PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
nodeAppend.h File Reference
#include "access/parallel.h"
#include "nodes/execnodes.h"
Include dependency graph for nodeAppend.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

AppendStateExecInitAppend (Append *node, EState *estate, int eflags)
 
void ExecEndAppend (AppendState *node)
 
void ExecReScanAppend (AppendState *node)
 
void ExecAppendEstimate (AppendState *node, ParallelContext *pcxt)
 
void ExecAppendInitializeDSM (AppendState *node, ParallelContext *pcxt)
 
void ExecAppendReInitializeDSM (AppendState *node, ParallelContext *pcxt)
 
void ExecAppendInitializeWorker (AppendState *node, ParallelWorkerContext *pwcxt)
 
void ExecAsyncAppendResponse (AsyncRequest *areq)
 

Function Documentation

◆ ExecAppendEstimate()

void ExecAppendEstimate ( AppendState node,
ParallelContext pcxt 
)

Definition at line 498 of file nodeAppend.c.

500{
501 node->pstate_len =
502 add_size(offsetof(ParallelAppendState, pa_finished),
503 sizeof(bool) * node->as_nplans);
504
507}
#define shm_toc_estimate_chunk(e, sz)
Definition: shm_toc.h:51
#define shm_toc_estimate_keys(e, cnt)
Definition: shm_toc.h:53
Size add_size(Size s1, Size s2)
Definition: shmem.c:488
Size pstate_len
Definition: execnodes.h:1467
shm_toc_estimator estimator
Definition: parallel.h:41

References add_size(), AppendState::as_nplans, ParallelContext::estimator, AppendState::pstate_len, shm_toc_estimate_chunk, and shm_toc_estimate_keys.

Referenced by ExecParallelEstimate().

◆ ExecAppendInitializeDSM()

void ExecAppendInitializeDSM ( AppendState node,
ParallelContext pcxt 
)

Definition at line 517 of file nodeAppend.c.

519{
520 ParallelAppendState *pstate;
521
522 pstate = shm_toc_allocate(pcxt->toc, node->pstate_len);
523 memset(pstate, 0, node->pstate_len);
525 shm_toc_insert(pcxt->toc, node->ps.plan->plan_node_id, pstate);
526
527 node->as_pstate = pstate;
529}
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:707
@ LWTRANCHE_PARALLEL_APPEND
Definition: lwlock.h:201
static bool choose_next_subplan_for_leader(AppendState *node)
Definition: nodeAppend.c:634
void * shm_toc_allocate(shm_toc *toc, Size nbytes)
Definition: shm_toc.c:88
void shm_toc_insert(shm_toc *toc, uint64 key, void *address)
Definition: shm_toc.c:171
bool(* choose_next_subplan)(AppendState *)
Definition: execnodes.h:1472
PlanState ps
Definition: execnodes.h:1448
ParallelAppendState * as_pstate
Definition: execnodes.h:1466
shm_toc * toc
Definition: parallel.h:44
Plan * plan
Definition: execnodes.h:1126
int plan_node_id
Definition: plannodes.h:152

References AppendState::as_pstate, AppendState::choose_next_subplan, choose_next_subplan_for_leader(), LWLockInitialize(), LWTRANCHE_PARALLEL_APPEND, ParallelAppendState::pa_lock, PlanState::plan, Plan::plan_node_id, AppendState::ps, AppendState::pstate_len, shm_toc_allocate(), shm_toc_insert(), and ParallelContext::toc.

Referenced by ExecParallelInitializeDSM().

◆ ExecAppendInitializeWorker()

void ExecAppendInitializeWorker ( AppendState node,
ParallelWorkerContext pwcxt 
)

Definition at line 554 of file nodeAppend.c.

555{
556 node->as_pstate = shm_toc_lookup(pwcxt->toc, node->ps.plan->plan_node_id, false);
558}
static bool choose_next_subplan_for_worker(AppendState *node)
Definition: nodeAppend.c:716
void * shm_toc_lookup(shm_toc *toc, uint64 key, bool noError)
Definition: shm_toc.c:232

References AppendState::as_pstate, AppendState::choose_next_subplan, choose_next_subplan_for_worker(), PlanState::plan, Plan::plan_node_id, AppendState::ps, shm_toc_lookup(), and ParallelWorkerContext::toc.

Referenced by ExecParallelInitializeWorker().

◆ ExecAppendReInitializeDSM()

void ExecAppendReInitializeDSM ( AppendState node,
ParallelContext pcxt 
)

Definition at line 538 of file nodeAppend.c.

539{
540 ParallelAppendState *pstate = node->as_pstate;
541
542 pstate->pa_next_plan = 0;
543 memset(pstate->pa_finished, 0, sizeof(bool) * node->as_nplans);
544}
bool pa_finished[FLEXIBLE_ARRAY_MEMBER]
Definition: nodeAppend.c:80

References AppendState::as_nplans, AppendState::as_pstate, ParallelAppendState::pa_finished, and ParallelAppendState::pa_next_plan.

Referenced by ExecParallelReInitializeDSM().

◆ ExecAsyncAppendResponse()

void ExecAsyncAppendResponse ( AsyncRequest areq)

Definition at line 1119 of file nodeAppend.c.

1120{
1121 AppendState *node = (AppendState *) areq->requestor;
1122 TupleTableSlot *slot = areq->result;
1123
1124 /* The result should be a TupleTableSlot or NULL. */
1125 Assert(slot == NULL || IsA(slot, TupleTableSlot));
1126
1127 /* Nothing to do if the request is pending. */
1128 if (!areq->request_complete)
1129 {
1130 /* The request would have been pending for a callback. */
1131 Assert(areq->callback_pending);
1132 return;
1133 }
1134
1135 /* If the result is NULL or an empty slot, there's nothing more to do. */
1136 if (TupIsNull(slot))
1137 {
1138 /* The ending subplan wouldn't have been pending for a callback. */
1139 Assert(!areq->callback_pending);
1140 --node->as_nasyncremain;
1141 return;
1142 }
1143
1144 /* Save result so we can return it. */
1145 Assert(node->as_nasyncresults < node->as_nasyncplans);
1146 node->as_asyncresults[node->as_nasyncresults++] = slot;
1147
1148 /*
1149 * Mark the subplan that returned a result as ready for a new request. We
1150 * don't launch another one here immediately because it might complete.
1151 */
1153 areq->request_index);
1154}
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
#define Assert(condition)
Definition: c.h:812
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
Bitmapset * as_needrequest
Definition: execnodes.h:1461
int as_nasyncresults
Definition: execnodes.h:1457
int as_nasyncremain
Definition: execnodes.h:1460
TupleTableSlot ** as_asyncresults
Definition: execnodes.h:1456
int as_nasyncplans
Definition: execnodes.h:1454
struct PlanState * requestor
Definition: execnodes.h:611
TupleTableSlot * result
Definition: execnodes.h:616
bool request_complete
Definition: execnodes.h:615
int request_index
Definition: execnodes.h:613
bool callback_pending
Definition: execnodes.h:614
#define TupIsNull(slot)
Definition: tuptable.h:306

References AppendState::as_asyncresults, AppendState::as_nasyncplans, AppendState::as_nasyncremain, AppendState::as_nasyncresults, AppendState::as_needrequest, Assert, bms_add_member(), AsyncRequest::callback_pending, IsA, AsyncRequest::request_complete, AsyncRequest::request_index, AsyncRequest::requestor, AsyncRequest::result, and TupIsNull.

Referenced by ExecAsyncResponse().

◆ ExecEndAppend()

void ExecEndAppend ( AppendState node)

Definition at line 400 of file nodeAppend.c.

401{
402 PlanState **appendplans;
403 int nplans;
404 int i;
405
406 /*
407 * get information from the node
408 */
409 appendplans = node->appendplans;
410 nplans = node->as_nplans;
411
412 /*
413 * shut down each of the subscans
414 */
415 for (i = 0; i < nplans; i++)
416 ExecEndNode(appendplans[i]);
417}
void ExecEndNode(PlanState *node)
Definition: execProcnode.c:562
int i
Definition: isn.c:72
PlanState ** appendplans
Definition: execnodes.h:1449

References AppendState::appendplans, AppendState::as_nplans, ExecEndNode(), and i.

Referenced by ExecEndNode().

◆ ExecInitAppend()

AppendState * ExecInitAppend ( Append node,
EState estate,
int  eflags 
)

Definition at line 109 of file nodeAppend.c.

110{
111 AppendState *appendstate = makeNode(AppendState);
112 PlanState **appendplanstates;
113 const TupleTableSlotOps *appendops;
114 Bitmapset *validsubplans;
115 Bitmapset *asyncplans;
116 int nplans;
117 int nasyncplans;
118 int firstvalid;
119 int i,
120 j;
121
122 /* check for unsupported flags */
123 Assert(!(eflags & EXEC_FLAG_MARK));
124
125 /*
126 * create new AppendState for our append node
127 */
128 appendstate->ps.plan = (Plan *) node;
129 appendstate->ps.state = estate;
130 appendstate->ps.ExecProcNode = ExecAppend;
131
132 /* Let choose_next_subplan_* function handle setting the first subplan */
133 appendstate->as_whichplan = INVALID_SUBPLAN_INDEX;
134 appendstate->as_syncdone = false;
135 appendstate->as_begun = false;
136
137 /* If run-time partition pruning is enabled, then set that up now */
138 if (node->part_prune_info != NULL)
139 {
140 PartitionPruneState *prunestate;
141
142 /*
143 * Set up pruning data structure. This also initializes the set of
144 * subplans to initialize (validsubplans) by taking into account the
145 * result of performing initial pruning if any.
146 */
147 prunestate = ExecInitPartitionPruning(&appendstate->ps,
149 node->part_prune_info,
150 &validsubplans);
151 appendstate->as_prune_state = prunestate;
152 nplans = bms_num_members(validsubplans);
153
154 /*
155 * When no run-time pruning is required and there's at least one
156 * subplan, we can fill as_valid_subplans immediately, preventing
157 * later calls to ExecFindMatchingSubPlans.
158 */
159 if (!prunestate->do_exec_prune && nplans > 0)
160 {
161 appendstate->as_valid_subplans = bms_add_range(NULL, 0, nplans - 1);
162 appendstate->as_valid_subplans_identified = true;
163 }
164 }
165 else
166 {
167 nplans = list_length(node->appendplans);
168
169 /*
170 * When run-time partition pruning is not enabled we can just mark all
171 * subplans as valid; they must also all be initialized.
172 */
173 Assert(nplans > 0);
174 appendstate->as_valid_subplans = validsubplans =
175 bms_add_range(NULL, 0, nplans - 1);
176 appendstate->as_valid_subplans_identified = true;
177 appendstate->as_prune_state = NULL;
178 }
179
180 appendplanstates = (PlanState **) palloc(nplans *
181 sizeof(PlanState *));
182
183 /*
184 * call ExecInitNode on each of the valid plans to be executed and save
185 * the results into the appendplanstates array.
186 *
187 * While at it, find out the first valid partial plan.
188 */
189 j = 0;
190 asyncplans = NULL;
191 nasyncplans = 0;
192 firstvalid = nplans;
193 i = -1;
194 while ((i = bms_next_member(validsubplans, i)) >= 0)
195 {
196 Plan *initNode = (Plan *) list_nth(node->appendplans, i);
197
198 /*
199 * Record async subplans. When executing EvalPlanQual, we treat them
200 * as sync ones; don't do this when initializing an EvalPlanQual plan
201 * tree.
202 */
203 if (initNode->async_capable && estate->es_epq_active == NULL)
204 {
205 asyncplans = bms_add_member(asyncplans, j);
206 nasyncplans++;
207 }
208
209 /*
210 * Record the lowest appendplans index which is a valid partial plan.
211 */
212 if (i >= node->first_partial_plan && j < firstvalid)
213 firstvalid = j;
214
215 appendplanstates[j++] = ExecInitNode(initNode, estate, eflags);
216 }
217
218 appendstate->as_first_partial_plan = firstvalid;
219 appendstate->appendplans = appendplanstates;
220 appendstate->as_nplans = nplans;
221
222 /*
223 * Initialize Append's result tuple type and slot. If the child plans all
224 * produce the same fixed slot type, we can use that slot type; otherwise
225 * make a virtual slot. (Note that the result slot itself is used only to
226 * return a null tuple at end of execution; real tuples are returned to
227 * the caller in the children's own result slots. What we are doing here
228 * is allowing the parent plan node to optimize if the Append will return
229 * only one kind of slot.)
230 */
231 appendops = ExecGetCommonSlotOps(appendplanstates, j);
232 if (appendops != NULL)
233 {
234 ExecInitResultTupleSlotTL(&appendstate->ps, appendops);
235 }
236 else
237 {
239 /* show that the output slot type is not fixed */
240 appendstate->ps.resultopsset = true;
241 appendstate->ps.resultopsfixed = false;
242 }
243
244 /* Initialize async state */
245 appendstate->as_asyncplans = asyncplans;
246 appendstate->as_nasyncplans = nasyncplans;
247 appendstate->as_asyncrequests = NULL;
248 appendstate->as_asyncresults = NULL;
249 appendstate->as_nasyncresults = 0;
250 appendstate->as_nasyncremain = 0;
251 appendstate->as_needrequest = NULL;
252 appendstate->as_eventset = NULL;
253 appendstate->as_valid_asyncplans = NULL;
254
255 if (nasyncplans > 0)
256 {
257 appendstate->as_asyncrequests = (AsyncRequest **)
258 palloc0(nplans * sizeof(AsyncRequest *));
259
260 i = -1;
261 while ((i = bms_next_member(asyncplans, i)) >= 0)
262 {
263 AsyncRequest *areq;
264
265 areq = palloc(sizeof(AsyncRequest));
266 areq->requestor = (PlanState *) appendstate;
267 areq->requestee = appendplanstates[i];
268 areq->request_index = i;
269 areq->callback_pending = false;
270 areq->request_complete = false;
271 areq->result = NULL;
272
273 appendstate->as_asyncrequests[i] = areq;
274 }
275
276 appendstate->as_asyncresults = (TupleTableSlot **)
277 palloc0(nasyncplans * sizeof(TupleTableSlot *));
278
279 if (appendstate->as_valid_subplans_identified)
280 classify_matching_subplans(appendstate);
281 }
282
283 /*
284 * Miscellaneous initialization
285 */
286
287 appendstate->ps.ps_ProjInfo = NULL;
288
289 /* For parallel query, this will be overridden later. */
291
292 return appendstate;
293}
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1306
Bitmapset * bms_add_range(Bitmapset *a, int lower, int upper)
Definition: bitmapset.c:1019
int bms_num_members(const Bitmapset *a)
Definition: bitmapset.c:751
PartitionPruneState * ExecInitPartitionPruning(PlanState *planstate, int n_total_subplans, PartitionPruneInfo *pruneinfo, Bitmapset **initially_valid_subplans)
PlanState * ExecInitNode(Plan *node, EState *estate, int eflags)
Definition: execProcnode.c:142
const TupleTableSlotOps TTSOpsVirtual
Definition: execTuples.c:84
void ExecInitResultTupleSlotTL(PlanState *planstate, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1986
const TupleTableSlotOps * ExecGetCommonSlotOps(PlanState **planstates, int nplans)
Definition: execUtils.c:536
#define EXEC_FLAG_MARK
Definition: executor.h:69
int j
Definition: isn.c:73
void * palloc0(Size size)
Definition: mcxt.c:1347
void * palloc(Size size)
Definition: mcxt.c:1317
static void classify_matching_subplans(AppendState *node)
Definition: nodeAppend.c:1165
static TupleTableSlot * ExecAppend(PlanState *pstate)
Definition: nodeAppend.c:302
#define INVALID_SUBPLAN_INDEX
Definition: nodeAppend.c:83
static bool choose_next_subplan_locally(AppendState *node)
Definition: nodeAppend.c:568
#define makeNode(_type_)
Definition: nodes.h:155
static int list_length(const List *l)
Definition: pg_list.h:152
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
struct PartitionPruneState * as_prune_state
Definition: execnodes.h:1468
Bitmapset * as_valid_asyncplans
Definition: execnodes.h:1471
bool as_syncdone
Definition: execnodes.h:1458
AsyncRequest ** as_asyncrequests
Definition: execnodes.h:1455
bool as_begun
Definition: execnodes.h:1452
Bitmapset * as_asyncplans
Definition: execnodes.h:1453
int as_whichplan
Definition: execnodes.h:1451
struct WaitEventSet * as_eventset
Definition: execnodes.h:1462
int as_first_partial_plan
Definition: execnodes.h:1464
Bitmapset * as_valid_subplans
Definition: execnodes.h:1470
bool as_valid_subplans_identified
Definition: execnodes.h:1469
int first_partial_plan
Definition: plannodes.h:277
struct PartitionPruneInfo * part_prune_info
Definition: plannodes.h:280
List * appendplans
Definition: plannodes.h:270
struct PlanState * requestee
Definition: execnodes.h:612
struct EPQState * es_epq_active
Definition: execnodes.h:707
bool resultopsset
Definition: execnodes.h:1211
EState * state
Definition: execnodes.h:1128
ProjectionInfo * ps_ProjInfo
Definition: execnodes.h:1166
bool resultopsfixed
Definition: execnodes.h:1207
ExecProcNodeMtd ExecProcNode
Definition: execnodes.h:1132
bool async_capable
Definition: plannodes.h:147

References AppendState::appendplans, Append::appendplans, AppendState::as_asyncplans, AppendState::as_asyncrequests, AppendState::as_asyncresults, AppendState::as_begun, AppendState::as_eventset, AppendState::as_first_partial_plan, AppendState::as_nasyncplans, AppendState::as_nasyncremain, AppendState::as_nasyncresults, AppendState::as_needrequest, AppendState::as_nplans, AppendState::as_prune_state, AppendState::as_syncdone, AppendState::as_valid_asyncplans, AppendState::as_valid_subplans, AppendState::as_valid_subplans_identified, AppendState::as_whichplan, Assert, Plan::async_capable, bms_add_member(), bms_add_range(), bms_next_member(), bms_num_members(), AsyncRequest::callback_pending, AppendState::choose_next_subplan, choose_next_subplan_locally(), classify_matching_subplans(), PartitionPruneState::do_exec_prune, EState::es_epq_active, EXEC_FLAG_MARK, ExecAppend(), ExecGetCommonSlotOps(), ExecInitNode(), ExecInitPartitionPruning(), ExecInitResultTupleSlotTL(), PlanState::ExecProcNode, Append::first_partial_plan, i, INVALID_SUBPLAN_INDEX, j, list_length(), list_nth(), makeNode, palloc(), palloc0(), Append::part_prune_info, PlanState::plan, AppendState::ps, PlanState::ps_ProjInfo, AsyncRequest::request_complete, AsyncRequest::request_index, AsyncRequest::requestee, AsyncRequest::requestor, AsyncRequest::result, PlanState::resultopsfixed, PlanState::resultopsset, PlanState::state, and TTSOpsVirtual.

Referenced by ExecInitNode().

◆ ExecReScanAppend()

void ExecReScanAppend ( AppendState node)

Definition at line 420 of file nodeAppend.c.

421{
422 int nasyncplans = node->as_nasyncplans;
423 int i;
424
425 /*
426 * If any PARAM_EXEC Params used in pruning expressions have changed, then
427 * we'd better unset the valid subplans so that they are reselected for
428 * the new parameter values.
429 */
430 if (node->as_prune_state &&
431 bms_overlap(node->ps.chgParam,
433 {
434 node->as_valid_subplans_identified = false;
436 node->as_valid_subplans = NULL;
438 node->as_valid_asyncplans = NULL;
439 }
440
441 for (i = 0; i < node->as_nplans; i++)
442 {
443 PlanState *subnode = node->appendplans[i];
444
445 /*
446 * ExecReScan doesn't know about my subplans, so I have to do
447 * changed-parameter signaling myself.
448 */
449 if (node->ps.chgParam != NULL)
450 UpdateChangedParamSet(subnode, node->ps.chgParam);
451
452 /*
453 * If chgParam of subnode is not null then plan will be re-scanned by
454 * first ExecProcNode or by first ExecAsyncRequest.
455 */
456 if (subnode->chgParam == NULL)
457 ExecReScan(subnode);
458 }
459
460 /* Reset async state */
461 if (nasyncplans > 0)
462 {
463 i = -1;
464 while ((i = bms_next_member(node->as_asyncplans, i)) >= 0)
465 {
466 AsyncRequest *areq = node->as_asyncrequests[i];
467
468 areq->callback_pending = false;
469 areq->request_complete = false;
470 areq->result = NULL;
471 }
472
473 node->as_nasyncresults = 0;
474 node->as_nasyncremain = 0;
476 node->as_needrequest = NULL;
477 }
478
479 /* Let choose_next_subplan_* function handle setting the first subplan */
481 node->as_syncdone = false;
482 node->as_begun = false;
483}
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
void ExecReScan(PlanState *node)
Definition: execAmi.c:76
void UpdateChangedParamSet(PlanState *node, Bitmapset *newchg)
Definition: execUtils.c:889
Bitmapset * execparamids
Bitmapset * chgParam
Definition: execnodes.h:1158

References AppendState::appendplans, AppendState::as_asyncplans, AppendState::as_asyncrequests, AppendState::as_begun, AppendState::as_nasyncplans, AppendState::as_nasyncremain, AppendState::as_nasyncresults, AppendState::as_needrequest, AppendState::as_nplans, AppendState::as_prune_state, AppendState::as_syncdone, AppendState::as_valid_asyncplans, AppendState::as_valid_subplans, AppendState::as_valid_subplans_identified, AppendState::as_whichplan, bms_free(), bms_next_member(), bms_overlap(), AsyncRequest::callback_pending, PlanState::chgParam, PartitionPruneState::execparamids, ExecReScan(), i, INVALID_SUBPLAN_INDEX, AppendState::ps, AsyncRequest::request_complete, AsyncRequest::result, and UpdateChangedParamSet().

Referenced by ExecReScan().