PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
predicate.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * predicate.c
4 * POSTGRES predicate locking
5 * to support full serializable transaction isolation
6 *
7 *
8 * The approach taken is to implement Serializable Snapshot Isolation (SSI)
9 * as initially described in this paper:
10 *
11 * Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008.
12 * Serializable isolation for snapshot databases.
13 * In SIGMOD '08: Proceedings of the 2008 ACM SIGMOD
14 * international conference on Management of data,
15 * pages 729-738, New York, NY, USA. ACM.
16 * http://doi.acm.org/10.1145/1376616.1376690
17 *
18 * and further elaborated in Cahill's doctoral thesis:
19 *
20 * Michael James Cahill. 2009.
21 * Serializable Isolation for Snapshot Databases.
22 * Sydney Digital Theses.
23 * University of Sydney, School of Information Technologies.
24 * http://hdl.handle.net/2123/5353
25 *
26 *
27 * Predicate locks for Serializable Snapshot Isolation (SSI) are SIREAD
28 * locks, which are so different from normal locks that a distinct set of
29 * structures is required to handle them. They are needed to detect
30 * rw-conflicts when the read happens before the write. (When the write
31 * occurs first, the reading transaction can check for a conflict by
32 * examining the MVCC data.)
33 *
34 * (1) Besides tuples actually read, they must cover ranges of tuples
35 * which would have been read based on the predicate. This will
36 * require modelling the predicates through locks against database
37 * objects such as pages, index ranges, or entire tables.
38 *
39 * (2) They must be kept in RAM for quick access. Because of this, it
40 * isn't possible to always maintain tuple-level granularity -- when
41 * the space allocated to store these approaches exhaustion, a
42 * request for a lock may need to scan for situations where a single
43 * transaction holds many fine-grained locks which can be coalesced
44 * into a single coarser-grained lock.
45 *
46 * (3) They never block anything; they are more like flags than locks
47 * in that regard; although they refer to database objects and are
48 * used to identify rw-conflicts with normal write locks.
49 *
50 * (4) While they are associated with a transaction, they must survive
51 * a successful COMMIT of that transaction, and remain until all
52 * overlapping transactions complete. This even means that they
53 * must survive termination of the transaction's process. If a
54 * top level transaction is rolled back, however, it is immediately
55 * flagged so that it can be ignored, and its SIREAD locks can be
56 * released any time after that.
57 *
58 * (5) The only transactions which create SIREAD locks or check for
59 * conflicts with them are serializable transactions.
60 *
61 * (6) When a write lock for a top level transaction is found to cover
62 * an existing SIREAD lock for the same transaction, the SIREAD lock
63 * can be deleted.
64 *
65 * (7) A write from a serializable transaction must ensure that an xact
66 * record exists for the transaction, with the same lifespan (until
67 * all concurrent transaction complete or the transaction is rolled
68 * back) so that rw-dependencies to that transaction can be
69 * detected.
70 *
71 * We use an optimization for read-only transactions. Under certain
72 * circumstances, a read-only transaction's snapshot can be shown to
73 * never have conflicts with other transactions. This is referred to
74 * as a "safe" snapshot (and one known not to be is "unsafe").
75 * However, it can't be determined whether a snapshot is safe until
76 * all concurrent read/write transactions complete.
77 *
78 * Once a read-only transaction is known to have a safe snapshot, it
79 * can release its predicate locks and exempt itself from further
80 * predicate lock tracking. READ ONLY DEFERRABLE transactions run only
81 * on safe snapshots, waiting as necessary for one to be available.
82 *
83 *
84 * Lightweight locks to manage access to the predicate locking shared
85 * memory objects must be taken in this order, and should be released in
86 * reverse order:
87 *
88 * SerializableFinishedListLock
89 * - Protects the list of transactions which have completed but which
90 * may yet matter because they overlap still-active transactions.
91 *
92 * SerializablePredicateListLock
93 * - Protects the linked list of locks held by a transaction. Note
94 * that the locks themselves are also covered by the partition
95 * locks of their respective lock targets; this lock only affects
96 * the linked list connecting the locks related to a transaction.
97 * - All transactions share this single lock (with no partitioning).
98 * - There is never a need for a process other than the one running
99 * an active transaction to walk the list of locks held by that
100 * transaction, except parallel query workers sharing the leader's
101 * transaction. In the parallel case, an extra per-sxact lock is
102 * taken; see below.
103 * - It is relatively infrequent that another process needs to
104 * modify the list for a transaction, but it does happen for such
105 * things as index page splits for pages with predicate locks and
106 * freeing of predicate locked pages by a vacuum process. When
107 * removing a lock in such cases, the lock itself contains the
108 * pointers needed to remove it from the list. When adding a
109 * lock in such cases, the lock can be added using the anchor in
110 * the transaction structure. Neither requires walking the list.
111 * - Cleaning up the list for a terminated transaction is sometimes
112 * not done on a retail basis, in which case no lock is required.
113 * - Due to the above, a process accessing its active transaction's
114 * list always uses a shared lock, regardless of whether it is
115 * walking or maintaining the list. This improves concurrency
116 * for the common access patterns.
117 * - A process which needs to alter the list of a transaction other
118 * than its own active transaction must acquire an exclusive
119 * lock.
120 *
121 * SERIALIZABLEXACT's member 'perXactPredicateListLock'
122 * - Protects the linked list of predicate locks held by a transaction.
123 * Only needed for parallel mode, where multiple backends share the
124 * same SERIALIZABLEXACT object. Not needed if
125 * SerializablePredicateListLock is held exclusively.
126 *
127 * PredicateLockHashPartitionLock(hashcode)
128 * - The same lock protects a target, all locks on that target, and
129 * the linked list of locks on the target.
130 * - When more than one is needed, acquire in ascending address order.
131 * - When all are needed (rare), acquire in ascending index order with
132 * PredicateLockHashPartitionLockByIndex(index).
133 *
134 * SerializableXactHashLock
135 * - Protects both PredXact and SerializableXidHash.
136 *
137 * SerialControlLock
138 * - Protects SerialControlData members
139 *
140 * SLRU per-bank locks
141 * - Protects SerialSlruCtl
142 *
143 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
144 * Portions Copyright (c) 1994, Regents of the University of California
145 *
146 *
147 * IDENTIFICATION
148 * src/backend/storage/lmgr/predicate.c
149 *
150 *-------------------------------------------------------------------------
151 */
152/*
153 * INTERFACE ROUTINES
154 *
155 * housekeeping for setting up shared memory predicate lock structures
156 * PredicateLockShmemInit(void)
157 * PredicateLockShmemSize(void)
158 *
159 * predicate lock reporting
160 * GetPredicateLockStatusData(void)
161 * PageIsPredicateLocked(Relation relation, BlockNumber blkno)
162 *
163 * predicate lock maintenance
164 * GetSerializableTransactionSnapshot(Snapshot snapshot)
165 * SetSerializableTransactionSnapshot(Snapshot snapshot,
166 * VirtualTransactionId *sourcevxid)
167 * RegisterPredicateLockingXid(void)
168 * PredicateLockRelation(Relation relation, Snapshot snapshot)
169 * PredicateLockPage(Relation relation, BlockNumber blkno,
170 * Snapshot snapshot)
171 * PredicateLockTID(Relation relation, ItemPointer tid, Snapshot snapshot,
172 * TransactionId tuple_xid)
173 * PredicateLockPageSplit(Relation relation, BlockNumber oldblkno,
174 * BlockNumber newblkno)
175 * PredicateLockPageCombine(Relation relation, BlockNumber oldblkno,
176 * BlockNumber newblkno)
177 * TransferPredicateLocksToHeapRelation(Relation relation)
178 * ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe)
179 *
180 * conflict detection (may also trigger rollback)
181 * CheckForSerializableConflictOut(Relation relation, TransactionId xid,
182 * Snapshot snapshot)
183 * CheckForSerializableConflictIn(Relation relation, ItemPointer tid,
184 * BlockNumber blkno)
185 * CheckTableForSerializableConflictIn(Relation relation)
186 *
187 * final rollback checking
188 * PreCommit_CheckForSerializationFailure(void)
189 *
190 * two-phase commit support
191 * AtPrepare_PredicateLocks(void);
192 * PostPrepare_PredicateLocks(TransactionId xid);
193 * PredicateLockTwoPhaseFinish(TransactionId xid, bool isCommit);
194 * predicatelock_twophase_recover(TransactionId xid, uint16 info,
195 * void *recdata, uint32 len);
196 */
197
198#include "postgres.h"
199
200#include "access/parallel.h"
201#include "access/slru.h"
202#include "access/transam.h"
203#include "access/twophase.h"
204#include "access/twophase_rmgr.h"
205#include "access/xact.h"
206#include "access/xlog.h"
207#include "miscadmin.h"
208#include "pgstat.h"
209#include "port/pg_lfind.h"
210#include "storage/predicate.h"
212#include "storage/proc.h"
213#include "storage/procarray.h"
214#include "utils/guc_hooks.h"
215#include "utils/rel.h"
216#include "utils/snapmgr.h"
217
218/* Uncomment the next line to test the graceful degradation code. */
219/* #define TEST_SUMMARIZE_SERIAL */
220
221/*
222 * Test the most selective fields first, for performance.
223 *
224 * a is covered by b if all of the following hold:
225 * 1) a.database = b.database
226 * 2) a.relation = b.relation
227 * 3) b.offset is invalid (b is page-granularity or higher)
228 * 4) either of the following:
229 * 4a) a.offset is valid (a is tuple-granularity) and a.page = b.page
230 * or 4b) a.offset is invalid and b.page is invalid (a is
231 * page-granularity and b is relation-granularity
232 */
233#define TargetTagIsCoveredBy(covered_target, covering_target) \
234 ((GET_PREDICATELOCKTARGETTAG_RELATION(covered_target) == /* (2) */ \
235 GET_PREDICATELOCKTARGETTAG_RELATION(covering_target)) \
236 && (GET_PREDICATELOCKTARGETTAG_OFFSET(covering_target) == \
237 InvalidOffsetNumber) /* (3) */ \
238 && (((GET_PREDICATELOCKTARGETTAG_OFFSET(covered_target) != \
239 InvalidOffsetNumber) /* (4a) */ \
240 && (GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) == \
241 GET_PREDICATELOCKTARGETTAG_PAGE(covered_target))) \
242 || ((GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) == \
243 InvalidBlockNumber) /* (4b) */ \
244 && (GET_PREDICATELOCKTARGETTAG_PAGE(covered_target) \
245 != InvalidBlockNumber))) \
246 && (GET_PREDICATELOCKTARGETTAG_DB(covered_target) == /* (1) */ \
247 GET_PREDICATELOCKTARGETTAG_DB(covering_target)))
248
249/*
250 * The predicate locking target and lock shared hash tables are partitioned to
251 * reduce contention. To determine which partition a given target belongs to,
252 * compute the tag's hash code with PredicateLockTargetTagHashCode(), then
253 * apply one of these macros.
254 * NB: NUM_PREDICATELOCK_PARTITIONS must be a power of 2!
255 */
256#define PredicateLockHashPartition(hashcode) \
257 ((hashcode) % NUM_PREDICATELOCK_PARTITIONS)
258#define PredicateLockHashPartitionLock(hashcode) \
259 (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + \
260 PredicateLockHashPartition(hashcode)].lock)
261#define PredicateLockHashPartitionLockByIndex(i) \
262 (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + (i)].lock)
263
264#define NPREDICATELOCKTARGETENTS() \
265 mul_size(max_predicate_locks_per_xact, add_size(MaxBackends, max_prepared_xacts))
266
267#define SxactIsOnFinishedList(sxact) (!dlist_node_is_detached(&(sxact)->finishedLink))
268
269/*
270 * Note that a sxact is marked "prepared" once it has passed
271 * PreCommit_CheckForSerializationFailure, even if it isn't using
272 * 2PC. This is the point at which it can no longer be aborted.
273 *
274 * The PREPARED flag remains set after commit, so SxactIsCommitted
275 * implies SxactIsPrepared.
276 */
277#define SxactIsCommitted(sxact) (((sxact)->flags & SXACT_FLAG_COMMITTED) != 0)
278#define SxactIsPrepared(sxact) (((sxact)->flags & SXACT_FLAG_PREPARED) != 0)
279#define SxactIsRolledBack(sxact) (((sxact)->flags & SXACT_FLAG_ROLLED_BACK) != 0)
280#define SxactIsDoomed(sxact) (((sxact)->flags & SXACT_FLAG_DOOMED) != 0)
281#define SxactIsReadOnly(sxact) (((sxact)->flags & SXACT_FLAG_READ_ONLY) != 0)
282#define SxactHasSummaryConflictIn(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_IN) != 0)
283#define SxactHasSummaryConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_OUT) != 0)
284/*
285 * The following macro actually means that the specified transaction has a
286 * conflict out *to a transaction which committed ahead of it*. It's hard
287 * to get that into a name of a reasonable length.
288 */
289#define SxactHasConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_CONFLICT_OUT) != 0)
290#define SxactIsDeferrableWaiting(sxact) (((sxact)->flags & SXACT_FLAG_DEFERRABLE_WAITING) != 0)
291#define SxactIsROSafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_SAFE) != 0)
292#define SxactIsROUnsafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_UNSAFE) != 0)
293#define SxactIsPartiallyReleased(sxact) (((sxact)->flags & SXACT_FLAG_PARTIALLY_RELEASED) != 0)
294
295/*
296 * Compute the hash code associated with a PREDICATELOCKTARGETTAG.
297 *
298 * To avoid unnecessary recomputations of the hash code, we try to do this
299 * just once per function, and then pass it around as needed. Aside from
300 * passing the hashcode to hash_search_with_hash_value(), we can extract
301 * the lock partition number from the hashcode.
302 */
303#define PredicateLockTargetTagHashCode(predicatelocktargettag) \
304 get_hash_value(PredicateLockTargetHash, predicatelocktargettag)
305
306/*
307 * Given a predicate lock tag, and the hash for its target,
308 * compute the lock hash.
309 *
310 * To make the hash code also depend on the transaction, we xor the sxid
311 * struct's address into the hash code, left-shifted so that the
312 * partition-number bits don't change. Since this is only a hash, we
313 * don't care if we lose high-order bits of the address; use an
314 * intermediate variable to suppress cast-pointer-to-int warnings.
315 */
316#define PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash) \
317 ((targethash) ^ ((uint32) PointerGetDatum((predicatelocktag)->myXact)) \
318 << LOG2_NUM_PREDICATELOCK_PARTITIONS)
319
320
321/*
322 * The SLRU buffer area through which we access the old xids.
323 */
325
326#define SerialSlruCtl (&SerialSlruCtlData)
327
328#define SERIAL_PAGESIZE BLCKSZ
329#define SERIAL_ENTRYSIZE sizeof(SerCommitSeqNo)
330#define SERIAL_ENTRIESPERPAGE (SERIAL_PAGESIZE / SERIAL_ENTRYSIZE)
331
332/*
333 * Set maximum pages based on the number needed to track all transactions.
334 */
335#define SERIAL_MAX_PAGE (MaxTransactionId / SERIAL_ENTRIESPERPAGE)
336
337#define SerialNextPage(page) (((page) >= SERIAL_MAX_PAGE) ? 0 : (page) + 1)
338
339#define SerialValue(slotno, xid) (*((SerCommitSeqNo *) \
340 (SerialSlruCtl->shared->page_buffer[slotno] + \
341 ((((uint32) (xid)) % SERIAL_ENTRIESPERPAGE) * SERIAL_ENTRYSIZE))))
342
343#define SerialPage(xid) (((uint32) (xid)) / SERIAL_ENTRIESPERPAGE)
344
345typedef struct SerialControlData
346{
347 int64 headPage; /* newest initialized page */
348 TransactionId headXid; /* newest valid Xid in the SLRU */
349 TransactionId tailXid; /* oldest xmin we might be interested in */
351
353
355
356/*
357 * When the oldest committed transaction on the "finished" list is moved to
358 * SLRU, its predicate locks will be moved to this "dummy" transaction,
359 * collapsing duplicate targets. When a duplicate is found, the later
360 * commitSeqNo is used.
361 */
363
364
365/*
366 * These configuration variables are used to set the predicate lock table size
367 * and to control promotion of predicate locks to coarser granularity in an
368 * attempt to degrade performance (mostly as false positive serialization
369 * failure) gracefully in the face of memory pressure.
370 */
371int max_predicate_locks_per_xact; /* in guc_tables.c */
372int max_predicate_locks_per_relation; /* in guc_tables.c */
373int max_predicate_locks_per_page; /* in guc_tables.c */
374
375/*
376 * This provides a list of objects in order to track transactions
377 * participating in predicate locking. Entries in the list are fixed size,
378 * and reside in shared memory. The memory address of an entry must remain
379 * fixed during its lifetime. The list will be protected from concurrent
380 * update externally; no provision is made in this code to manage that. The
381 * number of entries in the list, and the size allowed for each entry is
382 * fixed upon creation.
383 */
385
386/*
387 * This provides a pool of RWConflict data elements to use in conflict lists
388 * between transactions.
389 */
391
392/*
393 * The predicate locking hash tables are in shared memory.
394 * Each backend keeps pointers to them.
395 */
400
401/*
402 * Tag for a dummy entry in PredicateLockTargetHash. By temporarily removing
403 * this entry, you can ensure that there's enough scratch space available for
404 * inserting one entry in the hash table. This is an otherwise-invalid tag.
405 */
406static const PREDICATELOCKTARGETTAG ScratchTargetTag = {0, 0, 0, 0};
409
410/*
411 * The local hash table used to determine when to combine multiple fine-
412 * grained locks into a single courser-grained lock.
413 */
415
416/*
417 * Keep a pointer to the currently-running serializable transaction (if any)
418 * for quick reference. Also, remember if we have written anything that could
419 * cause a rw-conflict.
420 */
422static bool MyXactDidWrite = false;
423
424/*
425 * The SXACT_FLAG_RO_UNSAFE optimization might lead us to release
426 * MySerializableXact early. If that happens in a parallel query, the leader
427 * needs to defer the destruction of the SERIALIZABLEXACT until end of
428 * transaction, because the workers still have a reference to it. In that
429 * case, the leader stores it here.
430 */
432
433/* local functions */
434
435static SERIALIZABLEXACT *CreatePredXact(void);
436static void ReleasePredXact(SERIALIZABLEXACT *sxact);
437
438static bool RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer);
439static void SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer);
440static void SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact, SERIALIZABLEXACT *activeXact);
441static void ReleaseRWConflict(RWConflict conflict);
442static void FlagSxactUnsafe(SERIALIZABLEXACT *sxact);
443
444static bool SerialPagePrecedesLogically(int64 page1, int64 page2);
445static void SerialInit(void);
446static void SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo);
449
450static uint32 predicatelock_hash(const void *key, Size keysize);
451static void SummarizeOldestCommittedSxact(void);
452static Snapshot GetSafeSnapshot(Snapshot origSnapshot);
454 VirtualTransactionId *sourcevxid,
455 int sourcepid);
456static bool PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag);
458 PREDICATELOCKTARGETTAG *parent);
459static bool CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag);
460static void RemoveScratchTarget(bool lockheld);
461static void RestoreScratchTarget(bool lockheld);
463 uint32 targettaghash);
464static void DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag);
467static void DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag);
468static void CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag,
469 uint32 targettaghash,
470 SERIALIZABLEXACT *sxact);
471static void DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash);
473 PREDICATELOCKTARGETTAG newtargettag,
474 bool removeOld);
475static void PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag);
476static void DropAllPredicateLocksFromTable(Relation relation,
477 bool transfer);
478static void SetNewSxactGlobalXmin(void);
479static void ClearOldPredicateLocks(void);
480static void ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
481 bool summarize);
482static bool XidIsConcurrent(TransactionId xid);
484static void FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer);
486 SERIALIZABLEXACT *writer);
487static void CreateLocalPredicateLockHash(void);
488static void ReleasePredicateLocksLocal(void);
489
490
491/*------------------------------------------------------------------------*/
492
493/*
494 * Does this relation participate in predicate locking? Temporary and system
495 * relations are exempt.
496 */
497static inline bool
499{
500 return !(relation->rd_id < FirstUnpinnedObjectId ||
501 RelationUsesLocalBuffers(relation));
502}
503
504/*
505 * When a public interface method is called for a read, this is the test to
506 * see if we should do a quick return.
507 *
508 * Note: this function has side-effects! If this transaction has been flagged
509 * as RO-safe since the last call, we release all predicate locks and reset
510 * MySerializableXact. That makes subsequent calls to return quickly.
511 *
512 * This is marked as 'inline' to eliminate the function call overhead in the
513 * common case that serialization is not needed.
514 */
515static inline bool
517{
518 /* Nothing to do if this is not a serializable transaction */
520 return false;
521
522 /*
523 * Don't acquire locks or conflict when scanning with a special snapshot.
524 * This excludes things like CLUSTER and REINDEX. They use the wholesale
525 * functions TransferPredicateLocksToHeapRelation() and
526 * CheckTableForSerializableConflictIn() to participate in serialization,
527 * but the scans involved don't need serialization.
528 */
529 if (!IsMVCCSnapshot(snapshot))
530 return false;
531
532 /*
533 * Check if we have just become "RO-safe". If we have, immediately release
534 * all locks as they're not needed anymore. This also resets
535 * MySerializableXact, so that subsequent calls to this function can exit
536 * quickly.
537 *
538 * A transaction is flagged as RO_SAFE if all concurrent R/W transactions
539 * commit without having conflicts out to an earlier snapshot, thus
540 * ensuring that no conflicts are possible for this transaction.
541 */
543 {
544 ReleasePredicateLocks(false, true);
545 return false;
546 }
547
548 /* Check if the relation doesn't participate in predicate locking */
550 return false;
551
552 return true; /* no excuse to skip predicate locking */
553}
554
555/*
556 * Like SerializationNeededForRead(), but called on writes.
557 * The logic is the same, but there is no snapshot and we can't be RO-safe.
558 */
559static inline bool
561{
562 /* Nothing to do if this is not a serializable transaction */
564 return false;
565
566 /* Check if the relation doesn't participate in predicate locking */
568 return false;
569
570 return true; /* no excuse to skip predicate locking */
571}
572
573
574/*------------------------------------------------------------------------*/
575
576/*
577 * These functions are a simple implementation of a list for this specific
578 * type of struct. If there is ever a generalized shared memory list, we
579 * should probably switch to that.
580 */
581static SERIALIZABLEXACT *
583{
584 SERIALIZABLEXACT *sxact;
585
587 return NULL;
588
589 sxact = dlist_container(SERIALIZABLEXACT, xactLink,
592 return sxact;
593}
594
595static void
597{
598 Assert(ShmemAddrIsValid(sxact));
599
600 dlist_delete(&sxact->xactLink);
602}
603
604/*------------------------------------------------------------------------*/
605
606/*
607 * These functions manage primitive access to the RWConflict pool and lists.
608 */
609static bool
611{
612 dlist_iter iter;
613
614 Assert(reader != writer);
615
616 /* Check the ends of the purported conflict first. */
617 if (SxactIsDoomed(reader)
618 || SxactIsDoomed(writer)
619 || dlist_is_empty(&reader->outConflicts)
620 || dlist_is_empty(&writer->inConflicts))
621 return false;
622
623 /*
624 * A conflict is possible; walk the list to find out.
625 *
626 * The unconstify is needed as we have no const version of
627 * dlist_foreach().
628 */
629 dlist_foreach(iter, &unconstify(SERIALIZABLEXACT *, reader)->outConflicts)
630 {
631 RWConflict conflict =
632 dlist_container(RWConflictData, outLink, iter.cur);
633
634 if (conflict->sxactIn == writer)
635 return true;
636 }
637
638 /* No conflict found. */
639 return false;
640}
641
642static void
644{
645 RWConflict conflict;
646
647 Assert(reader != writer);
648 Assert(!RWConflictExists(reader, writer));
649
652 (errcode(ERRCODE_OUT_OF_MEMORY),
653 errmsg("not enough elements in RWConflictPool to record a read/write conflict"),
654 errhint("You might need to run fewer transactions at a time or increase \"max_connections\".")));
655
657 dlist_delete(&conflict->outLink);
658
659 conflict->sxactOut = reader;
660 conflict->sxactIn = writer;
661 dlist_push_tail(&reader->outConflicts, &conflict->outLink);
662 dlist_push_tail(&writer->inConflicts, &conflict->inLink);
663}
664
665static void
667 SERIALIZABLEXACT *activeXact)
668{
669 RWConflict conflict;
670
671 Assert(roXact != activeXact);
672 Assert(SxactIsReadOnly(roXact));
673 Assert(!SxactIsReadOnly(activeXact));
674
677 (errcode(ERRCODE_OUT_OF_MEMORY),
678 errmsg("not enough elements in RWConflictPool to record a potential read/write conflict"),
679 errhint("You might need to run fewer transactions at a time or increase \"max_connections\".")));
680
682 dlist_delete(&conflict->outLink);
683
684 conflict->sxactOut = activeXact;
685 conflict->sxactIn = roXact;
686 dlist_push_tail(&activeXact->possibleUnsafeConflicts, &conflict->outLink);
687 dlist_push_tail(&roXact->possibleUnsafeConflicts, &conflict->inLink);
688}
689
690static void
692{
693 dlist_delete(&conflict->inLink);
694 dlist_delete(&conflict->outLink);
696}
697
698static void
700{
702
703 Assert(SxactIsReadOnly(sxact));
704 Assert(!SxactIsROSafe(sxact));
705
706 sxact->flags |= SXACT_FLAG_RO_UNSAFE;
707
708 /*
709 * We know this isn't a safe snapshot, so we can stop looking for other
710 * potential conflicts.
711 */
713 {
714 RWConflict conflict =
715 dlist_container(RWConflictData, inLink, iter.cur);
716
717 Assert(!SxactIsReadOnly(conflict->sxactOut));
718 Assert(sxact == conflict->sxactIn);
719
720 ReleaseRWConflict(conflict);
721 }
722}
723
724/*------------------------------------------------------------------------*/
725
726/*
727 * Decide whether a Serial page number is "older" for truncation purposes.
728 * Analogous to CLOGPagePrecedes().
729 */
730static bool
732{
733 TransactionId xid1;
734 TransactionId xid2;
735
736 xid1 = ((TransactionId) page1) * SERIAL_ENTRIESPERPAGE;
737 xid1 += FirstNormalTransactionId + 1;
738 xid2 = ((TransactionId) page2) * SERIAL_ENTRIESPERPAGE;
739 xid2 += FirstNormalTransactionId + 1;
740
741 return (TransactionIdPrecedes(xid1, xid2) &&
743}
744
745#ifdef USE_ASSERT_CHECKING
746static void
747SerialPagePrecedesLogicallyUnitTests(void)
748{
749 int per_page = SERIAL_ENTRIESPERPAGE,
750 offset = per_page / 2;
751 int64 newestPage,
752 oldestPage,
753 headPage,
754 targetPage;
755 TransactionId newestXact,
756 oldestXact;
757
758 /* GetNewTransactionId() has assigned the last XID it can safely use. */
759 newestPage = 2 * SLRU_PAGES_PER_SEGMENT - 1; /* nothing special */
760 newestXact = newestPage * per_page + offset;
761 Assert(newestXact / per_page == newestPage);
762 oldestXact = newestXact + 1;
763 oldestXact -= 1U << 31;
764 oldestPage = oldestXact / per_page;
765
766 /*
767 * In this scenario, the SLRU headPage pertains to the last ~1000 XIDs
768 * assigned. oldestXact finishes, ~2B XIDs having elapsed since it
769 * started. Further transactions cause us to summarize oldestXact to
770 * tailPage. Function must return false so SerialAdd() doesn't zero
771 * tailPage (which may contain entries for other old, recently-finished
772 * XIDs) and half the SLRU. Reaching this requires burning ~2B XIDs in
773 * single-user mode, a negligible possibility.
774 */
775 headPage = newestPage;
776 targetPage = oldestPage;
778
779 /*
780 * In this scenario, the SLRU headPage pertains to oldestXact. We're
781 * summarizing an XID near newestXact. (Assume few other XIDs used
782 * SERIALIZABLE, hence the minimal headPage advancement. Assume
783 * oldestXact was long-running and only recently reached the SLRU.)
784 * Function must return true to make SerialAdd() create targetPage.
785 *
786 * Today's implementation mishandles this case, but it doesn't matter
787 * enough to fix. Verify that the defect affects just one page by
788 * asserting correct treatment of its prior page. Reaching this case
789 * requires burning ~2B XIDs in single-user mode, a negligible
790 * possibility. Moreover, if it does happen, the consequence would be
791 * mild, namely a new transaction failing in SimpleLruReadPage().
792 */
793 headPage = oldestPage;
794 targetPage = newestPage;
796#if 0
798#endif
799}
800#endif
801
802/*
803 * Initialize for the tracking of old serializable committed xids.
804 */
805static void
807{
808 bool found;
809
810 /*
811 * Set up SLRU management of the pg_serial data.
812 */
814 SimpleLruInit(SerialSlruCtl, "serializable",
815 serializable_buffers, 0, "pg_serial",
817 SYNC_HANDLER_NONE, false);
818#ifdef USE_ASSERT_CHECKING
819 SerialPagePrecedesLogicallyUnitTests();
820#endif
822
823 /*
824 * Create or attach to the SerialControl structure.
825 */
827 ShmemInitStruct("SerialControlData", sizeof(SerialControlData), &found);
828
829 Assert(found == IsUnderPostmaster);
830 if (!found)
831 {
832 /*
833 * Set control information to reflect empty SLRU.
834 */
835 LWLockAcquire(SerialControlLock, LW_EXCLUSIVE);
839 LWLockRelease(SerialControlLock);
840 }
841}
842
843/*
844 * GUC check_hook for serializable_buffers
845 */
846bool
848{
849 return check_slru_buffers("serializable_buffers", newval);
850}
851
852/*
853 * Record a committed read write serializable xid and the minimum
854 * commitSeqNo of any transactions to which this xid had a rw-conflict out.
855 * An invalid commitSeqNo means that there were no conflicts out from xid.
856 */
857static void
858SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo)
859{
861 int64 targetPage;
862 int slotno;
863 int64 firstZeroPage;
864 bool isNewPage;
865 LWLock *lock;
866
868
869 targetPage = SerialPage(xid);
870 lock = SimpleLruGetBankLock(SerialSlruCtl, targetPage);
871
872 /*
873 * In this routine, we must hold both SerialControlLock and the SLRU bank
874 * lock simultaneously while making the SLRU data catch up with the new
875 * state that we determine.
876 */
877 LWLockAcquire(SerialControlLock, LW_EXCLUSIVE);
878
879 /*
880 * If 'xid' is older than the global xmin (== tailXid), there's no need to
881 * store it, after all. This can happen if the oldest transaction holding
882 * back the global xmin just finished, making 'xid' uninteresting, but
883 * ClearOldPredicateLocks() has not yet run.
884 */
887 {
888 LWLockRelease(SerialControlLock);
889 return;
890 }
891
892 /*
893 * If the SLRU is currently unused, zero out the whole active region from
894 * tailXid to headXid before taking it into use. Otherwise zero out only
895 * any new pages that enter the tailXid-headXid range as we advance
896 * headXid.
897 */
898 if (serialControl->headPage < 0)
899 {
900 firstZeroPage = SerialPage(tailXid);
901 isNewPage = true;
902 }
903 else
904 {
905 firstZeroPage = SerialNextPage(serialControl->headPage);
907 targetPage);
908 }
909
912 serialControl->headXid = xid;
913 if (isNewPage)
914 serialControl->headPage = targetPage;
915
916 if (isNewPage)
917 {
918 /* Initialize intervening pages; might involve trading locks */
919 for (;;)
920 {
921 lock = SimpleLruGetBankLock(SerialSlruCtl, firstZeroPage);
923 slotno = SimpleLruZeroPage(SerialSlruCtl, firstZeroPage);
924 if (firstZeroPage == targetPage)
925 break;
926 firstZeroPage = SerialNextPage(firstZeroPage);
927 LWLockRelease(lock);
928 }
929 }
930 else
931 {
933 slotno = SimpleLruReadPage(SerialSlruCtl, targetPage, true, xid);
934 }
935
936 SerialValue(slotno, xid) = minConflictCommitSeqNo;
937 SerialSlruCtl->shared->page_dirty[slotno] = true;
938
939 LWLockRelease(lock);
940 LWLockRelease(SerialControlLock);
941}
942
943/*
944 * Get the minimum commitSeqNo for any conflict out for the given xid. For
945 * a transaction which exists but has no conflict out, InvalidSerCommitSeqNo
946 * will be returned.
947 */
948static SerCommitSeqNo
950{
954 int slotno;
955
957
958 LWLockAcquire(SerialControlLock, LW_SHARED);
961 LWLockRelease(SerialControlLock);
962
964 return 0;
965
967
970 return 0;
971
972 /*
973 * The following function must be called without holding SLRU bank lock,
974 * but will return with that lock held, which must then be released.
975 */
977 SerialPage(xid), xid);
978 val = SerialValue(slotno, xid);
980 return val;
981}
982
983/*
984 * Call this whenever there is a new xmin for active serializable
985 * transactions. We don't need to keep information on transactions which
986 * precede that. InvalidTransactionId means none active, so everything in
987 * the SLRU can be discarded.
988 */
989static void
991{
992 LWLockAcquire(SerialControlLock, LW_EXCLUSIVE);
993
994 /*
995 * When no sxacts are active, nothing overlaps, set the xid values to
996 * invalid to show that there are no valid entries. Don't clear headPage,
997 * though. A new xmin might still land on that page, and we don't want to
998 * repeatedly zero out the same page.
999 */
1000 if (!TransactionIdIsValid(xid))
1001 {
1004 LWLockRelease(SerialControlLock);
1005 return;
1006 }
1007
1008 /*
1009 * When we're recovering prepared transactions, the global xmin might move
1010 * backwards depending on the order they're recovered. Normally that's not
1011 * OK, but during recovery no serializable transactions will commit, so
1012 * the SLRU is empty and we can get away with it.
1013 */
1014 if (RecoveryInProgress())
1015 {
1019 {
1020 serialControl->tailXid = xid;
1021 }
1022 LWLockRelease(SerialControlLock);
1023 return;
1024 }
1025
1028
1029 serialControl->tailXid = xid;
1030
1031 LWLockRelease(SerialControlLock);
1032}
1033
1034/*
1035 * Perform a checkpoint --- either during shutdown, or on-the-fly
1036 *
1037 * We don't have any data that needs to survive a restart, but this is a
1038 * convenient place to truncate the SLRU.
1039 */
1040void
1042{
1043 int64 truncateCutoffPage;
1044
1045 LWLockAcquire(SerialControlLock, LW_EXCLUSIVE);
1046
1047 /* Exit quickly if the SLRU is currently not in use. */
1048 if (serialControl->headPage < 0)
1049 {
1050 LWLockRelease(SerialControlLock);
1051 return;
1052 }
1053
1055 {
1056 int64 tailPage;
1057
1058 tailPage = SerialPage(serialControl->tailXid);
1059
1060 /*
1061 * It is possible for the tailXid to be ahead of the headXid. This
1062 * occurs if we checkpoint while there are in-progress serializable
1063 * transaction(s) advancing the tail but we are yet to summarize the
1064 * transactions. In this case, we cutoff up to the headPage and the
1065 * next summary will advance the headXid.
1066 */
1068 {
1069 /* We can truncate the SLRU up to the page containing tailXid */
1070 truncateCutoffPage = tailPage;
1071 }
1072 else
1073 truncateCutoffPage = serialControl->headPage;
1074 }
1075 else
1076 {
1077 /*----------
1078 * The SLRU is no longer needed. Truncate to head before we set head
1079 * invalid.
1080 *
1081 * XXX: It's possible that the SLRU is not needed again until XID
1082 * wrap-around has happened, so that the segment containing headPage
1083 * that we leave behind will appear to be new again. In that case it
1084 * won't be removed until XID horizon advances enough to make it
1085 * current again.
1086 *
1087 * XXX: This should happen in vac_truncate_clog(), not in checkpoints.
1088 * Consider this scenario, starting from a system with no in-progress
1089 * transactions and VACUUM FREEZE having maximized oldestXact:
1090 * - Start a SERIALIZABLE transaction.
1091 * - Start, finish, and summarize a SERIALIZABLE transaction, creating
1092 * one SLRU page.
1093 * - Consume XIDs to reach xidStopLimit.
1094 * - Finish all transactions. Due to the long-running SERIALIZABLE
1095 * transaction, earlier checkpoints did not touch headPage. The
1096 * next checkpoint will change it, but that checkpoint happens after
1097 * the end of the scenario.
1098 * - VACUUM to advance XID limits.
1099 * - Consume ~2M XIDs, crossing the former xidWrapLimit.
1100 * - Start, finish, and summarize a SERIALIZABLE transaction.
1101 * SerialAdd() declines to create the targetPage, because headPage
1102 * is not regarded as in the past relative to that targetPage. The
1103 * transaction instigating the summarize fails in
1104 * SimpleLruReadPage().
1105 */
1106 truncateCutoffPage = serialControl->headPage;
1107 serialControl->headPage = -1;
1108 }
1109
1110 LWLockRelease(SerialControlLock);
1111
1112 /*
1113 * Truncate away pages that are no longer required. Note that no
1114 * additional locking is required, because this is only called as part of
1115 * a checkpoint, and the validity limits have already been determined.
1116 */
1117 SimpleLruTruncate(SerialSlruCtl, truncateCutoffPage);
1118
1119 /*
1120 * Write dirty SLRU pages to disk
1121 *
1122 * This is not actually necessary from a correctness point of view. We do
1123 * it merely as a debugging aid.
1124 *
1125 * We're doing this after the truncation to avoid writing pages right
1126 * before deleting the file in which they sit, which would be completely
1127 * pointless.
1128 */
1130}
1131
1132/*------------------------------------------------------------------------*/
1133
1134/*
1135 * PredicateLockShmemInit -- Initialize the predicate locking data structures.
1136 *
1137 * This is called from CreateSharedMemoryAndSemaphores(), which see for
1138 * more comments. In the normal postmaster case, the shared hash tables
1139 * are created here. Backends inherit the pointers
1140 * to the shared tables via fork(). In the EXEC_BACKEND case, each
1141 * backend re-executes this code to obtain pointers to the already existing
1142 * shared hash tables.
1143 */
1144void
1146{
1147 HASHCTL info;
1148 long max_table_size;
1149 Size requestSize;
1150 bool found;
1151
1152#ifndef EXEC_BACKEND
1154#endif
1155
1156 /*
1157 * Compute size of predicate lock target hashtable. Note these
1158 * calculations must agree with PredicateLockShmemSize!
1159 */
1160 max_table_size = NPREDICATELOCKTARGETENTS();
1161
1162 /*
1163 * Allocate hash table for PREDICATELOCKTARGET structs. This stores
1164 * per-predicate-lock-target information.
1165 */
1166 info.keysize = sizeof(PREDICATELOCKTARGETTAG);
1167 info.entrysize = sizeof(PREDICATELOCKTARGET);
1169
1170 PredicateLockTargetHash = ShmemInitHash("PREDICATELOCKTARGET hash",
1171 max_table_size,
1172 max_table_size,
1173 &info,
1176
1177 /*
1178 * Reserve a dummy entry in the hash table; we use it to make sure there's
1179 * always one entry available when we need to split or combine a page,
1180 * because running out of space there could mean aborting a
1181 * non-serializable transaction.
1182 */
1183 if (!IsUnderPostmaster)
1184 {
1186 HASH_ENTER, &found);
1187 Assert(!found);
1188 }
1189
1190 /* Pre-calculate the hash and partition lock of the scratch entry */
1193
1194 /*
1195 * Allocate hash table for PREDICATELOCK structs. This stores per
1196 * xact-lock-of-a-target information.
1197 */
1198 info.keysize = sizeof(PREDICATELOCKTAG);
1199 info.entrysize = sizeof(PREDICATELOCK);
1200 info.hash = predicatelock_hash;
1202
1203 /* Assume an average of 2 xacts per target */
1204 max_table_size *= 2;
1205
1206 PredicateLockHash = ShmemInitHash("PREDICATELOCK hash",
1207 max_table_size,
1208 max_table_size,
1209 &info,
1212
1213 /*
1214 * Compute size for serializable transaction hashtable. Note these
1215 * calculations must agree with PredicateLockShmemSize!
1216 */
1217 max_table_size = (MaxBackends + max_prepared_xacts);
1218
1219 /*
1220 * Allocate a list to hold information on transactions participating in
1221 * predicate locking.
1222 *
1223 * Assume an average of 10 predicate locking transactions per backend.
1224 * This allows aggressive cleanup while detail is present before data must
1225 * be summarized for storage in SLRU and the "dummy" transaction.
1226 */
1227 max_table_size *= 10;
1228
1229 requestSize = add_size(PredXactListDataSize,
1230 (mul_size((Size) max_table_size,
1231 sizeof(SERIALIZABLEXACT))));
1232
1233 PredXact = ShmemInitStruct("PredXactList",
1234 requestSize,
1235 &found);
1236 Assert(found == IsUnderPostmaster);
1237 if (!found)
1238 {
1239 int i;
1240
1241 /* clean everything, both the header and the element */
1242 memset(PredXact, 0, requestSize);
1243
1254 /* Add all elements to available list, clean. */
1255 for (i = 0; i < max_table_size; i++)
1256 {
1260 }
1277 }
1278 /* This never changes, so let's keep a local copy. */
1280
1281 /*
1282 * Allocate hash table for SERIALIZABLEXID structs. This stores per-xid
1283 * information for serializable transactions which have accessed data.
1284 */
1285 info.keysize = sizeof(SERIALIZABLEXIDTAG);
1286 info.entrysize = sizeof(SERIALIZABLEXID);
1287
1288 SerializableXidHash = ShmemInitHash("SERIALIZABLEXID hash",
1289 max_table_size,
1290 max_table_size,
1291 &info,
1294
1295 /*
1296 * Allocate space for tracking rw-conflicts in lists attached to the
1297 * transactions.
1298 *
1299 * Assume an average of 5 conflicts per transaction. Calculations suggest
1300 * that this will prevent resource exhaustion in even the most pessimal
1301 * loads up to max_connections = 200 with all 200 connections pounding the
1302 * database with serializable transactions. Beyond that, there may be
1303 * occasional transactions canceled when trying to flag conflicts. That's
1304 * probably OK.
1305 */
1306 max_table_size *= 5;
1307
1308 requestSize = RWConflictPoolHeaderDataSize +
1309 mul_size((Size) max_table_size,
1311
1312 RWConflictPool = ShmemInitStruct("RWConflictPool",
1313 requestSize,
1314 &found);
1315 Assert(found == IsUnderPostmaster);
1316 if (!found)
1317 {
1318 int i;
1319
1320 /* clean everything, including the elements */
1321 memset(RWConflictPool, 0, requestSize);
1322
1326 /* Add all elements to available list, clean. */
1327 for (i = 0; i < max_table_size; i++)
1328 {
1331 }
1332 }
1333
1334 /*
1335 * Create or attach to the header for the list of finished serializable
1336 * transactions.
1337 */
1339 ShmemInitStruct("FinishedSerializableTransactions",
1340 sizeof(dlist_head),
1341 &found);
1342 Assert(found == IsUnderPostmaster);
1343 if (!found)
1345
1346 /*
1347 * Initialize the SLRU storage for old committed serializable
1348 * transactions.
1349 */
1350 SerialInit();
1351}
1352
1353/*
1354 * Estimate shared-memory space used for predicate lock table
1355 */
1356Size
1358{
1359 Size size = 0;
1360 long max_table_size;
1361
1362 /* predicate lock target hash table */
1363 max_table_size = NPREDICATELOCKTARGETENTS();
1364 size = add_size(size, hash_estimate_size(max_table_size,
1365 sizeof(PREDICATELOCKTARGET)));
1366
1367 /* predicate lock hash table */
1368 max_table_size *= 2;
1369 size = add_size(size, hash_estimate_size(max_table_size,
1370 sizeof(PREDICATELOCK)));
1371
1372 /*
1373 * Since NPREDICATELOCKTARGETENTS is only an estimate, add 10% safety
1374 * margin.
1375 */
1376 size = add_size(size, size / 10);
1377
1378 /* transaction list */
1379 max_table_size = MaxBackends + max_prepared_xacts;
1380 max_table_size *= 10;
1381 size = add_size(size, PredXactListDataSize);
1382 size = add_size(size, mul_size((Size) max_table_size,
1383 sizeof(SERIALIZABLEXACT)));
1384
1385 /* transaction xid table */
1386 size = add_size(size, hash_estimate_size(max_table_size,
1387 sizeof(SERIALIZABLEXID)));
1388
1389 /* rw-conflict pool */
1390 max_table_size *= 5;
1392 size = add_size(size, mul_size((Size) max_table_size,
1394
1395 /* Head for list of finished serializable transactions. */
1396 size = add_size(size, sizeof(dlist_head));
1397
1398 /* Shared memory structures for SLRU tracking of old committed xids. */
1399 size = add_size(size, sizeof(SerialControlData));
1401
1402 return size;
1403}
1404
1405
1406/*
1407 * Compute the hash code associated with a PREDICATELOCKTAG.
1408 *
1409 * Because we want to use just one set of partition locks for both the
1410 * PREDICATELOCKTARGET and PREDICATELOCK hash tables, we have to make sure
1411 * that PREDICATELOCKs fall into the same partition number as their
1412 * associated PREDICATELOCKTARGETs. dynahash.c expects the partition number
1413 * to be the low-order bits of the hash code, and therefore a
1414 * PREDICATELOCKTAG's hash code must have the same low-order bits as the
1415 * associated PREDICATELOCKTARGETTAG's hash code. We achieve this with this
1416 * specialized hash function.
1417 */
1418static uint32
1419predicatelock_hash(const void *key, Size keysize)
1420{
1421 const PREDICATELOCKTAG *predicatelocktag = (const PREDICATELOCKTAG *) key;
1422 uint32 targethash;
1423
1424 Assert(keysize == sizeof(PREDICATELOCKTAG));
1425
1426 /* Look into the associated target object, and compute its hash code */
1427 targethash = PredicateLockTargetTagHashCode(&predicatelocktag->myTarget->tag);
1428
1429 return PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash);
1430}
1431
1432
1433/*
1434 * GetPredicateLockStatusData
1435 * Return a table containing the internal state of the predicate
1436 * lock manager for use in pg_lock_status.
1437 *
1438 * Like GetLockStatusData, this function tries to hold the partition LWLocks
1439 * for as short a time as possible by returning two arrays that simply
1440 * contain the PREDICATELOCKTARGETTAG and SERIALIZABLEXACT for each lock
1441 * table entry. Multiple copies of the same PREDICATELOCKTARGETTAG and
1442 * SERIALIZABLEXACT will likely appear.
1443 */
1446{
1448 int i;
1449 int els,
1450 el;
1451 HASH_SEQ_STATUS seqstat;
1452 PREDICATELOCK *predlock;
1453
1455
1456 /*
1457 * To ensure consistency, take simultaneous locks on all partition locks
1458 * in ascending order, then SerializableXactHashLock.
1459 */
1460 for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
1462 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
1463
1464 /* Get number of locks and allocate appropriately-sized arrays. */
1466 data->nelements = els;
1467 data->locktags = (PREDICATELOCKTARGETTAG *)
1468 palloc(sizeof(PREDICATELOCKTARGETTAG) * els);
1469 data->xacts = (SERIALIZABLEXACT *)
1470 palloc(sizeof(SERIALIZABLEXACT) * els);
1471
1472
1473 /* Scan through PredicateLockHash and copy contents */
1475
1476 el = 0;
1477
1478 while ((predlock = (PREDICATELOCK *) hash_seq_search(&seqstat)))
1479 {
1480 data->locktags[el] = predlock->tag.myTarget->tag;
1481 data->xacts[el] = *predlock->tag.myXact;
1482 el++;
1483 }
1484
1485 Assert(el == els);
1486
1487 /* Release locks in reverse order */
1488 LWLockRelease(SerializableXactHashLock);
1489 for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
1491
1492 return data;
1493}
1494
1495/*
1496 * Free up shared memory structures by pushing the oldest sxact (the one at
1497 * the front of the SummarizeOldestCommittedSxact queue) into summary form.
1498 * Each call will free exactly one SERIALIZABLEXACT structure and may also
1499 * free one or more of these structures: SERIALIZABLEXID, PREDICATELOCK,
1500 * PREDICATELOCKTARGET, RWConflictData.
1501 */
1502static void
1504{
1505 SERIALIZABLEXACT *sxact;
1506
1507 LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
1508
1509 /*
1510 * This function is only called if there are no sxact slots available.
1511 * Some of them must belong to old, already-finished transactions, so
1512 * there should be something in FinishedSerializableTransactions list that
1513 * we can summarize. However, there's a race condition: while we were not
1514 * holding any locks, a transaction might have ended and cleaned up all
1515 * the finished sxact entries already, freeing up their sxact slots. In
1516 * that case, we have nothing to do here. The caller will find one of the
1517 * slots released by the other backend when it retries.
1518 */
1520 {
1521 LWLockRelease(SerializableFinishedListLock);
1522 return;
1523 }
1524
1525 /*
1526 * Grab the first sxact off the finished list -- this will be the earliest
1527 * commit. Remove it from the list.
1528 */
1529 sxact = dlist_head_element(SERIALIZABLEXACT, finishedLink,
1532
1533 /* Add to SLRU summary information. */
1534 if (TransactionIdIsValid(sxact->topXid) && !SxactIsReadOnly(sxact))
1535 SerialAdd(sxact->topXid, SxactHasConflictOut(sxact)
1537
1538 /* Summarize and release the detail. */
1539 ReleaseOneSerializableXact(sxact, false, true);
1540
1541 LWLockRelease(SerializableFinishedListLock);
1542}
1543
1544/*
1545 * GetSafeSnapshot
1546 * Obtain and register a snapshot for a READ ONLY DEFERRABLE
1547 * transaction. Ensures that the snapshot is "safe", i.e. a
1548 * read-only transaction running on it can execute serializably
1549 * without further checks. This requires waiting for concurrent
1550 * transactions to complete, and retrying with a new snapshot if
1551 * one of them could possibly create a conflict.
1552 *
1553 * As with GetSerializableTransactionSnapshot (which this is a subroutine
1554 * for), the passed-in Snapshot pointer should reference a static data
1555 * area that can safely be passed to GetSnapshotData.
1556 */
1557static Snapshot
1559{
1560 Snapshot snapshot;
1561
1563
1564 while (true)
1565 {
1566 /*
1567 * GetSerializableTransactionSnapshotInt is going to call
1568 * GetSnapshotData, so we need to provide it the static snapshot area
1569 * our caller passed to us. The pointer returned is actually the same
1570 * one passed to it, but we avoid assuming that here.
1571 */
1572 snapshot = GetSerializableTransactionSnapshotInt(origSnapshot,
1573 NULL, InvalidPid);
1574
1576 return snapshot; /* no concurrent r/w xacts; it's safe */
1577
1578 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
1579
1580 /*
1581 * Wait for concurrent transactions to finish. Stop early if one of
1582 * them marked us as conflicted.
1583 */
1587 {
1588 LWLockRelease(SerializableXactHashLock);
1589 ProcWaitForSignal(WAIT_EVENT_SAFE_SNAPSHOT);
1590 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
1591 }
1592 MySerializableXact->flags &= ~SXACT_FLAG_DEFERRABLE_WAITING;
1593
1595 {
1596 LWLockRelease(SerializableXactHashLock);
1597 break; /* success */
1598 }
1599
1600 LWLockRelease(SerializableXactHashLock);
1601
1602 /* else, need to retry... */
1605 errmsg_internal("deferrable snapshot was unsafe; trying a new one")));
1606 ReleasePredicateLocks(false, false);
1607 }
1608
1609 /*
1610 * Now we have a safe snapshot, so we don't need to do any further checks.
1611 */
1613 ReleasePredicateLocks(false, true);
1614
1615 return snapshot;
1616}
1617
1618/*
1619 * GetSafeSnapshotBlockingPids
1620 * If the specified process is currently blocked in GetSafeSnapshot,
1621 * write the process IDs of all processes that it is blocked by
1622 * into the caller-supplied buffer output[]. The list is truncated at
1623 * output_size, and the number of PIDs written into the buffer is
1624 * returned. Returns zero if the given PID is not currently blocked
1625 * in GetSafeSnapshot.
1626 */
1627int
1628GetSafeSnapshotBlockingPids(int blocked_pid, int *output, int output_size)
1629{
1630 int num_written = 0;
1631 dlist_iter iter;
1632 SERIALIZABLEXACT *blocking_sxact = NULL;
1633
1634 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
1635
1636 /* Find blocked_pid's SERIALIZABLEXACT by linear search. */
1638 {
1639 SERIALIZABLEXACT *sxact =
1640 dlist_container(SERIALIZABLEXACT, xactLink, iter.cur);
1641
1642 if (sxact->pid == blocked_pid)
1643 {
1644 blocking_sxact = sxact;
1645 break;
1646 }
1647 }
1648
1649 /* Did we find it, and is it currently waiting in GetSafeSnapshot? */
1650 if (blocking_sxact != NULL && SxactIsDeferrableWaiting(blocking_sxact))
1651 {
1652 /* Traverse the list of possible unsafe conflicts collecting PIDs. */
1653 dlist_foreach(iter, &blocking_sxact->possibleUnsafeConflicts)
1654 {
1655 RWConflict possibleUnsafeConflict =
1656 dlist_container(RWConflictData, inLink, iter.cur);
1657
1658 output[num_written++] = possibleUnsafeConflict->sxactOut->pid;
1659
1660 if (num_written >= output_size)
1661 break;
1662 }
1663 }
1664
1665 LWLockRelease(SerializableXactHashLock);
1666
1667 return num_written;
1668}
1669
1670/*
1671 * Acquire a snapshot that can be used for the current transaction.
1672 *
1673 * Make sure we have a SERIALIZABLEXACT reference in MySerializableXact.
1674 * It should be current for this process and be contained in PredXact.
1675 *
1676 * The passed-in Snapshot pointer should reference a static data area that
1677 * can safely be passed to GetSnapshotData. The return value is actually
1678 * always this same pointer; no new snapshot data structure is allocated
1679 * within this function.
1680 */
1683{
1685
1686 /*
1687 * Can't use serializable mode while recovery is still active, as it is,
1688 * for example, on a hot standby. We could get here despite the check in
1689 * check_transaction_isolation() if default_transaction_isolation is set
1690 * to serializable, so phrase the hint accordingly.
1691 */
1692 if (RecoveryInProgress())
1693 ereport(ERROR,
1694 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1695 errmsg("cannot use serializable mode in a hot standby"),
1696 errdetail("\"default_transaction_isolation\" is set to \"serializable\"."),
1697 errhint("You can use \"SET default_transaction_isolation = 'repeatable read'\" to change the default.")));
1698
1699 /*
1700 * A special optimization is available for SERIALIZABLE READ ONLY
1701 * DEFERRABLE transactions -- we can wait for a suitable snapshot and
1702 * thereby avoid all SSI overhead once it's running.
1703 */
1705 return GetSafeSnapshot(snapshot);
1706
1708 NULL, InvalidPid);
1709}
1710
1711/*
1712 * Import a snapshot to be used for the current transaction.
1713 *
1714 * This is nearly the same as GetSerializableTransactionSnapshot, except that
1715 * we don't take a new snapshot, but rather use the data we're handed.
1716 *
1717 * The caller must have verified that the snapshot came from a serializable
1718 * transaction; and if we're read-write, the source transaction must not be
1719 * read-only.
1720 */
1721void
1723 VirtualTransactionId *sourcevxid,
1724 int sourcepid)
1725{
1727
1728 /*
1729 * If this is called by parallel.c in a parallel worker, we don't want to
1730 * create a SERIALIZABLEXACT just yet because the leader's
1731 * SERIALIZABLEXACT will be installed with AttachSerializableXact(). We
1732 * also don't want to reject SERIALIZABLE READ ONLY DEFERRABLE in this
1733 * case, because the leader has already determined that the snapshot it
1734 * has passed us is safe. So there is nothing for us to do.
1735 */
1736 if (IsParallelWorker())
1737 return;
1738
1739 /*
1740 * We do not allow SERIALIZABLE READ ONLY DEFERRABLE transactions to
1741 * import snapshots, since there's no way to wait for a safe snapshot when
1742 * we're using the snap we're told to. (XXX instead of throwing an error,
1743 * we could just ignore the XactDeferrable flag?)
1744 */
1746 ereport(ERROR,
1747 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1748 errmsg("a snapshot-importing transaction must not be READ ONLY DEFERRABLE")));
1749
1750 (void) GetSerializableTransactionSnapshotInt(snapshot, sourcevxid,
1751 sourcepid);
1752}
1753
1754/*
1755 * Guts of GetSerializableTransactionSnapshot
1756 *
1757 * If sourcevxid is valid, this is actually an import operation and we should
1758 * skip calling GetSnapshotData, because the snapshot contents are already
1759 * loaded up. HOWEVER: to avoid race conditions, we must check that the
1760 * source xact is still running after we acquire SerializableXactHashLock.
1761 * We do that by calling ProcArrayInstallImportedXmin.
1762 */
1763static Snapshot
1765 VirtualTransactionId *sourcevxid,
1766 int sourcepid)
1767{
1768 PGPROC *proc;
1770 SERIALIZABLEXACT *sxact,
1771 *othersxact;
1772
1773 /* We only do this for serializable transactions. Once. */
1775
1777
1778 /*
1779 * Since all parts of a serializable transaction must use the same
1780 * snapshot, it is too late to establish one after a parallel operation
1781 * has begun.
1782 */
1783 if (IsInParallelMode())
1784 elog(ERROR, "cannot establish serializable snapshot during a parallel operation");
1785
1786 proc = MyProc;
1787 Assert(proc != NULL);
1788 GET_VXID_FROM_PGPROC(vxid, *proc);
1789
1790 /*
1791 * First we get the sxact structure, which may involve looping and access
1792 * to the "finished" list to free a structure for use.
1793 *
1794 * We must hold SerializableXactHashLock when taking/checking the snapshot
1795 * to avoid race conditions, for much the same reasons that
1796 * GetSnapshotData takes the ProcArrayLock. Since we might have to
1797 * release SerializableXactHashLock to call SummarizeOldestCommittedSxact,
1798 * this means we have to create the sxact first, which is a bit annoying
1799 * (in particular, an elog(ERROR) in procarray.c would cause us to leak
1800 * the sxact). Consider refactoring to avoid this.
1801 */
1802#ifdef TEST_SUMMARIZE_SERIAL
1804#endif
1805 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
1806 do
1807 {
1808 sxact = CreatePredXact();
1809 /* If null, push out committed sxact to SLRU summary & retry. */
1810 if (!sxact)
1811 {
1812 LWLockRelease(SerializableXactHashLock);
1814 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
1815 }
1816 } while (!sxact);
1817
1818 /* Get the snapshot, or check that it's safe to use */
1819 if (!sourcevxid)
1820 snapshot = GetSnapshotData(snapshot);
1821 else if (!ProcArrayInstallImportedXmin(snapshot->xmin, sourcevxid))
1822 {
1823 ReleasePredXact(sxact);
1824 LWLockRelease(SerializableXactHashLock);
1825 ereport(ERROR,
1826 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1827 errmsg("could not import the requested snapshot"),
1828 errdetail("The source process with PID %d is not running anymore.",
1829 sourcepid)));
1830 }
1831
1832 /*
1833 * If there are no serializable transactions which are not read-only, we
1834 * can "opt out" of predicate locking and conflict checking for a
1835 * read-only transaction.
1836 *
1837 * The reason this is safe is that a read-only transaction can only become
1838 * part of a dangerous structure if it overlaps a writable transaction
1839 * which in turn overlaps a writable transaction which committed before
1840 * the read-only transaction started. A new writable transaction can
1841 * overlap this one, but it can't meet the other condition of overlapping
1842 * a transaction which committed before this one started.
1843 */
1845 {
1846 ReleasePredXact(sxact);
1847 LWLockRelease(SerializableXactHashLock);
1848 return snapshot;
1849 }
1850
1851 /* Initialize the structure. */
1852 sxact->vxid = vxid;
1856 dlist_init(&(sxact->outConflicts));
1857 dlist_init(&(sxact->inConflicts));
1861 sxact->xmin = snapshot->xmin;
1862 sxact->pid = MyProcPid;
1863 sxact->pgprocno = MyProcNumber;
1864 dlist_init(&sxact->predicateLocks);
1866 sxact->flags = 0;
1867 if (XactReadOnly)
1868 {
1869 dlist_iter iter;
1870
1871 sxact->flags |= SXACT_FLAG_READ_ONLY;
1872
1873 /*
1874 * Register all concurrent r/w transactions as possible conflicts; if
1875 * all of them commit without any outgoing conflicts to earlier
1876 * transactions then this snapshot can be deemed safe (and we can run
1877 * without tracking predicate locks).
1878 */
1880 {
1881 othersxact = dlist_container(SERIALIZABLEXACT, xactLink, iter.cur);
1882
1883 if (!SxactIsCommitted(othersxact)
1884 && !SxactIsDoomed(othersxact)
1885 && !SxactIsReadOnly(othersxact))
1886 {
1887 SetPossibleUnsafeConflict(sxact, othersxact);
1888 }
1889 }
1890
1891 /*
1892 * If we didn't find any possibly unsafe conflicts because every
1893 * uncommitted writable transaction turned out to be doomed, then we
1894 * can "opt out" immediately. See comments above the earlier check
1895 * for PredXact->WritableSxactCount == 0.
1896 */
1898 {
1899 ReleasePredXact(sxact);
1900 LWLockRelease(SerializableXactHashLock);
1901 return snapshot;
1902 }
1903 }
1904 else
1905 {
1909 }
1910
1911 /* Maintain serializable global xmin info. */
1913 {
1915 PredXact->SxactGlobalXmin = snapshot->xmin;
1917 SerialSetActiveSerXmin(snapshot->xmin);
1918 }
1919 else if (TransactionIdEquals(snapshot->xmin, PredXact->SxactGlobalXmin))
1920 {
1923 }
1924 else
1925 {
1927 }
1928
1929 MySerializableXact = sxact;
1930 MyXactDidWrite = false; /* haven't written anything yet */
1931
1932 LWLockRelease(SerializableXactHashLock);
1933
1935
1936 return snapshot;
1937}
1938
1939static void
1941{
1942 HASHCTL hash_ctl;
1943
1944 /* Initialize the backend-local hash table of parent locks */
1946 hash_ctl.keysize = sizeof(PREDICATELOCKTARGETTAG);
1947 hash_ctl.entrysize = sizeof(LOCALPREDICATELOCK);
1948 LocalPredicateLockHash = hash_create("Local predicate lock",
1950 &hash_ctl,
1952}
1953
1954/*
1955 * Register the top level XID in SerializableXidHash.
1956 * Also store it for easy reference in MySerializableXact.
1957 */
1958void
1960{
1961 SERIALIZABLEXIDTAG sxidtag;
1962 SERIALIZABLEXID *sxid;
1963 bool found;
1964
1965 /*
1966 * If we're not tracking predicate lock data for this transaction, we
1967 * should ignore the request and return quickly.
1968 */
1970 return;
1971
1972 /* We should have a valid XID and be at the top level. */
1974
1975 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
1976
1977 /* This should only be done once per transaction. */
1979
1981
1982 sxidtag.xid = xid;
1984 &sxidtag,
1985 HASH_ENTER, &found);
1986 Assert(!found);
1987
1988 /* Initialize the structure. */
1989 sxid->myXact = MySerializableXact;
1990 LWLockRelease(SerializableXactHashLock);
1991}
1992
1993
1994/*
1995 * Check whether there are any predicate locks held by any transaction
1996 * for the page at the given block number.
1997 *
1998 * Note that the transaction may be completed but not yet subject to
1999 * cleanup due to overlapping serializable transactions. This must
2000 * return valid information regardless of transaction isolation level.
2001 *
2002 * Also note that this doesn't check for a conflicting relation lock,
2003 * just a lock specifically on the given page.
2004 *
2005 * One use is to support proper behavior during GiST index vacuum.
2006 */
2007bool
2009{
2010 PREDICATELOCKTARGETTAG targettag;
2011 uint32 targettaghash;
2012 LWLock *partitionLock;
2013 PREDICATELOCKTARGET *target;
2014
2016 relation->rd_locator.dbOid,
2017 relation->rd_id,
2018 blkno);
2019
2020 targettaghash = PredicateLockTargetTagHashCode(&targettag);
2021 partitionLock = PredicateLockHashPartitionLock(targettaghash);
2022 LWLockAcquire(partitionLock, LW_SHARED);
2023 target = (PREDICATELOCKTARGET *)
2025 &targettag, targettaghash,
2026 HASH_FIND, NULL);
2027 LWLockRelease(partitionLock);
2028
2029 return (target != NULL);
2030}
2031
2032
2033/*
2034 * Check whether a particular lock is held by this transaction.
2035 *
2036 * Important note: this function may return false even if the lock is
2037 * being held, because it uses the local lock table which is not
2038 * updated if another transaction modifies our lock list (e.g. to
2039 * split an index page). It can also return true when a coarser
2040 * granularity lock that covers this target is being held. Be careful
2041 * to only use this function in circumstances where such errors are
2042 * acceptable!
2043 */
2044static bool
2046{
2047 LOCALPREDICATELOCK *lock;
2048
2049 /* check local hash table */
2051 targettag,
2052 HASH_FIND, NULL);
2053
2054 if (!lock)
2055 return false;
2056
2057 /*
2058 * Found entry in the table, but still need to check whether it's actually
2059 * held -- it could just be a parent of some held lock.
2060 */
2061 return lock->held;
2062}
2063
2064/*
2065 * Return the parent lock tag in the lock hierarchy: the next coarser
2066 * lock that covers the provided tag.
2067 *
2068 * Returns true and sets *parent to the parent tag if one exists,
2069 * returns false if none exists.
2070 */
2071static bool
2073 PREDICATELOCKTARGETTAG *parent)
2074{
2075 switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag))
2076 {
2078 /* relation locks have no parent lock */
2079 return false;
2080
2081 case PREDLOCKTAG_PAGE:
2082 /* parent lock is relation lock */
2086
2087 return true;
2088
2089 case PREDLOCKTAG_TUPLE:
2090 /* parent lock is page lock */
2095 return true;
2096 }
2097
2098 /* not reachable */
2099 Assert(false);
2100 return false;
2101}
2102
2103/*
2104 * Check whether the lock we are considering is already covered by a
2105 * coarser lock for our transaction.
2106 *
2107 * Like PredicateLockExists, this function might return a false
2108 * negative, but it will never return a false positive.
2109 */
2110static bool
2112{
2113 PREDICATELOCKTARGETTAG targettag,
2114 parenttag;
2115
2116 targettag = *newtargettag;
2117
2118 /* check parents iteratively until no more */
2119 while (GetParentPredicateLockTag(&targettag, &parenttag))
2120 {
2121 targettag = parenttag;
2122 if (PredicateLockExists(&targettag))
2123 return true;
2124 }
2125
2126 /* no more parents to check; lock is not covered */
2127 return false;
2128}
2129
2130/*
2131 * Remove the dummy entry from the predicate lock target hash, to free up some
2132 * scratch space. The caller must be holding SerializablePredicateListLock,
2133 * and must restore the entry with RestoreScratchTarget() before releasing the
2134 * lock.
2135 *
2136 * If lockheld is true, the caller is already holding the partition lock
2137 * of the partition containing the scratch entry.
2138 */
2139static void
2141{
2142 bool found;
2143
2144 Assert(LWLockHeldByMe(SerializablePredicateListLock));
2145
2146 if (!lockheld)
2151 HASH_REMOVE, &found);
2152 Assert(found);
2153 if (!lockheld)
2155}
2156
2157/*
2158 * Re-insert the dummy entry in predicate lock target hash.
2159 */
2160static void
2162{
2163 bool found;
2164
2165 Assert(LWLockHeldByMe(SerializablePredicateListLock));
2166
2167 if (!lockheld)
2172 HASH_ENTER, &found);
2173 Assert(!found);
2174 if (!lockheld)
2176}
2177
2178/*
2179 * Check whether the list of related predicate locks is empty for a
2180 * predicate lock target, and remove the target if it is.
2181 */
2182static void
2184{
2186
2187 Assert(LWLockHeldByMe(SerializablePredicateListLock));
2188
2189 /* Can't remove it until no locks at this target. */
2190 if (!dlist_is_empty(&target->predicateLocks))
2191 return;
2192
2193 /* Actually remove the target. */
2195 &target->tag,
2196 targettaghash,
2197 HASH_REMOVE, NULL);
2198 Assert(rmtarget == target);
2199}
2200
2201/*
2202 * Delete child target locks owned by this process.
2203 * This implementation is assuming that the usage of each target tag field
2204 * is uniform. No need to make this hard if we don't have to.
2205 *
2206 * We acquire an LWLock in the case of parallel mode, because worker
2207 * backends have access to the leader's SERIALIZABLEXACT. Otherwise,
2208 * we aren't acquiring LWLocks for the predicate lock or lock
2209 * target structures associated with this transaction unless we're going
2210 * to modify them, because no other process is permitted to modify our
2211 * locks.
2212 */
2213static void
2215{
2216 SERIALIZABLEXACT *sxact;
2217 PREDICATELOCK *predlock;
2218 dlist_mutable_iter iter;
2219
2220 LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
2221 sxact = MySerializableXact;
2222 if (IsInParallelMode())
2224
2226 {
2227 PREDICATELOCKTAG oldlocktag;
2228 PREDICATELOCKTARGET *oldtarget;
2229 PREDICATELOCKTARGETTAG oldtargettag;
2230
2231 predlock = dlist_container(PREDICATELOCK, xactLink, iter.cur);
2232
2233 oldlocktag = predlock->tag;
2234 Assert(oldlocktag.myXact == sxact);
2235 oldtarget = oldlocktag.myTarget;
2236 oldtargettag = oldtarget->tag;
2237
2238 if (TargetTagIsCoveredBy(oldtargettag, *newtargettag))
2239 {
2240 uint32 oldtargettaghash;
2241 LWLock *partitionLock;
2243
2244 oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag);
2245 partitionLock = PredicateLockHashPartitionLock(oldtargettaghash);
2246
2247 LWLockAcquire(partitionLock, LW_EXCLUSIVE);
2248
2249 dlist_delete(&predlock->xactLink);
2250 dlist_delete(&predlock->targetLink);
2251 rmpredlock = hash_search_with_hash_value
2253 &oldlocktag,
2255 oldtargettaghash),
2256 HASH_REMOVE, NULL);
2257 Assert(rmpredlock == predlock);
2258
2259 RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash);
2260
2261 LWLockRelease(partitionLock);
2262
2263 DecrementParentLocks(&oldtargettag);
2264 }
2265 }
2266 if (IsInParallelMode())
2268 LWLockRelease(SerializablePredicateListLock);
2269}
2270
2271/*
2272 * Returns the promotion limit for a given predicate lock target. This is the
2273 * max number of descendant locks allowed before promoting to the specified
2274 * tag. Note that the limit includes non-direct descendants (e.g., both tuples
2275 * and pages for a relation lock).
2276 *
2277 * Currently the default limit is 2 for a page lock, and half of the value of
2278 * max_pred_locks_per_transaction - 1 for a relation lock, to match behavior
2279 * of earlier releases when upgrading.
2280 *
2281 * TODO SSI: We should probably add additional GUCs to allow a maximum ratio
2282 * of page and tuple locks based on the pages in a relation, and the maximum
2283 * ratio of tuple locks to tuples in a page. This would provide more
2284 * generally "balanced" allocation of locks to where they are most useful,
2285 * while still allowing the absolute numbers to prevent one relation from
2286 * tying up all predicate lock resources.
2287 */
2288static int
2290{
2291 switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag))
2292 {
2298
2299 case PREDLOCKTAG_PAGE:
2301
2302 case PREDLOCKTAG_TUPLE:
2303
2304 /*
2305 * not reachable: nothing is finer-granularity than a tuple, so we
2306 * should never try to promote to it.
2307 */
2308 Assert(false);
2309 return 0;
2310 }
2311
2312 /* not reachable */
2313 Assert(false);
2314 return 0;
2315}
2316
2317/*
2318 * For all ancestors of a newly-acquired predicate lock, increment
2319 * their child count in the parent hash table. If any of them have
2320 * more descendants than their promotion threshold, acquire the
2321 * coarsest such lock.
2322 *
2323 * Returns true if a parent lock was acquired and false otherwise.
2324 */
2325static bool
2327{
2328 PREDICATELOCKTARGETTAG targettag,
2329 nexttag,
2330 promotiontag;
2331 LOCALPREDICATELOCK *parentlock;
2332 bool found,
2333 promote;
2334
2335 promote = false;
2336
2337 targettag = *reqtag;
2338
2339 /* check parents iteratively */
2340 while (GetParentPredicateLockTag(&targettag, &nexttag))
2341 {
2342 targettag = nexttag;
2344 &targettag,
2345 HASH_ENTER,
2346 &found);
2347 if (!found)
2348 {
2349 parentlock->held = false;
2350 parentlock->childLocks = 1;
2351 }
2352 else
2353 parentlock->childLocks++;
2354
2355 if (parentlock->childLocks >
2356 MaxPredicateChildLocks(&targettag))
2357 {
2358 /*
2359 * We should promote to this parent lock. Continue to check its
2360 * ancestors, however, both to get their child counts right and to
2361 * check whether we should just go ahead and promote to one of
2362 * them.
2363 */
2364 promotiontag = targettag;
2365 promote = true;
2366 }
2367 }
2368
2369 if (promote)
2370 {
2371 /* acquire coarsest ancestor eligible for promotion */
2372 PredicateLockAcquire(&promotiontag);
2373 return true;
2374 }
2375 else
2376 return false;
2377}
2378
2379/*
2380 * When releasing a lock, decrement the child count on all ancestor
2381 * locks.
2382 *
2383 * This is called only when releasing a lock via
2384 * DeleteChildTargetLocks (i.e. when a lock becomes redundant because
2385 * we've acquired its parent, possibly due to promotion) or when a new
2386 * MVCC write lock makes the predicate lock unnecessary. There's no
2387 * point in calling it when locks are released at transaction end, as
2388 * this information is no longer needed.
2389 */
2390static void
2392{
2393 PREDICATELOCKTARGETTAG parenttag,
2394 nexttag;
2395
2396 parenttag = *targettag;
2397
2398 while (GetParentPredicateLockTag(&parenttag, &nexttag))
2399 {
2400 uint32 targettaghash;
2401 LOCALPREDICATELOCK *parentlock,
2403
2404 parenttag = nexttag;
2405 targettaghash = PredicateLockTargetTagHashCode(&parenttag);
2406 parentlock = (LOCALPREDICATELOCK *)
2408 &parenttag, targettaghash,
2409 HASH_FIND, NULL);
2410
2411 /*
2412 * There's a small chance the parent lock doesn't exist in the lock
2413 * table. This can happen if we prematurely removed it because an
2414 * index split caused the child refcount to be off.
2415 */
2416 if (parentlock == NULL)
2417 continue;
2418
2419 parentlock->childLocks--;
2420
2421 /*
2422 * Under similar circumstances the parent lock's refcount might be
2423 * zero. This only happens if we're holding that lock (otherwise we
2424 * would have removed the entry).
2425 */
2426 if (parentlock->childLocks < 0)
2427 {
2428 Assert(parentlock->held);
2429 parentlock->childLocks = 0;
2430 }
2431
2432 if ((parentlock->childLocks == 0) && (!parentlock->held))
2433 {
2434 rmlock = (LOCALPREDICATELOCK *)
2436 &parenttag, targettaghash,
2437 HASH_REMOVE, NULL);
2438 Assert(rmlock == parentlock);
2439 }
2440 }
2441}
2442
2443/*
2444 * Indicate that a predicate lock on the given target is held by the
2445 * specified transaction. Has no effect if the lock is already held.
2446 *
2447 * This updates the lock table and the sxact's lock list, and creates
2448 * the lock target if necessary, but does *not* do anything related to
2449 * granularity promotion or the local lock table. See
2450 * PredicateLockAcquire for that.
2451 */
2452static void
2454 uint32 targettaghash,
2455 SERIALIZABLEXACT *sxact)
2456{
2457 PREDICATELOCKTARGET *target;
2458 PREDICATELOCKTAG locktag;
2459 PREDICATELOCK *lock;
2460 LWLock *partitionLock;
2461 bool found;
2462
2463 partitionLock = PredicateLockHashPartitionLock(targettaghash);
2464
2465 LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
2466 if (IsInParallelMode())
2468 LWLockAcquire(partitionLock, LW_EXCLUSIVE);
2469
2470 /* Make sure that the target is represented. */
2471 target = (PREDICATELOCKTARGET *)
2473 targettag, targettaghash,
2474 HASH_ENTER_NULL, &found);
2475 if (!target)
2476 ereport(ERROR,
2477 (errcode(ERRCODE_OUT_OF_MEMORY),
2478 errmsg("out of shared memory"),
2479 errhint("You might need to increase \"%s\".", "max_pred_locks_per_transaction")));
2480 if (!found)
2481 dlist_init(&target->predicateLocks);
2482
2483 /* We've got the sxact and target, make sure they're joined. */
2484 locktag.myTarget = target;
2485 locktag.myXact = sxact;
2486 lock = (PREDICATELOCK *)
2488 PredicateLockHashCodeFromTargetHashCode(&locktag, targettaghash),
2489 HASH_ENTER_NULL, &found);
2490 if (!lock)
2491 ereport(ERROR,
2492 (errcode(ERRCODE_OUT_OF_MEMORY),
2493 errmsg("out of shared memory"),
2494 errhint("You might need to increase \"%s\".", "max_pred_locks_per_transaction")));
2495
2496 if (!found)
2497 {
2498 dlist_push_tail(&target->predicateLocks, &lock->targetLink);
2499 dlist_push_tail(&sxact->predicateLocks, &lock->xactLink);
2501 }
2502
2503 LWLockRelease(partitionLock);
2504 if (IsInParallelMode())
2506 LWLockRelease(SerializablePredicateListLock);
2507}
2508
2509/*
2510 * Acquire a predicate lock on the specified target for the current
2511 * connection if not already held. This updates the local lock table
2512 * and uses it to implement granularity promotion. It will consolidate
2513 * multiple locks into a coarser lock if warranted, and will release
2514 * any finer-grained locks covered by the new one.
2515 */
2516static void
2518{
2519 uint32 targettaghash;
2520 bool found;
2521 LOCALPREDICATELOCK *locallock;
2522
2523 /* Do we have the lock already, or a covering lock? */
2524 if (PredicateLockExists(targettag))
2525 return;
2526
2527 if (CoarserLockCovers(targettag))
2528 return;
2529
2530 /* the same hash and LW lock apply to the lock target and the local lock. */
2531 targettaghash = PredicateLockTargetTagHashCode(targettag);
2532
2533 /* Acquire lock in local table */
2534 locallock = (LOCALPREDICATELOCK *)
2536 targettag, targettaghash,
2537 HASH_ENTER, &found);
2538 locallock->held = true;
2539 if (!found)
2540 locallock->childLocks = 0;
2541
2542 /* Actually create the lock */
2543 CreatePredicateLock(targettag, targettaghash, MySerializableXact);
2544
2545 /*
2546 * Lock has been acquired. Check whether it should be promoted to a
2547 * coarser granularity, or whether there are finer-granularity locks to
2548 * clean up.
2549 */
2551 {
2552 /*
2553 * Lock request was promoted to a coarser-granularity lock, and that
2554 * lock was acquired. It will delete this lock and any of its
2555 * children, so we're done.
2556 */
2557 }
2558 else
2559 {
2560 /* Clean up any finer-granularity locks */
2562 DeleteChildTargetLocks(targettag);
2563 }
2564}
2565
2566
2567/*
2568 * PredicateLockRelation
2569 *
2570 * Gets a predicate lock at the relation level.
2571 * Skip if not in full serializable transaction isolation level.
2572 * Skip if this is a temporary table.
2573 * Clear any finer-grained predicate locks this session has on the relation.
2574 */
2575void
2577{
2579
2580 if (!SerializationNeededForRead(relation, snapshot))
2581 return;
2582
2584 relation->rd_locator.dbOid,
2585 relation->rd_id);
2587}
2588
2589/*
2590 * PredicateLockPage
2591 *
2592 * Gets a predicate lock at the page level.
2593 * Skip if not in full serializable transaction isolation level.
2594 * Skip if this is a temporary table.
2595 * Skip if a coarser predicate lock already covers this page.
2596 * Clear any finer-grained predicate locks this session has on the relation.
2597 */
2598void
2600{
2602
2603 if (!SerializationNeededForRead(relation, snapshot))
2604 return;
2605
2607 relation->rd_locator.dbOid,
2608 relation->rd_id,
2609 blkno);
2611}
2612
2613/*
2614 * PredicateLockTID
2615 *
2616 * Gets a predicate lock at the tuple level.
2617 * Skip if not in full serializable transaction isolation level.
2618 * Skip if this is a temporary table.
2619 */
2620void
2622 TransactionId tuple_xid)
2623{
2625
2626 if (!SerializationNeededForRead(relation, snapshot))
2627 return;
2628
2629 /*
2630 * Return if this xact wrote it.
2631 */
2632 if (relation->rd_index == NULL)
2633 {
2634 /* If we wrote it; we already have a write lock. */
2636 return;
2637 }
2638
2639 /*
2640 * Do quick-but-not-definitive test for a relation lock first. This will
2641 * never cause a return when the relation is *not* locked, but will
2642 * occasionally let the check continue when there really *is* a relation
2643 * level lock.
2644 */
2646 relation->rd_locator.dbOid,
2647 relation->rd_id);
2648 if (PredicateLockExists(&tag))
2649 return;
2650
2652 relation->rd_locator.dbOid,
2653 relation->rd_id,
2657}
2658
2659
2660/*
2661 * DeleteLockTarget
2662 *
2663 * Remove a predicate lock target along with any locks held for it.
2664 *
2665 * Caller must hold SerializablePredicateListLock and the
2666 * appropriate hash partition lock for the target.
2667 */
2668static void
2670{
2671 dlist_mutable_iter iter;
2672
2673 Assert(LWLockHeldByMeInMode(SerializablePredicateListLock,
2674 LW_EXCLUSIVE));
2676
2677 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
2678
2679 dlist_foreach_modify(iter, &target->predicateLocks)
2680 {
2681 PREDICATELOCK *predlock =
2682 dlist_container(PREDICATELOCK, targetLink, iter.cur);
2683 bool found;
2684
2685 dlist_delete(&(predlock->xactLink));
2686 dlist_delete(&(predlock->targetLink));
2687
2690 &predlock->tag,
2692 targettaghash),
2693 HASH_REMOVE, &found);
2694 Assert(found);
2695 }
2696 LWLockRelease(SerializableXactHashLock);
2697
2698 /* Remove the target itself, if possible. */
2699 RemoveTargetIfNoLongerUsed(target, targettaghash);
2700}
2701
2702
2703/*
2704 * TransferPredicateLocksToNewTarget
2705 *
2706 * Move or copy all the predicate locks for a lock target, for use by
2707 * index page splits/combines and other things that create or replace
2708 * lock targets. If 'removeOld' is true, the old locks and the target
2709 * will be removed.
2710 *
2711 * Returns true on success, or false if we ran out of shared memory to
2712 * allocate the new target or locks. Guaranteed to always succeed if
2713 * removeOld is set (by using the scratch entry in PredicateLockTargetHash
2714 * for scratch space).
2715 *
2716 * Warning: the "removeOld" option should be used only with care,
2717 * because this function does not (indeed, can not) update other
2718 * backends' LocalPredicateLockHash. If we are only adding new
2719 * entries, this is not a problem: the local lock table is used only
2720 * as a hint, so missing entries for locks that are held are
2721 * OK. Having entries for locks that are no longer held, as can happen
2722 * when using "removeOld", is not in general OK. We can only use it
2723 * safely when replacing a lock with a coarser-granularity lock that
2724 * covers it, or if we are absolutely certain that no one will need to
2725 * refer to that lock in the future.
2726 *
2727 * Caller must hold SerializablePredicateListLock exclusively.
2728 */
2729static bool
2731 PREDICATELOCKTARGETTAG newtargettag,
2732 bool removeOld)
2733{
2734 uint32 oldtargettaghash;
2735 LWLock *oldpartitionLock;
2736 PREDICATELOCKTARGET *oldtarget;
2737 uint32 newtargettaghash;
2738 LWLock *newpartitionLock;
2739 bool found;
2740 bool outOfShmem = false;
2741
2742 Assert(LWLockHeldByMeInMode(SerializablePredicateListLock,
2743 LW_EXCLUSIVE));
2744
2745 oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag);
2746 newtargettaghash = PredicateLockTargetTagHashCode(&newtargettag);
2747 oldpartitionLock = PredicateLockHashPartitionLock(oldtargettaghash);
2748 newpartitionLock = PredicateLockHashPartitionLock(newtargettaghash);
2749
2750 if (removeOld)
2751 {
2752 /*
2753 * Remove the dummy entry to give us scratch space, so we know we'll
2754 * be able to create the new lock target.
2755 */
2756 RemoveScratchTarget(false);
2757 }
2758
2759 /*
2760 * We must get the partition locks in ascending sequence to avoid
2761 * deadlocks. If old and new partitions are the same, we must request the
2762 * lock only once.
2763 */
2764 if (oldpartitionLock < newpartitionLock)
2765 {
2766 LWLockAcquire(oldpartitionLock,
2767 (removeOld ? LW_EXCLUSIVE : LW_SHARED));
2768 LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
2769 }
2770 else if (oldpartitionLock > newpartitionLock)
2771 {
2772 LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
2773 LWLockAcquire(oldpartitionLock,
2774 (removeOld ? LW_EXCLUSIVE : LW_SHARED));
2775 }
2776 else
2777 LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
2778
2779 /*
2780 * Look for the old target. If not found, that's OK; no predicate locks
2781 * are affected, so we can just clean up and return. If it does exist,
2782 * walk its list of predicate locks and move or copy them to the new
2783 * target.
2784 */
2786 &oldtargettag,
2787 oldtargettaghash,
2788 HASH_FIND, NULL);
2789
2790 if (oldtarget)
2791 {
2792 PREDICATELOCKTARGET *newtarget;
2793 PREDICATELOCKTAG newpredlocktag;
2794 dlist_mutable_iter iter;
2795
2797 &newtargettag,
2798 newtargettaghash,
2799 HASH_ENTER_NULL, &found);
2800
2801 if (!newtarget)
2802 {
2803 /* Failed to allocate due to insufficient shmem */
2804 outOfShmem = true;
2805 goto exit;
2806 }
2807
2808 /* If we created a new entry, initialize it */
2809 if (!found)
2810 dlist_init(&newtarget->predicateLocks);
2811
2812 newpredlocktag.myTarget = newtarget;
2813
2814 /*
2815 * Loop through all the locks on the old target, replacing them with
2816 * locks on the new target.
2817 */
2818 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
2819
2820 dlist_foreach_modify(iter, &oldtarget->predicateLocks)
2821 {
2822 PREDICATELOCK *oldpredlock =
2823 dlist_container(PREDICATELOCK, targetLink, iter.cur);
2824 PREDICATELOCK *newpredlock;
2825 SerCommitSeqNo oldCommitSeqNo = oldpredlock->commitSeqNo;
2826
2827 newpredlocktag.myXact = oldpredlock->tag.myXact;
2828
2829 if (removeOld)
2830 {
2831 dlist_delete(&(oldpredlock->xactLink));
2832 dlist_delete(&(oldpredlock->targetLink));
2833
2836 &oldpredlock->tag,
2838 oldtargettaghash),
2839 HASH_REMOVE, &found);
2840 Assert(found);
2841 }
2842
2843 newpredlock = (PREDICATELOCK *)
2845 &newpredlocktag,
2847 newtargettaghash),
2849 &found);
2850 if (!newpredlock)
2851 {
2852 /* Out of shared memory. Undo what we've done so far. */
2853 LWLockRelease(SerializableXactHashLock);
2854 DeleteLockTarget(newtarget, newtargettaghash);
2855 outOfShmem = true;
2856 goto exit;
2857 }
2858 if (!found)
2859 {
2860 dlist_push_tail(&(newtarget->predicateLocks),
2861 &(newpredlock->targetLink));
2862 dlist_push_tail(&(newpredlocktag.myXact->predicateLocks),
2863 &(newpredlock->xactLink));
2864 newpredlock->commitSeqNo = oldCommitSeqNo;
2865 }
2866 else
2867 {
2868 if (newpredlock->commitSeqNo < oldCommitSeqNo)
2869 newpredlock->commitSeqNo = oldCommitSeqNo;
2870 }
2871
2872 Assert(newpredlock->commitSeqNo != 0);
2873 Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo)
2874 || (newpredlock->tag.myXact == OldCommittedSxact));
2875 }
2876 LWLockRelease(SerializableXactHashLock);
2877
2878 if (removeOld)
2879 {
2880 Assert(dlist_is_empty(&oldtarget->predicateLocks));
2881 RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash);
2882 }
2883 }
2884
2885
2886exit:
2887 /* Release partition locks in reverse order of acquisition. */
2888 if (oldpartitionLock < newpartitionLock)
2889 {
2890 LWLockRelease(newpartitionLock);
2891 LWLockRelease(oldpartitionLock);
2892 }
2893 else if (oldpartitionLock > newpartitionLock)
2894 {
2895 LWLockRelease(oldpartitionLock);
2896 LWLockRelease(newpartitionLock);
2897 }
2898 else
2899 LWLockRelease(newpartitionLock);
2900
2901 if (removeOld)
2902 {
2903 /* We shouldn't run out of memory if we're moving locks */
2904 Assert(!outOfShmem);
2905
2906 /* Put the scratch entry back */
2907 RestoreScratchTarget(false);
2908 }
2909
2910 return !outOfShmem;
2911}
2912
2913/*
2914 * Drop all predicate locks of any granularity from the specified relation,
2915 * which can be a heap relation or an index relation. If 'transfer' is true,
2916 * acquire a relation lock on the heap for any transactions with any lock(s)
2917 * on the specified relation.
2918 *
2919 * This requires grabbing a lot of LW locks and scanning the entire lock
2920 * target table for matches. That makes this more expensive than most
2921 * predicate lock management functions, but it will only be called for DDL
2922 * type commands that are expensive anyway, and there are fast returns when
2923 * no serializable transactions are active or the relation is temporary.
2924 *
2925 * We don't use the TransferPredicateLocksToNewTarget function because it
2926 * acquires its own locks on the partitions of the two targets involved,
2927 * and we'll already be holding all partition locks.
2928 *
2929 * We can't throw an error from here, because the call could be from a
2930 * transaction which is not serializable.
2931 *
2932 * NOTE: This is currently only called with transfer set to true, but that may
2933 * change. If we decide to clean up the locks from a table on commit of a
2934 * transaction which executed DROP TABLE, the false condition will be useful.
2935 */
2936static void
2938{
2939 HASH_SEQ_STATUS seqstat;
2940 PREDICATELOCKTARGET *oldtarget;
2941 PREDICATELOCKTARGET *heaptarget;
2942 Oid dbId;
2943 Oid relId;
2944 Oid heapId;
2945 int i;
2946 bool isIndex;
2947 bool found;
2948 uint32 heaptargettaghash;
2949
2950 /*
2951 * Bail out quickly if there are no serializable transactions running.
2952 * It's safe to check this without taking locks because the caller is
2953 * holding an ACCESS EXCLUSIVE lock on the relation. No new locks which
2954 * would matter here can be acquired while that is held.
2955 */
2957 return;
2958
2959 if (!PredicateLockingNeededForRelation(relation))
2960 return;
2961
2962 dbId = relation->rd_locator.dbOid;
2963 relId = relation->rd_id;
2964 if (relation->rd_index == NULL)
2965 {
2966 isIndex = false;
2967 heapId = relId;
2968 }
2969 else
2970 {
2971 isIndex = true;
2972 heapId = relation->rd_index->indrelid;
2973 }
2974 Assert(heapId != InvalidOid);
2975 Assert(transfer || !isIndex); /* index OID only makes sense with
2976 * transfer */
2977
2978 /* Retrieve first time needed, then keep. */
2979 heaptargettaghash = 0;
2980 heaptarget = NULL;
2981
2982 /* Acquire locks on all lock partitions */
2983 LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
2984 for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
2986 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
2987
2988 /*
2989 * Remove the dummy entry to give us scratch space, so we know we'll be
2990 * able to create the new lock target.
2991 */
2992 if (transfer)
2993 RemoveScratchTarget(true);
2994
2995 /* Scan through target map */
2997
2998 while ((oldtarget = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat)))
2999 {
3000 dlist_mutable_iter iter;
3001
3002 /*
3003 * Check whether this is a target which needs attention.
3004 */
3005 if (GET_PREDICATELOCKTARGETTAG_RELATION(oldtarget->tag) != relId)
3006 continue; /* wrong relation id */
3007 if (GET_PREDICATELOCKTARGETTAG_DB(oldtarget->tag) != dbId)
3008 continue; /* wrong database id */
3009 if (transfer && !isIndex
3011 continue; /* already the right lock */
3012
3013 /*
3014 * If we made it here, we have work to do. We make sure the heap
3015 * relation lock exists, then we walk the list of predicate locks for
3016 * the old target we found, moving all locks to the heap relation lock
3017 * -- unless they already hold that.
3018 */
3019
3020 /*
3021 * First make sure we have the heap relation target. We only need to
3022 * do this once.
3023 */
3024 if (transfer && heaptarget == NULL)
3025 {
3026 PREDICATELOCKTARGETTAG heaptargettag;
3027
3028 SET_PREDICATELOCKTARGETTAG_RELATION(heaptargettag, dbId, heapId);
3029 heaptargettaghash = PredicateLockTargetTagHashCode(&heaptargettag);
3031 &heaptargettag,
3032 heaptargettaghash,
3033 HASH_ENTER, &found);
3034 if (!found)
3035 dlist_init(&heaptarget->predicateLocks);
3036 }
3037
3038 /*
3039 * Loop through all the locks on the old target, replacing them with
3040 * locks on the new target.
3041 */
3042 dlist_foreach_modify(iter, &oldtarget->predicateLocks)
3043 {
3044 PREDICATELOCK *oldpredlock =
3045 dlist_container(PREDICATELOCK, targetLink, iter.cur);
3046 PREDICATELOCK *newpredlock;
3047 SerCommitSeqNo oldCommitSeqNo;
3048 SERIALIZABLEXACT *oldXact;
3049
3050 /*
3051 * Remove the old lock first. This avoids the chance of running
3052 * out of lock structure entries for the hash table.
3053 */
3054 oldCommitSeqNo = oldpredlock->commitSeqNo;
3055 oldXact = oldpredlock->tag.myXact;
3056
3057 dlist_delete(&(oldpredlock->xactLink));
3058
3059 /*
3060 * No need for retail delete from oldtarget list, we're removing
3061 * the whole target anyway.
3062 */
3064 &oldpredlock->tag,
3065 HASH_REMOVE, &found);
3066 Assert(found);
3067
3068 if (transfer)
3069 {
3070 PREDICATELOCKTAG newpredlocktag;
3071
3072 newpredlocktag.myTarget = heaptarget;
3073 newpredlocktag.myXact = oldXact;
3074 newpredlock = (PREDICATELOCK *)
3076 &newpredlocktag,
3078 heaptargettaghash),
3079 HASH_ENTER,
3080 &found);
3081 if (!found)
3082 {
3083 dlist_push_tail(&(heaptarget->predicateLocks),
3084 &(newpredlock->targetLink));
3085 dlist_push_tail(&(newpredlocktag.myXact->predicateLocks),
3086 &(newpredlock->xactLink));
3087 newpredlock->commitSeqNo = oldCommitSeqNo;
3088 }
3089 else
3090 {
3091 if (newpredlock->commitSeqNo < oldCommitSeqNo)
3092 newpredlock->commitSeqNo = oldCommitSeqNo;
3093 }
3094
3095 Assert(newpredlock->commitSeqNo != 0);
3096 Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo)
3097 || (newpredlock->tag.myXact == OldCommittedSxact));
3098 }
3099 }
3100
3102 &found);
3103 Assert(found);
3104 }
3105
3106 /* Put the scratch entry back */
3107 if (transfer)
3109
3110 /* Release locks in reverse order */
3111 LWLockRelease(SerializableXactHashLock);
3112 for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
3114 LWLockRelease(SerializablePredicateListLock);
3115}
3116
3117/*
3118 * TransferPredicateLocksToHeapRelation
3119 * For all transactions, transfer all predicate locks for the given
3120 * relation to a single relation lock on the heap.
3121 */
3122void
3124{
3125 DropAllPredicateLocksFromTable(relation, true);
3126}
3127
3128
3129/*
3130 * PredicateLockPageSplit
3131 *
3132 * Copies any predicate locks for the old page to the new page.
3133 * Skip if this is a temporary table or toast table.
3134 *
3135 * NOTE: A page split (or overflow) affects all serializable transactions,
3136 * even if it occurs in the context of another transaction isolation level.
3137 *
3138 * NOTE: This currently leaves the local copy of the locks without
3139 * information on the new lock which is in shared memory. This could cause
3140 * problems if enough page splits occur on locked pages without the processes
3141 * which hold the locks getting in and noticing.
3142 */
3143void
3145 BlockNumber newblkno)
3146{
3147 PREDICATELOCKTARGETTAG oldtargettag;
3148 PREDICATELOCKTARGETTAG newtargettag;
3149 bool success;
3150
3151 /*
3152 * Bail out quickly if there are no serializable transactions running.
3153 *
3154 * It's safe to do this check without taking any additional locks. Even if
3155 * a serializable transaction starts concurrently, we know it can't take
3156 * any SIREAD locks on the page being split because the caller is holding
3157 * the associated buffer page lock. Memory reordering isn't an issue; the
3158 * memory barrier in the LWLock acquisition guarantees that this read
3159 * occurs while the buffer page lock is held.
3160 */
3162 return;
3163
3164 if (!PredicateLockingNeededForRelation(relation))
3165 return;
3166
3167 Assert(oldblkno != newblkno);
3168 Assert(BlockNumberIsValid(oldblkno));
3169 Assert(BlockNumberIsValid(newblkno));
3170
3172 relation->rd_locator.dbOid,
3173 relation->rd_id,
3174 oldblkno);
3176 relation->rd_locator.dbOid,
3177 relation->rd_id,
3178 newblkno);
3179
3180 LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
3181
3182 /*
3183 * Try copying the locks over to the new page's tag, creating it if
3184 * necessary.
3185 */
3187 newtargettag,
3188 false);
3189
3190 if (!success)
3191 {
3192 /*
3193 * No more predicate lock entries are available. Failure isn't an
3194 * option here, so promote the page lock to a relation lock.
3195 */
3196
3197 /* Get the parent relation lock's lock tag */
3198 success = GetParentPredicateLockTag(&oldtargettag,
3199 &newtargettag);
3200 Assert(success);
3201
3202 /*
3203 * Move the locks to the parent. This shouldn't fail.
3204 *
3205 * Note that here we are removing locks held by other backends,
3206 * leading to a possible inconsistency in their local lock hash table.
3207 * This is OK because we're replacing it with a lock that covers the
3208 * old one.
3209 */
3211 newtargettag,
3212 true);
3213 Assert(success);
3214 }
3215
3216 LWLockRelease(SerializablePredicateListLock);
3217}
3218
3219/*
3220 * PredicateLockPageCombine
3221 *
3222 * Combines predicate locks for two existing pages.
3223 * Skip if this is a temporary table or toast table.
3224 *
3225 * NOTE: A page combine affects all serializable transactions, even if it
3226 * occurs in the context of another transaction isolation level.
3227 */
3228void
3230 BlockNumber newblkno)
3231{
3232 /*
3233 * Page combines differ from page splits in that we ought to be able to
3234 * remove the locks on the old page after transferring them to the new
3235 * page, instead of duplicating them. However, because we can't edit other
3236 * backends' local lock tables, removing the old lock would leave them
3237 * with an entry in their LocalPredicateLockHash for a lock they're not
3238 * holding, which isn't acceptable. So we wind up having to do the same
3239 * work as a page split, acquiring a lock on the new page and keeping the
3240 * old page locked too. That can lead to some false positives, but should
3241 * be rare in practice.
3242 */
3243 PredicateLockPageSplit(relation, oldblkno, newblkno);
3244}
3245
3246/*
3247 * Walk the list of in-progress serializable transactions and find the new
3248 * xmin.
3249 */
3250static void
3252{
3253 dlist_iter iter;
3254
3255 Assert(LWLockHeldByMe(SerializableXactHashLock));
3256
3259
3261 {
3262 SERIALIZABLEXACT *sxact =
3263 dlist_container(SERIALIZABLEXACT, xactLink, iter.cur);
3264
3265 if (!SxactIsRolledBack(sxact)
3266 && !SxactIsCommitted(sxact)
3267 && sxact != OldCommittedSxact)
3268 {
3269 Assert(sxact->xmin != InvalidTransactionId);
3271 || TransactionIdPrecedes(sxact->xmin,
3273 {
3274 PredXact->SxactGlobalXmin = sxact->xmin;
3276 }
3277 else if (TransactionIdEquals(sxact->xmin,
3280 }
3281 }
3282
3284}
3285
3286/*
3287 * ReleasePredicateLocks
3288 *
3289 * Releases predicate locks based on completion of the current transaction,
3290 * whether committed or rolled back. It can also be called for a read only
3291 * transaction when it becomes impossible for the transaction to become
3292 * part of a dangerous structure.
3293 *
3294 * We do nothing unless this is a serializable transaction.
3295 *
3296 * This method must ensure that shared memory hash tables are cleaned
3297 * up in some relatively timely fashion.
3298 *
3299 * If this transaction is committing and is holding any predicate locks,
3300 * it must be added to a list of completed serializable transactions still
3301 * holding locks.
3302 *
3303 * If isReadOnlySafe is true, then predicate locks are being released before
3304 * the end of the transaction because MySerializableXact has been determined
3305 * to be RO_SAFE. In non-parallel mode we can release it completely, but it
3306 * in parallel mode we partially release the SERIALIZABLEXACT and keep it
3307 * around until the end of the transaction, allowing each backend to clear its
3308 * MySerializableXact variable and benefit from the optimization in its own
3309 * time.
3310 */
3311void
3312ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe)
3313{
3314 bool partiallyReleasing = false;
3315 bool needToClear;
3316 SERIALIZABLEXACT *roXact;
3317 dlist_mutable_iter iter;
3318
3319 /*
3320 * We can't trust XactReadOnly here, because a transaction which started
3321 * as READ WRITE can show as READ ONLY later, e.g., within
3322 * subtransactions. We want to flag a transaction as READ ONLY if it
3323 * commits without writing so that de facto READ ONLY transactions get the
3324 * benefit of some RO optimizations, so we will use this local variable to
3325 * get some cleanup logic right which is based on whether the transaction
3326 * was declared READ ONLY at the top level.
3327 */
3328 bool topLevelIsDeclaredReadOnly;
3329
3330 /* We can't be both committing and releasing early due to RO_SAFE. */
3331 Assert(!(isCommit && isReadOnlySafe));
3332
3333 /* Are we at the end of a transaction, that is, a commit or abort? */
3334 if (!isReadOnlySafe)
3335 {
3336 /*
3337 * Parallel workers mustn't release predicate locks at the end of
3338 * their transaction. The leader will do that at the end of its
3339 * transaction.
3340 */
3341 if (IsParallelWorker())
3342 {
3344 return;
3345 }
3346
3347 /*
3348 * By the time the leader in a parallel query reaches end of
3349 * transaction, it has waited for all workers to exit.
3350 */
3352
3353 /*
3354 * If the leader in a parallel query earlier stashed a partially
3355 * released SERIALIZABLEXACT for final clean-up at end of transaction
3356 * (because workers might still have been accessing it), then it's
3357 * time to restore it.
3358 */
3360 {
3365 }
3366 }
3367
3369 {
3371 return;
3372 }
3373
3374 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
3375
3376 /*
3377 * If the transaction is committing, but it has been partially released
3378 * already, then treat this as a roll back. It was marked as rolled back.
3379 */
3381 isCommit = false;
3382
3383 /*
3384 * If we're called in the middle of a transaction because we discovered
3385 * that the SXACT_FLAG_RO_SAFE flag was set, then we'll partially release
3386 * it (that is, release the predicate locks and conflicts, but not the
3387 * SERIALIZABLEXACT itself) if we're the first backend to have noticed.
3388 */
3389 if (isReadOnlySafe && IsInParallelMode())
3390 {
3391 /*
3392 * The leader needs to stash a pointer to it, so that it can
3393 * completely release it at end-of-transaction.
3394 */
3395 if (!IsParallelWorker())
3397
3398 /*
3399 * The first backend to reach this condition will partially release
3400 * the SERIALIZABLEXACT. All others will just clear their
3401 * backend-local state so that they stop doing SSI checks for the rest
3402 * of the transaction.
3403 */
3405 {
3406 LWLockRelease(SerializableXactHashLock);
3408 return;
3409 }
3410 else
3411 {
3413 partiallyReleasing = true;
3414 /* ... and proceed to perform the partial release below. */
3415 }
3416 }
3418 Assert(!isCommit || !SxactIsDoomed(MySerializableXact));
3422
3423 /* may not be serializable during COMMIT/ROLLBACK PREPARED */
3425
3426 /* We'd better not already be on the cleanup list. */
3428
3429 topLevelIsDeclaredReadOnly = SxactIsReadOnly(MySerializableXact);
3430
3431 /*
3432 * We don't hold XidGenLock lock here, assuming that TransactionId is
3433 * atomic!
3434 *
3435 * If this value is changing, we don't care that much whether we get the
3436 * old or new value -- it is just used to determine how far
3437 * SxactGlobalXmin must advance before this transaction can be fully
3438 * cleaned up. The worst that could happen is we wait for one more
3439 * transaction to complete before freeing some RAM; correctness of visible
3440 * behavior is not affected.
3441 */
3443
3444 /*
3445 * If it's not a commit it's either a rollback or a read-only transaction
3446 * flagged SXACT_FLAG_RO_SAFE, and we can clear our locks immediately.
3447 */
3448 if (isCommit)
3449 {
3452 /* Recognize implicit read-only transaction (commit without write). */
3453 if (!MyXactDidWrite)
3455 }
3456 else
3457 {
3458 /*
3459 * The DOOMED flag indicates that we intend to roll back this
3460 * transaction and so it should not cause serialization failures for
3461 * other transactions that conflict with it. Note that this flag might
3462 * already be set, if another backend marked this transaction for
3463 * abort.
3464 *
3465 * The ROLLED_BACK flag further indicates that ReleasePredicateLocks
3466 * has been called, and so the SerializableXact is eligible for
3467 * cleanup. This means it should not be considered when calculating
3468 * SxactGlobalXmin.
3469 */
3472
3473 /*
3474 * If the transaction was previously prepared, but is now failing due
3475 * to a ROLLBACK PREPARED or (hopefully very rare) error after the
3476 * prepare, clear the prepared flag. This simplifies conflict
3477 * checking.
3478 */
3479 MySerializableXact->flags &= ~SXACT_FLAG_PREPARED;
3480 }
3481
3482 if (!topLevelIsDeclaredReadOnly)
3483 {
3485 if (--(PredXact->WritableSxactCount) == 0)
3486 {
3487 /*
3488 * Release predicate locks and rw-conflicts in for all committed
3489 * transactions. There are no longer any transactions which might
3490 * conflict with the locks and no chance for new transactions to
3491 * overlap. Similarly, existing conflicts in can't cause pivots,
3492 * and any conflicts in which could have completed a dangerous
3493 * structure would already have caused a rollback, so any
3494 * remaining ones must be benign.
3495 */
3497 }
3498 }
3499 else
3500 {
3501 /*
3502 * Read-only transactions: clear the list of transactions that might
3503 * make us unsafe. Note that we use 'inLink' for the iteration as
3504 * opposed to 'outLink' for the r/w xacts.
3505 */
3507 {
3508 RWConflict possibleUnsafeConflict =
3509 dlist_container(RWConflictData, inLink, iter.cur);
3510
3511 Assert(!SxactIsReadOnly(possibleUnsafeConflict->sxactOut));
3512 Assert(MySerializableXact == possibleUnsafeConflict->sxactIn);
3513
3514 ReleaseRWConflict(possibleUnsafeConflict);
3515 }
3516 }
3517
3518 /* Check for conflict out to old committed transactions. */
3519 if (isCommit
3522 {
3523 /*
3524 * we don't know which old committed transaction we conflicted with,
3525 * so be conservative and use FirstNormalSerCommitSeqNo here
3526 */
3530 }
3531
3532 /*
3533 * Release all outConflicts to committed transactions. If we're rolling
3534 * back clear them all. Set SXACT_FLAG_CONFLICT_OUT if any point to
3535 * previously committed transactions.
3536 */
3538 {
3539 RWConflict conflict =
3540 dlist_container(RWConflictData, outLink, iter.cur);
3541
3542 if (isCommit
3544 && SxactIsCommitted(conflict->sxactIn))
3545 {
3550 }
3551
3552 if (!isCommit
3553 || SxactIsCommitted(conflict->sxactIn)
3555 ReleaseRWConflict(conflict);
3556 }
3557
3558 /*
3559 * Release all inConflicts from committed and read-only transactions. If
3560 * we're rolling back, clear them all.
3561 */
3563 {
3564 RWConflict conflict =
3565 dlist_container(RWConflictData, inLink, iter.cur);
3566
3567 if (!isCommit
3568 || SxactIsCommitted(conflict->sxactOut)
3569 || SxactIsReadOnly(conflict->sxactOut))
3570 ReleaseRWConflict(conflict);
3571 }
3572
3573 if (!topLevelIsDeclaredReadOnly)
3574 {
3575 /*
3576 * Remove ourselves from the list of possible conflicts for concurrent
3577 * READ ONLY transactions, flagging them as unsafe if we have a
3578 * conflict out. If any are waiting DEFERRABLE transactions, wake them
3579 * up if they are known safe or known unsafe.
3580 */
3582 {
3583 RWConflict possibleUnsafeConflict =
3584 dlist_container(RWConflictData, outLink, iter.cur);
3585
3586 roXact = possibleUnsafeConflict->sxactIn;
3587 Assert(MySerializableXact == possibleUnsafeConflict->sxactOut);
3588 Assert(SxactIsReadOnly(roXact));
3589
3590 /* Mark conflicted if necessary. */
3591 if (isCommit
3595 <= roXact->SeqNo.lastCommitBeforeSnapshot))
3596 {
3597 /*
3598 * This releases possibleUnsafeConflict (as well as all other
3599 * possible conflicts for roXact)
3600 */
3601 FlagSxactUnsafe(roXact);
3602 }
3603 else
3604 {
3605 ReleaseRWConflict(possibleUnsafeConflict);
3606
3607 /*
3608 * If we were the last possible conflict, flag it safe. The
3609 * transaction can now safely release its predicate locks (but
3610 * that transaction's backend has to do that itself).
3611 */
3613 roXact->flags |= SXACT_FLAG_RO_SAFE;
3614 }
3615
3616 /*
3617 * Wake up the process for a waiting DEFERRABLE transaction if we
3618 * now know it's either safe or conflicted.
3619 */
3620 if (SxactIsDeferrableWaiting(roXact) &&
3621 (SxactIsROUnsafe(roXact) || SxactIsROSafe(roXact)))
3622 ProcSendSignal(roXact->pgprocno);
3623 }
3624 }
3625
3626 /*
3627 * Check whether it's time to clean up old transactions. This can only be
3628 * done when the last serializable transaction with the oldest xmin among
3629 * serializable transactions completes. We then find the "new oldest"
3630 * xmin and purge any transactions which finished before this transaction
3631 * was launched.
3632 *
3633 * For parallel queries in read-only transactions, it might run twice. We
3634 * only release the reference on the first call.
3635 */
3636 needToClear = false;
3637 if ((partiallyReleasing ||
3641 {
3643 if (--(PredXact->SxactGlobalXminCount) == 0)
3644 {
3646 needToClear = true;
3647 }
3648 }
3649
3650 LWLockRelease(SerializableXactHashLock);
3651
3652 LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
3653
3654 /* Add this to the list of transactions to check for later cleanup. */
3655 if (isCommit)
3658
3659 /*
3660 * If we're releasing a RO_SAFE transaction in parallel mode, we'll only
3661 * partially release it. That's necessary because other backends may have
3662 * a reference to it. The leader will release the SERIALIZABLEXACT itself
3663 * at the end of the transaction after workers have stopped running.
3664 */
3665 if (!isCommit)
3667 isReadOnlySafe && IsInParallelMode(),
3668 false);
3669
3670 LWLockRelease(SerializableFinishedListLock);
3671
3672 if (needToClear)
3674
3676}
3677
3678static void
3680{
3682 MyXactDidWrite = false;
3683
3684 /* Delete per-transaction lock table */
3685 if (LocalPredicateLockHash != NULL)
3686 {
3689 }
3690}
3691
3692/*
3693 * Clear old predicate locks, belonging to committed transactions that are no
3694 * longer interesting to any in-progress transaction.
3695 */
3696static void
3698{
3699 dlist_mutable_iter iter;
3700
3701 /*
3702 * Loop through finished transactions. They are in commit order, so we can
3703 * stop as soon as we find one that's still interesting.
3704 */
3705 LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
3706 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
3708 {
3709 SERIALIZABLEXACT *finishedSxact =
3710 dlist_container(SERIALIZABLEXACT, finishedLink, iter.cur);
3711
3715 {
3716 /*
3717 * This transaction committed before any in-progress transaction
3718 * took its snapshot. It's no longer interesting.
3719 */
3720 LWLockRelease(SerializableXactHashLock);
3721 dlist_delete_thoroughly(&finishedSxact->finishedLink);
3722 ReleaseOneSerializableXact(finishedSxact, false, false);
3723 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
3724 }
3725 else if (finishedSxact->commitSeqNo > PredXact->HavePartialClearedThrough
3726 && finishedSxact->commitSeqNo <= PredXact->CanPartialClearThrough)
3727 {
3728 /*
3729 * Any active transactions that took their snapshot before this
3730 * transaction committed are read-only, so we can clear part of
3731 * its state.
3732 */
3733 LWLockRelease(SerializableXactHashLock);
3734
3735 if (SxactIsReadOnly(finishedSxact))
3736 {
3737 /* A read-only transaction can be removed entirely */
3738 dlist_delete_thoroughly(&(finishedSxact->finishedLink));
3739 ReleaseOneSerializableXact(finishedSxact, false, false);
3740 }
3741 else
3742 {
3743 /*
3744 * A read-write transaction can only be partially cleared. We
3745 * need to keep the SERIALIZABLEXACT but can release the
3746 * SIREAD locks and conflicts in.
3747 */
3748 ReleaseOneSerializableXact(finishedSxact, true, false);
3749 }
3750
3752 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
3753 }
3754 else
3755 {
3756 /* Still interesting. */
3757 break;
3758 }
3759 }
3760 LWLockRelease(SerializableXactHashLock);
3761
3762 /*
3763 * Loop through predicate locks on dummy transaction for summarized data.
3764 */
3765 LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
3767 {
3768 PREDICATELOCK *predlock =
3769 dlist_container(PREDICATELOCK, xactLink, iter.cur);
3770 bool canDoPartialCleanup;
3771
3772 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
3773 Assert(predlock->commitSeqNo != 0);
3775 canDoPartialCleanup = (predlock->commitSeqNo <= PredXact->CanPartialClearThrough);
3776 LWLockRelease(SerializableXactHashLock);
3777
3778 /*
3779 * If this lock originally belonged to an old enough transaction, we
3780 * can release it.
3781 */
3782 if (canDoPartialCleanup)
3783 {
3784 PREDICATELOCKTAG tag;
3785 PREDICATELOCKTARGET *target;
3786 PREDICATELOCKTARGETTAG targettag;
3787 uint32 targettaghash;
3788 LWLock *partitionLock;
3789
3790 tag = predlock->tag;
3791 target = tag.myTarget;
3792 targettag = target->tag;
3793 targettaghash = PredicateLockTargetTagHashCode(&targettag);
3794 partitionLock = PredicateLockHashPartitionLock(targettaghash);
3795
3796 LWLockAcquire(partitionLock, LW_EXCLUSIVE);
3797
3798 dlist_delete(&(predlock->targetLink));
3799 dlist_delete(&(predlock->xactLink));
3800
3803 targettaghash),
3804 HASH_REMOVE, NULL);
3805 RemoveTargetIfNoLongerUsed(target, targettaghash);
3806
3807 LWLockRelease(partitionLock);
3808 }
3809 }
3810
3811 LWLockRelease(SerializablePredicateListLock);
3812 LWLockRelease(SerializableFinishedListLock);
3813}
3814
3815/*
3816 * This is the normal way to delete anything from any of the predicate
3817 * locking hash tables. Given a transaction which we know can be deleted:
3818 * delete all predicate locks held by that transaction and any predicate
3819 * lock targets which are now unreferenced by a lock; delete all conflicts
3820 * for the transaction; delete all xid values for the transaction; then
3821 * delete the transaction.
3822 *
3823 * When the partial flag is set, we can release all predicate locks and
3824 * in-conflict information -- we've established that there are no longer
3825 * any overlapping read write transactions for which this transaction could
3826 * matter -- but keep the transaction entry itself and any outConflicts.
3827 *
3828 * When the summarize flag is set, we've run short of room for sxact data
3829 * and must summarize to the SLRU. Predicate locks are transferred to a
3830 * dummy "old" transaction, with duplicate locks on a single target
3831 * collapsing to a single lock with the "latest" commitSeqNo from among
3832 * the conflicting locks..
3833 */
3834static void
3836 bool summarize)
3837{
3838 SERIALIZABLEXIDTAG sxidtag;
3839 dlist_mutable_iter iter;
3840
3841 Assert(sxact != NULL);
3842 Assert(SxactIsRolledBack(sxact) || SxactIsCommitted(sxact));
3843 Assert(partial || !SxactIsOnFinishedList(sxact));
3844 Assert(LWLockHeldByMe(SerializableFinishedListLock));
3845
3846 /*
3847 * First release all the predicate locks held by this xact (or transfer
3848 * them to OldCommittedSxact if summarize is true)
3849 */
3850 LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
3851 if (IsInParallelMode())
3854 {
3855 PREDICATELOCK *predlock =
3856 dlist_container(PREDICATELOCK, xactLink, iter.cur);
3857 PREDICATELOCKTAG tag;
3858 PREDICATELOCKTARGET *target;
3859 PREDICATELOCKTARGETTAG targettag;
3860 uint32 targettaghash;
3861 LWLock *partitionLock;
3862
3863 tag = predlock->tag;
3864 target = tag.myTarget;
3865 targettag = target->tag;
3866 targettaghash = PredicateLockTargetTagHashCode(&targettag);
3867 partitionLock = PredicateLockHashPartitionLock(targettaghash);
3868
3869 LWLockAcquire(partitionLock, LW_EXCLUSIVE);
3870
3871 dlist_delete(&predlock->targetLink);
3872
3875 targettaghash),
3876 HASH_REMOVE, NULL);
3877 if (summarize)
3878 {
3879 bool found;
3880
3881 /* Fold into dummy transaction list. */
3885 targettaghash),
3886 HASH_ENTER_NULL, &found);
3887 if (!predlock)
3888 ereport(ERROR,
3889 (errcode(ERRCODE_OUT_OF_MEMORY),
3890 errmsg("out of shared memory"),
3891 errhint("You might need to increase \"%s\".", "max_pred_locks_per_transaction")));
3892 if (found)
3893 {
3894 Assert(predlock->commitSeqNo != 0);
3896 if (predlock->commitSeqNo < sxact->commitSeqNo)
3897 predlock->commitSeqNo = sxact->commitSeqNo;
3898 }
3899 else
3900 {
3902 &predlock->targetLink);
3904 &predlock->xactLink);
3905 predlock->commitSeqNo = sxact->commitSeqNo;
3906 }
3907 }
3908 else
3909 RemoveTargetIfNoLongerUsed(target, targettaghash);
3910
3911 LWLockRelease(partitionLock);
3912 }
3913
3914 /*
3915 * Rather than retail removal, just re-init the head after we've run
3916 * through the list.
3917 */
3918 dlist_init(&sxact->predicateLocks);
3919
3920 if (IsInParallelMode())
3922 LWLockRelease(SerializablePredicateListLock);
3923
3924 sxidtag.xid = sxact->topXid;
3925 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
3926
3927 /* Release all outConflicts (unless 'partial' is true) */
3928 if (!partial)
3929 {
3930 dlist_foreach_modify(iter, &sxact->outConflicts)
3931 {
3932 RWConflict conflict =
3933 dlist_container(RWConflictData, outLink, iter.cur);
3934
3935 if (summarize)
3937 ReleaseRWConflict(conflict);
3938 }
3939 }
3940
3941 /* Release all inConflicts. */
3942 dlist_foreach_modify(iter, &sxact->inConflicts)
3943 {
3944 RWConflict conflict =
3945 dlist_container(RWConflictData, inLink, iter.cur);
3946
3947 if (summarize)
3949 ReleaseRWConflict(conflict);
3950 }
3951
3952 /* Finally, get rid of the xid and the record of the transaction itself. */
3953 if (!partial)
3954 {
3955 if (sxidtag.xid != InvalidTransactionId)
3957 ReleasePredXact(sxact);
3958 }
3959
3960 LWLockRelease(SerializableXactHashLock);
3961}
3962
3963/*
3964 * Tests whether the given top level transaction is concurrent with
3965 * (overlaps) our current transaction.
3966 *
3967 * We need to identify the top level transaction for SSI, anyway, so pass
3968 * that to this function to save the overhead of checking the snapshot's
3969 * subxip array.
3970 */
3971static bool
3973{
3974 Snapshot snap;
3975
3978
3979 snap = GetTransactionSnapshot();
3980
3981 if (TransactionIdPrecedes(xid, snap->xmin))
3982 return false;
3983
3984 if (TransactionIdFollowsOrEquals(xid, snap->xmax))
3985 return true;
3986
3987 return pg_lfind32(xid, snap->xip, snap->xcnt);
3988}
3989
3990bool
3992{
3993 if (!SerializationNeededForRead(relation, snapshot))
3994 return false;
3995
3996 /* Check if someone else has already decided that we need to die */
3998 {
3999 ereport(ERROR,
4001 errmsg("could not serialize access due to read/write dependencies among transactions"),
4002 errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking."),
4003 errhint("The transaction might succeed if retried.")));
4004 }
4005
4006 return true;
4007}
4008
4009/*
4010 * CheckForSerializableConflictOut
4011 * A table AM is reading a tuple that has been modified. If it determines
4012 * that the tuple version it is reading is not visible to us, it should
4013 * pass in the top level xid of the transaction that created it.
4014 * Otherwise, if it determines that it is visible to us but it has been
4015 * deleted or there is a newer version available due to an update, it
4016 * should pass in the top level xid of the modifying transaction.
4017 *
4018 * This function will check for overlap with our own transaction. If the given
4019 * xid is also serializable and the transactions overlap (i.e., they cannot see
4020 * each other's writes), then we have a conflict out.
4021 */
4022void
4024{
4025 SERIALIZABLEXIDTAG sxidtag;
4026 SERIALIZABLEXID *sxid;
4027 SERIALIZABLEXACT *sxact;
4028
4029 if (!SerializationNeededForRead(relation, snapshot))
4030 return;
4031
4032 /* Check if someone else has already decided that we need to die */
4034 {
4035 ereport(ERROR,
4037 errmsg("could not serialize access due to read/write dependencies among transactions"),
4038 errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking."),
4039 errhint("The transaction might succeed if retried.")));
4040 }
4042
4044 return;
4045
4046 /*
4047 * Find sxact or summarized info for the top level xid.
4048 */
4049 sxidtag.xid = xid;
4050 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
4051 sxid = (SERIALIZABLEXID *)
4052 hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
4053 if (!sxid)
4054 {
4055 /*
4056 * Transaction not found in "normal" SSI structures. Check whether it
4057 * got pushed out to SLRU storage for "old committed" transactions.
4058 */
4059 SerCommitSeqNo conflictCommitSeqNo;
4060
4061 conflictCommitSeqNo = SerialGetMinConflictCommitSeqNo(xid);
4062 if (conflictCommitSeqNo != 0)
4063 {
4064 if (conflictCommitSeqNo != InvalidSerCommitSeqNo
4066 || conflictCommitSeqNo
4068 ereport(ERROR,
4070 errmsg("could not serialize access due to read/write dependencies among transactions"),
4071 errdetail_internal("Reason code: Canceled on conflict out to old pivot %u.", xid),
4072 errhint("The transaction might succeed if retried.")));
4073
4076 ereport(ERROR,
4078 errmsg("could not serialize access due to read/write dependencies among transactions"),
4079 errdetail_internal("Reason code: Canceled on identification as a pivot, with conflict out to old committed transaction %u.", xid),
4080 errhint("The transaction might succeed if retried.")));
4081
4083 }
4084
4085 /* It's not serializable or otherwise not important. */
4086 LWLockRelease(SerializableXactHashLock);
4087 return;
4088 }
4089 sxact = sxid->myXact;
4090 Assert(TransactionIdEquals(sxact->topXid, xid));
4091 if (sxact == MySerializableXact || SxactIsDoomed(sxact))
4092 {
4093 /* Can't conflict with ourself or a transaction that will roll back. */
4094 LWLockRelease(SerializableXactHashLock);
4095 return;
4096 }
4097
4098 /*
4099 * We have a conflict out to a transaction which has a conflict out to a
4100 * summarized transaction. That summarized transaction must have
4101 * committed first, and we can't tell when it committed in relation to our
4102 * snapshot acquisition, so something needs to be canceled.
4103 */
4104 if (SxactHasSummaryConflictOut(sxact))
4105 {
4106 if (!SxactIsPrepared(sxact))
4107 {
4108 sxact->flags |= SXACT_FLAG_DOOMED;
4109 LWLockRelease(SerializableXactHashLock);
4110 return;
4111 }
4112 else
4113 {
4114 LWLockRelease(SerializableXactHashLock);
4115 ereport(ERROR,
4117 errmsg("could not serialize access due to read/write dependencies among transactions"),
4118 errdetail_internal("Reason code: Canceled on conflict out to old pivot."),
4119 errhint("The transaction might succeed if retried.")));
4120 }
4121 }
4122
4123 /*
4124 * If this is a read-only transaction and the writing transaction has
4125 * committed, and it doesn't have a rw-conflict to a transaction which
4126 * committed before it, no conflict.
4127 */
4129 && SxactIsCommitted(sxact)
4131 && (!SxactHasConflictOut(sxact)
4133 {
4134 /* Read-only transaction will appear to run first. No conflict. */
4135 LWLockRelease(SerializableXactHashLock);
4136 return;
4137 }
4138
4139 if (!XidIsConcurrent(xid))
4140 {
4141 /* This write was already in our snapshot; no conflict. */
4142 LWLockRelease(SerializableXactHashLock);
4143 return;
4144 }
4145
4147 {
4148 /* We don't want duplicate conflict records in the list. */
4149 LWLockRelease(SerializableXactHashLock);
4150 return;
4151 }
4152
4153 /*
4154 * Flag the conflict. But first, if this conflict creates a dangerous
4155 * structure, ereport an error.
4156 */
4158 LWLockRelease(SerializableXactHashLock);
4159}
4160
4161/*
4162 * Check a particular target for rw-dependency conflict in. A subroutine of
4163 * CheckForSerializableConflictIn().
4164 */
4165static void
4167{
4168 uint32 targettaghash;
4169 LWLock *partitionLock;
4170 PREDICATELOCKTARGET *target;
4171 PREDICATELOCK *mypredlock = NULL;
4172 PREDICATELOCKTAG mypredlocktag;
4173 dlist_mutable_iter iter;
4174
4176
4177 /*
4178 * The same hash and LW lock apply to the lock target and the lock itself.
4179 */
4180 targettaghash = PredicateLockTargetTagHashCode(targettag);
4181 partitionLock = PredicateLockHashPartitionLock(targettaghash);
4182 LWLockAcquire(partitionLock, LW_SHARED);
4183 target = (PREDICATELOCKTARGET *)
4185 targettag, targettaghash,
4186 HASH_FIND, NULL);
4187 if (!target)
4188 {
4189 /* Nothing has this target locked; we're done here. */
4190 LWLockRelease(partitionLock);
4191 return;
4192 }
4193
4194 /*
4195 * Each lock for an overlapping transaction represents a conflict: a
4196 * rw-dependency in to this transaction.
4197 */
4198 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
4199
4200 dlist_foreach_modify(iter, &target->predicateLocks)
4201 {
4202 PREDICATELOCK *predlock =
4203 dlist_container(PREDICATELOCK, targetLink, iter.cur);
4204 SERIALIZABLEXACT *sxact = predlock->tag.myXact;
4205
4206 if (sxact == MySerializableXact)
4207 {
4208 /*
4209 * If we're getting a write lock on a tuple, we don't need a
4210 * predicate (SIREAD) lock on the same tuple. We can safely remove
4211 * our SIREAD lock, but we'll defer doing so until after the loop
4212 * because that requires upgrading to an exclusive partition lock.
4213 *
4214 * We can't use this optimization within a subtransaction because
4215 * the subtransaction could roll back, and we would be left
4216 * without any lock at the top level.
4217 */
4218 if (!IsSubTransaction()
4219 && GET_PREDICATELOCKTARGETTAG_OFFSET(*targettag))
4220 {
4221 mypredlock = predlock;
4222 mypredlocktag = predlock->tag;
4223 }
4224 }
4225 else if (!SxactIsDoomed(sxact)
4226 && (!SxactIsCommitted(sxact)
4228 sxact->finishedBefore))
4230 {
4231 LWLockRelease(SerializableXactHashLock);
4232 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
4233
4234 /*
4235 * Re-check after getting exclusive lock because the other
4236 * transaction may have flagged a conflict.
4237 */
4238 if (!SxactIsDoomed(sxact)
4239 && (!SxactIsCommitted(sxact)
4241 sxact->finishedBefore))
4243 {
4245 }
4246
4247 LWLockRelease(SerializableXactHashLock);
4248 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
4249 }
4250 }
4251 LWLockRelease(SerializableXactHashLock);
4252 LWLockRelease(partitionLock);
4253
4254 /*
4255 * If we found one of our own SIREAD locks to remove, remove it now.
4256 *
4257 * At this point our transaction already has a RowExclusiveLock on the
4258 * relation, so we are OK to drop the predicate lock on the tuple, if
4259 * found, without fearing that another write against the tuple will occur
4260 * before the MVCC information makes it to the buffer.
4261 */
4262 if (mypredlock != NULL)
4263 {
4264 uint32 predlockhashcode;
4265 PREDICATELOCK *rmpredlock;
4266
4267 LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
4268 if (IsInParallelMode())
4270 LWLockAcquire(partitionLock, LW_EXCLUSIVE);
4271 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
4272
4273 /*
4274 * Remove the predicate lock from shared memory, if it wasn't removed
4275 * while the locks were released. One way that could happen is from
4276 * autovacuum cleaning up an index.
4277 */
4279 (&mypredlocktag, targettaghash);
4280 rmpredlock = (PREDICATELOCK *)
4282 &mypredlocktag,
4283 predlockhashcode,
4284 HASH_FIND, NULL);
4285 if (rmpredlock != NULL)
4286 {
4287 Assert(rmpredlock == mypredlock);
4288
4289 dlist_delete(&(mypredlock->targetLink));
4290 dlist_delete(&(mypredlock->xactLink));
4291
4292 rmpredlock = (PREDICATELOCK *)
4294 &mypredlocktag,
4295 predlockhashcode,
4296 HASH_REMOVE, NULL);
4297 Assert(rmpredlock == mypredlock);
4298
4299 RemoveTargetIfNoLongerUsed(target, targettaghash);
4300 }
4301
4302 LWLockRelease(SerializableXactHashLock);
4303 LWLockRelease(partitionLock);
4304 if (IsInParallelMode())
4306 LWLockRelease(SerializablePredicateListLock);
4307
4308 if (rmpredlock != NULL)
4309 {
4310 /*
4311 * Remove entry in local lock table if it exists. It's OK if it
4312 * doesn't exist; that means the lock was transferred to a new
4313 * target by a different backend.
4314 */
4316 targettag, targettaghash,
4317 HASH_REMOVE, NULL);
4318
4319 DecrementParentLocks(targettag);
4320 }
4321 }
4322}
4323
4324/*
4325 * CheckForSerializableConflictIn
4326 * We are writing the given tuple. If that indicates a rw-conflict
4327 * in from another serializable transaction, take appropriate action.
4328 *
4329 * Skip checking for any granularity for which a parameter is missing.
4330 *
4331 * A tuple update or delete is in conflict if we have a predicate lock
4332 * against the relation or page in which the tuple exists, or against the
4333 * tuple itself.
4334 */
4335void
4337{
4338 PREDICATELOCKTARGETTAG targettag;
4339
4340 if (!SerializationNeededForWrite(relation))
4341 return;
4342
4343 /* Check if someone else has already decided that we need to die */
4345 ereport(ERROR,
4347 errmsg("could not serialize access due to read/write dependencies among transactions"),
4348 errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict in checking."),
4349 errhint("The transaction might succeed if retried.")));
4350
4351 /*
4352 * We're doing a write which might cause rw-conflicts now or later.
4353 * Memorize that fact.
4354 */
4355 MyXactDidWrite = true;
4356
4357 /*
4358 * It is important that we check for locks from the finest granularity to
4359 * the coarsest granularity, so that granularity promotion doesn't cause
4360 * us to miss a lock. The new (coarser) lock will be acquired before the
4361 * old (finer) locks are released.
4362 *
4363 * It is not possible to take and hold a lock across the checks for all
4364 * granularities because each target could be in a separate partition.
4365 */
4366 if (tid != NULL)
4367 {
4369 relation->rd_locator.dbOid,
4370 relation->rd_id,
4373 CheckTargetForConflictsIn(&targettag);
4374 }
4375
4376 if (blkno != InvalidBlockNumber)
4377 {
4379 relation->rd_locator.dbOid,
4380 relation->rd_id,
4381 blkno);
4382 CheckTargetForConflictsIn(&targettag);
4383 }
4384
4386 relation->rd_locator.dbOid,
4387 relation->rd_id);
4388 CheckTargetForConflictsIn(&targettag);
4389}
4390
4391/*
4392 * CheckTableForSerializableConflictIn
4393 * The entire table is going through a DDL-style logical mass delete
4394 * like TRUNCATE or DROP TABLE. If that causes a rw-conflict in from
4395 * another serializable transaction, take appropriate action.
4396 *
4397 * While these operations do not operate entirely within the bounds of
4398 * snapshot isolation, they can occur inside a serializable transaction, and
4399 * will logically occur after any reads which saw rows which were destroyed
4400 * by these operations, so we do what we can to serialize properly under
4401 * SSI.
4402 *
4403 * The relation passed in must be a heap relation. Any predicate lock of any
4404 * granularity on the heap will cause a rw-conflict in to this transaction.
4405 * Predicate locks on indexes do not matter because they only exist to guard
4406 * against conflicting inserts into the index, and this is a mass *delete*.
4407 * When a table is truncated or dropped, the index will also be truncated
4408 * or dropped, and we'll deal with locks on the index when that happens.
4409 *
4410 * Dropping or truncating a table also needs to drop any existing predicate
4411 * locks on heap tuples or pages, because they're about to go away. This
4412 * should be done before altering the predicate locks because the transaction
4413 * could be rolled back because of a conflict, in which case the lock changes
4414 * are not needed. (At the moment, we don't actually bother to drop the
4415 * existing locks on a dropped or truncated table at the moment. That might
4416 * lead to some false positives, but it doesn't seem worth the trouble.)
4417 */
4418void
4420{
4421 HASH_SEQ_STATUS seqstat;
4422 PREDICATELOCKTARGET *target;
4423 Oid dbId;
4424 Oid heapId;
4425 int i;
4426
4427 /*
4428 * Bail out quickly if there are no serializable transactions running.
4429 * It's safe to check this without taking locks because the caller is
4430 * holding an ACCESS EXCLUSIVE lock on the relation. No new locks which
4431 * would matter here can be acquired while that is held.
4432 */
4434 return;
4435
4436 if (!SerializationNeededForWrite(relation))
4437 return;
4438
4439 /*
4440 * We're doing a write which might cause rw-conflicts now or later.
4441 * Memorize that fact.
4442 */
4443 MyXactDidWrite = true;
4444
4445 Assert(relation->rd_index == NULL); /* not an index relation */
4446
4447 dbId = relation->rd_locator.dbOid;
4448 heapId = relation->rd_id;
4449
4450 LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
4451 for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
4453 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
4454
4455 /* Scan through target list */
4457
4458 while ((target = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat)))
4459 {
4460 dlist_mutable_iter iter;
4461
4462 /*
4463 * Check whether this is a target which needs attention.
4464 */
4465 if (GET_PREDICATELOCKTARGETTAG_RELATION(target->tag) != heapId)
4466 continue; /* wrong relation id */
4467 if (GET_PREDICATELOCKTARGETTAG_DB(target->tag) != dbId)
4468 continue; /* wrong database id */
4469
4470 /*
4471 * Loop through locks for this target and flag conflicts.
4472 */
4473 dlist_foreach_modify(iter, &target->predicateLocks)
4474 {
4475 PREDICATELOCK *predlock =
4476 dlist_container(PREDICATELOCK, targetLink, iter.cur);
4477
4478 if (predlock->tag.myXact != MySerializableXact
4480 {
4482 }
4483 }
4484 }
4485
4486 /* Release locks in reverse order */
4487 LWLockRelease(SerializableXactHashLock);
4488 for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
4490 LWLockRelease(SerializablePredicateListLock);
4491}
4492
4493
4494/*
4495 * Flag a rw-dependency between two serializable transactions.
4496 *
4497 * The caller is responsible for ensuring that we have a LW lock on
4498 * the transaction hash table.
4499 */
4500static void
4502{
4503 Assert(reader != writer);
4504
4505 /* First, see if this conflict causes failure. */
4507
4508 /* Actually do the conflict flagging. */
4509 if (reader == OldCommittedSxact)
4511 else if (writer == OldCommittedSxact)
4513 else
4514 SetRWConflict(reader, writer);
4515}
4516
4517/*----------------------------------------------------------------------------
4518 * We are about to add a RW-edge to the dependency graph - check that we don't
4519 * introduce a dangerous structure by doing so, and abort one of the
4520 * transactions if so.
4521 *
4522 * A serialization failure can only occur if there is a dangerous structure
4523 * in the dependency graph:
4524 *
4525 * Tin ------> Tpivot ------> Tout
4526 * rw rw
4527 *
4528 * Furthermore, Tout must commit first.
4529 *
4530 * One more optimization is that if Tin is declared READ ONLY (or commits
4531 * without writing), we can only have a problem if Tout committed before Tin
4532 * acquired its snapshot.
4533 *----------------------------------------------------------------------------
4534 */
4535static void
4537 SERIALIZABLEXACT *writer)
4538{
4539 bool failure;
4540
4541 Assert(LWLockHeldByMe(SerializableXactHashLock));
4542
4543 failure = false;
4544
4545 /*------------------------------------------------------------------------
4546 * Check for already-committed writer with rw-conflict out flagged
4547 * (conflict-flag on W means that T2 committed before W):
4548 *
4549 * R ------> W ------> T2
4550 * rw rw
4551 *
4552 * That is a dangerous structure, so we must abort. (Since the writer
4553 * has already committed, we must be the reader)
4554 *------------------------------------------------------------------------
4555 */
4556 if (SxactIsCommitted(writer)
4557 && (SxactHasConflictOut(writer) || SxactHasSummaryConflictOut(writer)))
4558 failure = true;
4559
4560 /*------------------------------------------------------------------------
4561 * Check whether the writer has become a pivot with an out-conflict
4562 * committed transaction (T2), and T2 committed first:
4563 *
4564 * R ------> W ------> T2
4565 * rw rw
4566 *
4567 * Because T2 must've committed first, there is no anomaly if:
4568 * - the reader committed before T2
4569 * - the writer committed before T2
4570 * - the reader is a READ ONLY transaction and the reader was concurrent
4571 * with T2 (= reader acquired its snapshot before T2 committed)
4572 *
4573 * We also handle the case that T2 is prepared but not yet committed
4574 * here. In that case T2 has already checked for conflicts, so if it
4575 * commits first, making the above conflict real, it's too late for it
4576 * to abort.
4577 *------------------------------------------------------------------------
4578 */
4579 if (!failure && SxactHasSummaryConflictOut(writer))
4580 failure = true;
4581 else if (!failure)
4582 {
4583 dlist_iter iter;
4584
4585 dlist_foreach(iter, &writer->outConflicts)
4586 {
4587 RWConflict conflict =
4588 dlist_container(RWConflictData, outLink, iter.cur);
4589 SERIALIZABLEXACT *t2 = conflict->sxactIn;
4590
4591 if (SxactIsPrepared(t2)
4592 && (!SxactIsCommitted(reader)
4593 || t2->prepareSeqNo <= reader->commitSeqNo)
4594 && (!SxactIsCommitted(writer)
4595 || t2->prepareSeqNo <= writer->commitSeqNo)
4596 && (!SxactIsReadOnly(reader)
4597 || t2->prepareSeqNo <= reader->SeqNo.lastCommitBeforeSnapshot))
4598 {
4599 failure = true;
4600 break;
4601 }
4602 }
4603 }
4604
4605 /*------------------------------------------------------------------------
4606 * Check whether the reader has become a pivot with a writer
4607 * that's committed (or prepared):
4608 *
4609 * T0 ------> R ------> W
4610 * rw rw
4611 *
4612 * Because W must've committed first for an anomaly to occur, there is no
4613 * anomaly if:
4614 * - T0 committed before the writer
4615 * - T0 is READ ONLY, and overlaps the writer
4616 *------------------------------------------------------------------------
4617 */
4618 if (!failure && SxactIsPrepared(writer) && !SxactIsReadOnly(reader))
4619 {
4620 if (SxactHasSummaryConflictIn(reader))
4621 {
4622 failure = true;
4623 }
4624 else
4625 {
4626 dlist_iter iter;
4627
4628 /*
4629 * The unconstify is needed as we have no const version of
4630 * dlist_foreach().
4631 */
4632 dlist_foreach(iter, &unconstify(SERIALIZABLEXACT *, reader)->inConflicts)
4633 {
4634 const RWConflict conflict =
4635 dlist_container(RWConflictData, inLink, iter.cur);
4636 const SERIALIZABLEXACT *t0 = conflict->sxactOut;
4637
4638 if (!SxactIsDoomed(t0)
4639 && (!SxactIsCommitted(t0)
4640 || t0->commitSeqNo >= writer->prepareSeqNo)
4641 && (!SxactIsReadOnly(t0)
4642 || t0->SeqNo.lastCommitBeforeSnapshot >= writer->prepareSeqNo))
4643 {
4644 failure = true;
4645 break;
4646 }
4647 }
4648 }
4649 }
4650
4651 if (failure)
4652 {
4653 /*
4654 * We have to kill a transaction to avoid a possible anomaly from
4655 * occurring. If the writer is us, we can just ereport() to cause a
4656 * transaction abort. Otherwise we flag the writer for termination,
4657 * causing it to abort when it tries to commit. However, if the writer
4658 * is a prepared transaction, already prepared, we can't abort it
4659 * anymore, so we have to kill the reader instead.
4660 */
4661 if (MySerializableXact == writer)
4662 {
4663 LWLockRelease(SerializableXactHashLock);
4664 ereport(ERROR,
4666 errmsg("could not serialize access due to read/write dependencies among transactions"),
4667 errdetail_internal("Reason code: Canceled on identification as a pivot, during write."),
4668 errhint("The transaction might succeed if retried.")));
4669 }
4670 else if (SxactIsPrepared(writer))
4671 {
4672 LWLockRelease(SerializableXactHashLock);
4673
4674 /* if we're not the writer, we have to be the reader */
4675 Assert(MySerializableXact == reader);
4676 ereport(ERROR,
4678 errmsg("could not serialize access due to read/write dependencies among transactions"),
4679 errdetail_internal("Reason code: Canceled on conflict out to pivot %u, during read.", writer->topXid),
4680 errhint("The transaction might succeed if retried.")));
4681 }
4682 writer->flags |= SXACT_FLAG_DOOMED;
4683 }
4684}
4685
4686/*
4687 * PreCommit_CheckForSerializationFailure
4688 * Check for dangerous structures in a serializable transaction
4689 * at commit.
4690 *
4691 * We're checking for a dangerous structure as each conflict is recorded.
4692 * The only way we could have a problem at commit is if this is the "out"
4693 * side of a pivot, and neither the "in" side nor the pivot has yet
4694 * committed.
4695 *
4696 * If a dangerous structure is found, the pivot (the near conflict) is
4697 * marked for death, because rolling back another transaction might mean
4698 * that we fail without ever making progress. This transaction is
4699 * committing writes, so letting it commit ensures progress. If we
4700 * canceled the far conflict, it might immediately fail again on retry.
4701 */
4702void
4704{
4705 dlist_iter near_iter;
4706
4708 return;
4709
4711
4712 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
4713
4714 /*
4715 * Check if someone else has already decided that we need to die. Since
4716 * we set our own DOOMED flag when partially releasing, ignore in that
4717 * case.
4718 */
4721 {
4722 LWLockRelease(SerializableXactHashLock);
4723 ereport(ERROR,
4725 errmsg("could not serialize access due to read/write dependencies among transactions"),
4726 errdetail_internal("Reason code: Canceled on identification as a pivot, during commit attempt."),
4727 errhint("The transaction might succeed if retried.")));
4728 }
4729
4731 {
4732 RWConflict nearConflict =
4733 dlist_container(RWConflictData, inLink, near_iter.cur);
4734
4735 if (!SxactIsCommitted(nearConflict->sxactOut)
4736 && !SxactIsDoomed(nearConflict->sxactOut))
4737 {
4738 dlist_iter far_iter;
4739
4740 dlist_foreach(far_iter, &nearConflict->sxactOut->inConflicts)
4741 {
4742 RWConflict farConflict =
4743 dlist_container(RWConflictData, inLink, far_iter.cur);
4744
4745 if (farConflict->sxactOut == MySerializableXact
4746 || (!SxactIsCommitted(farConflict->sxactOut)
4747 && !SxactIsReadOnly(farConflict->sxactOut)
4748 && !SxactIsDoomed(farConflict->sxactOut)))
4749 {
4750 /*
4751 * Normally, we kill the pivot transaction to make sure we
4752 * make progress if the failing transaction is retried.
4753 * However, we can't kill it if it's already prepared, so
4754 * in that case we commit suicide instead.
4755 */
4756 if (SxactIsPrepared(nearConflict->sxactOut))
4757 {
4758 LWLockRelease(SerializableXactHashLock);
4759 ereport(ERROR,
4761 errmsg("could not serialize access due to read/write dependencies among transactions"),
4762 errdetail_internal("Reason code: Canceled on commit attempt with conflict in from prepared pivot."),
4763 errhint("The transaction might succeed if retried.")));
4764 }
4765 nearConflict->sxactOut->flags |= SXACT_FLAG_DOOMED;
4766 break;
4767 }
4768 }
4769 }
4770 }
4771
4774
4775 LWLockRelease(SerializableXactHashLock);
4776}
4777
4778/*------------------------------------------------------------------------*/
4779
4780/*
4781 * Two-phase commit support
4782 */
4783
4784/*
4785 * AtPrepare_Locks
4786 * Do the preparatory work for a PREPARE: make 2PC state file
4787 * records for all predicate locks currently held.
4788 */
4789void
4791{
4792 SERIALIZABLEXACT *sxact;
4794 TwoPhasePredicateXactRecord *xactRecord;
4795 TwoPhasePredicateLockRecord *lockRecord;
4796 dlist_iter iter;
4797
4798 sxact = MySerializableXact;
4799 xactRecord = &(record.data.xactRecord);
4800 lockRecord = &(record.data.lockRecord);
4801
4803 return;
4804
4805 /* Generate an xact record for our SERIALIZABLEXACT */
4807 xactRecord->xmin = MySerializableXact->xmin;
4808 xactRecord->flags = MySerializableXact->flags;
4809
4810 /*
4811 * Note that we don't include the list of conflicts in our out in the
4812 * statefile, because new conflicts can be added even after the
4813 * transaction prepares. We'll just make a conservative assumption during
4814 * recovery instead.
4815 */
4816
4818 &record, sizeof(record));
4819
4820 /*
4821 * Generate a lock record for each lock.
4822 *
4823 * To do this, we need to walk the predicate lock list in our sxact rather
4824 * than using the local predicate lock table because the latter is not
4825 * guaranteed to be accurate.
4826 */
4827 LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
4828
4829 /*
4830 * No need to take sxact->perXactPredicateListLock in parallel mode
4831 * because there cannot be any parallel workers running while we are
4832 * preparing a transaction.
4833 */
4835
4836 dlist_foreach(iter, &sxact->predicateLocks)
4837 {
4838 PREDICATELOCK *predlock =
4839 dlist_container(PREDICATELOCK, xactLink, iter.cur);
4840
4842 lockRecord->target = predlock->tag.myTarget->tag;
4843
4845 &record, sizeof(record));
4846 }
4847
4848 LWLockRelease(SerializablePredicateListLock);
4849}
4850
4851/*
4852 * PostPrepare_Locks
4853 * Clean up after successful PREPARE. Unlike the non-predicate
4854 * lock manager, we do not need to transfer locks to a dummy
4855 * PGPROC because our SERIALIZABLEXACT will stay around
4856 * anyway. We only need to clean up our local state.
4857 */
4858void
4860{
4862 return;
4863
4865
4868
4871
4873 MyXactDidWrite = false;
4874}
4875
4876/*
4877 * PredicateLockTwoPhaseFinish
4878 * Release a prepared transaction's predicate locks once it
4879 * commits or aborts.
4880 */
4881void
4883{
4884 SERIALIZABLEXID *sxid;
4885 SERIALIZABLEXIDTAG sxidtag;
4886
4887 sxidtag.xid = xid;
4888
4889 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
4890 sxid = (SERIALIZABLEXID *)
4891 hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
4892 LWLockRelease(SerializableXactHashLock);
4893
4894 /* xid will not be found if it wasn't a serializable transaction */
4895 if (sxid == NULL)
4896 return;
4897
4898 /* Release its locks */
4899 MySerializableXact = sxid->myXact;
4900 MyXactDidWrite = true; /* conservatively assume that we wrote
4901 * something */
4902 ReleasePredicateLocks(isCommit, false);
4903}
4904
4905/*
4906 * Re-acquire a predicate lock belonging to a transaction that was prepared.
4907 */
4908void
4910 void *recdata, uint32 len)
4911{
4913
4915
4916 record = (TwoPhasePredicateRecord *) recdata;
4917
4919 (record->type == TWOPHASEPREDICATERECORD_LOCK));
4920
4921 if (record->type == TWOPHASEPREDICATERECORD_XACT)
4922 {
4923 /* Per-transaction record. Set up a SERIALIZABLEXACT. */
4924 TwoPhasePredicateXactRecord *xactRecord;
4925 SERIALIZABLEXACT *sxact;
4926 SERIALIZABLEXID *sxid;
4927 SERIALIZABLEXIDTAG sxidtag;
4928 bool found;
4929
4930 xactRecord = (TwoPhasePredicateXactRecord *) &record->data.xactRecord;
4931
4932 LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
4933 sxact = CreatePredXact();
4934 if (!sxact)
4935 ereport(ERROR,
4936 (errcode(ERRCODE_OUT_OF_MEMORY),
4937 errmsg("out of shared memory")));
4938
4939 /* vxid for a prepared xact is INVALID_PROC_NUMBER/xid; no pid */
4942 sxact->pid = 0;
4944
4945 /* a prepared xact hasn't committed yet */
4949
4951
4952 /*
4953 * Don't need to track this; no transactions running at the time the
4954 * recovered xact started are still active, except possibly other
4955 * prepared xacts and we don't care whether those are RO_SAFE or not.
4956 */
4958
4959 dlist_init(&(sxact->predicateLocks));
4961
4962 sxact->topXid = xid;
4963 sxact->xmin = xactRecord->xmin;
4964 sxact->flags = xactRecord->flags;
4965 Assert(SxactIsPrepared(sxact));
4966 if (!SxactIsReadOnly(sxact))
4967 {
4971 }
4972
4973 /*
4974 * We don't know whether the transaction had any conflicts or not, so
4975 * we'll conservatively assume that it had both a conflict in and a
4976 * conflict out, and represent that with the summary conflict flags.
4977 */
4978 dlist_init(&(sxact->outConflicts));
4979 dlist_init(&(sxact->inConflicts));
4982
4983 /* Register the transaction's xid */
4984 sxidtag.xid = xid;
4986 &sxidtag,
4987 HASH_ENTER, &found);
4988 Assert(sxid != NULL);
4989 Assert(!found);
4990 sxid->myXact = (SERIALIZABLEXACT *) sxact;
4991
4992 /*
4993 * Update global xmin. Note that this is a special case compared to
4994 * registering a normal transaction, because the global xmin might go
4995 * backwards. That's OK, because until recovery is over we're not
4996 * going to complete any transactions or create any non-prepared
4997 * transactions, so there's no danger of throwing away.
4998 */
5001 {
5002 PredXact->SxactGlobalXmin = sxact->xmin;
5005 }
5007 {
5010 }
5011
5012 LWLockRelease(SerializableXactHashLock);
5013 }
5014 else if (record->type == TWOPHASEPREDICATERECORD_LOCK)
5015 {
5016 /* Lock record. Recreate the PREDICATELOCK */
5017 TwoPhasePredicateLockRecord *lockRecord;
5018 SERIALIZABLEXID *sxid;
5019 SERIALIZABLEXACT *sxact;
5020 SERIALIZABLEXIDTAG sxidtag;
5021 uint32 targettaghash;
5022
5023 lockRecord = (TwoPhasePredicateLockRecord *) &record->data.lockRecord;
5024 targettaghash = PredicateLockTargetTagHashCode(&lockRecord->target);
5025
5026 LWLockAcquire(SerializableXactHashLock, LW_SHARED);
5027 sxidtag.xid = xid;
5028 sxid = (SERIALIZABLEXID *)
5029 hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
5030 LWLockRelease(SerializableXactHashLock);
5031
5032 Assert(sxid != NULL);
5033 sxact = sxid->myXact;
5035
5036 CreatePredicateLock(&lockRecord->target, targettaghash, sxact);
5037 }
5038}
5039
5040/*
5041 * Prepare to share the current SERIALIZABLEXACT with parallel workers.
5042 * Return a handle object that can be used by AttachSerializableXact() in a
5043 * parallel worker.
5044 */
5047{
5048 return MySerializableXact;
5049}
5050
5051/*
5052 * Allow parallel workers to import the leader's SERIALIZABLEXACT.
5053 */
5054void
5056{
5057
5059
5063}
bool ParallelContextActive(void)
Definition: parallel.c:1024
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
static bool BlockNumberIsValid(BlockNumber blockNumber)
Definition: block.h:71
#define unconstify(underlying_type, expr)
Definition: c.h:1216
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:224
int64_t int64
Definition: c.h:499
uint16_t uint16
Definition: c.h:501
uint32_t uint32
Definition: c.h:502
uint32 LocalTransactionId
Definition: c.h:625
uint32 TransactionId
Definition: c.h:623
size_t Size
Definition: c.h:576
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
void hash_destroy(HTAB *hashp)
Definition: dynahash.c:865
void * hash_search_with_hash_value(HTAB *hashp, const void *keyPtr, uint32 hashvalue, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:968
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1420
long hash_get_num_entries(HTAB *hashp)
Definition: dynahash.c:1341
Size hash_estimate_size(long num_entries, Size entrysize)
Definition: dynahash.c:783
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1385
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1158
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1231
int errdetail(const char *fmt,...)
Definition: elog.c:1204
int errhint(const char *fmt,...)
Definition: elog.c:1318
int errcode(int sqlerrcode)
Definition: elog.c:854
int errmsg(const char *fmt,...)
Definition: elog.c:1071
#define DEBUG2
Definition: elog.h:29
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:149
int MyProcPid
Definition: globals.c:48
ProcNumber MyProcNumber
Definition: globals.c:91
bool IsUnderPostmaster
Definition: globals.c:121
int MaxBackends
Definition: globals.c:147
int serializable_buffers
Definition: globals.c:166
#define newval
GucSource
Definition: guc.h:112
Assert(PointerIsAligned(start, uint64))
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_REMOVE
Definition: hsearch.h:115
@ HASH_ENTER
Definition: hsearch.h:114
@ HASH_ENTER_NULL
Definition: hsearch.h:116
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_FUNCTION
Definition: hsearch.h:98
#define HASH_BLOBS
Definition: hsearch.h:97
#define HASH_FIXED_SIZE
Definition: hsearch.h:105
#define HASH_PARTITION
Definition: hsearch.h:92
static dlist_node * dlist_pop_head_node(dlist_head *head)
Definition: ilist.h:450
#define dlist_foreach(iter, lhead)
Definition: ilist.h:623
static void dlist_init(dlist_head *head)
Definition: ilist.h:314
#define dlist_head_element(type, membername, lhead)
Definition: ilist.h:603
static void dlist_delete_thoroughly(dlist_node *node)
Definition: ilist.h:416
static void dlist_delete(dlist_node *node)
Definition: ilist.h:405
#define dlist_foreach_modify(iter, lhead)
Definition: ilist.h:640
static bool dlist_is_empty(const dlist_head *head)
Definition: ilist.h:336
static void dlist_push_tail(dlist_head *head, dlist_node *node)
Definition: ilist.h:364
static void dlist_node_init(dlist_node *node)
Definition: ilist.h:325
#define dlist_container(type, membername, ptr)
Definition: ilist.h:593
#define IsParallelWorker()
Definition: parallel.h:60
FILE * output
long val
Definition: informix.c:689
static bool success
Definition: initdb.c:187
int i
Definition: isn.c:77
static OffsetNumber ItemPointerGetOffsetNumber(const ItemPointerData *pointer)
Definition: itemptr.h:124
static BlockNumber ItemPointerGetBlockNumber(const ItemPointerData *pointer)
Definition: itemptr.h:103
#define GET_VXID_FROM_PGPROC(vxid_dst, proc)
Definition: lock.h:78
#define SetInvalidVirtualTransactionId(vxid)
Definition: lock.h:75
bool LWLockHeldByMe(LWLock *lock)
Definition: lwlock.c:1970
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1182
bool LWLockHeldByMeInMode(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:2014
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1902
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:721
@ LWTRANCHE_SERIAL_SLRU
Definition: lwlock.h:217
@ LWTRANCHE_SERIAL_BUFFER
Definition: lwlock.h:187
@ LWTRANCHE_PER_XACT_PREDICATE_LIST
Definition: lwlock.h:205
@ LW_SHARED
Definition: lwlock.h:115
@ LW_EXCLUSIVE
Definition: lwlock.h:114
#define NUM_PREDICATELOCK_PARTITIONS
Definition: lwlock.h:101
void * palloc(Size size)
Definition: mcxt.c:1940
#define InvalidPid
Definition: miscadmin.h:32
const void size_t len
const void * data
static bool pg_lfind32(uint32 key, const uint32 *base, uint32 nelem)
Definition: pg_lfind.h:153
static rewind_source * source
Definition: pg_rewind.c:89
#define ERRCODE_T_R_SERIALIZATION_FAILURE
Definition: pgbench.c:77
#define InvalidOid
Definition: postgres_ext.h:35
unsigned int Oid
Definition: postgres_ext.h:30
PredicateLockData * GetPredicateLockStatusData(void)
Definition: predicate.c:1445
void CheckPointPredicate(void)
Definition: predicate.c:1041
void PredicateLockPageSplit(Relation relation, BlockNumber oldblkno, BlockNumber newblkno)
Definition: predicate.c:3144
static void DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag)
Definition: predicate.c:2391
static HTAB * PredicateLockHash
Definition: predicate.c:398
static void SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact, SERIALIZABLEXACT *activeXact)
Definition: predicate.c:666
#define PredicateLockTargetTagHashCode(predicatelocktargettag)
Definition: predicate.c:303
static void SetNewSxactGlobalXmin(void)
Definition: predicate.c:3251
void PredicateLockTwoPhaseFinish(TransactionId xid, bool isCommit)
Definition: predicate.c:4882
#define SerialPage(xid)
Definition: predicate.c:343
static void ReleasePredXact(SERIALIZABLEXACT *sxact)
Definition: predicate.c:596
void SetSerializableTransactionSnapshot(Snapshot snapshot, VirtualTransactionId *sourcevxid, int sourcepid)
Definition: predicate.c:1722
static bool RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer)
Definition: predicate.c:610
static bool PredicateLockingNeededForRelation(Relation relation)
Definition: predicate.c:498
static bool SerializationNeededForRead(Relation relation, Snapshot snapshot)
Definition: predicate.c:516
static Snapshot GetSafeSnapshot(Snapshot origSnapshot)
Definition: predicate.c:1558
#define SxactIsCommitted(sxact)
Definition: predicate.c:277
static SerialControl serialControl
Definition: predicate.c:354
void PredicateLockPage(Relation relation, BlockNumber blkno, Snapshot snapshot)
Definition: predicate.c:2599
#define SxactIsROUnsafe(sxact)
Definition: predicate.c:292
static Snapshot GetSerializableTransactionSnapshotInt(Snapshot snapshot, VirtualTransactionId *sourcevxid, int sourcepid)
Definition: predicate.c:1764
static LWLock * ScratchPartitionLock
Definition: predicate.c:408
static void PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag)
Definition: predicate.c:2517
#define SxactIsDeferrableWaiting(sxact)
Definition: predicate.c:290
static void ReleasePredicateLocksLocal(void)
Definition: predicate.c:3679
static HTAB * LocalPredicateLockHash
Definition: predicate.c:414
int max_predicate_locks_per_page
Definition: predicate.c:373
struct SerialControlData * SerialControl
Definition: predicate.c:352
static PredXactList PredXact
Definition: predicate.c:384
static void SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer)
Definition: predicate.c:643
int GetSafeSnapshotBlockingPids(int blocked_pid, int *output, int output_size)
Definition: predicate.c:1628
static uint32 ScratchTargetTagHash
Definition: predicate.c:407
static void RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target, uint32 targettaghash)
Definition: predicate.c:2183
static uint32 predicatelock_hash(const void *key, Size keysize)
Definition: predicate.c:1419
void CheckForSerializableConflictOut(Relation relation, TransactionId xid, Snapshot snapshot)
Definition: predicate.c:4023
#define SxactIsReadOnly(sxact)
Definition: predicate.c:281
#define SerialNextPage(page)
Definition: predicate.c:337
static void DropAllPredicateLocksFromTable(Relation relation, bool transfer)
Definition: predicate.c:2937
bool PageIsPredicateLocked(Relation relation, BlockNumber blkno)
Definition: predicate.c:2008
static SlruCtlData SerialSlruCtlData
Definition: predicate.c:324
static void CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag, uint32 targettaghash, SERIALIZABLEXACT *sxact)
Definition: predicate.c:2453
static void SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo)
Definition: predicate.c:858
static void ClearOldPredicateLocks(void)
Definition: predicate.c:3697
#define SxactHasSummaryConflictIn(sxact)
Definition: predicate.c:282
static SERIALIZABLEXACT * CreatePredXact(void)
Definition: predicate.c:582
static bool GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag, PREDICATELOCKTARGETTAG *parent)
Definition: predicate.c:2072
#define PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash)
Definition: predicate.c:316
static void RestoreScratchTarget(bool lockheld)
Definition: predicate.c:2161
#define SerialValue(slotno, xid)
Definition: predicate.c:339
static void DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag)
Definition: predicate.c:2214
static void DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash)
Definition: predicate.c:2669
static SERIALIZABLEXACT * OldCommittedSxact
Definition: predicate.c:362
#define SxactHasConflictOut(sxact)
Definition: predicate.c:289
void CheckForSerializableConflictIn(Relation relation, ItemPointer tid, BlockNumber blkno)
Definition: predicate.c:4336
static bool MyXactDidWrite
Definition: predicate.c:422
static int MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag)
Definition: predicate.c:2289
static void FlagSxactUnsafe(SERIALIZABLEXACT *sxact)
Definition: predicate.c:699
static void SerialInit(void)
Definition: predicate.c:806
void CheckTableForSerializableConflictIn(Relation relation)
Definition: predicate.c:4419
#define SxactIsPrepared(sxact)
Definition: predicate.c:278
void PredicateLockTID(Relation relation, ItemPointer tid, Snapshot snapshot, TransactionId tuple_xid)
Definition: predicate.c:2621
void AttachSerializableXact(SerializableXactHandle handle)
Definition: predicate.c:5055
struct SerialControlData SerialControlData
SerializableXactHandle ShareSerializableXact(void)
Definition: predicate.c:5046
static bool PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag)
Definition: predicate.c:2045
static void RemoveScratchTarget(bool lockheld)
Definition: predicate.c:2140
#define SxactIsOnFinishedList(sxact)
Definition: predicate.c:267
#define SxactIsPartiallyReleased(sxact)
Definition: predicate.c:293
static void SerialSetActiveSerXmin(TransactionId xid)
Definition: predicate.c:990
static dlist_head * FinishedSerializableTransactions
Definition: predicate.c:399
static bool SerializationNeededForWrite(Relation relation)
Definition: predicate.c:560
static HTAB * SerializableXidHash
Definition: predicate.c:396
static bool CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag)
Definition: predicate.c:2326
void PredicateLockPageCombine(Relation relation, BlockNumber oldblkno, BlockNumber newblkno)
Definition: predicate.c:3229
static bool SerialPagePrecedesLogically(int64 page1, int64 page2)
Definition: predicate.c:731
static void CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag)
Definition: predicate.c:4166
int max_predicate_locks_per_relation
Definition: predicate.c:372
#define SxactIsROSafe(sxact)
Definition: predicate.c:291
void PreCommit_CheckForSerializationFailure(void)
Definition: predicate.c:4703
void ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe)
Definition: predicate.c:3312
static void FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer)
Definition: predicate.c:4501
static const PREDICATELOCKTARGETTAG ScratchTargetTag
Definition: predicate.c:406
#define PredicateLockHashPartitionLockByIndex(i)
Definition: predicate.c:261
static void OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer)
Definition: predicate.c:4536
static bool CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag)
Definition: predicate.c:2111
void PredicateLockRelation(Relation relation, Snapshot snapshot)
Definition: predicate.c:2576
static SERIALIZABLEXACT * MySerializableXact
Definition: predicate.c:421
void PredicateLockShmemInit(void)
Definition: predicate.c:1145
void predicatelock_twophase_recover(TransactionId xid, uint16 info, void *recdata, uint32 len)
Definition: predicate.c:4909
Size PredicateLockShmemSize(void)
Definition: predicate.c:1357
#define SxactIsDoomed(sxact)
Definition: predicate.c:280
#define NPREDICATELOCKTARGETENTS()
Definition: predicate.c:264
static SerCommitSeqNo SerialGetMinConflictCommitSeqNo(TransactionId xid)
Definition: predicate.c:949
static void SummarizeOldestCommittedSxact(void)
Definition: predicate.c:1503
bool check_serial_buffers(int *newval, void **extra, GucSource source)
Definition: predicate.c:847
#define TargetTagIsCoveredBy(covered_target, covering_target)
Definition: predicate.c:233
static RWConflictPoolHeader RWConflictPool
Definition: predicate.c:390
static void ReleaseRWConflict(RWConflict conflict)
Definition: predicate.c:691
static bool TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag, PREDICATELOCKTARGETTAG newtargettag, bool removeOld)
Definition: predicate.c:2730
void AtPrepare_PredicateLocks(void)
Definition: predicate.c:4790
void RegisterPredicateLockingXid(TransactionId xid)
Definition: predicate.c:1959
#define PredicateLockHashPartitionLock(hashcode)
Definition: predicate.c:258
#define SERIAL_ENTRIESPERPAGE
Definition: predicate.c:330
static bool XidIsConcurrent(TransactionId xid)
Definition: predicate.c:3972
static void ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial, bool summarize)
Definition: predicate.c:3835
static HTAB * PredicateLockTargetHash
Definition: predicate.c:397
bool CheckForSerializableConflictOutNeeded(Relation relation, Snapshot snapshot)
Definition: predicate.c:3991
#define SxactIsRolledBack(sxact)
Definition: predicate.c:279
static SERIALIZABLEXACT * SavedSerializableXact
Definition: predicate.c:431
#define SxactHasSummaryConflictOut(sxact)
Definition: predicate.c:283
void TransferPredicateLocksToHeapRelation(Relation relation)
Definition: predicate.c:3123
void PostPrepare_PredicateLocks(TransactionId xid)
Definition: predicate.c:4859
static void CreateLocalPredicateLockHash(void)
Definition: predicate.c:1940
#define SerialSlruCtl
Definition: predicate.c:326
int max_predicate_locks_per_xact
Definition: predicate.c:371
Snapshot GetSerializableTransactionSnapshot(Snapshot snapshot)
Definition: predicate.c:1682
void * SerializableXactHandle
Definition: predicate.h:34
#define RWConflictDataSize
#define SXACT_FLAG_DEFERRABLE_WAITING
#define SXACT_FLAG_SUMMARY_CONFLICT_IN
@ TWOPHASEPREDICATERECORD_XACT
@ TWOPHASEPREDICATERECORD_LOCK
#define FirstNormalSerCommitSeqNo
#define InvalidSerCommitSeqNo
@ PREDLOCKTAG_RELATION
@ PREDLOCKTAG_PAGE
@ PREDLOCKTAG_TUPLE
struct PREDICATELOCKTAG PREDICATELOCKTAG
#define SXACT_FLAG_CONFLICT_OUT
#define PredXactListDataSize
#define SXACT_FLAG_READ_ONLY
#define SXACT_FLAG_DOOMED
struct LOCALPREDICATELOCK LOCALPREDICATELOCK
#define GET_PREDICATELOCKTARGETTAG_DB(locktag)
#define GET_PREDICATELOCKTARGETTAG_RELATION(locktag)
#define RWConflictPoolHeaderDataSize
struct SERIALIZABLEXIDTAG SERIALIZABLEXIDTAG
#define InvalidSerializableXact
struct PREDICATELOCKTARGET PREDICATELOCKTARGET
#define SET_PREDICATELOCKTARGETTAG_PAGE(locktag, dboid, reloid, blocknum)
#define RecoverySerCommitSeqNo
struct PREDICATELOCKTARGETTAG PREDICATELOCKTARGETTAG
struct SERIALIZABLEXID SERIALIZABLEXID
struct RWConflictData * RWConflict
#define GET_PREDICATELOCKTARGETTAG_TYPE(locktag)
#define SET_PREDICATELOCKTARGETTAG_RELATION(locktag, dboid, reloid)
uint64 SerCommitSeqNo
#define SXACT_FLAG_ROLLED_BACK
#define SXACT_FLAG_COMMITTED
#define SXACT_FLAG_RO_UNSAFE
#define SXACT_FLAG_PREPARED
#define SET_PREDICATELOCKTARGETTAG_TUPLE(locktag, dboid, reloid, blocknum, offnum)
#define SXACT_FLAG_PARTIALLY_RELEASED
#define GET_PREDICATELOCKTARGETTAG_PAGE(locktag)
#define SXACT_FLAG_RO_SAFE
struct PREDICATELOCK PREDICATELOCK
#define SXACT_FLAG_SUMMARY_CONFLICT_OUT
#define GET_PREDICATELOCKTARGETTAG_OFFSET(locktag)
Snapshot GetSnapshotData(Snapshot snapshot)
Definition: procarray.c:2175
bool ProcArrayInstallImportedXmin(TransactionId xmin, VirtualTransactionId *sourcevxid)
Definition: procarray.c:2532
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
#define RelationUsesLocalBuffers(relation)
Definition: rel.h:648
bool ShmemAddrIsValid(const void *addr)
Definition: shmem.c:274
HTAB * ShmemInitHash(const char *name, long init_size, long max_size, HASHCTL *infoP, int hash_flags)
Definition: shmem.c:332
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:387
void SimpleLruInit(SlruCtl ctl, const char *name, int nslots, int nlsns, const char *subdir, int buffer_tranche_id, int bank_tranche_id, SyncRequestHandler sync_handler, bool long_segment_names)
Definition: slru.c:251
int SimpleLruReadPage_ReadOnly(SlruCtl ctl, int64 pageno, TransactionId xid)
Definition: slru.c:604
void SimpleLruWriteAll(SlruCtl ctl, bool allow_redirtied)
Definition: slru.c:1321
int SimpleLruReadPage(SlruCtl ctl, int64 pageno, bool write_ok, TransactionId xid)
Definition: slru.c:501
int SimpleLruZeroPage(SlruCtl ctl, int64 pageno)
Definition: slru.c:374
void SimpleLruTruncate(SlruCtl ctl, int64 cutoffPage)
Definition: slru.c:1407
Size SimpleLruShmemSize(int nslots, int nlsns)
Definition: slru.c:198
bool check_slru_buffers(const char *name, int *newval)
Definition: slru.c:354
static LWLock * SimpleLruGetBankLock(SlruCtl ctl, int64 pageno)
Definition: slru.h:175
#define SlruPagePrecedesUnitTests(ctl, per_page)
Definition: slru.h:199
#define SLRU_PAGES_PER_SEGMENT
Definition: slru.h:39
Snapshot GetTransactionSnapshot(void)
Definition: snapmgr.c:271
#define IsMVCCSnapshot(snapshot)
Definition: snapmgr.h:55
void ProcSendSignal(ProcNumber procNumber)
Definition: proc.c:1987
PGPROC * MyProc
Definition: proc.c:67
void ProcWaitForSignal(uint32 wait_event_info)
Definition: proc.c:1975
Size keysize
Definition: hsearch.h:75
HashValueFunc hash
Definition: hsearch.h:78
Size entrysize
Definition: hsearch.h:76
long num_partitions
Definition: hsearch.h:68
Definition: dynahash.c:220
Definition: lwlock.h:42
Definition: proc.h:163
SERIALIZABLEXACT * myXact
PREDICATELOCKTARGET * myTarget
PREDICATELOCKTARGETTAG tag
PREDICATELOCKTAG tag
SerCommitSeqNo commitSeqNo
SERIALIZABLEXACT * element
SerCommitSeqNo LastSxactCommitSeqNo
SerCommitSeqNo CanPartialClearThrough
SERIALIZABLEXACT * OldCommittedSxact
SerCommitSeqNo HavePartialClearedThrough
TransactionId SxactGlobalXmin
SERIALIZABLEXACT * sxactIn
SERIALIZABLEXACT * sxactOut
Form_pg_index rd_index
Definition: rel.h:192
Oid rd_id
Definition: rel.h:113
RelFileLocator rd_locator
Definition: rel.h:57
VirtualTransactionId vxid
SerCommitSeqNo lastCommitBeforeSnapshot
union SERIALIZABLEXACT::@125 SeqNo
dlist_head possibleUnsafeConflicts
SerCommitSeqNo prepareSeqNo
SerCommitSeqNo commitSeqNo
TransactionId finishedBefore
SerCommitSeqNo earliestOutConflictCommit
SERIALIZABLEXACT * myXact
TransactionId headXid
Definition: predicate.c:348
TransactionId tailXid
Definition: predicate.c:349
TransactionId xmin
Definition: snapshot.h:153
uint32 xcnt
Definition: snapshot.h:165
TransactionId xmax
Definition: snapshot.h:154
TransactionId * xip
Definition: snapshot.h:164
FullTransactionId nextXid
Definition: transam.h:220
PREDICATELOCKTARGETTAG target
TwoPhasePredicateRecordType type
TwoPhasePredicateLockRecord lockRecord
union TwoPhasePredicateRecord::@126 data
TwoPhasePredicateXactRecord xactRecord
LocalTransactionId localTransactionId
Definition: lock.h:63
ProcNumber procNumber
Definition: lock.h:62
dlist_node * cur
Definition: ilist.h:179
dlist_node * cur
Definition: ilist.h:200
@ SYNC_HANDLER_NONE
Definition: sync.h:42
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
bool TransactionIdPrecedesOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.c:299
bool TransactionIdFollows(TransactionId id1, TransactionId id2)
Definition: transam.c:314
bool TransactionIdFollowsOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.c:329
#define FirstUnpinnedObjectId
Definition: transam.h:196
#define InvalidTransactionId
Definition: transam.h:31
#define TransactionIdEquals(id1, id2)
Definition: transam.h:43
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define FirstNormalTransactionId
Definition: transam.h:34
#define TransactionIdIsValid(xid)
Definition: transam.h:41
void RegisterTwoPhaseRecord(TwoPhaseRmgrId rmid, uint16 info, const void *data, uint32 len)
Definition: twophase.c:1264
int max_prepared_xacts
Definition: twophase.c:115
#define TWOPHASE_RM_PREDICATELOCK_ID
Definition: twophase_rmgr.h:28
TransamVariablesData * TransamVariables
Definition: varsup.c:34
bool XactDeferrable
Definition: xact.c:85
bool XactReadOnly
Definition: xact.c:82
TransactionId GetTopTransactionIdIfAny(void)
Definition: xact.c:441
bool IsSubTransaction(void)
Definition: xact.c:5044
bool TransactionIdIsCurrentTransactionId(TransactionId xid)
Definition: xact.c:941
bool IsInParallelMode(void)
Definition: xact.c:1089
#define IsolationIsSerializable()
Definition: xact.h:52
bool RecoveryInProgress(void)
Definition: xlog.c:6522