PostgreSQL Source Code  git master
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros
execProcnode.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * execProcnode.c
4  * contains dispatch functions which call the appropriate "initialize",
5  * "get a tuple", and "cleanup" routines for the given node type.
6  * If the node has children, then it will presumably call ExecInitNode,
7  * ExecProcNode, or ExecEndNode on its subnodes and do the appropriate
8  * processing.
9  *
10  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  *
14  * IDENTIFICATION
15  * src/backend/executor/execProcnode.c
16  *
17  *-------------------------------------------------------------------------
18  */
19 /*
20  * NOTES
21  * This used to be three files. It is now all combined into
22  * one file so that it is easier to keep the dispatch routines
23  * in sync when new nodes are added.
24  *
25  * EXAMPLE
26  * Suppose we want the age of the manager of the shoe department and
27  * the number of employees in that department. So we have the query:
28  *
29  * select DEPT.no_emps, EMP.age
30  * from DEPT, EMP
31  * where EMP.name = DEPT.mgr and
32  * DEPT.name = "shoe"
33  *
34  * Suppose the planner gives us the following plan:
35  *
36  * Nest Loop (DEPT.mgr = EMP.name)
37  * / \
38  * / \
39  * Seq Scan Seq Scan
40  * DEPT EMP
41  * (name = "shoe")
42  *
43  * ExecutorStart() is called first.
44  * It calls InitPlan() which calls ExecInitNode() on
45  * the root of the plan -- the nest loop node.
46  *
47  * * ExecInitNode() notices that it is looking at a nest loop and
48  * as the code below demonstrates, it calls ExecInitNestLoop().
49  * Eventually this calls ExecInitNode() on the right and left subplans
50  * and so forth until the entire plan is initialized. The result
51  * of ExecInitNode() is a plan state tree built with the same structure
52  * as the underlying plan tree.
53  *
54  * * Then when ExecutorRun() is called, it calls ExecutePlan() which calls
55  * ExecProcNode() repeatedly on the top node of the plan state tree.
56  * Each time this happens, ExecProcNode() will end up calling
57  * ExecNestLoop(), which calls ExecProcNode() on its subplans.
58  * Each of these subplans is a sequential scan so ExecSeqScan() is
59  * called. The slots returned by ExecSeqScan() may contain
60  * tuples which contain the attributes ExecNestLoop() uses to
61  * form the tuples it returns.
62  *
63  * * Eventually ExecSeqScan() stops returning tuples and the nest
64  * loop join ends. Lastly, ExecutorEnd() calls ExecEndNode() which
65  * calls ExecEndNestLoop() which in turn calls ExecEndNode() on
66  * its subplans which result in ExecEndSeqScan().
67  *
68  * This should show how the executor works by having
69  * ExecInitNode(), ExecProcNode() and ExecEndNode() dispatch
70  * their work to the appropriate node support routines which may
71  * in turn call these routines themselves on their subplans.
72  */
73 #include "postgres.h"
74 
75 #include "executor/executor.h"
76 #include "executor/nodeAgg.h"
77 #include "executor/nodeAppend.h"
78 #include "executor/nodeBitmapAnd.h"
81 #include "executor/nodeBitmapOr.h"
82 #include "executor/nodeCtescan.h"
83 #include "executor/nodeCustom.h"
86 #include "executor/nodeGather.h"
88 #include "executor/nodeGroup.h"
89 #include "executor/nodeHash.h"
90 #include "executor/nodeHashjoin.h"
92 #include "executor/nodeIndexscan.h"
93 #include "executor/nodeLimit.h"
94 #include "executor/nodeLockRows.h"
95 #include "executor/nodeMaterial.h"
97 #include "executor/nodeMergejoin.h"
100 #include "executor/nodeNestloop.h"
101 #include "executor/nodeProjectSet.h"
103 #include "executor/nodeResult.h"
104 #include "executor/nodeSamplescan.h"
105 #include "executor/nodeSeqscan.h"
106 #include "executor/nodeSetOp.h"
107 #include "executor/nodeSort.h"
108 #include "executor/nodeSubplan.h"
111 #include "executor/nodeTidscan.h"
112 #include "executor/nodeUnique.h"
113 #include "executor/nodeValuesscan.h"
114 #include "executor/nodeWindowAgg.h"
116 #include "nodes/nodeFuncs.h"
117 #include "miscadmin.h"
118 
119 
122 
123 
124 /* ------------------------------------------------------------------------
125  * ExecInitNode
126  *
127  * Recursively initializes all the nodes in the plan tree rooted
128  * at 'node'.
129  *
130  * Inputs:
131  * 'node' is the current node of the plan produced by the query planner
132  * 'estate' is the shared execution state for the plan tree
133  * 'eflags' is a bitwise OR of flag bits described in executor.h
134  *
135  * Returns a PlanState node corresponding to the given Plan node.
136  * ------------------------------------------------------------------------
137  */
138 PlanState *
139 ExecInitNode(Plan *node, EState *estate, int eflags)
140 {
141  PlanState *result;
142  List *subps;
143  ListCell *l;
144 
145  /*
146  * do nothing when we get to the end of a leaf on tree.
147  */
148  if (node == NULL)
149  return NULL;
150 
151  /*
152  * Make sure there's enough stack available. Need to check here, in
153  * addition to ExecProcNode() (via ExecProcNodeFirst()), to ensure the
154  * stack isn't overrun while initializing the node tree.
155  */
157 
158  switch (nodeTag(node))
159  {
160  /*
161  * control nodes
162  */
163  case T_Result:
164  result = (PlanState *) ExecInitResult((Result *) node,
165  estate, eflags);
166  break;
167 
168  case T_ProjectSet:
169  result = (PlanState *) ExecInitProjectSet((ProjectSet *) node,
170  estate, eflags);
171  break;
172 
173  case T_ModifyTable:
174  result = (PlanState *) ExecInitModifyTable((ModifyTable *) node,
175  estate, eflags);
176  break;
177 
178  case T_Append:
179  result = (PlanState *) ExecInitAppend((Append *) node,
180  estate, eflags);
181  break;
182 
183  case T_MergeAppend:
184  result = (PlanState *) ExecInitMergeAppend((MergeAppend *) node,
185  estate, eflags);
186  break;
187 
188  case T_RecursiveUnion:
189  result = (PlanState *) ExecInitRecursiveUnion((RecursiveUnion *) node,
190  estate, eflags);
191  break;
192 
193  case T_BitmapAnd:
194  result = (PlanState *) ExecInitBitmapAnd((BitmapAnd *) node,
195  estate, eflags);
196  break;
197 
198  case T_BitmapOr:
199  result = (PlanState *) ExecInitBitmapOr((BitmapOr *) node,
200  estate, eflags);
201  break;
202 
203  /*
204  * scan nodes
205  */
206  case T_SeqScan:
207  result = (PlanState *) ExecInitSeqScan((SeqScan *) node,
208  estate, eflags);
209  break;
210 
211  case T_SampleScan:
212  result = (PlanState *) ExecInitSampleScan((SampleScan *) node,
213  estate, eflags);
214  break;
215 
216  case T_IndexScan:
217  result = (PlanState *) ExecInitIndexScan((IndexScan *) node,
218  estate, eflags);
219  break;
220 
221  case T_IndexOnlyScan:
222  result = (PlanState *) ExecInitIndexOnlyScan((IndexOnlyScan *) node,
223  estate, eflags);
224  break;
225 
226  case T_BitmapIndexScan:
227  result = (PlanState *) ExecInitBitmapIndexScan((BitmapIndexScan *) node,
228  estate, eflags);
229  break;
230 
231  case T_BitmapHeapScan:
232  result = (PlanState *) ExecInitBitmapHeapScan((BitmapHeapScan *) node,
233  estate, eflags);
234  break;
235 
236  case T_TidScan:
237  result = (PlanState *) ExecInitTidScan((TidScan *) node,
238  estate, eflags);
239  break;
240 
241  case T_SubqueryScan:
242  result = (PlanState *) ExecInitSubqueryScan((SubqueryScan *) node,
243  estate, eflags);
244  break;
245 
246  case T_FunctionScan:
247  result = (PlanState *) ExecInitFunctionScan((FunctionScan *) node,
248  estate, eflags);
249  break;
250 
251  case T_TableFuncScan:
252  result = (PlanState *) ExecInitTableFuncScan((TableFuncScan *) node,
253  estate, eflags);
254  break;
255 
256  case T_ValuesScan:
257  result = (PlanState *) ExecInitValuesScan((ValuesScan *) node,
258  estate, eflags);
259  break;
260 
261  case T_CteScan:
262  result = (PlanState *) ExecInitCteScan((CteScan *) node,
263  estate, eflags);
264  break;
265 
268  estate, eflags);
269  break;
270 
271  case T_WorkTableScan:
272  result = (PlanState *) ExecInitWorkTableScan((WorkTableScan *) node,
273  estate, eflags);
274  break;
275 
276  case T_ForeignScan:
277  result = (PlanState *) ExecInitForeignScan((ForeignScan *) node,
278  estate, eflags);
279  break;
280 
281  case T_CustomScan:
282  result = (PlanState *) ExecInitCustomScan((CustomScan *) node,
283  estate, eflags);
284  break;
285 
286  /*
287  * join nodes
288  */
289  case T_NestLoop:
290  result = (PlanState *) ExecInitNestLoop((NestLoop *) node,
291  estate, eflags);
292  break;
293 
294  case T_MergeJoin:
295  result = (PlanState *) ExecInitMergeJoin((MergeJoin *) node,
296  estate, eflags);
297  break;
298 
299  case T_HashJoin:
300  result = (PlanState *) ExecInitHashJoin((HashJoin *) node,
301  estate, eflags);
302  break;
303 
304  /*
305  * materialization nodes
306  */
307  case T_Material:
308  result = (PlanState *) ExecInitMaterial((Material *) node,
309  estate, eflags);
310  break;
311 
312  case T_Sort:
313  result = (PlanState *) ExecInitSort((Sort *) node,
314  estate, eflags);
315  break;
316 
317  case T_Group:
318  result = (PlanState *) ExecInitGroup((Group *) node,
319  estate, eflags);
320  break;
321 
322  case T_Agg:
323  result = (PlanState *) ExecInitAgg((Agg *) node,
324  estate, eflags);
325  break;
326 
327  case T_WindowAgg:
328  result = (PlanState *) ExecInitWindowAgg((WindowAgg *) node,
329  estate, eflags);
330  break;
331 
332  case T_Unique:
333  result = (PlanState *) ExecInitUnique((Unique *) node,
334  estate, eflags);
335  break;
336 
337  case T_Gather:
338  result = (PlanState *) ExecInitGather((Gather *) node,
339  estate, eflags);
340  break;
341 
342  case T_GatherMerge:
343  result = (PlanState *) ExecInitGatherMerge((GatherMerge *) node,
344  estate, eflags);
345  break;
346 
347  case T_Hash:
348  result = (PlanState *) ExecInitHash((Hash *) node,
349  estate, eflags);
350  break;
351 
352  case T_SetOp:
353  result = (PlanState *) ExecInitSetOp((SetOp *) node,
354  estate, eflags);
355  break;
356 
357  case T_LockRows:
358  result = (PlanState *) ExecInitLockRows((LockRows *) node,
359  estate, eflags);
360  break;
361 
362  case T_Limit:
363  result = (PlanState *) ExecInitLimit((Limit *) node,
364  estate, eflags);
365  break;
366 
367  default:
368  elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
369  result = NULL; /* keep compiler quiet */
370  break;
371  }
372 
373  /*
374  * Add a wrapper around the ExecProcNode callback that checks stack depth
375  * during the first execution.
376  */
377  result->ExecProcNodeReal = result->ExecProcNode;
379 
380  /*
381  * Initialize any initPlans present in this node. The planner put them in
382  * a separate list for us.
383  */
384  subps = NIL;
385  foreach(l, node->initPlan)
386  {
387  SubPlan *subplan = (SubPlan *) lfirst(l);
388  SubPlanState *sstate;
389 
390  Assert(IsA(subplan, SubPlan));
391  sstate = ExecInitSubPlan(subplan, result);
392  subps = lappend(subps, sstate);
393  }
394  result->initPlan = subps;
395 
396  /* Set up instrumentation for this node if requested */
397  if (estate->es_instrument)
398  result->instrument = InstrAlloc(1, estate->es_instrument);
399 
400  return result;
401 }
402 
403 
404 /*
405  * ExecProcNode wrapper that performs some one-time checks, before calling
406  * the relevant node method (possibly via an instrumentation wrapper).
407  */
408 static TupleTableSlot *
410 {
411  /*
412  * Perform stack depth check during the first execution of the node. We
413  * only do so the first time round because it turns out to not be cheap on
414  * some common architectures (eg. x86). This relies on the assumption
415  * that ExecProcNode calls for a given plan node will always be made at
416  * roughly the same stack depth.
417  */
419 
420  /*
421  * If instrumentation is required, change the wrapper to one that just
422  * does instrumentation. Otherwise we can dispense with all wrappers and
423  * have ExecProcNode() directly call the relevant function from now on.
424  */
425  if (node->instrument)
427  else
428  node->ExecProcNode = node->ExecProcNodeReal;
429 
430  return node->ExecProcNode(node);
431 }
432 
433 
434 /*
435  * ExecProcNode wrapper that performs instrumentation calls. By keeping
436  * this a separate function, we avoid overhead in the normal case where
437  * no instrumentation is wanted.
438  */
439 static TupleTableSlot *
441 {
443 
444  InstrStartNode(node->instrument);
445 
446  result = node->ExecProcNodeReal(node);
447 
448  InstrStopNode(node->instrument, TupIsNull(result) ? 0.0 : 1.0);
449 
450  return result;
451 }
452 
453 
454 /* ----------------------------------------------------------------
455  * MultiExecProcNode
456  *
457  * Execute a node that doesn't return individual tuples
458  * (it might return a hashtable, bitmap, etc). Caller should
459  * check it got back the expected kind of Node.
460  *
461  * This has essentially the same responsibilities as ExecProcNode,
462  * but it does not do InstrStartNode/InstrStopNode (mainly because
463  * it can't tell how many returned tuples to count). Each per-node
464  * function must provide its own instrumentation support.
465  * ----------------------------------------------------------------
466  */
467 Node *
469 {
470  Node *result;
471 
473 
475 
476  if (node->chgParam != NULL) /* something changed */
477  ExecReScan(node); /* let ReScan handle this */
478 
479  switch (nodeTag(node))
480  {
481  /*
482  * Only node types that actually support multiexec will be listed
483  */
484 
485  case T_HashState:
486  result = MultiExecHash((HashState *) node);
487  break;
488 
491  break;
492 
493  case T_BitmapAndState:
494  result = MultiExecBitmapAnd((BitmapAndState *) node);
495  break;
496 
497  case T_BitmapOrState:
498  result = MultiExecBitmapOr((BitmapOrState *) node);
499  break;
500 
501  default:
502  elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
503  result = NULL;
504  break;
505  }
506 
507  return result;
508 }
509 
510 
511 /* ----------------------------------------------------------------
512  * ExecEndNode
513  *
514  * Recursively cleans up all the nodes in the plan rooted
515  * at 'node'.
516  *
517  * After this operation, the query plan will not be able to be
518  * processed any further. This should be called only after
519  * the query plan has been fully executed.
520  * ----------------------------------------------------------------
521  */
522 void
524 {
525  /*
526  * do nothing when we get to the end of a leaf on tree.
527  */
528  if (node == NULL)
529  return;
530 
531  /*
532  * Make sure there's enough stack available. Need to check here, in
533  * addition to ExecProcNode() (via ExecProcNodeFirst()), because it's not
534  * guaranteed that ExecProcNode() is reached for all nodes.
535  */
537 
538  if (node->chgParam != NULL)
539  {
540  bms_free(node->chgParam);
541  node->chgParam = NULL;
542  }
543 
544  switch (nodeTag(node))
545  {
546  /*
547  * control nodes
548  */
549  case T_ResultState:
550  ExecEndResult((ResultState *) node);
551  break;
552 
553  case T_ProjectSetState:
555  break;
556 
557  case T_ModifyTableState:
559  break;
560 
561  case T_AppendState:
562  ExecEndAppend((AppendState *) node);
563  break;
564 
565  case T_MergeAppendState:
567  break;
568 
571  break;
572 
573  case T_BitmapAndState:
575  break;
576 
577  case T_BitmapOrState:
578  ExecEndBitmapOr((BitmapOrState *) node);
579  break;
580 
581  /*
582  * scan nodes
583  */
584  case T_SeqScanState:
585  ExecEndSeqScan((SeqScanState *) node);
586  break;
587 
588  case T_SampleScanState:
590  break;
591 
592  case T_GatherState:
593  ExecEndGather((GatherState *) node);
594  break;
595 
596  case T_GatherMergeState:
598  break;
599 
600  case T_IndexScanState:
602  break;
603 
606  break;
607 
610  break;
611 
614  break;
615 
616  case T_TidScanState:
617  ExecEndTidScan((TidScanState *) node);
618  break;
619 
620  case T_SubqueryScanState:
622  break;
623 
624  case T_FunctionScanState:
626  break;
627 
630  break;
631 
632  case T_ValuesScanState:
634  break;
635 
636  case T_CteScanState:
637  ExecEndCteScan((CteScanState *) node);
638  break;
639 
642  break;
643 
646  break;
647 
648  case T_ForeignScanState:
650  break;
651 
652  case T_CustomScanState:
654  break;
655 
656  /*
657  * join nodes
658  */
659  case T_NestLoopState:
660  ExecEndNestLoop((NestLoopState *) node);
661  break;
662 
663  case T_MergeJoinState:
665  break;
666 
667  case T_HashJoinState:
668  ExecEndHashJoin((HashJoinState *) node);
669  break;
670 
671  /*
672  * materialization nodes
673  */
674  case T_MaterialState:
675  ExecEndMaterial((MaterialState *) node);
676  break;
677 
678  case T_SortState:
679  ExecEndSort((SortState *) node);
680  break;
681 
682  case T_GroupState:
683  ExecEndGroup((GroupState *) node);
684  break;
685 
686  case T_AggState:
687  ExecEndAgg((AggState *) node);
688  break;
689 
690  case T_WindowAggState:
692  break;
693 
694  case T_UniqueState:
695  ExecEndUnique((UniqueState *) node);
696  break;
697 
698  case T_HashState:
699  ExecEndHash((HashState *) node);
700  break;
701 
702  case T_SetOpState:
703  ExecEndSetOp((SetOpState *) node);
704  break;
705 
706  case T_LockRowsState:
707  ExecEndLockRows((LockRowsState *) node);
708  break;
709 
710  case T_LimitState:
711  ExecEndLimit((LimitState *) node);
712  break;
713 
714  default:
715  elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
716  break;
717  }
718 }
719 
720 /*
721  * ExecShutdownNode
722  *
723  * Give execution nodes a chance to stop asynchronous resource consumption
724  * and release any resources still held. Currently, this is only used for
725  * parallel query, but we might want to extend it to other cases also (e.g.
726  * FDW). We might also want to call it sooner, as soon as it's evident that
727  * no more rows will be needed (e.g. when a Limit is filled) rather than only
728  * at the end of ExecutorRun.
729  */
730 bool
732 {
733  if (node == NULL)
734  return false;
735 
737 
739 
740  switch (nodeTag(node))
741  {
742  case T_GatherState:
744  break;
745  case T_ForeignScanState:
747  break;
748  case T_CustomScanState:
750  break;
751  case T_GatherMergeState:
753  break;
754  default:
755  break;
756  }
757 
758  return false;
759 }
760 
761 /*
762  * ExecSetTupleBound
763  *
764  * Set a tuple bound for a planstate node. This lets child plan nodes
765  * optimize based on the knowledge that the maximum number of tuples that
766  * their parent will demand is limited. The tuple bound for a node may
767  * only be changed between scans (i.e., after node initialization or just
768  * before an ExecReScan call).
769  *
770  * Any negative tuples_needed value means "no limit", which should be the
771  * default assumption when this is not called at all for a particular node.
772  *
773  * Note: if this is called repeatedly on a plan tree, the exact same set
774  * of nodes must be updated with the new limit each time; be careful that
775  * only unchanging conditions are tested here.
776  */
777 void
778 ExecSetTupleBound(int64 tuples_needed, PlanState *child_node)
779 {
780  /*
781  * Since this function recurses, in principle we should check stack depth
782  * here. In practice, it's probably pointless since the earlier node
783  * initialization tree traversal would surely have consumed more stack.
784  */
785 
786  if (IsA(child_node, SortState))
787  {
788  /*
789  * If it is a Sort node, notify it that it can use bounded sort.
790  *
791  * Note: it is the responsibility of nodeSort.c to react properly to
792  * changes of these parameters. If we ever redesign this, it'd be a
793  * good idea to integrate this signaling with the parameter-change
794  * mechanism.
795  */
796  SortState *sortState = (SortState *) child_node;
797 
798  if (tuples_needed < 0)
799  {
800  /* make sure flag gets reset if needed upon rescan */
801  sortState->bounded = false;
802  }
803  else
804  {
805  sortState->bounded = true;
806  sortState->bound = tuples_needed;
807  }
808  }
809  else if (IsA(child_node, MergeAppendState))
810  {
811  /*
812  * If it is a MergeAppend, we can apply the bound to any nodes that
813  * are children of the MergeAppend, since the MergeAppend surely need
814  * read no more than that many tuples from any one input.
815  */
816  MergeAppendState *maState = (MergeAppendState *) child_node;
817  int i;
818 
819  for (i = 0; i < maState->ms_nplans; i++)
820  ExecSetTupleBound(tuples_needed, maState->mergeplans[i]);
821  }
822  else if (IsA(child_node, ResultState))
823  {
824  /*
825  * Similarly, for a projecting Result, we can apply the bound to its
826  * child node.
827  *
828  * If Result supported qual checking, we'd have to punt on seeing a
829  * qual. Note that having a resconstantqual is not a showstopper: if
830  * that condition succeeds it affects nothing, while if it fails, no
831  * rows will be demanded from the Result child anyway.
832  */
833  if (outerPlanState(child_node))
834  ExecSetTupleBound(tuples_needed, outerPlanState(child_node));
835  }
836  else if (IsA(child_node, SubqueryScanState))
837  {
838  /*
839  * We can also descend through SubqueryScan, but only if it has no
840  * qual (otherwise it might discard rows).
841  */
842  SubqueryScanState *subqueryState = (SubqueryScanState *) child_node;
843 
844  if (subqueryState->ss.ps.qual == NULL)
845  ExecSetTupleBound(tuples_needed, subqueryState->subplan);
846  }
847  else if (IsA(child_node, GatherState))
848  {
849  /*
850  * A Gather node can propagate the bound to its workers. As with
851  * MergeAppend, no one worker could possibly need to return more
852  * tuples than the Gather itself needs to.
853  *
854  * Note: As with Sort, the Gather node is responsible for reacting
855  * properly to changes to this parameter.
856  */
857  GatherState *gstate = (GatherState *) child_node;
858 
859  gstate->tuples_needed = tuples_needed;
860 
861  /* Also pass down the bound to our own copy of the child plan */
862  ExecSetTupleBound(tuples_needed, outerPlanState(child_node));
863  }
864  else if (IsA(child_node, GatherMergeState))
865  {
866  /* Same comments as for Gather */
867  GatherMergeState *gstate = (GatherMergeState *) child_node;
868 
869  gstate->tuples_needed = tuples_needed;
870 
871  ExecSetTupleBound(tuples_needed, outerPlanState(child_node));
872  }
873 
874  /*
875  * In principle we could descend through any plan node type that is
876  * certain not to discard or combine input rows; but on seeing a node that
877  * can do that, we can't propagate the bound any further. For the moment
878  * it's unclear that any other cases are worth checking here.
879  */
880 }
void ExecEndGroup(GroupState *node)
Definition: nodeGroup.c:231
MergeJoinState * ExecInitMergeJoin(MergeJoin *node, EState *estate, int eflags)
void ExecEndSetOp(SetOpState *node)
Definition: nodeSetOp.c:582
#define NIL
Definition: pg_list.h:69
NamedTuplestoreScanState * ExecInitNamedTuplestoreScan(NamedTuplestoreScan *node, EState *estate, int eflags)
void InstrStopNode(Instrumentation *instr, double nTuples)
Definition: instrument.c:80
void ExecEndFunctionScan(FunctionScanState *node)
Definition: nodes.h:77
SortState * ExecInitSort(Sort *node, EState *estate, int eflags)
Definition: nodeSort.c:166
#define IsA(nodeptr, _type_)
Definition: nodes.h:560
void ExecEndNestLoop(NestLoopState *node)
Definition: nodeNestloop.c:366
BitmapHeapScanState * ExecInitBitmapHeapScan(BitmapHeapScan *node, EState *estate, int eflags)
Definition: nodes.h:79
Instrumentation * instrument
Definition: execnodes.h:857
void ExecEndIndexScan(IndexScanState *node)
void ExecEndLimit(LimitState *node)
Definition: nodeLimit.c:393
GroupState * ExecInitGroup(Group *node, EState *estate, int eflags)
Definition: nodeGroup.c:166
MergeAppendState * ExecInitMergeAppend(MergeAppend *node, EState *estate, int eflags)
void ExecEndUnique(UniqueState *node)
Definition: nodeUnique.c:178
void ExecEndGatherMerge(GatherMergeState *node)
bool ExecShutdownNode(PlanState *node)
Definition: execProcnode.c:731
void ExecEndNode(PlanState *node)
Definition: execProcnode.c:523
void ExecShutdownCustomScan(CustomScanState *node)
Definition: nodeCustom.c:228
GatherMergeState * ExecInitGatherMerge(GatherMerge *node, EState *estate, int eflags)
bool bounded
Definition: execnodes.h:1753
List * initPlan
Definition: execnodes.h:868
RecursiveUnionState * ExecInitRecursiveUnion(RecursiveUnion *node, EState *estate, int eflags)
NestLoopState * ExecInitNestLoop(NestLoop *node, EState *estate, int eflags)
Definition: nodeNestloop.c:263
LockRowsState * ExecInitLockRows(LockRows *node, EState *estate, int eflags)
Definition: nodeLockRows.c:352
HashState * ExecInitHash(Hash *node, EState *estate, int eflags)
Definition: nodeHash.c:162
void ExecEndWorkTableScan(WorkTableScanState *node)
int64 bound
Definition: execnodes.h:1754
void ExecReScan(PlanState *node)
Definition: execAmi.c:76
void ExecEndLockRows(LockRowsState *node)
Definition: nodeLockRows.c:451
void ExecEndNamedTuplestoreScan(NamedTuplestoreScanState *node)
void ExecEndBitmapAnd(BitmapAndState *node)
CteScanState * ExecInitCteScan(CteScan *node, EState *estate, int eflags)
Definition: nodeCtescan.c:168
Definition: nodes.h:509
Definition: nodes.h:48
Instrumentation * InstrAlloc(int n, int instrument_options)
Definition: instrument.c:30
Node * MultiExecHash(HashState *node)
Definition: nodeHash.c:74
AppendState * ExecInitAppend(Append *node, EState *estate, int eflags)
Definition: nodeAppend.c:122
return result
Definition: formatting.c:1633
Definition: nodes.h:75
GatherState * ExecInitGather(Gather *node, EState *estate, int eflags)
Definition: nodeGather.c:57
void ExecEndRecursiveUnion(RecursiveUnionState *node)
void ExecSetTupleBound(int64 tuples_needed, PlanState *child_node)
Definition: execProcnode.c:778
SubPlanState * ExecInitSubPlan(SubPlan *subplan, PlanState *parent)
Definition: nodeSubplan.c:691
void ExecEndSubqueryScan(SubqueryScanState *node)
void ExecEndHashJoin(HashJoinState *node)
Definition: nodeHashjoin.c:551
PlanState ps
Definition: execnodes.h:1100
void ExecEndTableFuncScan(TableFuncScanState *node)
void ExecEndResult(ResultState *node)
Definition: nodeResult.c:246
AggState * ExecInitAgg(Agg *node, EState *estate, int eflags)
Definition: nodeAgg.c:2670
TidScanState * ExecInitTidScan(TidScan *node, EState *estate, int eflags)
Definition: nodeTidscan.c:513
Definition: nodes.h:45
#define ERROR
Definition: elog.h:43
IndexScanState * ExecInitIndexScan(IndexScan *node, EState *estate, int eflags)
void ExecEndAppend(AppendState *node)
Definition: nodeAppend.c:259
void InstrStartNode(Instrumentation *instr)
Definition: instrument.c:63
CustomScanState * ExecInitCustomScan(CustomScan *cscan, EState *estate, int eflags)
Definition: nodeCustom.c:29
void ExecEndForeignScan(ForeignScanState *node)
void ExecEndSort(SortState *node)
Definition: nodeSort.c:238
BitmapIndexScanState * ExecInitBitmapIndexScan(BitmapIndexScan *node, EState *estate, int eflags)
Definition: nodes.h:76
#define outerPlanState(node)
Definition: execnodes.h:893
SampleScanState * ExecInitSampleScan(SampleScan *node, EState *estate, int eflags)
void ExecEndBitmapIndexScan(BitmapIndexScanState *node)
void check_stack_depth(void)
Definition: postgres.c:3144
void ExecEndValuesScan(ValuesScanState *node)
PlanState ** mergeplans
Definition: execnodes.h:1022
void ExecEndMergeJoin(MergeJoinState *node)
Node * MultiExecBitmapIndexScan(BitmapIndexScanState *node)
#define TupIsNull(slot)
Definition: tuptable.h:138
void ExecEndSeqScan(SeqScanState *node)
Definition: nodeSeqscan.c:225
ModifyTableState * ExecInitModifyTable(ModifyTable *node, EState *estate, int eflags)
SubqueryScanState * ExecInitSubqueryScan(SubqueryScan *node, EState *estate, int eflags)
SetOpState * ExecInitSetOp(SetOp *node, EState *estate, int eflags)
Definition: nodeSetOp.c:476
int es_instrument
Definition: execnodes.h:481
void ExecEndIndexOnlyScan(IndexOnlyScanState *node)
PlanState * subplan
Definition: execnodes.h:1396
FunctionScanState * ExecInitFunctionScan(FunctionScan *node, EState *estate, int eflags)
void ExecEndTidScan(TidScanState *node)
Definition: nodeTidscan.c:482
Bitmapset * chgParam
Definition: execnodes.h:875
List * lappend(List *list, void *datum)
Definition: list.c:128
Node * MultiExecBitmapAnd(BitmapAndState *node)
ValuesScanState * ExecInitValuesScan(ValuesScan *node, EState *estate, int eflags)
BitmapAndState * ExecInitBitmapAnd(BitmapAnd *node, EState *estate, int eflags)
Definition: nodeBitmapAnd.c:55
HashJoinState * ExecInitHashJoin(HashJoin *node, EState *estate, int eflags)
Definition: nodeHashjoin.c:384
Node * MultiExecBitmapOr(BitmapOrState *node)
Definition: nodeBitmapOr.c:111
void ExecShutdownGather(GatherState *node)
Definition: nodeGather.c:394
ExecProcNodeMtd ExecProcNode
Definition: execnodes.h:853
void ExecEndCteScan(CteScanState *node)
Definition: nodeCtescan.c:280
ExecProcNodeMtd ExecProcNodeReal
Definition: execnodes.h:854
void ExecEndCustomScan(CustomScanState *node)
Definition: nodeCustom.c:122
UniqueState * ExecInitUnique(Unique *node, EState *estate, int eflags)
Definition: nodeUnique.c:116
void ExecEndBitmapOr(BitmapOrState *node)
Definition: nodeBitmapOr.c:196
Definition: nodes.h:82
void ExecEndSampleScan(SampleScanState *node)
void ExecShutdownGatherMerge(GatherMergeState *node)
void bms_free(Bitmapset *a)
Definition: bitmapset.c:201
void ExecEndWindowAgg(WindowAggState *node)
BitmapOrState * ExecInitBitmapOr(BitmapOr *node, EState *estate, int eflags)
Definition: nodeBitmapOr.c:56
IndexOnlyScanState * ExecInitIndexOnlyScan(IndexOnlyScan *node, EState *estate, int eflags)
#define Assert(condition)
Definition: c.h:664
#define lfirst(lc)
Definition: pg_list.h:106
void ExecEndMergeAppend(MergeAppendState *node)
ResultState * ExecInitResult(Result *node, EState *estate, int eflags)
Definition: nodeResult.c:181
WindowAggState * ExecInitWindowAgg(WindowAgg *node, EState *estate, int eflags)
ProjectSetState * ExecInitProjectSet(ProjectSet *node, EState *estate, int eflags)
#define nodeTag(nodeptr)
Definition: nodes.h:514
ExprState * qual
Definition: execnodes.h:865
Definition: nodes.h:83
TableFuncScanState * ExecInitTableFuncScan(TableFuncScan *node, EState *estate, int eflags)
ForeignScanState * ExecInitForeignScan(ForeignScan *node, EState *estate, int eflags)
Node * MultiExecProcNode(PlanState *node)
Definition: execProcnode.c:468
SeqScanState * ExecInitSeqScan(SeqScan *node, EState *estate, int eflags)
Definition: nodeSeqscan.c:166
static TupleTableSlot * ExecProcNodeInstr(PlanState *node)
Definition: execProcnode.c:440
List * initPlan
Definition: plannodes.h:148
Definition: nodes.h:80
LimitState * ExecInitLimit(Limit *node, EState *estate, int eflags)
Definition: nodeLimit.c:330
int i
void ExecEndHash(HashState *node)
Definition: nodeHash.c:219
void ExecShutdownForeignScan(ForeignScanState *node)
void ExecEndProjectSet(ProjectSetState *node)
void ExecEndMaterial(MaterialState *node)
Definition: nodeMaterial.c:244
WorkTableScanState * ExecInitWorkTableScan(WorkTableScan *node, EState *estate, int eflags)
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:98
Definition: plannodes.h:780
#define elog
Definition: elog.h:219
void ExecEndBitmapHeapScan(BitmapHeapScanState *node)
PlanState * ExecInitNode(Plan *node, EState *estate, int eflags)
Definition: execProcnode.c:139
Definition: pg_list.h:45
bool planstate_tree_walker(PlanState *planstate, bool(*walker)(), void *context)
Definition: nodeFuncs.c:3697
void ExecEndAgg(AggState *node)
Definition: nodeAgg.c:3850
void ExecEndModifyTable(ModifyTableState *node)
MaterialState * ExecInitMaterial(Material *node, EState *estate, int eflags)
Definition: nodeMaterial.c:166
static TupleTableSlot * ExecProcNodeFirst(PlanState *node)
Definition: execProcnode.c:409
void ExecEndGather(GatherState *node)
Definition: nodeGather.c:234
int64 tuples_needed
Definition: execnodes.h:1930
Definition: nodes.h:85