PostgreSQL Source Code  git master
pathnodes.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * pathnodes.h
4  * Definitions for planner's internal data structures, especially Paths.
5  *
6  *
7  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * src/include/nodes/pathnodes.h
11  *
12  *-------------------------------------------------------------------------
13  */
14 #ifndef PATHNODES_H
15 #define PATHNODES_H
16 
17 #include "access/sdir.h"
18 #include "lib/stringinfo.h"
19 #include "nodes/params.h"
20 #include "nodes/parsenodes.h"
21 #include "storage/block.h"
22 
23 
24 /*
25  * Relids
26  * Set of relation identifiers (indexes into the rangetable).
27  */
28 typedef Bitmapset *Relids;
29 
30 /*
31  * When looking for a "cheapest path", this enum specifies whether we want
32  * cheapest startup cost or cheapest total cost.
33  */
34 typedef enum CostSelector
35 {
37 } CostSelector;
38 
39 /*
40  * The cost estimate produced by cost_qual_eval() includes both a one-time
41  * (startup) cost, and a per-tuple cost.
42  */
43 typedef struct QualCost
44 {
45  Cost startup; /* one-time cost */
46  Cost per_tuple; /* per-evaluation cost */
47 } QualCost;
48 
49 /*
50  * Costing aggregate function execution requires these statistics about
51  * the aggregates to be executed by a given Agg node. Note that the costs
52  * include the execution costs of the aggregates' argument expressions as
53  * well as the aggregate functions themselves. Also, the fields must be
54  * defined so that initializing the struct to zeroes with memset is correct.
55  */
56 typedef struct AggClauseCosts
57 {
58  int numAggs; /* total number of aggregate functions */
59  int numOrderedAggs; /* number w/ DISTINCT/ORDER BY/WITHIN GROUP */
60  bool hasNonPartial; /* does any agg not support partial mode? */
61  bool hasNonSerial; /* is any partial agg non-serializable? */
62  QualCost transCost; /* total per-input-row execution costs */
63  QualCost finalCost; /* total per-aggregated-row costs */
64  Size transitionSpace; /* space for pass-by-ref transition data */
66 
67 /*
68  * This enum identifies the different types of "upper" (post-scan/join)
69  * relations that we might deal with during planning.
70  */
71 typedef enum UpperRelationKind
72 {
73  UPPERREL_SETOP, /* result of UNION/INTERSECT/EXCEPT, if any */
74  UPPERREL_PARTIAL_GROUP_AGG, /* result of partial grouping/aggregation, if
75  * any */
76  UPPERREL_GROUP_AGG, /* result of grouping/aggregation, if any */
77  UPPERREL_WINDOW, /* result of window functions, if any */
78  UPPERREL_DISTINCT, /* result of "SELECT DISTINCT", if any */
79  UPPERREL_ORDERED, /* result of ORDER BY, if any */
80  UPPERREL_FINAL /* result of any remaining top-level actions */
81  /* NB: UPPERREL_FINAL must be last enum entry; it's used to size arrays */
83 
84 /*
85  * This enum identifies which type of relation is being planned through the
86  * inheritance planner. INHKIND_NONE indicates the inheritance planner
87  * was not used.
88  */
89 typedef enum InheritanceKind
90 {
95 
96 /*----------
97  * PlannerGlobal
98  * Global information for planning/optimization
99  *
100  * PlannerGlobal holds state for an entire planner invocation; this state
101  * is shared across all levels of sub-Queries that exist in the command being
102  * planned.
103  *----------
104  */
105 typedef struct PlannerGlobal
106 {
108 
109  ParamListInfo boundParams; /* Param values provided to planner() */
110 
111  List *subplans; /* Plans for SubPlan nodes */
112 
113  List *subroots; /* PlannerInfos for SubPlan nodes */
114 
115  Bitmapset *rewindPlanIDs; /* indices of subplans that require REWIND */
116 
117  List *finalrtable; /* "flat" rangetable for executor */
118 
119  List *finalrowmarks; /* "flat" list of PlanRowMarks */
120 
121  List *resultRelations; /* "flat" list of integer RT indexes */
122 
123  List *rootResultRelations; /* "flat" list of integer RT indexes */
124 
125  List *appendRelations; /* "flat" list of AppendRelInfos */
126 
127  List *relationOids; /* OIDs of relations the plan depends on */
128 
129  List *invalItems; /* other dependencies, as PlanInvalItems */
130 
131  List *paramExecTypes; /* type OIDs for PARAM_EXEC Params */
132 
133  Index lastPHId; /* highest PlaceHolderVar ID assigned */
134 
135  Index lastRowMarkId; /* highest PlanRowMark ID assigned */
136 
137  int lastPlanNodeId; /* highest plan node ID assigned */
138 
139  bool transientPlan; /* redo plan when TransactionXmin changes? */
140 
141  bool dependsOnRole; /* is plan specific to current role? */
142 
143  bool parallelModeOK; /* parallel mode potentially OK? */
144 
145  bool parallelModeNeeded; /* parallel mode actually required? */
146 
147  char maxParallelHazard; /* worst PROPARALLEL hazard level */
148 
149  PartitionDirectory partition_directory; /* partition descriptors */
150 } PlannerGlobal;
151 
152 /* macro for fetching the Plan associated with a SubPlan node */
153 #define planner_subplan_get_plan(root, subplan) \
154  ((Plan *) list_nth((root)->glob->subplans, (subplan)->plan_id - 1))
155 
156 
157 /*----------
158  * PlannerInfo
159  * Per-query information for planning/optimization
160  *
161  * This struct is conventionally called "root" in all the planner routines.
162  * It holds links to all of the planner's working state, in addition to the
163  * original Query. Note that at present the planner extensively modifies
164  * the passed-in Query data structure; someday that should stop.
165  *
166  * For reasons explained in optimizer/optimizer.h, we define the typedef
167  * either here or in that header, whichever is read first.
168  *----------
169  */
170 #ifndef HAVE_PLANNERINFO_TYPEDEF
171 typedef struct PlannerInfo PlannerInfo;
172 #define HAVE_PLANNERINFO_TYPEDEF 1
173 #endif
174 
176 {
178 
179  Query *parse; /* the Query being planned */
180 
181  PlannerGlobal *glob; /* global info for current planner run */
182 
183  Index query_level; /* 1 at the outermost Query */
184 
185  PlannerInfo *parent_root; /* NULL at outermost Query */
186 
187  /*
188  * plan_params contains the expressions that this query level needs to
189  * make available to a lower query level that is currently being planned.
190  * outer_params contains the paramIds of PARAM_EXEC Params that outer
191  * query levels will make available to this query level.
192  */
193  List *plan_params; /* list of PlannerParamItems, see below */
195 
196  /*
197  * simple_rel_array holds pointers to "base rels" and "other rels" (see
198  * comments for RelOptInfo for more info). It is indexed by rangetable
199  * index (so entry 0 is always wasted). Entries can be NULL when an RTE
200  * does not correspond to a base relation, such as a join RTE or an
201  * unreferenced view RTE; or if the RelOptInfo hasn't been made yet.
202  */
203  struct RelOptInfo **simple_rel_array; /* All 1-rel RelOptInfos */
204  int simple_rel_array_size; /* allocated size of array */
205 
206  /*
207  * simple_rte_array is the same length as simple_rel_array and holds
208  * pointers to the associated rangetable entries. Using this is a shade
209  * faster than using rt_fetch(), mostly due to fewer indirections.
210  */
211  RangeTblEntry **simple_rte_array; /* rangetable as an array */
212 
213  /*
214  * append_rel_array is the same length as the above arrays, and holds
215  * pointers to the corresponding AppendRelInfo entry indexed by
216  * child_relid, or NULL if the rel is not an appendrel child. The array
217  * itself is not allocated if append_rel_list is empty.
218  */
220 
221  /*
222  * all_baserels is a Relids set of all base relids (but not "other"
223  * relids) in the query; that is, the Relids identifier of the final join
224  * we need to form. This is computed in make_one_rel, just before we
225  * start making Paths.
226  */
228 
229  /*
230  * nullable_baserels is a Relids set of base relids that are nullable by
231  * some outer join in the jointree; these are rels that are potentially
232  * nullable below the WHERE clause, SELECT targetlist, etc. This is
233  * computed in deconstruct_jointree.
234  */
236 
237  /*
238  * join_rel_list is a list of all join-relation RelOptInfos we have
239  * considered in this planning run. For small problems we just scan the
240  * list to do lookups, but when there are many join relations we build a
241  * hash table for faster lookups. The hash table is present and valid
242  * when join_rel_hash is not NULL. Note that we still maintain the list
243  * even when using the hash table for lookups; this simplifies life for
244  * GEQO.
245  */
246  List *join_rel_list; /* list of join-relation RelOptInfos */
247  struct HTAB *join_rel_hash; /* optional hashtable for join relations */
248 
249  /*
250  * When doing a dynamic-programming-style join search, join_rel_level[k]
251  * is a list of all join-relation RelOptInfos of level k, and
252  * join_cur_level is the current level. New join-relation RelOptInfos are
253  * automatically added to the join_rel_level[join_cur_level] list.
254  * join_rel_level is NULL if not in use.
255  */
256  List **join_rel_level; /* lists of join-relation RelOptInfos */
257  int join_cur_level; /* index of list being extended */
258 
259  List *init_plans; /* init SubPlans for query */
260 
261  List *cte_plan_ids; /* per-CTE-item list of subplan IDs */
262 
263  List *multiexpr_params; /* List of Lists of Params for MULTIEXPR
264  * subquery outputs */
265 
266  List *eq_classes; /* list of active EquivalenceClasses */
267 
268  bool ec_merging_done; /* set true once ECs are canonical */
269 
270  List *canon_pathkeys; /* list of "canonical" PathKeys */
271 
272  List *left_join_clauses; /* list of RestrictInfos for mergejoinable
273  * outer join clauses w/nonnullable var on
274  * left */
275 
276  List *right_join_clauses; /* list of RestrictInfos for mergejoinable
277  * outer join clauses w/nonnullable var on
278  * right */
279 
280  List *full_join_clauses; /* list of RestrictInfos for mergejoinable
281  * full join clauses */
282 
283  List *join_info_list; /* list of SpecialJoinInfos */
284 
285  /*
286  * Note: for AppendRelInfos describing partitions of a partitioned table,
287  * we guarantee that partitions that come earlier in the partitioned
288  * table's PartitionDesc will appear earlier in append_rel_list.
289  */
290  List *append_rel_list; /* list of AppendRelInfos */
291 
292  List *rowMarks; /* list of PlanRowMarks */
293 
294  List *placeholder_list; /* list of PlaceHolderInfos */
295 
296  List *fkey_list; /* list of ForeignKeyOptInfos */
297 
298  List *query_pathkeys; /* desired pathkeys for query_planner() */
299 
300  List *group_pathkeys; /* groupClause pathkeys, if any */
301  List *window_pathkeys; /* pathkeys of bottom window, if any */
302  List *distinct_pathkeys; /* distinctClause pathkeys, if any */
303  List *sort_pathkeys; /* sortClause pathkeys, if any */
304 
305  List *part_schemes; /* Canonicalised partition schemes used in the
306  * query. */
307 
308  List *initial_rels; /* RelOptInfos we are now trying to join */
309 
310  /* Use fetch_upper_rel() to get any particular upper rel */
311  List *upper_rels[UPPERREL_FINAL + 1]; /* upper-rel RelOptInfos */
312 
313  /* Result tlists chosen by grouping_planner for upper-stage processing */
314  struct PathTarget *upper_targets[UPPERREL_FINAL + 1];
315 
316  /*
317  * The fully-processed targetlist is kept here. It differs from
318  * parse->targetList in that (for INSERT and UPDATE) it's been reordered
319  * to match the target table, and defaults have been filled in. Also,
320  * additional resjunk targets may be present. preprocess_targetlist()
321  * does most of this work, but note that more resjunk targets can get
322  * added during appendrel expansion. (Hence, upper_targets mustn't get
323  * set up till after that.)
324  */
326 
327  /* Fields filled during create_plan() for use in setrefs.c */
328  AttrNumber *grouping_map; /* for GroupingFunc fixup */
329  List *minmax_aggs; /* List of MinMaxAggInfos */
330 
331  MemoryContext planner_cxt; /* context holding PlannerInfo */
332 
333  double total_table_pages; /* # of pages in all non-dummy tables of
334  * query */
335 
336  double tuple_fraction; /* tuple_fraction passed to query_planner */
337  double limit_tuples; /* limit_tuples passed to query_planner */
338 
339  Index qual_security_level; /* minimum security_level for quals */
340  /* Note: qual_security_level is zero if there are no securityQuals */
341 
342  InheritanceKind inhTargetKind; /* indicates if the target relation is an
343  * inheritance child or partition or a
344  * partitioned table */
345  bool hasJoinRTEs; /* true if any RTEs are RTE_JOIN kind */
346  bool hasLateralRTEs; /* true if any RTEs are marked LATERAL */
347  bool hasHavingQual; /* true if havingQual was non-null */
348  bool hasPseudoConstantQuals; /* true if any RestrictInfo has
349  * pseudoconstant = true */
350  bool hasRecursion; /* true if planning a recursive WITH item */
351 
352  /* These fields are used only when hasRecursion is true: */
353  int wt_param_id; /* PARAM_EXEC ID for the work table */
354  struct Path *non_recursive_path; /* a path for non-recursive term */
355 
356  /* These fields are workspace for createplan.c */
357  Relids curOuterRels; /* outer rels above current node */
358  List *curOuterParams; /* not-yet-assigned NestLoopParams */
359 
360  /* optional private data for join_search_hook, e.g., GEQO */
362 
363  /* Does this query modify any partition key columns? */
365 };
366 
367 
368 /*
369  * In places where it's known that simple_rte_array[] must have been prepared
370  * already, we just index into it to fetch RTEs. In code that might be
371  * executed before or after entering query_planner(), use this macro.
372  */
373 #define planner_rt_fetch(rti, root) \
374  ((root)->simple_rte_array ? (root)->simple_rte_array[rti] : \
375  rt_fetch(rti, (root)->parse->rtable))
376 
377 /*
378  * If multiple relations are partitioned the same way, all such partitions
379  * will have a pointer to the same PartitionScheme. A list of PartitionScheme
380  * objects is attached to the PlannerInfo. By design, the partition scheme
381  * incorporates only the general properties of the partition method (LIST vs.
382  * RANGE, number of partitioning columns and the type information for each)
383  * and not the specific bounds.
384  *
385  * We store the opclass-declared input data types instead of the partition key
386  * datatypes since the former rather than the latter are used to compare
387  * partition bounds. Since partition key data types and the opclass declared
388  * input data types are expected to be binary compatible (per ResolveOpClass),
389  * both of those should have same byval and length properties.
390  */
391 typedef struct PartitionSchemeData
392 {
393  char strategy; /* partition strategy */
394  int16 partnatts; /* number of partition attributes */
395  Oid *partopfamily; /* OIDs of operator families */
396  Oid *partopcintype; /* OIDs of opclass declared input data types */
397  Oid *partcollation; /* OIDs of partitioning collations */
398 
399  /* Cached information about partition key data types. */
402 
403  /* Cached information about partition comparison functions. */
406 
408 
409 /*----------
410  * RelOptInfo
411  * Per-relation information for planning/optimization
412  *
413  * For planning purposes, a "base rel" is either a plain relation (a table)
414  * or the output of a sub-SELECT or function that appears in the range table.
415  * In either case it is uniquely identified by an RT index. A "joinrel"
416  * is the joining of two or more base rels. A joinrel is identified by
417  * the set of RT indexes for its component baserels. We create RelOptInfo
418  * nodes for each baserel and joinrel, and store them in the PlannerInfo's
419  * simple_rel_array and join_rel_list respectively.
420  *
421  * Note that there is only one joinrel for any given set of component
422  * baserels, no matter what order we assemble them in; so an unordered
423  * set is the right datatype to identify it with.
424  *
425  * We also have "other rels", which are like base rels in that they refer to
426  * single RT indexes; but they are not part of the join tree, and are given
427  * a different RelOptKind to identify them.
428  * Currently the only kind of otherrels are those made for member relations
429  * of an "append relation", that is an inheritance set or UNION ALL subquery.
430  * An append relation has a parent RTE that is a base rel, which represents
431  * the entire append relation. The member RTEs are otherrels. The parent
432  * is present in the query join tree but the members are not. The member
433  * RTEs and otherrels are used to plan the scans of the individual tables or
434  * subqueries of the append set; then the parent baserel is given Append
435  * and/or MergeAppend paths comprising the best paths for the individual
436  * member rels. (See comments for AppendRelInfo for more information.)
437  *
438  * At one time we also made otherrels to represent join RTEs, for use in
439  * handling join alias Vars. Currently this is not needed because all join
440  * alias Vars are expanded to non-aliased form during preprocess_expression.
441  *
442  * We also have relations representing joins between child relations of
443  * different partitioned tables. These relations are not added to
444  * join_rel_level lists as they are not joined directly by the dynamic
445  * programming algorithm.
446  *
447  * There is also a RelOptKind for "upper" relations, which are RelOptInfos
448  * that describe post-scan/join processing steps, such as aggregation.
449  * Many of the fields in these RelOptInfos are meaningless, but their Path
450  * fields always hold Paths showing ways to do that processing step.
451  *
452  * Lastly, there is a RelOptKind for "dead" relations, which are base rels
453  * that we have proven we don't need to join after all.
454  *
455  * Parts of this data structure are specific to various scan and join
456  * mechanisms. It didn't seem worth creating new node types for them.
457  *
458  * relids - Set of base-relation identifiers; it is a base relation
459  * if there is just one, a join relation if more than one
460  * rows - estimated number of tuples in the relation after restriction
461  * clauses have been applied (ie, output rows of a plan for it)
462  * consider_startup - true if there is any value in keeping plain paths for
463  * this rel on the basis of having cheap startup cost
464  * consider_param_startup - the same for parameterized paths
465  * reltarget - Default Path output tlist for this rel; normally contains
466  * Var and PlaceHolderVar nodes for the values we need to
467  * output from this relation.
468  * List is in no particular order, but all rels of an
469  * appendrel set must use corresponding orders.
470  * NOTE: in an appendrel child relation, may contain
471  * arbitrary expressions pulled up from a subquery!
472  * pathlist - List of Path nodes, one for each potentially useful
473  * method of generating the relation
474  * ppilist - ParamPathInfo nodes for parameterized Paths, if any
475  * cheapest_startup_path - the pathlist member with lowest startup cost
476  * (regardless of ordering) among the unparameterized paths;
477  * or NULL if there is no unparameterized path
478  * cheapest_total_path - the pathlist member with lowest total cost
479  * (regardless of ordering) among the unparameterized paths;
480  * or if there is no unparameterized path, the path with lowest
481  * total cost among the paths with minimum parameterization
482  * cheapest_unique_path - for caching cheapest path to produce unique
483  * (no duplicates) output from relation; NULL if not yet requested
484  * cheapest_parameterized_paths - best paths for their parameterizations;
485  * always includes cheapest_total_path, even if that's unparameterized
486  * direct_lateral_relids - rels this rel has direct LATERAL references to
487  * lateral_relids - required outer rels for LATERAL, as a Relids set
488  * (includes both direct and indirect lateral references)
489  *
490  * If the relation is a base relation it will have these fields set:
491  *
492  * relid - RTE index (this is redundant with the relids field, but
493  * is provided for convenience of access)
494  * rtekind - copy of RTE's rtekind field
495  * min_attr, max_attr - range of valid AttrNumbers for rel
496  * attr_needed - array of bitmapsets indicating the highest joinrel
497  * in which each attribute is needed; if bit 0 is set then
498  * the attribute is needed as part of final targetlist
499  * attr_widths - cache space for per-attribute width estimates;
500  * zero means not computed yet
501  * lateral_vars - lateral cross-references of rel, if any (list of
502  * Vars and PlaceHolderVars)
503  * lateral_referencers - relids of rels that reference this one laterally
504  * (includes both direct and indirect lateral references)
505  * indexlist - list of IndexOptInfo nodes for relation's indexes
506  * (always NIL if it's not a table)
507  * pages - number of disk pages in relation (zero if not a table)
508  * tuples - number of tuples in relation (not considering restrictions)
509  * allvisfrac - fraction of disk pages that are marked all-visible
510  * eclass_indexes - EquivalenceClasses that mention this rel (filled
511  * only after EC merging is complete)
512  * subroot - PlannerInfo for subquery (NULL if it's not a subquery)
513  * subplan_params - list of PlannerParamItems to be passed to subquery
514  *
515  * Note: for a subquery, tuples and subroot are not set immediately
516  * upon creation of the RelOptInfo object; they are filled in when
517  * set_subquery_pathlist processes the object.
518  *
519  * For otherrels that are appendrel members, these fields are filled
520  * in just as for a baserel, except we don't bother with lateral_vars.
521  *
522  * If the relation is either a foreign table or a join of foreign tables that
523  * all belong to the same foreign server and are assigned to the same user to
524  * check access permissions as (cf checkAsUser), these fields will be set:
525  *
526  * serverid - OID of foreign server, if foreign table (else InvalidOid)
527  * userid - OID of user to check access as (InvalidOid means current user)
528  * useridiscurrent - we've assumed that userid equals current user
529  * fdwroutine - function hooks for FDW, if foreign table (else NULL)
530  * fdw_private - private state for FDW, if foreign table (else NULL)
531  *
532  * Two fields are used to cache knowledge acquired during the join search
533  * about whether this rel is provably unique when being joined to given other
534  * relation(s), ie, it can have at most one row matching any given row from
535  * that join relation. Currently we only attempt such proofs, and thus only
536  * populate these fields, for base rels; but someday they might be used for
537  * join rels too:
538  *
539  * unique_for_rels - list of Relid sets, each one being a set of other
540  * rels for which this one has been proven unique
541  * non_unique_for_rels - list of Relid sets, each one being a set of
542  * other rels for which we have tried and failed to prove
543  * this one unique
544  *
545  * The presence of the following fields depends on the restrictions
546  * and joins that the relation participates in:
547  *
548  * baserestrictinfo - List of RestrictInfo nodes, containing info about
549  * each non-join qualification clause in which this relation
550  * participates (only used for base rels)
551  * baserestrictcost - Estimated cost of evaluating the baserestrictinfo
552  * clauses at a single tuple (only used for base rels)
553  * baserestrict_min_security - Smallest security_level found among
554  * clauses in baserestrictinfo
555  * joininfo - List of RestrictInfo nodes, containing info about each
556  * join clause in which this relation participates (but
557  * note this excludes clauses that might be derivable from
558  * EquivalenceClasses)
559  * has_eclass_joins - flag that EquivalenceClass joins are possible
560  *
561  * Note: Keeping a restrictinfo list in the RelOptInfo is useful only for
562  * base rels, because for a join rel the set of clauses that are treated as
563  * restrict clauses varies depending on which sub-relations we choose to join.
564  * (For example, in a 3-base-rel join, a clause relating rels 1 and 2 must be
565  * treated as a restrictclause if we join {1} and {2 3} to make {1 2 3}; but
566  * if we join {1 2} and {3} then that clause will be a restrictclause in {1 2}
567  * and should not be processed again at the level of {1 2 3}.) Therefore,
568  * the restrictinfo list in the join case appears in individual JoinPaths
569  * (field joinrestrictinfo), not in the parent relation. But it's OK for
570  * the RelOptInfo to store the joininfo list, because that is the same
571  * for a given rel no matter how we form it.
572  *
573  * We store baserestrictcost in the RelOptInfo (for base relations) because
574  * we know we will need it at least once (to price the sequential scan)
575  * and may need it multiple times to price index scans.
576  *
577  * A join relation is considered to be partitioned if it is formed from a
578  * join of two relations that are partitioned, have matching partitioning
579  * schemes, and are joined on an equijoin of the partitioning columns.
580  * Under those conditions we can consider the join relation to be partitioned
581  * by either relation's partitioning keys, though some care is needed if
582  * either relation can be forced to null by outer-joining. For example, an
583  * outer join like (A LEFT JOIN B ON A.a = B.b) may produce rows with B.b
584  * NULL. These rows may not fit the partitioning conditions imposed on B.
585  * Hence, strictly speaking, the join is not partitioned by B.b and thus
586  * partition keys of an outer join should include partition key expressions
587  * from the non-nullable side only. However, if a subsequent join uses
588  * strict comparison operators (and all commonly-used equijoin operators are
589  * strict), the presence of nulls doesn't cause a problem: such rows couldn't
590  * match anything on the other side and thus they don't create a need to do
591  * any cross-partition sub-joins. Hence we can treat such values as still
592  * partitioning the join output for the purpose of additional partitionwise
593  * joining, so long as a strict join operator is used by the next join.
594  *
595  * If the relation is partitioned, these fields will be set:
596  *
597  * part_scheme - Partitioning scheme of the relation
598  * nparts - Number of partitions
599  * boundinfo - Partition bounds
600  * partbounds_merged - true if partition bounds are merged ones
601  * partition_qual - Partition constraint if not the root
602  * part_rels - RelOptInfos for each partition
603  * all_partrels - Relids set of all partition relids
604  * partexprs, nullable_partexprs - Partition key expressions
605  * partitioned_child_rels - RT indexes of unpruned partitions of
606  * this relation that are partitioned tables
607  * themselves, in hierarchical order
608  *
609  * The partexprs and nullable_partexprs arrays each contain
610  * part_scheme->partnatts elements. Each of the elements is a list of
611  * partition key expressions. For partitioned base relations, there is one
612  * expression in each partexprs element, and nullable_partexprs is empty.
613  * For partitioned join relations, each base relation within the join
614  * contributes one partition key expression per partitioning column;
615  * that expression goes in the partexprs[i] list if the base relation
616  * is not nullable by this join or any lower outer join, or in the
617  * nullable_partexprs[i] list if the base relation is nullable.
618  * Furthermore, FULL JOINs add extra nullable_partexprs expressions
619  * corresponding to COALESCE expressions of the left and right join columns,
620  * to simplify matching join clauses to those lists.
621  *----------
622  */
623 typedef enum RelOptKind
624 {
632 } RelOptKind;
633 
634 /*
635  * Is the given relation a simple relation i.e a base or "other" member
636  * relation?
637  */
638 #define IS_SIMPLE_REL(rel) \
639  ((rel)->reloptkind == RELOPT_BASEREL || \
640  (rel)->reloptkind == RELOPT_OTHER_MEMBER_REL)
641 
642 /* Is the given relation a join relation? */
643 #define IS_JOIN_REL(rel) \
644  ((rel)->reloptkind == RELOPT_JOINREL || \
645  (rel)->reloptkind == RELOPT_OTHER_JOINREL)
646 
647 /* Is the given relation an upper relation? */
648 #define IS_UPPER_REL(rel) \
649  ((rel)->reloptkind == RELOPT_UPPER_REL || \
650  (rel)->reloptkind == RELOPT_OTHER_UPPER_REL)
651 
652 /* Is the given relation an "other" relation? */
653 #define IS_OTHER_REL(rel) \
654  ((rel)->reloptkind == RELOPT_OTHER_MEMBER_REL || \
655  (rel)->reloptkind == RELOPT_OTHER_JOINREL || \
656  (rel)->reloptkind == RELOPT_OTHER_UPPER_REL)
657 
658 typedef struct RelOptInfo
659 {
661 
663 
664  /* all relations included in this RelOptInfo */
665  Relids relids; /* set of base relids (rangetable indexes) */
666 
667  /* size estimates generated by planner */
668  double rows; /* estimated number of result tuples */
669 
670  /* per-relation planner control flags */
671  bool consider_startup; /* keep cheap-startup-cost paths? */
672  bool consider_param_startup; /* ditto, for parameterized paths? */
673  bool consider_parallel; /* consider parallel paths? */
674 
675  /* default result targetlist for Paths scanning this relation */
676  struct PathTarget *reltarget; /* list of Vars/Exprs, cost, width */
677 
678  /* materialization information */
679  List *pathlist; /* Path structures */
680  List *ppilist; /* ParamPathInfos used in pathlist */
681  List *partial_pathlist; /* partial Paths */
686 
687  /* parameterization information needed for both base rels and join rels */
688  /* (see also lateral_vars and lateral_referencers) */
689  Relids direct_lateral_relids; /* rels directly laterally referenced */
690  Relids lateral_relids; /* minimum parameterization of rel */
691 
692  /* information about a base rel (not set for join rels!) */
694  Oid reltablespace; /* containing tablespace */
695  RTEKind rtekind; /* RELATION, SUBQUERY, FUNCTION, etc */
696  AttrNumber min_attr; /* smallest attrno of rel (often <0) */
697  AttrNumber max_attr; /* largest attrno of rel */
698  Relids *attr_needed; /* array indexed [min_attr .. max_attr] */
699  int32 *attr_widths; /* array indexed [min_attr .. max_attr] */
700  List *lateral_vars; /* LATERAL Vars and PHVs referenced by rel */
701  Relids lateral_referencers; /* rels that reference me laterally */
702  List *indexlist; /* list of IndexOptInfo */
703  List *statlist; /* list of StatisticExtInfo */
704  BlockNumber pages; /* size estimates derived from pg_class */
705  double tuples;
706  double allvisfrac;
707  Bitmapset *eclass_indexes; /* Indexes in PlannerInfo's eq_classes list of
708  * ECs that mention this rel */
709  PlannerInfo *subroot; /* if subquery */
710  List *subplan_params; /* if subquery */
711  int rel_parallel_workers; /* wanted number of parallel workers */
712 
713  /* Information about foreign tables and foreign joins */
714  Oid serverid; /* identifies server for the table or join */
715  Oid userid; /* identifies user to check access as */
716  bool useridiscurrent; /* join is only valid for current user */
717  /* use "struct FdwRoutine" to avoid including fdwapi.h here */
719  void *fdw_private;
720 
721  /* cache space for remembering if we have proven this relation unique */
722  List *unique_for_rels; /* known unique for these other relid
723  * set(s) */
724  List *non_unique_for_rels; /* known not unique for these set(s) */
725 
726  /* used by various scans and joins: */
727  List *baserestrictinfo; /* RestrictInfo structures (if base rel) */
728  QualCost baserestrictcost; /* cost of evaluating the above */
729  Index baserestrict_min_security; /* min security_level found in
730  * baserestrictinfo */
731  List *joininfo; /* RestrictInfo structures for join clauses
732  * involving this rel */
733  bool has_eclass_joins; /* T means joininfo is incomplete */
734 
735  /* used by partitionwise joins: */
736  bool consider_partitionwise_join; /* consider partitionwise join
737  * paths? (if partitioned rel) */
738  Relids top_parent_relids; /* Relids of topmost parents (if "other"
739  * rel) */
740 
741  /* used for partitioned relations: */
742  PartitionScheme part_scheme; /* Partitioning scheme */
743  int nparts; /* Number of partitions; -1 if not yet set; in
744  * case of a join relation 0 means it's
745  * considered unpartitioned */
746  struct PartitionBoundInfoData *boundinfo; /* Partition bounds */
747  bool partbounds_merged; /* True if partition bounds were created
748  * by partition_bounds_merge() */
749  List *partition_qual; /* Partition constraint, if not the root */
750  struct RelOptInfo **part_rels; /* Array of RelOptInfos of partitions,
751  * stored in the same order as bounds */
752  Relids all_partrels; /* Relids set of all partition relids */
753  List **partexprs; /* Non-nullable partition key expressions */
754  List **nullable_partexprs; /* Nullable partition key expressions */
755  List *partitioned_child_rels; /* List of RT indexes */
756 } RelOptInfo;
757 
758 /*
759  * Is given relation partitioned?
760  *
761  * It's not enough to test whether rel->part_scheme is set, because it might
762  * be that the basic partitioning properties of the input relations matched
763  * but the partition bounds did not. Also, if we are able to prove a rel
764  * dummy (empty), we should henceforth treat it as unpartitioned.
765  */
766 #define IS_PARTITIONED_REL(rel) \
767  ((rel)->part_scheme && (rel)->boundinfo && (rel)->nparts > 0 && \
768  (rel)->part_rels && !IS_DUMMY_REL(rel))
769 
770 /*
771  * Convenience macro to make sure that a partitioned relation has all the
772  * required members set.
773  */
774 #define REL_HAS_ALL_PART_PROPS(rel) \
775  ((rel)->part_scheme && (rel)->boundinfo && (rel)->nparts > 0 && \
776  (rel)->part_rels && (rel)->partexprs && (rel)->nullable_partexprs)
777 
778 /*
779  * IndexOptInfo
780  * Per-index information for planning/optimization
781  *
782  * indexkeys[], indexcollations[] each have ncolumns entries.
783  * opfamily[], and opcintype[] each have nkeycolumns entries. They do
784  * not contain any information about included attributes.
785  *
786  * sortopfamily[], reverse_sort[], and nulls_first[] have
787  * nkeycolumns entries, if the index is ordered; but if it is unordered,
788  * those pointers are NULL.
789  *
790  * Zeroes in the indexkeys[] array indicate index columns that are
791  * expressions; there is one element in indexprs for each such column.
792  *
793  * For an ordered index, reverse_sort[] and nulls_first[] describe the
794  * sort ordering of a forward indexscan; we can also consider a backward
795  * indexscan, which will generate the reverse ordering.
796  *
797  * The indexprs and indpred expressions have been run through
798  * prepqual.c and eval_const_expressions() for ease of matching to
799  * WHERE clauses. indpred is in implicit-AND form.
800  *
801  * indextlist is a TargetEntry list representing the index columns.
802  * It provides an equivalent base-relation Var for each simple column,
803  * and links to the matching indexprs element for each expression column.
804  *
805  * While most of these fields are filled when the IndexOptInfo is created
806  * (by plancat.c), indrestrictinfo and predOK are set later, in
807  * check_index_predicates().
808  */
809 #ifndef HAVE_INDEXOPTINFO_TYPEDEF
810 typedef struct IndexOptInfo IndexOptInfo;
811 #define HAVE_INDEXOPTINFO_TYPEDEF 1
812 #endif
813 
815 {
817 
818  Oid indexoid; /* OID of the index relation */
819  Oid reltablespace; /* tablespace of index (not table) */
820  RelOptInfo *rel; /* back-link to index's table */
821 
822  /* index-size statistics (from pg_class and elsewhere) */
823  BlockNumber pages; /* number of disk pages in index */
824  double tuples; /* number of index tuples in index */
825  int tree_height; /* index tree height, or -1 if unknown */
826 
827  /* index descriptor information */
828  int ncolumns; /* number of columns in index */
829  int nkeycolumns; /* number of key columns in index */
830  int *indexkeys; /* column numbers of index's attributes both
831  * key and included columns, or 0 */
832  Oid *indexcollations; /* OIDs of collations of index columns */
833  Oid *opfamily; /* OIDs of operator families for columns */
834  Oid *opcintype; /* OIDs of opclass declared input data types */
835  Oid *sortopfamily; /* OIDs of btree opfamilies, if orderable */
836  bool *reverse_sort; /* is sort order descending? */
837  bool *nulls_first; /* do NULLs come first in the sort order? */
838  bytea **opclassoptions; /* opclass-specific options for columns */
839  bool *canreturn; /* which index cols can be returned in an
840  * index-only scan? */
841  Oid relam; /* OID of the access method (in pg_am) */
842 
843  List *indexprs; /* expressions for non-simple index columns */
844  List *indpred; /* predicate if a partial index, else NIL */
845 
846  List *indextlist; /* targetlist representing index columns */
847 
848  List *indrestrictinfo; /* parent relation's baserestrictinfo
849  * list, less any conditions implied by
850  * the index's predicate (unless it's a
851  * target rel, see comments in
852  * check_index_predicates()) */
853 
854  bool predOK; /* true if index predicate matches query */
855  bool unique; /* true if a unique index */
856  bool immediate; /* is uniqueness enforced immediately? */
857  bool hypothetical; /* true if index doesn't really exist */
858 
859  /* Remaining fields are copied from the index AM's API struct: */
860  bool amcanorderbyop; /* does AM support order by operator result? */
861  bool amoptionalkey; /* can query omit key for the first column? */
862  bool amsearcharray; /* can AM handle ScalarArrayOpExpr quals? */
863  bool amsearchnulls; /* can AM search for NULL/NOT NULL entries? */
864  bool amhasgettuple; /* does AM have amgettuple interface? */
865  bool amhasgetbitmap; /* does AM have amgetbitmap interface? */
866  bool amcanparallel; /* does AM support parallel scan? */
867  /* Rather than include amapi.h here, we declare amcostestimate like this */
868  void (*amcostestimate) (); /* AM's cost estimator */
869 };
870 
871 /*
872  * ForeignKeyOptInfo
873  * Per-foreign-key information for planning/optimization
874  *
875  * The per-FK-column arrays can be fixed-size because we allow at most
876  * INDEX_MAX_KEYS columns in a foreign key constraint. Each array has
877  * nkeys valid entries.
878  */
879 typedef struct ForeignKeyOptInfo
880 {
882 
883  /* Basic data about the foreign key (fetched from catalogs): */
884  Index con_relid; /* RT index of the referencing table */
885  Index ref_relid; /* RT index of the referenced table */
886  int nkeys; /* number of columns in the foreign key */
887  AttrNumber conkey[INDEX_MAX_KEYS]; /* cols in referencing table */
888  AttrNumber confkey[INDEX_MAX_KEYS]; /* cols in referenced table */
889  Oid conpfeqop[INDEX_MAX_KEYS]; /* PK = FK operator OIDs */
890 
891  /* Derived info about whether FK's equality conditions match the query: */
892  int nmatched_ec; /* # of FK cols matched by ECs */
893  int nmatched_rcols; /* # of FK cols matched by non-EC rinfos */
894  int nmatched_ri; /* total # of non-EC rinfos matched to FK */
895  /* Pointer to eclass matching each column's condition, if there is one */
897  /* List of non-EC RestrictInfos matching each column's condition */
900 
901 /*
902  * StatisticExtInfo
903  * Information about extended statistics for planning/optimization
904  *
905  * Each pg_statistic_ext row is represented by one or more nodes of this
906  * type, or even zero if ANALYZE has not computed them.
907  */
908 typedef struct StatisticExtInfo
909 {
911 
912  Oid statOid; /* OID of the statistics row */
913  RelOptInfo *rel; /* back-link to statistic's table */
914  char kind; /* statistic kind of this entry */
915  Bitmapset *keys; /* attnums of the columns covered */
917 
918 /*
919  * EquivalenceClasses
920  *
921  * Whenever we can determine that a mergejoinable equality clause A = B is
922  * not delayed by any outer join, we create an EquivalenceClass containing
923  * the expressions A and B to record this knowledge. If we later find another
924  * equivalence B = C, we add C to the existing EquivalenceClass; this may
925  * require merging two existing EquivalenceClasses. At the end of the qual
926  * distribution process, we have sets of values that are known all transitively
927  * equal to each other, where "equal" is according to the rules of the btree
928  * operator family(s) shown in ec_opfamilies, as well as the collation shown
929  * by ec_collation. (We restrict an EC to contain only equalities whose
930  * operators belong to the same set of opfamilies. This could probably be
931  * relaxed, but for now it's not worth the trouble, since nearly all equality
932  * operators belong to only one btree opclass anyway. Similarly, we suppose
933  * that all or none of the input datatypes are collatable, so that a single
934  * collation value is sufficient.)
935  *
936  * We also use EquivalenceClasses as the base structure for PathKeys, letting
937  * us represent knowledge about different sort orderings being equivalent.
938  * Since every PathKey must reference an EquivalenceClass, we will end up
939  * with single-member EquivalenceClasses whenever a sort key expression has
940  * not been equivalenced to anything else. It is also possible that such an
941  * EquivalenceClass will contain a volatile expression ("ORDER BY random()"),
942  * which is a case that can't arise otherwise since clauses containing
943  * volatile functions are never considered mergejoinable. We mark such
944  * EquivalenceClasses specially to prevent them from being merged with
945  * ordinary EquivalenceClasses. Also, for volatile expressions we have
946  * to be careful to match the EquivalenceClass to the correct targetlist
947  * entry: consider SELECT random() AS a, random() AS b ... ORDER BY b,a.
948  * So we record the SortGroupRef of the originating sort clause.
949  *
950  * We allow equality clauses appearing below the nullable side of an outer join
951  * to form EquivalenceClasses, but these have a slightly different meaning:
952  * the included values might be all NULL rather than all the same non-null
953  * values. See src/backend/optimizer/README for more on that point.
954  *
955  * NB: if ec_merged isn't NULL, this class has been merged into another, and
956  * should be ignored in favor of using the pointed-to class.
957  */
958 typedef struct EquivalenceClass
959 {
961 
962  List *ec_opfamilies; /* btree operator family OIDs */
963  Oid ec_collation; /* collation, if datatypes are collatable */
964  List *ec_members; /* list of EquivalenceMembers */
965  List *ec_sources; /* list of generating RestrictInfos */
966  List *ec_derives; /* list of derived RestrictInfos */
967  Relids ec_relids; /* all relids appearing in ec_members, except
968  * for child members (see below) */
969  bool ec_has_const; /* any pseudoconstants in ec_members? */
970  bool ec_has_volatile; /* the (sole) member is a volatile expr */
971  bool ec_below_outer_join; /* equivalence applies below an OJ */
972  bool ec_broken; /* failed to generate needed clauses? */
973  Index ec_sortref; /* originating sortclause label, or 0 */
974  Index ec_min_security; /* minimum security_level in ec_sources */
975  Index ec_max_security; /* maximum security_level in ec_sources */
976  struct EquivalenceClass *ec_merged; /* set if merged into another EC */
978 
979 /*
980  * If an EC contains a const and isn't below-outer-join, any PathKey depending
981  * on it must be redundant, since there's only one possible value of the key.
982  */
983 #define EC_MUST_BE_REDUNDANT(eclass) \
984  ((eclass)->ec_has_const && !(eclass)->ec_below_outer_join)
985 
986 /*
987  * EquivalenceMember - one member expression of an EquivalenceClass
988  *
989  * em_is_child signifies that this element was built by transposing a member
990  * for an appendrel parent relation to represent the corresponding expression
991  * for an appendrel child. These members are used for determining the
992  * pathkeys of scans on the child relation and for explicitly sorting the
993  * child when necessary to build a MergeAppend path for the whole appendrel
994  * tree. An em_is_child member has no impact on the properties of the EC as a
995  * whole; in particular the EC's ec_relids field does NOT include the child
996  * relation. An em_is_child member should never be marked em_is_const nor
997  * cause ec_has_const or ec_has_volatile to be set, either. Thus, em_is_child
998  * members are not really full-fledged members of the EC, but just reflections
999  * or doppelgangers of real members. Most operations on EquivalenceClasses
1000  * should ignore em_is_child members, and those that don't should test
1001  * em_relids to make sure they only consider relevant members.
1002  *
1003  * em_datatype is usually the same as exprType(em_expr), but can be
1004  * different when dealing with a binary-compatible opfamily; in particular
1005  * anyarray_ops would never work without this. Use em_datatype when
1006  * looking up a specific btree operator to work with this expression.
1007  */
1008 typedef struct EquivalenceMember
1009 {
1011 
1012  Expr *em_expr; /* the expression represented */
1013  Relids em_relids; /* all relids appearing in em_expr */
1014  Relids em_nullable_relids; /* nullable by lower outer joins */
1015  bool em_is_const; /* expression is pseudoconstant? */
1016  bool em_is_child; /* derived version for a child relation? */
1017  Oid em_datatype; /* the "nominal type" used by the opfamily */
1019 
1020 /*
1021  * PathKeys
1022  *
1023  * The sort ordering of a path is represented by a list of PathKey nodes.
1024  * An empty list implies no known ordering. Otherwise the first item
1025  * represents the primary sort key, the second the first secondary sort key,
1026  * etc. The value being sorted is represented by linking to an
1027  * EquivalenceClass containing that value and including pk_opfamily among its
1028  * ec_opfamilies. The EquivalenceClass tells which collation to use, too.
1029  * This is a convenient method because it makes it trivial to detect
1030  * equivalent and closely-related orderings. (See optimizer/README for more
1031  * information.)
1032  *
1033  * Note: pk_strategy is either BTLessStrategyNumber (for ASC) or
1034  * BTGreaterStrategyNumber (for DESC). We assume that all ordering-capable
1035  * index types will use btree-compatible strategy numbers.
1036  */
1037 typedef struct PathKey
1038 {
1040 
1041  EquivalenceClass *pk_eclass; /* the value that is ordered */
1042  Oid pk_opfamily; /* btree opfamily defining the ordering */
1043  int pk_strategy; /* sort direction (ASC or DESC) */
1044  bool pk_nulls_first; /* do NULLs come before normal values? */
1045 } PathKey;
1046 
1047 
1048 /*
1049  * PathTarget
1050  *
1051  * This struct contains what we need to know during planning about the
1052  * targetlist (output columns) that a Path will compute. Each RelOptInfo
1053  * includes a default PathTarget, which its individual Paths may simply
1054  * reference. However, in some cases a Path may compute outputs different
1055  * from other Paths, and in that case we make a custom PathTarget for it.
1056  * For example, an indexscan might return index expressions that would
1057  * otherwise need to be explicitly calculated. (Note also that "upper"
1058  * relations generally don't have useful default PathTargets.)
1059  *
1060  * exprs contains bare expressions; they do not have TargetEntry nodes on top,
1061  * though those will appear in finished Plans.
1062  *
1063  * sortgrouprefs[] is an array of the same length as exprs, containing the
1064  * corresponding sort/group refnos, or zeroes for expressions not referenced
1065  * by sort/group clauses. If sortgrouprefs is NULL (which it generally is in
1066  * RelOptInfo.reltarget targets; only upper-level Paths contain this info),
1067  * we have not identified sort/group columns in this tlist. This allows us to
1068  * deal with sort/group refnos when needed with less expense than including
1069  * TargetEntry nodes in the exprs list.
1070  */
1071 typedef struct PathTarget
1072 {
1074  List *exprs; /* list of expressions to be computed */
1075  Index *sortgrouprefs; /* corresponding sort/group refnos, or 0 */
1076  QualCost cost; /* cost of evaluating the expressions */
1077  int width; /* estimated avg width of result tuples */
1078 } PathTarget;
1079 
1080 /* Convenience macro to get a sort/group refno from a PathTarget */
1081 #define get_pathtarget_sortgroupref(target, colno) \
1082  ((target)->sortgrouprefs ? (target)->sortgrouprefs[colno] : (Index) 0)
1083 
1084 
1085 /*
1086  * ParamPathInfo
1087  *
1088  * All parameterized paths for a given relation with given required outer rels
1089  * link to a single ParamPathInfo, which stores common information such as
1090  * the estimated rowcount for this parameterization. We do this partly to
1091  * avoid recalculations, but mostly to ensure that the estimated rowcount
1092  * is in fact the same for every such path.
1093  *
1094  * Note: ppi_clauses is only used in ParamPathInfos for base relation paths;
1095  * in join cases it's NIL because the set of relevant clauses varies depending
1096  * on how the join is formed. The relevant clauses will appear in each
1097  * parameterized join path's joinrestrictinfo list, instead.
1098  */
1099 typedef struct ParamPathInfo
1100 {
1102 
1103  Relids ppi_req_outer; /* rels supplying parameters used by path */
1104  double ppi_rows; /* estimated number of result tuples */
1105  List *ppi_clauses; /* join clauses available from outer rels */
1106 } ParamPathInfo;
1107 
1108 
1109 /*
1110  * Type "Path" is used as-is for sequential-scan paths, as well as some other
1111  * simple plan types that we don't need any extra information in the path for.
1112  * For other path types it is the first component of a larger struct.
1113  *
1114  * "pathtype" is the NodeTag of the Plan node we could build from this Path.
1115  * It is partially redundant with the Path's NodeTag, but allows us to use
1116  * the same Path type for multiple Plan types when there is no need to
1117  * distinguish the Plan type during path processing.
1118  *
1119  * "parent" identifies the relation this Path scans, and "pathtarget"
1120  * describes the precise set of output columns the Path would compute.
1121  * In simple cases all Paths for a given rel share the same targetlist,
1122  * which we represent by having path->pathtarget equal to parent->reltarget.
1123  *
1124  * "param_info", if not NULL, links to a ParamPathInfo that identifies outer
1125  * relation(s) that provide parameter values to each scan of this path.
1126  * That means this path can only be joined to those rels by means of nestloop
1127  * joins with this path on the inside. Also note that a parameterized path
1128  * is responsible for testing all "movable" joinclauses involving this rel
1129  * and the specified outer rel(s).
1130  *
1131  * "rows" is the same as parent->rows in simple paths, but in parameterized
1132  * paths and UniquePaths it can be less than parent->rows, reflecting the
1133  * fact that we've filtered by extra join conditions or removed duplicates.
1134  *
1135  * "pathkeys" is a List of PathKey nodes (see above), describing the sort
1136  * ordering of the path's output rows.
1137  */
1138 typedef struct Path
1139 {
1141 
1142  NodeTag pathtype; /* tag identifying scan/join method */
1143 
1144  RelOptInfo *parent; /* the relation this path can build */
1145  PathTarget *pathtarget; /* list of Vars/Exprs, cost, width */
1146 
1147  ParamPathInfo *param_info; /* parameterization info, or NULL if none */
1148 
1149  bool parallel_aware; /* engage parallel-aware logic? */
1150  bool parallel_safe; /* OK to use as part of parallel plan? */
1151  int parallel_workers; /* desired # of workers; 0 = not parallel */
1152 
1153  /* estimated size/costs for path (see costsize.c for more info) */
1154  double rows; /* estimated number of result tuples */
1155  Cost startup_cost; /* cost expended before fetching any tuples */
1156  Cost total_cost; /* total cost (assuming all tuples fetched) */
1157 
1158  List *pathkeys; /* sort ordering of path's output */
1159  /* pathkeys is a List of PathKey nodes; see above */
1160 } Path;
1161 
1162 /* Macro for extracting a path's parameterization relids; beware double eval */
1163 #define PATH_REQ_OUTER(path) \
1164  ((path)->param_info ? (path)->param_info->ppi_req_outer : (Relids) NULL)
1165 
1166 /*----------
1167  * IndexPath represents an index scan over a single index.
1168  *
1169  * This struct is used for both regular indexscans and index-only scans;
1170  * path.pathtype is T_IndexScan or T_IndexOnlyScan to show which is meant.
1171  *
1172  * 'indexinfo' is the index to be scanned.
1173  *
1174  * 'indexclauses' is a list of IndexClause nodes, each representing one
1175  * index-checkable restriction, with implicit AND semantics across the list.
1176  * An empty list implies a full index scan.
1177  *
1178  * 'indexorderbys', if not NIL, is a list of ORDER BY expressions that have
1179  * been found to be usable as ordering operators for an amcanorderbyop index.
1180  * The list must match the path's pathkeys, ie, one expression per pathkey
1181  * in the same order. These are not RestrictInfos, just bare expressions,
1182  * since they generally won't yield booleans. It's guaranteed that each
1183  * expression has the index key on the left side of the operator.
1184  *
1185  * 'indexorderbycols' is an integer list of index column numbers (zero-based)
1186  * of the same length as 'indexorderbys', showing which index column each
1187  * ORDER BY expression is meant to be used with. (There is no restriction
1188  * on which index column each ORDER BY can be used with.)
1189  *
1190  * 'indexscandir' is one of:
1191  * ForwardScanDirection: forward scan of an ordered index
1192  * BackwardScanDirection: backward scan of an ordered index
1193  * NoMovementScanDirection: scan of an unordered index, or don't care
1194  * (The executor doesn't care whether it gets ForwardScanDirection or
1195  * NoMovementScanDirection for an indexscan, but the planner wants to
1196  * distinguish ordered from unordered indexes for building pathkeys.)
1197  *
1198  * 'indextotalcost' and 'indexselectivity' are saved in the IndexPath so that
1199  * we need not recompute them when considering using the same index in a
1200  * bitmap index/heap scan (see BitmapHeapPath). The costs of the IndexPath
1201  * itself represent the costs of an IndexScan or IndexOnlyScan plan type.
1202  *----------
1203  */
1204 typedef struct IndexPath
1205 {
1214 } IndexPath;
1215 
1216 /*
1217  * Each IndexClause references a RestrictInfo node from the query's WHERE
1218  * or JOIN conditions, and shows how that restriction can be applied to
1219  * the particular index. We support both indexclauses that are directly
1220  * usable by the index machinery, which are typically of the form
1221  * "indexcol OP pseudoconstant", and those from which an indexable qual
1222  * can be derived. The simplest such transformation is that a clause
1223  * of the form "pseudoconstant OP indexcol" can be commuted to produce an
1224  * indexable qual (the index machinery expects the indexcol to be on the
1225  * left always). Another example is that we might be able to extract an
1226  * indexable range condition from a LIKE condition, as in "x LIKE 'foo%bar'"
1227  * giving rise to "x >= 'foo' AND x < 'fop'". Derivation of such lossy
1228  * conditions is done by a planner support function attached to the
1229  * indexclause's top-level function or operator.
1230  *
1231  * indexquals is a list of RestrictInfos for the directly-usable index
1232  * conditions associated with this IndexClause. In the simplest case
1233  * it's a one-element list whose member is iclause->rinfo. Otherwise,
1234  * it contains one or more directly-usable indexqual conditions extracted
1235  * from the given clause. The 'lossy' flag indicates whether the
1236  * indexquals are semantically equivalent to the original clause, or
1237  * represent a weaker condition.
1238  *
1239  * Normally, indexcol is the index of the single index column the clause
1240  * works on, and indexcols is NIL. But if the clause is a RowCompareExpr,
1241  * indexcol is the index of the leading column, and indexcols is a list of
1242  * all the affected columns. (Note that indexcols matches up with the
1243  * columns of the actual indexable RowCompareExpr in indexquals, which
1244  * might be different from the original in rinfo.)
1245  *
1246  * An IndexPath's IndexClause list is required to be ordered by index
1247  * column, i.e. the indexcol values must form a nondecreasing sequence.
1248  * (The order of multiple clauses for the same index column is unspecified.)
1249  */
1250 typedef struct IndexClause
1251 {
1253  struct RestrictInfo *rinfo; /* original restriction or join clause */
1254  List *indexquals; /* indexqual(s) derived from it */
1255  bool lossy; /* are indexquals a lossy version of clause? */
1256  AttrNumber indexcol; /* index column the clause uses (zero-based) */
1257  List *indexcols; /* multiple index columns, if RowCompare */
1258 } IndexClause;
1259 
1260 /*
1261  * BitmapHeapPath represents one or more indexscans that generate TID bitmaps
1262  * instead of directly accessing the heap, followed by AND/OR combinations
1263  * to produce a single bitmap, followed by a heap scan that uses the bitmap.
1264  * Note that the output is always considered unordered, since it will come
1265  * out in physical heap order no matter what the underlying indexes did.
1266  *
1267  * The individual indexscans are represented by IndexPath nodes, and any
1268  * logic on top of them is represented by a tree of BitmapAndPath and
1269  * BitmapOrPath nodes. Notice that we can use the same IndexPath node both
1270  * to represent a regular (or index-only) index scan plan, and as the child
1271  * of a BitmapHeapPath that represents scanning the same index using a
1272  * BitmapIndexScan. The startup_cost and total_cost figures of an IndexPath
1273  * always represent the costs to use it as a regular (or index-only)
1274  * IndexScan. The costs of a BitmapIndexScan can be computed using the
1275  * IndexPath's indextotalcost and indexselectivity.
1276  */
1277 typedef struct BitmapHeapPath
1278 {
1280  Path *bitmapqual; /* IndexPath, BitmapAndPath, BitmapOrPath */
1281 } BitmapHeapPath;
1282 
1283 /*
1284  * BitmapAndPath represents a BitmapAnd plan node; it can only appear as
1285  * part of the substructure of a BitmapHeapPath. The Path structure is
1286  * a bit more heavyweight than we really need for this, but for simplicity
1287  * we make it a derivative of Path anyway.
1288  */
1289 typedef struct BitmapAndPath
1290 {
1292  List *bitmapquals; /* IndexPaths and BitmapOrPaths */
1294 } BitmapAndPath;
1295 
1296 /*
1297  * BitmapOrPath represents a BitmapOr plan node; it can only appear as
1298  * part of the substructure of a BitmapHeapPath. The Path structure is
1299  * a bit more heavyweight than we really need for this, but for simplicity
1300  * we make it a derivative of Path anyway.
1301  */
1302 typedef struct BitmapOrPath
1303 {
1305  List *bitmapquals; /* IndexPaths and BitmapAndPaths */
1307 } BitmapOrPath;
1308 
1309 /*
1310  * TidPath represents a scan by TID
1311  *
1312  * tidquals is an implicitly OR'ed list of qual expressions of the form
1313  * "CTID = pseudoconstant", or "CTID = ANY(pseudoconstant_array)",
1314  * or a CurrentOfExpr for the relation.
1315  */
1316 typedef struct TidPath
1317 {
1319  List *tidquals; /* qual(s) involving CTID = something */
1320 } TidPath;
1321 
1322 /*
1323  * SubqueryScanPath represents a scan of an unflattened subquery-in-FROM
1324  *
1325  * Note that the subpath comes from a different planning domain; for example
1326  * RTE indexes within it mean something different from those known to the
1327  * SubqueryScanPath. path.parent->subroot is the planning context needed to
1328  * interpret the subpath.
1329  */
1330 typedef struct SubqueryScanPath
1331 {
1333  Path *subpath; /* path representing subquery execution */
1335 
1336 /*
1337  * ForeignPath represents a potential scan of a foreign table, foreign join
1338  * or foreign upper-relation.
1339  *
1340  * fdw_private stores FDW private data about the scan. While fdw_private is
1341  * not actually touched by the core code during normal operations, it's
1342  * generally a good idea to use a representation that can be dumped by
1343  * nodeToString(), so that you can examine the structure during debugging
1344  * with tools like pprint().
1345  */
1346 typedef struct ForeignPath
1347 {
1351 } ForeignPath;
1352 
1353 /*
1354  * CustomPath represents a table scan done by some out-of-core extension.
1355  *
1356  * We provide a set of hooks here - which the provider must take care to set
1357  * up correctly - to allow extensions to supply their own methods of scanning
1358  * a relation. For example, a provider might provide GPU acceleration, a
1359  * cache-based scan, or some other kind of logic we haven't dreamed up yet.
1360  *
1361  * CustomPaths can be injected into the planning process for a relation by
1362  * set_rel_pathlist_hook functions.
1363  *
1364  * Core code must avoid assuming that the CustomPath is only as large as
1365  * the structure declared here; providers are allowed to make it the first
1366  * element in a larger structure. (Since the planner never copies Paths,
1367  * this doesn't add any complication.) However, for consistency with the
1368  * FDW case, we provide a "custom_private" field in CustomPath; providers
1369  * may prefer to use that rather than define another struct type.
1370  */
1371 
1372 struct CustomPathMethods;
1373 
1374 typedef struct CustomPath
1375 {
1377  uint32 flags; /* mask of CUSTOMPATH_* flags, see
1378  * nodes/extensible.h */
1379  List *custom_paths; /* list of child Path nodes, if any */
1382 } CustomPath;
1383 
1384 /*
1385  * AppendPath represents an Append plan, ie, successive execution of
1386  * several member plans.
1387  *
1388  * For partial Append, 'subpaths' contains non-partial subpaths followed by
1389  * partial subpaths.
1390  *
1391  * Note: it is possible for "subpaths" to contain only one, or even no,
1392  * elements. These cases are optimized during create_append_plan.
1393  * In particular, an AppendPath with no subpaths is a "dummy" path that
1394  * is created to represent the case that a relation is provably empty.
1395  * (This is a convenient representation because it means that when we build
1396  * an appendrel and find that all its children have been excluded, no extra
1397  * action is needed to recognize the relation as dummy.)
1398  */
1399 typedef struct AppendPath
1400 {
1402  /* RT indexes of non-leaf tables in a partition tree */
1404  List *subpaths; /* list of component Paths */
1405  /* Index of first partial path in subpaths; list_length(subpaths) if none */
1407  double limit_tuples; /* hard limit on output tuples, or -1 */
1408 } AppendPath;
1409 
1410 #define IS_DUMMY_APPEND(p) \
1411  (IsA((p), AppendPath) && ((AppendPath *) (p))->subpaths == NIL)
1412 
1413 /*
1414  * A relation that's been proven empty will have one path that is dummy
1415  * (but might have projection paths on top). For historical reasons,
1416  * this is provided as a macro that wraps is_dummy_rel().
1417  */
1418 #define IS_DUMMY_REL(r) is_dummy_rel(r)
1419 extern bool is_dummy_rel(RelOptInfo *rel);
1420 
1421 /*
1422  * MergeAppendPath represents a MergeAppend plan, ie, the merging of sorted
1423  * results from several member plans to produce similarly-sorted output.
1424  */
1425 typedef struct MergeAppendPath
1426 {
1428  /* RT indexes of non-leaf tables in a partition tree */
1430  List *subpaths; /* list of component Paths */
1431  double limit_tuples; /* hard limit on output tuples, or -1 */
1432 } MergeAppendPath;
1433 
1434 /*
1435  * GroupResultPath represents use of a Result plan node to compute the
1436  * output of a degenerate GROUP BY case, wherein we know we should produce
1437  * exactly one row, which might then be filtered by a HAVING qual.
1438  *
1439  * Note that quals is a list of bare clauses, not RestrictInfos.
1440  */
1441 typedef struct GroupResultPath
1442 {
1445 } GroupResultPath;
1446 
1447 /*
1448  * MaterialPath represents use of a Material plan node, i.e., caching of
1449  * the output of its subpath. This is used when the subpath is expensive
1450  * and needs to be scanned repeatedly, or when we need mark/restore ability
1451  * and the subpath doesn't have it.
1452  */
1453 typedef struct MaterialPath
1454 {
1457 } MaterialPath;
1458 
1459 /*
1460  * UniquePath represents elimination of distinct rows from the output of
1461  * its subpath.
1462  *
1463  * This can represent significantly different plans: either hash-based or
1464  * sort-based implementation, or a no-op if the input path can be proven
1465  * distinct already. The decision is sufficiently localized that it's not
1466  * worth having separate Path node types. (Note: in the no-op case, we could
1467  * eliminate the UniquePath node entirely and just return the subpath; but
1468  * it's convenient to have a UniquePath in the path tree to signal upper-level
1469  * routines that the input is known distinct.)
1470  */
1471 typedef enum
1472 {
1473  UNIQUE_PATH_NOOP, /* input is known unique already */
1474  UNIQUE_PATH_HASH, /* use hashing */
1475  UNIQUE_PATH_SORT /* use sorting */
1477 
1478 typedef struct UniquePath
1479 {
1483  List *in_operators; /* equality operators of the IN clause */
1484  List *uniq_exprs; /* expressions to be made unique */
1485 } UniquePath;
1486 
1487 /*
1488  * GatherPath runs several copies of a plan in parallel and collects the
1489  * results. The parallel leader may also execute the plan, unless the
1490  * single_copy flag is set.
1491  */
1492 typedef struct GatherPath
1493 {
1495  Path *subpath; /* path for each worker */
1496  bool single_copy; /* don't execute path more than once */
1497  int num_workers; /* number of workers sought to help */
1498 } GatherPath;
1499 
1500 /*
1501  * GatherMergePath runs several copies of a plan in parallel and collects
1502  * the results, preserving their common sort order.
1503  */
1504 typedef struct GatherMergePath
1505 {
1507  Path *subpath; /* path for each worker */
1508  int num_workers; /* number of workers sought to help */
1509 } GatherMergePath;
1510 
1511 
1512 /*
1513  * All join-type paths share these fields.
1514  */
1515 
1516 typedef struct JoinPath
1517 {
1519 
1521 
1522  bool inner_unique; /* each outer tuple provably matches no more
1523  * than one inner tuple */
1524 
1525  Path *outerjoinpath; /* path for the outer side of the join */
1526  Path *innerjoinpath; /* path for the inner side of the join */
1527 
1528  List *joinrestrictinfo; /* RestrictInfos to apply to join */
1529 
1530  /*
1531  * See the notes for RelOptInfo and ParamPathInfo to understand why
1532  * joinrestrictinfo is needed in JoinPath, and can't be merged into the
1533  * parent RelOptInfo.
1534  */
1535 } JoinPath;
1536 
1537 /*
1538  * A nested-loop path needs no special fields.
1539  */
1540 
1542 
1543 /*
1544  * A mergejoin path has these fields.
1545  *
1546  * Unlike other path types, a MergePath node doesn't represent just a single
1547  * run-time plan node: it can represent up to four. Aside from the MergeJoin
1548  * node itself, there can be a Sort node for the outer input, a Sort node
1549  * for the inner input, and/or a Material node for the inner input. We could
1550  * represent these nodes by separate path nodes, but considering how many
1551  * different merge paths are investigated during a complex join problem,
1552  * it seems better to avoid unnecessary palloc overhead.
1553  *
1554  * path_mergeclauses lists the clauses (in the form of RestrictInfos)
1555  * that will be used in the merge.
1556  *
1557  * Note that the mergeclauses are a subset of the parent relation's
1558  * restriction-clause list. Any join clauses that are not mergejoinable
1559  * appear only in the parent's restrict list, and must be checked by a
1560  * qpqual at execution time.
1561  *
1562  * outersortkeys (resp. innersortkeys) is NIL if the outer path
1563  * (resp. inner path) is already ordered appropriately for the
1564  * mergejoin. If it is not NIL then it is a PathKeys list describing
1565  * the ordering that must be created by an explicit Sort node.
1566  *
1567  * skip_mark_restore is true if the executor need not do mark/restore calls.
1568  * Mark/restore overhead is usually required, but can be skipped if we know
1569  * that the executor need find only one match per outer tuple, and that the
1570  * mergeclauses are sufficient to identify a match. In such cases the
1571  * executor can immediately advance the outer relation after processing a
1572  * match, and therefore it need never back up the inner relation.
1573  *
1574  * materialize_inner is true if a Material node should be placed atop the
1575  * inner input. This may appear with or without an inner Sort step.
1576  */
1577 
1578 typedef struct MergePath
1579 {
1581  List *path_mergeclauses; /* join clauses to be used for merge */
1582  List *outersortkeys; /* keys for explicit sort, if any */
1583  List *innersortkeys; /* keys for explicit sort, if any */
1584  bool skip_mark_restore; /* can executor skip mark/restore? */
1585  bool materialize_inner; /* add Materialize to inner? */
1586 } MergePath;
1587 
1588 /*
1589  * A hashjoin path has these fields.
1590  *
1591  * The remarks above for mergeclauses apply for hashclauses as well.
1592  *
1593  * Hashjoin does not care what order its inputs appear in, so we have
1594  * no need for sortkeys.
1595  */
1596 
1597 typedef struct HashPath
1598 {
1600  List *path_hashclauses; /* join clauses used for hashing */
1601  int num_batches; /* number of batches expected */
1602  double inner_rows_total; /* total inner rows expected */
1603 } HashPath;
1604 
1605 /*
1606  * ProjectionPath represents a projection (that is, targetlist computation)
1607  *
1608  * Nominally, this path node represents using a Result plan node to do a
1609  * projection step. However, if the input plan node supports projection,
1610  * we can just modify its output targetlist to do the required calculations
1611  * directly, and not need a Result. In some places in the planner we can just
1612  * jam the desired PathTarget into the input path node (and adjust its cost
1613  * accordingly), so we don't need a ProjectionPath. But in other places
1614  * it's necessary to not modify the input path node, so we need a separate
1615  * ProjectionPath node, which is marked dummy to indicate that we intend to
1616  * assign the work to the input plan node. The estimated cost for the
1617  * ProjectionPath node will account for whether a Result will be used or not.
1618  */
1619 typedef struct ProjectionPath
1620 {
1622  Path *subpath; /* path representing input source */
1623  bool dummypp; /* true if no separate Result is needed */
1624 } ProjectionPath;
1625 
1626 /*
1627  * ProjectSetPath represents evaluation of a targetlist that includes
1628  * set-returning function(s), which will need to be implemented by a
1629  * ProjectSet plan node.
1630  */
1631 typedef struct ProjectSetPath
1632 {
1634  Path *subpath; /* path representing input source */
1635 } ProjectSetPath;
1636 
1637 /*
1638  * SortPath represents an explicit sort step
1639  *
1640  * The sort keys are, by definition, the same as path.pathkeys.
1641  *
1642  * Note: the Sort plan node cannot project, so path.pathtarget must be the
1643  * same as the input's pathtarget.
1644  */
1645 typedef struct SortPath
1646 {
1648  Path *subpath; /* path representing input source */
1649 } SortPath;
1650 
1651 /*
1652  * IncrementalSortPath
1653  */
1654 typedef struct IncrementalSortPath
1655 {
1657  int nPresortedCols; /* number of presorted columns */
1659 
1660 /*
1661  * GroupPath represents grouping (of presorted input)
1662  *
1663  * groupClause represents the columns to be grouped on; the input path
1664  * must be at least that well sorted.
1665  *
1666  * We can also apply a qual to the grouped rows (equivalent of HAVING)
1667  */
1668 typedef struct GroupPath
1669 {
1671  Path *subpath; /* path representing input source */
1672  List *groupClause; /* a list of SortGroupClause's */
1673  List *qual; /* quals (HAVING quals), if any */
1674 } GroupPath;
1675 
1676 /*
1677  * UpperUniquePath represents adjacent-duplicate removal (in presorted input)
1678  *
1679  * The columns to be compared are the first numkeys columns of the path's
1680  * pathkeys. The input is presumed already sorted that way.
1681  */
1682 typedef struct UpperUniquePath
1683 {
1685  Path *subpath; /* path representing input source */
1686  int numkeys; /* number of pathkey columns to compare */
1687 } UpperUniquePath;
1688 
1689 /*
1690  * AggPath represents generic computation of aggregate functions
1691  *
1692  * This may involve plain grouping (but not grouping sets), using either
1693  * sorted or hashed grouping; for the AGG_SORTED case, the input must be
1694  * appropriately presorted.
1695  */
1696 typedef struct AggPath
1697 {
1699  Path *subpath; /* path representing input source */
1700  AggStrategy aggstrategy; /* basic strategy, see nodes.h */
1701  AggSplit aggsplit; /* agg-splitting mode, see nodes.h */
1702  double numGroups; /* estimated number of groups in input */
1703  uint64 transitionSpace; /* for pass-by-ref transition data */
1704  List *groupClause; /* a list of SortGroupClause's */
1705  List *qual; /* quals (HAVING quals), if any */
1706 } AggPath;
1707 
1708 /*
1709  * Various annotations used for grouping sets in the planner.
1710  */
1711 
1712 typedef struct GroupingSetData
1713 {
1715  List *set; /* grouping set as list of sortgrouprefs */
1716  double numGroups; /* est. number of result groups */
1717 } GroupingSetData;
1718 
1719 typedef struct RollupData
1720 {
1722  List *groupClause; /* applicable subset of parse->groupClause */
1723  List *gsets; /* lists of integer indexes into groupClause */
1724  List *gsets_data; /* list of GroupingSetData */
1725  double numGroups; /* est. number of result groups */
1726  bool hashable; /* can be hashed */
1727  bool is_hashed; /* to be implemented as a hashagg */
1728 } RollupData;
1729 
1730 /*
1731  * GroupingSetsPath represents a GROUPING SETS aggregation
1732  */
1733 
1734 typedef struct GroupingSetsPath
1735 {
1737  Path *subpath; /* path representing input source */
1738  AggStrategy aggstrategy; /* basic strategy */
1739  List *rollups; /* list of RollupData */
1740  List *qual; /* quals (HAVING quals), if any */
1741  uint64 transitionSpace; /* for pass-by-ref transition data */
1743 
1744 /*
1745  * MinMaxAggPath represents computation of MIN/MAX aggregates from indexes
1746  */
1747 typedef struct MinMaxAggPath
1748 {
1750  List *mmaggregates; /* list of MinMaxAggInfo */
1751  List *quals; /* HAVING quals, if any */
1752 } MinMaxAggPath;
1753 
1754 /*
1755  * WindowAggPath represents generic computation of window functions
1756  */
1757 typedef struct WindowAggPath
1758 {
1760  Path *subpath; /* path representing input source */
1761  WindowClause *winclause; /* WindowClause we'll be using */
1762 } WindowAggPath;
1763 
1764 /*
1765  * SetOpPath represents a set-operation, that is INTERSECT or EXCEPT
1766  */
1767 typedef struct SetOpPath
1768 {
1770  Path *subpath; /* path representing input source */
1771  SetOpCmd cmd; /* what to do, see nodes.h */
1772  SetOpStrategy strategy; /* how to do it, see nodes.h */
1773  List *distinctList; /* SortGroupClauses identifying target cols */
1774  AttrNumber flagColIdx; /* where is the flag column, if any */
1775  int firstFlag; /* flag value for first input relation */
1776  double numGroups; /* estimated number of groups in input */
1777 } SetOpPath;
1778 
1779 /*
1780  * RecursiveUnionPath represents a recursive UNION node
1781  */
1782 typedef struct RecursiveUnionPath
1783 {
1785  Path *leftpath; /* paths representing input sources */
1787  List *distinctList; /* SortGroupClauses identifying target cols */
1788  int wtParam; /* ID of Param representing work table */
1789  double numGroups; /* estimated number of groups in input */
1791 
1792 /*
1793  * LockRowsPath represents acquiring row locks for SELECT FOR UPDATE/SHARE
1794  */
1795 typedef struct LockRowsPath
1796 {
1798  Path *subpath; /* path representing input source */
1799  List *rowMarks; /* a list of PlanRowMark's */
1800  int epqParam; /* ID of Param for EvalPlanQual re-eval */
1801 } LockRowsPath;
1802 
1803 /*
1804  * ModifyTablePath represents performing INSERT/UPDATE/DELETE modifications
1805  *
1806  * We represent most things that will be in the ModifyTable plan node
1807  * literally, except we have child Path(s) not Plan(s). But analysis of the
1808  * OnConflictExpr is deferred to createplan.c, as is collection of FDW data.
1809  */
1810 typedef struct ModifyTablePath
1811 {
1813  CmdType operation; /* INSERT, UPDATE, or DELETE */
1814  bool canSetTag; /* do we set the command tag/es_processed? */
1815  Index nominalRelation; /* Parent RT index for use of EXPLAIN */
1816  Index rootRelation; /* Root RT index, if target is partitioned */
1817  bool partColsUpdated; /* some part key in hierarchy updated */
1818  List *resultRelations; /* integer list of RT indexes */
1819  List *subpaths; /* Path(s) producing source data */
1820  List *subroots; /* per-target-table PlannerInfos */
1821  List *withCheckOptionLists; /* per-target-table WCO lists */
1822  List *returningLists; /* per-target-table RETURNING tlists */
1823  List *rowMarks; /* PlanRowMarks (non-locking only) */
1824  OnConflictExpr *onconflict; /* ON CONFLICT clause, or NULL */
1825  int epqParam; /* ID of Param for EvalPlanQual re-eval */
1826 } ModifyTablePath;
1827 
1828 /*
1829  * LimitPath represents applying LIMIT/OFFSET restrictions
1830  */
1831 typedef struct LimitPath
1832 {
1834  Path *subpath; /* path representing input source */
1835  Node *limitOffset; /* OFFSET parameter, or NULL if none */
1836  Node *limitCount; /* COUNT parameter, or NULL if none */
1837  LimitOption limitOption; /* FETCH FIRST with ties or exact number */
1838 } LimitPath;
1839 
1840 
1841 /*
1842  * Restriction clause info.
1843  *
1844  * We create one of these for each AND sub-clause of a restriction condition
1845  * (WHERE or JOIN/ON clause). Since the restriction clauses are logically
1846  * ANDed, we can use any one of them or any subset of them to filter out
1847  * tuples, without having to evaluate the rest. The RestrictInfo node itself
1848  * stores data used by the optimizer while choosing the best query plan.
1849  *
1850  * If a restriction clause references a single base relation, it will appear
1851  * in the baserestrictinfo list of the RelOptInfo for that base rel.
1852  *
1853  * If a restriction clause references more than one base rel, it will
1854  * appear in the joininfo list of every RelOptInfo that describes a strict
1855  * subset of the base rels mentioned in the clause. The joininfo lists are
1856  * used to drive join tree building by selecting plausible join candidates.
1857  * The clause cannot actually be applied until we have built a join rel
1858  * containing all the base rels it references, however.
1859  *
1860  * When we construct a join rel that includes all the base rels referenced
1861  * in a multi-relation restriction clause, we place that clause into the
1862  * joinrestrictinfo lists of paths for the join rel, if neither left nor
1863  * right sub-path includes all base rels referenced in the clause. The clause
1864  * will be applied at that join level, and will not propagate any further up
1865  * the join tree. (Note: the "predicate migration" code was once intended to
1866  * push restriction clauses up and down the plan tree based on evaluation
1867  * costs, but it's dead code and is unlikely to be resurrected in the
1868  * foreseeable future.)
1869  *
1870  * Note that in the presence of more than two rels, a multi-rel restriction
1871  * might reach different heights in the join tree depending on the join
1872  * sequence we use. So, these clauses cannot be associated directly with
1873  * the join RelOptInfo, but must be kept track of on a per-join-path basis.
1874  *
1875  * RestrictInfos that represent equivalence conditions (i.e., mergejoinable
1876  * equalities that are not outerjoin-delayed) are handled a bit differently.
1877  * Initially we attach them to the EquivalenceClasses that are derived from
1878  * them. When we construct a scan or join path, we look through all the
1879  * EquivalenceClasses and generate derived RestrictInfos representing the
1880  * minimal set of conditions that need to be checked for this particular scan
1881  * or join to enforce that all members of each EquivalenceClass are in fact
1882  * equal in all rows emitted by the scan or join.
1883  *
1884  * When dealing with outer joins we have to be very careful about pushing qual
1885  * clauses up and down the tree. An outer join's own JOIN/ON conditions must
1886  * be evaluated exactly at that join node, unless they are "degenerate"
1887  * conditions that reference only Vars from the nullable side of the join.
1888  * Quals appearing in WHERE or in a JOIN above the outer join cannot be pushed
1889  * down below the outer join, if they reference any nullable Vars.
1890  * RestrictInfo nodes contain a flag to indicate whether a qual has been
1891  * pushed down to a lower level than its original syntactic placement in the
1892  * join tree would suggest. If an outer join prevents us from pushing a qual
1893  * down to its "natural" semantic level (the level associated with just the
1894  * base rels used in the qual) then we mark the qual with a "required_relids"
1895  * value including more than just the base rels it actually uses. By
1896  * pretending that the qual references all the rels required to form the outer
1897  * join, we prevent it from being evaluated below the outer join's joinrel.
1898  * When we do form the outer join's joinrel, we still need to distinguish
1899  * those quals that are actually in that join's JOIN/ON condition from those
1900  * that appeared elsewhere in the tree and were pushed down to the join rel
1901  * because they used no other rels. That's what the is_pushed_down flag is
1902  * for; it tells us that a qual is not an OUTER JOIN qual for the set of base
1903  * rels listed in required_relids. A clause that originally came from WHERE
1904  * or an INNER JOIN condition will *always* have its is_pushed_down flag set.
1905  * It's possible for an OUTER JOIN clause to be marked is_pushed_down too,
1906  * if we decide that it can be pushed down into the nullable side of the join.
1907  * In that case it acts as a plain filter qual for wherever it gets evaluated.
1908  * (In short, is_pushed_down is only false for non-degenerate outer join
1909  * conditions. Possibly we should rename it to reflect that meaning? But
1910  * see also the comments for RINFO_IS_PUSHED_DOWN, below.)
1911  *
1912  * RestrictInfo nodes also contain an outerjoin_delayed flag, which is true
1913  * if the clause's applicability must be delayed due to any outer joins
1914  * appearing below it (ie, it has to be postponed to some join level higher
1915  * than the set of relations it actually references).
1916  *
1917  * There is also an outer_relids field, which is NULL except for outer join
1918  * clauses; for those, it is the set of relids on the outer side of the
1919  * clause's outer join. (These are rels that the clause cannot be applied to
1920  * in parameterized scans, since pushing it into the join's outer side would
1921  * lead to wrong answers.)
1922  *
1923  * There is also a nullable_relids field, which is the set of rels the clause
1924  * references that can be forced null by some outer join below the clause.
1925  *
1926  * outerjoin_delayed = true is subtly different from nullable_relids != NULL:
1927  * a clause might reference some nullable rels and yet not be
1928  * outerjoin_delayed because it also references all the other rels of the
1929  * outer join(s). A clause that is not outerjoin_delayed can be enforced
1930  * anywhere it is computable.
1931  *
1932  * To handle security-barrier conditions efficiently, we mark RestrictInfo
1933  * nodes with a security_level field, in which higher values identify clauses
1934  * coming from less-trusted sources. The exact semantics are that a clause
1935  * cannot be evaluated before another clause with a lower security_level value
1936  * unless the first clause is leakproof. As with outer-join clauses, this
1937  * creates a reason for clauses to sometimes need to be evaluated higher in
1938  * the join tree than their contents would suggest; and even at a single plan
1939  * node, this rule constrains the order of application of clauses.
1940  *
1941  * In general, the referenced clause might be arbitrarily complex. The
1942  * kinds of clauses we can handle as indexscan quals, mergejoin clauses,
1943  * or hashjoin clauses are limited (e.g., no volatile functions). The code
1944  * for each kind of path is responsible for identifying the restrict clauses
1945  * it can use and ignoring the rest. Clauses not implemented by an indexscan,
1946  * mergejoin, or hashjoin will be placed in the plan qual or joinqual field
1947  * of the finished Plan node, where they will be enforced by general-purpose
1948  * qual-expression-evaluation code. (But we are still entitled to count
1949  * their selectivity when estimating the result tuple count, if we
1950  * can guess what it is...)
1951  *
1952  * When the referenced clause is an OR clause, we generate a modified copy
1953  * in which additional RestrictInfo nodes are inserted below the top-level
1954  * OR/AND structure. This is a convenience for OR indexscan processing:
1955  * indexquals taken from either the top level or an OR subclause will have
1956  * associated RestrictInfo nodes.
1957  *
1958  * The can_join flag is set true if the clause looks potentially useful as
1959  * a merge or hash join clause, that is if it is a binary opclause with
1960  * nonoverlapping sets of relids referenced in the left and right sides.
1961  * (Whether the operator is actually merge or hash joinable isn't checked,
1962  * however.)
1963  *
1964  * The pseudoconstant flag is set true if the clause contains no Vars of
1965  * the current query level and no volatile functions. Such a clause can be
1966  * pulled out and used as a one-time qual in a gating Result node. We keep
1967  * pseudoconstant clauses in the same lists as other RestrictInfos so that
1968  * the regular clause-pushing machinery can assign them to the correct join
1969  * level, but they need to be treated specially for cost and selectivity
1970  * estimates. Note that a pseudoconstant clause can never be an indexqual
1971  * or merge or hash join clause, so it's of no interest to large parts of
1972  * the planner.
1973  *
1974  * When join clauses are generated from EquivalenceClasses, there may be
1975  * several equally valid ways to enforce join equivalence, of which we need
1976  * apply only one. We mark clauses of this kind by setting parent_ec to
1977  * point to the generating EquivalenceClass. Multiple clauses with the same
1978  * parent_ec in the same join are redundant.
1979  */
1980 
1981 typedef struct RestrictInfo
1982 {
1984 
1985  Expr *clause; /* the represented clause of WHERE or JOIN */
1986 
1987  bool is_pushed_down; /* true if clause was pushed down in level */
1988 
1989  bool outerjoin_delayed; /* true if delayed by lower outer join */
1990 
1991  bool can_join; /* see comment above */
1992 
1993  bool pseudoconstant; /* see comment above */
1994 
1995  bool leakproof; /* true if known to contain no leaked Vars */
1996 
1997  Index security_level; /* see comment above */
1998 
1999  /* The set of relids (varnos) actually referenced in the clause: */
2001 
2002  /* The set of relids required to evaluate the clause: */
2004 
2005  /* If an outer-join clause, the outer-side relations, else NULL: */
2007 
2008  /* The relids used in the clause that are nullable by lower outer joins: */
2010 
2011  /* These fields are set for any binary opclause: */
2012  Relids left_relids; /* relids in left side of clause */
2013  Relids right_relids; /* relids in right side of clause */
2014 
2015  /* This field is NULL unless clause is an OR clause: */
2016  Expr *orclause; /* modified clause with RestrictInfos */
2017 
2018  /* This field is NULL unless clause is potentially redundant: */
2019  EquivalenceClass *parent_ec; /* generating EquivalenceClass */
2020 
2021  /* cache space for cost and selectivity */
2022  QualCost eval_cost; /* eval cost of clause; -1 if not yet set */
2023  Selectivity norm_selec; /* selectivity for "normal" (JOIN_INNER)
2024  * semantics; -1 if not yet set; >1 means a
2025  * redundant clause */
2026  Selectivity outer_selec; /* selectivity for outer join semantics; -1 if
2027  * not yet set */
2028 
2029  /* valid if clause is mergejoinable, else NIL */
2030  List *mergeopfamilies; /* opfamilies containing clause operator */
2031 
2032  /* cache space for mergeclause processing; NULL if not yet set */
2033  EquivalenceClass *left_ec; /* EquivalenceClass containing lefthand */
2034  EquivalenceClass *right_ec; /* EquivalenceClass containing righthand */
2035  EquivalenceMember *left_em; /* EquivalenceMember for lefthand */
2036  EquivalenceMember *right_em; /* EquivalenceMember for righthand */
2037  List *scansel_cache; /* list of MergeScanSelCache structs */
2038 
2039  /* transient workspace for use while considering a specific join path */
2040  bool outer_is_left; /* T = outer var on left, F = on right */
2041 
2042  /* valid if clause is hashjoinable, else InvalidOid: */
2043  Oid hashjoinoperator; /* copy of clause operator */
2044 
2045  /* cache space for hashclause processing; -1 if not yet set */
2046  Selectivity left_bucketsize; /* avg bucketsize of left side */
2047  Selectivity right_bucketsize; /* avg bucketsize of right side */
2048  Selectivity left_mcvfreq; /* left side's most common val's freq */
2049  Selectivity right_mcvfreq; /* right side's most common val's freq */
2050 } RestrictInfo;
2051 
2052 /*
2053  * This macro embodies the correct way to test whether a RestrictInfo is
2054  * "pushed down" to a given outer join, that is, should be treated as a filter
2055  * clause rather than a join clause at that outer join. This is certainly so
2056  * if is_pushed_down is true; but examining that is not sufficient anymore,
2057  * because outer-join clauses will get pushed down to lower outer joins when
2058  * we generate a path for the lower outer join that is parameterized by the
2059  * LHS of the upper one. We can detect such a clause by noting that its
2060  * required_relids exceed the scope of the join.
2061  */
2062 #define RINFO_IS_PUSHED_DOWN(rinfo, joinrelids) \
2063  ((rinfo)->is_pushed_down || \
2064  !bms_is_subset((rinfo)->required_relids, joinrelids))
2065 
2066 /*
2067  * Since mergejoinscansel() is a relatively expensive function, and would
2068  * otherwise be invoked many times while planning a large join tree,
2069  * we go out of our way to cache its results. Each mergejoinable
2070  * RestrictInfo carries a list of the specific sort orderings that have
2071  * been considered for use with it, and the resulting selectivities.
2072  */
2073 typedef struct MergeScanSelCache
2074 {
2075  /* Ordering details (cache lookup key) */
2076  Oid opfamily; /* btree opfamily defining the ordering */
2077  Oid collation; /* collation for the ordering */
2078  int strategy; /* sort direction (ASC or DESC) */
2079  bool nulls_first; /* do NULLs come before normal values? */
2080  /* Results */
2081  Selectivity leftstartsel; /* first-join fraction for clause left side */
2082  Selectivity leftendsel; /* last-join fraction for clause left side */
2083  Selectivity rightstartsel; /* first-join fraction for clause right side */
2084  Selectivity rightendsel; /* last-join fraction for clause right side */
2086 
2087 /*
2088  * Placeholder node for an expression to be evaluated below the top level
2089  * of a plan tree. This is used during planning to represent the contained
2090  * expression. At the end of the planning process it is replaced by either
2091  * the contained expression or a Var referring to a lower-level evaluation of
2092  * the contained expression. Typically the evaluation occurs below an outer
2093  * join, and Var references above the outer join might thereby yield NULL
2094  * instead of the expression value.
2095  *
2096  * Although the planner treats this as an expression node type, it is not
2097  * recognized by the parser or executor, so we declare it here rather than
2098  * in primnodes.h.
2099  */
2100 
2101 typedef struct PlaceHolderVar
2102 {
2104  Expr *phexpr; /* the represented expression */
2105  Relids phrels; /* base relids syntactically within expr src */
2106  Index phid; /* ID for PHV (unique within planner run) */
2107  Index phlevelsup; /* > 0 if PHV belongs to outer query */
2108 } PlaceHolderVar;
2109 
2110 /*
2111  * "Special join" info.
2112  *
2113  * One-sided outer joins constrain the order of joining partially but not
2114  * completely. We flatten such joins into the planner's top-level list of
2115  * relations to join, but record information about each outer join in a
2116  * SpecialJoinInfo struct. These structs are kept in the PlannerInfo node's
2117  * join_info_list.
2118  *
2119  * Similarly, semijoins and antijoins created by flattening IN (subselect)
2120  * and EXISTS(subselect) clauses create partial constraints on join order.
2121  * These are likewise recorded in SpecialJoinInfo structs.
2122  *
2123  * We make SpecialJoinInfos for FULL JOINs even though there is no flexibility
2124  * of planning for them, because this simplifies make_join_rel()'s API.
2125  *
2126  * min_lefthand and min_righthand are the sets of base relids that must be
2127  * available on each side when performing the special join. lhs_strict is
2128  * true if the special join's condition cannot succeed when the LHS variables
2129  * are all NULL (this means that an outer join can commute with upper-level
2130  * outer joins even if it appears in their RHS). We don't bother to set
2131  * lhs_strict for FULL JOINs, however.
2132  *
2133  * It is not valid for either min_lefthand or min_righthand to be empty sets;
2134  * if they were, this would break the logic that enforces join order.
2135  *
2136  * syn_lefthand and syn_righthand are the sets of base relids that are
2137  * syntactically below this special join. (These are needed to help compute
2138  * min_lefthand and min_righthand for higher joins.)
2139  *
2140  * delay_upper_joins is set true if we detect a pushed-down clause that has
2141  * to be evaluated after this join is formed (because it references the RHS).
2142  * Any outer joins that have such a clause and this join in their RHS cannot
2143  * commute with this join, because that would leave noplace to check the
2144  * pushed-down clause. (We don't track this for FULL JOINs, either.)
2145  *
2146  * For a semijoin, we also extract the join operators and their RHS arguments
2147  * and set semi_operators, semi_rhs_exprs, semi_can_btree, and semi_can_hash.
2148  * This is done in support of possibly unique-ifying the RHS, so we don't
2149  * bother unless at least one of semi_can_btree and semi_can_hash can be set
2150  * true. (You might expect that this information would be computed during
2151  * join planning; but it's helpful to have it available during planning of
2152  * parameterized table scans, so we store it in the SpecialJoinInfo structs.)
2153  *
2154  * jointype is never JOIN_RIGHT; a RIGHT JOIN is handled by switching
2155  * the inputs to make it a LEFT JOIN. So the allowed values of jointype
2156  * in a join_info_list member are only LEFT, FULL, SEMI, or ANTI.
2157  *
2158  * For purposes of join selectivity estimation, we create transient
2159  * SpecialJoinInfo structures for regular inner joins; so it is possible
2160  * to have jointype == JOIN_INNER in such a structure, even though this is
2161  * not allowed within join_info_list. We also create transient
2162  * SpecialJoinInfos with jointype == JOIN_INNER for outer joins, since for
2163  * cost estimation purposes it is sometimes useful to know the join size under
2164  * plain innerjoin semantics. Note that lhs_strict, delay_upper_joins, and
2165  * of course the semi_xxx fields are not set meaningfully within such structs.
2166  */
2167 #ifndef HAVE_SPECIALJOININFO_TYPEDEF
2169 #define HAVE_SPECIALJOININFO_TYPEDEF 1
2170 #endif
2171 
2173 {
2175  Relids min_lefthand; /* base relids in minimum LHS for join */
2176  Relids min_righthand; /* base relids in minimum RHS for join */
2177  Relids syn_lefthand; /* base relids syntactically within LHS */
2178  Relids syn_righthand; /* base relids syntactically within RHS */
2179  JoinType jointype; /* always INNER, LEFT, FULL, SEMI, or ANTI */
2180  bool lhs_strict; /* joinclause is strict for some LHS rel */
2181  bool delay_upper_joins; /* can't commute with upper RHS */
2182  /* Remaining fields are set only for JOIN_SEMI jointype: */
2183  bool semi_can_btree; /* true if semi_operators are all btree */
2184  bool semi_can_hash; /* true if semi_operators are all hash */
2185  List *semi_operators; /* OIDs of equality join operators */
2186  List *semi_rhs_exprs; /* righthand-side expressions of these ops */
2187 };
2188 
2189 /*
2190  * Append-relation info.
2191  *
2192  * When we expand an inheritable table or a UNION-ALL subselect into an
2193  * "append relation" (essentially, a list of child RTEs), we build an
2194  * AppendRelInfo for each child RTE. The list of AppendRelInfos indicates
2195  * which child RTEs must be included when expanding the parent, and each node
2196  * carries information needed to translate between columns of the parent and
2197  * columns of the child.
2198  *
2199  * These structs are kept in the PlannerInfo node's append_rel_list, with
2200  * append_rel_array[] providing a convenient lookup method for the struct
2201  * associated with a particular child relid (there can be only one, though
2202  * parent rels may have many entries in append_rel_list).
2203  *
2204  * Note: after completion of the planner prep phase, any given RTE is an
2205  * append parent having entries in append_rel_list if and only if its
2206  * "inh" flag is set. We clear "inh" for plain tables that turn out not
2207  * to have inheritance children, and (in an abuse of the original meaning
2208  * of the flag) we set "inh" for subquery RTEs that turn out to be
2209  * flattenable UNION ALL queries. This lets us avoid useless searches
2210  * of append_rel_list.
2211  *
2212  * Note: the data structure assumes that append-rel members are single
2213  * baserels. This is OK for inheritance, but it prevents us from pulling
2214  * up a UNION ALL member subquery if it contains a join. While that could
2215  * be fixed with a more complex data structure, at present there's not much
2216  * point because no improvement in the plan could result.
2217  */
2218 
2219 typedef struct AppendRelInfo
2220 {
2222 
2223  /*
2224  * These fields uniquely identify this append relationship. There can be
2225  * (in fact, always should be) multiple AppendRelInfos for the same
2226  * parent_relid, but never more than one per child_relid, since a given
2227  * RTE cannot be a child of more than one append parent.
2228  */
2229  Index parent_relid; /* RT index of append parent rel */
2230  Index child_relid; /* RT index of append child rel */
2231 
2232  /*
2233  * For an inheritance appendrel, the parent and child are both regular
2234  * relations, and we store their rowtype OIDs here for use in translating
2235  * whole-row Vars. For a UNION-ALL appendrel, the parent and child are
2236  * both subqueries with no named rowtype, and we store InvalidOid here.
2237  */
2238  Oid parent_reltype; /* OID of parent's composite type */
2239  Oid child_reltype; /* OID of child's composite type */
2240 
2241  /*
2242  * The N'th element of this list is a Var or expression representing the
2243  * child column corresponding to the N'th column of the parent. This is
2244  * used to translate Vars referencing the parent rel into references to
2245  * the child. A list element is NULL if it corresponds to a dropped
2246  * column of the parent (this is only possible for inheritance cases, not
2247  * UNION ALL). The list elements are always simple Vars for inheritance
2248  * cases, but can be arbitrary expressions in UNION ALL cases.
2249  *
2250  * Notice we only store entries for user columns (attno > 0). Whole-row
2251  * Vars are special-cased, and system columns (attno < 0) need no special
2252  * translation since their attnos are the same for all tables.
2253  *
2254  * Caution: the Vars have varlevelsup = 0. Be careful to adjust as needed
2255  * when copying into a subquery.
2256  */
2257  List *translated_vars; /* Expressions in the child's Vars */
2258 
2259  /*
2260  * This array simplifies translations in the reverse direction, from
2261  * child's column numbers to parent's. The entry at [ccolno - 1] is the
2262  * 1-based parent column number for child column ccolno, or zero if that
2263  * child column is dropped or doesn't exist in the parent.
2264  */
2265  int num_child_cols; /* length of array */
2266  AttrNumber *parent_colnos; /* array of parent attnos, or zeroes */
2267 
2268  /*
2269  * We store the parent table's OID here for inheritance, or InvalidOid for
2270  * UNION ALL. This is only needed to help in generating error messages if
2271  * an attempt is made to reference a dropped parent column.
2272  */
2273  Oid parent_reloid; /* OID of parent relation */
2274 } AppendRelInfo;
2275 
2276 /*
2277  * For each distinct placeholder expression generated during planning, we
2278  * store a PlaceHolderInfo node in the PlannerInfo node's placeholder_list.
2279  * This stores info that is needed centrally rather than in each copy of the
2280  * PlaceHolderVar. The phid fields identify which PlaceHolderInfo goes with
2281  * each PlaceHolderVar. Note that phid is unique throughout a planner run,
2282  * not just within a query level --- this is so that we need not reassign ID's
2283  * when pulling a subquery into its parent.
2284  *
2285  * The idea is to evaluate the expression at (only) the ph_eval_at join level,
2286  * then allow it to bubble up like a Var until the ph_needed join level.
2287  * ph_needed has the same definition as attr_needed for a regular Var.
2288  *
2289  * The PlaceHolderVar's expression might contain LATERAL references to vars
2290  * coming from outside its syntactic scope. If so, those rels are *not*
2291  * included in ph_eval_at, but they are recorded in ph_lateral.
2292  *
2293  * Notice that when ph_eval_at is a join rather than a single baserel, the
2294  * PlaceHolderInfo may create constraints on join order: the ph_eval_at join
2295  * has to be formed below any outer joins that should null the PlaceHolderVar.
2296  *
2297  * We create a PlaceHolderInfo only after determining that the PlaceHolderVar
2298  * is actually referenced in the plan tree, so that unreferenced placeholders
2299  * don't result in unnecessary constraints on join order.
2300  */
2301 
2302 typedef struct PlaceHolderInfo
2303 {
2305 
2306  Index phid; /* ID for PH (unique within planner run) */
2307  PlaceHolderVar *ph_var; /* copy of PlaceHolderVar tree */
2308  Relids ph_eval_at; /* lowest level we can evaluate value at */
2309  Relids ph_lateral; /* relids of contained lateral refs, if any */
2310  Relids ph_needed; /* highest level the value is needed at */
2311  int32 ph_width; /* estimated attribute width */
2312 } PlaceHolderInfo;
2313 
2314 /*
2315  * This struct describes one potentially index-optimizable MIN/MAX aggregate
2316  * function. MinMaxAggPath contains a list of these, and if we accept that
2317  * path, the list is stored into root->minmax_aggs for use during setrefs.c.
2318  */
2319 typedef struct MinMaxAggInfo
2320 {
2322 
2323  Oid aggfnoid; /* pg_proc Oid of the aggregate */
2324  Oid aggsortop; /* Oid of its sort operator */
2325  Expr *target; /* expression we are aggregating on */
2326  PlannerInfo *subroot; /* modified "root" for planning the subquery */
2327  Path *path; /* access path for subquery */
2328  Cost pathcost; /* estimated cost to fetch first row */
2329  Param *param; /* param for subplan's output */
2330 } MinMaxAggInfo;
2331 
2332 /*
2333  * At runtime, PARAM_EXEC slots are used to pass values around from one plan
2334  * node to another. They can be used to pass values down into subqueries (for
2335  * outer references in subqueries), or up out of subqueries (for the results
2336  * of a subplan), or from a NestLoop plan node into its inner relation (when
2337  * the inner scan is parameterized with values from the outer relation).
2338  * The planner is responsible for assigning nonconflicting PARAM_EXEC IDs to
2339  * the PARAM_EXEC Params it generates.
2340  *
2341  * Outer references are managed via root->plan_params, which is a list of
2342  * PlannerParamItems. While planning a subquery, each parent query level's
2343  * plan_params contains the values required from it by the current subquery.
2344  * During create_plan(), we use plan_params to track values that must be
2345  * passed from outer to inner sides of NestLoop plan nodes.
2346  *
2347  * The item a PlannerParamItem represents can be one of three kinds:
2348  *
2349  * A Var: the slot represents a variable of this level that must be passed
2350  * down because subqueries have outer references to it, or must be passed
2351  * from a NestLoop node to its inner scan. The varlevelsup value in the Var
2352  * will always be zero.
2353  *
2354  * A PlaceHolderVar: this works much like the Var case, except that the
2355  * entry is a PlaceHolderVar node with a contained expression. The PHV
2356  * will have phlevelsup = 0, and the contained expression is adjusted
2357  * to match in level.
2358  *
2359  * An Aggref (with an expression tree representing its argument): the slot
2360  * represents an aggregate expression that is an outer reference for some
2361  * subquery. The Aggref itself has agglevelsup = 0, and its argument tree
2362  * is adjusted to match in level.
2363  *
2364  * Note: we detect duplicate Var and PlaceHolderVar parameters and coalesce
2365  * them into one slot, but we do not bother to do that for Aggrefs.
2366  * The scope of duplicate-elimination only extends across the set of
2367  * parameters passed from one query level into a single subquery, or for
2368  * nestloop parameters across the set of nestloop parameters used in a single
2369  * query level. So there is no possibility of a PARAM_EXEC slot being used
2370  * for conflicting purposes.
2371  *
2372  * In addition, PARAM_EXEC slots are assigned for Params representing outputs
2373  * from subplans (values that are setParam items for those subplans). These
2374  * IDs need not be tracked via PlannerParamItems, since we do not need any
2375  * duplicate-elimination nor later processing of the represented expressions.
2376  * Instead, we just record the assignment of the slot number by appending to
2377  * root->glob->paramExecTypes.
2378  */
2379 typedef struct PlannerParamItem
2380 {
2382 
2383  Node *item; /* the Var, PlaceHolderVar, or Aggref */
2384  int paramId; /* its assigned PARAM_EXEC slot number */
2386 
2387 /*
2388  * When making cost estimates for a SEMI/ANTI/inner_unique join, there are
2389  * some correction factors that are needed in both nestloop and hash joins
2390  * to account for the fact that the executor can stop scanning inner rows
2391  * as soon as it finds a match to the current outer row. These numbers
2392  * depend only on the selected outer and inner join relations, not on the
2393  * particular paths used for them, so it's worthwhile to calculate them
2394  * just once per relation pair not once per considered path. This struct
2395  * is filled by compute_semi_anti_join_factors and must be passed along
2396  * to the join cost estimation functions.
2397  *
2398  * outer_match_frac is the fraction of the outer tuples that are
2399  * expected to have at least one match.
2400  * match_count is the average number of matches expected for
2401  * outer tuples that have at least one match.
2402  */
2403 typedef struct SemiAntiJoinFactors
2404 {
2408 
2409 /*
2410  * Struct for extra information passed to subroutines of add_paths_to_joinrel
2411  *
2412  * restrictlist contains all of the RestrictInfo nodes for restriction
2413  * clauses that apply to this join
2414  * mergeclause_list is a list of RestrictInfo nodes for available
2415  * mergejoin clauses in this join
2416  * inner_unique is true if each outer tuple provably matches no more
2417  * than one inner tuple
2418  * sjinfo is extra info about special joins for selectivity estimation
2419  * semifactors is as shown above (only valid for SEMI/ANTI/inner_unique joins)
2420  * param_source_rels are OK targets for parameterization of result paths
2421  */
2422 typedef struct JoinPathExtraData
2423 {
2431 
2432 /*
2433  * Various flags indicating what kinds of grouping are possible.
2434  *
2435  * GROUPING_CAN_USE_SORT should be set if it's possible to perform
2436  * sort-based implementations of grouping. When grouping sets are in use,
2437  * this will be true if sorting is potentially usable for any of the grouping
2438  * sets, even if it's not usable for all of them.
2439  *
2440  * GROUPING_CAN_USE_HASH should be set if it's possible to perform
2441  * hash-based implementations of grouping.
2442  *
2443  * GROUPING_CAN_PARTIAL_AGG should be set if the aggregation is of a type
2444  * for which we support partial aggregation (not, for example, grouping sets).
2445  * It says nothing about parallel-safety or the availability of suitable paths.
2446  */
2447 #define GROUPING_CAN_USE_SORT 0x0001
2448 #define GROUPING_CAN_USE_HASH 0x0002
2449 #define GROUPING_CAN_PARTIAL_AGG 0x0004
2450 
2451 /*
2452  * What kind of partitionwise aggregation is in use?
2453  *
2454  * PARTITIONWISE_AGGREGATE_NONE: Not used.
2455  *
2456  * PARTITIONWISE_AGGREGATE_FULL: Aggregate each partition separately, and
2457  * append the results.
2458  *
2459  * PARTITIONWISE_AGGREGATE_PARTIAL: Partially aggregate each partition
2460  * separately, append the results, and then finalize aggregation.
2461  */
2462 typedef enum
2463 {
2468 
2469 /*
2470  * Struct for extra information passed to subroutines of create_grouping_paths
2471  *
2472  * flags indicating what kinds of grouping are possible.
2473  * partial_costs_set is true if the agg_partial_costs and agg_final_costs
2474  * have been initialized.
2475  * agg_partial_costs gives partial aggregation costs.
2476  * agg_final_costs gives finalization costs.
2477  * target_parallel_safe is true if target is parallel safe.
2478  * havingQual gives list of quals to be applied after aggregation.
2479  * targetList gives list of columns to be projected.
2480  * patype is the type of partitionwise aggregation that is being performed.
2481  */
2482 typedef struct
2483 {
2484  /* Data which remains constant once set. */
2485  int flags;
2489 
2490  /* Data which may differ across partitions. */
2496 
2497 /*
2498  * Struct for extra information passed to subroutines of grouping_planner
2499  *
2500  * limit_needed is true if we actually need a Limit plan node.
2501  * limit_tuples is an estimated bound on the number of output tuples,
2502  * or -1 if no LIMIT or couldn't estimate.
2503  * count_est and offset_est are the estimated values of the LIMIT and OFFSET
2504  * expressions computed by preprocess_limit() (see comments for
2505  * preprocess_limit() for more information).
2506  */
2507 typedef struct
2508 {
2511  int64 count_est;
2512  int64 offset_est;
2514 
2515 /*
2516  * For speed reasons, cost estimation for join paths is performed in two
2517  * phases: the first phase tries to quickly derive a lower bound for the
2518  * join cost, and then we check if that's sufficient to reject the path.
2519  * If not, we come back for a more refined cost estimate. The first phase
2520  * fills a JoinCostWorkspace struct with its preliminary cost estimates
2521  * and possibly additional intermediate values. The second phase takes
2522  * these values as inputs to avoid repeating work.
2523  *
2524  * (Ideally we'd declare this in cost.h, but it's also needed in pathnode.h,
2525  * so seems best to put it here.)
2526  */
2527 typedef struct JoinCostWorkspace
2528 {
2529  /* Preliminary cost estimates --- must not be larger than final ones! */
2530  Cost startup_cost; /* cost expended before fetching any tuples */
2531  Cost total_cost; /* total cost (assuming all tuples fetched) */
2532 
2533  /* Fields below here should be treated as private to costsize.c */
2534  Cost run_cost; /* non-startup cost components */
2535 
2536  /* private for cost_nestloop code */
2537  Cost inner_run_cost; /* also used by cost_mergejoin code */
2539 
2540  /* private for cost_mergejoin code */
2541  double outer_rows;
2542  double inner_rows;
2545 
2546  /* private for cost_hashjoin code */
2551 
2552 #endif /* PATHNODES_H */
QualCost eval_cost
Definition: pathnodes.h:2022
bool has_eclass_joins
Definition: pathnodes.h:733
struct TidPath TidPath
struct Path * cheapest_unique_path
Definition: pathnodes.h:684
NodeTag type
Definition: pathnodes.h:1721
List * indexorderbycols
Definition: pathnodes.h:1210
signed short int16
Definition: c.h:361
char maxParallelHazard
Definition: pathnodes.h:147
List * group_pathkeys
Definition: pathnodes.h:300
struct ProjectionPath ProjectionPath
struct UpperUniquePath UpperUniquePath
List * rowMarks
Definition: pathnodes.h:292
struct QualCost QualCost
Relids ph_needed
Definition: pathnodes.h:2310
List * qual
Definition: pathnodes.h:1673
Definition: fmgr.h:56
Selectivity leftendsel
Definition: pathnodes.h:2082
List * path_mergeclauses
Definition: pathnodes.h:1581
UpperRelationKind
Definition: pathnodes.h:71
int join_cur_level
Definition: pathnodes.h:257
List * outersortkeys
Definition: pathnodes.h:1582
List * distinctList
Definition: pathnodes.h:1773
List * unique_for_rels
Definition: pathnodes.h:722
struct HashPath HashPath
JoinPath jpath
Definition: pathnodes.h:1599
PathTarget * pathtarget
Definition: pathnodes.h:1145
Query * parse
Definition: pathnodes.h:179
List * statlist
Definition: pathnodes.h:703
LimitOption limitOption
Definition: pathnodes.h:1837
List * returningLists
Definition: pathnodes.h:1822
struct EquivalenceMember EquivalenceMember
Index security_level
Definition: pathnodes.h:1997
OnConflictExpr * onconflict
Definition: pathnodes.h:1824
struct StatisticExtInfo StatisticExtInfo
List * groupClause
Definition: pathnodes.h:1722
Node * limitOffset
Definition: pathnodes.h:1835
Path path
Definition: pathnodes.h:1206
NodeTag type
Definition: pathnodes.h:2221
Path * subpath
Definition: pathnodes.h:1648
Relids ph_eval_at
Definition: pathnodes.h:2308
List * plan_params
Definition: pathnodes.h:193
PlaceHolderVar * ph_var
Definition: pathnodes.h:2307
IndexOptInfo * indexinfo
Definition: pathnodes.h:1207
SemiAntiJoinFactors semifactors
Definition: pathnodes.h:2428
Index nominalRelation
Definition: pathnodes.h:1815
Oid * indexcollations
Definition: pathnodes.h:832
bool hasJoinRTEs
Definition: pathnodes.h:345
Path * fdw_outerpath
Definition: pathnodes.h:1349
RelOptKind reloptkind
Definition: pathnodes.h:662
Relids * attr_needed
Definition: pathnodes.h:698
bool ec_merging_done
Definition: pathnodes.h:268
PartitionwiseAggregateType
Definition: pathnodes.h:2462
List * custom_paths
Definition: pathnodes.h:1379
List * query_pathkeys
Definition: pathnodes.h:298
int num_batches
Definition: pathnodes.h:1601
List * join_info_list
Definition: pathnodes.h:283
Relids required_relids
Definition: pathnodes.h:2003
SetOpStrategy strategy
Definition: pathnodes.h:1772
Relids min_righthand
Definition: pathnodes.h:2176
AggStrategy aggstrategy
Definition: pathnodes.h:1700
bool materialize_inner
Definition: pathnodes.h:1585
void * join_search_private
Definition: pathnodes.h:361
int num_child_cols
Definition: pathnodes.h:2265
Selectivity right_mcvfreq
Definition: pathnodes.h:2049
Relids curOuterRels
Definition: pathnodes.h:357
List * qual
Definition: pathnodes.h:1705
PlannerInfo * parent_root
Definition: pathnodes.h:185
bool leakproof
Definition: pathnodes.h:1995
double limit_tuples
Definition: pathnodes.h:1407
Index ec_min_security
Definition: pathnodes.h:974
Expr * orclause
Definition: pathnodes.h:2016
Selectivity outer_match_frac
Definition: pathnodes.h:2405
Path * innerjoinpath
Definition: pathnodes.h:1526
struct IncrementalSortPath IncrementalSortPath
List * indextlist
Definition: pathnodes.h:846
AttrNumber * parent_colnos
Definition: pathnodes.h:2266
struct Path * cheapest_startup_path
Definition: pathnodes.h:682
Oid userid
Definition: pathnodes.h:715
QualCost finalCost
Definition: pathnodes.h:63
struct PartitionSchemeData PartitionSchemeData
Relids em_nullable_relids
Definition: pathnodes.h:1014
int lastPlanNodeId
Definition: pathnodes.h:137
double tuples
Definition: pathnodes.h:705
Oid reltablespace
Definition: pathnodes.h:694
Path * subpath
Definition: pathnodes.h:1770
struct RollupData RollupData
List * baserestrictinfo
Definition: pathnodes.h:727
NodeTag type
Definition: pathnodes.h:1140
List * ec_derives
Definition: pathnodes.h:966
struct BitmapOrPath BitmapOrPath
AggClauseCosts agg_partial_costs
Definition: pathnodes.h:2487
Relids clause_relids
Definition: pathnodes.h:2000
struct UniquePath UniquePath
Param * param
Definition: pathnodes.h:2329
struct AppendPath AppendPath
int parallel_workers
Definition: pathnodes.h:1151
bool pseudoconstant
Definition: pathnodes.h:1993
bool consider_param_startup
Definition: pathnodes.h:672
RelOptKind
Definition: pathnodes.h:623
List * resultRelations
Definition: pathnodes.h:121
bool is_hashed
Definition: pathnodes.h:1727
ParamPathInfo * param_info
Definition: pathnodes.h:1147
Definition: nodes.h:529
List * part_schemes
Definition: pathnodes.h:305
PartitionwiseAggregateType patype
Definition: pathnodes.h:2494
List * appendRelations
Definition: pathnodes.h:125
Oid * sortopfamily
Definition: pathnodes.h:835
struct MergeAppendPath MergeAppendPath
struct BitmapAndPath BitmapAndPath
List * partial_pathlist
Definition: pathnodes.h:681
Oid reltablespace
Definition: pathnodes.h:819
Relids left_relids
Definition: pathnodes.h:2012
List * join_rel_list
Definition: pathnodes.h:246
struct CustomPath CustomPath
struct AggClauseCosts AggClauseCosts
bool ec_below_outer_join
Definition: pathnodes.h:971
uint32 flags
Definition: pathnodes.h:1377
bool hasNonSerial
Definition: pathnodes.h:61
uint32 BlockNumber
Definition: block.h:31
struct JoinPathExtraData JoinPathExtraData
EquivalenceClass * right_ec
Definition: pathnodes.h:2034
List * cheapest_parameterized_paths
Definition: pathnodes.h:685
List * minmax_aggs
Definition: pathnodes.h:329
bool single_copy
Definition: pathnodes.h:1496
bool hypothetical
Definition: pathnodes.h:857
Index baserestrict_min_security
Definition: pathnodes.h:729
UniquePathMethod umethod
Definition: pathnodes.h:1482
struct GatherPath GatherPath
Path * subpath
Definition: pathnodes.h:1456
List * indexclauses
Definition: pathnodes.h:1208
NodeTag type
Definition: pathnodes.h:660
Relids all_partrels
Definition: pathnodes.h:752
double Selectivity
Definition: nodes.h:662
Index ec_max_security
Definition: pathnodes.h:975
bool hasNonPartial
Definition: pathnodes.h:60
bool useridiscurrent
Definition: pathnodes.h:716
AggSplit aggsplit
Definition: pathnodes.h:1701
bool immediate
Definition: pathnodes.h:856
QualCost transCost
Definition: pathnodes.h:62
List * partitioned_rels
Definition: pathnodes.h:1429
Selectivity bitmapselectivity
Definition: pathnodes.h:1293
double tuples
Definition: pathnodes.h:824
unsigned int Oid
Definition: postgres_ext.h:31
NodeTag
Definition: nodes.h:26
List * quals
Definition: pathnodes.h:1751
List ** nullable_partexprs
Definition: pathnodes.h:754
struct ForeignKeyOptInfo ForeignKeyOptInfo
AttrNumber * grouping_map
Definition: pathnodes.h:328
List * fkey_list
Definition: pathnodes.h:296
int tree_height
Definition: pathnodes.h:825
double inner_rows_total
Definition: pathnodes.h:1602
bool hasRecursion
Definition: pathnodes.h:350
struct PlaceHolderInfo PlaceHolderInfo
double numGroups
Definition: pathnodes.h:1702
double numGroups
Definition: pathnodes.h:1776
List * mergeopfamilies
Definition: pathnodes.h:2030
List * translated_vars
Definition: pathnodes.h:2257
struct AppendRelInfo AppendRelInfo
SetOpStrategy
Definition: nodes.h:810
Cost inner_rescan_run_cost
Definition: pathnodes.h:2538
struct EquivalenceClass EquivalenceClass
Oid parent_reltype
Definition: pathnodes.h:2238
Relids syn_lefthand
Definition: pathnodes.h:2177
List * rowMarks
Definition: pathnodes.h:1799
int pk_strategy
Definition: pathnodes.h:1043
double numGroups
Definition: pathnodes.h:1725
InheritanceKind
Definition: pathnodes.h:89
Cost startup
Definition: pathnodes.h:45
double allvisfrac
Definition: pathnodes.h:706
Relids outer_relids
Definition: pathnodes.h:2006
signed int int32
Definition: c.h:362
static struct cvec * eclass(struct vars *v, chr c, int cases)
Definition: regc_locale.c:508
List * bitmapquals
Definition: pathnodes.h:1292
Selectivity norm_selec
Definition: pathnodes.h:2023
List * custom_private
Definition: pathnodes.h:1380
uint64 transitionSpace
Definition: pathnodes.h:1741
JoinType
Definition: nodes.h:696
int first_partial_path
Definition: pathnodes.h:1406
WindowClause * winclause
Definition: pathnodes.h:1761
struct MaterialPath MaterialPath
struct RelOptInfo ** simple_rel_array
Definition: pathnodes.h:203
List * bitmapquals
Definition: pathnodes.h:1305
int num_workers
Definition: pathnodes.h:1497
List * rootResultRelations
Definition: pathnodes.h:123
List * multiexpr_params
Definition: pathnodes.h:263
BlockNumber pages
Definition: pathnodes.h:823
NodeTag pathtype
Definition: pathnodes.h:1142
Relids syn_righthand
Definition: pathnodes.h:2178
List * subpaths
Definition: pathnodes.h:1404
PlannerInfo * subroot
Definition: pathnodes.h:709
NodeTag type
Definition: pathnodes.h:1039
SetOpCmd cmd
Definition: pathnodes.h:1771
struct LockRowsPath LockRowsPath
bool dependsOnRole
Definition: pathnodes.h:141
bool consider_startup
Definition: pathnodes.h:671
Definition: dynahash.c:220
struct ParamPathInfo ParamPathInfo
Relids lateral_relids
Definition: pathnodes.h:690
Cost per_tuple
Definition: pathnodes.h:46
const struct CustomPathMethods * methods
Definition: pathnodes.h:1381
int wt_param_id
Definition: pathnodes.h:353
double tuple_fraction
Definition: pathnodes.h:336
Path * subpath
Definition: pathnodes.h:1760
bool skip_mark_restore
Definition: pathnodes.h:1584
RelOptInfo * rel
Definition: pathnodes.h:820
bool amoptionalkey
Definition: pathnodes.h:861
SpecialJoinInfo * sjinfo
Definition: pathnodes.h:2427
struct GroupingSetData GroupingSetData
List ** partexprs
Definition: pathnodes.h:753
bool parallelModeNeeded
Definition: pathnodes.h:145
Relids all_baserels
Definition: pathnodes.h:227
bool pk_nulls_first
Definition: pathnodes.h:1044
List * paramExecTypes
Definition: pathnodes.h:131
Relids param_source_rels
Definition: pathnodes.h:2429
NodeTag type
Definition: pathnodes.h:1101
double limit_tuples
Definition: pathnodes.h:337
struct PathKey PathKey
EquivalenceMember * left_em
Definition: pathnodes.h:2035
struct AggPath AggPath
Cost indextotalcost
Definition: pathnodes.h:1212
Cost startup_cost
Definition: pathnodes.h:1155
List * semi_rhs_exprs
Definition: pathnodes.h:2186
NodeTag type
Definition: pathnodes.h:1073
bool hasLateralRTEs
Definition: pathnodes.h:346
List * indexcols
Definition: pathnodes.h:1257
Path * subpath
Definition: pathnodes.h:1834
struct ModifyTablePath ModifyTablePath
List * joinrestrictinfo
Definition: pathnodes.h:1528
bool parallelModeOK
Definition: pathnodes.h:143
EquivalenceClass * parent_ec
Definition: pathnodes.h:2019
bool partColsUpdated
Definition: pathnodes.h:1817
struct GatherMergePath GatherMergePath
RTEKind
Definition: parsenodes.h:957
Bitmapset * rewindPlanIDs
Definition: pathnodes.h:115
RelOptInfo * parent
Definition: pathnodes.h:1144
AttrNumber indexcol
Definition: pathnodes.h:1256
List * uniq_exprs
Definition: pathnodes.h:1484
Path * bitmapqual
Definition: pathnodes.h:1280
struct ForeignPath ForeignPath
bool outerjoin_delayed
Definition: pathnodes.h:1989
Path path
Definition: pathnodes.h:1670
List * ec_sources
Definition: pathnodes.h:965
struct Path * cheapest_total_path
Definition: pathnodes.h:683
Selectivity rightstartsel
Definition: pathnodes.h:2083
List * curOuterParams
Definition: pathnodes.h:358
struct RelOptInfo RelOptInfo
struct JoinPath JoinPath
Selectivity indexselectivity
Definition: pathnodes.h:1213
List * subplans
Definition: pathnodes.h:111
bool amcanorderbyop
Definition: pathnodes.h:860
struct RestrictInfo * rinfo
Definition: pathnodes.h:1253
List * joininfo
Definition: pathnodes.h:731
Relids ec_relids
Definition: pathnodes.h:967
PlannerGlobal * glob
Definition: pathnodes.h:181
bool outer_is_left
Definition: pathnodes.h:2040
bool partColsUpdated
Definition: pathnodes.h:364
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:718
List * left_join_clauses
Definition: pathnodes.h:272
int nparts
Definition: pathnodes.h:743
ScanDirection
Definition: sdir.h:22
List * full_join_clauses
Definition: pathnodes.h:280
List * groupClause
Definition: pathnodes.h:1704
Index * sortgrouprefs
Definition: pathnodes.h:1075
List * mergeclause_list
Definition: pathnodes.h:2425
struct Path Path
unsigned int uint32
Definition: c.h:374
AttrNumber flagColIdx
Definition: pathnodes.h:1774
Relids relids
Definition: pathnodes.h:665
AggStrategy aggstrategy
Definition: pathnodes.h:1738
Selectivity outer_selec
Definition: pathnodes.h:2026
Path * subpath
Definition: pathnodes.h:1495
struct GroupingSetsPath GroupingSetsPath
double total_table_pages
Definition: pathnodes.h:333
Selectivity bitmapselectivity
Definition: pathnodes.h:1306
bool partbounds_merged
Definition: pathnodes.h:747
RelOptInfo * rel
Definition: pathnodes.h:913
struct MinMaxAggPath MinMaxAggPath
int simple_rel_array_size
Definition: pathnodes.h:204
bool amhasgetbitmap
Definition: pathnodes.h:865
List * canon_pathkeys
Definition: pathnodes.h:270
struct PartitionSchemeData * PartitionScheme
Definition: pathnodes.h:407
List * non_unique_for_rels
Definition: pathnodes.h:724
List * indexquals
Definition: pathnodes.h:1254
List * ppilist
Definition: pathnodes.h:680
Index relid
Definition: pathnodes.h:693
List * sort_pathkeys
Definition: pathnodes.h:303
struct PlaceHolderVar PlaceHolderVar
RangeTblEntry ** simple_rte_array
Definition: pathnodes.h:211
EquivalenceMember * right_em
Definition: pathnodes.h:2036
Relids lateral_referencers
Definition: pathnodes.h:701
Expr * clause
Definition: pathnodes.h:1985
int numOrderedAggs
Definition: pathnodes.h:59
Path * subpath
Definition: pathnodes.h:1798
struct PlannerGlobal PlannerGlobal
Oid serverid
Definition: pathnodes.h:714
List * ec_opfamilies
Definition: pathnodes.h:962
List * exprs
Definition: pathnodes.h:1074
List * window_pathkeys
Definition: pathnodes.h:301
List * indrestrictinfo
Definition: pathnodes.h:848
Relids direct_lateral_relids
Definition: pathnodes.h:689
Path * outerjoinpath
Definition: pathnodes.h:1525
struct MergeScanSelCache MergeScanSelCache
List * invalItems
Definition: pathnodes.h:129
struct MergePath MergePath
struct GroupResultPath GroupResultPath
bool consider_partitionwise_join
Definition: pathnodes.h:736
NodeTag type
Definition: pathnodes.h:177
JoinPath NestPath
Definition: pathnodes.h:1541
Relids nullable_relids
Definition: pathnodes.h:2009
double inner_rows_total
Definition: pathnodes.h:2549
bool delay_upper_joins
Definition: pathnodes.h:2181
List * indexorderbys
Definition: pathnodes.h:1209
struct RestrictInfo RestrictInfo
struct ProjectSetPath ProjectSetPath
struct IndexClause IndexClause
int rel_parallel_workers
Definition: pathnodes.h:711
List * groupClause
Definition: pathnodes.h:1672
List * append_rel_list
Definition: pathnodes.h:290
struct SemiAntiJoinFactors SemiAntiJoinFactors
struct LimitPath LimitPath
struct AppendRelInfo ** append_rel_array
Definition: pathnodes.h:219
Index lastPHId
Definition: pathnodes.h:133
List * cte_plan_ids
Definition: pathnodes.h:261
List * mmaggregates
Definition: pathnodes.h:1750
Relids ph_lateral
Definition: pathnodes.h:2309
struct PartitionBoundInfoData * boundinfo
Definition: pathnodes.h:746
List * tidquals
Definition: pathnodes.h:1319
Path * subpath
Definition: pathnodes.h:1671
unsigned int Index
Definition: c.h:482
struct GroupPath GroupPath
RTEKind rtekind
Definition: pathnodes.h:695
List * indexlist
Definition: pathnodes.h:702
List * init_plans
Definition: pathnodes.h:259
List * in_operators
Definition: pathnodes.h:1483
double rows
Definition: pathnodes.h:668
bool hasPseudoConstantQuals
Definition: pathnodes.h:348
bool amhasgettuple
Definition: pathnodes.h:864
List * distinct_pathkeys
Definition: pathnodes.h:302
bool is_pushed_down
Definition: pathnodes.h:1987
void * fdw_private
Definition: pathnodes.h:719
Cost total_cost
Definition: pathnodes.h:1156
NodeTag type
Definition: pathnodes.h:816
CostSelector
Definition: pathnodes.h:34
Selectivity left_bucketsize
Definition: pathnodes.h:2046
int firstFlag
Definition: pathnodes.h:1775
double outer_skip_rows
Definition: pathnodes.h:2543
List * pathkeys
Definition: pathnodes.h:1158
Relids right_relids
Definition: pathnodes.h:2013
uint64 transitionSpace
Definition: pathnodes.h:1703
BlockNumber pages
Definition: pathnodes.h:704
Path path
Definition: pathnodes.h:1518
struct BitmapHeapPath BitmapHeapPath
ParamListInfo boundParams
Definition: pathnodes.h:109
Expr * target
Definition: pathnodes.h:2325
List * eq_classes
Definition: pathnodes.h:266
List ** join_rel_level
Definition: pathnodes.h:256
UniquePathMethod
Definition: pathnodes.h:1471
NodeTag type
Definition: pathnodes.h:107
Path * subpath
Definition: pathnodes.h:1634
double rows
Definition: pathnodes.h:1154
bool parallel_safe
Definition: pathnodes.h:1150
List * lateral_vars
Definition: pathnodes.h:700
struct WindowAggPath WindowAggPath
InheritanceKind inhTargetKind
Definition: pathnodes.h:342
struct PlannerParamItem PlannerParamItem
struct FmgrInfo * partsupfunc
Definition: pathnodes.h:404
Index rootRelation
Definition: pathnodes.h:1816
JoinType jointype
Definition: pathnodes.h:2179
EquivalenceClass * pk_eclass
Definition: pathnodes.h:1041
Bitmapset * outer_params
Definition: pathnodes.h:194
Selectivity left_mcvfreq
Definition: pathnodes.h:2048
List * ppi_clauses
Definition: pathnodes.h:1105
struct RelOptInfo ** part_rels
Definition: pathnodes.h:750
struct Path * non_recursive_path
Definition: pathnodes.h:354
#define INDEX_MAX_KEYS
size_t Size
Definition: c.h:473
Oid hashjoinoperator
Definition: pathnodes.h:2043
NodeTag type
Definition: pathnodes.h:1983
QualCost cost
Definition: pathnodes.h:1076
AggSplit
Definition: nodes.h:780
bool ec_has_volatile
Definition: pathnodes.h:970
List * relationOids
Definition: pathnodes.h:127
List * subroots
Definition: pathnodes.h:113
bool amsearcharray
Definition: pathnodes.h:862
struct HTAB * join_rel_hash
Definition: pathnodes.h:247
bool inner_unique
Definition: pathnodes.h:1522
Index qual_security_level
Definition: pathnodes.h:339
bool consider_parallel
Definition: pathnodes.h:673
int nkeycolumns
Definition: pathnodes.h:829
List * innersortkeys
Definition: pathnodes.h:1583
Path * subpath
Definition: pathnodes.h:1699
Oid * opcintype
Definition: pathnodes.h:834
LimitOption
Definition: nodes.h:835
List * partitioned_rels
Definition: pathnodes.h:1403
Bitmapset * Relids
Definition: pathnodes.h:28
Index query_level
Definition: pathnodes.h:183
Oid pk_opfamily
Definition: pathnodes.h:1042
double ppi_rows
Definition: pathnodes.h:1104
Path path
Definition: pathnodes.h:1833
Path path
Definition: pathnodes.h:1318
Oid * opfamily
Definition: pathnodes.h:833
List * withCheckOptionLists
Definition: pathnodes.h:1821
List * finalrtable
Definition: pathnodes.h:117
List * partitioned_child_rels
Definition: pathnodes.h:755
AggStrategy
Definition: nodes.h:758
Bitmapset * keys
Definition: pathnodes.h:915
Index phlevelsup
Definition: pathnodes.h:2107
Index lastRowMarkId
Definition: pathnodes.h:135
AttrNumber max_attr
Definition: pathnodes.h:697
Selectivity match_count
Definition: pathnodes.h:2406
Selectivity right_bucketsize
Definition: pathnodes.h:2047
EquivalenceClass * left_ec
Definition: pathnodes.h:2033
struct JoinCostWorkspace JoinCostWorkspace
Relids nullable_baserels
Definition: pathnodes.h:235
struct RecursiveUnionPath RecursiveUnionPath
List * fdw_private
Definition: pathnodes.h:1350
SetOpCmd
Definition: nodes.h:802
JoinType jointype
Definition: pathnodes.h:1520
List * semi_operators
Definition: pathnodes.h:2185
ScanDirection indexscandir
Definition: pathnodes.h:1211
CmdType operation
Definition: pathnodes.h:1813
struct MinMaxAggInfo MinMaxAggInfo
struct SubqueryScanPath SubqueryScanPath
List * placeholder_list
Definition: pathnodes.h:294
List * resultRelations
Definition: pathnodes.h:1818
Size transitionSpace
Definition: pathnodes.h:64
double numGroups
Definition: pathnodes.h:1716
bool hashable
Definition: pathnodes.h:1726
bool hasHavingQual
Definition: pathnodes.h:347
JoinPath jpath
Definition: pathnodes.h:1580
PartitionScheme part_scheme
Definition: pathnodes.h:742
bool parallel_aware
Definition: pathnodes.h:1149
int * indexkeys
Definition: pathnodes.h:830
Definition: c.h:562
List * path_hashclauses
Definition: pathnodes.h:1600
struct PathTarget PathTarget
List * initial_rels
Definition: pathnodes.h:308
List * pathlist
Definition: pathnodes.h:679
Relids ppi_req_outer
Definition: pathnodes.h:1103
MemoryContext planner_cxt
Definition: pathnodes.h:331
List * right_join_clauses
Definition: pathnodes.h:276
Index child_relid
Definition: pathnodes.h:2230
bool * canreturn
Definition: pathnodes.h:839
struct IndexPath IndexPath
bool amsearchnulls
Definition: pathnodes.h:863
List * partition_qual
Definition: pathnodes.h:749
bool * nulls_first
Definition: pathnodes.h:837
struct SetOpPath SetOpPath
Path * subpath
Definition: pathnodes.h:1622
NodeTag type
Definition: pathnodes.h:1252
Index parent_relid
Definition: pathnodes.h:2229
bool * reverse_sort
Definition: pathnodes.h:836
PartitionDirectory partition_directory
Definition: pathnodes.h:149
bytea ** opclassoptions
Definition: pathnodes.h:838
double inner_skip_rows
Definition: pathnodes.h:2544
List * processed_tlist
Definition: pathnodes.h:325
List * indpred
Definition: pathnodes.h:844
int32 * attr_widths
Definition: pathnodes.h:699
AggClauseCosts agg_final_costs
Definition: pathnodes.h:2488
Node * limitCount
Definition: pathnodes.h:1836
List * finalrowmarks
Definition: pathnodes.h:119
struct SortPath SortPath
Definition: pg_list.h:50
Path path
Definition: pathnodes.h:1647
struct PathTarget * reltarget
Definition: pathnodes.h:676
Relids min_lefthand
Definition: pathnodes.h:2175
int16 AttrNumber
Definition: attnum.h:21
QualCost baserestrictcost
Definition: pathnodes.h:728
List * subplan_params
Definition: pathnodes.h:710
Path path
Definition: pathnodes.h:1769
NodeTag type
Definition: pathnodes.h:2321
CmdType
Definition: nodes.h:672
List * gsets_data
Definition: pathnodes.h:1724
Bitmapset * eclass_indexes
Definition: pathnodes.h:707
Path path
Definition: pathnodes.h:1698
double limit_tuples
Definition: pathnodes.h:1431
struct EquivalenceClass * ec_merged
Definition: pathnodes.h:976
Selectivity rightendsel
Definition: pathnodes.h:2084
bool amcanparallel
Definition: pathnodes.h:866
double Cost
Definition: nodes.h:663
List * scansel_cache
Definition: pathnodes.h:2037
Selectivity leftstartsel
Definition: pathnodes.h:2081
List * ec_members
Definition: pathnodes.h:964
List * indexprs
Definition: pathnodes.h:843
Relids top_parent_relids
Definition: pathnodes.h:738
bool transientPlan
Definition: pathnodes.h:139
List * gsets
Definition: pathnodes.h:1723
bool is_dummy_rel(RelOptInfo *rel)
Definition: joinrels.c:1212
Path * subpath
Definition: pathnodes.h:1481
PlannerInfo * subroot
Definition: pathnodes.h:2326
AttrNumber min_attr
Definition: pathnodes.h:696