PostgreSQL Source Code  git master
pathnodes.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * pathnodes.h
4  * Definitions for planner's internal data structures, especially Paths.
5  *
6  *
7  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * src/include/nodes/pathnodes.h
11  *
12  *-------------------------------------------------------------------------
13  */
14 #ifndef PATHNODES_H
15 #define PATHNODES_H
16 
17 #include "access/sdir.h"
18 #include "lib/stringinfo.h"
19 #include "nodes/params.h"
20 #include "nodes/parsenodes.h"
21 #include "storage/block.h"
22 
23 
24 /*
25  * Relids
26  * Set of relation identifiers (indexes into the rangetable).
27  */
28 typedef Bitmapset *Relids;
29 
30 /*
31  * When looking for a "cheapest path", this enum specifies whether we want
32  * cheapest startup cost or cheapest total cost.
33  */
34 typedef enum CostSelector
35 {
37 } CostSelector;
38 
39 /*
40  * The cost estimate produced by cost_qual_eval() includes both a one-time
41  * (startup) cost, and a per-tuple cost.
42  */
43 typedef struct QualCost
44 {
45  Cost startup; /* one-time cost */
46  Cost per_tuple; /* per-evaluation cost */
47 } QualCost;
48 
49 /*
50  * Costing aggregate function execution requires these statistics about
51  * the aggregates to be executed by a given Agg node. Note that the costs
52  * include the execution costs of the aggregates' argument expressions as
53  * well as the aggregate functions themselves. Also, the fields must be
54  * defined so that initializing the struct to zeroes with memset is correct.
55  */
56 typedef struct AggClauseCosts
57 {
58  int numAggs; /* total number of aggregate functions */
59  int numOrderedAggs; /* number w/ DISTINCT/ORDER BY/WITHIN GROUP */
60  bool hasNonPartial; /* does any agg not support partial mode? */
61  bool hasNonSerial; /* is any partial agg non-serializable? */
62  QualCost transCost; /* total per-input-row execution costs */
63  QualCost finalCost; /* total per-aggregated-row costs */
64  Size transitionSpace; /* space for pass-by-ref transition data */
66 
67 /*
68  * This enum identifies the different types of "upper" (post-scan/join)
69  * relations that we might deal with during planning.
70  */
71 typedef enum UpperRelationKind
72 {
73  UPPERREL_SETOP, /* result of UNION/INTERSECT/EXCEPT, if any */
74  UPPERREL_PARTIAL_GROUP_AGG, /* result of partial grouping/aggregation, if
75  * any */
76  UPPERREL_GROUP_AGG, /* result of grouping/aggregation, if any */
77  UPPERREL_WINDOW, /* result of window functions, if any */
78  UPPERREL_DISTINCT, /* result of "SELECT DISTINCT", if any */
79  UPPERREL_ORDERED, /* result of ORDER BY, if any */
80  UPPERREL_FINAL /* result of any remaining top-level actions */
81  /* NB: UPPERREL_FINAL must be last enum entry; it's used to size arrays */
83 
84 /*
85  * This enum identifies which type of relation is being planned through the
86  * inheritance planner. INHKIND_NONE indicates the inheritance planner
87  * was not used.
88  */
89 typedef enum InheritanceKind
90 {
95 
96 /*----------
97  * PlannerGlobal
98  * Global information for planning/optimization
99  *
100  * PlannerGlobal holds state for an entire planner invocation; this state
101  * is shared across all levels of sub-Queries that exist in the command being
102  * planned.
103  *----------
104  */
105 typedef struct PlannerGlobal
106 {
108 
109  ParamListInfo boundParams; /* Param values provided to planner() */
110 
111  List *subplans; /* Plans for SubPlan nodes */
112 
113  List *subroots; /* PlannerInfos for SubPlan nodes */
114 
115  Bitmapset *rewindPlanIDs; /* indices of subplans that require REWIND */
116 
117  List *finalrtable; /* "flat" rangetable for executor */
118 
119  List *finalrowmarks; /* "flat" list of PlanRowMarks */
120 
121  List *resultRelations; /* "flat" list of integer RT indexes */
122 
123  List *appendRelations; /* "flat" list of AppendRelInfos */
124 
125  List *relationOids; /* OIDs of relations the plan depends on */
126 
127  List *invalItems; /* other dependencies, as PlanInvalItems */
128 
129  List *paramExecTypes; /* type OIDs for PARAM_EXEC Params */
130 
131  Index lastPHId; /* highest PlaceHolderVar ID assigned */
132 
133  Index lastRowMarkId; /* highest PlanRowMark ID assigned */
134 
135  int lastPlanNodeId; /* highest plan node ID assigned */
136 
137  bool transientPlan; /* redo plan when TransactionXmin changes? */
138 
139  bool dependsOnRole; /* is plan specific to current role? */
140 
141  bool parallelModeOK; /* parallel mode potentially OK? */
142 
143  bool parallelModeNeeded; /* parallel mode actually required? */
144 
145  char maxParallelHazard; /* worst PROPARALLEL hazard level */
146 
147  PartitionDirectory partition_directory; /* partition descriptors */
148 } PlannerGlobal;
149 
150 /* macro for fetching the Plan associated with a SubPlan node */
151 #define planner_subplan_get_plan(root, subplan) \
152  ((Plan *) list_nth((root)->glob->subplans, (subplan)->plan_id - 1))
153 
154 
155 /*----------
156  * PlannerInfo
157  * Per-query information for planning/optimization
158  *
159  * This struct is conventionally called "root" in all the planner routines.
160  * It holds links to all of the planner's working state, in addition to the
161  * original Query. Note that at present the planner extensively modifies
162  * the passed-in Query data structure; someday that should stop.
163  *
164  * For reasons explained in optimizer/optimizer.h, we define the typedef
165  * either here or in that header, whichever is read first.
166  *----------
167  */
168 #ifndef HAVE_PLANNERINFO_TYPEDEF
169 typedef struct PlannerInfo PlannerInfo;
170 #define HAVE_PLANNERINFO_TYPEDEF 1
171 #endif
172 
174 {
176 
177  Query *parse; /* the Query being planned */
178 
179  PlannerGlobal *glob; /* global info for current planner run */
180 
181  Index query_level; /* 1 at the outermost Query */
182 
183  PlannerInfo *parent_root; /* NULL at outermost Query */
184 
185  /*
186  * plan_params contains the expressions that this query level needs to
187  * make available to a lower query level that is currently being planned.
188  * outer_params contains the paramIds of PARAM_EXEC Params that outer
189  * query levels will make available to this query level.
190  */
191  List *plan_params; /* list of PlannerParamItems, see below */
193 
194  /*
195  * simple_rel_array holds pointers to "base rels" and "other rels" (see
196  * comments for RelOptInfo for more info). It is indexed by rangetable
197  * index (so entry 0 is always wasted). Entries can be NULL when an RTE
198  * does not correspond to a base relation, such as a join RTE or an
199  * unreferenced view RTE; or if the RelOptInfo hasn't been made yet.
200  */
201  struct RelOptInfo **simple_rel_array; /* All 1-rel RelOptInfos */
202  int simple_rel_array_size; /* allocated size of array */
203 
204  /*
205  * simple_rte_array is the same length as simple_rel_array and holds
206  * pointers to the associated rangetable entries. Using this is a shade
207  * faster than using rt_fetch(), mostly due to fewer indirections.
208  */
209  RangeTblEntry **simple_rte_array; /* rangetable as an array */
210 
211  /*
212  * append_rel_array is the same length as the above arrays, and holds
213  * pointers to the corresponding AppendRelInfo entry indexed by
214  * child_relid, or NULL if the rel is not an appendrel child. The array
215  * itself is not allocated if append_rel_list is empty.
216  */
218 
219  /*
220  * all_baserels is a Relids set of all base relids (but not "other"
221  * relids) in the query; that is, the Relids identifier of the final join
222  * we need to form. This is computed in make_one_rel, just before we
223  * start making Paths.
224  */
226 
227  /*
228  * nullable_baserels is a Relids set of base relids that are nullable by
229  * some outer join in the jointree; these are rels that are potentially
230  * nullable below the WHERE clause, SELECT targetlist, etc. This is
231  * computed in deconstruct_jointree.
232  */
234 
235  /*
236  * join_rel_list is a list of all join-relation RelOptInfos we have
237  * considered in this planning run. For small problems we just scan the
238  * list to do lookups, but when there are many join relations we build a
239  * hash table for faster lookups. The hash table is present and valid
240  * when join_rel_hash is not NULL. Note that we still maintain the list
241  * even when using the hash table for lookups; this simplifies life for
242  * GEQO.
243  */
244  List *join_rel_list; /* list of join-relation RelOptInfos */
245  struct HTAB *join_rel_hash; /* optional hashtable for join relations */
246 
247  /*
248  * When doing a dynamic-programming-style join search, join_rel_level[k]
249  * is a list of all join-relation RelOptInfos of level k, and
250  * join_cur_level is the current level. New join-relation RelOptInfos are
251  * automatically added to the join_rel_level[join_cur_level] list.
252  * join_rel_level is NULL if not in use.
253  */
254  List **join_rel_level; /* lists of join-relation RelOptInfos */
255  int join_cur_level; /* index of list being extended */
256 
257  List *init_plans; /* init SubPlans for query */
258 
259  List *cte_plan_ids; /* per-CTE-item list of subplan IDs */
260 
261  List *multiexpr_params; /* List of Lists of Params for MULTIEXPR
262  * subquery outputs */
263 
264  List *eq_classes; /* list of active EquivalenceClasses */
265 
266  bool ec_merging_done; /* set true once ECs are canonical */
267 
268  List *canon_pathkeys; /* list of "canonical" PathKeys */
269 
270  List *left_join_clauses; /* list of RestrictInfos for mergejoinable
271  * outer join clauses w/nonnullable var on
272  * left */
273 
274  List *right_join_clauses; /* list of RestrictInfos for mergejoinable
275  * outer join clauses w/nonnullable var on
276  * right */
277 
278  List *full_join_clauses; /* list of RestrictInfos for mergejoinable
279  * full join clauses */
280 
281  List *join_info_list; /* list of SpecialJoinInfos */
282 
283  /*
284  * Note: for AppendRelInfos describing partitions of a partitioned table,
285  * we guarantee that partitions that come earlier in the partitioned
286  * table's PartitionDesc will appear earlier in append_rel_list.
287  */
288  List *append_rel_list; /* list of AppendRelInfos */
289 
290  List *rowMarks; /* list of PlanRowMarks */
291 
292  List *placeholder_list; /* list of PlaceHolderInfos */
293 
294  List *fkey_list; /* list of ForeignKeyOptInfos */
295 
296  List *query_pathkeys; /* desired pathkeys for query_planner() */
297 
298  List *group_pathkeys; /* groupClause pathkeys, if any */
299  List *window_pathkeys; /* pathkeys of bottom window, if any */
300  List *distinct_pathkeys; /* distinctClause pathkeys, if any */
301  List *sort_pathkeys; /* sortClause pathkeys, if any */
302 
303  List *part_schemes; /* Canonicalised partition schemes used in the
304  * query. */
305 
306  List *initial_rels; /* RelOptInfos we are now trying to join */
307 
308  /* Use fetch_upper_rel() to get any particular upper rel */
309  List *upper_rels[UPPERREL_FINAL + 1]; /* upper-rel RelOptInfos */
310 
311  /* Result tlists chosen by grouping_planner for upper-stage processing */
312  struct PathTarget *upper_targets[UPPERREL_FINAL + 1];
313 
314  /*
315  * The fully-processed targetlist is kept here. It differs from
316  * parse->targetList in that (for INSERT and UPDATE) it's been reordered
317  * to match the target table, and defaults have been filled in. Also,
318  * additional resjunk targets may be present. preprocess_targetlist()
319  * does most of this work, but note that more resjunk targets can get
320  * added during appendrel expansion. (Hence, upper_targets mustn't get
321  * set up till after that.)
322  */
324 
325  /* Fields filled during create_plan() for use in setrefs.c */
326  AttrNumber *grouping_map; /* for GroupingFunc fixup */
327  List *minmax_aggs; /* List of MinMaxAggInfos */
328 
329  MemoryContext planner_cxt; /* context holding PlannerInfo */
330 
331  double total_table_pages; /* # of pages in all non-dummy tables of
332  * query */
333 
334  double tuple_fraction; /* tuple_fraction passed to query_planner */
335  double limit_tuples; /* limit_tuples passed to query_planner */
336 
337  Index qual_security_level; /* minimum security_level for quals */
338  /* Note: qual_security_level is zero if there are no securityQuals */
339 
340  InheritanceKind inhTargetKind; /* indicates if the target relation is an
341  * inheritance child or partition or a
342  * partitioned table */
343  bool hasJoinRTEs; /* true if any RTEs are RTE_JOIN kind */
344  bool hasLateralRTEs; /* true if any RTEs are marked LATERAL */
345  bool hasHavingQual; /* true if havingQual was non-null */
346  bool hasPseudoConstantQuals; /* true if any RestrictInfo has
347  * pseudoconstant = true */
348  bool hasAlternativeSubPlans; /* true if we've made any of those */
349  bool hasRecursion; /* true if planning a recursive WITH item */
350 
351  /* These fields are used only when hasRecursion is true: */
352  int wt_param_id; /* PARAM_EXEC ID for the work table */
353  struct Path *non_recursive_path; /* a path for non-recursive term */
354 
355  /* These fields are workspace for createplan.c */
356  Relids curOuterRels; /* outer rels above current node */
357  List *curOuterParams; /* not-yet-assigned NestLoopParams */
358 
359  /* optional private data for join_search_hook, e.g., GEQO */
361 
362  /* Does this query modify any partition key columns? */
364 };
365 
366 
367 /*
368  * In places where it's known that simple_rte_array[] must have been prepared
369  * already, we just index into it to fetch RTEs. In code that might be
370  * executed before or after entering query_planner(), use this macro.
371  */
372 #define planner_rt_fetch(rti, root) \
373  ((root)->simple_rte_array ? (root)->simple_rte_array[rti] : \
374  rt_fetch(rti, (root)->parse->rtable))
375 
376 /*
377  * If multiple relations are partitioned the same way, all such partitions
378  * will have a pointer to the same PartitionScheme. A list of PartitionScheme
379  * objects is attached to the PlannerInfo. By design, the partition scheme
380  * incorporates only the general properties of the partition method (LIST vs.
381  * RANGE, number of partitioning columns and the type information for each)
382  * and not the specific bounds.
383  *
384  * We store the opclass-declared input data types instead of the partition key
385  * datatypes since the former rather than the latter are used to compare
386  * partition bounds. Since partition key data types and the opclass declared
387  * input data types are expected to be binary compatible (per ResolveOpClass),
388  * both of those should have same byval and length properties.
389  */
390 typedef struct PartitionSchemeData
391 {
392  char strategy; /* partition strategy */
393  int16 partnatts; /* number of partition attributes */
394  Oid *partopfamily; /* OIDs of operator families */
395  Oid *partopcintype; /* OIDs of opclass declared input data types */
396  Oid *partcollation; /* OIDs of partitioning collations */
397 
398  /* Cached information about partition key data types. */
401 
402  /* Cached information about partition comparison functions. */
405 
407 
408 /*----------
409  * RelOptInfo
410  * Per-relation information for planning/optimization
411  *
412  * For planning purposes, a "base rel" is either a plain relation (a table)
413  * or the output of a sub-SELECT or function that appears in the range table.
414  * In either case it is uniquely identified by an RT index. A "joinrel"
415  * is the joining of two or more base rels. A joinrel is identified by
416  * the set of RT indexes for its component baserels. We create RelOptInfo
417  * nodes for each baserel and joinrel, and store them in the PlannerInfo's
418  * simple_rel_array and join_rel_list respectively.
419  *
420  * Note that there is only one joinrel for any given set of component
421  * baserels, no matter what order we assemble them in; so an unordered
422  * set is the right datatype to identify it with.
423  *
424  * We also have "other rels", which are like base rels in that they refer to
425  * single RT indexes; but they are not part of the join tree, and are given
426  * a different RelOptKind to identify them.
427  * Currently the only kind of otherrels are those made for member relations
428  * of an "append relation", that is an inheritance set or UNION ALL subquery.
429  * An append relation has a parent RTE that is a base rel, which represents
430  * the entire append relation. The member RTEs are otherrels. The parent
431  * is present in the query join tree but the members are not. The member
432  * RTEs and otherrels are used to plan the scans of the individual tables or
433  * subqueries of the append set; then the parent baserel is given Append
434  * and/or MergeAppend paths comprising the best paths for the individual
435  * member rels. (See comments for AppendRelInfo for more information.)
436  *
437  * At one time we also made otherrels to represent join RTEs, for use in
438  * handling join alias Vars. Currently this is not needed because all join
439  * alias Vars are expanded to non-aliased form during preprocess_expression.
440  *
441  * We also have relations representing joins between child relations of
442  * different partitioned tables. These relations are not added to
443  * join_rel_level lists as they are not joined directly by the dynamic
444  * programming algorithm.
445  *
446  * There is also a RelOptKind for "upper" relations, which are RelOptInfos
447  * that describe post-scan/join processing steps, such as aggregation.
448  * Many of the fields in these RelOptInfos are meaningless, but their Path
449  * fields always hold Paths showing ways to do that processing step.
450  *
451  * Lastly, there is a RelOptKind for "dead" relations, which are base rels
452  * that we have proven we don't need to join after all.
453  *
454  * Parts of this data structure are specific to various scan and join
455  * mechanisms. It didn't seem worth creating new node types for them.
456  *
457  * relids - Set of base-relation identifiers; it is a base relation
458  * if there is just one, a join relation if more than one
459  * rows - estimated number of tuples in the relation after restriction
460  * clauses have been applied (ie, output rows of a plan for it)
461  * consider_startup - true if there is any value in keeping plain paths for
462  * this rel on the basis of having cheap startup cost
463  * consider_param_startup - the same for parameterized paths
464  * reltarget - Default Path output tlist for this rel; normally contains
465  * Var and PlaceHolderVar nodes for the values we need to
466  * output from this relation.
467  * List is in no particular order, but all rels of an
468  * appendrel set must use corresponding orders.
469  * NOTE: in an appendrel child relation, may contain
470  * arbitrary expressions pulled up from a subquery!
471  * pathlist - List of Path nodes, one for each potentially useful
472  * method of generating the relation
473  * ppilist - ParamPathInfo nodes for parameterized Paths, if any
474  * cheapest_startup_path - the pathlist member with lowest startup cost
475  * (regardless of ordering) among the unparameterized paths;
476  * or NULL if there is no unparameterized path
477  * cheapest_total_path - the pathlist member with lowest total cost
478  * (regardless of ordering) among the unparameterized paths;
479  * or if there is no unparameterized path, the path with lowest
480  * total cost among the paths with minimum parameterization
481  * cheapest_unique_path - for caching cheapest path to produce unique
482  * (no duplicates) output from relation; NULL if not yet requested
483  * cheapest_parameterized_paths - best paths for their parameterizations;
484  * always includes cheapest_total_path, even if that's unparameterized
485  * direct_lateral_relids - rels this rel has direct LATERAL references to
486  * lateral_relids - required outer rels for LATERAL, as a Relids set
487  * (includes both direct and indirect lateral references)
488  *
489  * If the relation is a base relation it will have these fields set:
490  *
491  * relid - RTE index (this is redundant with the relids field, but
492  * is provided for convenience of access)
493  * rtekind - copy of RTE's rtekind field
494  * min_attr, max_attr - range of valid AttrNumbers for rel
495  * attr_needed - array of bitmapsets indicating the highest joinrel
496  * in which each attribute is needed; if bit 0 is set then
497  * the attribute is needed as part of final targetlist
498  * attr_widths - cache space for per-attribute width estimates;
499  * zero means not computed yet
500  * lateral_vars - lateral cross-references of rel, if any (list of
501  * Vars and PlaceHolderVars)
502  * lateral_referencers - relids of rels that reference this one laterally
503  * (includes both direct and indirect lateral references)
504  * indexlist - list of IndexOptInfo nodes for relation's indexes
505  * (always NIL if it's not a table)
506  * pages - number of disk pages in relation (zero if not a table)
507  * tuples - number of tuples in relation (not considering restrictions)
508  * allvisfrac - fraction of disk pages that are marked all-visible
509  * eclass_indexes - EquivalenceClasses that mention this rel (filled
510  * only after EC merging is complete)
511  * subroot - PlannerInfo for subquery (NULL if it's not a subquery)
512  * subplan_params - list of PlannerParamItems to be passed to subquery
513  *
514  * Note: for a subquery, tuples and subroot are not set immediately
515  * upon creation of the RelOptInfo object; they are filled in when
516  * set_subquery_pathlist processes the object.
517  *
518  * For otherrels that are appendrel members, these fields are filled
519  * in just as for a baserel, except we don't bother with lateral_vars.
520  *
521  * If the relation is either a foreign table or a join of foreign tables that
522  * all belong to the same foreign server and are assigned to the same user to
523  * check access permissions as (cf checkAsUser), these fields will be set:
524  *
525  * serverid - OID of foreign server, if foreign table (else InvalidOid)
526  * userid - OID of user to check access as (InvalidOid means current user)
527  * useridiscurrent - we've assumed that userid equals current user
528  * fdwroutine - function hooks for FDW, if foreign table (else NULL)
529  * fdw_private - private state for FDW, if foreign table (else NULL)
530  *
531  * Two fields are used to cache knowledge acquired during the join search
532  * about whether this rel is provably unique when being joined to given other
533  * relation(s), ie, it can have at most one row matching any given row from
534  * that join relation. Currently we only attempt such proofs, and thus only
535  * populate these fields, for base rels; but someday they might be used for
536  * join rels too:
537  *
538  * unique_for_rels - list of Relid sets, each one being a set of other
539  * rels for which this one has been proven unique
540  * non_unique_for_rels - list of Relid sets, each one being a set of
541  * other rels for which we have tried and failed to prove
542  * this one unique
543  *
544  * The presence of the following fields depends on the restrictions
545  * and joins that the relation participates in:
546  *
547  * baserestrictinfo - List of RestrictInfo nodes, containing info about
548  * each non-join qualification clause in which this relation
549  * participates (only used for base rels)
550  * baserestrictcost - Estimated cost of evaluating the baserestrictinfo
551  * clauses at a single tuple (only used for base rels)
552  * baserestrict_min_security - Smallest security_level found among
553  * clauses in baserestrictinfo
554  * joininfo - List of RestrictInfo nodes, containing info about each
555  * join clause in which this relation participates (but
556  * note this excludes clauses that might be derivable from
557  * EquivalenceClasses)
558  * has_eclass_joins - flag that EquivalenceClass joins are possible
559  *
560  * Note: Keeping a restrictinfo list in the RelOptInfo is useful only for
561  * base rels, because for a join rel the set of clauses that are treated as
562  * restrict clauses varies depending on which sub-relations we choose to join.
563  * (For example, in a 3-base-rel join, a clause relating rels 1 and 2 must be
564  * treated as a restrictclause if we join {1} and {2 3} to make {1 2 3}; but
565  * if we join {1 2} and {3} then that clause will be a restrictclause in {1 2}
566  * and should not be processed again at the level of {1 2 3}.) Therefore,
567  * the restrictinfo list in the join case appears in individual JoinPaths
568  * (field joinrestrictinfo), not in the parent relation. But it's OK for
569  * the RelOptInfo to store the joininfo list, because that is the same
570  * for a given rel no matter how we form it.
571  *
572  * We store baserestrictcost in the RelOptInfo (for base relations) because
573  * we know we will need it at least once (to price the sequential scan)
574  * and may need it multiple times to price index scans.
575  *
576  * A join relation is considered to be partitioned if it is formed from a
577  * join of two relations that are partitioned, have matching partitioning
578  * schemes, and are joined on an equijoin of the partitioning columns.
579  * Under those conditions we can consider the join relation to be partitioned
580  * by either relation's partitioning keys, though some care is needed if
581  * either relation can be forced to null by outer-joining. For example, an
582  * outer join like (A LEFT JOIN B ON A.a = B.b) may produce rows with B.b
583  * NULL. These rows may not fit the partitioning conditions imposed on B.
584  * Hence, strictly speaking, the join is not partitioned by B.b and thus
585  * partition keys of an outer join should include partition key expressions
586  * from the non-nullable side only. However, if a subsequent join uses
587  * strict comparison operators (and all commonly-used equijoin operators are
588  * strict), the presence of nulls doesn't cause a problem: such rows couldn't
589  * match anything on the other side and thus they don't create a need to do
590  * any cross-partition sub-joins. Hence we can treat such values as still
591  * partitioning the join output for the purpose of additional partitionwise
592  * joining, so long as a strict join operator is used by the next join.
593  *
594  * If the relation is partitioned, these fields will be set:
595  *
596  * part_scheme - Partitioning scheme of the relation
597  * nparts - Number of partitions
598  * boundinfo - Partition bounds
599  * partbounds_merged - true if partition bounds are merged ones
600  * partition_qual - Partition constraint if not the root
601  * part_rels - RelOptInfos for each partition
602  * all_partrels - Relids set of all partition relids
603  * partexprs, nullable_partexprs - Partition key expressions
604  * partitioned_child_rels - RT indexes of unpruned partitions of
605  * this relation that are partitioned tables
606  * themselves, in hierarchical order
607  *
608  * The partexprs and nullable_partexprs arrays each contain
609  * part_scheme->partnatts elements. Each of the elements is a list of
610  * partition key expressions. For partitioned base relations, there is one
611  * expression in each partexprs element, and nullable_partexprs is empty.
612  * For partitioned join relations, each base relation within the join
613  * contributes one partition key expression per partitioning column;
614  * that expression goes in the partexprs[i] list if the base relation
615  * is not nullable by this join or any lower outer join, or in the
616  * nullable_partexprs[i] list if the base relation is nullable.
617  * Furthermore, FULL JOINs add extra nullable_partexprs expressions
618  * corresponding to COALESCE expressions of the left and right join columns,
619  * to simplify matching join clauses to those lists.
620  *----------
621  */
622 typedef enum RelOptKind
623 {
631 } RelOptKind;
632 
633 /*
634  * Is the given relation a simple relation i.e a base or "other" member
635  * relation?
636  */
637 #define IS_SIMPLE_REL(rel) \
638  ((rel)->reloptkind == RELOPT_BASEREL || \
639  (rel)->reloptkind == RELOPT_OTHER_MEMBER_REL)
640 
641 /* Is the given relation a join relation? */
642 #define IS_JOIN_REL(rel) \
643  ((rel)->reloptkind == RELOPT_JOINREL || \
644  (rel)->reloptkind == RELOPT_OTHER_JOINREL)
645 
646 /* Is the given relation an upper relation? */
647 #define IS_UPPER_REL(rel) \
648  ((rel)->reloptkind == RELOPT_UPPER_REL || \
649  (rel)->reloptkind == RELOPT_OTHER_UPPER_REL)
650 
651 /* Is the given relation an "other" relation? */
652 #define IS_OTHER_REL(rel) \
653  ((rel)->reloptkind == RELOPT_OTHER_MEMBER_REL || \
654  (rel)->reloptkind == RELOPT_OTHER_JOINREL || \
655  (rel)->reloptkind == RELOPT_OTHER_UPPER_REL)
656 
657 typedef struct RelOptInfo
658 {
660 
662 
663  /* all relations included in this RelOptInfo */
664  Relids relids; /* set of base relids (rangetable indexes) */
665 
666  /* size estimates generated by planner */
667  double rows; /* estimated number of result tuples */
668 
669  /* per-relation planner control flags */
670  bool consider_startup; /* keep cheap-startup-cost paths? */
671  bool consider_param_startup; /* ditto, for parameterized paths? */
672  bool consider_parallel; /* consider parallel paths? */
673 
674  /* default result targetlist for Paths scanning this relation */
675  struct PathTarget *reltarget; /* list of Vars/Exprs, cost, width */
676 
677  /* materialization information */
678  List *pathlist; /* Path structures */
679  List *ppilist; /* ParamPathInfos used in pathlist */
680  List *partial_pathlist; /* partial Paths */
685 
686  /* parameterization information needed for both base rels and join rels */
687  /* (see also lateral_vars and lateral_referencers) */
688  Relids direct_lateral_relids; /* rels directly laterally referenced */
689  Relids lateral_relids; /* minimum parameterization of rel */
690 
691  /* information about a base rel (not set for join rels!) */
693  Oid reltablespace; /* containing tablespace */
694  RTEKind rtekind; /* RELATION, SUBQUERY, FUNCTION, etc */
695  AttrNumber min_attr; /* smallest attrno of rel (often <0) */
696  AttrNumber max_attr; /* largest attrno of rel */
697  Relids *attr_needed; /* array indexed [min_attr .. max_attr] */
698  int32 *attr_widths; /* array indexed [min_attr .. max_attr] */
699  List *lateral_vars; /* LATERAL Vars and PHVs referenced by rel */
700  Relids lateral_referencers; /* rels that reference me laterally */
701  List *indexlist; /* list of IndexOptInfo */
702  List *statlist; /* list of StatisticExtInfo */
703  BlockNumber pages; /* size estimates derived from pg_class */
704  double tuples;
705  double allvisfrac;
706  Bitmapset *eclass_indexes; /* Indexes in PlannerInfo's eq_classes list of
707  * ECs that mention this rel */
708  PlannerInfo *subroot; /* if subquery */
709  List *subplan_params; /* if subquery */
710  int rel_parallel_workers; /* wanted number of parallel workers */
711 
712  /* Information about foreign tables and foreign joins */
713  Oid serverid; /* identifies server for the table or join */
714  Oid userid; /* identifies user to check access as */
715  bool useridiscurrent; /* join is only valid for current user */
716  /* use "struct FdwRoutine" to avoid including fdwapi.h here */
718  void *fdw_private;
719 
720  /* cache space for remembering if we have proven this relation unique */
721  List *unique_for_rels; /* known unique for these other relid
722  * set(s) */
723  List *non_unique_for_rels; /* known not unique for these set(s) */
724 
725  /* used by various scans and joins: */
726  List *baserestrictinfo; /* RestrictInfo structures (if base rel) */
727  QualCost baserestrictcost; /* cost of evaluating the above */
728  Index baserestrict_min_security; /* min security_level found in
729  * baserestrictinfo */
730  List *joininfo; /* RestrictInfo structures for join clauses
731  * involving this rel */
732  bool has_eclass_joins; /* T means joininfo is incomplete */
733 
734  /* used by partitionwise joins: */
735  bool consider_partitionwise_join; /* consider partitionwise join
736  * paths? (if partitioned rel) */
737  Relids top_parent_relids; /* Relids of topmost parents (if "other"
738  * rel) */
739 
740  /* used for partitioned relations: */
741  PartitionScheme part_scheme; /* Partitioning scheme */
742  int nparts; /* Number of partitions; -1 if not yet set; in
743  * case of a join relation 0 means it's
744  * considered unpartitioned */
745  struct PartitionBoundInfoData *boundinfo; /* Partition bounds */
746  bool partbounds_merged; /* True if partition bounds were created
747  * by partition_bounds_merge() */
748  List *partition_qual; /* Partition constraint, if not the root */
749  struct RelOptInfo **part_rels; /* Array of RelOptInfos of partitions,
750  * stored in the same order as bounds */
751  Relids all_partrels; /* Relids set of all partition relids */
752  List **partexprs; /* Non-nullable partition key expressions */
753  List **nullable_partexprs; /* Nullable partition key expressions */
754  List *partitioned_child_rels; /* List of RT indexes */
755 } RelOptInfo;
756 
757 /*
758  * Is given relation partitioned?
759  *
760  * It's not enough to test whether rel->part_scheme is set, because it might
761  * be that the basic partitioning properties of the input relations matched
762  * but the partition bounds did not. Also, if we are able to prove a rel
763  * dummy (empty), we should henceforth treat it as unpartitioned.
764  */
765 #define IS_PARTITIONED_REL(rel) \
766  ((rel)->part_scheme && (rel)->boundinfo && (rel)->nparts > 0 && \
767  (rel)->part_rels && !IS_DUMMY_REL(rel))
768 
769 /*
770  * Convenience macro to make sure that a partitioned relation has all the
771  * required members set.
772  */
773 #define REL_HAS_ALL_PART_PROPS(rel) \
774  ((rel)->part_scheme && (rel)->boundinfo && (rel)->nparts > 0 && \
775  (rel)->part_rels && (rel)->partexprs && (rel)->nullable_partexprs)
776 
777 /*
778  * IndexOptInfo
779  * Per-index information for planning/optimization
780  *
781  * indexkeys[], indexcollations[] each have ncolumns entries.
782  * opfamily[], and opcintype[] each have nkeycolumns entries. They do
783  * not contain any information about included attributes.
784  *
785  * sortopfamily[], reverse_sort[], and nulls_first[] have
786  * nkeycolumns entries, if the index is ordered; but if it is unordered,
787  * those pointers are NULL.
788  *
789  * Zeroes in the indexkeys[] array indicate index columns that are
790  * expressions; there is one element in indexprs for each such column.
791  *
792  * For an ordered index, reverse_sort[] and nulls_first[] describe the
793  * sort ordering of a forward indexscan; we can also consider a backward
794  * indexscan, which will generate the reverse ordering.
795  *
796  * The indexprs and indpred expressions have been run through
797  * prepqual.c and eval_const_expressions() for ease of matching to
798  * WHERE clauses. indpred is in implicit-AND form.
799  *
800  * indextlist is a TargetEntry list representing the index columns.
801  * It provides an equivalent base-relation Var for each simple column,
802  * and links to the matching indexprs element for each expression column.
803  *
804  * While most of these fields are filled when the IndexOptInfo is created
805  * (by plancat.c), indrestrictinfo and predOK are set later, in
806  * check_index_predicates().
807  */
808 #ifndef HAVE_INDEXOPTINFO_TYPEDEF
809 typedef struct IndexOptInfo IndexOptInfo;
810 #define HAVE_INDEXOPTINFO_TYPEDEF 1
811 #endif
812 
814 {
816 
817  Oid indexoid; /* OID of the index relation */
818  Oid reltablespace; /* tablespace of index (not table) */
819  RelOptInfo *rel; /* back-link to index's table */
820 
821  /* index-size statistics (from pg_class and elsewhere) */
822  BlockNumber pages; /* number of disk pages in index */
823  double tuples; /* number of index tuples in index */
824  int tree_height; /* index tree height, or -1 if unknown */
825 
826  /* index descriptor information */
827  int ncolumns; /* number of columns in index */
828  int nkeycolumns; /* number of key columns in index */
829  int *indexkeys; /* column numbers of index's attributes both
830  * key and included columns, or 0 */
831  Oid *indexcollations; /* OIDs of collations of index columns */
832  Oid *opfamily; /* OIDs of operator families for columns */
833  Oid *opcintype; /* OIDs of opclass declared input data types */
834  Oid *sortopfamily; /* OIDs of btree opfamilies, if orderable */
835  bool *reverse_sort; /* is sort order descending? */
836  bool *nulls_first; /* do NULLs come first in the sort order? */
837  bytea **opclassoptions; /* opclass-specific options for columns */
838  bool *canreturn; /* which index cols can be returned in an
839  * index-only scan? */
840  Oid relam; /* OID of the access method (in pg_am) */
841 
842  List *indexprs; /* expressions for non-simple index columns */
843  List *indpred; /* predicate if a partial index, else NIL */
844 
845  List *indextlist; /* targetlist representing index columns */
846 
847  List *indrestrictinfo; /* parent relation's baserestrictinfo
848  * list, less any conditions implied by
849  * the index's predicate (unless it's a
850  * target rel, see comments in
851  * check_index_predicates()) */
852 
853  bool predOK; /* true if index predicate matches query */
854  bool unique; /* true if a unique index */
855  bool immediate; /* is uniqueness enforced immediately? */
856  bool hypothetical; /* true if index doesn't really exist */
857 
858  /* Remaining fields are copied from the index AM's API struct: */
859  bool amcanorderbyop; /* does AM support order by operator result? */
860  bool amoptionalkey; /* can query omit key for the first column? */
861  bool amsearcharray; /* can AM handle ScalarArrayOpExpr quals? */
862  bool amsearchnulls; /* can AM search for NULL/NOT NULL entries? */
863  bool amhasgettuple; /* does AM have amgettuple interface? */
864  bool amhasgetbitmap; /* does AM have amgetbitmap interface? */
865  bool amcanparallel; /* does AM support parallel scan? */
866  /* Rather than include amapi.h here, we declare amcostestimate like this */
867  void (*amcostestimate) (); /* AM's cost estimator */
868 };
869 
870 /*
871  * ForeignKeyOptInfo
872  * Per-foreign-key information for planning/optimization
873  *
874  * The per-FK-column arrays can be fixed-size because we allow at most
875  * INDEX_MAX_KEYS columns in a foreign key constraint. Each array has
876  * nkeys valid entries.
877  */
878 typedef struct ForeignKeyOptInfo
879 {
881 
882  /* Basic data about the foreign key (fetched from catalogs): */
883  Index con_relid; /* RT index of the referencing table */
884  Index ref_relid; /* RT index of the referenced table */
885  int nkeys; /* number of columns in the foreign key */
886  AttrNumber conkey[INDEX_MAX_KEYS]; /* cols in referencing table */
887  AttrNumber confkey[INDEX_MAX_KEYS]; /* cols in referenced table */
888  Oid conpfeqop[INDEX_MAX_KEYS]; /* PK = FK operator OIDs */
889 
890  /* Derived info about whether FK's equality conditions match the query: */
891  int nmatched_ec; /* # of FK cols matched by ECs */
892  int nconst_ec; /* # of these ECs that are ec_has_const */
893  int nmatched_rcols; /* # of FK cols matched by non-EC rinfos */
894  int nmatched_ri; /* total # of non-EC rinfos matched to FK */
895  /* Pointer to eclass matching each column's condition, if there is one */
897  /* Pointer to eclass member for the referencing Var, if there is one */
898  struct EquivalenceMember *fk_eclass_member[INDEX_MAX_KEYS];
899  /* List of non-EC RestrictInfos matching each column's condition */
902 
903 /*
904  * StatisticExtInfo
905  * Information about extended statistics for planning/optimization
906  *
907  * Each pg_statistic_ext row is represented by one or more nodes of this
908  * type, or even zero if ANALYZE has not computed them.
909  */
910 typedef struct StatisticExtInfo
911 {
913 
914  Oid statOid; /* OID of the statistics row */
915  RelOptInfo *rel; /* back-link to statistic's table */
916  char kind; /* statistic kind of this entry */
917  Bitmapset *keys; /* attnums of the columns covered */
919 
920 /*
921  * EquivalenceClasses
922  *
923  * Whenever we can determine that a mergejoinable equality clause A = B is
924  * not delayed by any outer join, we create an EquivalenceClass containing
925  * the expressions A and B to record this knowledge. If we later find another
926  * equivalence B = C, we add C to the existing EquivalenceClass; this may
927  * require merging two existing EquivalenceClasses. At the end of the qual
928  * distribution process, we have sets of values that are known all transitively
929  * equal to each other, where "equal" is according to the rules of the btree
930  * operator family(s) shown in ec_opfamilies, as well as the collation shown
931  * by ec_collation. (We restrict an EC to contain only equalities whose
932  * operators belong to the same set of opfamilies. This could probably be
933  * relaxed, but for now it's not worth the trouble, since nearly all equality
934  * operators belong to only one btree opclass anyway. Similarly, we suppose
935  * that all or none of the input datatypes are collatable, so that a single
936  * collation value is sufficient.)
937  *
938  * We also use EquivalenceClasses as the base structure for PathKeys, letting
939  * us represent knowledge about different sort orderings being equivalent.
940  * Since every PathKey must reference an EquivalenceClass, we will end up
941  * with single-member EquivalenceClasses whenever a sort key expression has
942  * not been equivalenced to anything else. It is also possible that such an
943  * EquivalenceClass will contain a volatile expression ("ORDER BY random()"),
944  * which is a case that can't arise otherwise since clauses containing
945  * volatile functions are never considered mergejoinable. We mark such
946  * EquivalenceClasses specially to prevent them from being merged with
947  * ordinary EquivalenceClasses. Also, for volatile expressions we have
948  * to be careful to match the EquivalenceClass to the correct targetlist
949  * entry: consider SELECT random() AS a, random() AS b ... ORDER BY b,a.
950  * So we record the SortGroupRef of the originating sort clause.
951  *
952  * We allow equality clauses appearing below the nullable side of an outer join
953  * to form EquivalenceClasses, but these have a slightly different meaning:
954  * the included values might be all NULL rather than all the same non-null
955  * values. See src/backend/optimizer/README for more on that point.
956  *
957  * NB: if ec_merged isn't NULL, this class has been merged into another, and
958  * should be ignored in favor of using the pointed-to class.
959  */
960 typedef struct EquivalenceClass
961 {
963 
964  List *ec_opfamilies; /* btree operator family OIDs */
965  Oid ec_collation; /* collation, if datatypes are collatable */
966  List *ec_members; /* list of EquivalenceMembers */
967  List *ec_sources; /* list of generating RestrictInfos */
968  List *ec_derives; /* list of derived RestrictInfos */
969  Relids ec_relids; /* all relids appearing in ec_members, except
970  * for child members (see below) */
971  bool ec_has_const; /* any pseudoconstants in ec_members? */
972  bool ec_has_volatile; /* the (sole) member is a volatile expr */
973  bool ec_below_outer_join; /* equivalence applies below an OJ */
974  bool ec_broken; /* failed to generate needed clauses? */
975  Index ec_sortref; /* originating sortclause label, or 0 */
976  Index ec_min_security; /* minimum security_level in ec_sources */
977  Index ec_max_security; /* maximum security_level in ec_sources */
978  struct EquivalenceClass *ec_merged; /* set if merged into another EC */
980 
981 /*
982  * If an EC contains a const and isn't below-outer-join, any PathKey depending
983  * on it must be redundant, since there's only one possible value of the key.
984  */
985 #define EC_MUST_BE_REDUNDANT(eclass) \
986  ((eclass)->ec_has_const && !(eclass)->ec_below_outer_join)
987 
988 /*
989  * EquivalenceMember - one member expression of an EquivalenceClass
990  *
991  * em_is_child signifies that this element was built by transposing a member
992  * for an appendrel parent relation to represent the corresponding expression
993  * for an appendrel child. These members are used for determining the
994  * pathkeys of scans on the child relation and for explicitly sorting the
995  * child when necessary to build a MergeAppend path for the whole appendrel
996  * tree. An em_is_child member has no impact on the properties of the EC as a
997  * whole; in particular the EC's ec_relids field does NOT include the child
998  * relation. An em_is_child member should never be marked em_is_const nor
999  * cause ec_has_const or ec_has_volatile to be set, either. Thus, em_is_child
1000  * members are not really full-fledged members of the EC, but just reflections
1001  * or doppelgangers of real members. Most operations on EquivalenceClasses
1002  * should ignore em_is_child members, and those that don't should test
1003  * em_relids to make sure they only consider relevant members.
1004  *
1005  * em_datatype is usually the same as exprType(em_expr), but can be
1006  * different when dealing with a binary-compatible opfamily; in particular
1007  * anyarray_ops would never work without this. Use em_datatype when
1008  * looking up a specific btree operator to work with this expression.
1009  */
1010 typedef struct EquivalenceMember
1011 {
1013 
1014  Expr *em_expr; /* the expression represented */
1015  Relids em_relids; /* all relids appearing in em_expr */
1016  Relids em_nullable_relids; /* nullable by lower outer joins */
1017  bool em_is_const; /* expression is pseudoconstant? */
1018  bool em_is_child; /* derived version for a child relation? */
1019  Oid em_datatype; /* the "nominal type" used by the opfamily */
1021 
1022 /*
1023  * PathKeys
1024  *
1025  * The sort ordering of a path is represented by a list of PathKey nodes.
1026  * An empty list implies no known ordering. Otherwise the first item
1027  * represents the primary sort key, the second the first secondary sort key,
1028  * etc. The value being sorted is represented by linking to an
1029  * EquivalenceClass containing that value and including pk_opfamily among its
1030  * ec_opfamilies. The EquivalenceClass tells which collation to use, too.
1031  * This is a convenient method because it makes it trivial to detect
1032  * equivalent and closely-related orderings. (See optimizer/README for more
1033  * information.)
1034  *
1035  * Note: pk_strategy is either BTLessStrategyNumber (for ASC) or
1036  * BTGreaterStrategyNumber (for DESC). We assume that all ordering-capable
1037  * index types will use btree-compatible strategy numbers.
1038  */
1039 typedef struct PathKey
1040 {
1042 
1043  EquivalenceClass *pk_eclass; /* the value that is ordered */
1044  Oid pk_opfamily; /* btree opfamily defining the ordering */
1045  int pk_strategy; /* sort direction (ASC or DESC) */
1046  bool pk_nulls_first; /* do NULLs come before normal values? */
1047 } PathKey;
1048 
1049 
1050 /*
1051  * PathTarget
1052  *
1053  * This struct contains what we need to know during planning about the
1054  * targetlist (output columns) that a Path will compute. Each RelOptInfo
1055  * includes a default PathTarget, which its individual Paths may simply
1056  * reference. However, in some cases a Path may compute outputs different
1057  * from other Paths, and in that case we make a custom PathTarget for it.
1058  * For example, an indexscan might return index expressions that would
1059  * otherwise need to be explicitly calculated. (Note also that "upper"
1060  * relations generally don't have useful default PathTargets.)
1061  *
1062  * exprs contains bare expressions; they do not have TargetEntry nodes on top,
1063  * though those will appear in finished Plans.
1064  *
1065  * sortgrouprefs[] is an array of the same length as exprs, containing the
1066  * corresponding sort/group refnos, or zeroes for expressions not referenced
1067  * by sort/group clauses. If sortgrouprefs is NULL (which it generally is in
1068  * RelOptInfo.reltarget targets; only upper-level Paths contain this info),
1069  * we have not identified sort/group columns in this tlist. This allows us to
1070  * deal with sort/group refnos when needed with less expense than including
1071  * TargetEntry nodes in the exprs list.
1072  */
1073 typedef struct PathTarget
1074 {
1076  List *exprs; /* list of expressions to be computed */
1077  Index *sortgrouprefs; /* corresponding sort/group refnos, or 0 */
1078  QualCost cost; /* cost of evaluating the expressions */
1079  int width; /* estimated avg width of result tuples */
1080 } PathTarget;
1081 
1082 /* Convenience macro to get a sort/group refno from a PathTarget */
1083 #define get_pathtarget_sortgroupref(target, colno) \
1084  ((target)->sortgrouprefs ? (target)->sortgrouprefs[colno] : (Index) 0)
1085 
1086 
1087 /*
1088  * ParamPathInfo
1089  *
1090  * All parameterized paths for a given relation with given required outer rels
1091  * link to a single ParamPathInfo, which stores common information such as
1092  * the estimated rowcount for this parameterization. We do this partly to
1093  * avoid recalculations, but mostly to ensure that the estimated rowcount
1094  * is in fact the same for every such path.
1095  *
1096  * Note: ppi_clauses is only used in ParamPathInfos for base relation paths;
1097  * in join cases it's NIL because the set of relevant clauses varies depending
1098  * on how the join is formed. The relevant clauses will appear in each
1099  * parameterized join path's joinrestrictinfo list, instead.
1100  */
1101 typedef struct ParamPathInfo
1102 {
1104 
1105  Relids ppi_req_outer; /* rels supplying parameters used by path */
1106  double ppi_rows; /* estimated number of result tuples */
1107  List *ppi_clauses; /* join clauses available from outer rels */
1108 } ParamPathInfo;
1109 
1110 
1111 /*
1112  * Type "Path" is used as-is for sequential-scan paths, as well as some other
1113  * simple plan types that we don't need any extra information in the path for.
1114  * For other path types it is the first component of a larger struct.
1115  *
1116  * "pathtype" is the NodeTag of the Plan node we could build from this Path.
1117  * It is partially redundant with the Path's NodeTag, but allows us to use
1118  * the same Path type for multiple Plan types when there is no need to
1119  * distinguish the Plan type during path processing.
1120  *
1121  * "parent" identifies the relation this Path scans, and "pathtarget"
1122  * describes the precise set of output columns the Path would compute.
1123  * In simple cases all Paths for a given rel share the same targetlist,
1124  * which we represent by having path->pathtarget equal to parent->reltarget.
1125  *
1126  * "param_info", if not NULL, links to a ParamPathInfo that identifies outer
1127  * relation(s) that provide parameter values to each scan of this path.
1128  * That means this path can only be joined to those rels by means of nestloop
1129  * joins with this path on the inside. Also note that a parameterized path
1130  * is responsible for testing all "movable" joinclauses involving this rel
1131  * and the specified outer rel(s).
1132  *
1133  * "rows" is the same as parent->rows in simple paths, but in parameterized
1134  * paths and UniquePaths it can be less than parent->rows, reflecting the
1135  * fact that we've filtered by extra join conditions or removed duplicates.
1136  *
1137  * "pathkeys" is a List of PathKey nodes (see above), describing the sort
1138  * ordering of the path's output rows.
1139  */
1140 typedef struct Path
1141 {
1143 
1144  NodeTag pathtype; /* tag identifying scan/join method */
1145 
1146  RelOptInfo *parent; /* the relation this path can build */
1147  PathTarget *pathtarget; /* list of Vars/Exprs, cost, width */
1148 
1149  ParamPathInfo *param_info; /* parameterization info, or NULL if none */
1150 
1151  bool parallel_aware; /* engage parallel-aware logic? */
1152  bool parallel_safe; /* OK to use as part of parallel plan? */
1153  int parallel_workers; /* desired # of workers; 0 = not parallel */
1154 
1155  /* estimated size/costs for path (see costsize.c for more info) */
1156  double rows; /* estimated number of result tuples */
1157  Cost startup_cost; /* cost expended before fetching any tuples */
1158  Cost total_cost; /* total cost (assuming all tuples fetched) */
1159 
1160  List *pathkeys; /* sort ordering of path's output */
1161  /* pathkeys is a List of PathKey nodes; see above */
1162 } Path;
1163 
1164 /* Macro for extracting a path's parameterization relids; beware double eval */
1165 #define PATH_REQ_OUTER(path) \
1166  ((path)->param_info ? (path)->param_info->ppi_req_outer : (Relids) NULL)
1167 
1168 /*----------
1169  * IndexPath represents an index scan over a single index.
1170  *
1171  * This struct is used for both regular indexscans and index-only scans;
1172  * path.pathtype is T_IndexScan or T_IndexOnlyScan to show which is meant.
1173  *
1174  * 'indexinfo' is the index to be scanned.
1175  *
1176  * 'indexclauses' is a list of IndexClause nodes, each representing one
1177  * index-checkable restriction, with implicit AND semantics across the list.
1178  * An empty list implies a full index scan.
1179  *
1180  * 'indexorderbys', if not NIL, is a list of ORDER BY expressions that have
1181  * been found to be usable as ordering operators for an amcanorderbyop index.
1182  * The list must match the path's pathkeys, ie, one expression per pathkey
1183  * in the same order. These are not RestrictInfos, just bare expressions,
1184  * since they generally won't yield booleans. It's guaranteed that each
1185  * expression has the index key on the left side of the operator.
1186  *
1187  * 'indexorderbycols' is an integer list of index column numbers (zero-based)
1188  * of the same length as 'indexorderbys', showing which index column each
1189  * ORDER BY expression is meant to be used with. (There is no restriction
1190  * on which index column each ORDER BY can be used with.)
1191  *
1192  * 'indexscandir' is one of:
1193  * ForwardScanDirection: forward scan of an ordered index
1194  * BackwardScanDirection: backward scan of an ordered index
1195  * NoMovementScanDirection: scan of an unordered index, or don't care
1196  * (The executor doesn't care whether it gets ForwardScanDirection or
1197  * NoMovementScanDirection for an indexscan, but the planner wants to
1198  * distinguish ordered from unordered indexes for building pathkeys.)
1199  *
1200  * 'indextotalcost' and 'indexselectivity' are saved in the IndexPath so that
1201  * we need not recompute them when considering using the same index in a
1202  * bitmap index/heap scan (see BitmapHeapPath). The costs of the IndexPath
1203  * itself represent the costs of an IndexScan or IndexOnlyScan plan type.
1204  *----------
1205  */
1206 typedef struct IndexPath
1207 {
1216 } IndexPath;
1217 
1218 /*
1219  * Each IndexClause references a RestrictInfo node from the query's WHERE
1220  * or JOIN conditions, and shows how that restriction can be applied to
1221  * the particular index. We support both indexclauses that are directly
1222  * usable by the index machinery, which are typically of the form
1223  * "indexcol OP pseudoconstant", and those from which an indexable qual
1224  * can be derived. The simplest such transformation is that a clause
1225  * of the form "pseudoconstant OP indexcol" can be commuted to produce an
1226  * indexable qual (the index machinery expects the indexcol to be on the
1227  * left always). Another example is that we might be able to extract an
1228  * indexable range condition from a LIKE condition, as in "x LIKE 'foo%bar'"
1229  * giving rise to "x >= 'foo' AND x < 'fop'". Derivation of such lossy
1230  * conditions is done by a planner support function attached to the
1231  * indexclause's top-level function or operator.
1232  *
1233  * indexquals is a list of RestrictInfos for the directly-usable index
1234  * conditions associated with this IndexClause. In the simplest case
1235  * it's a one-element list whose member is iclause->rinfo. Otherwise,
1236  * it contains one or more directly-usable indexqual conditions extracted
1237  * from the given clause. The 'lossy' flag indicates whether the
1238  * indexquals are semantically equivalent to the original clause, or
1239  * represent a weaker condition.
1240  *
1241  * Normally, indexcol is the index of the single index column the clause
1242  * works on, and indexcols is NIL. But if the clause is a RowCompareExpr,
1243  * indexcol is the index of the leading column, and indexcols is a list of
1244  * all the affected columns. (Note that indexcols matches up with the
1245  * columns of the actual indexable RowCompareExpr in indexquals, which
1246  * might be different from the original in rinfo.)
1247  *
1248  * An IndexPath's IndexClause list is required to be ordered by index
1249  * column, i.e. the indexcol values must form a nondecreasing sequence.
1250  * (The order of multiple clauses for the same index column is unspecified.)
1251  */
1252 typedef struct IndexClause
1253 {
1255  struct RestrictInfo *rinfo; /* original restriction or join clause */
1256  List *indexquals; /* indexqual(s) derived from it */
1257  bool lossy; /* are indexquals a lossy version of clause? */
1258  AttrNumber indexcol; /* index column the clause uses (zero-based) */
1259  List *indexcols; /* multiple index columns, if RowCompare */
1260 } IndexClause;
1261 
1262 /*
1263  * BitmapHeapPath represents one or more indexscans that generate TID bitmaps
1264  * instead of directly accessing the heap, followed by AND/OR combinations
1265  * to produce a single bitmap, followed by a heap scan that uses the bitmap.
1266  * Note that the output is always considered unordered, since it will come
1267  * out in physical heap order no matter what the underlying indexes did.
1268  *
1269  * The individual indexscans are represented by IndexPath nodes, and any
1270  * logic on top of them is represented by a tree of BitmapAndPath and
1271  * BitmapOrPath nodes. Notice that we can use the same IndexPath node both
1272  * to represent a regular (or index-only) index scan plan, and as the child
1273  * of a BitmapHeapPath that represents scanning the same index using a
1274  * BitmapIndexScan. The startup_cost and total_cost figures of an IndexPath
1275  * always represent the costs to use it as a regular (or index-only)
1276  * IndexScan. The costs of a BitmapIndexScan can be computed using the
1277  * IndexPath's indextotalcost and indexselectivity.
1278  */
1279 typedef struct BitmapHeapPath
1280 {
1282  Path *bitmapqual; /* IndexPath, BitmapAndPath, BitmapOrPath */
1283 } BitmapHeapPath;
1284 
1285 /*
1286  * BitmapAndPath represents a BitmapAnd plan node; it can only appear as
1287  * part of the substructure of a BitmapHeapPath. The Path structure is
1288  * a bit more heavyweight than we really need for this, but for simplicity
1289  * we make it a derivative of Path anyway.
1290  */
1291 typedef struct BitmapAndPath
1292 {
1294  List *bitmapquals; /* IndexPaths and BitmapOrPaths */
1296 } BitmapAndPath;
1297 
1298 /*
1299  * BitmapOrPath represents a BitmapOr plan node; it can only appear as
1300  * part of the substructure of a BitmapHeapPath. The Path structure is
1301  * a bit more heavyweight than we really need for this, but for simplicity
1302  * we make it a derivative of Path anyway.
1303  */
1304 typedef struct BitmapOrPath
1305 {
1307  List *bitmapquals; /* IndexPaths and BitmapAndPaths */
1309 } BitmapOrPath;
1310 
1311 /*
1312  * TidPath represents a scan by TID
1313  *
1314  * tidquals is an implicitly OR'ed list of qual expressions of the form
1315  * "CTID = pseudoconstant", or "CTID = ANY(pseudoconstant_array)",
1316  * or a CurrentOfExpr for the relation.
1317  */
1318 typedef struct TidPath
1319 {
1321  List *tidquals; /* qual(s) involving CTID = something */
1322 } TidPath;
1323 
1324 /*
1325  * SubqueryScanPath represents a scan of an unflattened subquery-in-FROM
1326  *
1327  * Note that the subpath comes from a different planning domain; for example
1328  * RTE indexes within it mean something different from those known to the
1329  * SubqueryScanPath. path.parent->subroot is the planning context needed to
1330  * interpret the subpath.
1331  */
1332 typedef struct SubqueryScanPath
1333 {
1335  Path *subpath; /* path representing subquery execution */
1337 
1338 /*
1339  * ForeignPath represents a potential scan of a foreign table, foreign join
1340  * or foreign upper-relation.
1341  *
1342  * fdw_private stores FDW private data about the scan. While fdw_private is
1343  * not actually touched by the core code during normal operations, it's
1344  * generally a good idea to use a representation that can be dumped by
1345  * nodeToString(), so that you can examine the structure during debugging
1346  * with tools like pprint().
1347  */
1348 typedef struct ForeignPath
1349 {
1353 } ForeignPath;
1354 
1355 /*
1356  * CustomPath represents a table scan done by some out-of-core extension.
1357  *
1358  * We provide a set of hooks here - which the provider must take care to set
1359  * up correctly - to allow extensions to supply their own methods of scanning
1360  * a relation. For example, a provider might provide GPU acceleration, a
1361  * cache-based scan, or some other kind of logic we haven't dreamed up yet.
1362  *
1363  * CustomPaths can be injected into the planning process for a relation by
1364  * set_rel_pathlist_hook functions.
1365  *
1366  * Core code must avoid assuming that the CustomPath is only as large as
1367  * the structure declared here; providers are allowed to make it the first
1368  * element in a larger structure. (Since the planner never copies Paths,
1369  * this doesn't add any complication.) However, for consistency with the
1370  * FDW case, we provide a "custom_private" field in CustomPath; providers
1371  * may prefer to use that rather than define another struct type.
1372  */
1373 
1374 struct CustomPathMethods;
1375 
1376 typedef struct CustomPath
1377 {
1379  uint32 flags; /* mask of CUSTOMPATH_* flags, see
1380  * nodes/extensible.h */
1381  List *custom_paths; /* list of child Path nodes, if any */
1384 } CustomPath;
1385 
1386 /*
1387  * AppendPath represents an Append plan, ie, successive execution of
1388  * several member plans.
1389  *
1390  * For partial Append, 'subpaths' contains non-partial subpaths followed by
1391  * partial subpaths.
1392  *
1393  * Note: it is possible for "subpaths" to contain only one, or even no,
1394  * elements. These cases are optimized during create_append_plan.
1395  * In particular, an AppendPath with no subpaths is a "dummy" path that
1396  * is created to represent the case that a relation is provably empty.
1397  * (This is a convenient representation because it means that when we build
1398  * an appendrel and find that all its children have been excluded, no extra
1399  * action is needed to recognize the relation as dummy.)
1400  */
1401 typedef struct AppendPath
1402 {
1404  /* RT indexes of non-leaf tables in a partition tree */
1406  List *subpaths; /* list of component Paths */
1407  /* Index of first partial path in subpaths; list_length(subpaths) if none */
1409  double limit_tuples; /* hard limit on output tuples, or -1 */
1410 } AppendPath;
1411 
1412 #define IS_DUMMY_APPEND(p) \
1413  (IsA((p), AppendPath) && ((AppendPath *) (p))->subpaths == NIL)
1414 
1415 /*
1416  * A relation that's been proven empty will have one path that is dummy
1417  * (but might have projection paths on top). For historical reasons,
1418  * this is provided as a macro that wraps is_dummy_rel().
1419  */
1420 #define IS_DUMMY_REL(r) is_dummy_rel(r)
1421 extern bool is_dummy_rel(RelOptInfo *rel);
1422 
1423 /*
1424  * MergeAppendPath represents a MergeAppend plan, ie, the merging of sorted
1425  * results from several member plans to produce similarly-sorted output.
1426  */
1427 typedef struct MergeAppendPath
1428 {
1430  /* RT indexes of non-leaf tables in a partition tree */
1432  List *subpaths; /* list of component Paths */
1433  double limit_tuples; /* hard limit on output tuples, or -1 */
1434 } MergeAppendPath;
1435 
1436 /*
1437  * GroupResultPath represents use of a Result plan node to compute the
1438  * output of a degenerate GROUP BY case, wherein we know we should produce
1439  * exactly one row, which might then be filtered by a HAVING qual.
1440  *
1441  * Note that quals is a list of bare clauses, not RestrictInfos.
1442  */
1443 typedef struct GroupResultPath
1444 {
1447 } GroupResultPath;
1448 
1449 /*
1450  * MaterialPath represents use of a Material plan node, i.e., caching of
1451  * the output of its subpath. This is used when the subpath is expensive
1452  * and needs to be scanned repeatedly, or when we need mark/restore ability
1453  * and the subpath doesn't have it.
1454  */
1455 typedef struct MaterialPath
1456 {
1459 } MaterialPath;
1460 
1461 /*
1462  * UniquePath represents elimination of distinct rows from the output of
1463  * its subpath.
1464  *
1465  * This can represent significantly different plans: either hash-based or
1466  * sort-based implementation, or a no-op if the input path can be proven
1467  * distinct already. The decision is sufficiently localized that it's not
1468  * worth having separate Path node types. (Note: in the no-op case, we could
1469  * eliminate the UniquePath node entirely and just return the subpath; but
1470  * it's convenient to have a UniquePath in the path tree to signal upper-level
1471  * routines that the input is known distinct.)
1472  */
1473 typedef enum
1474 {
1475  UNIQUE_PATH_NOOP, /* input is known unique already */
1476  UNIQUE_PATH_HASH, /* use hashing */
1477  UNIQUE_PATH_SORT /* use sorting */
1479 
1480 typedef struct UniquePath
1481 {
1485  List *in_operators; /* equality operators of the IN clause */
1486  List *uniq_exprs; /* expressions to be made unique */
1487 } UniquePath;
1488 
1489 /*
1490  * GatherPath runs several copies of a plan in parallel and collects the
1491  * results. The parallel leader may also execute the plan, unless the
1492  * single_copy flag is set.
1493  */
1494 typedef struct GatherPath
1495 {
1497  Path *subpath; /* path for each worker */
1498  bool single_copy; /* don't execute path more than once */
1499  int num_workers; /* number of workers sought to help */
1500 } GatherPath;
1501 
1502 /*
1503  * GatherMergePath runs several copies of a plan in parallel and collects
1504  * the results, preserving their common sort order.
1505  */
1506 typedef struct GatherMergePath
1507 {
1509  Path *subpath; /* path for each worker */
1510  int num_workers; /* number of workers sought to help */
1511 } GatherMergePath;
1512 
1513 
1514 /*
1515  * All join-type paths share these fields.
1516  */
1517 
1518 typedef struct JoinPath
1519 {
1521 
1523 
1524  bool inner_unique; /* each outer tuple provably matches no more
1525  * than one inner tuple */
1526 
1527  Path *outerjoinpath; /* path for the outer side of the join */
1528  Path *innerjoinpath; /* path for the inner side of the join */
1529 
1530  List *joinrestrictinfo; /* RestrictInfos to apply to join */
1531 
1532  /*
1533  * See the notes for RelOptInfo and ParamPathInfo to understand why
1534  * joinrestrictinfo is needed in JoinPath, and can't be merged into the
1535  * parent RelOptInfo.
1536  */
1537 } JoinPath;
1538 
1539 /*
1540  * A nested-loop path needs no special fields.
1541  */
1542 
1544 
1545 /*
1546  * A mergejoin path has these fields.
1547  *
1548  * Unlike other path types, a MergePath node doesn't represent just a single
1549  * run-time plan node: it can represent up to four. Aside from the MergeJoin
1550  * node itself, there can be a Sort node for the outer input, a Sort node
1551  * for the inner input, and/or a Material node for the inner input. We could
1552  * represent these nodes by separate path nodes, but considering how many
1553  * different merge paths are investigated during a complex join problem,
1554  * it seems better to avoid unnecessary palloc overhead.
1555  *
1556  * path_mergeclauses lists the clauses (in the form of RestrictInfos)
1557  * that will be used in the merge.
1558  *
1559  * Note that the mergeclauses are a subset of the parent relation's
1560  * restriction-clause list. Any join clauses that are not mergejoinable
1561  * appear only in the parent's restrict list, and must be checked by a
1562  * qpqual at execution time.
1563  *
1564  * outersortkeys (resp. innersortkeys) is NIL if the outer path
1565  * (resp. inner path) is already ordered appropriately for the
1566  * mergejoin. If it is not NIL then it is a PathKeys list describing
1567  * the ordering that must be created by an explicit Sort node.
1568  *
1569  * skip_mark_restore is true if the executor need not do mark/restore calls.
1570  * Mark/restore overhead is usually required, but can be skipped if we know
1571  * that the executor need find only one match per outer tuple, and that the
1572  * mergeclauses are sufficient to identify a match. In such cases the
1573  * executor can immediately advance the outer relation after processing a
1574  * match, and therefore it need never back up the inner relation.
1575  *
1576  * materialize_inner is true if a Material node should be placed atop the
1577  * inner input. This may appear with or without an inner Sort step.
1578  */
1579 
1580 typedef struct MergePath
1581 {
1583  List *path_mergeclauses; /* join clauses to be used for merge */
1584  List *outersortkeys; /* keys for explicit sort, if any */
1585  List *innersortkeys; /* keys for explicit sort, if any */
1586  bool skip_mark_restore; /* can executor skip mark/restore? */
1587  bool materialize_inner; /* add Materialize to inner? */
1588 } MergePath;
1589 
1590 /*
1591  * A hashjoin path has these fields.
1592  *
1593  * The remarks above for mergeclauses apply for hashclauses as well.
1594  *
1595  * Hashjoin does not care what order its inputs appear in, so we have
1596  * no need for sortkeys.
1597  */
1598 
1599 typedef struct HashPath
1600 {
1602  List *path_hashclauses; /* join clauses used for hashing */
1603  int num_batches; /* number of batches expected */
1604  double inner_rows_total; /* total inner rows expected */
1605 } HashPath;
1606 
1607 /*
1608  * ProjectionPath represents a projection (that is, targetlist computation)
1609  *
1610  * Nominally, this path node represents using a Result plan node to do a
1611  * projection step. However, if the input plan node supports projection,
1612  * we can just modify its output targetlist to do the required calculations
1613  * directly, and not need a Result. In some places in the planner we can just
1614  * jam the desired PathTarget into the input path node (and adjust its cost
1615  * accordingly), so we don't need a ProjectionPath. But in other places
1616  * it's necessary to not modify the input path node, so we need a separate
1617  * ProjectionPath node, which is marked dummy to indicate that we intend to
1618  * assign the work to the input plan node. The estimated cost for the
1619  * ProjectionPath node will account for whether a Result will be used or not.
1620  */
1621 typedef struct ProjectionPath
1622 {
1624  Path *subpath; /* path representing input source */
1625  bool dummypp; /* true if no separate Result is needed */
1626 } ProjectionPath;
1627 
1628 /*
1629  * ProjectSetPath represents evaluation of a targetlist that includes
1630  * set-returning function(s), which will need to be implemented by a
1631  * ProjectSet plan node.
1632  */
1633 typedef struct ProjectSetPath
1634 {
1636  Path *subpath; /* path representing input source */
1637 } ProjectSetPath;
1638 
1639 /*
1640  * SortPath represents an explicit sort step
1641  *
1642  * The sort keys are, by definition, the same as path.pathkeys.
1643  *
1644  * Note: the Sort plan node cannot project, so path.pathtarget must be the
1645  * same as the input's pathtarget.
1646  */
1647 typedef struct SortPath
1648 {
1650  Path *subpath; /* path representing input source */
1651 } SortPath;
1652 
1653 /*
1654  * IncrementalSortPath
1655  */
1656 typedef struct IncrementalSortPath
1657 {
1659  int nPresortedCols; /* number of presorted columns */
1661 
1662 /*
1663  * GroupPath represents grouping (of presorted input)
1664  *
1665  * groupClause represents the columns to be grouped on; the input path
1666  * must be at least that well sorted.
1667  *
1668  * We can also apply a qual to the grouped rows (equivalent of HAVING)
1669  */
1670 typedef struct GroupPath
1671 {
1673  Path *subpath; /* path representing input source */
1674  List *groupClause; /* a list of SortGroupClause's */
1675  List *qual; /* quals (HAVING quals), if any */
1676 } GroupPath;
1677 
1678 /*
1679  * UpperUniquePath represents adjacent-duplicate removal (in presorted input)
1680  *
1681  * The columns to be compared are the first numkeys columns of the path's
1682  * pathkeys. The input is presumed already sorted that way.
1683  */
1684 typedef struct UpperUniquePath
1685 {
1687  Path *subpath; /* path representing input source */
1688  int numkeys; /* number of pathkey columns to compare */
1689 } UpperUniquePath;
1690 
1691 /*
1692  * AggPath represents generic computation of aggregate functions
1693  *
1694  * This may involve plain grouping (but not grouping sets), using either
1695  * sorted or hashed grouping; for the AGG_SORTED case, the input must be
1696  * appropriately presorted.
1697  */
1698 typedef struct AggPath
1699 {
1701  Path *subpath; /* path representing input source */
1702  AggStrategy aggstrategy; /* basic strategy, see nodes.h */
1703  AggSplit aggsplit; /* agg-splitting mode, see nodes.h */
1704  double numGroups; /* estimated number of groups in input */
1705  uint64 transitionSpace; /* for pass-by-ref transition data */
1706  List *groupClause; /* a list of SortGroupClause's */
1707  List *qual; /* quals (HAVING quals), if any */
1708 } AggPath;
1709 
1710 /*
1711  * Various annotations used for grouping sets in the planner.
1712  */
1713 
1714 typedef struct GroupingSetData
1715 {
1717  List *set; /* grouping set as list of sortgrouprefs */
1718  double numGroups; /* est. number of result groups */
1719 } GroupingSetData;
1720 
1721 typedef struct RollupData
1722 {
1724  List *groupClause; /* applicable subset of parse->groupClause */
1725  List *gsets; /* lists of integer indexes into groupClause */
1726  List *gsets_data; /* list of GroupingSetData */
1727  double numGroups; /* est. number of result groups */
1728  bool hashable; /* can be hashed */
1729  bool is_hashed; /* to be implemented as a hashagg */
1730 } RollupData;
1731 
1732 /*
1733  * GroupingSetsPath represents a GROUPING SETS aggregation
1734  */
1735 
1736 typedef struct GroupingSetsPath
1737 {
1739  Path *subpath; /* path representing input source */
1740  AggStrategy aggstrategy; /* basic strategy */
1741  List *rollups; /* list of RollupData */
1742  List *qual; /* quals (HAVING quals), if any */
1743  uint64 transitionSpace; /* for pass-by-ref transition data */
1745 
1746 /*
1747  * MinMaxAggPath represents computation of MIN/MAX aggregates from indexes
1748  */
1749 typedef struct MinMaxAggPath
1750 {
1752  List *mmaggregates; /* list of MinMaxAggInfo */
1753  List *quals; /* HAVING quals, if any */
1754 } MinMaxAggPath;
1755 
1756 /*
1757  * WindowAggPath represents generic computation of window functions
1758  */
1759 typedef struct WindowAggPath
1760 {
1762  Path *subpath; /* path representing input source */
1763  WindowClause *winclause; /* WindowClause we'll be using */
1764 } WindowAggPath;
1765 
1766 /*
1767  * SetOpPath represents a set-operation, that is INTERSECT or EXCEPT
1768  */
1769 typedef struct SetOpPath
1770 {
1772  Path *subpath; /* path representing input source */
1773  SetOpCmd cmd; /* what to do, see nodes.h */
1774  SetOpStrategy strategy; /* how to do it, see nodes.h */
1775  List *distinctList; /* SortGroupClauses identifying target cols */
1776  AttrNumber flagColIdx; /* where is the flag column, if any */
1777  int firstFlag; /* flag value for first input relation */
1778  double numGroups; /* estimated number of groups in input */
1779 } SetOpPath;
1780 
1781 /*
1782  * RecursiveUnionPath represents a recursive UNION node
1783  */
1784 typedef struct RecursiveUnionPath
1785 {
1787  Path *leftpath; /* paths representing input sources */
1789  List *distinctList; /* SortGroupClauses identifying target cols */
1790  int wtParam; /* ID of Param representing work table */
1791  double numGroups; /* estimated number of groups in input */
1793 
1794 /*
1795  * LockRowsPath represents acquiring row locks for SELECT FOR UPDATE/SHARE
1796  */
1797 typedef struct LockRowsPath
1798 {
1800  Path *subpath; /* path representing input source */
1801  List *rowMarks; /* a list of PlanRowMark's */
1802  int epqParam; /* ID of Param for EvalPlanQual re-eval */
1803 } LockRowsPath;
1804 
1805 /*
1806  * ModifyTablePath represents performing INSERT/UPDATE/DELETE modifications
1807  *
1808  * We represent most things that will be in the ModifyTable plan node
1809  * literally, except we have child Path(s) not Plan(s). But analysis of the
1810  * OnConflictExpr is deferred to createplan.c, as is collection of FDW data.
1811  */
1812 typedef struct ModifyTablePath
1813 {
1815  CmdType operation; /* INSERT, UPDATE, or DELETE */
1816  bool canSetTag; /* do we set the command tag/es_processed? */
1817  Index nominalRelation; /* Parent RT index for use of EXPLAIN */
1818  Index rootRelation; /* Root RT index, if target is partitioned */
1819  bool partColsUpdated; /* some part key in hierarchy updated */
1820  List *resultRelations; /* integer list of RT indexes */
1821  List *subpaths; /* Path(s) producing source data */
1822  List *subroots; /* per-target-table PlannerInfos */
1823  List *withCheckOptionLists; /* per-target-table WCO lists */
1824  List *returningLists; /* per-target-table RETURNING tlists */
1825  List *rowMarks; /* PlanRowMarks (non-locking only) */
1826  OnConflictExpr *onconflict; /* ON CONFLICT clause, or NULL */
1827  int epqParam; /* ID of Param for EvalPlanQual re-eval */
1828 } ModifyTablePath;
1829 
1830 /*
1831  * LimitPath represents applying LIMIT/OFFSET restrictions
1832  */
1833 typedef struct LimitPath
1834 {
1836  Path *subpath; /* path representing input source */
1837  Node *limitOffset; /* OFFSET parameter, or NULL if none */
1838  Node *limitCount; /* COUNT parameter, or NULL if none */
1839  LimitOption limitOption; /* FETCH FIRST with ties or exact number */
1840 } LimitPath;
1841 
1842 
1843 /*
1844  * Restriction clause info.
1845  *
1846  * We create one of these for each AND sub-clause of a restriction condition
1847  * (WHERE or JOIN/ON clause). Since the restriction clauses are logically
1848  * ANDed, we can use any one of them or any subset of them to filter out
1849  * tuples, without having to evaluate the rest. The RestrictInfo node itself
1850  * stores data used by the optimizer while choosing the best query plan.
1851  *
1852  * If a restriction clause references a single base relation, it will appear
1853  * in the baserestrictinfo list of the RelOptInfo for that base rel.
1854  *
1855  * If a restriction clause references more than one base rel, it will
1856  * appear in the joininfo list of every RelOptInfo that describes a strict
1857  * subset of the base rels mentioned in the clause. The joininfo lists are
1858  * used to drive join tree building by selecting plausible join candidates.
1859  * The clause cannot actually be applied until we have built a join rel
1860  * containing all the base rels it references, however.
1861  *
1862  * When we construct a join rel that includes all the base rels referenced
1863  * in a multi-relation restriction clause, we place that clause into the
1864  * joinrestrictinfo lists of paths for the join rel, if neither left nor
1865  * right sub-path includes all base rels referenced in the clause. The clause
1866  * will be applied at that join level, and will not propagate any further up
1867  * the join tree. (Note: the "predicate migration" code was once intended to
1868  * push restriction clauses up and down the plan tree based on evaluation
1869  * costs, but it's dead code and is unlikely to be resurrected in the
1870  * foreseeable future.)
1871  *
1872  * Note that in the presence of more than two rels, a multi-rel restriction
1873  * might reach different heights in the join tree depending on the join
1874  * sequence we use. So, these clauses cannot be associated directly with
1875  * the join RelOptInfo, but must be kept track of on a per-join-path basis.
1876  *
1877  * RestrictInfos that represent equivalence conditions (i.e., mergejoinable
1878  * equalities that are not outerjoin-delayed) are handled a bit differently.
1879  * Initially we attach them to the EquivalenceClasses that are derived from
1880  * them. When we construct a scan or join path, we look through all the
1881  * EquivalenceClasses and generate derived RestrictInfos representing the
1882  * minimal set of conditions that need to be checked for this particular scan
1883  * or join to enforce that all members of each EquivalenceClass are in fact
1884  * equal in all rows emitted by the scan or join.
1885  *
1886  * When dealing with outer joins we have to be very careful about pushing qual
1887  * clauses up and down the tree. An outer join's own JOIN/ON conditions must
1888  * be evaluated exactly at that join node, unless they are "degenerate"
1889  * conditions that reference only Vars from the nullable side of the join.
1890  * Quals appearing in WHERE or in a JOIN above the outer join cannot be pushed
1891  * down below the outer join, if they reference any nullable Vars.
1892  * RestrictInfo nodes contain a flag to indicate whether a qual has been
1893  * pushed down to a lower level than its original syntactic placement in the
1894  * join tree would suggest. If an outer join prevents us from pushing a qual
1895  * down to its "natural" semantic level (the level associated with just the
1896  * base rels used in the qual) then we mark the qual with a "required_relids"
1897  * value including more than just the base rels it actually uses. By
1898  * pretending that the qual references all the rels required to form the outer
1899  * join, we prevent it from being evaluated below the outer join's joinrel.
1900  * When we do form the outer join's joinrel, we still need to distinguish
1901  * those quals that are actually in that join's JOIN/ON condition from those
1902  * that appeared elsewhere in the tree and were pushed down to the join rel
1903  * because they used no other rels. That's what the is_pushed_down flag is
1904  * for; it tells us that a qual is not an OUTER JOIN qual for the set of base
1905  * rels listed in required_relids. A clause that originally came from WHERE
1906  * or an INNER JOIN condition will *always* have its is_pushed_down flag set.
1907  * It's possible for an OUTER JOIN clause to be marked is_pushed_down too,
1908  * if we decide that it can be pushed down into the nullable side of the join.
1909  * In that case it acts as a plain filter qual for wherever it gets evaluated.
1910  * (In short, is_pushed_down is only false for non-degenerate outer join
1911  * conditions. Possibly we should rename it to reflect that meaning? But
1912  * see also the comments for RINFO_IS_PUSHED_DOWN, below.)
1913  *
1914  * RestrictInfo nodes also contain an outerjoin_delayed flag, which is true
1915  * if the clause's applicability must be delayed due to any outer joins
1916  * appearing below it (ie, it has to be postponed to some join level higher
1917  * than the set of relations it actually references).
1918  *
1919  * There is also an outer_relids field, which is NULL except for outer join
1920  * clauses; for those, it is the set of relids on the outer side of the
1921  * clause's outer join. (These are rels that the clause cannot be applied to
1922  * in parameterized scans, since pushing it into the join's outer side would
1923  * lead to wrong answers.)
1924  *
1925  * There is also a nullable_relids field, which is the set of rels the clause
1926  * references that can be forced null by some outer join below the clause.
1927  *
1928  * outerjoin_delayed = true is subtly different from nullable_relids != NULL:
1929  * a clause might reference some nullable rels and yet not be
1930  * outerjoin_delayed because it also references all the other rels of the
1931  * outer join(s). A clause that is not outerjoin_delayed can be enforced
1932  * anywhere it is computable.
1933  *
1934  * To handle security-barrier conditions efficiently, we mark RestrictInfo
1935  * nodes with a security_level field, in which higher values identify clauses
1936  * coming from less-trusted sources. The exact semantics are that a clause
1937  * cannot be evaluated before another clause with a lower security_level value
1938  * unless the first clause is leakproof. As with outer-join clauses, this
1939  * creates a reason for clauses to sometimes need to be evaluated higher in
1940  * the join tree than their contents would suggest; and even at a single plan
1941  * node, this rule constrains the order of application of clauses.
1942  *
1943  * In general, the referenced clause might be arbitrarily complex. The
1944  * kinds of clauses we can handle as indexscan quals, mergejoin clauses,
1945  * or hashjoin clauses are limited (e.g., no volatile functions). The code
1946  * for each kind of path is responsible for identifying the restrict clauses
1947  * it can use and ignoring the rest. Clauses not implemented by an indexscan,
1948  * mergejoin, or hashjoin will be placed in the plan qual or joinqual field
1949  * of the finished Plan node, where they will be enforced by general-purpose
1950  * qual-expression-evaluation code. (But we are still entitled to count
1951  * their selectivity when estimating the result tuple count, if we
1952  * can guess what it is...)
1953  *
1954  * When the referenced clause is an OR clause, we generate a modified copy
1955  * in which additional RestrictInfo nodes are inserted below the top-level
1956  * OR/AND structure. This is a convenience for OR indexscan processing:
1957  * indexquals taken from either the top level or an OR subclause will have
1958  * associated RestrictInfo nodes.
1959  *
1960  * The can_join flag is set true if the clause looks potentially useful as
1961  * a merge or hash join clause, that is if it is a binary opclause with
1962  * nonoverlapping sets of relids referenced in the left and right sides.
1963  * (Whether the operator is actually merge or hash joinable isn't checked,
1964  * however.)
1965  *
1966  * The pseudoconstant flag is set true if the clause contains no Vars of
1967  * the current query level and no volatile functions. Such a clause can be
1968  * pulled out and used as a one-time qual in a gating Result node. We keep
1969  * pseudoconstant clauses in the same lists as other RestrictInfos so that
1970  * the regular clause-pushing machinery can assign them to the correct join
1971  * level, but they need to be treated specially for cost and selectivity
1972  * estimates. Note that a pseudoconstant clause can never be an indexqual
1973  * or merge or hash join clause, so it's of no interest to large parts of
1974  * the planner.
1975  *
1976  * When join clauses are generated from EquivalenceClasses, there may be
1977  * several equally valid ways to enforce join equivalence, of which we need
1978  * apply only one. We mark clauses of this kind by setting parent_ec to
1979  * point to the generating EquivalenceClass. Multiple clauses with the same
1980  * parent_ec in the same join are redundant.
1981  */
1982 
1983 typedef struct RestrictInfo
1984 {
1986 
1987  Expr *clause; /* the represented clause of WHERE or JOIN */
1988 
1989  bool is_pushed_down; /* true if clause was pushed down in level */
1990 
1991  bool outerjoin_delayed; /* true if delayed by lower outer join */
1992 
1993  bool can_join; /* see comment above */
1994 
1995  bool pseudoconstant; /* see comment above */
1996 
1997  bool leakproof; /* true if known to contain no leaked Vars */
1998 
1999  Index security_level; /* see comment above */
2000 
2001  /* The set of relids (varnos) actually referenced in the clause: */
2003 
2004  /* The set of relids required to evaluate the clause: */
2006 
2007  /* If an outer-join clause, the outer-side relations, else NULL: */
2009 
2010  /* The relids used in the clause that are nullable by lower outer joins: */
2012 
2013  /* These fields are set for any binary opclause: */
2014  Relids left_relids; /* relids in left side of clause */
2015  Relids right_relids; /* relids in right side of clause */
2016 
2017  /* This field is NULL unless clause is an OR clause: */
2018  Expr *orclause; /* modified clause with RestrictInfos */
2019 
2020  /* This field is NULL unless clause is potentially redundant: */
2021  EquivalenceClass *parent_ec; /* generating EquivalenceClass */
2022 
2023  /* cache space for cost and selectivity */
2024  QualCost eval_cost; /* eval cost of clause; -1 if not yet set */
2025  Selectivity norm_selec; /* selectivity for "normal" (JOIN_INNER)
2026  * semantics; -1 if not yet set; >1 means a
2027  * redundant clause */
2028  Selectivity outer_selec; /* selectivity for outer join semantics; -1 if
2029  * not yet set */
2030 
2031  /* valid if clause is mergejoinable, else NIL */
2032  List *mergeopfamilies; /* opfamilies containing clause operator */
2033 
2034  /* cache space for mergeclause processing; NULL if not yet set */
2035  EquivalenceClass *left_ec; /* EquivalenceClass containing lefthand */
2036  EquivalenceClass *right_ec; /* EquivalenceClass containing righthand */
2037  EquivalenceMember *left_em; /* EquivalenceMember for lefthand */
2038  EquivalenceMember *right_em; /* EquivalenceMember for righthand */
2039  List *scansel_cache; /* list of MergeScanSelCache structs */
2040 
2041  /* transient workspace for use while considering a specific join path */
2042  bool outer_is_left; /* T = outer var on left, F = on right */
2043 
2044  /* valid if clause is hashjoinable, else InvalidOid: */
2045  Oid hashjoinoperator; /* copy of clause operator */
2046 
2047  /* cache space for hashclause processing; -1 if not yet set */
2048  Selectivity left_bucketsize; /* avg bucketsize of left side */
2049  Selectivity right_bucketsize; /* avg bucketsize of right side */
2050  Selectivity left_mcvfreq; /* left side's most common val's freq */
2051  Selectivity right_mcvfreq; /* right side's most common val's freq */
2052 } RestrictInfo;
2053 
2054 /*
2055  * This macro embodies the correct way to test whether a RestrictInfo is
2056  * "pushed down" to a given outer join, that is, should be treated as a filter
2057  * clause rather than a join clause at that outer join. This is certainly so
2058  * if is_pushed_down is true; but examining that is not sufficient anymore,
2059  * because outer-join clauses will get pushed down to lower outer joins when
2060  * we generate a path for the lower outer join that is parameterized by the
2061  * LHS of the upper one. We can detect such a clause by noting that its
2062  * required_relids exceed the scope of the join.
2063  */
2064 #define RINFO_IS_PUSHED_DOWN(rinfo, joinrelids) \
2065  ((rinfo)->is_pushed_down || \
2066  !bms_is_subset((rinfo)->required_relids, joinrelids))
2067 
2068 /*
2069  * Since mergejoinscansel() is a relatively expensive function, and would
2070  * otherwise be invoked many times while planning a large join tree,
2071  * we go out of our way to cache its results. Each mergejoinable
2072  * RestrictInfo carries a list of the specific sort orderings that have
2073  * been considered for use with it, and the resulting selectivities.
2074  */
2075 typedef struct MergeScanSelCache
2076 {
2077  /* Ordering details (cache lookup key) */
2078  Oid opfamily; /* btree opfamily defining the ordering */
2079  Oid collation; /* collation for the ordering */
2080  int strategy; /* sort direction (ASC or DESC) */
2081  bool nulls_first; /* do NULLs come before normal values? */
2082  /* Results */
2083  Selectivity leftstartsel; /* first-join fraction for clause left side */
2084  Selectivity leftendsel; /* last-join fraction for clause left side */
2085  Selectivity rightstartsel; /* first-join fraction for clause right side */
2086  Selectivity rightendsel; /* last-join fraction for clause right side */
2088 
2089 /*
2090  * Placeholder node for an expression to be evaluated below the top level
2091  * of a plan tree. This is used during planning to represent the contained
2092  * expression. At the end of the planning process it is replaced by either
2093  * the contained expression or a Var referring to a lower-level evaluation of
2094  * the contained expression. Typically the evaluation occurs below an outer
2095  * join, and Var references above the outer join might thereby yield NULL
2096  * instead of the expression value.
2097  *
2098  * Although the planner treats this as an expression node type, it is not
2099  * recognized by the parser or executor, so we declare it here rather than
2100  * in primnodes.h.
2101  */
2102 
2103 typedef struct PlaceHolderVar
2104 {
2106  Expr *phexpr; /* the represented expression */
2107  Relids phrels; /* base relids syntactically within expr src */
2108  Index phid; /* ID for PHV (unique within planner run) */
2109  Index phlevelsup; /* > 0 if PHV belongs to outer query */
2110 } PlaceHolderVar;
2111 
2112 /*
2113  * "Special join" info.
2114  *
2115  * One-sided outer joins constrain the order of joining partially but not
2116  * completely. We flatten such joins into the planner's top-level list of
2117  * relations to join, but record information about each outer join in a
2118  * SpecialJoinInfo struct. These structs are kept in the PlannerInfo node's
2119  * join_info_list.
2120  *
2121  * Similarly, semijoins and antijoins created by flattening IN (subselect)
2122  * and EXISTS(subselect) clauses create partial constraints on join order.
2123  * These are likewise recorded in SpecialJoinInfo structs.
2124  *
2125  * We make SpecialJoinInfos for FULL JOINs even though there is no flexibility
2126  * of planning for them, because this simplifies make_join_rel()'s API.
2127  *
2128  * min_lefthand and min_righthand are the sets of base relids that must be
2129  * available on each side when performing the special join. lhs_strict is
2130  * true if the special join's condition cannot succeed when the LHS variables
2131  * are all NULL (this means that an outer join can commute with upper-level
2132  * outer joins even if it appears in their RHS). We don't bother to set
2133  * lhs_strict for FULL JOINs, however.
2134  *
2135  * It is not valid for either min_lefthand or min_righthand to be empty sets;
2136  * if they were, this would break the logic that enforces join order.
2137  *
2138  * syn_lefthand and syn_righthand are the sets of base relids that are
2139  * syntactically below this special join. (These are needed to help compute
2140  * min_lefthand and min_righthand for higher joins.)
2141  *
2142  * delay_upper_joins is set true if we detect a pushed-down clause that has
2143  * to be evaluated after this join is formed (because it references the RHS).
2144  * Any outer joins that have such a clause and this join in their RHS cannot
2145  * commute with this join, because that would leave noplace to check the
2146  * pushed-down clause. (We don't track this for FULL JOINs, either.)
2147  *
2148  * For a semijoin, we also extract the join operators and their RHS arguments
2149  * and set semi_operators, semi_rhs_exprs, semi_can_btree, and semi_can_hash.
2150  * This is done in support of possibly unique-ifying the RHS, so we don't
2151  * bother unless at least one of semi_can_btree and semi_can_hash can be set
2152  * true. (You might expect that this information would be computed during
2153  * join planning; but it's helpful to have it available during planning of
2154  * parameterized table scans, so we store it in the SpecialJoinInfo structs.)
2155  *
2156  * jointype is never JOIN_RIGHT; a RIGHT JOIN is handled by switching
2157  * the inputs to make it a LEFT JOIN. So the allowed values of jointype
2158  * in a join_info_list member are only LEFT, FULL, SEMI, or ANTI.
2159  *
2160  * For purposes of join selectivity estimation, we create transient
2161  * SpecialJoinInfo structures for regular inner joins; so it is possible
2162  * to have jointype == JOIN_INNER in such a structure, even though this is
2163  * not allowed within join_info_list. We also create transient
2164  * SpecialJoinInfos with jointype == JOIN_INNER for outer joins, since for
2165  * cost estimation purposes it is sometimes useful to know the join size under
2166  * plain innerjoin semantics. Note that lhs_strict, delay_upper_joins, and
2167  * of course the semi_xxx fields are not set meaningfully within such structs.
2168  */
2169 #ifndef HAVE_SPECIALJOININFO_TYPEDEF
2171 #define HAVE_SPECIALJOININFO_TYPEDEF 1
2172 #endif
2173 
2175 {
2177  Relids min_lefthand; /* base relids in minimum LHS for join */
2178  Relids min_righthand; /* base relids in minimum RHS for join */
2179  Relids syn_lefthand; /* base relids syntactically within LHS */
2180  Relids syn_righthand; /* base relids syntactically within RHS */
2181  JoinType jointype; /* always INNER, LEFT, FULL, SEMI, or ANTI */
2182  bool lhs_strict; /* joinclause is strict for some LHS rel */
2183  bool delay_upper_joins; /* can't commute with upper RHS */
2184  /* Remaining fields are set only for JOIN_SEMI jointype: */
2185  bool semi_can_btree; /* true if semi_operators are all btree */
2186  bool semi_can_hash; /* true if semi_operators are all hash */
2187  List *semi_operators; /* OIDs of equality join operators */
2188  List *semi_rhs_exprs; /* righthand-side expressions of these ops */
2189 };
2190 
2191 /*
2192  * Append-relation info.
2193  *
2194  * When we expand an inheritable table or a UNION-ALL subselect into an
2195  * "append relation" (essentially, a list of child RTEs), we build an
2196  * AppendRelInfo for each child RTE. The list of AppendRelInfos indicates
2197  * which child RTEs must be included when expanding the parent, and each node
2198  * carries information needed to translate between columns of the parent and
2199  * columns of the child.
2200  *
2201  * These structs are kept in the PlannerInfo node's append_rel_list, with
2202  * append_rel_array[] providing a convenient lookup method for the struct
2203  * associated with a particular child relid (there can be only one, though
2204  * parent rels may have many entries in append_rel_list).
2205  *
2206  * Note: after completion of the planner prep phase, any given RTE is an
2207  * append parent having entries in append_rel_list if and only if its
2208  * "inh" flag is set. We clear "inh" for plain tables that turn out not
2209  * to have inheritance children, and (in an abuse of the original meaning
2210  * of the flag) we set "inh" for subquery RTEs that turn out to be
2211  * flattenable UNION ALL queries. This lets us avoid useless searches
2212  * of append_rel_list.
2213  *
2214  * Note: the data structure assumes that append-rel members are single
2215  * baserels. This is OK for inheritance, but it prevents us from pulling
2216  * up a UNION ALL member subquery if it contains a join. While that could
2217  * be fixed with a more complex data structure, at present there's not much
2218  * point because no improvement in the plan could result.
2219  */
2220 
2221 typedef struct AppendRelInfo
2222 {
2224 
2225  /*
2226  * These fields uniquely identify this append relationship. There can be
2227  * (in fact, always should be) multiple AppendRelInfos for the same
2228  * parent_relid, but never more than one per child_relid, since a given
2229  * RTE cannot be a child of more than one append parent.
2230  */
2231  Index parent_relid; /* RT index of append parent rel */
2232  Index child_relid; /* RT index of append child rel */
2233 
2234  /*
2235  * For an inheritance appendrel, the parent and child are both regular
2236  * relations, and we store their rowtype OIDs here for use in translating
2237  * whole-row Vars. For a UNION-ALL appendrel, the parent and child are
2238  * both subqueries with no named rowtype, and we store InvalidOid here.
2239  */
2240  Oid parent_reltype; /* OID of parent's composite type */
2241  Oid child_reltype; /* OID of child's composite type */
2242 
2243  /*
2244  * The N'th element of this list is a Var or expression representing the
2245  * child column corresponding to the N'th column of the parent. This is
2246  * used to translate Vars referencing the parent rel into references to
2247  * the child. A list element is NULL if it corresponds to a dropped
2248  * column of the parent (this is only possible for inheritance cases, not
2249  * UNION ALL). The list elements are always simple Vars for inheritance
2250  * cases, but can be arbitrary expressions in UNION ALL cases.
2251  *
2252  * Notice we only store entries for user columns (attno > 0). Whole-row
2253  * Vars are special-cased, and system columns (attno < 0) need no special
2254  * translation since their attnos are the same for all tables.
2255  *
2256  * Caution: the Vars have varlevelsup = 0. Be careful to adjust as needed
2257  * when copying into a subquery.
2258  */
2259  List *translated_vars; /* Expressions in the child's Vars */
2260 
2261  /*
2262  * This array simplifies translations in the reverse direction, from
2263  * child's column numbers to parent's. The entry at [ccolno - 1] is the
2264  * 1-based parent column number for child column ccolno, or zero if that
2265  * child column is dropped or doesn't exist in the parent.
2266  */
2267  int num_child_cols; /* length of array */
2268  AttrNumber *parent_colnos; /* array of parent attnos, or zeroes */
2269 
2270  /*
2271  * We store the parent table's OID here for inheritance, or InvalidOid for
2272  * UNION ALL. This is only needed to help in generating error messages if
2273  * an attempt is made to reference a dropped parent column.
2274  */
2275  Oid parent_reloid; /* OID of parent relation */
2276 } AppendRelInfo;
2277 
2278 /*
2279  * For each distinct placeholder expression generated during planning, we
2280  * store a PlaceHolderInfo node in the PlannerInfo node's placeholder_list.
2281  * This stores info that is needed centrally rather than in each copy of the
2282  * PlaceHolderVar. The phid fields identify which PlaceHolderInfo goes with
2283  * each PlaceHolderVar. Note that phid is unique throughout a planner run,
2284  * not just within a query level --- this is so that we need not reassign ID's
2285  * when pulling a subquery into its parent.
2286  *
2287  * The idea is to evaluate the expression at (only) the ph_eval_at join level,
2288  * then allow it to bubble up like a Var until the ph_needed join level.
2289  * ph_needed has the same definition as attr_needed for a regular Var.
2290  *
2291  * The PlaceHolderVar's expression might contain LATERAL references to vars
2292  * coming from outside its syntactic scope. If so, those rels are *not*
2293  * included in ph_eval_at, but they are recorded in ph_lateral.
2294  *
2295  * Notice that when ph_eval_at is a join rather than a single baserel, the
2296  * PlaceHolderInfo may create constraints on join order: the ph_eval_at join
2297  * has to be formed below any outer joins that should null the PlaceHolderVar.
2298  *
2299  * We create a PlaceHolderInfo only after determining that the PlaceHolderVar
2300  * is actually referenced in the plan tree, so that unreferenced placeholders
2301  * don't result in unnecessary constraints on join order.
2302  */
2303 
2304 typedef struct PlaceHolderInfo
2305 {
2307 
2308  Index phid; /* ID for PH (unique within planner run) */
2309  PlaceHolderVar *ph_var; /* copy of PlaceHolderVar tree */
2310  Relids ph_eval_at; /* lowest level we can evaluate value at */
2311  Relids ph_lateral; /* relids of contained lateral refs, if any */
2312  Relids ph_needed; /* highest level the value is needed at */
2313  int32 ph_width; /* estimated attribute width */
2314 } PlaceHolderInfo;
2315 
2316 /*
2317  * This struct describes one potentially index-optimizable MIN/MAX aggregate
2318  * function. MinMaxAggPath contains a list of these, and if we accept that
2319  * path, the list is stored into root->minmax_aggs for use during setrefs.c.
2320  */
2321 typedef struct MinMaxAggInfo
2322 {
2324 
2325  Oid aggfnoid; /* pg_proc Oid of the aggregate */
2326  Oid aggsortop; /* Oid of its sort operator */
2327  Expr *target; /* expression we are aggregating on */
2328  PlannerInfo *subroot; /* modified "root" for planning the subquery */
2329  Path *path; /* access path for subquery */
2330  Cost pathcost; /* estimated cost to fetch first row */
2331  Param *param; /* param for subplan's output */
2332 } MinMaxAggInfo;
2333 
2334 /*
2335  * At runtime, PARAM_EXEC slots are used to pass values around from one plan
2336  * node to another. They can be used to pass values down into subqueries (for
2337  * outer references in subqueries), or up out of subqueries (for the results
2338  * of a subplan), or from a NestLoop plan node into its inner relation (when
2339  * the inner scan is parameterized with values from the outer relation).
2340  * The planner is responsible for assigning nonconflicting PARAM_EXEC IDs to
2341  * the PARAM_EXEC Params it generates.
2342  *
2343  * Outer references are managed via root->plan_params, which is a list of
2344  * PlannerParamItems. While planning a subquery, each parent query level's
2345  * plan_params contains the values required from it by the current subquery.
2346  * During create_plan(), we use plan_params to track values that must be
2347  * passed from outer to inner sides of NestLoop plan nodes.
2348  *
2349  * The item a PlannerParamItem represents can be one of three kinds:
2350  *
2351  * A Var: the slot represents a variable of this level that must be passed
2352  * down because subqueries have outer references to it, or must be passed
2353  * from a NestLoop node to its inner scan. The varlevelsup value in the Var
2354  * will always be zero.
2355  *
2356  * A PlaceHolderVar: this works much like the Var case, except that the
2357  * entry is a PlaceHolderVar node with a contained expression. The PHV
2358  * will have phlevelsup = 0, and the contained expression is adjusted
2359  * to match in level.
2360  *
2361  * An Aggref (with an expression tree representing its argument): the slot
2362  * represents an aggregate expression that is an outer reference for some
2363  * subquery. The Aggref itself has agglevelsup = 0, and its argument tree
2364  * is adjusted to match in level.
2365  *
2366  * Note: we detect duplicate Var and PlaceHolderVar parameters and coalesce
2367  * them into one slot, but we do not bother to do that for Aggrefs.
2368  * The scope of duplicate-elimination only extends across the set of
2369  * parameters passed from one query level into a single subquery, or for
2370  * nestloop parameters across the set of nestloop parameters used in a single
2371  * query level. So there is no possibility of a PARAM_EXEC slot being used
2372  * for conflicting purposes.
2373  *
2374  * In addition, PARAM_EXEC slots are assigned for Params representing outputs
2375  * from subplans (values that are setParam items for those subplans). These
2376  * IDs need not be tracked via PlannerParamItems, since we do not need any
2377  * duplicate-elimination nor later processing of the represented expressions.
2378  * Instead, we just record the assignment of the slot number by appending to
2379  * root->glob->paramExecTypes.
2380  */
2381 typedef struct PlannerParamItem
2382 {
2384 
2385  Node *item; /* the Var, PlaceHolderVar, or Aggref */
2386  int paramId; /* its assigned PARAM_EXEC slot number */
2388 
2389 /*
2390  * When making cost estimates for a SEMI/ANTI/inner_unique join, there are
2391  * some correction factors that are needed in both nestloop and hash joins
2392  * to account for the fact that the executor can stop scanning inner rows
2393  * as soon as it finds a match to the current outer row. These numbers
2394  * depend only on the selected outer and inner join relations, not on the
2395  * particular paths used for them, so it's worthwhile to calculate them
2396  * just once per relation pair not once per considered path. This struct
2397  * is filled by compute_semi_anti_join_factors and must be passed along
2398  * to the join cost estimation functions.
2399  *
2400  * outer_match_frac is the fraction of the outer tuples that are
2401  * expected to have at least one match.
2402  * match_count is the average number of matches expected for
2403  * outer tuples that have at least one match.
2404  */
2405 typedef struct SemiAntiJoinFactors
2406 {
2410 
2411 /*
2412  * Struct for extra information passed to subroutines of add_paths_to_joinrel
2413  *
2414  * restrictlist contains all of the RestrictInfo nodes for restriction
2415  * clauses that apply to this join
2416  * mergeclause_list is a list of RestrictInfo nodes for available
2417  * mergejoin clauses in this join
2418  * inner_unique is true if each outer tuple provably matches no more
2419  * than one inner tuple
2420  * sjinfo is extra info about special joins for selectivity estimation
2421  * semifactors is as shown above (only valid for SEMI/ANTI/inner_unique joins)
2422  * param_source_rels are OK targets for parameterization of result paths
2423  */
2424 typedef struct JoinPathExtraData
2425 {
2433 
2434 /*
2435  * Various flags indicating what kinds of grouping are possible.
2436  *
2437  * GROUPING_CAN_USE_SORT should be set if it's possible to perform
2438  * sort-based implementations of grouping. When grouping sets are in use,
2439  * this will be true if sorting is potentially usable for any of the grouping
2440  * sets, even if it's not usable for all of them.
2441  *
2442  * GROUPING_CAN_USE_HASH should be set if it's possible to perform
2443  * hash-based implementations of grouping.
2444  *
2445  * GROUPING_CAN_PARTIAL_AGG should be set if the aggregation is of a type
2446  * for which we support partial aggregation (not, for example, grouping sets).
2447  * It says nothing about parallel-safety or the availability of suitable paths.
2448  */
2449 #define GROUPING_CAN_USE_SORT 0x0001
2450 #define GROUPING_CAN_USE_HASH 0x0002
2451 #define GROUPING_CAN_PARTIAL_AGG 0x0004
2452 
2453 /*
2454  * What kind of partitionwise aggregation is in use?
2455  *
2456  * PARTITIONWISE_AGGREGATE_NONE: Not used.
2457  *
2458  * PARTITIONWISE_AGGREGATE_FULL: Aggregate each partition separately, and
2459  * append the results.
2460  *
2461  * PARTITIONWISE_AGGREGATE_PARTIAL: Partially aggregate each partition
2462  * separately, append the results, and then finalize aggregation.
2463  */
2464 typedef enum
2465 {
2470 
2471 /*
2472  * Struct for extra information passed to subroutines of create_grouping_paths
2473  *
2474  * flags indicating what kinds of grouping are possible.
2475  * partial_costs_set is true if the agg_partial_costs and agg_final_costs
2476  * have been initialized.
2477  * agg_partial_costs gives partial aggregation costs.
2478  * agg_final_costs gives finalization costs.
2479  * target_parallel_safe is true if target is parallel safe.
2480  * havingQual gives list of quals to be applied after aggregation.
2481  * targetList gives list of columns to be projected.
2482  * patype is the type of partitionwise aggregation that is being performed.
2483  */
2484 typedef struct
2485 {
2486  /* Data which remains constant once set. */
2487  int flags;
2491 
2492  /* Data which may differ across partitions. */
2498 
2499 /*
2500  * Struct for extra information passed to subroutines of grouping_planner
2501  *
2502  * limit_needed is true if we actually need a Limit plan node.
2503  * limit_tuples is an estimated bound on the number of output tuples,
2504  * or -1 if no LIMIT or couldn't estimate.
2505  * count_est and offset_est are the estimated values of the LIMIT and OFFSET
2506  * expressions computed by preprocess_limit() (see comments for
2507  * preprocess_limit() for more information).
2508  */
2509 typedef struct
2510 {
2513  int64 count_est;
2514  int64 offset_est;
2516 
2517 /*
2518  * For speed reasons, cost estimation for join paths is performed in two
2519  * phases: the first phase tries to quickly derive a lower bound for the
2520  * join cost, and then we check if that's sufficient to reject the path.
2521  * If not, we come back for a more refined cost estimate. The first phase
2522  * fills a JoinCostWorkspace struct with its preliminary cost estimates
2523  * and possibly additional intermediate values. The second phase takes
2524  * these values as inputs to avoid repeating work.
2525  *
2526  * (Ideally we'd declare this in cost.h, but it's also needed in pathnode.h,
2527  * so seems best to put it here.)
2528  */
2529 typedef struct JoinCostWorkspace
2530 {
2531  /* Preliminary cost estimates --- must not be larger than final ones! */
2532  Cost startup_cost; /* cost expended before fetching any tuples */
2533  Cost total_cost; /* total cost (assuming all tuples fetched) */
2534 
2535  /* Fields below here should be treated as private to costsize.c */
2536  Cost run_cost; /* non-startup cost components */
2537 
2538  /* private for cost_nestloop code */
2539  Cost inner_run_cost; /* also used by cost_mergejoin code */
2541 
2542  /* private for cost_mergejoin code */
2543  double outer_rows;
2544  double inner_rows;
2547 
2548  /* private for cost_hashjoin code */
2553 
2554 #endif /* PATHNODES_H */
QualCost eval_cost
Definition: pathnodes.h:2024
bool has_eclass_joins
Definition: pathnodes.h:732
struct TidPath TidPath
struct Path * cheapest_unique_path
Definition: pathnodes.h:683
NodeTag type
Definition: pathnodes.h:1723
List * indexorderbycols
Definition: pathnodes.h:1212
signed short int16
Definition: c.h:362
char maxParallelHazard
Definition: pathnodes.h:145
List * group_pathkeys
Definition: pathnodes.h:298
struct ProjectionPath ProjectionPath
struct UpperUniquePath UpperUniquePath
List * rowMarks
Definition: pathnodes.h:290
struct QualCost QualCost
Relids ph_needed
Definition: pathnodes.h:2312
List * qual
Definition: pathnodes.h:1675
Definition: fmgr.h:56
Selectivity leftendsel
Definition: pathnodes.h:2084
List * path_mergeclauses
Definition: pathnodes.h:1583
UpperRelationKind
Definition: pathnodes.h:71
int join_cur_level
Definition: pathnodes.h:255
List * outersortkeys
Definition: pathnodes.h:1584
List * distinctList
Definition: pathnodes.h:1775
List * unique_for_rels
Definition: pathnodes.h:721
struct HashPath HashPath
JoinPath jpath
Definition: pathnodes.h:1601
PathTarget * pathtarget
Definition: pathnodes.h:1147
Query * parse
Definition: pathnodes.h:177
List * statlist
Definition: pathnodes.h:702
LimitOption limitOption
Definition: pathnodes.h:1839
List * returningLists
Definition: pathnodes.h:1824
struct EquivalenceMember EquivalenceMember
Index security_level
Definition: pathnodes.h:1999
OnConflictExpr * onconflict
Definition: pathnodes.h:1826
struct StatisticExtInfo StatisticExtInfo
List * groupClause
Definition: pathnodes.h:1724
Node * limitOffset
Definition: pathnodes.h:1837
Path path
Definition: pathnodes.h:1208
NodeTag type
Definition: pathnodes.h:2223
Path * subpath
Definition: pathnodes.h:1650
Relids ph_eval_at
Definition: pathnodes.h:2310
List * plan_params
Definition: pathnodes.h:191
PlaceHolderVar * ph_var
Definition: pathnodes.h:2309
IndexOptInfo * indexinfo
Definition: pathnodes.h:1209
SemiAntiJoinFactors semifactors
Definition: pathnodes.h:2430
Index nominalRelation
Definition: pathnodes.h:1817
Oid * indexcollations
Definition: pathnodes.h:831
bool hasJoinRTEs
Definition: pathnodes.h:343
Path * fdw_outerpath
Definition: pathnodes.h:1351
RelOptKind reloptkind
Definition: pathnodes.h:661
Relids * attr_needed
Definition: pathnodes.h:697
bool ec_merging_done
Definition: pathnodes.h:266
PartitionwiseAggregateType
Definition: pathnodes.h:2464
List * custom_paths
Definition: pathnodes.h:1381
List * query_pathkeys
Definition: pathnodes.h:296
int num_batches
Definition: pathnodes.h:1603
List * join_info_list
Definition: pathnodes.h:281
Relids required_relids
Definition: pathnodes.h:2005
SetOpStrategy strategy
Definition: pathnodes.h:1774
Relids min_righthand
Definition: pathnodes.h:2178
AggStrategy aggstrategy
Definition: pathnodes.h:1702
bool materialize_inner
Definition: pathnodes.h:1587
void * join_search_private
Definition: pathnodes.h:360
int num_child_cols
Definition: pathnodes.h:2267
Selectivity right_mcvfreq
Definition: pathnodes.h:2051
Relids curOuterRels
Definition: pathnodes.h:356
List * qual
Definition: pathnodes.h:1707
PlannerInfo * parent_root
Definition: pathnodes.h:183
bool leakproof
Definition: pathnodes.h:1997
double limit_tuples
Definition: pathnodes.h:1409
Index ec_min_security
Definition: pathnodes.h:976
Expr * orclause
Definition: pathnodes.h:2018
Selectivity outer_match_frac
Definition: pathnodes.h:2407
Path * innerjoinpath
Definition: pathnodes.h:1528
struct IncrementalSortPath IncrementalSortPath
List * indextlist
Definition: pathnodes.h:845
AttrNumber * parent_colnos
Definition: pathnodes.h:2268
struct Path * cheapest_startup_path
Definition: pathnodes.h:681
Oid userid
Definition: pathnodes.h:714
QualCost finalCost
Definition: pathnodes.h:63
struct PartitionSchemeData PartitionSchemeData
Relids em_nullable_relids
Definition: pathnodes.h:1016
int lastPlanNodeId
Definition: pathnodes.h:135
double tuples
Definition: pathnodes.h:704
Oid reltablespace
Definition: pathnodes.h:693
Path * subpath
Definition: pathnodes.h:1772
struct RollupData RollupData
List * baserestrictinfo
Definition: pathnodes.h:726
NodeTag type
Definition: pathnodes.h:1142
List * ec_derives
Definition: pathnodes.h:968
struct BitmapOrPath BitmapOrPath
AggClauseCosts agg_partial_costs
Definition: pathnodes.h:2489
Relids clause_relids
Definition: pathnodes.h:2002
struct UniquePath UniquePath
Param * param
Definition: pathnodes.h:2331
struct AppendPath AppendPath
int parallel_workers
Definition: pathnodes.h:1153
bool pseudoconstant
Definition: pathnodes.h:1995
bool consider_param_startup
Definition: pathnodes.h:671
RelOptKind
Definition: pathnodes.h:622
List * resultRelations
Definition: pathnodes.h:121
bool is_hashed
Definition: pathnodes.h:1729
ParamPathInfo * param_info
Definition: pathnodes.h:1149
Definition: nodes.h:528
List * part_schemes
Definition: pathnodes.h:303
PartitionwiseAggregateType patype
Definition: pathnodes.h:2496
List * appendRelations
Definition: pathnodes.h:123
Oid * sortopfamily
Definition: pathnodes.h:834
struct MergeAppendPath MergeAppendPath
struct BitmapAndPath BitmapAndPath
List * partial_pathlist
Definition: pathnodes.h:680
Oid reltablespace
Definition: pathnodes.h:818
Relids left_relids
Definition: pathnodes.h:2014
List * join_rel_list
Definition: pathnodes.h:244
struct CustomPath CustomPath
struct AggClauseCosts AggClauseCosts
bool ec_below_outer_join
Definition: pathnodes.h:973
uint32 flags
Definition: pathnodes.h:1379
bool hasNonSerial
Definition: pathnodes.h:61
uint32 BlockNumber
Definition: block.h:31
struct JoinPathExtraData JoinPathExtraData
EquivalenceClass * right_ec
Definition: pathnodes.h:2036
List * cheapest_parameterized_paths
Definition: pathnodes.h:684
List * minmax_aggs
Definition: pathnodes.h:327
bool single_copy
Definition: pathnodes.h:1498
bool hypothetical
Definition: pathnodes.h:856
Index baserestrict_min_security
Definition: pathnodes.h:728
UniquePathMethod umethod
Definition: pathnodes.h:1484
struct GatherPath GatherPath
Path * subpath
Definition: pathnodes.h:1458
List * indexclauses
Definition: pathnodes.h:1210
NodeTag type
Definition: pathnodes.h:659
Relids all_partrels
Definition: pathnodes.h:751
double Selectivity
Definition: nodes.h:661
Index ec_max_security
Definition: pathnodes.h:977
bool hasNonPartial
Definition: pathnodes.h:60
bool useridiscurrent
Definition: pathnodes.h:715
AggSplit aggsplit
Definition: pathnodes.h:1703
bool immediate
Definition: pathnodes.h:855
QualCost transCost
Definition: pathnodes.h:62
List * partitioned_rels
Definition: pathnodes.h:1431
Selectivity bitmapselectivity
Definition: pathnodes.h:1295
double tuples
Definition: pathnodes.h:823
unsigned int Oid
Definition: postgres_ext.h:31
NodeTag
Definition: nodes.h:26
List * quals
Definition: pathnodes.h:1753
List ** nullable_partexprs
Definition: pathnodes.h:753
struct ForeignKeyOptInfo ForeignKeyOptInfo
AttrNumber * grouping_map
Definition: pathnodes.h:326
List * fkey_list
Definition: pathnodes.h:294
int tree_height
Definition: pathnodes.h:824
double inner_rows_total
Definition: pathnodes.h:1604
bool hasRecursion
Definition: pathnodes.h:349
struct PlaceHolderInfo PlaceHolderInfo
double numGroups
Definition: pathnodes.h:1704
double numGroups
Definition: pathnodes.h:1778
List * mergeopfamilies
Definition: pathnodes.h:2032
List * translated_vars
Definition: pathnodes.h:2259
struct AppendRelInfo AppendRelInfo
SetOpStrategy
Definition: nodes.h:809
Cost inner_rescan_run_cost
Definition: pathnodes.h:2540
struct EquivalenceClass EquivalenceClass
Oid parent_reltype
Definition: pathnodes.h:2240
Relids syn_lefthand
Definition: pathnodes.h:2179
List * rowMarks
Definition: pathnodes.h:1801
int pk_strategy
Definition: pathnodes.h:1045
double numGroups
Definition: pathnodes.h:1727
InheritanceKind
Definition: pathnodes.h:89
Cost startup
Definition: pathnodes.h:45
double allvisfrac
Definition: pathnodes.h:705
Relids outer_relids
Definition: pathnodes.h:2008
signed int int32
Definition: c.h:363
static struct cvec * eclass(struct vars *v, chr c, int cases)
Definition: regc_locale.c:508
List * bitmapquals
Definition: pathnodes.h:1294
Selectivity norm_selec
Definition: pathnodes.h:2025
List * custom_private
Definition: pathnodes.h:1382
uint64 transitionSpace
Definition: pathnodes.h:1743
JoinType
Definition: nodes.h:695
int first_partial_path
Definition: pathnodes.h:1408
WindowClause * winclause
Definition: pathnodes.h:1763
struct MaterialPath MaterialPath
struct RelOptInfo ** simple_rel_array
Definition: pathnodes.h:201
List * bitmapquals
Definition: pathnodes.h:1307
int num_workers
Definition: pathnodes.h:1499
List * multiexpr_params
Definition: pathnodes.h:261
BlockNumber pages
Definition: pathnodes.h:822
NodeTag pathtype
Definition: pathnodes.h:1144
Relids syn_righthand
Definition: pathnodes.h:2180
List * subpaths
Definition: pathnodes.h:1406
PlannerInfo * subroot
Definition: pathnodes.h:708
NodeTag type
Definition: pathnodes.h:1041
SetOpCmd cmd
Definition: pathnodes.h:1773
struct LockRowsPath LockRowsPath
bool dependsOnRole
Definition: pathnodes.h:139
bool consider_startup
Definition: pathnodes.h:670
Definition: dynahash.c:218
struct ParamPathInfo ParamPathInfo
Relids lateral_relids
Definition: pathnodes.h:689
Cost per_tuple
Definition: pathnodes.h:46
const struct CustomPathMethods * methods
Definition: pathnodes.h:1383
int wt_param_id
Definition: pathnodes.h:352
double tuple_fraction
Definition: pathnodes.h:334
Path * subpath
Definition: pathnodes.h:1762
bool skip_mark_restore
Definition: pathnodes.h:1586
RelOptInfo * rel
Definition: pathnodes.h:819
bool amoptionalkey
Definition: pathnodes.h:860
SpecialJoinInfo * sjinfo
Definition: pathnodes.h:2429
struct GroupingSetData GroupingSetData
List ** partexprs
Definition: pathnodes.h:752
bool parallelModeNeeded
Definition: pathnodes.h:143
Relids all_baserels
Definition: pathnodes.h:225
bool pk_nulls_first
Definition: pathnodes.h:1046
List * paramExecTypes
Definition: pathnodes.h:129
Relids param_source_rels
Definition: pathnodes.h:2431
NodeTag type
Definition: pathnodes.h:1103
double limit_tuples
Definition: pathnodes.h:335
struct PathKey PathKey
EquivalenceMember * left_em
Definition: pathnodes.h:2037
struct AggPath AggPath
Cost indextotalcost
Definition: pathnodes.h:1214
Cost startup_cost
Definition: pathnodes.h:1157
List * semi_rhs_exprs
Definition: pathnodes.h:2188
NodeTag type
Definition: pathnodes.h:1075
bool hasLateralRTEs
Definition: pathnodes.h:344
List * indexcols
Definition: pathnodes.h:1259
Path * subpath
Definition: pathnodes.h:1836
struct ModifyTablePath ModifyTablePath
List * joinrestrictinfo
Definition: pathnodes.h:1530
bool parallelModeOK
Definition: pathnodes.h:141
EquivalenceClass * parent_ec
Definition: pathnodes.h:2021
bool partColsUpdated
Definition: pathnodes.h:1819
struct GatherMergePath GatherMergePath
RTEKind
Definition: parsenodes.h:962
Bitmapset * rewindPlanIDs
Definition: pathnodes.h:115
RelOptInfo * parent
Definition: pathnodes.h:1146
AttrNumber indexcol
Definition: pathnodes.h:1258
bool hasAlternativeSubPlans
Definition: pathnodes.h:348
List * uniq_exprs
Definition: pathnodes.h:1486
Path * bitmapqual
Definition: pathnodes.h:1282
struct ForeignPath ForeignPath
bool outerjoin_delayed
Definition: pathnodes.h:1991
Path path
Definition: pathnodes.h:1672
List * ec_sources
Definition: pathnodes.h:967
struct Path * cheapest_total_path
Definition: pathnodes.h:682
Selectivity rightstartsel
Definition: pathnodes.h:2085
List * curOuterParams
Definition: pathnodes.h:357
struct RelOptInfo RelOptInfo
struct JoinPath JoinPath
Selectivity indexselectivity
Definition: pathnodes.h:1215
List * subplans
Definition: pathnodes.h:111
bool amcanorderbyop
Definition: pathnodes.h:859
struct RestrictInfo * rinfo
Definition: pathnodes.h:1255
List * joininfo
Definition: pathnodes.h:730
Relids ec_relids
Definition: pathnodes.h:969
PlannerGlobal * glob
Definition: pathnodes.h:179
bool outer_is_left
Definition: pathnodes.h:2042
bool partColsUpdated
Definition: pathnodes.h:363
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:717
List * left_join_clauses
Definition: pathnodes.h:270
int nparts
Definition: pathnodes.h:742
ScanDirection
Definition: sdir.h:22
List * full_join_clauses
Definition: pathnodes.h:278
List * groupClause
Definition: pathnodes.h:1706
Index * sortgrouprefs
Definition: pathnodes.h:1077
List * mergeclause_list
Definition: pathnodes.h:2427
struct Path Path
unsigned int uint32
Definition: c.h:375
AttrNumber flagColIdx
Definition: pathnodes.h:1776
Relids relids
Definition: pathnodes.h:664
AggStrategy aggstrategy
Definition: pathnodes.h:1740
Selectivity outer_selec
Definition: pathnodes.h:2028
Path * subpath
Definition: pathnodes.h:1497
struct GroupingSetsPath GroupingSetsPath
double total_table_pages
Definition: pathnodes.h:331
Selectivity bitmapselectivity
Definition: pathnodes.h:1308
bool partbounds_merged
Definition: pathnodes.h:746
RelOptInfo * rel
Definition: pathnodes.h:915
struct MinMaxAggPath MinMaxAggPath
int simple_rel_array_size
Definition: pathnodes.h:202
bool amhasgetbitmap
Definition: pathnodes.h:864
List * canon_pathkeys
Definition: pathnodes.h:268
struct PartitionSchemeData * PartitionScheme
Definition: pathnodes.h:406
List * non_unique_for_rels
Definition: pathnodes.h:723
List * indexquals
Definition: pathnodes.h:1256
List * ppilist
Definition: pathnodes.h:679
Index relid
Definition: pathnodes.h:692
List * sort_pathkeys
Definition: pathnodes.h:301
struct PlaceHolderVar PlaceHolderVar
RangeTblEntry ** simple_rte_array
Definition: pathnodes.h:209
EquivalenceMember * right_em
Definition: pathnodes.h:2038
Relids lateral_referencers
Definition: pathnodes.h:700
Expr * clause
Definition: pathnodes.h:1987
int numOrderedAggs
Definition: pathnodes.h:59
Path * subpath
Definition: pathnodes.h:1800
struct PlannerGlobal PlannerGlobal
Oid serverid
Definition: pathnodes.h:713
List * ec_opfamilies
Definition: pathnodes.h:964
List * exprs
Definition: pathnodes.h:1076
List * window_pathkeys
Definition: pathnodes.h:299
List * indrestrictinfo
Definition: pathnodes.h:847
Relids direct_lateral_relids
Definition: pathnodes.h:688
Path * outerjoinpath
Definition: pathnodes.h:1527
struct MergeScanSelCache MergeScanSelCache
List * invalItems
Definition: pathnodes.h:127
struct MergePath MergePath
struct GroupResultPath GroupResultPath
bool consider_partitionwise_join
Definition: pathnodes.h:735
NodeTag type
Definition: pathnodes.h:175
JoinPath NestPath
Definition: pathnodes.h:1543
Relids nullable_relids
Definition: pathnodes.h:2011
double inner_rows_total
Definition: pathnodes.h:2551
bool delay_upper_joins
Definition: pathnodes.h:2183
List * indexorderbys
Definition: pathnodes.h:1211
struct RestrictInfo RestrictInfo
struct ProjectSetPath ProjectSetPath
struct IndexClause IndexClause
int rel_parallel_workers
Definition: pathnodes.h:710
List * groupClause
Definition: pathnodes.h:1674
List * append_rel_list
Definition: pathnodes.h:288
struct SemiAntiJoinFactors SemiAntiJoinFactors
struct LimitPath LimitPath
struct AppendRelInfo ** append_rel_array
Definition: pathnodes.h:217
Index lastPHId
Definition: pathnodes.h:131
List * cte_plan_ids
Definition: pathnodes.h:259
List * mmaggregates
Definition: pathnodes.h:1752
Relids ph_lateral
Definition: pathnodes.h:2311
struct PartitionBoundInfoData * boundinfo
Definition: pathnodes.h:745
List * tidquals
Definition: pathnodes.h:1321
Path * subpath
Definition: pathnodes.h:1673
unsigned int Index
Definition: c.h:483
struct GroupPath GroupPath
RTEKind rtekind
Definition: pathnodes.h:694
List * indexlist
Definition: pathnodes.h:701
List * init_plans
Definition: pathnodes.h:257
List * in_operators
Definition: pathnodes.h:1485
double rows
Definition: pathnodes.h:667
bool hasPseudoConstantQuals
Definition: pathnodes.h:346
bool amhasgettuple
Definition: pathnodes.h:863
List * distinct_pathkeys
Definition: pathnodes.h:300
bool is_pushed_down
Definition: pathnodes.h:1989
void * fdw_private
Definition: pathnodes.h:718
Cost total_cost
Definition: pathnodes.h:1158
NodeTag type
Definition: pathnodes.h:815
CostSelector
Definition: pathnodes.h:34
Selectivity left_bucketsize
Definition: pathnodes.h:2048
int firstFlag
Definition: pathnodes.h:1777
double outer_skip_rows
Definition: pathnodes.h:2545
List * pathkeys
Definition: pathnodes.h:1160
Relids right_relids
Definition: pathnodes.h:2015
uint64 transitionSpace
Definition: pathnodes.h:1705
BlockNumber pages
Definition: pathnodes.h:703
Path path
Definition: pathnodes.h:1520
struct BitmapHeapPath BitmapHeapPath
ParamListInfo boundParams
Definition: pathnodes.h:109
Expr * target
Definition: pathnodes.h:2327
List * eq_classes
Definition: pathnodes.h:264
List ** join_rel_level
Definition: pathnodes.h:254
UniquePathMethod
Definition: pathnodes.h:1473
NodeTag type
Definition: pathnodes.h:107
Path * subpath
Definition: pathnodes.h:1636
double rows
Definition: pathnodes.h:1156
bool parallel_safe
Definition: pathnodes.h:1152
List * lateral_vars
Definition: pathnodes.h:699
struct WindowAggPath WindowAggPath
InheritanceKind inhTargetKind
Definition: pathnodes.h:340
struct PlannerParamItem PlannerParamItem
struct FmgrInfo * partsupfunc
Definition: pathnodes.h:403
Index rootRelation
Definition: pathnodes.h:1818
JoinType jointype
Definition: pathnodes.h:2181
EquivalenceClass * pk_eclass
Definition: pathnodes.h:1043
Bitmapset * outer_params
Definition: pathnodes.h:192
Selectivity left_mcvfreq
Definition: pathnodes.h:2050
List * ppi_clauses
Definition: pathnodes.h:1107
struct RelOptInfo ** part_rels
Definition: pathnodes.h:749
struct Path * non_recursive_path
Definition: pathnodes.h:353
#define INDEX_MAX_KEYS
size_t Size
Definition: c.h:474
Oid hashjoinoperator
Definition: pathnodes.h:2045
NodeTag type
Definition: pathnodes.h:1985
QualCost cost
Definition: pathnodes.h:1078
AggSplit
Definition: nodes.h:779
bool ec_has_volatile
Definition: pathnodes.h:972
List * relationOids
Definition: pathnodes.h:125
List * subroots
Definition: pathnodes.h:113
bool amsearcharray
Definition: pathnodes.h:861
struct HTAB * join_rel_hash
Definition: pathnodes.h:245
bool inner_unique
Definition: pathnodes.h:1524
Index qual_security_level
Definition: pathnodes.h:337
bool consider_parallel
Definition: pathnodes.h:672
int nkeycolumns
Definition: pathnodes.h:828
List * innersortkeys
Definition: pathnodes.h:1585
Path * subpath
Definition: pathnodes.h:1701
Oid * opcintype
Definition: pathnodes.h:833
LimitOption
Definition: nodes.h:834
List * partitioned_rels
Definition: pathnodes.h:1405
Bitmapset * Relids
Definition: pathnodes.h:28
Index query_level
Definition: pathnodes.h:181
Oid pk_opfamily
Definition: pathnodes.h:1044
double ppi_rows
Definition: pathnodes.h:1106
Path path
Definition: pathnodes.h:1835
Path path
Definition: pathnodes.h:1320
Oid * opfamily
Definition: pathnodes.h:832
List * withCheckOptionLists
Definition: pathnodes.h:1823
List * finalrtable
Definition: pathnodes.h:117
List * partitioned_child_rels
Definition: pathnodes.h:754
AggStrategy
Definition: nodes.h:757
Bitmapset * keys
Definition: pathnodes.h:917
Index phlevelsup
Definition: pathnodes.h:2109
Index lastRowMarkId
Definition: pathnodes.h:133
AttrNumber max_attr
Definition: pathnodes.h:696
Selectivity match_count
Definition: pathnodes.h:2408
Selectivity right_bucketsize
Definition: pathnodes.h:2049
EquivalenceClass * left_ec
Definition: pathnodes.h:2035
struct JoinCostWorkspace JoinCostWorkspace
Relids nullable_baserels
Definition: pathnodes.h:233
struct RecursiveUnionPath RecursiveUnionPath
List * fdw_private
Definition: pathnodes.h:1352
SetOpCmd
Definition: nodes.h:801
JoinType jointype
Definition: pathnodes.h:1522
List * semi_operators
Definition: pathnodes.h:2187
ScanDirection indexscandir
Definition: pathnodes.h:1213
CmdType operation
Definition: pathnodes.h:1815
struct MinMaxAggInfo MinMaxAggInfo
struct SubqueryScanPath SubqueryScanPath
List * placeholder_list
Definition: pathnodes.h:292
List * resultRelations
Definition: pathnodes.h:1820
Size transitionSpace
Definition: pathnodes.h:64
double numGroups
Definition: pathnodes.h:1718
bool hashable
Definition: pathnodes.h:1728
bool hasHavingQual
Definition: pathnodes.h:345
JoinPath jpath
Definition: pathnodes.h:1582
PartitionScheme part_scheme
Definition: pathnodes.h:741
bool parallel_aware
Definition: pathnodes.h:1151
int * indexkeys
Definition: pathnodes.h:829
Definition: c.h:563
List * path_hashclauses
Definition: pathnodes.h:1602
struct PathTarget PathTarget
List * initial_rels
Definition: pathnodes.h:306
List * pathlist
Definition: pathnodes.h:678
Relids ppi_req_outer
Definition: pathnodes.h:1105
MemoryContext planner_cxt
Definition: pathnodes.h:329
List * right_join_clauses
Definition: pathnodes.h:274
Index child_relid
Definition: pathnodes.h:2232
bool * canreturn
Definition: pathnodes.h:838
struct IndexPath IndexPath
bool amsearchnulls
Definition: pathnodes.h:862
List * partition_qual
Definition: pathnodes.h:748
bool * nulls_first
Definition: pathnodes.h:836
struct SetOpPath SetOpPath
Path * subpath
Definition: pathnodes.h:1624
NodeTag type
Definition: pathnodes.h:1254
Index parent_relid
Definition: pathnodes.h:2231
bool * reverse_sort
Definition: pathnodes.h:835
PartitionDirectory partition_directory
Definition: pathnodes.h:147
bytea ** opclassoptions
Definition: pathnodes.h:837
double inner_skip_rows
Definition: pathnodes.h:2546
List * processed_tlist
Definition: pathnodes.h:323
List * indpred
Definition: pathnodes.h:843
int32 * attr_widths
Definition: pathnodes.h:698
AggClauseCosts agg_final_costs
Definition: pathnodes.h:2490
Node * limitCount
Definition: pathnodes.h:1838
List * finalrowmarks
Definition: pathnodes.h:119
struct SortPath SortPath
Definition: pg_list.h:50
Path path
Definition: pathnodes.h:1649
struct PathTarget * reltarget
Definition: pathnodes.h:675
Relids min_lefthand
Definition: pathnodes.h:2177
int16 AttrNumber
Definition: attnum.h:21
QualCost baserestrictcost
Definition: pathnodes.h:727
List * subplan_params
Definition: pathnodes.h:709
Path path
Definition: pathnodes.h:1771
NodeTag type
Definition: pathnodes.h:2323
CmdType
Definition: nodes.h:671
List * gsets_data
Definition: pathnodes.h:1726
Bitmapset * eclass_indexes
Definition: pathnodes.h:706
Path path
Definition: pathnodes.h:1700
double limit_tuples
Definition: pathnodes.h:1433
struct EquivalenceClass * ec_merged
Definition: pathnodes.h:978
Selectivity rightendsel
Definition: pathnodes.h:2086
bool amcanparallel
Definition: pathnodes.h:865
double Cost
Definition: nodes.h:662
List * scansel_cache
Definition: pathnodes.h:2039
Selectivity leftstartsel
Definition: pathnodes.h:2083
List * ec_members
Definition: pathnodes.h:966
List * indexprs
Definition: pathnodes.h:842
Relids top_parent_relids
Definition: pathnodes.h:737
bool transientPlan
Definition: pathnodes.h:137
List * gsets
Definition: pathnodes.h:1725
bool is_dummy_rel(RelOptInfo *rel)
Definition: joinrels.c:1212
Path * subpath
Definition: pathnodes.h:1483
PlannerInfo * subroot
Definition: pathnodes.h:2328
AttrNumber min_attr
Definition: pathnodes.h:695