(covered_target, covering_target)
Definition: predicate.c:233
static RWConflictPoolHeader RWConflictPool
Definition: predicate.c:390
static void ReleaseRWConflict(RWConflict conflict)
Definition: predicate.c:691
static bool TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag, PREDICATELOCKTARGETTAG newtargettag, bool removeOld)
Definition: predicate.c:2728
void AtPrepare_PredicateLocks(void)
Definition: predicate.c:4788
void RegisterPredicateLockingXid(TransactionId xid)
Definition: predicate.c:1957
#define PredicateLockHashPartitionLock(hashcode)
Definition: predicate.c:258
#define SERIAL_ENTRIESPERPAGE
Definition: predicate.c:330
static bool XidIsConcurrent(TransactionId xid)
Definition: predicate.c:3970
static void ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial, bool summarize)
Definition: predicate.c:3833
static HTAB * PredicateLockTargetHash
Definition: predicate.c:397
bool CheckForSerializableConflictOutNeeded(Relation relation, Snapshot snapshot)
Definition: predicate.c:3989
#define SxactIsRolledBack(sxact)
Definition: predicate.c:279
static SERIALIZABLEXACT * SavedSerializableXact
Definition: predicate.c:431
#define SxactHasSummaryConflictOut(sxact)
Definition: predicate.c:283
void TransferPredicateLocksToHeapRelation(Relation relation)
Definition: predicate.c:3121
static void CreateLocalPredicateLockHash(void)
Definition: predicate.c:1938
#define SerialSlruCtl
Definition: predicate.c:326
int max_predicate_locks_per_xact
Definition: predicate.c:371
Snapshot GetSerializableTransactionSnapshot(Snapshot snapshot)
Definition: predicate.c:1680
void * SerializableXactHandle
Definition: predicate.h:34
#define RWConflictDataSize
#define SXACT_FLAG_DEFERRABLE_WAITING
#define SXACT_FLAG_SUMMARY_CONFLICT_IN
@ TWOPHASEPREDICATERECORD_XACT
@ TWOPHASEPREDICATERECORD_LOCK
#define FirstNormalSerCommitSeqNo
#define InvalidSerCommitSeqNo
@ PREDLOCKTAG_RELATION
@ PREDLOCKTAG_PAGE
@ PREDLOCKTAG_TUPLE
struct PREDICATELOCKTAG PREDICATELOCKTAG
#define SXACT_FLAG_CONFLICT_OUT
#define PredXactListDataSize
#define SXACT_FLAG_READ_ONLY
#define SXACT_FLAG_DOOMED
struct LOCALPREDICATELOCK LOCALPREDICATELOCK
#define GET_PREDICATELOCKTARGETTAG_DB(locktag)
#define GET_PREDICATELOCKTARGETTAG_RELATION(locktag)
#define RWConflictPoolHeaderDataSize
struct SERIALIZABLEXIDTAG SERIALIZABLEXIDTAG
#define InvalidSerializableXact
struct PREDICATELOCKTARGET PREDICATELOCKTARGET
#define SET_PREDICATELOCKTARGETTAG_PAGE(locktag, dboid, reloid, blocknum)
#define RecoverySerCommitSeqNo
struct PREDICATELOCKTARGETTAG PREDICATELOCKTARGETTAG
struct SERIALIZABLEXID SERIALIZABLEXID
struct RWConflictData * RWConflict
#define GET_PREDICATELOCKTARGETTAG_TYPE(locktag)
#define SET_PREDICATELOCKTARGETTAG_RELATION(locktag, dboid, reloid)
uint64 SerCommitSeqNo
#define SXACT_FLAG_ROLLED_BACK
#define SXACT_FLAG_COMMITTED
#define SXACT_FLAG_RO_UNSAFE
#define SXACT_FLAG_PREPARED
#define SET_PREDICATELOCKTARGETTAG_TUPLE(locktag, dboid, reloid, blocknum, offnum)
#define SXACT_FLAG_PARTIALLY_RELEASED
#define GET_PREDICATELOCKTARGETTAG_PAGE(locktag)
#define SXACT_FLAG_RO_SAFE
struct PREDICATELOCK PREDICATELOCK
#define SXACT_FLAG_SUMMARY_CONFLICT_OUT
#define GET_PREDICATELOCKTARGETTAG_OFFSET(locktag)
Snapshot GetSnapshotData(Snapshot snapshot)
Definition: procarray.c:2123
bool ProcArrayInstallImportedXmin(TransactionId xmin, VirtualTransactionId *sourcevxid)
Definition: procarray.c:2480
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
#define RelationUsesLocalBuffers(relation)
Definition: rel.h:647
bool ShmemAddrIsValid(const void *addr)
Definition: shmem.c:276
Size add_size(Size s1, Size s2)
Definition: shmem.c:495
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
HTAB * ShmemInitHash(const char *name, int64 init_size, int64 max_size, HASHCTL *infoP, int hash_flags)
Definition: shmem.c:334
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:389
void SimpleLruInit(SlruCtl ctl, const char *name, int nslots, int nlsns, const char *subdir, int buffer_tranche_id, int bank_tranche_id, SyncRequestHandler sync_handler, bool long_segment_names)
Definition: slru.c:252
int SimpleLruReadPage_ReadOnly(SlruCtl ctl, int64 pageno, TransactionId xid)
Definition: slru.c:630
void SimpleLruWriteAll(SlruCtl ctl, bool allow_redirtied)
Definition: slru.c:1347
int SimpleLruReadPage(SlruCtl ctl, int64 pageno, bool write_ok, TransactionId xid)
Definition: slru.c:527
int SimpleLruZeroPage(SlruCtl ctl, int64 pageno)
Definition: slru.c:375
void SimpleLruTruncate(SlruCtl ctl, int64 cutoffPage)
Definition: slru.c:1433
Size SimpleLruShmemSize(int nslots, int nlsns)
Definition: slru.c:198
bool check_slru_buffers(const char *name, int *newval)
Definition: slru.c:355
static LWLock * SimpleLruGetBankLock(SlruCtl ctl, int64 pageno)
Definition: slru.h:160
#define SlruPagePrecedesUnitTests(ctl, per_page)
Definition: slru.h:185
Snapshot GetTransactionSnapshot(void)
Definition: snapmgr.c:272
#define IsMVCCSnapshot(snapshot)
Definition: snapmgr.h:55
void ProcSendSignal(ProcNumber procNumber)
Definition: proc.c:1996
PGPROC * MyProc
Definition: proc.c:67
void ProcWaitForSignal(uint32 wait_event_info)
Definition: proc.c:1984
Size keysize
Definition: hsearch.h:75
HashValueFunc hash
Definition: hsearch.h:78
Size entrysize
Definition: hsearch.h:76
int64 num_partitions
Definition: hsearch.h:68
Definition: dynahash.c:222
Definition: lwlock.h:42
Definition: proc.h:179
SERIALIZABLEXACT * myXact
PREDICATELOCKTARGET * myTarget
PREDICATELOCKTARGETTAG tag
PREDICATELOCKTAG tag
SerCommitSeqNo commitSeqNo
SERIALIZABLEXACT * element
SerCommitSeqNo LastSxactCommitSeqNo
SerCommitSeqNo CanPartialClearThrough
SERIALIZABLEXACT * OldCommittedSxact
SerCommitSeqNo HavePartialClearedThrough
TransactionId SxactGlobalXmin
SERIALIZABLEXACT * sxactIn
SERIALIZABLEXACT * sxactOut
Form_pg_index rd_index
Definition: rel.h:192
Oid rd_id
Definition: rel.h:113
RelFileLocator rd_locator
Definition: rel.h:57
VirtualTransactionId vxid
SerCommitSeqNo lastCommitBeforeSnapshot
dlist_head possibleUnsafeConflicts
union SERIALIZABLEXACT::@128 SeqNo
SerCommitSeqNo prepareSeqNo
SerCommitSeqNo commitSeqNo
TransactionId finishedBefore
SerCommitSeqNo earliestOutConflictCommit
SERIALIZABLEXACT * myXact
TransactionId headXid
Definition: predicate.c:348
TransactionId tailXid
Definition: predicate.c:349
TransactionId xmin
Definition: snapshot.h:153
uint32 xcnt
Definition: snapshot.h:165
TransactionId xmax
Definition: snapshot.h:154
TransactionId * xip
Definition: snapshot.h:164
FullTransactionId nextXid
Definition: transam.h:220
PREDICATELOCKTARGETTAG target
TwoPhasePredicateRecordType type
union TwoPhasePredicateRecord::@129 data
TwoPhasePredicateLockRecord lockRecord
TwoPhasePredicateXactRecord xactRecord
LocalTransactionId localTransactionId
Definition: lock.h:64
ProcNumber procNumber
Definition: lock.h:63
dlist_node * cur
Definition: ilist.h:179
dlist_node * cur
Definition: ilist.h:200
@ SYNC_HANDLER_NONE
Definition: sync.h:42
static bool TransactionIdFollows(TransactionId id1, TransactionId id2)
Definition: transam.h:297
#define FirstUnpinnedObjectId
Definition: transam.h:196
#define InvalidTransactionId
Definition: transam.h:31
static bool TransactionIdPrecedesOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.h:282
static bool TransactionIdFollowsOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.h:312
#define TransactionIdEquals(id1, id2)
Definition: transam.h:43
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define FirstNormalTransactionId
Definition: transam.h:34
#define TransactionIdIsValid(xid)
Definition: transam.h:41
static bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.h:263
void RegisterTwoPhaseRecord(TwoPhaseRmgrId rmid, uint16 info, const void *data, uint32 len)
Definition: twophase.c:1271
int max_prepared_xacts
Definition: twophase.c:116
#define TWOPHASE_RM_PREDICATELOCK_ID
Definition: twophase_rmgr.h:30
TransamVariablesData * TransamVariables
Definition: varsup.c:34
bool XactDeferrable
Definition: xact.c:86
bool XactReadOnly
Definition: xact.c:83
TransactionId GetTopTransactionIdIfAny(void)
Definition: xact.c:442
bool IsSubTransaction(void)
Definition: xact.c:5062
bool TransactionIdIsCurrentTransactionId(TransactionId xid)
Definition: xact.c:942
bool IsInParallelMode(void)
Definition: xact.c:1090
#define IsolationIsSerializable()
Definition: xact.h:53
bool RecoveryInProgress(void)
Definition: xlog.c:6404