PostgreSQL Source Code  git master
clog.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * clog.c
4  * PostgreSQL transaction-commit-log manager
5  *
6  * This module replaces the old "pg_log" access code, which treated pg_log
7  * essentially like a relation, in that it went through the regular buffer
8  * manager. The problem with that was that there wasn't any good way to
9  * recycle storage space for transactions so old that they'll never be
10  * looked up again. Now we use specialized access code so that the commit
11  * log can be broken into relatively small, independent segments.
12  *
13  * XLOG interactions: this module generates an XLOG record whenever a new
14  * CLOG page is initialized to zeroes. Other writes of CLOG come from
15  * recording of transaction commit or abort in xact.c, which generates its
16  * own XLOG records for these events and will re-perform the status update
17  * on redo; so we need make no additional XLOG entry here. For synchronous
18  * transaction commits, the XLOG is guaranteed flushed through the XLOG commit
19  * record before we are called to log a commit, so the WAL rule "write xlog
20  * before data" is satisfied automatically. However, for async commits we
21  * must track the latest LSN affecting each CLOG page, so that we can flush
22  * XLOG that far and satisfy the WAL rule. We don't have to worry about this
23  * for aborts (whether sync or async), since the post-crash assumption would
24  * be that such transactions failed anyway.
25  *
26  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
27  * Portions Copyright (c) 1994, Regents of the University of California
28  *
29  * src/backend/access/transam/clog.c
30  *
31  *-------------------------------------------------------------------------
32  */
33 #include "postgres.h"
34 
35 #include "access/clog.h"
36 #include "access/slru.h"
37 #include "access/transam.h"
38 #include "access/xlog.h"
39 #include "access/xloginsert.h"
40 #include "access/xlogutils.h"
41 #include "miscadmin.h"
42 #include "pg_trace.h"
43 #include "pgstat.h"
44 #include "storage/proc.h"
45 
46 /*
47  * Defines for CLOG page sizes. A page is the same BLCKSZ as is used
48  * everywhere else in Postgres.
49  *
50  * Note: because TransactionIds are 32 bits and wrap around at 0xFFFFFFFF,
51  * CLOG page numbering also wraps around at 0xFFFFFFFF/CLOG_XACTS_PER_PAGE,
52  * and CLOG segment numbering at
53  * 0xFFFFFFFF/CLOG_XACTS_PER_PAGE/SLRU_PAGES_PER_SEGMENT. We need take no
54  * explicit notice of that fact in this module, except when comparing segment
55  * and page numbers in TruncateCLOG (see CLOGPagePrecedes).
56  */
57 
58 /* We need two bits per xact, so four xacts fit in a byte */
59 #define CLOG_BITS_PER_XACT 2
60 #define CLOG_XACTS_PER_BYTE 4
61 #define CLOG_XACTS_PER_PAGE (BLCKSZ * CLOG_XACTS_PER_BYTE)
62 #define CLOG_XACT_BITMASK ((1 << CLOG_BITS_PER_XACT) - 1)
63 
64 #define TransactionIdToPage(xid) ((xid) / (TransactionId) CLOG_XACTS_PER_PAGE)
65 #define TransactionIdToPgIndex(xid) ((xid) % (TransactionId) CLOG_XACTS_PER_PAGE)
66 #define TransactionIdToByte(xid) (TransactionIdToPgIndex(xid) / CLOG_XACTS_PER_BYTE)
67 #define TransactionIdToBIndex(xid) ((xid) % (TransactionId) CLOG_XACTS_PER_BYTE)
68 
69 /* We store the latest async LSN for each group of transactions */
70 #define CLOG_XACTS_PER_LSN_GROUP 32 /* keep this a power of 2 */
71 #define CLOG_LSNS_PER_PAGE (CLOG_XACTS_PER_PAGE / CLOG_XACTS_PER_LSN_GROUP)
72 
73 #define GetLSNIndex(slotno, xid) ((slotno) * CLOG_LSNS_PER_PAGE + \
74  ((xid) % (TransactionId) CLOG_XACTS_PER_PAGE) / CLOG_XACTS_PER_LSN_GROUP)
75 
76 /*
77  * The number of subtransactions below which we consider to apply clog group
78  * update optimization. Testing reveals that the number higher than this can
79  * hurt performance.
80  */
81 #define THRESHOLD_SUBTRANS_CLOG_OPT 5
82 
83 /*
84  * Link to shared-memory data structures for CLOG control
85  */
87 
88 #define XactCtl (&XactCtlData)
89 
90 
91 static int ZeroCLOGPage(int pageno, bool writeXlog);
92 static bool CLOGPagePrecedes(int page1, int page2);
93 static void WriteZeroPageXlogRec(int pageno);
94 static void WriteTruncateXlogRec(int pageno, TransactionId oldestXact,
95  Oid oldestXactDb);
96 static void TransactionIdSetPageStatus(TransactionId xid, int nsubxids,
97  TransactionId *subxids, XidStatus status,
98  XLogRecPtr lsn, int pageno,
99  bool all_xact_same_page);
101  XLogRecPtr lsn, int slotno);
102 static void set_status_by_pages(int nsubxids, TransactionId *subxids,
105  XidStatus status, XLogRecPtr lsn, int pageno);
106 static void TransactionIdSetPageStatusInternal(TransactionId xid, int nsubxids,
107  TransactionId *subxids, XidStatus status,
108  XLogRecPtr lsn, int pageno);
109 
110 
111 /*
112  * TransactionIdSetTreeStatus
113  *
114  * Record the final state of transaction entries in the commit log for
115  * a transaction and its subtransaction tree. Take care to ensure this is
116  * efficient, and as atomic as possible.
117  *
118  * xid is a single xid to set status for. This will typically be
119  * the top level transactionid for a top level commit or abort. It can
120  * also be a subtransaction when we record transaction aborts.
121  *
122  * subxids is an array of xids of length nsubxids, representing subtransactions
123  * in the tree of xid. In various cases nsubxids may be zero.
124  *
125  * lsn must be the WAL location of the commit record when recording an async
126  * commit. For a synchronous commit it can be InvalidXLogRecPtr, since the
127  * caller guarantees the commit record is already flushed in that case. It
128  * should be InvalidXLogRecPtr for abort cases, too.
129  *
130  * In the commit case, atomicity is limited by whether all the subxids are in
131  * the same CLOG page as xid. If they all are, then the lock will be grabbed
132  * only once, and the status will be set to committed directly. Otherwise
133  * we must
134  * 1. set sub-committed all subxids that are not on the same page as the
135  * main xid
136  * 2. atomically set committed the main xid and the subxids on the same page
137  * 3. go over the first bunch again and set them committed
138  * Note that as far as concurrent checkers are concerned, main transaction
139  * commit as a whole is still atomic.
140  *
141  * Example:
142  * TransactionId t commits and has subxids t1, t2, t3, t4
143  * t is on page p1, t1 is also on p1, t2 and t3 are on p2, t4 is on p3
144  * 1. update pages2-3:
145  * page2: set t2,t3 as sub-committed
146  * page3: set t4 as sub-committed
147  * 2. update page1:
148  * set t1 as sub-committed,
149  * then set t as committed,
150  then set t1 as committed
151  * 3. update pages2-3:
152  * page2: set t2,t3 as committed
153  * page3: set t4 as committed
154  *
155  * NB: this is a low-level routine and is NOT the preferred entry point
156  * for most uses; functions in transam.c are the intended callers.
157  *
158  * XXX Think about issuing POSIX_FADV_WILLNEED on pages that we will need,
159  * but aren't yet in cache, as well as hinting pages not to fall out of
160  * cache yet.
161  */
162 void
164  TransactionId *subxids, XidStatus status, XLogRecPtr lsn)
165 {
166  int pageno = TransactionIdToPage(xid); /* get page of parent */
167  int i;
168 
170  status == TRANSACTION_STATUS_ABORTED);
171 
172  /*
173  * See how many subxids, if any, are on the same page as the parent, if
174  * any.
175  */
176  for (i = 0; i < nsubxids; i++)
177  {
178  if (TransactionIdToPage(subxids[i]) != pageno)
179  break;
180  }
181 
182  /*
183  * Do all items fit on a single page?
184  */
185  if (i == nsubxids)
186  {
187  /*
188  * Set the parent and all subtransactions in a single call
189  */
190  TransactionIdSetPageStatus(xid, nsubxids, subxids, status, lsn,
191  pageno, true);
192  }
193  else
194  {
195  int nsubxids_on_first_page = i;
196 
197  /*
198  * If this is a commit then we care about doing this correctly (i.e.
199  * using the subcommitted intermediate status). By here, we know
200  * we're updating more than one page of clog, so we must mark entries
201  * that are *not* on the first page so that they show as subcommitted
202  * before we then return to update the status to fully committed.
203  *
204  * To avoid touching the first page twice, skip marking subcommitted
205  * for the subxids on that first page.
206  */
207  if (status == TRANSACTION_STATUS_COMMITTED)
208  set_status_by_pages(nsubxids - nsubxids_on_first_page,
209  subxids + nsubxids_on_first_page,
211 
212  /*
213  * Now set the parent and subtransactions on same page as the parent,
214  * if any
215  */
216  pageno = TransactionIdToPage(xid);
217  TransactionIdSetPageStatus(xid, nsubxids_on_first_page, subxids, status,
218  lsn, pageno, false);
219 
220  /*
221  * Now work through the rest of the subxids one clog page at a time,
222  * starting from the second page onwards, like we did above.
223  */
224  set_status_by_pages(nsubxids - nsubxids_on_first_page,
225  subxids + nsubxids_on_first_page,
226  status, lsn);
227  }
228 }
229 
230 /*
231  * Helper for TransactionIdSetTreeStatus: set the status for a bunch of
232  * transactions, chunking in the separate CLOG pages involved. We never
233  * pass the whole transaction tree to this function, only subtransactions
234  * that are on different pages to the top level transaction id.
235  */
236 static void
237 set_status_by_pages(int nsubxids, TransactionId *subxids,
239 {
240  int pageno = TransactionIdToPage(subxids[0]);
241  int offset = 0;
242  int i = 0;
243 
244  Assert(nsubxids > 0); /* else the pageno fetch above is unsafe */
245 
246  while (i < nsubxids)
247  {
248  int num_on_page = 0;
249  int nextpageno;
250 
251  do
252  {
253  nextpageno = TransactionIdToPage(subxids[i]);
254  if (nextpageno != pageno)
255  break;
256  num_on_page++;
257  i++;
258  } while (i < nsubxids);
259 
261  num_on_page, subxids + offset,
262  status, lsn, pageno, false);
263  offset = i;
264  pageno = nextpageno;
265  }
266 }
267 
268 /*
269  * Record the final state of transaction entries in the commit log for all
270  * entries on a single page. Atomic only on this page.
271  */
272 static void
274  TransactionId *subxids, XidStatus status,
275  XLogRecPtr lsn, int pageno,
276  bool all_xact_same_page)
277 {
278  /* Can't use group update when PGPROC overflows. */
280  "group clog threshold less than PGPROC cached subxids");
281 
282  /*
283  * When there is contention on XactSLRULock, we try to group multiple
284  * updates; a single leader process will perform transaction status
285  * updates for multiple backends so that the number of times XactSLRULock
286  * needs to be acquired is reduced.
287  *
288  * For this optimization to be safe, the XID in MyPgXact and the subxids
289  * in MyProc must be the same as the ones for which we're setting the
290  * status. Check that this is the case.
291  *
292  * For this optimization to be efficient, we shouldn't have too many
293  * sub-XIDs and all of the XIDs for which we're adjusting clog should be
294  * on the same page. Check those conditions, too.
295  */
296  if (all_xact_same_page && xid == MyPgXact->xid &&
297  nsubxids <= THRESHOLD_SUBTRANS_CLOG_OPT &&
298  nsubxids == MyPgXact->nxids &&
299  memcmp(subxids, MyProc->subxids.xids,
300  nsubxids * sizeof(TransactionId)) == 0)
301  {
302  /*
303  * If we can immediately acquire XactSLRULock, we update the status of
304  * our own XID and release the lock. If not, try use group XID
305  * update. If that doesn't work out, fall back to waiting for the
306  * lock to perform an update for this transaction only.
307  */
308  if (LWLockConditionalAcquire(XactSLRULock, LW_EXCLUSIVE))
309  {
310  /* Got the lock without waiting! Do the update. */
311  TransactionIdSetPageStatusInternal(xid, nsubxids, subxids, status,
312  lsn, pageno);
313  LWLockRelease(XactSLRULock);
314  return;
315  }
316  else if (TransactionGroupUpdateXidStatus(xid, status, lsn, pageno))
317  {
318  /* Group update mechanism has done the work. */
319  return;
320  }
321 
322  /* Fall through only if update isn't done yet. */
323  }
324 
325  /* Group update not applicable, or couldn't accept this page number. */
326  LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
327  TransactionIdSetPageStatusInternal(xid, nsubxids, subxids, status,
328  lsn, pageno);
329  LWLockRelease(XactSLRULock);
330 }
331 
332 /*
333  * Record the final state of transaction entry in the commit log
334  *
335  * We don't do any locking here; caller must handle that.
336  */
337 static void
339  TransactionId *subxids, XidStatus status,
340  XLogRecPtr lsn, int pageno)
341 {
342  int slotno;
343  int i;
344 
346  status == TRANSACTION_STATUS_ABORTED ||
348  Assert(LWLockHeldByMeInMode(XactSLRULock, LW_EXCLUSIVE));
349 
350  /*
351  * If we're doing an async commit (ie, lsn is valid), then we must wait
352  * for any active write on the page slot to complete. Otherwise our
353  * update could reach disk in that write, which will not do since we
354  * mustn't let it reach disk until we've done the appropriate WAL flush.
355  * But when lsn is invalid, it's OK to scribble on a page while it is
356  * write-busy, since we don't care if the update reaches disk sooner than
357  * we think.
358  */
359  slotno = SimpleLruReadPage(XactCtl, pageno, XLogRecPtrIsInvalid(lsn), xid);
360 
361  /*
362  * Set the main transaction id, if any.
363  *
364  * If we update more than one xid on this page while it is being written
365  * out, we might find that some of the bits go to disk and others don't.
366  * If we are updating commits on the page with the top-level xid that
367  * could break atomicity, so we subcommit the subxids first before we mark
368  * the top-level commit.
369  */
370  if (TransactionIdIsValid(xid))
371  {
372  /* Subtransactions first, if needed ... */
373  if (status == TRANSACTION_STATUS_COMMITTED)
374  {
375  for (i = 0; i < nsubxids; i++)
376  {
377  Assert(XactCtl->shared->page_number[slotno] == TransactionIdToPage(subxids[i]));
378  TransactionIdSetStatusBit(subxids[i],
380  lsn, slotno);
381  }
382  }
383 
384  /* ... then the main transaction */
385  TransactionIdSetStatusBit(xid, status, lsn, slotno);
386  }
387 
388  /* Set the subtransactions */
389  for (i = 0; i < nsubxids; i++)
390  {
391  Assert(XactCtl->shared->page_number[slotno] == TransactionIdToPage(subxids[i]));
392  TransactionIdSetStatusBit(subxids[i], status, lsn, slotno);
393  }
394 
395  XactCtl->shared->page_dirty[slotno] = true;
396 }
397 
398 /*
399  * When we cannot immediately acquire XactSLRULock in exclusive mode at
400  * commit time, add ourselves to a list of processes that need their XIDs
401  * status update. The first process to add itself to the list will acquire
402  * XactSLRULock in exclusive mode and set transaction status as required
403  * on behalf of all group members. This avoids a great deal of contention
404  * around XactSLRULock when many processes are trying to commit at once,
405  * since the lock need not be repeatedly handed off from one committing
406  * process to the next.
407  *
408  * Returns true when transaction status has been updated in clog; returns
409  * false if we decided against applying the optimization because the page
410  * number we need to update differs from those processes already waiting.
411  */
412 static bool
414  XLogRecPtr lsn, int pageno)
415 {
416  volatile PROC_HDR *procglobal = ProcGlobal;
417  PGPROC *proc = MyProc;
418  uint32 nextidx;
419  uint32 wakeidx;
420 
421  /* We should definitely have an XID whose status needs to be updated. */
423 
424  /*
425  * Add ourselves to the list of processes needing a group XID status
426  * update.
427  */
428  proc->clogGroupMember = true;
429  proc->clogGroupMemberXid = xid;
431  proc->clogGroupMemberPage = pageno;
432  proc->clogGroupMemberLsn = lsn;
433 
434  nextidx = pg_atomic_read_u32(&procglobal->clogGroupFirst);
435 
436  while (true)
437  {
438  /*
439  * Add the proc to list, if the clog page where we need to update the
440  * current transaction status is same as group leader's clog page.
441  *
442  * There is a race condition here, which is that after doing the below
443  * check and before adding this proc's clog update to a group, the
444  * group leader might have already finished the group update for this
445  * page and becomes group leader of another group. This will lead to a
446  * situation where a single group can have different clog page
447  * updates. This isn't likely and will still work, just maybe a bit
448  * less efficiently.
449  */
450  if (nextidx != INVALID_PGPROCNO &&
452  {
453  proc->clogGroupMember = false;
454  return false;
455  }
456 
457  pg_atomic_write_u32(&proc->clogGroupNext, nextidx);
458 
460  &nextidx,
461  (uint32) proc->pgprocno))
462  break;
463  }
464 
465  /*
466  * If the list was not empty, the leader will update the status of our
467  * XID. It is impossible to have followers without a leader because the
468  * first process that has added itself to the list will always have
469  * nextidx as INVALID_PGPROCNO.
470  */
471  if (nextidx != INVALID_PGPROCNO)
472  {
473  int extraWaits = 0;
474 
475  /* Sleep until the leader updates our XID status. */
477  for (;;)
478  {
479  /* acts as a read barrier */
480  PGSemaphoreLock(proc->sem);
481  if (!proc->clogGroupMember)
482  break;
483  extraWaits++;
484  }
486 
488 
489  /* Fix semaphore count for any absorbed wakeups */
490  while (extraWaits-- > 0)
491  PGSemaphoreUnlock(proc->sem);
492  return true;
493  }
494 
495  /* We are the leader. Acquire the lock on behalf of everyone. */
496  LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
497 
498  /*
499  * Now that we've got the lock, clear the list of processes waiting for
500  * group XID status update, saving a pointer to the head of the list.
501  * Trying to pop elements one at a time could lead to an ABA problem.
502  */
503  nextidx = pg_atomic_exchange_u32(&procglobal->clogGroupFirst,
505 
506  /* Remember head of list so we can perform wakeups after dropping lock. */
507  wakeidx = nextidx;
508 
509  /* Walk the list and update the status of all XIDs. */
510  while (nextidx != INVALID_PGPROCNO)
511  {
512  PGPROC *proc = &ProcGlobal->allProcs[nextidx];
513  PGXACT *pgxact = &ProcGlobal->allPgXact[nextidx];
514 
515  /*
516  * Transactions with more than THRESHOLD_SUBTRANS_CLOG_OPT sub-XIDs
517  * should not use group XID status update mechanism.
518  */
520 
522  pgxact->nxids,
523  proc->subxids.xids,
525  proc->clogGroupMemberLsn,
526  proc->clogGroupMemberPage);
527 
528  /* Move to next proc in list. */
529  nextidx = pg_atomic_read_u32(&proc->clogGroupNext);
530  }
531 
532  /* We're done with the lock now. */
533  LWLockRelease(XactSLRULock);
534 
535  /*
536  * Now that we've released the lock, go back and wake everybody up. We
537  * don't do this under the lock so as to keep lock hold times to a
538  * minimum.
539  */
540  while (wakeidx != INVALID_PGPROCNO)
541  {
542  PGPROC *proc = &ProcGlobal->allProcs[wakeidx];
543 
544  wakeidx = pg_atomic_read_u32(&proc->clogGroupNext);
546 
547  /* ensure all previous writes are visible before follower continues. */
549 
550  proc->clogGroupMember = false;
551 
552  if (proc != MyProc)
553  PGSemaphoreUnlock(proc->sem);
554  }
555 
556  return true;
557 }
558 
559 /*
560  * Sets the commit status of a single transaction.
561  *
562  * Must be called with XactSLRULock held
563  */
564 static void
566 {
567  int byteno = TransactionIdToByte(xid);
568  int bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
569  char *byteptr;
570  char byteval;
571  char curval;
572 
573  byteptr = XactCtl->shared->page_buffer[slotno] + byteno;
574  curval = (*byteptr >> bshift) & CLOG_XACT_BITMASK;
575 
576  /*
577  * When replaying transactions during recovery we still need to perform
578  * the two phases of subcommit and then commit. However, some transactions
579  * are already correctly marked, so we just treat those as a no-op which
580  * allows us to keep the following Assert as restrictive as possible.
581  */
582  if (InRecovery && status == TRANSACTION_STATUS_SUB_COMMITTED &&
584  return;
585 
586  /*
587  * Current state change should be from 0 or subcommitted to target state
588  * or we should already be there when replaying changes during recovery.
589  */
590  Assert(curval == 0 ||
592  status != TRANSACTION_STATUS_IN_PROGRESS) ||
593  curval == status);
594 
595  /* note this assumes exclusive access to the clog page */
596  byteval = *byteptr;
597  byteval &= ~(((1 << CLOG_BITS_PER_XACT) - 1) << bshift);
598  byteval |= (status << bshift);
599  *byteptr = byteval;
600 
601  /*
602  * Update the group LSN if the transaction completion LSN is higher.
603  *
604  * Note: lsn will be invalid when supplied during InRecovery processing,
605  * so we don't need to do anything special to avoid LSN updates during
606  * recovery. After recovery completes the next clog change will set the
607  * LSN correctly.
608  */
609  if (!XLogRecPtrIsInvalid(lsn))
610  {
611  int lsnindex = GetLSNIndex(slotno, xid);
612 
613  if (XactCtl->shared->group_lsn[lsnindex] < lsn)
614  XactCtl->shared->group_lsn[lsnindex] = lsn;
615  }
616 }
617 
618 /*
619  * Interrogate the state of a transaction in the commit log.
620  *
621  * Aside from the actual commit status, this function returns (into *lsn)
622  * an LSN that is late enough to be able to guarantee that if we flush up to
623  * that LSN then we will have flushed the transaction's commit record to disk.
624  * The result is not necessarily the exact LSN of the transaction's commit
625  * record! For example, for long-past transactions (those whose clog pages
626  * already migrated to disk), we'll return InvalidXLogRecPtr. Also, because
627  * we group transactions on the same clog page to conserve storage, we might
628  * return the LSN of a later transaction that falls into the same group.
629  *
630  * NB: this is a low-level routine and is NOT the preferred entry point
631  * for most uses; TransactionLogFetch() in transam.c is the intended caller.
632  */
633 XidStatus
635 {
636  int pageno = TransactionIdToPage(xid);
637  int byteno = TransactionIdToByte(xid);
638  int bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
639  int slotno;
640  int lsnindex;
641  char *byteptr;
643 
644  /* lock is acquired by SimpleLruReadPage_ReadOnly */
645 
646  slotno = SimpleLruReadPage_ReadOnly(XactCtl, pageno, xid);
647  byteptr = XactCtl->shared->page_buffer[slotno] + byteno;
648 
649  status = (*byteptr >> bshift) & CLOG_XACT_BITMASK;
650 
651  lsnindex = GetLSNIndex(slotno, xid);
652  *lsn = XactCtl->shared->group_lsn[lsnindex];
653 
654  LWLockRelease(XactSLRULock);
655 
656  return status;
657 }
658 
659 /*
660  * Number of shared CLOG buffers.
661  *
662  * On larger multi-processor systems, it is possible to have many CLOG page
663  * requests in flight at one time which could lead to disk access for CLOG
664  * page if the required page is not found in memory. Testing revealed that we
665  * can get the best performance by having 128 CLOG buffers, more than that it
666  * doesn't improve performance.
667  *
668  * Unconditionally keeping the number of CLOG buffers to 128 did not seem like
669  * a good idea, because it would increase the minimum amount of shared memory
670  * required to start, which could be a problem for people running very small
671  * configurations. The following formula seems to represent a reasonable
672  * compromise: people with very low values for shared_buffers will get fewer
673  * CLOG buffers as well, and everyone else will get 128.
674  */
675 Size
677 {
678  return Min(128, Max(4, NBuffers / 512));
679 }
680 
681 /*
682  * Initialization of shared memory for CLOG
683  */
684 Size
686 {
688 }
689 
690 void
692 {
693  XactCtl->PagePrecedes = CLOGPagePrecedes;
695  XactSLRULock, "pg_xact", LWTRANCHE_XACT_BUFFER);
696 }
697 
698 /*
699  * This func must be called ONCE on system install. It creates
700  * the initial CLOG segment. (The CLOG directory is assumed to
701  * have been created by initdb, and CLOGShmemInit must have been
702  * called already.)
703  */
704 void
706 {
707  int slotno;
708 
709  LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
710 
711  /* Create and zero the first page of the commit log */
712  slotno = ZeroCLOGPage(0, false);
713 
714  /* Make sure it's written out */
715  SimpleLruWritePage(XactCtl, slotno);
716  Assert(!XactCtl->shared->page_dirty[slotno]);
717 
718  LWLockRelease(XactSLRULock);
719 }
720 
721 /*
722  * Initialize (or reinitialize) a page of CLOG to zeroes.
723  * If writeXlog is true, also emit an XLOG record saying we did this.
724  *
725  * The page is not actually written, just set up in shared memory.
726  * The slot number of the new page is returned.
727  *
728  * Control lock must be held at entry, and will be held at exit.
729  */
730 static int
731 ZeroCLOGPage(int pageno, bool writeXlog)
732 {
733  int slotno;
734 
735  slotno = SimpleLruZeroPage(XactCtl, pageno);
736 
737  if (writeXlog)
738  WriteZeroPageXlogRec(pageno);
739 
740  return slotno;
741 }
742 
743 /*
744  * This must be called ONCE during postmaster or standalone-backend startup,
745  * after StartupXLOG has initialized ShmemVariableCache->nextFullXid.
746  */
747 void
749 {
751  int pageno = TransactionIdToPage(xid);
752 
753  LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
754 
755  /*
756  * Initialize our idea of the latest page number.
757  */
758  XactCtl->shared->latest_page_number = pageno;
759 
760  LWLockRelease(XactSLRULock);
761 }
762 
763 /*
764  * This must be called ONCE at the end of startup/recovery.
765  */
766 void
767 TrimCLOG(void)
768 {
770  int pageno = TransactionIdToPage(xid);
771 
772  LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
773 
774  /*
775  * Re-Initialize our idea of the latest page number.
776  */
777  XactCtl->shared->latest_page_number = pageno;
778 
779  /*
780  * Zero out the remainder of the current clog page. Under normal
781  * circumstances it should be zeroes already, but it seems at least
782  * theoretically possible that XLOG replay will have settled on a nextXID
783  * value that is less than the last XID actually used and marked by the
784  * previous database lifecycle (since subtransaction commit writes clog
785  * but makes no WAL entry). Let's just be safe. (We need not worry about
786  * pages beyond the current one, since those will be zeroed when first
787  * used. For the same reason, there is no need to do anything when
788  * nextFullXid is exactly at a page boundary; and it's likely that the
789  * "current" page doesn't exist yet in that case.)
790  */
791  if (TransactionIdToPgIndex(xid) != 0)
792  {
793  int byteno = TransactionIdToByte(xid);
794  int bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
795  int slotno;
796  char *byteptr;
797 
798  slotno = SimpleLruReadPage(XactCtl, pageno, false, xid);
799  byteptr = XactCtl->shared->page_buffer[slotno] + byteno;
800 
801  /* Zero so-far-unused positions in the current byte */
802  *byteptr &= (1 << bshift) - 1;
803  /* Zero the rest of the page */
804  MemSet(byteptr + 1, 0, BLCKSZ - byteno - 1);
805 
806  XactCtl->shared->page_dirty[slotno] = true;
807  }
808 
809  LWLockRelease(XactSLRULock);
810 }
811 
812 /*
813  * This must be called ONCE during postmaster or standalone-backend shutdown
814  */
815 void
817 {
818  /* Flush dirty CLOG pages to disk */
819  TRACE_POSTGRESQL_CLOG_CHECKPOINT_START(false);
820  SimpleLruFlush(XactCtl, false);
821 
822  /*
823  * fsync pg_xact to ensure that any files flushed previously are durably
824  * on disk.
825  */
826  fsync_fname("pg_xact", true);
827 
828  TRACE_POSTGRESQL_CLOG_CHECKPOINT_DONE(false);
829 }
830 
831 /*
832  * Perform a checkpoint --- either during shutdown, or on-the-fly
833  */
834 void
836 {
837  /* Flush dirty CLOG pages to disk */
838  TRACE_POSTGRESQL_CLOG_CHECKPOINT_START(true);
839  SimpleLruFlush(XactCtl, true);
840 
841  /*
842  * fsync pg_xact to ensure that any files flushed previously are durably
843  * on disk.
844  */
845  fsync_fname("pg_xact", true);
846 
847  TRACE_POSTGRESQL_CLOG_CHECKPOINT_DONE(true);
848 }
849 
850 
851 /*
852  * Make sure that CLOG has room for a newly-allocated XID.
853  *
854  * NB: this is called while holding XidGenLock. We want it to be very fast
855  * most of the time; even when it's not so fast, no actual I/O need happen
856  * unless we're forced to write out a dirty clog or xlog page to make room
857  * in shared memory.
858  */
859 void
861 {
862  int pageno;
863 
864  /*
865  * No work except at first XID of a page. But beware: just after
866  * wraparound, the first XID of page zero is FirstNormalTransactionId.
867  */
868  if (TransactionIdToPgIndex(newestXact) != 0 &&
870  return;
871 
872  pageno = TransactionIdToPage(newestXact);
873 
874  LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
875 
876  /* Zero the page and make an XLOG entry about it */
877  ZeroCLOGPage(pageno, true);
878 
879  LWLockRelease(XactSLRULock);
880 }
881 
882 
883 /*
884  * Remove all CLOG segments before the one holding the passed transaction ID
885  *
886  * Before removing any CLOG data, we must flush XLOG to disk, to ensure
887  * that any recently-emitted FREEZE_PAGE records have reached disk; otherwise
888  * a crash and restart might leave us with some unfrozen tuples referencing
889  * removed CLOG data. We choose to emit a special TRUNCATE XLOG record too.
890  * Replaying the deletion from XLOG is not critical, since the files could
891  * just as well be removed later, but doing so prevents a long-running hot
892  * standby server from acquiring an unreasonably bloated CLOG directory.
893  *
894  * Since CLOG segments hold a large number of transactions, the opportunity to
895  * actually remove a segment is fairly rare, and so it seems best not to do
896  * the XLOG flush unless we have confirmed that there is a removable segment.
897  */
898 void
899 TruncateCLOG(TransactionId oldestXact, Oid oldestxid_datoid)
900 {
901  int cutoffPage;
902 
903  /*
904  * The cutoff point is the start of the segment containing oldestXact. We
905  * pass the *page* containing oldestXact to SimpleLruTruncate.
906  */
907  cutoffPage = TransactionIdToPage(oldestXact);
908 
909  /* Check to see if there's any files that could be removed */
911  return; /* nothing to remove */
912 
913  /*
914  * Advance oldestClogXid before truncating clog, so concurrent xact status
915  * lookups can ensure they don't attempt to access truncated-away clog.
916  *
917  * It's only necessary to do this if we will actually truncate away clog
918  * pages.
919  */
920  AdvanceOldestClogXid(oldestXact);
921 
922  /*
923  * Write XLOG record and flush XLOG to disk. We record the oldest xid
924  * we're keeping information about here so we can ensure that it's always
925  * ahead of clog truncation in case we crash, and so a standby finds out
926  * the new valid xid before the next checkpoint.
927  */
928  WriteTruncateXlogRec(cutoffPage, oldestXact, oldestxid_datoid);
929 
930  /* Now we can remove the old CLOG segment(s) */
931  SimpleLruTruncate(XactCtl, cutoffPage);
932 }
933 
934 
935 /*
936  * Decide which of two CLOG page numbers is "older" for truncation purposes.
937  *
938  * We need to use comparison of TransactionIds here in order to do the right
939  * thing with wraparound XID arithmetic. However, if we are asked about
940  * page number zero, we don't want to hand InvalidTransactionId to
941  * TransactionIdPrecedes: it'll get weird about permanent xact IDs. So,
942  * offset both xids by FirstNormalTransactionId to avoid that.
943  */
944 static bool
945 CLOGPagePrecedes(int page1, int page2)
946 {
947  TransactionId xid1;
948  TransactionId xid2;
949 
950  xid1 = ((TransactionId) page1) * CLOG_XACTS_PER_PAGE;
951  xid1 += FirstNormalTransactionId;
952  xid2 = ((TransactionId) page2) * CLOG_XACTS_PER_PAGE;
953  xid2 += FirstNormalTransactionId;
954 
955  return TransactionIdPrecedes(xid1, xid2);
956 }
957 
958 
959 /*
960  * Write a ZEROPAGE xlog record
961  */
962 static void
964 {
965  XLogBeginInsert();
966  XLogRegisterData((char *) (&pageno), sizeof(int));
967  (void) XLogInsert(RM_CLOG_ID, CLOG_ZEROPAGE);
968 }
969 
970 /*
971  * Write a TRUNCATE xlog record
972  *
973  * We must flush the xlog record to disk before returning --- see notes
974  * in TruncateCLOG().
975  */
976 static void
977 WriteTruncateXlogRec(int pageno, TransactionId oldestXact, Oid oldestXactDb)
978 {
979  XLogRecPtr recptr;
980  xl_clog_truncate xlrec;
981 
982  xlrec.pageno = pageno;
983  xlrec.oldestXact = oldestXact;
984  xlrec.oldestXactDb = oldestXactDb;
985 
986  XLogBeginInsert();
987  XLogRegisterData((char *) (&xlrec), sizeof(xl_clog_truncate));
988  recptr = XLogInsert(RM_CLOG_ID, CLOG_TRUNCATE);
989  XLogFlush(recptr);
990 }
991 
992 /*
993  * CLOG resource manager's routines
994  */
995 void
997 {
998  uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;
999 
1000  /* Backup blocks are not used in clog records */
1001  Assert(!XLogRecHasAnyBlockRefs(record));
1002 
1003  if (info == CLOG_ZEROPAGE)
1004  {
1005  int pageno;
1006  int slotno;
1007 
1008  memcpy(&pageno, XLogRecGetData(record), sizeof(int));
1009 
1010  LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
1011 
1012  slotno = ZeroCLOGPage(pageno, false);
1013  SimpleLruWritePage(XactCtl, slotno);
1014  Assert(!XactCtl->shared->page_dirty[slotno]);
1015 
1016  LWLockRelease(XactSLRULock);
1017  }
1018  else if (info == CLOG_TRUNCATE)
1019  {
1020  xl_clog_truncate xlrec;
1021 
1022  memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_clog_truncate));
1023 
1024  /*
1025  * During XLOG replay, latest_page_number isn't set up yet; insert a
1026  * suitable value to bypass the sanity test in SimpleLruTruncate.
1027  */
1028  XactCtl->shared->latest_page_number = xlrec.pageno;
1029 
1031 
1033  }
1034  else
1035  elog(PANIC, "clog_redo: unknown op code %u", info);
1036 }
#define TransactionIdToBIndex(xid)
Definition: clog.c:67
#define CLOG_XACT_BITMASK
Definition: clog.c:62
#define CLOG_XACTS_PER_PAGE
Definition: clog.c:61
#define TransactionIdToPage(xid)
Definition: clog.c:64
XidStatus clogGroupMemberXidStatus
Definition: proc.h:184
bool LWLockHeldByMeInMode(LWLock *l, LWLockMode mode)
Definition: lwlock.c:1946
static void WriteZeroPageXlogRec(int pageno)
Definition: clog.c:963
void TruncateCLOG(TransactionId oldestXact, Oid oldestxid_datoid)
Definition: clog.c:899
#define TransactionIdEquals(id1, id2)
Definition: transam.h:43
#define TRANSACTION_STATUS_COMMITTED
Definition: clog.h:27
uint32 TransactionId
Definition: c.h:513
#define GetLSNIndex(slotno, xid)
Definition: clog.c:73
void PGSemaphoreUnlock(PGSemaphore sema)
Definition: posix_sema.c:340
Definition: proc.h:222
void clog_redo(XLogReaderState *record)
Definition: clog.c:996
static bool TransactionGroupUpdateXidStatus(TransactionId xid, XidStatus status, XLogRecPtr lsn, int pageno)
Definition: clog.c:413
XLogRecPtr clogGroupMemberLsn
Definition: proc.h:188
static bool pg_atomic_compare_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 *expected, uint32 newval)
Definition: atomics.h:311
PGXACT * allPgXact
Definition: proc.h:247
PGPROC * MyProc
Definition: proc.c:67
static void TransactionIdSetStatusBit(TransactionId xid, XidStatus status, XLogRecPtr lsn, int slotno)
Definition: clog.c:565
TransactionId xid
Definition: proc.h:224
void SimpleLruTruncate(SlruCtl ctl, int cutoffPage)
Definition: slru.c:1213
void ExtendCLOG(TransactionId newestXact)
Definition: clog.c:860
bool InRecovery
Definition: xlog.c:204
#define Min(x, y)
Definition: c.h:920
#define TransactionIdToPgIndex(xid)
Definition: clog.c:65
void ShutdownCLOG(void)
Definition: clog.c:816
void fsync_fname(const char *fname, bool isdir)
Definition: fd.c:630
#define XactCtl
Definition: clog.c:88
unsigned char uint8
Definition: c.h:365
int XidStatus
Definition: clog.h:24
PROC_HDR * ProcGlobal
Definition: proc.c:80
#define MemSet(start, val, len)
Definition: c.h:971
FullTransactionId nextFullXid
Definition: transam.h:178
pg_atomic_uint32 clogGroupNext
Definition: proc.h:182
unsigned int Oid
Definition: postgres_ext.h:31
#define PANIC
Definition: elog.h:53
Size SimpleLruShmemSize(int nslots, int nlsns)
Definition: slru.c:144
void SimpleLruFlush(SlruCtl ctl, bool allow_redirtied)
Definition: slru.c:1145
void XLogFlush(XLogRecPtr record)
Definition: xlog.c:2844
PGXACT * MyPgXact
Definition: proc.c:68
#define XidFromFullTransactionId(x)
Definition: transam.h:48
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1812
static uint32 pg_atomic_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 newval)
Definition: atomics.h:292
#define CLOG_LSNS_PER_PAGE
Definition: clog.c:71
#define StaticAssertStmt(condition, errmessage)
Definition: c.h:852
#define CLOG_ZEROPAGE
Definition: clog.h:54
void AdvanceOldestClogXid(TransactionId oldest_datfrozenxid)
Definition: varsup.c:313
void TransactionIdSetTreeStatus(TransactionId xid, int nsubxids, TransactionId *subxids, XidStatus status, XLogRecPtr lsn)
Definition: clog.c:163
#define XLogRecGetData(decoder)
Definition: xlogreader.h:311
static void WriteTruncateXlogRec(int pageno, TransactionId oldestXact, Oid oldestXactDb)
Definition: clog.c:977
#define FirstNormalTransactionId
Definition: transam.h:34
int SimpleLruReadPage(SlruCtl ctl, int pageno, bool write_ok, TransactionId xid)
Definition: slru.c:382
#define TRANSACTION_STATUS_ABORTED
Definition: clog.h:28
#define THRESHOLD_SUBTRANS_CLOG_OPT
Definition: clog.c:81
static bool CLOGPagePrecedes(int page1, int page2)
Definition: clog.c:945
bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1380
int clogGroupMemberPage
Definition: proc.h:186
uint8 nxids
Definition: proc.h:236
VariableCache ShmemVariableCache
Definition: varsup.c:34
Size CLOGShmemBuffers(void)
Definition: clog.c:676
#define TRANSACTION_STATUS_SUB_COMMITTED
Definition: clog.h:29
#define InvalidTransactionId
Definition: transam.h:31
TransactionId clogGroupMemberXid
Definition: proc.h:183
unsigned int uint32
Definition: c.h:367
#define CLOG_BITS_PER_XACT
Definition: clog.c:59
static SlruCtlData XactCtlData
Definition: clog.c:86
void SimpleLruWritePage(SlruCtl ctl, int slotno)
Definition: slru.c:597
int pageno
Definition: clog.h:33
static void pgstat_report_wait_end(void)
Definition: pgstat.h:1380
struct XidCache subxids
Definition: proc.h:164
void CheckPointCLOG(void)
Definition: clog.c:835
#define CLOG_TRUNCATE
Definition: clog.h:55
#define XLogRecGetInfo(decoder)
Definition: xlogreader.h:307
#define INVALID_PGPROCNO
Definition: proc.h:77
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:300
Definition: proc.h:242
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
void XLogRegisterData(char *data, int len)
Definition: xloginsert.c:324
TransactionId oldestXact
Definition: clog.h:34
XLogRecPtr XLogInsert(RmgrId rmid, uint8 info)
Definition: xloginsert.c:416
bool SlruScanDirCbReportPresence(SlruCtl ctl, char *filename, int segpage, void *data)
Definition: slru.c:1369
int SimpleLruReadPage_ReadOnly(SlruCtl ctl, int pageno, TransactionId xid)
Definition: slru.c:482
Size CLOGShmemSize(void)
Definition: clog.c:685
static void set_status_by_pages(int nsubxids, TransactionId *subxids, XidStatus status, XLogRecPtr lsn)
Definition: clog.c:237
#define PGPROC_MAX_CACHED_SUBXIDS
Definition: proc.h:36
void BootStrapCLOG(void)
Definition: clog.c:705
#define Max(x, y)
Definition: c.h:914
TransactionId xids[PGPROC_MAX_CACHED_SUBXIDS]
Definition: proc.h:40
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define Assert(condition)
Definition: c.h:738
#define XLR_INFO_MASK
Definition: xlogrecord.h:62
bool SlruScanDirectory(SlruCtl ctl, SlruScanCallback callback, void *data)
Definition: slru.c:1424
size_t Size
Definition: c.h:466
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: pgstat.h:1356
static void TransactionIdSetPageStatus(TransactionId xid, int nsubxids, TransactionId *subxids, XidStatus status, XLogRecPtr lsn, int pageno, bool all_xact_same_page)
Definition: clog.c:273
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1208
void StartupCLOG(void)
Definition: clog.c:748
void PGSemaphoreLock(PGSemaphore sema)
Definition: posix_sema.c:320
XidStatus TransactionIdGetStatus(TransactionId xid, XLogRecPtr *lsn)
Definition: clog.c:634
pg_atomic_uint32 clogGroupFirst
Definition: proc.h:261
#define TransactionIdToByte(xid)
Definition: clog.c:66
int pgprocno
Definition: proc.h:110
static int ZeroCLOGPage(int pageno, bool writeXlog)
Definition: clog.c:731
bool clogGroupMember
Definition: proc.h:181
#define elog(elevel,...)
Definition: elog.h:214
int i
void CLOGShmemInit(void)
Definition: clog.c:691
#define pg_write_barrier()
Definition: atomics.h:159
int NBuffers
Definition: globals.c:131
Oid oldestXactDb
Definition: clog.h:35
static void TransactionIdSetPageStatusInternal(TransactionId xid, int nsubxids, TransactionId *subxids, XidStatus status, XLogRecPtr lsn, int pageno)
Definition: clog.c:338
#define XLogRecHasAnyBlockRefs(decoder)
Definition: xlogreader.h:313
PGPROC * allProcs
Definition: proc.h:245
#define TransactionIdIsValid(xid)
Definition: transam.h:41
static void pg_atomic_write_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
Definition: atomics.h:258
PGSemaphore sem
Definition: proc.h:101
static void static void status(const char *fmt,...) pg_attribute_printf(1
Definition: pg_regress.c:225
void XLogBeginInsert(void)
Definition: xloginsert.c:121
Definition: proc.h:95
int SimpleLruZeroPage(SlruCtl ctl, int pageno)
Definition: slru.c:267
void TrimCLOG(void)
Definition: clog.c:767
#define TRANSACTION_STATUS_IN_PROGRESS
Definition: clog.h:26
static uint32 pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
Definition: atomics.h:241
void SimpleLruInit(SlruCtl ctl, const char *name, int nslots, int nlsns, LWLock *ctllock, const char *subdir, int tranche_id)
Definition: slru.c:175