PostgreSQL Source Code  git master
execParallel.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * execParallel.c
4  * Support routines for parallel execution.
5  *
6  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  * This file contains routines that are intended to support setting up,
10  * using, and tearing down a ParallelContext from within the PostgreSQL
11  * executor. The ParallelContext machinery will handle starting the
12  * workers and ensuring that their state generally matches that of the
13  * leader; see src/backend/access/transam/README.parallel for details.
14  * However, we must save and restore relevant executor state, such as
15  * any ParamListInfo associated with the query, buffer/WAL usage info, and
16  * the actual plan to be passed down to the worker.
17  *
18  * IDENTIFICATION
19  * src/backend/executor/execParallel.c
20  *
21  *-------------------------------------------------------------------------
22  */
23 
24 #include "postgres.h"
25 
26 #include "executor/execParallel.h"
27 #include "executor/executor.h"
28 #include "executor/nodeAgg.h"
29 #include "executor/nodeAppend.h"
31 #include "executor/nodeCustom.h"
33 #include "executor/nodeHash.h"
34 #include "executor/nodeHashjoin.h"
37 #include "executor/nodeIndexscan.h"
38 #include "executor/nodeMemoize.h"
39 #include "executor/nodeSeqscan.h"
40 #include "executor/nodeSort.h"
41 #include "executor/nodeSubplan.h"
42 #include "executor/tqueue.h"
43 #include "jit/jit.h"
44 #include "nodes/nodeFuncs.h"
45 #include "pgstat.h"
46 #include "storage/spin.h"
47 #include "tcop/tcopprot.h"
48 #include "utils/datum.h"
49 #include "utils/dsa.h"
50 #include "utils/lsyscache.h"
51 #include "utils/memutils.h"
52 #include "utils/snapmgr.h"
53 
54 /*
55  * Magic numbers for parallel executor communication. We use constants
56  * greater than any 32-bit integer here so that values < 2^32 can be used
57  * by individual parallel nodes to store their own state.
58  */
59 #define PARALLEL_KEY_EXECUTOR_FIXED UINT64CONST(0xE000000000000001)
60 #define PARALLEL_KEY_PLANNEDSTMT UINT64CONST(0xE000000000000002)
61 #define PARALLEL_KEY_PARAMLISTINFO UINT64CONST(0xE000000000000003)
62 #define PARALLEL_KEY_BUFFER_USAGE UINT64CONST(0xE000000000000004)
63 #define PARALLEL_KEY_TUPLE_QUEUE UINT64CONST(0xE000000000000005)
64 #define PARALLEL_KEY_INSTRUMENTATION UINT64CONST(0xE000000000000006)
65 #define PARALLEL_KEY_DSA UINT64CONST(0xE000000000000007)
66 #define PARALLEL_KEY_QUERY_TEXT UINT64CONST(0xE000000000000008)
67 #define PARALLEL_KEY_JIT_INSTRUMENTATION UINT64CONST(0xE000000000000009)
68 #define PARALLEL_KEY_WAL_USAGE UINT64CONST(0xE00000000000000A)
69 
70 #define PARALLEL_TUPLE_QUEUE_SIZE 65536
71 
72 /*
73  * Fixed-size random stuff that we need to pass to parallel workers.
74  */
76 {
77  int64 tuples_needed; /* tuple bound, see ExecSetTupleBound */
79  int eflags;
80  int jit_flags;
82 
83 /*
84  * DSM structure for accumulating per-PlanState instrumentation.
85  *
86  * instrument_options: Same meaning here as in instrument.c.
87  *
88  * instrument_offset: Offset, relative to the start of this structure,
89  * of the first Instrumentation object. This will depend on the length of
90  * the plan_node_id array.
91  *
92  * num_workers: Number of workers.
93  *
94  * num_plan_nodes: Number of plan nodes.
95  *
96  * plan_node_id: Array of plan nodes for which we are gathering instrumentation
97  * from parallel workers. The length of this array is given by num_plan_nodes.
98  */
100 {
106  /* array of num_plan_nodes * num_workers Instrumentation objects follows */
107 };
108 #define GetInstrumentationArray(sei) \
109  (AssertVariableIsOfTypeMacro(sei, SharedExecutorInstrumentation *), \
110  (Instrumentation *) (((char *) sei) + sei->instrument_offset))
111 
112 /* Context object for ExecParallelEstimate. */
114 {
116  int nnodes;
118 
119 /* Context object for ExecParallelInitializeDSM. */
121 {
124  int nnodes;
126 
127 /* Helper functions that run in the parallel leader. */
128 static char *ExecSerializePlan(Plan *plan, EState *estate);
129 static bool ExecParallelEstimate(PlanState *planstate,
131 static bool ExecParallelInitializeDSM(PlanState *planstate,
134  bool reinitialize);
135 static bool ExecParallelReInitializeDSM(PlanState *planstate,
136  ParallelContext *pcxt);
137 static bool ExecParallelRetrieveInstrumentation(PlanState *planstate,
138  SharedExecutorInstrumentation *instrumentation);
139 
140 /* Helper function that runs in the parallel worker. */
142 
143 /*
144  * Create a serialized representation of the plan to be sent to each worker.
145  */
146 static char *
148 {
149  PlannedStmt *pstmt;
150  ListCell *lc;
151 
152  /* We can't scribble on the original plan, so make a copy. */
153  plan = copyObject(plan);
154 
155  /*
156  * The worker will start its own copy of the executor, and that copy will
157  * insert a junk filter if the toplevel node has any resjunk entries. We
158  * don't want that to happen, because while resjunk columns shouldn't be
159  * sent back to the user, here the tuples are coming back to another
160  * backend which may very well need them. So mutate the target list
161  * accordingly. This is sort of a hack; there might be better ways to do
162  * this...
163  */
164  foreach(lc, plan->targetlist)
165  {
166  TargetEntry *tle = lfirst_node(TargetEntry, lc);
167 
168  tle->resjunk = false;
169  }
170 
171  /*
172  * Create a dummy PlannedStmt. Most of the fields don't need to be valid
173  * for our purposes, but the worker will need at least a minimal
174  * PlannedStmt to start the executor.
175  */
176  pstmt = makeNode(PlannedStmt);
177  pstmt->commandType = CMD_SELECT;
178  pstmt->queryId = pgstat_get_my_query_id();
179  pstmt->hasReturning = false;
180  pstmt->hasModifyingCTE = false;
181  pstmt->canSetTag = true;
182  pstmt->transientPlan = false;
183  pstmt->dependsOnRole = false;
184  pstmt->parallelModeNeeded = false;
185  pstmt->planTree = plan;
186  pstmt->rtable = estate->es_range_table;
187  pstmt->permInfos = estate->es_rteperminfos;
188  pstmt->resultRelations = NIL;
189  pstmt->appendRelations = NIL;
190 
191  /*
192  * Transfer only parallel-safe subplans, leaving a NULL "hole" in the list
193  * for unsafe ones (so that the list indexes of the safe ones are
194  * preserved). This positively ensures that the worker won't try to run,
195  * or even do ExecInitNode on, an unsafe subplan. That's important to
196  * protect, eg, non-parallel-aware FDWs from getting into trouble.
197  */
198  pstmt->subplans = NIL;
199  foreach(lc, estate->es_plannedstmt->subplans)
200  {
201  Plan *subplan = (Plan *) lfirst(lc);
202 
203  if (subplan && !subplan->parallel_safe)
204  subplan = NULL;
205  pstmt->subplans = lappend(pstmt->subplans, subplan);
206  }
207 
208  pstmt->rewindPlanIDs = NULL;
209  pstmt->rowMarks = NIL;
210  pstmt->relationOids = NIL;
211  pstmt->invalItems = NIL; /* workers can't replan anyway... */
212  pstmt->paramExecTypes = estate->es_plannedstmt->paramExecTypes;
213  pstmt->utilityStmt = NULL;
214  pstmt->stmt_location = -1;
215  pstmt->stmt_len = -1;
216 
217  /* Return serialized copy of our dummy PlannedStmt. */
218  return nodeToString(pstmt);
219 }
220 
221 /*
222  * Parallel-aware plan nodes (and occasionally others) may need some state
223  * which is shared across all parallel workers. Before we size the DSM, give
224  * them a chance to call shm_toc_estimate_chunk or shm_toc_estimate_keys on
225  * &pcxt->estimator.
226  *
227  * While we're at it, count the number of PlanState nodes in the tree, so
228  * we know how many Instrumentation structures we need.
229  */
230 static bool
232 {
233  if (planstate == NULL)
234  return false;
235 
236  /* Count this node. */
237  e->nnodes++;
238 
239  switch (nodeTag(planstate))
240  {
241  case T_SeqScanState:
242  if (planstate->plan->parallel_aware)
243  ExecSeqScanEstimate((SeqScanState *) planstate,
244  e->pcxt);
245  break;
246  case T_IndexScanState:
247  if (planstate->plan->parallel_aware)
249  e->pcxt);
250  break;
251  case T_IndexOnlyScanState:
252  if (planstate->plan->parallel_aware)
254  e->pcxt);
255  break;
256  case T_ForeignScanState:
257  if (planstate->plan->parallel_aware)
259  e->pcxt);
260  break;
261  case T_AppendState:
262  if (planstate->plan->parallel_aware)
263  ExecAppendEstimate((AppendState *) planstate,
264  e->pcxt);
265  break;
266  case T_CustomScanState:
267  if (planstate->plan->parallel_aware)
269  e->pcxt);
270  break;
271  case T_BitmapHeapScanState:
272  if (planstate->plan->parallel_aware)
274  e->pcxt);
275  break;
276  case T_HashJoinState:
277  if (planstate->plan->parallel_aware)
278  ExecHashJoinEstimate((HashJoinState *) planstate,
279  e->pcxt);
280  break;
281  case T_HashState:
282  /* even when not parallel-aware, for EXPLAIN ANALYZE */
283  ExecHashEstimate((HashState *) planstate, e->pcxt);
284  break;
285  case T_SortState:
286  /* even when not parallel-aware, for EXPLAIN ANALYZE */
287  ExecSortEstimate((SortState *) planstate, e->pcxt);
288  break;
289  case T_IncrementalSortState:
290  /* even when not parallel-aware, for EXPLAIN ANALYZE */
291  ExecIncrementalSortEstimate((IncrementalSortState *) planstate, e->pcxt);
292  break;
293  case T_AggState:
294  /* even when not parallel-aware, for EXPLAIN ANALYZE */
295  ExecAggEstimate((AggState *) planstate, e->pcxt);
296  break;
297  case T_MemoizeState:
298  /* even when not parallel-aware, for EXPLAIN ANALYZE */
299  ExecMemoizeEstimate((MemoizeState *) planstate, e->pcxt);
300  break;
301  default:
302  break;
303  }
304 
305  return planstate_tree_walker(planstate, ExecParallelEstimate, e);
306 }
307 
308 /*
309  * Estimate the amount of space required to serialize the indicated parameters.
310  */
311 static Size
313 {
314  int paramid;
315  Size sz = sizeof(int);
316 
317  paramid = -1;
318  while ((paramid = bms_next_member(params, paramid)) >= 0)
319  {
320  Oid typeOid;
321  int16 typLen;
322  bool typByVal;
323  ParamExecData *prm;
324 
325  prm = &(estate->es_param_exec_vals[paramid]);
326  typeOid = list_nth_oid(estate->es_plannedstmt->paramExecTypes,
327  paramid);
328 
329  sz = add_size(sz, sizeof(int)); /* space for paramid */
330 
331  /* space for datum/isnull */
332  if (OidIsValid(typeOid))
333  get_typlenbyval(typeOid, &typLen, &typByVal);
334  else
335  {
336  /* If no type OID, assume by-value, like copyParamList does. */
337  typLen = sizeof(Datum);
338  typByVal = true;
339  }
340  sz = add_size(sz,
341  datumEstimateSpace(prm->value, prm->isnull,
342  typByVal, typLen));
343  }
344  return sz;
345 }
346 
347 /*
348  * Serialize specified PARAM_EXEC parameters.
349  *
350  * We write the number of parameters first, as a 4-byte integer, and then
351  * write details for each parameter in turn. The details for each parameter
352  * consist of a 4-byte paramid (location of param in execution time internal
353  * parameter array) and then the datum as serialized by datumSerialize().
354  */
355 static dsa_pointer
357 {
358  Size size;
359  int nparams;
360  int paramid;
361  ParamExecData *prm;
362  dsa_pointer handle;
363  char *start_address;
364 
365  /* Allocate enough space for the current parameter values. */
366  size = EstimateParamExecSpace(estate, params);
367  handle = dsa_allocate(area, size);
368  start_address = dsa_get_address(area, handle);
369 
370  /* First write the number of parameters as a 4-byte integer. */
371  nparams = bms_num_members(params);
372  memcpy(start_address, &nparams, sizeof(int));
373  start_address += sizeof(int);
374 
375  /* Write details for each parameter in turn. */
376  paramid = -1;
377  while ((paramid = bms_next_member(params, paramid)) >= 0)
378  {
379  Oid typeOid;
380  int16 typLen;
381  bool typByVal;
382 
383  prm = &(estate->es_param_exec_vals[paramid]);
384  typeOid = list_nth_oid(estate->es_plannedstmt->paramExecTypes,
385  paramid);
386 
387  /* Write paramid. */
388  memcpy(start_address, &paramid, sizeof(int));
389  start_address += sizeof(int);
390 
391  /* Write datum/isnull */
392  if (OidIsValid(typeOid))
393  get_typlenbyval(typeOid, &typLen, &typByVal);
394  else
395  {
396  /* If no type OID, assume by-value, like copyParamList does. */
397  typLen = sizeof(Datum);
398  typByVal = true;
399  }
400  datumSerialize(prm->value, prm->isnull, typByVal, typLen,
401  &start_address);
402  }
403 
404  return handle;
405 }
406 
407 /*
408  * Restore specified PARAM_EXEC parameters.
409  */
410 static void
411 RestoreParamExecParams(char *start_address, EState *estate)
412 {
413  int nparams;
414  int i;
415  int paramid;
416 
417  memcpy(&nparams, start_address, sizeof(int));
418  start_address += sizeof(int);
419 
420  for (i = 0; i < nparams; i++)
421  {
422  ParamExecData *prm;
423 
424  /* Read paramid */
425  memcpy(&paramid, start_address, sizeof(int));
426  start_address += sizeof(int);
427  prm = &(estate->es_param_exec_vals[paramid]);
428 
429  /* Read datum/isnull. */
430  prm->value = datumRestore(&start_address, &prm->isnull);
431  prm->execPlan = NULL;
432  }
433 }
434 
435 /*
436  * Initialize the dynamic shared memory segment that will be used to control
437  * parallel execution.
438  */
439 static bool
442 {
443  if (planstate == NULL)
444  return false;
445 
446  /* If instrumentation is enabled, initialize slot for this node. */
447  if (d->instrumentation != NULL)
449  planstate->plan->plan_node_id;
450 
451  /* Count this node. */
452  d->nnodes++;
453 
454  /*
455  * Call initializers for DSM-using plan nodes.
456  *
457  * Most plan nodes won't do anything here, but plan nodes that allocated
458  * DSM may need to initialize shared state in the DSM before parallel
459  * workers are launched. They can allocate the space they previously
460  * estimated using shm_toc_allocate, and add the keys they previously
461  * estimated using shm_toc_insert, in each case targeting pcxt->toc.
462  */
463  switch (nodeTag(planstate))
464  {
465  case T_SeqScanState:
466  if (planstate->plan->parallel_aware)
468  d->pcxt);
469  break;
470  case T_IndexScanState:
471  if (planstate->plan->parallel_aware)
473  d->pcxt);
474  break;
475  case T_IndexOnlyScanState:
476  if (planstate->plan->parallel_aware)
478  d->pcxt);
479  break;
480  case T_ForeignScanState:
481  if (planstate->plan->parallel_aware)
483  d->pcxt);
484  break;
485  case T_AppendState:
486  if (planstate->plan->parallel_aware)
487  ExecAppendInitializeDSM((AppendState *) planstate,
488  d->pcxt);
489  break;
490  case T_CustomScanState:
491  if (planstate->plan->parallel_aware)
493  d->pcxt);
494  break;
495  case T_BitmapHeapScanState:
496  if (planstate->plan->parallel_aware)
498  d->pcxt);
499  break;
500  case T_HashJoinState:
501  if (planstate->plan->parallel_aware)
503  d->pcxt);
504  break;
505  case T_HashState:
506  /* even when not parallel-aware, for EXPLAIN ANALYZE */
507  ExecHashInitializeDSM((HashState *) planstate, d->pcxt);
508  break;
509  case T_SortState:
510  /* even when not parallel-aware, for EXPLAIN ANALYZE */
511  ExecSortInitializeDSM((SortState *) planstate, d->pcxt);
512  break;
513  case T_IncrementalSortState:
514  /* even when not parallel-aware, for EXPLAIN ANALYZE */
516  break;
517  case T_AggState:
518  /* even when not parallel-aware, for EXPLAIN ANALYZE */
519  ExecAggInitializeDSM((AggState *) planstate, d->pcxt);
520  break;
521  case T_MemoizeState:
522  /* even when not parallel-aware, for EXPLAIN ANALYZE */
523  ExecMemoizeInitializeDSM((MemoizeState *) planstate, d->pcxt);
524  break;
525  default:
526  break;
527  }
528 
529  return planstate_tree_walker(planstate, ExecParallelInitializeDSM, d);
530 }
531 
532 /*
533  * It sets up the response queues for backend workers to return tuples
534  * to the main backend and start the workers.
535  */
536 static shm_mq_handle **
538 {
539  shm_mq_handle **responseq;
540  char *tqueuespace;
541  int i;
542 
543  /* Skip this if no workers. */
544  if (pcxt->nworkers == 0)
545  return NULL;
546 
547  /* Allocate memory for shared memory queue handles. */
548  responseq = (shm_mq_handle **)
549  palloc(pcxt->nworkers * sizeof(shm_mq_handle *));
550 
551  /*
552  * If not reinitializing, allocate space from the DSM for the queues;
553  * otherwise, find the already allocated space.
554  */
555  if (!reinitialize)
556  tqueuespace =
557  shm_toc_allocate(pcxt->toc,
559  pcxt->nworkers));
560  else
561  tqueuespace = shm_toc_lookup(pcxt->toc, PARALLEL_KEY_TUPLE_QUEUE, false);
562 
563  /* Create the queues, and become the receiver for each. */
564  for (i = 0; i < pcxt->nworkers; ++i)
565  {
566  shm_mq *mq;
567 
568  mq = shm_mq_create(tqueuespace +
571 
573  responseq[i] = shm_mq_attach(mq, pcxt->seg, NULL);
574  }
575 
576  /* Add array of queues to shm_toc, so others can find it. */
577  if (!reinitialize)
578  shm_toc_insert(pcxt->toc, PARALLEL_KEY_TUPLE_QUEUE, tqueuespace);
579 
580  /* Return array of handles. */
581  return responseq;
582 }
583 
584 /*
585  * Sets up the required infrastructure for backend workers to perform
586  * execution and return results to the main backend.
587  */
590  Bitmapset *sendParams, int nworkers,
591  int64 tuples_needed)
592 {
594  ParallelContext *pcxt;
598  char *pstmt_data;
599  char *pstmt_space;
600  char *paramlistinfo_space;
601  BufferUsage *bufusage_space;
602  WalUsage *walusage_space;
603  SharedExecutorInstrumentation *instrumentation = NULL;
604  SharedJitInstrumentation *jit_instrumentation = NULL;
605  int pstmt_len;
606  int paramlistinfo_len;
607  int instrumentation_len = 0;
608  int jit_instrumentation_len = 0;
609  int instrument_offset = 0;
610  Size dsa_minsize = dsa_minimum_size();
611  char *query_string;
612  int query_len;
613 
614  /*
615  * Force any initplan outputs that we're going to pass to workers to be
616  * evaluated, if they weren't already.
617  *
618  * For simplicity, we use the EState's per-output-tuple ExprContext here.
619  * That risks intra-query memory leakage, since we might pass through here
620  * many times before that ExprContext gets reset; but ExecSetParamPlan
621  * doesn't normally leak any memory in the context (see its comments), so
622  * it doesn't seem worth complicating this function's API to pass it a
623  * shorter-lived ExprContext. This might need to change someday.
624  */
625  ExecSetParamPlanMulti(sendParams, GetPerTupleExprContext(estate));
626 
627  /* Allocate object for return value. */
628  pei = palloc0(sizeof(ParallelExecutorInfo));
629  pei->finished = false;
630  pei->planstate = planstate;
631 
632  /* Fix up and serialize plan to be sent to workers. */
633  pstmt_data = ExecSerializePlan(planstate->plan, estate);
634 
635  /* Create a parallel context. */
636  pcxt = CreateParallelContext("postgres", "ParallelQueryMain", nworkers);
637  pei->pcxt = pcxt;
638 
639  /*
640  * Before telling the parallel context to create a dynamic shared memory
641  * segment, we need to figure out how big it should be. Estimate space
642  * for the various things we need to store.
643  */
644 
645  /* Estimate space for fixed-size state. */
648  shm_toc_estimate_keys(&pcxt->estimator, 1);
649 
650  /* Estimate space for query text. */
651  query_len = strlen(estate->es_sourceText);
652  shm_toc_estimate_chunk(&pcxt->estimator, query_len + 1);
653  shm_toc_estimate_keys(&pcxt->estimator, 1);
654 
655  /* Estimate space for serialized PlannedStmt. */
656  pstmt_len = strlen(pstmt_data) + 1;
657  shm_toc_estimate_chunk(&pcxt->estimator, pstmt_len);
658  shm_toc_estimate_keys(&pcxt->estimator, 1);
659 
660  /* Estimate space for serialized ParamListInfo. */
661  paramlistinfo_len = EstimateParamListSpace(estate->es_param_list_info);
662  shm_toc_estimate_chunk(&pcxt->estimator, paramlistinfo_len);
663  shm_toc_estimate_keys(&pcxt->estimator, 1);
664 
665  /*
666  * Estimate space for BufferUsage.
667  *
668  * If EXPLAIN is not in use and there are no extensions loaded that care,
669  * we could skip this. But we have no way of knowing whether anyone's
670  * looking at pgBufferUsage, so do it unconditionally.
671  */
673  mul_size(sizeof(BufferUsage), pcxt->nworkers));
674  shm_toc_estimate_keys(&pcxt->estimator, 1);
675 
676  /*
677  * Same thing for WalUsage.
678  */
680  mul_size(sizeof(WalUsage), pcxt->nworkers));
681  shm_toc_estimate_keys(&pcxt->estimator, 1);
682 
683  /* Estimate space for tuple queues. */
686  shm_toc_estimate_keys(&pcxt->estimator, 1);
687 
688  /*
689  * Give parallel-aware nodes a chance to add to the estimates, and get a
690  * count of how many PlanState nodes there are.
691  */
692  e.pcxt = pcxt;
693  e.nnodes = 0;
694  ExecParallelEstimate(planstate, &e);
695 
696  /* Estimate space for instrumentation, if required. */
697  if (estate->es_instrument)
698  {
699  instrumentation_len =
700  offsetof(SharedExecutorInstrumentation, plan_node_id) +
701  sizeof(int) * e.nnodes;
702  instrumentation_len = MAXALIGN(instrumentation_len);
703  instrument_offset = instrumentation_len;
704  instrumentation_len +=
705  mul_size(sizeof(Instrumentation),
706  mul_size(e.nnodes, nworkers));
707  shm_toc_estimate_chunk(&pcxt->estimator, instrumentation_len);
708  shm_toc_estimate_keys(&pcxt->estimator, 1);
709 
710  /* Estimate space for JIT instrumentation, if required. */
711  if (estate->es_jit_flags != PGJIT_NONE)
712  {
713  jit_instrumentation_len =
714  offsetof(SharedJitInstrumentation, jit_instr) +
715  sizeof(JitInstrumentation) * nworkers;
716  shm_toc_estimate_chunk(&pcxt->estimator, jit_instrumentation_len);
717  shm_toc_estimate_keys(&pcxt->estimator, 1);
718  }
719  }
720 
721  /* Estimate space for DSA area. */
722  shm_toc_estimate_chunk(&pcxt->estimator, dsa_minsize);
723  shm_toc_estimate_keys(&pcxt->estimator, 1);
724 
725  /* Everyone's had a chance to ask for space, so now create the DSM. */
726  InitializeParallelDSM(pcxt);
727 
728  /*
729  * OK, now we have a dynamic shared memory segment, and it should be big
730  * enough to store all of the data we estimated we would want to put into
731  * it, plus whatever general stuff (not specifically executor-related) the
732  * ParallelContext itself needs to store there. None of the space we
733  * asked for has been allocated or initialized yet, though, so do that.
734  */
735 
736  /* Store fixed-size state. */
737  fpes = shm_toc_allocate(pcxt->toc, sizeof(FixedParallelExecutorState));
738  fpes->tuples_needed = tuples_needed;
740  fpes->eflags = estate->es_top_eflags;
741  fpes->jit_flags = estate->es_jit_flags;
743 
744  /* Store query string */
745  query_string = shm_toc_allocate(pcxt->toc, query_len + 1);
746  memcpy(query_string, estate->es_sourceText, query_len + 1);
747  shm_toc_insert(pcxt->toc, PARALLEL_KEY_QUERY_TEXT, query_string);
748 
749  /* Store serialized PlannedStmt. */
750  pstmt_space = shm_toc_allocate(pcxt->toc, pstmt_len);
751  memcpy(pstmt_space, pstmt_data, pstmt_len);
752  shm_toc_insert(pcxt->toc, PARALLEL_KEY_PLANNEDSTMT, pstmt_space);
753 
754  /* Store serialized ParamListInfo. */
755  paramlistinfo_space = shm_toc_allocate(pcxt->toc, paramlistinfo_len);
756  shm_toc_insert(pcxt->toc, PARALLEL_KEY_PARAMLISTINFO, paramlistinfo_space);
757  SerializeParamList(estate->es_param_list_info, &paramlistinfo_space);
758 
759  /* Allocate space for each worker's BufferUsage; no need to initialize. */
760  bufusage_space = shm_toc_allocate(pcxt->toc,
761  mul_size(sizeof(BufferUsage), pcxt->nworkers));
762  shm_toc_insert(pcxt->toc, PARALLEL_KEY_BUFFER_USAGE, bufusage_space);
763  pei->buffer_usage = bufusage_space;
764 
765  /* Same for WalUsage. */
766  walusage_space = shm_toc_allocate(pcxt->toc,
767  mul_size(sizeof(WalUsage), pcxt->nworkers));
768  shm_toc_insert(pcxt->toc, PARALLEL_KEY_WAL_USAGE, walusage_space);
769  pei->wal_usage = walusage_space;
770 
771  /* Set up the tuple queues that the workers will write into. */
772  pei->tqueue = ExecParallelSetupTupleQueues(pcxt, false);
773 
774  /* We don't need the TupleQueueReaders yet, though. */
775  pei->reader = NULL;
776 
777  /*
778  * If instrumentation options were supplied, allocate space for the data.
779  * It only gets partially initialized here; the rest happens during
780  * ExecParallelInitializeDSM.
781  */
782  if (estate->es_instrument)
783  {
784  Instrumentation *instrument;
785  int i;
786 
787  instrumentation = shm_toc_allocate(pcxt->toc, instrumentation_len);
788  instrumentation->instrument_options = estate->es_instrument;
789  instrumentation->instrument_offset = instrument_offset;
790  instrumentation->num_workers = nworkers;
791  instrumentation->num_plan_nodes = e.nnodes;
792  instrument = GetInstrumentationArray(instrumentation);
793  for (i = 0; i < nworkers * e.nnodes; ++i)
794  InstrInit(&instrument[i], estate->es_instrument);
796  instrumentation);
797  pei->instrumentation = instrumentation;
798 
799  if (estate->es_jit_flags != PGJIT_NONE)
800  {
801  jit_instrumentation = shm_toc_allocate(pcxt->toc,
802  jit_instrumentation_len);
803  jit_instrumentation->num_workers = nworkers;
804  memset(jit_instrumentation->jit_instr, 0,
805  sizeof(JitInstrumentation) * nworkers);
807  jit_instrumentation);
808  pei->jit_instrumentation = jit_instrumentation;
809  }
810  }
811 
812  /*
813  * Create a DSA area that can be used by the leader and all workers.
814  * (However, if we failed to create a DSM and are using private memory
815  * instead, then skip this.)
816  */
817  if (pcxt->seg != NULL)
818  {
819  char *area_space;
820 
821  area_space = shm_toc_allocate(pcxt->toc, dsa_minsize);
822  shm_toc_insert(pcxt->toc, PARALLEL_KEY_DSA, area_space);
823  pei->area = dsa_create_in_place(area_space, dsa_minsize,
825  pcxt->seg);
826 
827  /*
828  * Serialize parameters, if any, using DSA storage. We don't dare use
829  * the main parallel query DSM for this because we might relaunch
830  * workers after the values have changed (and thus the amount of
831  * storage required has changed).
832  */
833  if (!bms_is_empty(sendParams))
834  {
835  pei->param_exec = SerializeParamExecParams(estate, sendParams,
836  pei->area);
837  fpes->param_exec = pei->param_exec;
838  }
839  }
840 
841  /*
842  * Give parallel-aware nodes a chance to initialize their shared data.
843  * This also initializes the elements of instrumentation->ps_instrument,
844  * if it exists.
845  */
846  d.pcxt = pcxt;
847  d.instrumentation = instrumentation;
848  d.nnodes = 0;
849 
850  /* Install our DSA area while initializing the plan. */
851  estate->es_query_dsa = pei->area;
852  ExecParallelInitializeDSM(planstate, &d);
853  estate->es_query_dsa = NULL;
854 
855  /*
856  * Make sure that the world hasn't shifted under our feet. This could
857  * probably just be an Assert(), but let's be conservative for now.
858  */
859  if (e.nnodes != d.nnodes)
860  elog(ERROR, "inconsistent count of PlanState nodes");
861 
862  /* OK, we're ready to rock and roll. */
863  return pei;
864 }
865 
866 /*
867  * Set up tuple queue readers to read the results of a parallel subplan.
868  *
869  * This is separate from ExecInitParallelPlan() because we can launch the
870  * worker processes and let them start doing something before we do this.
871  */
872 void
874 {
875  int nworkers = pei->pcxt->nworkers_launched;
876  int i;
877 
878  Assert(pei->reader == NULL);
879 
880  if (nworkers > 0)
881  {
882  pei->reader = (TupleQueueReader **)
883  palloc(nworkers * sizeof(TupleQueueReader *));
884 
885  for (i = 0; i < nworkers; i++)
886  {
887  shm_mq_set_handle(pei->tqueue[i],
888  pei->pcxt->worker[i].bgwhandle);
889  pei->reader[i] = CreateTupleQueueReader(pei->tqueue[i]);
890  }
891  }
892 }
893 
894 /*
895  * Re-initialize the parallel executor shared memory state before launching
896  * a fresh batch of workers.
897  */
898 void
901  Bitmapset *sendParams)
902 {
903  EState *estate = planstate->state;
905 
906  /* Old workers must already be shut down */
907  Assert(pei->finished);
908 
909  /*
910  * Force any initplan outputs that we're going to pass to workers to be
911  * evaluated, if they weren't already (see comments in
912  * ExecInitParallelPlan).
913  */
914  ExecSetParamPlanMulti(sendParams, GetPerTupleExprContext(estate));
915 
917  pei->tqueue = ExecParallelSetupTupleQueues(pei->pcxt, true);
918  pei->reader = NULL;
919  pei->finished = false;
920 
921  fpes = shm_toc_lookup(pei->pcxt->toc, PARALLEL_KEY_EXECUTOR_FIXED, false);
922 
923  /* Free any serialized parameters from the last round. */
924  if (DsaPointerIsValid(fpes->param_exec))
925  {
926  dsa_free(pei->area, fpes->param_exec);
928  }
929 
930  /* Serialize current parameter values if required. */
931  if (!bms_is_empty(sendParams))
932  {
933  pei->param_exec = SerializeParamExecParams(estate, sendParams,
934  pei->area);
935  fpes->param_exec = pei->param_exec;
936  }
937 
938  /* Traverse plan tree and let each child node reset associated state. */
939  estate->es_query_dsa = pei->area;
940  ExecParallelReInitializeDSM(planstate, pei->pcxt);
941  estate->es_query_dsa = NULL;
942 }
943 
944 /*
945  * Traverse plan tree to reinitialize per-node dynamic shared memory state
946  */
947 static bool
949  ParallelContext *pcxt)
950 {
951  if (planstate == NULL)
952  return false;
953 
954  /*
955  * Call reinitializers for DSM-using plan nodes.
956  */
957  switch (nodeTag(planstate))
958  {
959  case T_SeqScanState:
960  if (planstate->plan->parallel_aware)
962  pcxt);
963  break;
964  case T_IndexScanState:
965  if (planstate->plan->parallel_aware)
967  pcxt);
968  break;
969  case T_IndexOnlyScanState:
970  if (planstate->plan->parallel_aware)
972  pcxt);
973  break;
974  case T_ForeignScanState:
975  if (planstate->plan->parallel_aware)
977  pcxt);
978  break;
979  case T_AppendState:
980  if (planstate->plan->parallel_aware)
981  ExecAppendReInitializeDSM((AppendState *) planstate, pcxt);
982  break;
983  case T_CustomScanState:
984  if (planstate->plan->parallel_aware)
986  pcxt);
987  break;
988  case T_BitmapHeapScanState:
989  if (planstate->plan->parallel_aware)
991  pcxt);
992  break;
993  case T_HashJoinState:
994  if (planstate->plan->parallel_aware)
996  pcxt);
997  break;
998  case T_HashState:
999  case T_SortState:
1000  case T_IncrementalSortState:
1001  case T_MemoizeState:
1002  /* these nodes have DSM state, but no reinitialization is required */
1003  break;
1004 
1005  default:
1006  break;
1007  }
1008 
1009  return planstate_tree_walker(planstate, ExecParallelReInitializeDSM, pcxt);
1010 }
1011 
1012 /*
1013  * Copy instrumentation information about this node and its descendants from
1014  * dynamic shared memory.
1015  */
1016 static bool
1018  SharedExecutorInstrumentation *instrumentation)
1019 {
1020  Instrumentation *instrument;
1021  int i;
1022  int n;
1023  int ibytes;
1024  int plan_node_id = planstate->plan->plan_node_id;
1025  MemoryContext oldcontext;
1026 
1027  /* Find the instrumentation for this node. */
1028  for (i = 0; i < instrumentation->num_plan_nodes; ++i)
1029  if (instrumentation->plan_node_id[i] == plan_node_id)
1030  break;
1031  if (i >= instrumentation->num_plan_nodes)
1032  elog(ERROR, "plan node %d not found", plan_node_id);
1033 
1034  /* Accumulate the statistics from all workers. */
1035  instrument = GetInstrumentationArray(instrumentation);
1036  instrument += i * instrumentation->num_workers;
1037  for (n = 0; n < instrumentation->num_workers; ++n)
1038  InstrAggNode(planstate->instrument, &instrument[n]);
1039 
1040  /*
1041  * Also store the per-worker detail.
1042  *
1043  * Worker instrumentation should be allocated in the same context as the
1044  * regular instrumentation information, which is the per-query context.
1045  * Switch into per-query memory context.
1046  */
1047  oldcontext = MemoryContextSwitchTo(planstate->state->es_query_cxt);
1048  ibytes = mul_size(instrumentation->num_workers, sizeof(Instrumentation));
1049  planstate->worker_instrument =
1050  palloc(ibytes + offsetof(WorkerInstrumentation, instrument));
1051  MemoryContextSwitchTo(oldcontext);
1052 
1053  planstate->worker_instrument->num_workers = instrumentation->num_workers;
1054  memcpy(&planstate->worker_instrument->instrument, instrument, ibytes);
1055 
1056  /* Perform any node-type-specific work that needs to be done. */
1057  switch (nodeTag(planstate))
1058  {
1059  case T_SortState:
1061  break;
1062  case T_IncrementalSortState:
1064  break;
1065  case T_HashState:
1067  break;
1068  case T_AggState:
1070  break;
1071  case T_MemoizeState:
1073  break;
1074  default:
1075  break;
1076  }
1077 
1079  instrumentation);
1080 }
1081 
1082 /*
1083  * Add up the workers' JIT instrumentation from dynamic shared memory.
1084  */
1085 static void
1087  SharedJitInstrumentation *shared_jit)
1088 {
1089  JitInstrumentation *combined;
1090  int ibytes;
1091 
1092  int n;
1093 
1094  /*
1095  * Accumulate worker JIT instrumentation into the combined JIT
1096  * instrumentation, allocating it if required.
1097  */
1098  if (!planstate->state->es_jit_worker_instr)
1099  planstate->state->es_jit_worker_instr =
1101  combined = planstate->state->es_jit_worker_instr;
1102 
1103  /* Accumulate all the workers' instrumentations. */
1104  for (n = 0; n < shared_jit->num_workers; ++n)
1105  InstrJitAgg(combined, &shared_jit->jit_instr[n]);
1106 
1107  /*
1108  * Store the per-worker detail.
1109  *
1110  * Similar to ExecParallelRetrieveInstrumentation(), allocate the
1111  * instrumentation in per-query context.
1112  */
1113  ibytes = offsetof(SharedJitInstrumentation, jit_instr)
1114  + mul_size(shared_jit->num_workers, sizeof(JitInstrumentation));
1115  planstate->worker_jit_instrument =
1116  MemoryContextAlloc(planstate->state->es_query_cxt, ibytes);
1117 
1118  memcpy(planstate->worker_jit_instrument, shared_jit, ibytes);
1119 }
1120 
1121 /*
1122  * Finish parallel execution. We wait for parallel workers to finish, and
1123  * accumulate their buffer/WAL usage.
1124  */
1125 void
1127 {
1128  int nworkers = pei->pcxt->nworkers_launched;
1129  int i;
1130 
1131  /* Make this be a no-op if called twice in a row. */
1132  if (pei->finished)
1133  return;
1134 
1135  /*
1136  * Detach from tuple queues ASAP, so that any still-active workers will
1137  * notice that no further results are wanted.
1138  */
1139  if (pei->tqueue != NULL)
1140  {
1141  for (i = 0; i < nworkers; i++)
1142  shm_mq_detach(pei->tqueue[i]);
1143  pfree(pei->tqueue);
1144  pei->tqueue = NULL;
1145  }
1146 
1147  /*
1148  * While we're waiting for the workers to finish, let's get rid of the
1149  * tuple queue readers. (Any other local cleanup could be done here too.)
1150  */
1151  if (pei->reader != NULL)
1152  {
1153  for (i = 0; i < nworkers; i++)
1155  pfree(pei->reader);
1156  pei->reader = NULL;
1157  }
1158 
1159  /* Now wait for the workers to finish. */
1161 
1162  /*
1163  * Next, accumulate buffer/WAL usage. (This must wait for the workers to
1164  * finish, or we might get incomplete data.)
1165  */
1166  for (i = 0; i < nworkers; i++)
1168 
1169  pei->finished = true;
1170 }
1171 
1172 /*
1173  * Accumulate instrumentation, and then clean up whatever ParallelExecutorInfo
1174  * resources still exist after ExecParallelFinish. We separate these
1175  * routines because someone might want to examine the contents of the DSM
1176  * after ExecParallelFinish and before calling this routine.
1177  */
1178 void
1180 {
1181  /* Accumulate instrumentation, if any. */
1182  if (pei->instrumentation)
1184  pei->instrumentation);
1185 
1186  /* Accumulate JIT instrumentation, if any. */
1187  if (pei->jit_instrumentation)
1189  pei->jit_instrumentation);
1190 
1191  /* Free any serialized parameters. */
1192  if (DsaPointerIsValid(pei->param_exec))
1193  {
1194  dsa_free(pei->area, pei->param_exec);
1196  }
1197  if (pei->area != NULL)
1198  {
1199  dsa_detach(pei->area);
1200  pei->area = NULL;
1201  }
1202  if (pei->pcxt != NULL)
1203  {
1205  pei->pcxt = NULL;
1206  }
1207  pfree(pei);
1208 }
1209 
1210 /*
1211  * Create a DestReceiver to write tuples we produce to the shm_mq designated
1212  * for that purpose.
1213  */
1214 static DestReceiver *
1216 {
1217  char *mqspace;
1218  shm_mq *mq;
1219 
1220  mqspace = shm_toc_lookup(toc, PARALLEL_KEY_TUPLE_QUEUE, false);
1222  mq = (shm_mq *) mqspace;
1224  return CreateTupleQueueDestReceiver(shm_mq_attach(mq, seg, NULL));
1225 }
1226 
1227 /*
1228  * Create a QueryDesc for the PlannedStmt we are to execute, and return it.
1229  */
1230 static QueryDesc *
1232  int instrument_options)
1233 {
1234  char *pstmtspace;
1235  char *paramspace;
1236  PlannedStmt *pstmt;
1237  ParamListInfo paramLI;
1238  char *queryString;
1239 
1240  /* Get the query string from shared memory */
1241  queryString = shm_toc_lookup(toc, PARALLEL_KEY_QUERY_TEXT, false);
1242 
1243  /* Reconstruct leader-supplied PlannedStmt. */
1244  pstmtspace = shm_toc_lookup(toc, PARALLEL_KEY_PLANNEDSTMT, false);
1245  pstmt = (PlannedStmt *) stringToNode(pstmtspace);
1246 
1247  /* Reconstruct ParamListInfo. */
1248  paramspace = shm_toc_lookup(toc, PARALLEL_KEY_PARAMLISTINFO, false);
1249  paramLI = RestoreParamList(&paramspace);
1250 
1251  /* Create a QueryDesc for the query. */
1252  return CreateQueryDesc(pstmt,
1253  queryString,
1255  receiver, paramLI, NULL, instrument_options);
1256 }
1257 
1258 /*
1259  * Copy instrumentation information from this node and its descendants into
1260  * dynamic shared memory, so that the parallel leader can retrieve it.
1261  */
1262 static bool
1264  SharedExecutorInstrumentation *instrumentation)
1265 {
1266  int i;
1267  int plan_node_id = planstate->plan->plan_node_id;
1268  Instrumentation *instrument;
1269 
1270  InstrEndLoop(planstate->instrument);
1271 
1272  /*
1273  * If we shuffled the plan_node_id values in ps_instrument into sorted
1274  * order, we could use binary search here. This might matter someday if
1275  * we're pushing down sufficiently large plan trees. For now, do it the
1276  * slow, dumb way.
1277  */
1278  for (i = 0; i < instrumentation->num_plan_nodes; ++i)
1279  if (instrumentation->plan_node_id[i] == plan_node_id)
1280  break;
1281  if (i >= instrumentation->num_plan_nodes)
1282  elog(ERROR, "plan node %d not found", plan_node_id);
1283 
1284  /*
1285  * Add our statistics to the per-node, per-worker totals. It's possible
1286  * that this could happen more than once if we relaunched workers.
1287  */
1288  instrument = GetInstrumentationArray(instrumentation);
1289  instrument += i * instrumentation->num_workers;
1291  Assert(ParallelWorkerNumber < instrumentation->num_workers);
1292  InstrAggNode(&instrument[ParallelWorkerNumber], planstate->instrument);
1293 
1295  instrumentation);
1296 }
1297 
1298 /*
1299  * Initialize the PlanState and its descendants with the information
1300  * retrieved from shared memory. This has to be done once the PlanState
1301  * is allocated and initialized by executor; that is, after ExecutorStart().
1302  */
1303 static bool
1305 {
1306  if (planstate == NULL)
1307  return false;
1308 
1309  switch (nodeTag(planstate))
1310  {
1311  case T_SeqScanState:
1312  if (planstate->plan->parallel_aware)
1313  ExecSeqScanInitializeWorker((SeqScanState *) planstate, pwcxt);
1314  break;
1315  case T_IndexScanState:
1316  if (planstate->plan->parallel_aware)
1318  pwcxt);
1319  break;
1320  case T_IndexOnlyScanState:
1321  if (planstate->plan->parallel_aware)
1323  pwcxt);
1324  break;
1325  case T_ForeignScanState:
1326  if (planstate->plan->parallel_aware)
1328  pwcxt);
1329  break;
1330  case T_AppendState:
1331  if (planstate->plan->parallel_aware)
1332  ExecAppendInitializeWorker((AppendState *) planstate, pwcxt);
1333  break;
1334  case T_CustomScanState:
1335  if (planstate->plan->parallel_aware)
1337  pwcxt);
1338  break;
1339  case T_BitmapHeapScanState:
1340  if (planstate->plan->parallel_aware)
1342  pwcxt);
1343  break;
1344  case T_HashJoinState:
1345  if (planstate->plan->parallel_aware)
1347  pwcxt);
1348  break;
1349  case T_HashState:
1350  /* even when not parallel-aware, for EXPLAIN ANALYZE */
1351  ExecHashInitializeWorker((HashState *) planstate, pwcxt);
1352  break;
1353  case T_SortState:
1354  /* even when not parallel-aware, for EXPLAIN ANALYZE */
1355  ExecSortInitializeWorker((SortState *) planstate, pwcxt);
1356  break;
1357  case T_IncrementalSortState:
1358  /* even when not parallel-aware, for EXPLAIN ANALYZE */
1360  pwcxt);
1361  break;
1362  case T_AggState:
1363  /* even when not parallel-aware, for EXPLAIN ANALYZE */
1364  ExecAggInitializeWorker((AggState *) planstate, pwcxt);
1365  break;
1366  case T_MemoizeState:
1367  /* even when not parallel-aware, for EXPLAIN ANALYZE */
1368  ExecMemoizeInitializeWorker((MemoizeState *) planstate, pwcxt);
1369  break;
1370  default:
1371  break;
1372  }
1373 
1375  pwcxt);
1376 }
1377 
1378 /*
1379  * Main entrypoint for parallel query worker processes.
1380  *
1381  * We reach this function from ParallelWorkerMain, so the setup necessary to
1382  * create a sensible parallel environment has already been done;
1383  * ParallelWorkerMain worries about stuff like the transaction state, combo
1384  * CID mappings, and GUC values, so we don't need to deal with any of that
1385  * here.
1386  *
1387  * Our job is to deal with concerns specific to the executor. The parallel
1388  * group leader will have stored a serialized PlannedStmt, and it's our job
1389  * to execute that plan and write the resulting tuples to the appropriate
1390  * tuple queue. Various bits of supporting information that we need in order
1391  * to do this are also stored in the dsm_segment and can be accessed through
1392  * the shm_toc.
1393  */
1394 void
1396 {
1398  BufferUsage *buffer_usage;
1399  WalUsage *wal_usage;
1400  DestReceiver *receiver;
1401  QueryDesc *queryDesc;
1402  SharedExecutorInstrumentation *instrumentation;
1403  SharedJitInstrumentation *jit_instrumentation;
1404  int instrument_options = 0;
1405  void *area_space;
1406  dsa_area *area;
1407  ParallelWorkerContext pwcxt;
1408 
1409  /* Get fixed-size state. */
1410  fpes = shm_toc_lookup(toc, PARALLEL_KEY_EXECUTOR_FIXED, false);
1411 
1412  /* Set up DestReceiver, SharedExecutorInstrumentation, and QueryDesc. */
1413  receiver = ExecParallelGetReceiver(seg, toc);
1414  instrumentation = shm_toc_lookup(toc, PARALLEL_KEY_INSTRUMENTATION, true);
1415  if (instrumentation != NULL)
1416  instrument_options = instrumentation->instrument_options;
1417  jit_instrumentation = shm_toc_lookup(toc, PARALLEL_KEY_JIT_INSTRUMENTATION,
1418  true);
1419  queryDesc = ExecParallelGetQueryDesc(toc, receiver, instrument_options);
1420 
1421  /* Setting debug_query_string for individual workers */
1422  debug_query_string = queryDesc->sourceText;
1423 
1424  /* Report workers' query for monitoring purposes */
1426 
1427  /* Attach to the dynamic shared memory area. */
1428  area_space = shm_toc_lookup(toc, PARALLEL_KEY_DSA, false);
1429  area = dsa_attach_in_place(area_space, seg);
1430 
1431  /* Start up the executor */
1432  queryDesc->plannedstmt->jitFlags = fpes->jit_flags;
1433  ExecutorStart(queryDesc, fpes->eflags);
1434 
1435  /* Special executor initialization steps for parallel workers */
1436  queryDesc->planstate->state->es_query_dsa = area;
1437  if (DsaPointerIsValid(fpes->param_exec))
1438  {
1439  char *paramexec_space;
1440 
1441  paramexec_space = dsa_get_address(area, fpes->param_exec);
1442  RestoreParamExecParams(paramexec_space, queryDesc->estate);
1443  }
1444  pwcxt.toc = toc;
1445  pwcxt.seg = seg;
1446  ExecParallelInitializeWorker(queryDesc->planstate, &pwcxt);
1447 
1448  /* Pass down any tuple bound */
1449  ExecSetTupleBound(fpes->tuples_needed, queryDesc->planstate);
1450 
1451  /*
1452  * Prepare to track buffer/WAL usage during query execution.
1453  *
1454  * We do this after starting up the executor to match what happens in the
1455  * leader, which also doesn't count buffer accesses and WAL activity that
1456  * occur during executor startup.
1457  */
1459 
1460  /*
1461  * Run the plan. If we specified a tuple bound, be careful not to demand
1462  * more tuples than that.
1463  */
1464  ExecutorRun(queryDesc,
1466  fpes->tuples_needed < 0 ? (int64) 0 : fpes->tuples_needed,
1467  true);
1468 
1469  /* Shut down the executor */
1470  ExecutorFinish(queryDesc);
1471 
1472  /* Report buffer/WAL usage during parallel execution. */
1473  buffer_usage = shm_toc_lookup(toc, PARALLEL_KEY_BUFFER_USAGE, false);
1474  wal_usage = shm_toc_lookup(toc, PARALLEL_KEY_WAL_USAGE, false);
1476  &wal_usage[ParallelWorkerNumber]);
1477 
1478  /* Report instrumentation data if any instrumentation options are set. */
1479  if (instrumentation != NULL)
1481  instrumentation);
1482 
1483  /* Report JIT instrumentation data if any */
1484  if (queryDesc->estate->es_jit && jit_instrumentation != NULL)
1485  {
1486  Assert(ParallelWorkerNumber < jit_instrumentation->num_workers);
1487  jit_instrumentation->jit_instr[ParallelWorkerNumber] =
1488  queryDesc->estate->es_jit->instr;
1489  }
1490 
1491  /* Must do this after capturing instrumentation. */
1492  ExecutorEnd(queryDesc);
1493 
1494  /* Cleanup. */
1495  dsa_detach(area);
1496  FreeQueryDesc(queryDesc);
1497  receiver->rDestroy(receiver);
1498 }
int ParallelWorkerNumber
Definition: parallel.c:114
void InitializeParallelDSM(ParallelContext *pcxt)
Definition: parallel.c:204
void WaitForParallelWorkersToFinish(ParallelContext *pcxt)
Definition: parallel.c:774
void ReinitializeParallelDSM(ParallelContext *pcxt)
Definition: parallel.c:487
void DestroyParallelContext(ParallelContext *pcxt)
Definition: parallel.c:928
ParallelContext * CreateParallelContext(const char *library_name, const char *function_name, int nworkers)
Definition: parallel.c:166
uint64 pgstat_get_my_query_id(void)
void pgstat_report_activity(BackendState state, const char *cmd_str)
@ STATE_RUNNING
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1106
int bms_num_members(const Bitmapset *a)
Definition: bitmapset.c:685
#define bms_is_empty(a)
Definition: bitmapset.h:105
signed short int16
Definition: c.h:482
#define MAXALIGN(LEN)
Definition: c.h:800
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:387
#define OidIsValid(objectId)
Definition: c.h:764
size_t Size
Definition: c.h:594
Datum datumRestore(char **start_address, bool *isnull)
Definition: datum.c:521
void datumSerialize(Datum value, bool isnull, bool typByVal, int typLen, char **start_address)
Definition: datum.c:459
Size datumEstimateSpace(Datum value, bool isnull, bool typByVal, int typLen)
Definition: datum.c:412
dsa_area * dsa_create_in_place(void *place, size_t size, int tranche_id, dsm_segment *segment)
Definition: dsa.c:482
void * dsa_get_address(dsa_area *area, dsa_pointer dp)
Definition: dsa.c:949
void dsa_detach(dsa_area *area)
Definition: dsa.c:1932
dsa_area * dsa_attach_in_place(void *place, dsm_segment *segment)
Definition: dsa.c:554
void dsa_free(dsa_area *area, dsa_pointer dp)
Definition: dsa.c:833
size_t dsa_minimum_size(void)
Definition: dsa.c:1186
uint64 dsa_pointer
Definition: dsa.h:62
#define dsa_allocate(area, size)
Definition: dsa.h:84
#define InvalidDsaPointer
Definition: dsa.h:78
#define DsaPointerIsValid(x)
Definition: dsa.h:81
#define ERROR
Definition: elog.h:39
void ExecutorEnd(QueryDesc *queryDesc)
Definition: execMain.c:469
void ExecutorFinish(QueryDesc *queryDesc)
Definition: execMain.c:409
void ExecutorStart(QueryDesc *queryDesc, int eflags)
Definition: execMain.c:132
void ExecutorRun(QueryDesc *queryDesc, ScanDirection direction, uint64 count, bool execute_once)
Definition: execMain.c:302
#define PARALLEL_KEY_BUFFER_USAGE
Definition: execParallel.c:62
static bool ExecParallelReInitializeDSM(PlanState *planstate, ParallelContext *pcxt)
Definition: execParallel.c:948
#define PARALLEL_KEY_JIT_INSTRUMENTATION
Definition: execParallel.c:67
struct ExecParallelEstimateContext ExecParallelEstimateContext
#define PARALLEL_KEY_PARAMLISTINFO
Definition: execParallel.c:61
#define PARALLEL_TUPLE_QUEUE_SIZE
Definition: execParallel.c:70
static bool ExecParallelRetrieveInstrumentation(PlanState *planstate, SharedExecutorInstrumentation *instrumentation)
static dsa_pointer SerializeParamExecParams(EState *estate, Bitmapset *params, dsa_area *area)
Definition: execParallel.c:356
void ExecParallelCleanup(ParallelExecutorInfo *pei)
struct ExecParallelInitializeDSMContext ExecParallelInitializeDSMContext
#define PARALLEL_KEY_INSTRUMENTATION
Definition: execParallel.c:64
static DestReceiver * ExecParallelGetReceiver(dsm_segment *seg, shm_toc *toc)
void ParallelQueryMain(dsm_segment *seg, shm_toc *toc)
ParallelExecutorInfo * ExecInitParallelPlan(PlanState *planstate, EState *estate, Bitmapset *sendParams, int nworkers, int64 tuples_needed)
Definition: execParallel.c:589
static shm_mq_handle ** ExecParallelSetupTupleQueues(ParallelContext *pcxt, bool reinitialize)
Definition: execParallel.c:537
#define PARALLEL_KEY_PLANNEDSTMT
Definition: execParallel.c:60
static bool ExecParallelEstimate(PlanState *planstate, ExecParallelEstimateContext *e)
Definition: execParallel.c:231
#define GetInstrumentationArray(sei)
Definition: execParallel.c:108
void ExecParallelReinitialize(PlanState *planstate, ParallelExecutorInfo *pei, Bitmapset *sendParams)
Definition: execParallel.c:899
#define PARALLEL_KEY_DSA
Definition: execParallel.c:65
static bool ExecParallelInitializeWorker(PlanState *planstate, ParallelWorkerContext *pwcxt)
void ExecParallelCreateReaders(ParallelExecutorInfo *pei)
Definition: execParallel.c:873
#define PARALLEL_KEY_TUPLE_QUEUE
Definition: execParallel.c:63
static QueryDesc * ExecParallelGetQueryDesc(shm_toc *toc, DestReceiver *receiver, int instrument_options)
#define PARALLEL_KEY_EXECUTOR_FIXED
Definition: execParallel.c:59
static char * ExecSerializePlan(Plan *plan, EState *estate)
Definition: execParallel.c:147
struct FixedParallelExecutorState FixedParallelExecutorState
#define PARALLEL_KEY_QUERY_TEXT
Definition: execParallel.c:66
static Size EstimateParamExecSpace(EState *estate, Bitmapset *params)
Definition: execParallel.c:312
void ExecParallelFinish(ParallelExecutorInfo *pei)
static bool ExecParallelReportInstrumentation(PlanState *planstate, SharedExecutorInstrumentation *instrumentation)
#define PARALLEL_KEY_WAL_USAGE
Definition: execParallel.c:68
static void ExecParallelRetrieveJitInstrumentation(PlanState *planstate, SharedJitInstrumentation *shared_jit)
static bool ExecParallelInitializeDSM(PlanState *planstate, ExecParallelInitializeDSMContext *d)
Definition: execParallel.c:440
static void RestoreParamExecParams(char *start_address, EState *estate)
Definition: execParallel.c:411
void ExecSetTupleBound(int64 tuples_needed, PlanState *child_node)
Definition: execProcnode.c:843
#define GetPerTupleExprContext(estate)
Definition: executor.h:549
#define IsParallelWorker()
Definition: parallel.h:61
void InstrAccumParallelQuery(BufferUsage *bufusage, WalUsage *walusage)
Definition: instrument.c:218
void InstrEndLoop(Instrumentation *instr)
Definition: instrument.c:140
void InstrAggNode(Instrumentation *dst, Instrumentation *add)
Definition: instrument.c:169
void InstrEndParallelQuery(BufferUsage *bufusage, WalUsage *walusage)
Definition: instrument.c:208
void InstrStartParallelQuery(void)
Definition: instrument.c:200
void InstrInit(Instrumentation *instr, int instrument_options)
Definition: instrument.c:58
int i
Definition: isn.c:73
void InstrJitAgg(JitInstrumentation *dst, JitInstrumentation *add)
Definition: jit.c:184
struct JitInstrumentation JitInstrumentation
#define PGJIT_NONE
Definition: jit.h:19
Assert(fmt[strlen(fmt) - 1] !='\n')
List * lappend(List *list, void *datum)
Definition: list.c:338
void get_typlenbyval(Oid typid, int16 *typlen, bool *typbyval)
Definition: lsyscache.c:2233
@ LWTRANCHE_PARALLEL_QUERY_DSA
Definition: lwlock.h:197
void pfree(void *pointer)
Definition: mcxt.c:1456
void * palloc0(Size size)
Definition: mcxt.c:1257
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1064
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1021
void * palloc(Size size)
Definition: mcxt.c:1226
void ExecAggEstimate(AggState *node, ParallelContext *pcxt)
Definition: nodeAgg.c:4684
void ExecAggInitializeWorker(AggState *node, ParallelWorkerContext *pwcxt)
Definition: nodeAgg.c:4730
void ExecAggRetrieveInstrumentation(AggState *node)
Definition: nodeAgg.c:4743
void ExecAggInitializeDSM(AggState *node, ParallelContext *pcxt)
Definition: nodeAgg.c:4705
void ExecAppendReInitializeDSM(AppendState *node, ParallelContext *pcxt)
Definition: nodeAppend.c:524
void ExecAppendInitializeWorker(AppendState *node, ParallelWorkerContext *pwcxt)
Definition: nodeAppend.c:540
void ExecAppendInitializeDSM(AppendState *node, ParallelContext *pcxt)
Definition: nodeAppend.c:503
void ExecAppendEstimate(AppendState *node, ParallelContext *pcxt)
Definition: nodeAppend.c:484
void ExecBitmapHeapInitializeWorker(BitmapHeapScanState *node, ParallelWorkerContext *pwcxt)
void ExecBitmapHeapEstimate(BitmapHeapScanState *node, ParallelContext *pcxt)
void ExecBitmapHeapInitializeDSM(BitmapHeapScanState *node, ParallelContext *pcxt)
void ExecBitmapHeapReInitializeDSM(BitmapHeapScanState *node, ParallelContext *pcxt)
void ExecCustomScanInitializeDSM(CustomScanState *node, ParallelContext *pcxt)
Definition: nodeCustom.c:177
void ExecCustomScanEstimate(CustomScanState *node, ParallelContext *pcxt)
Definition: nodeCustom.c:164
void ExecCustomScanReInitializeDSM(CustomScanState *node, ParallelContext *pcxt)
Definition: nodeCustom.c:193
void ExecCustomScanInitializeWorker(CustomScanState *node, ParallelWorkerContext *pwcxt)
Definition: nodeCustom.c:208
void ExecForeignScanInitializeDSM(ForeignScanState *node, ParallelContext *pcxt)
void ExecForeignScanReInitializeDSM(ForeignScanState *node, ParallelContext *pcxt)
void ExecForeignScanEstimate(ForeignScanState *node, ParallelContext *pcxt)
void ExecForeignScanInitializeWorker(ForeignScanState *node, ParallelWorkerContext *pwcxt)
#define planstate_tree_walker(ps, w, c)
Definition: nodeFuncs.h:177
void ExecHashInitializeDSM(HashState *node, ParallelContext *pcxt)
Definition: nodeHash.c:2745
void ExecHashInitializeWorker(HashState *node, ParallelWorkerContext *pwcxt)
Definition: nodeHash.c:2770
void ExecHashEstimate(HashState *node, ParallelContext *pcxt)
Definition: nodeHash.c:2726
void ExecHashRetrieveInstrumentation(HashState *node)
Definition: nodeHash.c:2811
void ExecHashJoinInitializeDSM(HashJoinState *state, ParallelContext *pcxt)
void ExecHashJoinEstimate(HashJoinState *state, ParallelContext *pcxt)
void ExecHashJoinReInitializeDSM(HashJoinState *state, ParallelContext *pcxt)
void ExecHashJoinInitializeWorker(HashJoinState *state, ParallelWorkerContext *pwcxt)
void ExecIncrementalSortEstimate(IncrementalSortState *node, ParallelContext *pcxt)
void ExecIncrementalSortInitializeDSM(IncrementalSortState *node, ParallelContext *pcxt)
void ExecIncrementalSortRetrieveInstrumentation(IncrementalSortState *node)
void ExecIncrementalSortInitializeWorker(IncrementalSortState *node, ParallelWorkerContext *pwcxt)
void ExecIndexOnlyScanEstimate(IndexOnlyScanState *node, ParallelContext *pcxt)
void ExecIndexOnlyScanInitializeWorker(IndexOnlyScanState *node, ParallelWorkerContext *pwcxt)
void ExecIndexOnlyScanReInitializeDSM(IndexOnlyScanState *node, ParallelContext *pcxt)
void ExecIndexOnlyScanInitializeDSM(IndexOnlyScanState *node, ParallelContext *pcxt)
void ExecIndexScanEstimate(IndexScanState *node, ParallelContext *pcxt)
void ExecIndexScanReInitializeDSM(IndexScanState *node, ParallelContext *pcxt)
void ExecIndexScanInitializeDSM(IndexScanState *node, ParallelContext *pcxt)
void ExecIndexScanInitializeWorker(IndexScanState *node, ParallelWorkerContext *pwcxt)
void ExecMemoizeInitializeDSM(MemoizeState *node, ParallelContext *pcxt)
Definition: nodeMemoize.c:1171
void ExecMemoizeEstimate(MemoizeState *node, ParallelContext *pcxt)
Definition: nodeMemoize.c:1150
void ExecMemoizeRetrieveInstrumentation(MemoizeState *node)
Definition: nodeMemoize.c:1209
void ExecMemoizeInitializeWorker(MemoizeState *node, ParallelWorkerContext *pwcxt)
Definition: nodeMemoize.c:1196
void ExecSeqScanReInitializeDSM(SeqScanState *node, ParallelContext *pcxt)
Definition: nodeSeqscan.c:278
void ExecSeqScanInitializeWorker(SeqScanState *node, ParallelWorkerContext *pwcxt)
Definition: nodeSeqscan.c:294
void ExecSeqScanInitializeDSM(SeqScanState *node, ParallelContext *pcxt)
Definition: nodeSeqscan.c:256
void ExecSeqScanEstimate(SeqScanState *node, ParallelContext *pcxt)
Definition: nodeSeqscan.c:238
void ExecSortInitializeWorker(SortState *node, ParallelWorkerContext *pwcxt)
Definition: nodeSort.c:462
void ExecSortEstimate(SortState *node, ParallelContext *pcxt)
Definition: nodeSort.c:416
void ExecSortInitializeDSM(SortState *node, ParallelContext *pcxt)
Definition: nodeSort.c:437
void ExecSortRetrieveInstrumentation(SortState *node)
Definition: nodeSort.c:476
void ExecSetParamPlanMulti(const Bitmapset *params, ExprContext *econtext)
Definition: nodeSubplan.c:1268
#define copyObject(obj)
Definition: nodes.h:244
#define nodeTag(nodeptr)
Definition: nodes.h:133
@ CMD_SELECT
Definition: nodes.h:276
#define makeNode(_type_)
Definition: nodes.h:176
char * nodeToString(const void *obj)
Definition: outfuncs.c:883
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:138
Size EstimateParamListSpace(ParamListInfo paramLI)
Definition: params.c:167
void SerializeParamList(ParamListInfo paramLI, char **start_address)
Definition: params.c:229
ParamListInfo RestoreParamList(char **start_address)
Definition: params.c:292
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
#define NIL
Definition: pg_list.h:68
static Oid list_nth_oid(const List *list, int n)
Definition: pg_list.h:321
#define plan(x)
Definition: pg_regress.c:154
const char * debug_query_string
Definition: postgres.c:85
uintptr_t Datum
Definition: postgres.h:64
unsigned int Oid
Definition: postgres_ext.h:31
void FreeQueryDesc(QueryDesc *qdesc)
Definition: pquery.c:105
QueryDesc * CreateQueryDesc(PlannedStmt *plannedstmt, const char *sourceText, Snapshot snapshot, Snapshot crosscheck_snapshot, DestReceiver *dest, ParamListInfo params, QueryEnvironment *queryEnv, int instrument_options)
Definition: pquery.c:67
e
Definition: preproc-init.c:82
void * stringToNode(const char *str)
Definition: read.c:90
@ ForwardScanDirection
Definition: sdir.h:28
shm_mq_handle * shm_mq_attach(shm_mq *mq, dsm_segment *seg, BackgroundWorkerHandle *handle)
Definition: shm_mq.c:291
void shm_mq_set_sender(shm_mq *mq, PGPROC *proc)
Definition: shm_mq.c:225
void shm_mq_set_handle(shm_mq_handle *mqh, BackgroundWorkerHandle *handle)
Definition: shm_mq.c:320
shm_mq * shm_mq_create(void *address, Size size)
Definition: shm_mq.c:178
void shm_mq_detach(shm_mq_handle *mqh)
Definition: shm_mq.c:844
void shm_mq_set_receiver(shm_mq *mq, PGPROC *proc)
Definition: shm_mq.c:207
void shm_toc_insert(shm_toc *toc, uint64 key, void *address)
Definition: shm_toc.c:171
void * shm_toc_allocate(shm_toc *toc, Size nbytes)
Definition: shm_toc.c:88
void * shm_toc_lookup(shm_toc *toc, uint64 key, bool noError)
Definition: shm_toc.c:232
#define shm_toc_estimate_chunk(e, sz)
Definition: shm_toc.h:51
#define shm_toc_estimate_keys(e, cnt)
Definition: shm_toc.h:53
Size add_size(Size s1, Size s2)
Definition: shmem.c:502
Size mul_size(Size s1, Size s2)
Definition: shmem.c:519
Snapshot GetActiveSnapshot(void)
Definition: snapmgr.c:751
#define InvalidSnapshot
Definition: snapshot.h:123
PGPROC * MyProc
Definition: proc.c:66
struct dsa_area * es_query_dsa
Definition: execnodes.h:696
int es_top_eflags
Definition: execnodes.h:668
struct JitContext * es_jit
Definition: execnodes.h:708
int es_instrument
Definition: execnodes.h:669
PlannedStmt * es_plannedstmt
Definition: execnodes.h:625
struct JitInstrumentation * es_jit_worker_instr
Definition: execnodes.h:709
ParamExecData * es_param_exec_vals
Definition: execnodes.h:654
List * es_range_table
Definition: execnodes.h:618
List * es_rteperminfos
Definition: execnodes.h:624
ParamListInfo es_param_list_info
Definition: execnodes.h:653
MemoryContext es_query_cxt
Definition: execnodes.h:659
int es_jit_flags
Definition: execnodes.h:707
const char * es_sourceText
Definition: execnodes.h:626
ParallelContext * pcxt
Definition: execParallel.c:115
SharedExecutorInstrumentation * instrumentation
Definition: execParallel.c:123
JitInstrumentation instr
Definition: jit.h:64
dsm_segment * seg
Definition: parallel.h:43
shm_toc_estimator estimator
Definition: parallel.h:42
ParallelWorkerInfo * worker
Definition: parallel.h:46
shm_toc * toc
Definition: parallel.h:45
int nworkers_launched
Definition: parallel.h:38
PlanState * planstate
Definition: execParallel.h:26
struct SharedJitInstrumentation * jit_instrumentation
Definition: execParallel.h:31
BufferUsage * buffer_usage
Definition: execParallel.h:28
dsa_pointer param_exec
Definition: execParallel.h:33
ParallelContext * pcxt
Definition: execParallel.h:27
WalUsage * wal_usage
Definition: execParallel.h:29
shm_mq_handle ** tqueue
Definition: execParallel.h:36
SharedExecutorInstrumentation * instrumentation
Definition: execParallel.h:30
struct TupleQueueReader ** reader
Definition: execParallel.h:37
dsm_segment * seg
Definition: parallel.h:53
BackgroundWorkerHandle * bgwhandle
Definition: parallel.h:27
bool isnull
Definition: params.h:150
Datum value
Definition: params.h:149
void * execPlan
Definition: params.h:148
struct SharedJitInstrumentation * worker_jit_instrument
Definition: execnodes.h:1051
Instrumentation * instrument
Definition: execnodes.h:1047
Plan * plan
Definition: execnodes.h:1037
EState * state
Definition: execnodes.h:1039
WorkerInstrumentation * worker_instrument
Definition: execnodes.h:1048
bool parallel_aware
Definition: plannodes.h:141
bool parallel_safe
Definition: plannodes.h:142
int plan_node_id
Definition: plannodes.h:152
struct Plan * planTree
Definition: plannodes.h:71
bool hasModifyingCTE
Definition: plannodes.h:59
List * appendRelations
Definition: plannodes.h:81
List * permInfos
Definition: plannodes.h:75
bool canSetTag
Definition: plannodes.h:61
List * rowMarks
Definition: plannodes.h:88
int stmt_location
Definition: plannodes.h:99
int stmt_len
Definition: plannodes.h:100
int jitFlags
Definition: plannodes.h:69
Bitmapset * rewindPlanIDs
Definition: plannodes.h:86
bool hasReturning
Definition: plannodes.h:57
List * invalItems
Definition: plannodes.h:92
bool transientPlan
Definition: plannodes.h:63
List * resultRelations
Definition: plannodes.h:79
List * subplans
Definition: plannodes.h:83
List * relationOids
Definition: plannodes.h:90
bool dependsOnRole
Definition: plannodes.h:65
CmdType commandType
Definition: plannodes.h:53
Node * utilityStmt
Definition: plannodes.h:96
List * rtable
Definition: plannodes.h:73
List * paramExecTypes
Definition: plannodes.h:94
bool parallelModeNeeded
Definition: plannodes.h:67
uint64 queryId
Definition: plannodes.h:55
const char * sourceText
Definition: execdesc.h:38
EState * estate
Definition: execdesc.h:48
PlannedStmt * plannedstmt
Definition: execdesc.h:37
PlanState * planstate
Definition: execdesc.h:49
int plan_node_id[FLEXIBLE_ARRAY_MEMBER]
Definition: execParallel.c:105
JitInstrumentation jit_instr[FLEXIBLE_ARRAY_MEMBER]
Definition: jit.h:54
Instrumentation instrument[FLEXIBLE_ARRAY_MEMBER]
Definition: instrument.h:96
void(* rDestroy)(DestReceiver *self)
Definition: dest.h:125
Definition: dsa.c:367
Definition: shm_mq.c:73
TupleQueueReader * CreateTupleQueueReader(shm_mq_handle *handle)
Definition: tqueue.c:139
DestReceiver * CreateTupleQueueDestReceiver(shm_mq_handle *handle)
Definition: tqueue.c:119
void DestroyTupleQueueReader(TupleQueueReader *reader)
Definition: tqueue.c:155