PostgreSQL Source Code  git master
planmain.h File Reference
#include "nodes/pathnodes.h"
#include "nodes/plannodes.h"
Include dependency graph for planmain.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Macros

#define DEFAULT_CURSOR_TUPLE_FRACTION   0.1
 

Typedefs

typedef void(* query_pathkeys_callback) (PlannerInfo *root, void *extra)
 

Functions

RelOptInfoquery_planner (PlannerInfo *root, query_pathkeys_callback qp_callback, void *qp_extra)
 
void preprocess_minmax_aggregates (PlannerInfo *root)
 
Plancreate_plan (PlannerInfo *root, Path *best_path)
 
ForeignScanmake_foreignscan (List *qptlist, List *qpqual, Index scanrelid, List *fdw_exprs, List *fdw_private, List *fdw_scan_tlist, List *fdw_recheck_quals, Plan *outer_plan)
 
Planchange_plan_targetlist (Plan *subplan, List *tlist, bool tlist_parallel_safe)
 
Planmaterialize_finished_plan (Plan *subplan)
 
bool is_projection_capable_path (Path *path)
 
bool is_projection_capable_plan (Plan *plan)
 
Sortmake_sort_from_sortclauses (List *sortcls, Plan *lefttree)
 
Aggmake_agg (List *tlist, List *qual, AggStrategy aggstrategy, AggSplit aggsplit, int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations, List *groupingSets, List *chain, double dNumGroups, Size transitionSpace, Plan *lefttree)
 
Limitmake_limit (Plan *lefttree, Node *limitOffset, Node *limitCount, LimitOption limitOption, int uniqNumCols, AttrNumber *uniqColIdx, Oid *uniqOperators, Oid *uniqCollations)
 
void add_base_rels_to_query (PlannerInfo *root, Node *jtnode)
 
void add_other_rels_to_query (PlannerInfo *root)
 
void build_base_rel_tlists (PlannerInfo *root, List *final_tlist)
 
void add_vars_to_targetlist (PlannerInfo *root, List *vars, Relids where_needed)
 
void add_vars_to_attr_needed (PlannerInfo *root, List *vars, Relids where_needed)
 
void find_lateral_references (PlannerInfo *root)
 
void rebuild_lateral_attr_needed (PlannerInfo *root)
 
void create_lateral_join_info (PlannerInfo *root)
 
Listdeconstruct_jointree (PlannerInfo *root)
 
bool restriction_is_always_true (PlannerInfo *root, RestrictInfo *restrictinfo)
 
bool restriction_is_always_false (PlannerInfo *root, RestrictInfo *restrictinfo)
 
void distribute_restrictinfo_to_rels (PlannerInfo *root, RestrictInfo *restrictinfo)
 
RestrictInfoprocess_implied_equality (PlannerInfo *root, Oid opno, Oid collation, Expr *item1, Expr *item2, Relids qualscope, Index security_level, bool both_const)
 
RestrictInfobuild_implied_join_equality (PlannerInfo *root, Oid opno, Oid collation, Expr *item1, Expr *item2, Relids qualscope, Index security_level)
 
void rebuild_joinclause_attr_needed (PlannerInfo *root)
 
void match_foreign_keys_to_quals (PlannerInfo *root)
 
Listremove_useless_joins (PlannerInfo *root, List *joinlist)
 
void reduce_unique_semijoins (PlannerInfo *root)
 
bool query_supports_distinctness (Query *query)
 
bool query_is_distinct_for (Query *query, List *colnos, List *opids)
 
bool innerrel_is_unique (PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist, bool force_cache)
 
Planset_plan_references (PlannerInfo *root, Plan *plan)
 
bool trivial_subqueryscan (SubqueryScan *plan)
 
Paramfind_minmax_agg_replacement_param (PlannerInfo *root, Aggref *aggref)
 
void record_plan_function_dependency (PlannerInfo *root, Oid funcid)
 
void record_plan_type_dependency (PlannerInfo *root, Oid typid)
 
bool extract_query_dependencies_walker (Node *node, PlannerInfo *context)
 

Variables

PGDLLIMPORT double cursor_tuple_fraction
 
PGDLLIMPORT int from_collapse_limit
 
PGDLLIMPORT int join_collapse_limit
 

Macro Definition Documentation

◆ DEFAULT_CURSOR_TUPLE_FRACTION

#define DEFAULT_CURSOR_TUPLE_FRACTION   0.1

Definition at line 21 of file planmain.h.

Typedef Documentation

◆ query_pathkeys_callback

typedef void(* query_pathkeys_callback) (PlannerInfo *root, void *extra)

Definition at line 25 of file planmain.h.

Function Documentation

◆ add_base_rels_to_query()

void add_base_rels_to_query ( PlannerInfo root,
Node jtnode 
)

Definition at line 157 of file initsplan.c.

158 {
159  if (jtnode == NULL)
160  return;
161  if (IsA(jtnode, RangeTblRef))
162  {
163  int varno = ((RangeTblRef *) jtnode)->rtindex;
164 
165  (void) build_simple_rel(root, varno, NULL);
166  }
167  else if (IsA(jtnode, FromExpr))
168  {
169  FromExpr *f = (FromExpr *) jtnode;
170  ListCell *l;
171 
172  foreach(l, f->fromlist)
174  }
175  else if (IsA(jtnode, JoinExpr))
176  {
177  JoinExpr *j = (JoinExpr *) jtnode;
178 
179  add_base_rels_to_query(root, j->larg);
180  add_base_rels_to_query(root, j->rarg);
181  }
182  else
183  elog(ERROR, "unrecognized node type: %d",
184  (int) nodeTag(jtnode));
185 }
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
void add_base_rels_to_query(PlannerInfo *root, Node *jtnode)
Definition: initsplan.c:157
int j
Definition: isn.c:74
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define nodeTag(nodeptr)
Definition: nodes.h:133
#define lfirst(lc)
Definition: pg_list.h:172
tree ctl root
Definition: radixtree.h:1886
RelOptInfo * build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent)
Definition: relnode.c:192
List * fromlist
Definition: primnodes.h:2308

References build_simple_rel(), elog, ERROR, FromExpr::fromlist, IsA, j, JoinTreeItem::jtnode, lfirst, nodeTag, and root.

Referenced by query_planner().

◆ add_other_rels_to_query()

void add_other_rels_to_query ( PlannerInfo root)

Definition at line 195 of file initsplan.c.

196 {
197  int rti;
198 
199  for (rti = 1; rti < root->simple_rel_array_size; rti++)
200  {
201  RelOptInfo *rel = root->simple_rel_array[rti];
202  RangeTblEntry *rte = root->simple_rte_array[rti];
203 
204  /* there may be empty slots corresponding to non-baserel RTEs */
205  if (rel == NULL)
206  continue;
207 
208  /* Ignore any "otherrels" that were already added. */
209  if (rel->reloptkind != RELOPT_BASEREL)
210  continue;
211 
212  /* If it's marked as inheritable, look for children. */
213  if (rte->inh)
214  expand_inherited_rtentry(root, rel, rte, rti);
215  }
216 }
void expand_inherited_rtentry(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte, Index rti)
Definition: inherit.c:86
@ RELOPT_BASEREL
Definition: pathnodes.h:827
RelOptKind reloptkind
Definition: pathnodes.h:865

References expand_inherited_rtentry(), RangeTblEntry::inh, RELOPT_BASEREL, RelOptInfo::reloptkind, and root.

Referenced by query_planner().

◆ add_vars_to_attr_needed()

void add_vars_to_attr_needed ( PlannerInfo root,
List vars,
Relids  where_needed 
)

Definition at line 352 of file initsplan.c.

354 {
355  ListCell *temp;
356 
357  Assert(!bms_is_empty(where_needed));
358 
359  foreach(temp, vars)
360  {
361  Node *node = (Node *) lfirst(temp);
362 
363  if (IsA(node, Var))
364  {
365  Var *var = (Var *) node;
366  RelOptInfo *rel = find_base_rel(root, var->varno);
367  int attno = var->varattno;
368 
369  if (bms_is_subset(where_needed, rel->relids))
370  continue;
371  Assert(attno >= rel->min_attr && attno <= rel->max_attr);
372  attno -= rel->min_attr;
373  rel->attr_needed[attno] = bms_add_members(rel->attr_needed[attno],
374  where_needed);
375  }
376  else if (IsA(node, PlaceHolderVar))
377  {
378  PlaceHolderVar *phv = (PlaceHolderVar *) node;
380 
381  phinfo->ph_needed = bms_add_members(phinfo->ph_needed,
382  where_needed);
383  }
384  else
385  elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
386  }
387 }
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
#define bms_is_empty(a)
Definition: bitmapset.h:118
#define Assert(condition)
Definition: c.h:849
PlaceHolderInfo * find_placeholder_info(PlannerInfo *root, PlaceHolderVar *phv)
Definition: placeholder.c:83
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:414
Definition: nodes.h:129
Relids ph_needed
Definition: pathnodes.h:3104
Relids relids
Definition: pathnodes.h:871
AttrNumber min_attr
Definition: pathnodes.h:924
Definition: primnodes.h:248
AttrNumber varattno
Definition: primnodes.h:260
int varno
Definition: primnodes.h:255
Definition: regcomp.c:281

References Assert, bms_add_members(), bms_is_empty, bms_is_subset(), elog, ERROR, find_base_rel(), find_placeholder_info(), IsA, lfirst, RelOptInfo::min_attr, nodeTag, PlaceHolderInfo::ph_needed, RelOptInfo::relids, root, Var::varattno, and Var::varno.

Referenced by rebuild_eclass_attr_needed(), rebuild_joinclause_attr_needed(), rebuild_lateral_attr_needed(), and rebuild_placeholder_attr_needed().

◆ add_vars_to_targetlist()

void add_vars_to_targetlist ( PlannerInfo root,
List vars,
Relids  where_needed 
)

Definition at line 281 of file initsplan.c.

283 {
284  ListCell *temp;
285 
286  Assert(!bms_is_empty(where_needed));
287 
288  foreach(temp, vars)
289  {
290  Node *node = (Node *) lfirst(temp);
291 
292  if (IsA(node, Var))
293  {
294  Var *var = (Var *) node;
295  RelOptInfo *rel = find_base_rel(root, var->varno);
296  int attno = var->varattno;
297 
298  if (bms_is_subset(where_needed, rel->relids))
299  continue;
300  Assert(attno >= rel->min_attr && attno <= rel->max_attr);
301  attno -= rel->min_attr;
302  if (rel->attr_needed[attno] == NULL)
303  {
304  /*
305  * Variable not yet requested, so add to rel's targetlist.
306  *
307  * The value available at the rel's scan level has not been
308  * nulled by any outer join, so drop its varnullingrels.
309  * (We'll put those back as we climb up the join tree.)
310  */
311  var = copyObject(var);
312  var->varnullingrels = NULL;
313  rel->reltarget->exprs = lappend(rel->reltarget->exprs, var);
314  /* reltarget cost and width will be computed later */
315  }
316  rel->attr_needed[attno] = bms_add_members(rel->attr_needed[attno],
317  where_needed);
318  }
319  else if (IsA(node, PlaceHolderVar))
320  {
321  PlaceHolderVar *phv = (PlaceHolderVar *) node;
323 
324  phinfo->ph_needed = bms_add_members(phinfo->ph_needed,
325  where_needed);
326  }
327  else
328  elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
329  }
330 }
List * lappend(List *list, void *datum)
Definition: list.c:339
#define copyObject(obj)
Definition: nodes.h:224
List * exprs
Definition: pathnodes.h:1542
struct PathTarget * reltarget
Definition: pathnodes.h:893

References Assert, bms_add_members(), bms_is_empty, bms_is_subset(), copyObject, elog, ERROR, PathTarget::exprs, find_base_rel(), find_placeholder_info(), IsA, lappend(), lfirst, RelOptInfo::min_attr, nodeTag, PlaceHolderInfo::ph_needed, RelOptInfo::relids, RelOptInfo::reltarget, root, Var::varattno, and Var::varno.

Referenced by build_base_rel_tlists(), distribute_qual_to_rels(), expand_inherited_rtentry(), extract_lateral_references(), fix_placeholder_input_needed_levels(), generate_base_implied_equalities_no_const(), and process_implied_equality().

◆ build_base_rel_tlists()

void build_base_rel_tlists ( PlannerInfo root,
List final_tlist 
)

Definition at line 234 of file initsplan.c.

235 {
236  List *tlist_vars = pull_var_clause((Node *) final_tlist,
240 
241  if (tlist_vars != NIL)
242  {
244  list_free(tlist_vars);
245  }
246 
247  /*
248  * If there's a HAVING clause, we'll need the Vars it uses, too. Note
249  * that HAVING can contain Aggrefs but not WindowFuncs.
250  */
251  if (root->parse->havingQual)
252  {
253  List *having_vars = pull_var_clause(root->parse->havingQual,
256 
257  if (having_vars != NIL)
258  {
259  add_vars_to_targetlist(root, having_vars,
260  bms_make_singleton(0));
261  list_free(having_vars);
262  }
263  }
264 }
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
void add_vars_to_targetlist(PlannerInfo *root, List *vars, Relids where_needed)
Definition: initsplan.c:281
void list_free(List *list)
Definition: list.c:1546
#define PVC_RECURSE_AGGREGATES
Definition: optimizer.h:187
#define PVC_RECURSE_WINDOWFUNCS
Definition: optimizer.h:189
#define PVC_INCLUDE_PLACEHOLDERS
Definition: optimizer.h:190
#define NIL
Definition: pg_list.h:68
Definition: pg_list.h:54
List * pull_var_clause(Node *node, int flags)
Definition: var.c:612

References add_vars_to_targetlist(), bms_make_singleton(), list_free(), NIL, pull_var_clause(), PVC_INCLUDE_PLACEHOLDERS, PVC_RECURSE_AGGREGATES, PVC_RECURSE_WINDOWFUNCS, and root.

Referenced by distribute_row_identity_vars(), and query_planner().

◆ build_implied_join_equality()

RestrictInfo* build_implied_join_equality ( PlannerInfo root,
Oid  opno,
Oid  collation,
Expr item1,
Expr item2,
Relids  qualscope,
Index  security_level 
)

Definition at line 3175 of file initsplan.c.

3182 {
3183  RestrictInfo *restrictinfo;
3184  Expr *clause;
3185 
3186  /*
3187  * Build the new clause. Copy to ensure it shares no substructure with
3188  * original (this is necessary in case there are subselects in there...)
3189  */
3190  clause = make_opclause(opno,
3191  BOOLOID, /* opresulttype */
3192  false, /* opretset */
3193  copyObject(item1),
3194  copyObject(item2),
3195  InvalidOid,
3196  collation);
3197 
3198  /*
3199  * Build the RestrictInfo node itself.
3200  */
3201  restrictinfo = make_restrictinfo(root,
3202  clause,
3203  true, /* is_pushed_down */
3204  false, /* !has_clone */
3205  false, /* !is_clone */
3206  false, /* pseudoconstant */
3207  security_level, /* security_level */
3208  qualscope, /* required_relids */
3209  NULL, /* incompatible_relids */
3210  NULL); /* outer_relids */
3211 
3212  /* Set mergejoinability/hashjoinability flags */
3213  check_mergejoinable(restrictinfo);
3214  check_hashjoinable(restrictinfo);
3215  check_memoizable(restrictinfo);
3216 
3217  return restrictinfo;
3218 }
static void check_hashjoinable(RestrictInfo *restrictinfo)
Definition: initsplan.c:3552
static void check_mergejoinable(RestrictInfo *restrictinfo)
Definition: initsplan.c:3515
static void check_memoizable(RestrictInfo *restrictinfo)
Definition: initsplan.c:3580
Expr * make_opclause(Oid opno, Oid opresulttype, bool opretset, Expr *leftop, Expr *rightop, Oid opcollid, Oid inputcollid)
Definition: makefuncs.c:628
#define InvalidOid
Definition: postgres_ext.h:36
RestrictInfo * make_restrictinfo(PlannerInfo *root, Expr *clause, bool is_pushed_down, bool has_clone, bool is_clone, bool pseudoconstant, Index security_level, Relids required_relids, Relids incompatible_relids, Relids outer_relids)
Definition: restrictinfo.c:63

References check_hashjoinable(), check_memoizable(), check_mergejoinable(), copyObject, InvalidOid, make_opclause(), make_restrictinfo(), JoinTreeItem::qualscope, and root.

Referenced by create_join_clause(), reconsider_full_join_clause(), and reconsider_outer_join_clause().

◆ change_plan_targetlist()

Plan* change_plan_targetlist ( Plan subplan,
List tlist,
bool  tlist_parallel_safe 
)

Definition at line 2151 of file createplan.c.

2152 {
2153  /*
2154  * If the top plan node can't do projections and its existing target list
2155  * isn't already what we need, we need to add a Result node to help it
2156  * along.
2157  */
2158  if (!is_projection_capable_plan(subplan) &&
2159  !tlist_same_exprs(tlist, subplan->targetlist))
2160  subplan = inject_projection_plan(subplan, tlist,
2161  subplan->parallel_safe &&
2162  tlist_parallel_safe);
2163  else
2164  {
2165  /* Else we can just replace the plan node's tlist */
2166  subplan->targetlist = tlist;
2167  subplan->parallel_safe &= tlist_parallel_safe;
2168  }
2169  return subplan;
2170 }
bool is_projection_capable_plan(Plan *plan)
Definition: createplan.c:7346
static Plan * inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe)
Definition: createplan.c:2119
bool parallel_safe
Definition: plannodes.h:142
List * targetlist
Definition: plannodes.h:153
bool tlist_same_exprs(List *tlist1, List *tlist2)
Definition: tlist.c:218

References inject_projection_plan(), is_projection_capable_plan(), Plan::parallel_safe, Plan::targetlist, and tlist_same_exprs().

Referenced by create_unique_plan(), and postgresGetForeignPlan().

◆ create_lateral_join_info()

void create_lateral_join_info ( PlannerInfo root)

Definition at line 604 of file initsplan.c.

605 {
606  bool found_laterals = false;
607  Index rti;
608  ListCell *lc;
609 
610  /* We need do nothing if the query contains no LATERAL RTEs */
611  if (!root->hasLateralRTEs)
612  return;
613 
614  /* We'll need to have the ph_eval_at values for PlaceHolderVars */
615  Assert(root->placeholdersFrozen);
616 
617  /*
618  * Examine all baserels (the rel array has been set up by now).
619  */
620  for (rti = 1; rti < root->simple_rel_array_size; rti++)
621  {
622  RelOptInfo *brel = root->simple_rel_array[rti];
623  Relids lateral_relids;
624 
625  /* there may be empty slots corresponding to non-baserel RTEs */
626  if (brel == NULL)
627  continue;
628 
629  Assert(brel->relid == rti); /* sanity check on array */
630 
631  /* ignore RTEs that are "other rels" */
632  if (brel->reloptkind != RELOPT_BASEREL)
633  continue;
634 
635  lateral_relids = NULL;
636 
637  /* consider each laterally-referenced Var or PHV */
638  foreach(lc, brel->lateral_vars)
639  {
640  Node *node = (Node *) lfirst(lc);
641 
642  if (IsA(node, Var))
643  {
644  Var *var = (Var *) node;
645 
646  found_laterals = true;
647  lateral_relids = bms_add_member(lateral_relids,
648  var->varno);
649  }
650  else if (IsA(node, PlaceHolderVar))
651  {
652  PlaceHolderVar *phv = (PlaceHolderVar *) node;
654 
655  found_laterals = true;
656  lateral_relids = bms_add_members(lateral_relids,
657  phinfo->ph_eval_at);
658  }
659  else
660  Assert(false);
661  }
662 
663  /* We now have all the simple lateral refs from this rel */
664  brel->direct_lateral_relids = lateral_relids;
665  brel->lateral_relids = bms_copy(lateral_relids);
666  }
667 
668  /*
669  * Now check for lateral references within PlaceHolderVars, and mark their
670  * eval_at rels as having lateral references to the source rels.
671  *
672  * For a PHV that is due to be evaluated at a baserel, mark its source(s)
673  * as direct lateral dependencies of the baserel (adding onto the ones
674  * recorded above). If it's due to be evaluated at a join, mark its
675  * source(s) as indirect lateral dependencies of each baserel in the join,
676  * ie put them into lateral_relids but not direct_lateral_relids. This is
677  * appropriate because we can't put any such baserel on the outside of a
678  * join to one of the PHV's lateral dependencies, but on the other hand we
679  * also can't yet join it directly to the dependency.
680  */
681  foreach(lc, root->placeholder_list)
682  {
683  PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
684  Relids eval_at = phinfo->ph_eval_at;
685  Relids lateral_refs;
686  int varno;
687 
688  if (phinfo->ph_lateral == NULL)
689  continue; /* PHV is uninteresting if no lateral refs */
690 
691  found_laterals = true;
692 
693  /*
694  * Include only baserels not outer joins in the evaluation sites'
695  * lateral relids. This avoids problems when outer join order gets
696  * rearranged, and it should still ensure that the lateral values are
697  * available when needed.
698  */
699  lateral_refs = bms_intersect(phinfo->ph_lateral, root->all_baserels);
700  Assert(!bms_is_empty(lateral_refs));
701 
702  if (bms_get_singleton_member(eval_at, &varno))
703  {
704  /* Evaluation site is a baserel */
705  RelOptInfo *brel = find_base_rel(root, varno);
706 
707  brel->direct_lateral_relids =
709  lateral_refs);
710  brel->lateral_relids =
712  lateral_refs);
713  }
714  else
715  {
716  /* Evaluation site is a join */
717  varno = -1;
718  while ((varno = bms_next_member(eval_at, varno)) >= 0)
719  {
720  RelOptInfo *brel = find_base_rel_ignore_join(root, varno);
721 
722  if (brel == NULL)
723  continue; /* ignore outer joins in eval_at */
725  lateral_refs);
726  }
727  }
728  }
729 
730  /*
731  * If we found no actual lateral references, we're done; but reset the
732  * hasLateralRTEs flag to avoid useless work later.
733  */
734  if (!found_laterals)
735  {
736  root->hasLateralRTEs = false;
737  return;
738  }
739 
740  /*
741  * Calculate the transitive closure of the lateral_relids sets, so that
742  * they describe both direct and indirect lateral references. If relation
743  * X references Y laterally, and Y references Z laterally, then we will
744  * have to scan X on the inside of a nestloop with Z, so for all intents
745  * and purposes X is laterally dependent on Z too.
746  *
747  * This code is essentially Warshall's algorithm for transitive closure.
748  * The outer loop considers each baserel, and propagates its lateral
749  * dependencies to those baserels that have a lateral dependency on it.
750  */
751  for (rti = 1; rti < root->simple_rel_array_size; rti++)
752  {
753  RelOptInfo *brel = root->simple_rel_array[rti];
754  Relids outer_lateral_relids;
755  Index rti2;
756 
757  if (brel == NULL || brel->reloptkind != RELOPT_BASEREL)
758  continue;
759 
760  /* need not consider baserel further if it has no lateral refs */
761  outer_lateral_relids = brel->lateral_relids;
762  if (outer_lateral_relids == NULL)
763  continue;
764 
765  /* else scan all baserels */
766  for (rti2 = 1; rti2 < root->simple_rel_array_size; rti2++)
767  {
768  RelOptInfo *brel2 = root->simple_rel_array[rti2];
769 
770  if (brel2 == NULL || brel2->reloptkind != RELOPT_BASEREL)
771  continue;
772 
773  /* if brel2 has lateral ref to brel, propagate brel's refs */
774  if (bms_is_member(rti, brel2->lateral_relids))
776  outer_lateral_relids);
777  }
778  }
779 
780  /*
781  * Now that we've identified all lateral references, mark each baserel
782  * with the set of relids of rels that reference it laterally (possibly
783  * indirectly) --- that is, the inverse mapping of lateral_relids.
784  */
785  for (rti = 1; rti < root->simple_rel_array_size; rti++)
786  {
787  RelOptInfo *brel = root->simple_rel_array[rti];
788  Relids lateral_relids;
789  int rti2;
790 
791  if (brel == NULL || brel->reloptkind != RELOPT_BASEREL)
792  continue;
793 
794  /* Nothing to do at rels with no lateral refs */
795  lateral_relids = brel->lateral_relids;
796  if (bms_is_empty(lateral_relids))
797  continue;
798 
799  /* No rel should have a lateral dependency on itself */
800  Assert(!bms_is_member(rti, lateral_relids));
801 
802  /* Mark this rel's referencees */
803  rti2 = -1;
804  while ((rti2 = bms_next_member(lateral_relids, rti2)) >= 0)
805  {
806  RelOptInfo *brel2 = root->simple_rel_array[rti2];
807 
808  if (brel2 == NULL)
809  continue; /* must be an OJ */
810 
811  Assert(brel2->reloptkind == RELOPT_BASEREL);
812  brel2->lateral_referencers =
813  bms_add_member(brel2->lateral_referencers, rti);
814  }
815  }
816 }
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1306
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
Bitmapset * bms_intersect(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:292
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
bool bms_get_singleton_member(const Bitmapset *a, int *member)
Definition: bitmapset.c:715
unsigned int Index
Definition: c.h:605
RelOptInfo * find_base_rel_ignore_join(PlannerInfo *root, int relid)
Definition: relnode.c:454
Relids ph_lateral
Definition: pathnodes.h:3101
Relids ph_eval_at
Definition: pathnodes.h:3098
Index relid
Definition: pathnodes.h:918
List * lateral_vars
Definition: pathnodes.h:940
Relids lateral_relids
Definition: pathnodes.h:913
Relids lateral_referencers
Definition: pathnodes.h:942
Relids direct_lateral_relids
Definition: pathnodes.h:911

References Assert, bms_add_member(), bms_add_members(), bms_copy(), bms_get_singleton_member(), bms_intersect(), bms_is_empty, bms_is_member(), bms_next_member(), RelOptInfo::direct_lateral_relids, find_base_rel(), find_base_rel_ignore_join(), find_placeholder_info(), IsA, RelOptInfo::lateral_referencers, RelOptInfo::lateral_relids, RelOptInfo::lateral_vars, lfirst, PlaceHolderInfo::ph_eval_at, PlaceHolderInfo::ph_lateral, RelOptInfo::relid, RELOPT_BASEREL, RelOptInfo::reloptkind, root, and Var::varno.

Referenced by query_planner().

◆ create_plan()

Plan* create_plan ( PlannerInfo root,
Path best_path 
)

Definition at line 340 of file createplan.c.

341 {
342  Plan *plan;
343 
344  /* plan_params should not be in use in current query level */
345  Assert(root->plan_params == NIL);
346 
347  /* Initialize this module's workspace in PlannerInfo */
348  root->curOuterRels = NULL;
349  root->curOuterParams = NIL;
350 
351  /* Recursively process the path tree, demanding the correct tlist result */
353 
354  /*
355  * Make sure the topmost plan node's targetlist exposes the original
356  * column names and other decorative info. Targetlists generated within
357  * the planner don't bother with that stuff, but we must have it on the
358  * top-level tlist seen at execution time. However, ModifyTable plan
359  * nodes don't have a tlist matching the querytree targetlist.
360  */
361  if (!IsA(plan, ModifyTable))
362  apply_tlist_labeling(plan->targetlist, root->processed_tlist);
363 
364  /*
365  * Attach any initPlans created in this query level to the topmost plan
366  * node. (In principle the initplans could go in any plan node at or
367  * above where they're referenced, but there seems no reason to put them
368  * any lower than the topmost node for the query level. Also, see
369  * comments for SS_finalize_plan before you try to change this.)
370  */
372 
373  /* Check we successfully assigned all NestLoopParams to plan nodes */
374  if (root->curOuterParams != NIL)
375  elog(ERROR, "failed to assign all NestLoopParams to plan nodes");
376 
377  /*
378  * Reset plan_params to ensure param IDs used for nestloop params are not
379  * re-used later
380  */
381  root->plan_params = NIL;
382 
383  return plan;
384 }
static Plan * create_plan_recurse(PlannerInfo *root, Path *best_path, int flags)
Definition: createplan.c:391
#define CP_EXACT_TLIST
Definition: createplan.c:70
#define plan(x)
Definition: pg_regress.c:162
void SS_attach_initplans(PlannerInfo *root, Plan *plan)
Definition: subselect.c:2239
void apply_tlist_labeling(List *dest_tlist, List *src_tlist)
Definition: tlist.c:318

References apply_tlist_labeling(), Assert, CP_EXACT_TLIST, create_plan_recurse(), elog, ERROR, IsA, NIL, plan, root, and SS_attach_initplans().

Referenced by create_minmaxagg_plan(), create_subqueryscan_plan(), make_subplan(), SS_process_ctes(), and standard_planner().

◆ deconstruct_jointree()

List* deconstruct_jointree ( PlannerInfo root)

Definition at line 843 of file initsplan.c.

844 {
845  List *result;
846  JoinDomain *top_jdomain;
847  List *item_list = NIL;
848  ListCell *lc;
849 
850  /*
851  * After this point, no more PlaceHolderInfos may be made, because
852  * make_outerjoininfo requires all active placeholders to be present in
853  * root->placeholder_list while we crawl up the join tree.
854  */
855  root->placeholdersFrozen = true;
856 
857  /* Fetch the already-created top-level join domain for the query */
858  top_jdomain = linitial_node(JoinDomain, root->join_domains);
859  top_jdomain->jd_relids = NULL; /* filled during deconstruct_recurse */
860 
861  /* Start recursion at top of jointree */
862  Assert(root->parse->jointree != NULL &&
863  IsA(root->parse->jointree, FromExpr));
864 
865  /* These are filled as we scan the jointree */
866  root->all_baserels = NULL;
867  root->outer_join_rels = NULL;
868 
869  /* Perform the initial scan of the jointree */
870  result = deconstruct_recurse(root, (Node *) root->parse->jointree,
871  top_jdomain, NULL,
872  &item_list);
873 
874  /* Now we can form the value of all_query_rels, too */
875  root->all_query_rels = bms_union(root->all_baserels, root->outer_join_rels);
876 
877  /* ... which should match what we computed for the top join domain */
878  Assert(bms_equal(root->all_query_rels, top_jdomain->jd_relids));
879 
880  /* Now scan all the jointree nodes again, and distribute quals */
881  foreach(lc, item_list)
882  {
883  JoinTreeItem *jtitem = (JoinTreeItem *) lfirst(lc);
884 
885  deconstruct_distribute(root, jtitem);
886  }
887 
888  /*
889  * If there were any special joins then we may have some postponed LEFT
890  * JOIN clauses to deal with.
891  */
892  if (root->join_info_list)
893  {
894  foreach(lc, item_list)
895  {
896  JoinTreeItem *jtitem = (JoinTreeItem *) lfirst(lc);
897 
898  if (jtitem->oj_joinclauses != NIL)
899  deconstruct_distribute_oj_quals(root, item_list, jtitem);
900  }
901  }
902 
903  /* Don't need the JoinTreeItems any more */
904  list_free_deep(item_list);
905 
906  return result;
907 }
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
static List * deconstruct_recurse(PlannerInfo *root, Node *jtnode, JoinDomain *parent_domain, JoinTreeItem *parent_jtitem, List **item_list)
Definition: initsplan.c:925
static void deconstruct_distribute_oj_quals(PlannerInfo *root, List *jtitems, JoinTreeItem *jtitem)
Definition: initsplan.c:1985
static void deconstruct_distribute(PlannerInfo *root, JoinTreeItem *jtitem)
Definition: initsplan.c:1223
void list_free_deep(List *list)
Definition: list.c:1560
#define linitial_node(type, l)
Definition: pg_list.h:181
Relids jd_relids
Definition: pathnodes.h:1330
List * oj_joinclauses
Definition: initsplan.c:77

References Assert, bms_equal(), bms_union(), deconstruct_distribute(), deconstruct_distribute_oj_quals(), deconstruct_recurse(), IsA, JoinDomain::jd_relids, lfirst, linitial_node, list_free_deep(), NIL, JoinTreeItem::oj_joinclauses, and root.

Referenced by query_planner().

◆ distribute_restrictinfo_to_rels()

void distribute_restrictinfo_to_rels ( PlannerInfo root,
RestrictInfo restrictinfo 
)

Definition at line 2946 of file initsplan.c.

2948 {
2949  Relids relids = restrictinfo->required_relids;
2950 
2951  if (!bms_is_empty(relids))
2952  {
2953  int relid;
2954 
2955  if (bms_get_singleton_member(relids, &relid))
2956  {
2957  /*
2958  * There is only one relation participating in the clause, so it
2959  * is a restriction clause for that relation.
2960  */
2961  add_base_clause_to_rel(root, relid, restrictinfo);
2962  }
2963  else
2964  {
2965  /*
2966  * The clause is a join clause, since there is more than one rel
2967  * in its relid set.
2968  */
2969 
2970  /*
2971  * Check for hashjoinable operators. (We don't bother setting the
2972  * hashjoin info except in true join clauses.)
2973  */
2974  check_hashjoinable(restrictinfo);
2975 
2976  /*
2977  * Likewise, check if the clause is suitable to be used with a
2978  * Memoize node to cache inner tuples during a parameterized
2979  * nested loop.
2980  */
2981  check_memoizable(restrictinfo);
2982 
2983  /*
2984  * Add clause to the join lists of all the relevant relations.
2985  */
2986  add_join_clause_to_rels(root, restrictinfo, relids);
2987  }
2988  }
2989  else
2990  {
2991  /*
2992  * clause references no rels, and therefore we have no place to attach
2993  * it. Shouldn't get here if callers are working properly.
2994  */
2995  elog(ERROR, "cannot cope with variable-free clause");
2996  }
2997 }
static void add_base_clause_to_rel(PlannerInfo *root, Index relid, RestrictInfo *restrictinfo)
Definition: initsplan.c:2739
void add_join_clause_to_rels(PlannerInfo *root, RestrictInfo *restrictinfo, Relids join_relids)
Definition: joininfo.c:98
Relids required_relids
Definition: pathnodes.h:2605

References add_base_clause_to_rel(), add_join_clause_to_rels(), bms_get_singleton_member(), bms_is_empty, check_hashjoinable(), check_memoizable(), elog, ERROR, RestrictInfo::required_relids, and root.

Referenced by distribute_qual_to_rels(), generate_base_implied_equalities_broken(), generate_base_implied_equalities_const(), process_implied_equality(), reconsider_outer_join_clauses(), and remove_rel_from_query().

◆ extract_query_dependencies_walker()

bool extract_query_dependencies_walker ( Node node,
PlannerInfo context 
)

Definition at line 3601 of file setrefs.c.

3602 {
3603  if (node == NULL)
3604  return false;
3605  Assert(!IsA(node, PlaceHolderVar));
3606  if (IsA(node, Query))
3607  {
3608  Query *query = (Query *) node;
3609  ListCell *lc;
3610 
3611  if (query->commandType == CMD_UTILITY)
3612  {
3613  /*
3614  * This logic must handle any utility command for which parse
3615  * analysis was nontrivial (cf. stmt_requires_parse_analysis).
3616  *
3617  * Notably, CALL requires its own processing.
3618  */
3619  if (IsA(query->utilityStmt, CallStmt))
3620  {
3621  CallStmt *callstmt = (CallStmt *) query->utilityStmt;
3622 
3623  /* We need not examine funccall, just the transformed exprs */
3624  (void) extract_query_dependencies_walker((Node *) callstmt->funcexpr,
3625  context);
3626  (void) extract_query_dependencies_walker((Node *) callstmt->outargs,
3627  context);
3628  return false;
3629  }
3630 
3631  /*
3632  * Ignore other utility statements, except those (such as EXPLAIN)
3633  * that contain a parsed-but-not-planned query. For those, we
3634  * just need to transfer our attention to the contained query.
3635  */
3636  query = UtilityContainsQuery(query->utilityStmt);
3637  if (query == NULL)
3638  return false;
3639  }
3640 
3641  /* Remember if any Query has RLS quals applied by rewriter */
3642  if (query->hasRowSecurity)
3643  context->glob->dependsOnRole = true;
3644 
3645  /* Collect relation OIDs in this Query's rtable */
3646  foreach(lc, query->rtable)
3647  {
3648  RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
3649 
3650  if (rte->rtekind == RTE_RELATION ||
3651  (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)) ||
3652  (rte->rtekind == RTE_NAMEDTUPLESTORE && OidIsValid(rte->relid)))
3653  context->glob->relationOids =
3654  lappend_oid(context->glob->relationOids, rte->relid);
3655  }
3656 
3657  /* And recurse into the query's subexpressions */
3659  (void *) context, 0);
3660  }
3661  /* Extract function dependencies and check for regclass Consts */
3662  fix_expr_common(context, node);
3664  (void *) context);
3665 }
#define OidIsValid(objectId)
Definition: c.h:766
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
@ CMD_UTILITY
Definition: nodes.h:270
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1024
@ RTE_SUBQUERY
Definition: parsenodes.h:1018
@ RTE_RELATION
Definition: parsenodes.h:1017
tree context
Definition: radixtree.h:1835
static void fix_expr_common(PlannerInfo *root, Node *node)
Definition: setrefs.c:1968
bool extract_query_dependencies_walker(Node *node, PlannerInfo *context)
Definition: setrefs.c:3601
FuncExpr * funcexpr
Definition: parsenodes.h:3525
List * outargs
Definition: parsenodes.h:3527
List * rtable
Definition: parsenodes.h:170
CmdType commandType
Definition: parsenodes.h:121
Node * utilityStmt
Definition: parsenodes.h:136
RTEKind rtekind
Definition: parsenodes.h:1047
Query * UtilityContainsQuery(Node *parsetree)
Definition: utility.c:2176

References Assert, CMD_UTILITY, Query::commandType, context, expression_tree_walker, fix_expr_common(), CallStmt::funcexpr, IsA, lappend_oid(), lfirst, OidIsValid, CallStmt::outargs, query_tree_walker, RangeTblEntry::relid, Query::rtable, RTE_NAMEDTUPLESTORE, RTE_RELATION, RTE_SUBQUERY, RangeTblEntry::rtekind, UtilityContainsQuery(), and Query::utilityStmt.

Referenced by expression_planner_with_deps(), and extract_query_dependencies().

◆ find_lateral_references()

void find_lateral_references ( PlannerInfo root)

Definition at line 417 of file initsplan.c.

418 {
419  Index rti;
420 
421  /* We need do nothing if the query contains no LATERAL RTEs */
422  if (!root->hasLateralRTEs)
423  return;
424 
425  /*
426  * Examine all baserels (the rel array has been set up by now).
427  */
428  for (rti = 1; rti < root->simple_rel_array_size; rti++)
429  {
430  RelOptInfo *brel = root->simple_rel_array[rti];
431 
432  /* there may be empty slots corresponding to non-baserel RTEs */
433  if (brel == NULL)
434  continue;
435 
436  Assert(brel->relid == rti); /* sanity check on array */
437 
438  /*
439  * This bit is less obvious than it might look. We ignore appendrel
440  * otherrels and consider only their parent baserels. In a case where
441  * a LATERAL-containing UNION ALL subquery was pulled up, it is the
442  * otherrel that is actually going to be in the plan. However, we
443  * want to mark all its lateral references as needed by the parent,
444  * because it is the parent's relid that will be used for join
445  * planning purposes. And the parent's RTE will contain all the
446  * lateral references we need to know, since the pulled-up member is
447  * nothing but a copy of parts of the original RTE's subquery. We
448  * could visit the parent's children instead and transform their
449  * references back to the parent's relid, but it would be much more
450  * complicated for no real gain. (Important here is that the child
451  * members have not yet received any processing beyond being pulled
452  * up.) Similarly, in appendrels created by inheritance expansion,
453  * it's sufficient to look at the parent relation.
454  */
455 
456  /* ignore RTEs that are "other rels" */
457  if (brel->reloptkind != RELOPT_BASEREL)
458  continue;
459 
460  extract_lateral_references(root, brel, rti);
461  }
462 }
static void extract_lateral_references(PlannerInfo *root, RelOptInfo *brel, Index rtindex)
Definition: initsplan.c:465

References Assert, extract_lateral_references(), RelOptInfo::relid, RELOPT_BASEREL, RelOptInfo::reloptkind, and root.

Referenced by query_planner().

◆ find_minmax_agg_replacement_param()

Param* find_minmax_agg_replacement_param ( PlannerInfo root,
Aggref aggref 
)

Definition at line 3451 of file setrefs.c.

3452 {
3453  if (root->minmax_aggs != NIL &&
3454  list_length(aggref->args) == 1)
3455  {
3456  TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args);
3457  ListCell *lc;
3458 
3459  foreach(lc, root->minmax_aggs)
3460  {
3461  MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
3462 
3463  if (mminfo->aggfnoid == aggref->aggfnoid &&
3464  equal(mminfo->target, curTarget->expr))
3465  return mminfo->param;
3466  }
3467  }
3468  return NULL;
3469 }
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
static int list_length(const List *l)
Definition: pg_list.h:152
#define linitial(l)
Definition: pg_list.h:178
Oid aggfnoid
Definition: primnodes.h:444
List * args
Definition: primnodes.h:468
Param * param
Definition: pathnodes.h:3143
Expr * target
Definition: pathnodes.h:3128
Expr * expr
Definition: primnodes.h:2190

References MinMaxAggInfo::aggfnoid, Aggref::aggfnoid, Aggref::args, equal(), TargetEntry::expr, lfirst, linitial, list_length(), NIL, MinMaxAggInfo::param, root, and MinMaxAggInfo::target.

Referenced by finalize_primnode(), fix_scan_expr_mutator(), and fix_upper_expr_mutator().

◆ innerrel_is_unique()

bool innerrel_is_unique ( PlannerInfo root,
Relids  joinrelids,
Relids  outerrelids,
RelOptInfo innerrel,
JoinType  jointype,
List restrictlist,
bool  force_cache 
)

Definition at line 1172 of file analyzejoins.c.

1179 {
1180  MemoryContext old_context;
1181  ListCell *lc;
1182 
1183  /* Certainly can't prove uniqueness when there are no joinclauses */
1184  if (restrictlist == NIL)
1185  return false;
1186 
1187  /*
1188  * Make a quick check to eliminate cases in which we will surely be unable
1189  * to prove uniqueness of the innerrel.
1190  */
1191  if (!rel_supports_distinctness(root, innerrel))
1192  return false;
1193 
1194  /*
1195  * Query the cache to see if we've managed to prove that innerrel is
1196  * unique for any subset of this outerrel. We don't need an exact match,
1197  * as extra outerrels can't make the innerrel any less unique (or more
1198  * formally, the restrictlist for a join to a superset outerrel must be a
1199  * superset of the conditions we successfully used before).
1200  */
1201  foreach(lc, innerrel->unique_for_rels)
1202  {
1203  Relids unique_for_rels = (Relids) lfirst(lc);
1204 
1205  if (bms_is_subset(unique_for_rels, outerrelids))
1206  return true; /* Success! */
1207  }
1208 
1209  /*
1210  * Conversely, we may have already determined that this outerrel, or some
1211  * superset thereof, cannot prove this innerrel to be unique.
1212  */
1213  foreach(lc, innerrel->non_unique_for_rels)
1214  {
1215  Relids unique_for_rels = (Relids) lfirst(lc);
1216 
1217  if (bms_is_subset(outerrelids, unique_for_rels))
1218  return false;
1219  }
1220 
1221  /* No cached information, so try to make the proof. */
1222  if (is_innerrel_unique_for(root, joinrelids, outerrelids, innerrel,
1223  jointype, restrictlist))
1224  {
1225  /*
1226  * Cache the positive result for future probes, being sure to keep it
1227  * in the planner_cxt even if we are working in GEQO.
1228  *
1229  * Note: one might consider trying to isolate the minimal subset of
1230  * the outerrels that proved the innerrel unique. But it's not worth
1231  * the trouble, because the planner builds up joinrels incrementally
1232  * and so we'll see the minimally sufficient outerrels before any
1233  * supersets of them anyway.
1234  */
1235  old_context = MemoryContextSwitchTo(root->planner_cxt);
1236  innerrel->unique_for_rels = lappend(innerrel->unique_for_rels,
1237  bms_copy(outerrelids));
1238  MemoryContextSwitchTo(old_context);
1239 
1240  return true; /* Success! */
1241  }
1242  else
1243  {
1244  /*
1245  * None of the join conditions for outerrel proved innerrel unique, so
1246  * we can safely reject this outerrel or any subset of it in future
1247  * checks.
1248  *
1249  * However, in normal planning mode, caching this knowledge is totally
1250  * pointless; it won't be queried again, because we build up joinrels
1251  * from smaller to larger. It is useful in GEQO mode, where the
1252  * knowledge can be carried across successive planning attempts; and
1253  * it's likely to be useful when using join-search plugins, too. Hence
1254  * cache when join_search_private is non-NULL. (Yeah, that's a hack,
1255  * but it seems reasonable.)
1256  *
1257  * Also, allow callers to override that heuristic and force caching;
1258  * that's useful for reduce_unique_semijoins, which calls here before
1259  * the normal join search starts.
1260  */
1261  if (force_cache || root->join_search_private)
1262  {
1263  old_context = MemoryContextSwitchTo(root->planner_cxt);
1264  innerrel->non_unique_for_rels =
1265  lappend(innerrel->non_unique_for_rels,
1266  bms_copy(outerrelids));
1267  MemoryContextSwitchTo(old_context);
1268  }
1269 
1270  return false;
1271  }
1272 }
static bool is_innerrel_unique_for(PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist)
static bool rel_supports_distinctness(PlannerInfo *root, RelOptInfo *rel)
Definition: analyzejoins.c:794
Bitmapset * Relids
Definition: pathnodes.h:30
MemoryContextSwitchTo(old_ctx)
List * unique_for_rels
Definition: pathnodes.h:977
List * non_unique_for_rels
Definition: pathnodes.h:979

References bms_copy(), bms_is_subset(), is_innerrel_unique_for(), lappend(), lfirst, MemoryContextSwitchTo(), NIL, RelOptInfo::non_unique_for_rels, rel_supports_distinctness(), root, and RelOptInfo::unique_for_rels.

Referenced by add_paths_to_joinrel(), and reduce_unique_semijoins().

◆ is_projection_capable_path()

bool is_projection_capable_path ( Path path)

Definition at line 7296 of file createplan.c.

7297 {
7298  /* Most plan types can project, so just list the ones that can't */
7299  switch (path->pathtype)
7300  {
7301  case T_Hash:
7302  case T_Material:
7303  case T_Memoize:
7304  case T_Sort:
7305  case T_IncrementalSort:
7306  case T_Unique:
7307  case T_SetOp:
7308  case T_LockRows:
7309  case T_Limit:
7310  case T_ModifyTable:
7311  case T_MergeAppend:
7312  case T_RecursiveUnion:
7313  return false;
7314  case T_CustomScan:
7316  return true;
7317  return false;
7318  case T_Append:
7319 
7320  /*
7321  * Append can't project, but if an AppendPath is being used to
7322  * represent a dummy path, what will actually be generated is a
7323  * Result which can project.
7324  */
7325  return IS_DUMMY_APPEND(path);
7326  case T_ProjectSet:
7327 
7328  /*
7329  * Although ProjectSet certainly projects, say "no" because we
7330  * don't want the planner to randomly replace its tlist with
7331  * something else; the SRFs have to stay at top level. This might
7332  * get relaxed later.
7333  */
7334  return false;
7335  default:
7336  break;
7337  }
7338  return true;
7339 }
#define CUSTOMPATH_SUPPORT_PROJECTION
Definition: extensible.h:86
#define castNode(_type_, nodeptr)
Definition: nodes.h:176
#define IS_DUMMY_APPEND(p)
Definition: pathnodes.h:1948
NodeTag pathtype
Definition: pathnodes.h:1635

References castNode, CUSTOMPATH_SUPPORT_PROJECTION, IS_DUMMY_APPEND, and Path::pathtype.

Referenced by add_paths_with_pathkeys_for_rel(), apply_projection_to_path(), create_projection_path(), and create_projection_plan().

◆ is_projection_capable_plan()

bool is_projection_capable_plan ( Plan plan)

Definition at line 7346 of file createplan.c.

7347 {
7348  /* Most plan types can project, so just list the ones that can't */
7349  switch (nodeTag(plan))
7350  {
7351  case T_Hash:
7352  case T_Material:
7353  case T_Memoize:
7354  case T_Sort:
7355  case T_Unique:
7356  case T_SetOp:
7357  case T_LockRows:
7358  case T_Limit:
7359  case T_ModifyTable:
7360  case T_Append:
7361  case T_MergeAppend:
7362  case T_RecursiveUnion:
7363  return false;
7364  case T_CustomScan:
7365  if (((CustomScan *) plan)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
7366  return true;
7367  return false;
7368  case T_ProjectSet:
7369 
7370  /*
7371  * Although ProjectSet certainly projects, say "no" because we
7372  * don't want the planner to randomly replace its tlist with
7373  * something else; the SRFs have to stay at top level. This might
7374  * get relaxed later.
7375  */
7376  return false;
7377  default:
7378  break;
7379  }
7380  return true;
7381 }

References CUSTOMPATH_SUPPORT_PROJECTION, nodeTag, and plan.

Referenced by change_plan_targetlist(), create_projection_plan(), and prepare_sort_from_pathkeys().

◆ make_agg()

Agg* make_agg ( List tlist,
List qual,
AggStrategy  aggstrategy,
AggSplit  aggsplit,
int  numGroupCols,
AttrNumber grpColIdx,
Oid grpOperators,
Oid grpCollations,
List groupingSets,
List chain,
double  dNumGroups,
Size  transitionSpace,
Plan lefttree 
)

Definition at line 6670 of file createplan.c.

6675 {
6676  Agg *node = makeNode(Agg);
6677  Plan *plan = &node->plan;
6678  long numGroups;
6679 
6680  /* Reduce to long, but 'ware overflow! */
6681  numGroups = clamp_cardinality_to_long(dNumGroups);
6682 
6683  node->aggstrategy = aggstrategy;
6684  node->aggsplit = aggsplit;
6685  node->numCols = numGroupCols;
6686  node->grpColIdx = grpColIdx;
6687  node->grpOperators = grpOperators;
6688  node->grpCollations = grpCollations;
6689  node->numGroups = numGroups;
6690  node->transitionSpace = transitionSpace;
6691  node->aggParams = NULL; /* SS_finalize_plan() will fill this */
6692  node->groupingSets = groupingSets;
6693  node->chain = chain;
6694 
6695  plan->qual = qual;
6696  plan->targetlist = tlist;
6697  plan->lefttree = lefttree;
6698  plan->righttree = NULL;
6699 
6700  return node;
6701 }
long clamp_cardinality_to_long(Cardinality x)
Definition: costsize.c:265
#define makeNode(_type_)
Definition: nodes.h:155
Definition: plannodes.h:998
AggSplit aggsplit
Definition: plannodes.h:1005
List * chain
Definition: plannodes.h:1032
long numGroups
Definition: plannodes.h:1018
List * groupingSets
Definition: plannodes.h:1029
Bitmapset * aggParams
Definition: plannodes.h:1024
Plan plan
Definition: plannodes.h:999
int numCols
Definition: plannodes.h:1008
uint64 transitionSpace
Definition: plannodes.h:1021
AggStrategy aggstrategy
Definition: plannodes.h:1002

References Agg::aggParams, Agg::aggsplit, Agg::aggstrategy, Agg::chain, clamp_cardinality_to_long(), Agg::groupingSets, makeNode, Agg::numCols, Agg::numGroups, Agg::plan, plan, and Agg::transitionSpace.

Referenced by create_agg_plan(), create_groupingsets_plan(), and create_unique_plan().

◆ make_foreignscan()

ForeignScan* make_foreignscan ( List qptlist,
List qpqual,
Index  scanrelid,
List fdw_exprs,
List fdw_private,
List fdw_scan_tlist,
List fdw_recheck_quals,
Plan outer_plan 
)

Definition at line 5896 of file createplan.c.

5904 {
5905  ForeignScan *node = makeNode(ForeignScan);
5906  Plan *plan = &node->scan.plan;
5907 
5908  /* cost will be filled in by create_foreignscan_plan */
5909  plan->targetlist = qptlist;
5910  plan->qual = qpqual;
5911  plan->lefttree = outer_plan;
5912  plan->righttree = NULL;
5913  node->scan.scanrelid = scanrelid;
5914 
5915  /* these may be overridden by the FDW's PlanDirectModify callback. */
5916  node->operation = CMD_SELECT;
5917  node->resultRelation = 0;
5918 
5919  /* checkAsUser, fs_server will be filled in by create_foreignscan_plan */
5920  node->checkAsUser = InvalidOid;
5921  node->fs_server = InvalidOid;
5922  node->fdw_exprs = fdw_exprs;
5923  node->fdw_private = fdw_private;
5924  node->fdw_scan_tlist = fdw_scan_tlist;
5925  node->fdw_recheck_quals = fdw_recheck_quals;
5926  /* fs_relids, fs_base_relids will be filled by create_foreignscan_plan */
5927  node->fs_relids = NULL;
5928  node->fs_base_relids = NULL;
5929  /* fsSystemCol will be filled in by create_foreignscan_plan */
5930  node->fsSystemCol = false;
5931 
5932  return node;
5933 }
@ CMD_SELECT
Definition: nodes.h:265
Oid checkAsUser
Definition: plannodes.h:713
CmdType operation
Definition: plannodes.h:711
Oid fs_server
Definition: plannodes.h:715
List * fdw_exprs
Definition: plannodes.h:716
bool fsSystemCol
Definition: plannodes.h:722
Bitmapset * fs_relids
Definition: plannodes.h:720
List * fdw_private
Definition: plannodes.h:717
Bitmapset * fs_base_relids
Definition: plannodes.h:721
Index resultRelation
Definition: plannodes.h:712
List * fdw_recheck_quals
Definition: plannodes.h:719
List * fdw_scan_tlist
Definition: plannodes.h:718
Index scanrelid
Definition: plannodes.h:390

References ForeignScan::checkAsUser, CMD_SELECT, ForeignScan::fdw_exprs, ForeignScan::fdw_private, ForeignScan::fdw_recheck_quals, ForeignScan::fdw_scan_tlist, ForeignScan::fs_base_relids, ForeignScan::fs_relids, ForeignScan::fs_server, ForeignScan::fsSystemCol, InvalidOid, makeNode, ForeignScan::operation, plan, ForeignScan::resultRelation, ForeignScan::scan, and Scan::scanrelid.

Referenced by fileGetForeignPlan(), and postgresGetForeignPlan().

◆ make_limit()

Limit* make_limit ( Plan lefttree,
Node limitOffset,
Node limitCount,
LimitOption  limitOption,
int  uniqNumCols,
AttrNumber uniqColIdx,
Oid uniqOperators,
Oid uniqCollations 
)

Definition at line 7037 of file createplan.c.

7040 {
7041  Limit *node = makeNode(Limit);
7042  Plan *plan = &node->plan;
7043 
7044  plan->targetlist = lefttree->targetlist;
7045  plan->qual = NIL;
7046  plan->lefttree = lefttree;
7047  plan->righttree = NULL;
7048 
7049  node->limitOffset = limitOffset;
7050  node->limitCount = limitCount;
7051  node->limitOption = limitOption;
7052  node->uniqNumCols = uniqNumCols;
7053  node->uniqColIdx = uniqColIdx;
7054  node->uniqOperators = uniqOperators;
7055  node->uniqCollations = uniqCollations;
7056 
7057  return node;
7058 }
LimitOption limitOption
Definition: plannodes.h:1282
Plan plan
Definition: plannodes.h:1273
Node * limitCount
Definition: plannodes.h:1279
int uniqNumCols
Definition: plannodes.h:1285
Node * limitOffset
Definition: plannodes.h:1276

References Limit::limitCount, Limit::limitOffset, Limit::limitOption, makeNode, NIL, Limit::plan, plan, Plan::targetlist, and Limit::uniqNumCols.

Referenced by create_limit_plan(), and create_minmaxagg_plan().

◆ make_sort_from_sortclauses()

Sort* make_sort_from_sortclauses ( List sortcls,
Plan lefttree 
)

Definition at line 6490 of file createplan.c.

6491 {
6492  List *sub_tlist = lefttree->targetlist;
6493  ListCell *l;
6494  int numsortkeys;
6495  AttrNumber *sortColIdx;
6496  Oid *sortOperators;
6497  Oid *collations;
6498  bool *nullsFirst;
6499 
6500  /* Convert list-ish representation to arrays wanted by executor */
6501  numsortkeys = list_length(sortcls);
6502  sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6503  sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6504  collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6505  nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6506 
6507  numsortkeys = 0;
6508  foreach(l, sortcls)
6509  {
6510  SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
6511  TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);
6512 
6513  sortColIdx[numsortkeys] = tle->resno;
6514  sortOperators[numsortkeys] = sortcl->sortop;
6515  collations[numsortkeys] = exprCollation((Node *) tle->expr);
6516  nullsFirst[numsortkeys] = sortcl->nulls_first;
6517  numsortkeys++;
6518  }
6519 
6520  return make_sort(lefttree, numsortkeys,
6521  sortColIdx, sortOperators,
6522  collations, nullsFirst);
6523 }
int16 AttrNumber
Definition: attnum.h:21
static Sort * make_sort(Plan *lefttree, int numCols, AttrNumber *sortColIdx, Oid *sortOperators, Oid *collations, bool *nullsFirst)
Definition: createplan.c:6142
void * palloc(Size size)
Definition: mcxt.c:1317
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:816
unsigned int Oid
Definition: postgres_ext.h:31
AttrNumber resno
Definition: primnodes.h:2192
TargetEntry * get_sortgroupclause_tle(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:367

References TargetEntry::expr, exprCollation(), get_sortgroupclause_tle(), lfirst, list_length(), make_sort(), SortGroupClause::nulls_first, palloc(), TargetEntry::resno, SortGroupClause::sortop, and Plan::targetlist.

Referenced by create_unique_plan().

◆ match_foreign_keys_to_quals()

void match_foreign_keys_to_quals ( PlannerInfo root)

Definition at line 3350 of file initsplan.c.

3351 {
3352  List *newlist = NIL;
3353  ListCell *lc;
3354 
3355  foreach(lc, root->fkey_list)
3356  {
3357  ForeignKeyOptInfo *fkinfo = (ForeignKeyOptInfo *) lfirst(lc);
3358  RelOptInfo *con_rel;
3359  RelOptInfo *ref_rel;
3360  int colno;
3361 
3362  /*
3363  * Either relid might identify a rel that is in the query's rtable but
3364  * isn't referenced by the jointree, or has been removed by join
3365  * removal, so that it won't have a RelOptInfo. Hence don't use
3366  * find_base_rel() here. We can ignore such FKs.
3367  */
3368  if (fkinfo->con_relid >= root->simple_rel_array_size ||
3369  fkinfo->ref_relid >= root->simple_rel_array_size)
3370  continue; /* just paranoia */
3371  con_rel = root->simple_rel_array[fkinfo->con_relid];
3372  if (con_rel == NULL)
3373  continue;
3374  ref_rel = root->simple_rel_array[fkinfo->ref_relid];
3375  if (ref_rel == NULL)
3376  continue;
3377 
3378  /*
3379  * Ignore FK unless both rels are baserels. This gets rid of FKs that
3380  * link to inheritance child rels (otherrels).
3381  */
3382  if (con_rel->reloptkind != RELOPT_BASEREL ||
3383  ref_rel->reloptkind != RELOPT_BASEREL)
3384  continue;
3385 
3386  /*
3387  * Scan the columns and try to match them to eclasses and quals.
3388  *
3389  * Note: for simple inner joins, any match should be in an eclass.
3390  * "Loose" quals that syntactically match an FK equality must have
3391  * been rejected for EC status because they are outer-join quals or
3392  * similar. We can still consider them to match the FK.
3393  */
3394  for (colno = 0; colno < fkinfo->nkeys; colno++)
3395  {
3396  EquivalenceClass *ec;
3397  AttrNumber con_attno,
3398  ref_attno;
3399  Oid fpeqop;
3400  ListCell *lc2;
3401 
3402  ec = match_eclasses_to_foreign_key_col(root, fkinfo, colno);
3403  /* Don't bother looking for loose quals if we got an EC match */
3404  if (ec != NULL)
3405  {
3406  fkinfo->nmatched_ec++;
3407  if (ec->ec_has_const)
3408  fkinfo->nconst_ec++;
3409  continue;
3410  }
3411 
3412  /*
3413  * Scan joininfo list for relevant clauses. Either rel's joininfo
3414  * list would do equally well; we use con_rel's.
3415  */
3416  con_attno = fkinfo->conkey[colno];
3417  ref_attno = fkinfo->confkey[colno];
3418  fpeqop = InvalidOid; /* we'll look this up only if needed */
3419 
3420  foreach(lc2, con_rel->joininfo)
3421  {
3422  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc2);
3423  OpExpr *clause = (OpExpr *) rinfo->clause;
3424  Var *leftvar;
3425  Var *rightvar;
3426 
3427  /* Only binary OpExprs are useful for consideration */
3428  if (!IsA(clause, OpExpr) ||
3429  list_length(clause->args) != 2)
3430  continue;
3431  leftvar = (Var *) get_leftop((Expr *) clause);
3432  rightvar = (Var *) get_rightop((Expr *) clause);
3433 
3434  /* Operands must be Vars, possibly with RelabelType */
3435  while (leftvar && IsA(leftvar, RelabelType))
3436  leftvar = (Var *) ((RelabelType *) leftvar)->arg;
3437  if (!(leftvar && IsA(leftvar, Var)))
3438  continue;
3439  while (rightvar && IsA(rightvar, RelabelType))
3440  rightvar = (Var *) ((RelabelType *) rightvar)->arg;
3441  if (!(rightvar && IsA(rightvar, Var)))
3442  continue;
3443 
3444  /* Now try to match the vars to the current foreign key cols */
3445  if (fkinfo->ref_relid == leftvar->varno &&
3446  ref_attno == leftvar->varattno &&
3447  fkinfo->con_relid == rightvar->varno &&
3448  con_attno == rightvar->varattno)
3449  {
3450  /* Vars match, but is it the right operator? */
3451  if (clause->opno == fkinfo->conpfeqop[colno])
3452  {
3453  fkinfo->rinfos[colno] = lappend(fkinfo->rinfos[colno],
3454  rinfo);
3455  fkinfo->nmatched_ri++;
3456  }
3457  }
3458  else if (fkinfo->ref_relid == rightvar->varno &&
3459  ref_attno == rightvar->varattno &&
3460  fkinfo->con_relid == leftvar->varno &&
3461  con_attno == leftvar->varattno)
3462  {
3463  /*
3464  * Reverse match, must check commutator operator. Look it
3465  * up if we didn't already. (In the worst case we might
3466  * do multiple lookups here, but that would require an FK
3467  * equality operator without commutator, which is
3468  * unlikely.)
3469  */
3470  if (!OidIsValid(fpeqop))
3471  fpeqop = get_commutator(fkinfo->conpfeqop[colno]);
3472  if (clause->opno == fpeqop)
3473  {
3474  fkinfo->rinfos[colno] = lappend(fkinfo->rinfos[colno],
3475  rinfo);
3476  fkinfo->nmatched_ri++;
3477  }
3478  }
3479  }
3480  /* If we found any matching loose quals, count col as matched */
3481  if (fkinfo->rinfos[colno])
3482  fkinfo->nmatched_rcols++;
3483  }
3484 
3485  /*
3486  * Currently, we drop multicolumn FKs that aren't fully matched to the
3487  * query. Later we might figure out how to derive some sort of
3488  * estimate from them, in which case this test should be weakened to
3489  * "if ((fkinfo->nmatched_ec + fkinfo->nmatched_rcols) > 0)".
3490  */
3491  if ((fkinfo->nmatched_ec + fkinfo->nmatched_rcols) == fkinfo->nkeys)
3492  newlist = lappend(newlist, fkinfo);
3493  }
3494  /* Replace fkey_list, thereby discarding any useless entries */
3495  root->fkey_list = newlist;
3496 }
EquivalenceClass * match_eclasses_to_foreign_key_col(PlannerInfo *root, ForeignKeyOptInfo *fkinfo, int colno)
Definition: equivclass.c:2559
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
Oid get_commutator(Oid opno)
Definition: lsyscache.c:1509
static Node * get_rightop(const void *clause)
Definition: nodeFuncs.h:95
static Node * get_leftop(const void *clause)
Definition: nodeFuncs.h:83
List * rinfos[INDEX_MAX_KEYS]
Definition: pathnodes.h:1263
Oid opno
Definition: primnodes.h:818
List * args
Definition: primnodes.h:836
List * joininfo
Definition: pathnodes.h:991
Expr * clause
Definition: pathnodes.h:2574

References OpExpr::args, RestrictInfo::clause, ForeignKeyOptInfo::con_relid, EquivalenceClass::ec_has_const, get_commutator(), get_leftop(), get_rightop(), if(), InvalidOid, IsA, RelOptInfo::joininfo, lappend(), lfirst, list_length(), match_eclasses_to_foreign_key_col(), ForeignKeyOptInfo::nconst_ec, NIL, ForeignKeyOptInfo::nkeys, ForeignKeyOptInfo::nmatched_ec, ForeignKeyOptInfo::nmatched_rcols, ForeignKeyOptInfo::nmatched_ri, OidIsValid, OpExpr::opno, ForeignKeyOptInfo::ref_relid, RELOPT_BASEREL, RelOptInfo::reloptkind, ForeignKeyOptInfo::rinfos, and root.

Referenced by query_planner().

◆ materialize_finished_plan()

Plan* materialize_finished_plan ( Plan subplan)

Definition at line 6602 of file createplan.c.

6603 {
6604  Plan *matplan;
6605  Path matpath; /* dummy for result of cost_material */
6606  Cost initplan_cost;
6607  bool unsafe_initplans;
6608 
6609  matplan = (Plan *) make_material(subplan);
6610 
6611  /*
6612  * XXX horrid kluge: if there are any initPlans attached to the subplan,
6613  * move them up to the Material node, which is now effectively the top
6614  * plan node in its query level. This prevents failure in
6615  * SS_finalize_plan(), which see for comments.
6616  */
6617  matplan->initPlan = subplan->initPlan;
6618  subplan->initPlan = NIL;
6619 
6620  /* Move the initplans' cost delta, as well */
6622  &initplan_cost, &unsafe_initplans);
6623  subplan->startup_cost -= initplan_cost;
6624  subplan->total_cost -= initplan_cost;
6625 
6626  /* Set cost data */
6627  cost_material(&matpath,
6628  subplan->disabled_nodes,
6629  subplan->startup_cost,
6630  subplan->total_cost,
6631  subplan->plan_rows,
6632  subplan->plan_width);
6633  matplan->disabled_nodes = subplan->disabled_nodes;
6634  matplan->startup_cost = matpath.startup_cost + initplan_cost;
6635  matplan->total_cost = matpath.total_cost + initplan_cost;
6636  matplan->plan_rows = subplan->plan_rows;
6637  matplan->plan_width = subplan->plan_width;
6638  matplan->parallel_aware = false;
6639  matplan->parallel_safe = subplan->parallel_safe;
6640 
6641  return matplan;
6642 }
void cost_material(Path *path, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples, int width)
Definition: costsize.c:2483
static Material * make_material(Plan *lefttree)
Definition: createplan.c:6580
double Cost
Definition: nodes.h:251
Cost startup_cost
Definition: pathnodes.h:1671
Cost total_cost
Definition: pathnodes.h:1672
Cost total_cost
Definition: plannodes.h:130
bool parallel_aware
Definition: plannodes.h:141
Cost startup_cost
Definition: plannodes.h:129
int plan_width
Definition: plannodes.h:136
Cardinality plan_rows
Definition: plannodes.h:135
int disabled_nodes
Definition: plannodes.h:128
List * initPlan
Definition: plannodes.h:157
void SS_compute_initplan_cost(List *init_plans, Cost *initplan_cost_p, bool *unsafe_initplans_p)
Definition: subselect.c:2198

References cost_material(), Plan::disabled_nodes, Plan::initPlan, make_material(), NIL, Plan::parallel_aware, Plan::parallel_safe, Plan::plan_rows, Plan::plan_width, SS_compute_initplan_cost(), Path::startup_cost, Plan::startup_cost, Path::total_cost, and Plan::total_cost.

Referenced by build_subplan(), and standard_planner().

◆ preprocess_minmax_aggregates()

void preprocess_minmax_aggregates ( PlannerInfo root)

Definition at line 73 of file planagg.c.

74 {
75  Query *parse = root->parse;
76  FromExpr *jtnode;
77  RangeTblRef *rtr;
78  RangeTblEntry *rte;
79  List *aggs_list;
80  RelOptInfo *grouped_rel;
81  ListCell *lc;
82 
83  /* minmax_aggs list should be empty at this point */
84  Assert(root->minmax_aggs == NIL);
85 
86  /* Nothing to do if query has no aggregates */
87  if (!parse->hasAggs)
88  return;
89 
90  Assert(!parse->setOperations); /* shouldn't get here if a setop */
91  Assert(parse->rowMarks == NIL); /* nor if FOR UPDATE */
92 
93  /*
94  * Reject unoptimizable cases.
95  *
96  * We don't handle GROUP BY or windowing, because our current
97  * implementations of grouping require looking at all the rows anyway, and
98  * so there's not much point in optimizing MIN/MAX.
99  */
100  if (parse->groupClause || list_length(parse->groupingSets) > 1 ||
101  parse->hasWindowFuncs)
102  return;
103 
104  /*
105  * Reject if query contains any CTEs; there's no way to build an indexscan
106  * on one so we couldn't succeed here. (If the CTEs are unreferenced,
107  * that's not true, but it doesn't seem worth expending cycles to check.)
108  */
109  if (parse->cteList)
110  return;
111 
112  /*
113  * We also restrict the query to reference exactly one table, since join
114  * conditions can't be handled reasonably. (We could perhaps handle a
115  * query containing cartesian-product joins, but it hardly seems worth the
116  * trouble.) However, the single table could be buried in several levels
117  * of FromExpr due to subqueries. Note the "single" table could be an
118  * inheritance parent, too, including the case of a UNION ALL subquery
119  * that's been flattened to an appendrel.
120  */
121  jtnode = parse->jointree;
122  while (IsA(jtnode, FromExpr))
123  {
124  if (list_length(jtnode->fromlist) != 1)
125  return;
126  jtnode = linitial(jtnode->fromlist);
127  }
128  if (!IsA(jtnode, RangeTblRef))
129  return;
130  rtr = (RangeTblRef *) jtnode;
131  rte = planner_rt_fetch(rtr->rtindex, root);
132  if (rte->rtekind == RTE_RELATION)
133  /* ordinary relation, ok */ ;
134  else if (rte->rtekind == RTE_SUBQUERY && rte->inh)
135  /* flattened UNION ALL subquery, ok */ ;
136  else
137  return;
138 
139  /*
140  * Examine all the aggregates and verify all are MIN/MAX aggregates. Stop
141  * as soon as we find one that isn't.
142  */
143  aggs_list = NIL;
144  if (!can_minmax_aggs(root, &aggs_list))
145  return;
146 
147  /*
148  * OK, there is at least the possibility of performing the optimization.
149  * Build an access path for each aggregate. If any of the aggregates
150  * prove to be non-indexable, give up; there is no point in optimizing
151  * just some of them.
152  */
153  foreach(lc, aggs_list)
154  {
155  MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
156  Oid eqop;
157  bool reverse;
158 
159  /*
160  * We'll need the equality operator that goes with the aggregate's
161  * ordering operator.
162  */
163  eqop = get_equality_op_for_ordering_op(mminfo->aggsortop, &reverse);
164  if (!OidIsValid(eqop)) /* shouldn't happen */
165  elog(ERROR, "could not find equality operator for ordering operator %u",
166  mminfo->aggsortop);
167 
168  /*
169  * We can use either an ordering that gives NULLS FIRST or one that
170  * gives NULLS LAST; furthermore there's unlikely to be much
171  * performance difference between them, so it doesn't seem worth
172  * costing out both ways if we get a hit on the first one. NULLS
173  * FIRST is more likely to be available if the operator is a
174  * reverse-sort operator, so try that first if reverse.
175  */
176  if (build_minmax_path(root, mminfo, eqop, mminfo->aggsortop, reverse, reverse))
177  continue;
178  if (build_minmax_path(root, mminfo, eqop, mminfo->aggsortop, reverse, !reverse))
179  continue;
180 
181  /* No indexable path for this aggregate, so fail */
182  return;
183  }
184 
185  /*
186  * OK, we can do the query this way. Prepare to create a MinMaxAggPath
187  * node.
188  *
189  * First, create an output Param node for each agg. (If we end up not
190  * using the MinMaxAggPath, we'll waste a PARAM_EXEC slot for each agg,
191  * which is not worth worrying about. We can't wait till create_plan time
192  * to decide whether to make the Param, unfortunately.)
193  */
194  foreach(lc, aggs_list)
195  {
196  MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
197 
198  mminfo->param =
200  exprType((Node *) mminfo->target),
201  -1,
202  exprCollation((Node *) mminfo->target));
203  }
204 
205  /*
206  * Create a MinMaxAggPath node with the appropriate estimated costs and
207  * other needed data, and add it to the UPPERREL_GROUP_AGG upperrel, where
208  * it will compete against the standard aggregate implementation. (It
209  * will likely always win, but we need not assume that here.)
210  *
211  * Note: grouping_planner won't have created this upperrel yet, but it's
212  * fine for us to create it first. We will not have inserted the correct
213  * consider_parallel value in it, but MinMaxAggPath paths are currently
214  * never parallel-safe anyway, so that doesn't matter. Likewise, it
215  * doesn't matter that we haven't filled FDW-related fields in the rel.
216  * Also, because there are no rowmarks, we know that the processed_tlist
217  * doesn't need to change anymore, so making the pathtarget now is safe.
218  */
219  grouped_rel = fetch_upper_rel(root, UPPERREL_GROUP_AGG, NULL);
220  add_path(grouped_rel, (Path *)
221  create_minmaxagg_path(root, grouped_rel,
223  root->processed_tlist),
224  aggs_list,
225  (List *) parse->havingQual));
226 }
Oid get_equality_op_for_ordering_op(Oid opno, bool *reverse)
Definition: lsyscache.c:267
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
MinMaxAggPath * create_minmaxagg_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *mmaggregates, List *quals)
Definition: pathnode.c:3486
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:461
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:570
@ UPPERREL_GROUP_AGG
Definition: pathnodes.h:74
static bool can_minmax_aggs(PlannerInfo *root, List **context)
Definition: planagg.c:237
static bool build_minmax_path(PlannerInfo *root, MinMaxAggInfo *mminfo, Oid eqop, Oid sortop, bool reverse_sort, bool nulls_first)
Definition: planagg.c:317
static struct subre * parse(struct vars *v, int stopper, int type, struct state *init, struct state *final)
Definition: regcomp.c:715
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1458
Param * SS_make_initplan_output_param(PlannerInfo *root, Oid resulttype, int32 resulttypmod, Oid resultcollation)
Definition: subselect.c:3001
#define create_pathtarget(root, tlist)
Definition: tlist.h:53

References add_path(), MinMaxAggInfo::aggsortop, Assert, build_minmax_path(), can_minmax_aggs(), create_minmaxagg_path(), create_pathtarget, elog, ERROR, exprCollation(), exprType(), fetch_upper_rel(), FromExpr::fromlist, get_equality_op_for_ordering_op(), RangeTblEntry::inh, IsA, lfirst, linitial, list_length(), NIL, OidIsValid, MinMaxAggInfo::param, parse(), planner_rt_fetch, root, RTE_RELATION, RTE_SUBQUERY, RangeTblEntry::rtekind, RangeTblRef::rtindex, SS_make_initplan_output_param(), MinMaxAggInfo::target, and UPPERREL_GROUP_AGG.

Referenced by grouping_planner().

◆ process_implied_equality()

RestrictInfo* process_implied_equality ( PlannerInfo root,
Oid  opno,
Oid  collation,
Expr item1,
Expr item2,
Relids  qualscope,
Index  security_level,
bool  both_const 
)

Definition at line 3031 of file initsplan.c.

3039 {
3040  RestrictInfo *restrictinfo;
3041  Node *clause;
3042  Relids relids;
3043  bool pseudoconstant = false;
3044 
3045  /*
3046  * Build the new clause. Copy to ensure it shares no substructure with
3047  * original (this is necessary in case there are subselects in there...)
3048  */
3049  clause = (Node *) make_opclause(opno,
3050  BOOLOID, /* opresulttype */
3051  false, /* opretset */
3052  copyObject(item1),
3053  copyObject(item2),
3054  InvalidOid,
3055  collation);
3056 
3057  /* If both constant, try to reduce to a boolean constant. */
3058  if (both_const)
3059  {
3060  clause = eval_const_expressions(root, clause);
3061 
3062  /* If we produced const TRUE, just drop the clause */
3063  if (clause && IsA(clause, Const))
3064  {
3065  Const *cclause = (Const *) clause;
3066 
3067  Assert(cclause->consttype == BOOLOID);
3068  if (!cclause->constisnull && DatumGetBool(cclause->constvalue))
3069  return NULL;
3070  }
3071  }
3072 
3073  /*
3074  * The rest of this is a very cut-down version of distribute_qual_to_rels.
3075  * We can skip most of the work therein, but there are a couple of special
3076  * cases we still have to handle.
3077  *
3078  * Retrieve all relids mentioned within the possibly-simplified clause.
3079  */
3080  relids = pull_varnos(root, clause);
3081  Assert(bms_is_subset(relids, qualscope));
3082 
3083  /*
3084  * If the clause is variable-free, our normal heuristic for pushing it
3085  * down to just the mentioned rels doesn't work, because there are none.
3086  * Apply it as a gating qual at the appropriate level (see comments for
3087  * get_join_domain_min_rels).
3088  */
3089  if (bms_is_empty(relids))
3090  {
3091  /* eval at join domain's safe level */
3092  relids = get_join_domain_min_rels(root, qualscope);
3093  /* mark as gating qual */
3094  pseudoconstant = true;
3095  /* tell createplan.c to check for gating quals */
3096  root->hasPseudoConstantQuals = true;
3097  }
3098 
3099  /*
3100  * Build the RestrictInfo node itself.
3101  */
3102  restrictinfo = make_restrictinfo(root,
3103  (Expr *) clause,
3104  true, /* is_pushed_down */
3105  false, /* !has_clone */
3106  false, /* !is_clone */
3107  pseudoconstant,
3108  security_level,
3109  relids,
3110  NULL, /* incompatible_relids */
3111  NULL); /* outer_relids */
3112 
3113  /*
3114  * If it's a join clause, add vars used in the clause to targetlists of
3115  * their relations, so that they will be emitted by the plan nodes that
3116  * scan those relations (else they won't be available at the join node!).
3117  *
3118  * Typically, we'd have already done this when the component expressions
3119  * were first seen by distribute_qual_to_rels; but it is possible that
3120  * some of the Vars could have missed having that done because they only
3121  * appeared in single-relation clauses originally. So do it here for
3122  * safety.
3123  *
3124  * See also rebuild_joinclause_attr_needed, which has to partially repeat
3125  * this work after removal of an outer join. (Since we will put this
3126  * clause into the joininfo lists, that function needn't do any extra work
3127  * to find it.)
3128  */
3129  if (bms_membership(relids) == BMS_MULTIPLE)
3130  {
3131  List *vars = pull_var_clause(clause,
3135 
3136  add_vars_to_targetlist(root, vars, relids);
3137  list_free(vars);
3138  }
3139 
3140  /*
3141  * Check mergejoinability. This will usually succeed, since the op came
3142  * from an EquivalenceClass; but we could have reduced the original clause
3143  * to a constant.
3144  */
3145  check_mergejoinable(restrictinfo);
3146 
3147  /*
3148  * Note we don't do initialize_mergeclause_eclasses(); the caller can
3149  * handle that much more cheaply than we can. It's okay to call
3150  * distribute_restrictinfo_to_rels() before that happens.
3151  */
3152 
3153  /*
3154  * Push the new clause into all the appropriate restrictinfo lists.
3155  */
3156  distribute_restrictinfo_to_rels(root, restrictinfo);
3157 
3158  return restrictinfo;
3159 }
BMS_Membership bms_membership(const Bitmapset *a)
Definition: bitmapset.c:781
@ BMS_MULTIPLE
Definition: bitmapset.h:73
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2254
void distribute_restrictinfo_to_rels(PlannerInfo *root, RestrictInfo *restrictinfo)
Definition: initsplan.c:2946
static Relids get_join_domain_min_rels(PlannerInfo *root, Relids domain_relids)
Definition: initsplan.c:3244
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
Oid consttype
Definition: primnodes.h:312
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:113

References add_vars_to_targetlist(), Assert, bms_is_empty, bms_is_subset(), bms_membership(), BMS_MULTIPLE, check_mergejoinable(), Const::consttype, copyObject, DatumGetBool(), distribute_restrictinfo_to_rels(), eval_const_expressions(), get_join_domain_min_rels(), InvalidOid, IsA, list_free(), make_opclause(), make_restrictinfo(), pull_var_clause(), pull_varnos(), PVC_INCLUDE_PLACEHOLDERS, PVC_RECURSE_AGGREGATES, PVC_RECURSE_WINDOWFUNCS, JoinTreeItem::qualscope, and root.

Referenced by generate_base_implied_equalities_const(), and generate_base_implied_equalities_no_const().

◆ query_is_distinct_for()

bool query_is_distinct_for ( Query query,
List colnos,
List opids 
)

Definition at line 983 of file analyzejoins.c.

984 {
985  ListCell *l;
986  Oid opid;
987 
988  Assert(list_length(colnos) == list_length(opids));
989 
990  /*
991  * DISTINCT (including DISTINCT ON) guarantees uniqueness if all the
992  * columns in the DISTINCT clause appear in colnos and operator semantics
993  * match. This is true even if there are SRFs in the DISTINCT columns or
994  * elsewhere in the tlist.
995  */
996  if (query->distinctClause)
997  {
998  foreach(l, query->distinctClause)
999  {
1000  SortGroupClause *sgc = (SortGroupClause *) lfirst(l);
1002  query->targetList);
1003 
1004  opid = distinct_col_search(tle->resno, colnos, opids);
1005  if (!OidIsValid(opid) ||
1006  !equality_ops_are_compatible(opid, sgc->eqop))
1007  break; /* exit early if no match */
1008  }
1009  if (l == NULL) /* had matches for all? */
1010  return true;
1011  }
1012 
1013  /*
1014  * Otherwise, a set-returning function in the query's targetlist can
1015  * result in returning duplicate rows, despite any grouping that might
1016  * occur before tlist evaluation. (If all tlist SRFs are within GROUP BY
1017  * columns, it would be safe because they'd be expanded before grouping.
1018  * But it doesn't currently seem worth the effort to check for that.)
1019  */
1020  if (query->hasTargetSRFs)
1021  return false;
1022 
1023  /*
1024  * Similarly, GROUP BY without GROUPING SETS guarantees uniqueness if all
1025  * the grouped columns appear in colnos and operator semantics match.
1026  */
1027  if (query->groupClause && !query->groupingSets)
1028  {
1029  foreach(l, query->groupClause)
1030  {
1031  SortGroupClause *sgc = (SortGroupClause *) lfirst(l);
1033  query->targetList);
1034 
1035  opid = distinct_col_search(tle->resno, colnos, opids);
1036  if (!OidIsValid(opid) ||
1037  !equality_ops_are_compatible(opid, sgc->eqop))
1038  break; /* exit early if no match */
1039  }
1040  if (l == NULL) /* had matches for all? */
1041  return true;
1042  }
1043  else if (query->groupingSets)
1044  {
1045  /*
1046  * If we have grouping sets with expressions, we probably don't have
1047  * uniqueness and analysis would be hard. Punt.
1048  */
1049  if (query->groupClause)
1050  return false;
1051 
1052  /*
1053  * If we have no groupClause (therefore no grouping expressions), we
1054  * might have one or many empty grouping sets. If there's just one,
1055  * then we're returning only one row and are certainly unique. But
1056  * otherwise, we know we're certainly not unique.
1057  */
1058  if (list_length(query->groupingSets) == 1 &&
1059  ((GroupingSet *) linitial(query->groupingSets))->kind == GROUPING_SET_EMPTY)
1060  return true;
1061  else
1062  return false;
1063  }
1064  else
1065  {
1066  /*
1067  * If we have no GROUP BY, but do have aggregates or HAVING, then the
1068  * result is at most one row so it's surely unique, for any operators.
1069  */
1070  if (query->hasAggs || query->havingQual)
1071  return true;
1072  }
1073 
1074  /*
1075  * UNION, INTERSECT, EXCEPT guarantee uniqueness of the whole output row,
1076  * except with ALL.
1077  */
1078  if (query->setOperations)
1079  {
1081 
1082  Assert(topop->op != SETOP_NONE);
1083 
1084  if (!topop->all)
1085  {
1086  ListCell *lg;
1087 
1088  /* We're good if all the nonjunk output columns are in colnos */
1089  lg = list_head(topop->groupClauses);
1090  foreach(l, query->targetList)
1091  {
1092  TargetEntry *tle = (TargetEntry *) lfirst(l);
1093  SortGroupClause *sgc;
1094 
1095  if (tle->resjunk)
1096  continue; /* ignore resjunk columns */
1097 
1098  /* non-resjunk columns should have grouping clauses */
1099  Assert(lg != NULL);
1100  sgc = (SortGroupClause *) lfirst(lg);
1101  lg = lnext(topop->groupClauses, lg);
1102 
1103  opid = distinct_col_search(tle->resno, colnos, opids);
1104  if (!OidIsValid(opid) ||
1105  !equality_ops_are_compatible(opid, sgc->eqop))
1106  break; /* exit early if no match */
1107  }
1108  if (l == NULL) /* had matches for all? */
1109  return true;
1110  }
1111  }
1112 
1113  /*
1114  * XXX Are there any other cases in which we can easily see the result
1115  * must be distinct?
1116  *
1117  * If you do add more smarts to this function, be sure to update
1118  * query_supports_distinctness() to match.
1119  */
1120 
1121  return false;
1122 }
static Oid distinct_col_search(int colno, List *colnos, List *opids)
bool equality_ops_are_compatible(Oid opno1, Oid opno2)
Definition: lsyscache.c:698
@ GROUPING_SET_EMPTY
Definition: parsenodes.h:1499
@ SETOP_NONE
Definition: parsenodes.h:2110
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
Node * setOperations
Definition: parsenodes.h:221
List * groupClause
Definition: parsenodes.h:202
Node * havingQual
Definition: parsenodes.h:207
List * targetList
Definition: parsenodes.h:193
List * groupingSets
Definition: parsenodes.h:205
List * distinctClause
Definition: parsenodes.h:211
SetOperation op
Definition: parsenodes.h:2188

References SetOperationStmt::all, Assert, castNode, distinct_col_search(), Query::distinctClause, SortGroupClause::eqop, equality_ops_are_compatible(), get_sortgroupclause_tle(), Query::groupClause, GROUPING_SET_EMPTY, Query::groupingSets, Query::havingQual, lfirst, linitial, list_head(), list_length(), lnext(), OidIsValid, SetOperationStmt::op, TargetEntry::resno, SETOP_NONE, Query::setOperations, and Query::targetList.

Referenced by create_unique_path(), and rel_is_distinct_for().

◆ query_planner()

RelOptInfo* query_planner ( PlannerInfo root,
query_pathkeys_callback  qp_callback,
void *  qp_extra 
)

Definition at line 54 of file planmain.c.

56 {
57  Query *parse = root->parse;
58  List *joinlist;
59  RelOptInfo *final_rel;
60 
61  /*
62  * Init planner lists to empty.
63  *
64  * NOTE: append_rel_list was set up by subquery_planner, so do not touch
65  * here.
66  */
67  root->join_rel_list = NIL;
68  root->join_rel_hash = NULL;
69  root->join_rel_level = NULL;
70  root->join_cur_level = 0;
71  root->canon_pathkeys = NIL;
72  root->left_join_clauses = NIL;
73  root->right_join_clauses = NIL;
74  root->full_join_clauses = NIL;
75  root->join_info_list = NIL;
76  root->placeholder_list = NIL;
77  root->placeholder_array = NULL;
78  root->placeholder_array_size = 0;
79  root->fkey_list = NIL;
80  root->initial_rels = NIL;
81 
82  /*
83  * Set up arrays for accessing base relations and AppendRelInfos.
84  */
86 
87  /*
88  * In the trivial case where the jointree is a single RTE_RESULT relation,
89  * bypass all the rest of this function and just make a RelOptInfo and its
90  * one access path. This is worth optimizing because it applies for
91  * common cases like "SELECT expression" and "INSERT ... VALUES()".
92  */
93  Assert(parse->jointree->fromlist != NIL);
94  if (list_length(parse->jointree->fromlist) == 1)
95  {
96  Node *jtnode = (Node *) linitial(parse->jointree->fromlist);
97 
98  if (IsA(jtnode, RangeTblRef))
99  {
100  int varno = ((RangeTblRef *) jtnode)->rtindex;
101  RangeTblEntry *rte = root->simple_rte_array[varno];
102 
103  Assert(rte != NULL);
104  if (rte->rtekind == RTE_RESULT)
105  {
106  /* Make the RelOptInfo for it directly */
107  final_rel = build_simple_rel(root, varno, NULL);
108 
109  /*
110  * If query allows parallelism in general, check whether the
111  * quals are parallel-restricted. (We need not check
112  * final_rel->reltarget because it's empty at this point.
113  * Anything parallel-restricted in the query tlist will be
114  * dealt with later.) We should always do this in a subquery,
115  * since it might be useful to use the subquery in parallel
116  * paths in the parent level. At top level this is normally
117  * not worth the cycles, because a Result-only plan would
118  * never be interesting to parallelize. However, if
119  * debug_parallel_query is on, then we want to execute the
120  * Result in a parallel worker if possible, so we must check.
121  */
122  if (root->glob->parallelModeOK &&
123  (root->query_level > 1 ||
125  final_rel->consider_parallel =
126  is_parallel_safe(root, parse->jointree->quals);
127 
128  /*
129  * The only path for it is a trivial Result path. We cheat a
130  * bit here by using a GroupResultPath, because that way we
131  * can just jam the quals into it without preprocessing them.
132  * (But, if you hold your head at the right angle, a FROM-less
133  * SELECT is a kind of degenerate-grouping case, so it's not
134  * that much of a cheat.)
135  */
136  add_path(final_rel, (Path *)
137  create_group_result_path(root, final_rel,
138  final_rel->reltarget,
139  (List *) parse->jointree->quals));
140 
141  /* Select cheapest path (pretty easy in this case...) */
142  set_cheapest(final_rel);
143 
144  /*
145  * We don't need to run generate_base_implied_equalities, but
146  * we do need to pretend that EC merging is complete.
147  */
148  root->ec_merging_done = true;
149 
150  /*
151  * We still are required to call qp_callback, in case it's
152  * something like "SELECT 2+2 ORDER BY 1".
153  */
154  (*qp_callback) (root, qp_extra);
155 
156  return final_rel;
157  }
158  }
159  }
160 
161  /*
162  * Construct RelOptInfo nodes for all base relations used in the query.
163  * Appendrel member relations ("other rels") will be added later.
164  *
165  * Note: the reason we find the baserels by searching the jointree, rather
166  * than scanning the rangetable, is that the rangetable may contain RTEs
167  * for rels not actively part of the query, for example views. We don't
168  * want to make RelOptInfos for them.
169  */
170  add_base_rels_to_query(root, (Node *) parse->jointree);
171 
172  /*
173  * Examine the targetlist and join tree, adding entries to baserel
174  * targetlists for all referenced Vars, and generating PlaceHolderInfo
175  * entries for all referenced PlaceHolderVars. Restrict and join clauses
176  * are added to appropriate lists belonging to the mentioned relations. We
177  * also build EquivalenceClasses for provably equivalent expressions. The
178  * SpecialJoinInfo list is also built to hold information about join order
179  * restrictions. Finally, we form a target joinlist for make_one_rel() to
180  * work from.
181  */
182  build_base_rel_tlists(root, root->processed_tlist);
183 
185 
187 
188  joinlist = deconstruct_jointree(root);
189 
190  /*
191  * Reconsider any postponed outer-join quals now that we have built up
192  * equivalence classes. (This could result in further additions or
193  * mergings of classes.)
194  */
196 
197  /*
198  * If we formed any equivalence classes, generate additional restriction
199  * clauses as appropriate. (Implied join clauses are formed on-the-fly
200  * later.)
201  */
203 
204  /*
205  * We have completed merging equivalence sets, so it's now possible to
206  * generate pathkeys in canonical form; so compute query_pathkeys and
207  * other pathkeys fields in PlannerInfo.
208  */
209  (*qp_callback) (root, qp_extra);
210 
211  /*
212  * Examine any "placeholder" expressions generated during subquery pullup.
213  * Make sure that the Vars they need are marked as needed at the relevant
214  * join level. This must be done before join removal because it might
215  * cause Vars or placeholders to be needed above a join when they weren't
216  * so marked before.
217  */
219 
220  /*
221  * Remove any useless outer joins. Ideally this would be done during
222  * jointree preprocessing, but the necessary information isn't available
223  * until we've built baserel data structures and classified qual clauses.
224  */
225  joinlist = remove_useless_joins(root, joinlist);
226 
227  /*
228  * Also, reduce any semijoins with unique inner rels to plain inner joins.
229  * Likewise, this can't be done until now for lack of needed info.
230  */
232 
233  /*
234  * Now distribute "placeholders" to base rels as needed. This has to be
235  * done after join removal because removal could change whether a
236  * placeholder is evaluable at a base rel.
237  */
239 
240  /*
241  * Construct the lateral reference sets now that we have finalized
242  * PlaceHolderVar eval levels.
243  */
245 
246  /*
247  * Match foreign keys to equivalence classes and join quals. This must be
248  * done after finalizing equivalence classes, and it's useful to wait till
249  * after join removal so that we can skip processing foreign keys
250  * involving removed relations.
251  */
253 
254  /*
255  * Look for join OR clauses that we can extract single-relation
256  * restriction OR clauses from.
257  */
259 
260  /*
261  * Now expand appendrels by adding "otherrels" for their children. We
262  * delay this to the end so that we have as much information as possible
263  * available for each baserel, including all restriction clauses. That
264  * let us prune away partitions that don't satisfy a restriction clause.
265  * Also note that some information such as lateral_relids is propagated
266  * from baserels to otherrels here, so we must have computed it already.
267  */
269 
270  /*
271  * Distribute any UPDATE/DELETE/MERGE row identity variables to the target
272  * relations. This can't be done till we've finished expansion of
273  * appendrels.
274  */
276 
277  /*
278  * Ready to do the primary planning.
279  */
280  final_rel = make_one_rel(root, joinlist);
281 
282  /* Check that we got at least one usable path */
283  if (!final_rel || !final_rel->cheapest_total_path ||
284  final_rel->cheapest_total_path->param_info != NULL)
285  elog(ERROR, "failed to construct the join relation");
286 
287  return final_rel;
288 }
RelOptInfo * make_one_rel(PlannerInfo *root, List *joinlist)
Definition: allpaths.c:171
List * remove_useless_joins(PlannerInfo *root, List *joinlist)
Definition: analyzejoins.c:65
void reduce_unique_semijoins(PlannerInfo *root)
Definition: analyzejoins.c:718
void distribute_row_identity_vars(PlannerInfo *root)
Definition: appendinfo.c:969
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:753
void generate_base_implied_equalities(PlannerInfo *root)
Definition: equivclass.c:1032
void reconsider_outer_join_clauses(PlannerInfo *root)
Definition: equivclass.c:2001
List * deconstruct_jointree(PlannerInfo *root)
Definition: initsplan.c:843
void match_foreign_keys_to_quals(PlannerInfo *root)
Definition: initsplan.c:3350
void find_lateral_references(PlannerInfo *root)
Definition: initsplan.c:417
void build_base_rel_tlists(PlannerInfo *root, List *final_tlist)
Definition: initsplan.c:234
void add_other_rels_to_query(PlannerInfo *root)
Definition: initsplan.c:195
void create_lateral_join_info(PlannerInfo *root)
Definition: initsplan.c:604
@ DEBUG_PARALLEL_OFF
Definition: optimizer.h:106
void extract_restriction_or_clauses(PlannerInfo *root)
Definition: orclauses.c:75
@ RTE_RESULT
Definition: parsenodes.h:1025
GroupResultPath * create_group_result_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *havingqual)
Definition: pathnode.c:1586
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:269
void add_placeholders_to_base_rels(PlannerInfo *root)
Definition: placeholder.c:356
void fix_placeholder_input_needed_levels(PlannerInfo *root)
Definition: placeholder.c:300
void find_placeholders_in_jointree(PlannerInfo *root)
Definition: placeholder.c:185
int debug_parallel_query
Definition: planner.c:68
void setup_simple_rel_arrays(PlannerInfo *root)
Definition: relnode.c:94
bool consider_parallel
Definition: pathnodes.h:887
struct Path * cheapest_total_path
Definition: pathnodes.h:902

References add_base_rels_to_query(), add_other_rels_to_query(), add_path(), add_placeholders_to_base_rels(), Assert, build_base_rel_tlists(), build_simple_rel(), RelOptInfo::cheapest_total_path, RelOptInfo::consider_parallel, create_group_result_path(), create_lateral_join_info(), DEBUG_PARALLEL_OFF, debug_parallel_query, deconstruct_jointree(), distribute_row_identity_vars(), elog, ERROR, extract_restriction_or_clauses(), find_lateral_references(), find_placeholders_in_jointree(), fix_placeholder_input_needed_levels(), generate_base_implied_equalities(), is_parallel_safe(), IsA, linitial, list_length(), make_one_rel(), match_foreign_keys_to_quals(), NIL, parse(), reconsider_outer_join_clauses(), reduce_unique_semijoins(), RelOptInfo::reltarget, remove_useless_joins(), root, RTE_RESULT, RangeTblEntry::rtekind, set_cheapest(), and setup_simple_rel_arrays().

Referenced by build_minmax_path(), and grouping_planner().

◆ query_supports_distinctness()

bool query_supports_distinctness ( Query query)

Definition at line 946 of file analyzejoins.c.

947 {
948  /* SRFs break distinctness except with DISTINCT, see below */
949  if (query->hasTargetSRFs && query->distinctClause == NIL)
950  return false;
951 
952  /* check for features we can prove distinctness with */
953  if (query->distinctClause != NIL ||
954  query->groupClause != NIL ||
955  query->groupingSets != NIL ||
956  query->hasAggs ||
957  query->havingQual ||
958  query->setOperations)
959  return true;
960 
961  return false;
962 }

References Query::distinctClause, Query::groupClause, Query::groupingSets, Query::havingQual, NIL, and Query::setOperations.

Referenced by create_unique_path(), and rel_supports_distinctness().

◆ rebuild_joinclause_attr_needed()

void rebuild_joinclause_attr_needed ( PlannerInfo root)

Definition at line 3278 of file initsplan.c.

3279 {
3280  /*
3281  * We must examine all join clauses, but there's no value in processing
3282  * any join clause more than once. So it's slightly annoying that we have
3283  * to find them via the per-base-relation joininfo lists. Avoid duplicate
3284  * processing by tracking the rinfo_serial numbers of join clauses we've
3285  * already seen. (This doesn't work for is_clone clauses, so we must
3286  * waste effort on them.)
3287  */
3288  Bitmapset *seen_serials = NULL;
3289  Index rti;
3290 
3291  /* Scan all baserels for join clauses */
3292  for (rti = 1; rti < root->simple_rel_array_size; rti++)
3293  {
3294  RelOptInfo *brel = root->simple_rel_array[rti];
3295  ListCell *lc;
3296 
3297  if (brel == NULL)
3298  continue;
3299  if (brel->reloptkind != RELOPT_BASEREL)
3300  continue;
3301 
3302  foreach(lc, brel->joininfo)
3303  {
3304  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
3305  Relids relids = rinfo->required_relids;
3306 
3307  if (!rinfo->is_clone) /* else serial number is not unique */
3308  {
3309  if (bms_is_member(rinfo->rinfo_serial, seen_serials))
3310  continue; /* saw it already */
3311  seen_serials = bms_add_member(seen_serials,
3312  rinfo->rinfo_serial);
3313  }
3314 
3315  if (bms_membership(relids) == BMS_MULTIPLE)
3316  {
3317  List *vars = pull_var_clause((Node *) rinfo->clause,
3321  Relids where_needed;
3322 
3323  if (rinfo->is_clone)
3324  where_needed = bms_intersect(relids, root->all_baserels);
3325  else
3326  where_needed = relids;
3327  add_vars_to_attr_needed(root, vars, where_needed);
3328  list_free(vars);
3329  }
3330  }
3331  }
3332 }
void add_vars_to_attr_needed(PlannerInfo *root, List *vars, Relids where_needed)
Definition: initsplan.c:352
int rinfo_serial
Definition: pathnodes.h:2646

References add_vars_to_attr_needed(), bms_add_member(), bms_intersect(), bms_is_member(), bms_membership(), BMS_MULTIPLE, RestrictInfo::clause, RestrictInfo::is_clone, RelOptInfo::joininfo, lfirst, list_free(), pull_var_clause(), PVC_INCLUDE_PLACEHOLDERS, PVC_RECURSE_AGGREGATES, PVC_RECURSE_WINDOWFUNCS, RELOPT_BASEREL, RelOptInfo::reloptkind, RestrictInfo::required_relids, RestrictInfo::rinfo_serial, and root.

Referenced by remove_rel_from_query().

◆ rebuild_lateral_attr_needed()

void rebuild_lateral_attr_needed ( PlannerInfo root)

Definition at line 566 of file initsplan.c.

567 {
568  Index rti;
569 
570  /* We need do nothing if the query contains no LATERAL RTEs */
571  if (!root->hasLateralRTEs)
572  return;
573 
574  /* Examine the same baserels that find_lateral_references did */
575  for (rti = 1; rti < root->simple_rel_array_size; rti++)
576  {
577  RelOptInfo *brel = root->simple_rel_array[rti];
578  Relids where_needed;
579 
580  if (brel == NULL)
581  continue;
582  if (brel->reloptkind != RELOPT_BASEREL)
583  continue;
584 
585  /*
586  * We don't need to repeat all of extract_lateral_references, since it
587  * kindly saved the extracted Vars/PHVs in lateral_vars.
588  */
589  if (brel->lateral_vars == NIL)
590  continue;
591 
592  where_needed = bms_make_singleton(rti);
593 
594  add_vars_to_attr_needed(root, brel->lateral_vars, where_needed);
595  }
596 }

References add_vars_to_attr_needed(), bms_make_singleton(), RelOptInfo::lateral_vars, NIL, RELOPT_BASEREL, RelOptInfo::reloptkind, and root.

Referenced by remove_rel_from_query().

◆ record_plan_function_dependency()

void record_plan_function_dependency ( PlannerInfo root,
Oid  funcid 
)

Definition at line 3484 of file setrefs.c.

3485 {
3486  /*
3487  * For performance reasons, we don't bother to track built-in functions;
3488  * we just assume they'll never change (or at least not in ways that'd
3489  * invalidate plans using them). For this purpose we can consider a
3490  * built-in function to be one with OID less than FirstUnpinnedObjectId.
3491  * Note that the OID generator guarantees never to generate such an OID
3492  * after startup, even at OID wraparound.
3493  */
3494  if (funcid >= (Oid) FirstUnpinnedObjectId)
3495  {
3496  PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3497 
3498  /*
3499  * It would work to use any syscache on pg_proc, but the easiest is
3500  * PROCOID since we already have the function's OID at hand. Note
3501  * that plancache.c knows we use PROCOID.
3502  */
3503  inval_item->cacheId = PROCOID;
3504  inval_item->hashValue = GetSysCacheHashValue1(PROCOID,
3505  ObjectIdGetDatum(funcid));
3506 
3507  root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3508  }
3509 }
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
uint32 hashValue
Definition: plannodes.h:1574
#define GetSysCacheHashValue1(cacheId, key1)
Definition: syscache.h:118
#define FirstUnpinnedObjectId
Definition: transam.h:196

References PlanInvalItem::cacheId, FirstUnpinnedObjectId, GetSysCacheHashValue1, PlanInvalItem::hashValue, lappend(), makeNode, ObjectIdGetDatum(), and root.

Referenced by fix_expr_common(), inline_function(), and inline_set_returning_function().

◆ record_plan_type_dependency()

void record_plan_type_dependency ( PlannerInfo root,
Oid  typid 
)

Definition at line 3524 of file setrefs.c.

3525 {
3526  /*
3527  * As in record_plan_function_dependency, ignore the possibility that
3528  * someone would change a built-in domain.
3529  */
3530  if (typid >= (Oid) FirstUnpinnedObjectId)
3531  {
3532  PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3533 
3534  /*
3535  * It would work to use any syscache on pg_type, but the easiest is
3536  * TYPEOID since we already have the type's OID at hand. Note that
3537  * plancache.c knows we use TYPEOID.
3538  */
3539  inval_item->cacheId = TYPEOID;
3540  inval_item->hashValue = GetSysCacheHashValue1(TYPEOID,
3541  ObjectIdGetDatum(typid));
3542 
3543  root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3544  }
3545 }

References PlanInvalItem::cacheId, FirstUnpinnedObjectId, GetSysCacheHashValue1, PlanInvalItem::hashValue, lappend(), makeNode, ObjectIdGetDatum(), and root.

Referenced by eval_const_expressions_mutator().

◆ reduce_unique_semijoins()

void reduce_unique_semijoins ( PlannerInfo root)

Definition at line 718 of file analyzejoins.c.

719 {
720  ListCell *lc;
721 
722  /*
723  * Scan the join_info_list to find semijoins.
724  */
725  foreach(lc, root->join_info_list)
726  {
727  SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
728  int innerrelid;
729  RelOptInfo *innerrel;
730  Relids joinrelids;
731  List *restrictlist;
732 
733  /*
734  * Must be a semijoin to a single baserel, else we aren't going to be
735  * able to do anything with it.
736  */
737  if (sjinfo->jointype != JOIN_SEMI)
738  continue;
739 
740  if (!bms_get_singleton_member(sjinfo->min_righthand, &innerrelid))
741  continue;
742 
743  innerrel = find_base_rel(root, innerrelid);
744 
745  /*
746  * Before we trouble to run generate_join_implied_equalities, make a
747  * quick check to eliminate cases in which we will surely be unable to
748  * prove uniqueness of the innerrel.
749  */
750  if (!rel_supports_distinctness(root, innerrel))
751  continue;
752 
753  /* Compute the relid set for the join we are considering */
754  joinrelids = bms_union(sjinfo->min_lefthand, sjinfo->min_righthand);
755  Assert(sjinfo->ojrelid == 0); /* SEMI joins don't have RT indexes */
756 
757  /*
758  * Since we're only considering a single-rel RHS, any join clauses it
759  * has must be clauses linking it to the semijoin's min_lefthand. We
760  * can also consider EC-derived join clauses.
761  */
762  restrictlist =
764  joinrelids,
765  sjinfo->min_lefthand,
766  innerrel,
767  NULL),
768  innerrel->joininfo);
769 
770  /* Test whether the innerrel is unique for those clauses. */
772  joinrelids, sjinfo->min_lefthand, innerrel,
773  JOIN_SEMI, restrictlist, true))
774  continue;
775 
776  /* OK, remove the SpecialJoinInfo from the list. */
777  root->join_info_list = foreach_delete_current(root->join_info_list, lc);
778  }
779 }
bool innerrel_is_unique(PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist, bool force_cache)
List * generate_join_implied_equalities(PlannerInfo *root, Relids join_relids, Relids outer_relids, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo)
Definition: equivclass.c:1385
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
@ JOIN_SEMI
Definition: nodes.h:307
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
Relids min_righthand
Definition: pathnodes.h:2905
JoinType jointype
Definition: pathnodes.h:2908
Relids min_lefthand
Definition: pathnodes.h:2904

References Assert, bms_get_singleton_member(), bms_union(), find_base_rel(), foreach_delete_current, generate_join_implied_equalities(), innerrel_is_unique(), JOIN_SEMI, RelOptInfo::joininfo, SpecialJoinInfo::jointype, lfirst, list_concat(), SpecialJoinInfo::min_lefthand, SpecialJoinInfo::min_righthand, SpecialJoinInfo::ojrelid, rel_supports_distinctness(), and root.

Referenced by query_planner().

◆ remove_useless_joins()

List* remove_useless_joins ( PlannerInfo root,
List joinlist 
)

Definition at line 65 of file analyzejoins.c.

66 {
67  ListCell *lc;
68 
69  /*
70  * We are only interested in relations that are left-joined to, so we can
71  * scan the join_info_list to find them easily.
72  */
73 restart:
74  foreach(lc, root->join_info_list)
75  {
76  SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
77  int innerrelid;
78  int nremoved;
79 
80  /* Skip if not removable */
81  if (!join_is_removable(root, sjinfo))
82  continue;
83 
84  /*
85  * Currently, join_is_removable can only succeed when the sjinfo's
86  * righthand is a single baserel. Remove that rel from the query and
87  * joinlist.
88  */
89  innerrelid = bms_singleton_member(sjinfo->min_righthand);
90 
91  remove_rel_from_query(root, innerrelid, sjinfo);
92 
93  /* We verify that exactly one reference gets removed from joinlist */
94  nremoved = 0;
95  joinlist = remove_rel_from_joinlist(joinlist, innerrelid, &nremoved);
96  if (nremoved != 1)
97  elog(ERROR, "failed to find relation %d in joinlist", innerrelid);
98 
99  /*
100  * We can delete this SpecialJoinInfo from the list too, since it's no
101  * longer of interest. (Since we'll restart the foreach loop
102  * immediately, we don't bother with foreach_delete_current.)
103  */
104  root->join_info_list = list_delete_cell(root->join_info_list, lc);
105 
106  /*
107  * Restart the scan. This is necessary to ensure we find all
108  * removable joins independently of ordering of the join_info_list
109  * (note that removal of attr_needed bits may make a join appear
110  * removable that did not before).
111  */
112  goto restart;
113  }
114 
115  return joinlist;
116 }
static void remove_rel_from_query(PlannerInfo *root, int relid, SpecialJoinInfo *sjinfo)
Definition: analyzejoins.c:299
static List * remove_rel_from_joinlist(List *joinlist, int relid, int *nremoved)
Definition: analyzejoins.c:664
static bool join_is_removable(PlannerInfo *root, SpecialJoinInfo *sjinfo)
Definition: analyzejoins.c:130
int bms_singleton_member(const Bitmapset *a)
Definition: bitmapset.c:672
List * list_delete_cell(List *list, ListCell *cell)
Definition: list.c:841

References bms_singleton_member(), elog, ERROR, join_is_removable(), lfirst, list_delete_cell(), SpecialJoinInfo::min_righthand, remove_rel_from_joinlist(), remove_rel_from_query(), and root.

Referenced by query_planner().

◆ restriction_is_always_false()

bool restriction_is_always_false ( PlannerInfo root,
RestrictInfo restrictinfo 
)

Definition at line 2891 of file initsplan.c.

2893 {
2894  /* Check for NullTest qual */
2895  if (IsA(restrictinfo->clause, NullTest))
2896  {
2897  NullTest *nulltest = (NullTest *) restrictinfo->clause;
2898 
2899  /* is this NullTest an IS_NULL qual? */
2900  if (nulltest->nulltesttype != IS_NULL)
2901  return false;
2902 
2903  return expr_is_nonnullable(root, nulltest->arg);
2904  }
2905 
2906  /* If it's an OR, check its sub-clauses */
2907  if (restriction_is_or_clause(restrictinfo))
2908  {
2909  ListCell *lc;
2910 
2911  Assert(is_orclause(restrictinfo->orclause));
2912 
2913  /*
2914  * Currently, when processing OR expressions, we only return true when
2915  * all of the OR branches are always false. This could perhaps be
2916  * expanded to remove OR branches that are provably false. This may
2917  * be a useful thing to do as it could result in the OR being left
2918  * with a single arg. That's useful as it would allow the OR
2919  * condition to be replaced with its single argument which may allow
2920  * use of an index for faster filtering on the remaining condition.
2921  */
2922  foreach(lc, ((BoolExpr *) restrictinfo->orclause)->args)
2923  {
2924  Node *orarg = (Node *) lfirst(lc);
2925 
2926  if (!IsA(orarg, RestrictInfo) ||
2928  return false;
2929  }
2930  return true;
2931  }
2932 
2933  return false;
2934 }
bool restriction_is_always_false(PlannerInfo *root, RestrictInfo *restrictinfo)
Definition: initsplan.c:2891
static bool expr_is_nonnullable(PlannerInfo *root, Expr *expr)
Definition: initsplan.c:2806
static bool is_orclause(const void *clause)
Definition: nodeFuncs.h:116
@ IS_NULL
Definition: primnodes.h:1952
bool restriction_is_or_clause(RestrictInfo *restrictinfo)
Definition: restrictinfo.c:416
NullTestType nulltesttype
Definition: primnodes.h:1959
Expr * arg
Definition: primnodes.h:1958

References NullTest::arg, Assert, RestrictInfo::clause, expr_is_nonnullable(), if(), IS_NULL, is_orclause(), IsA, lfirst, NullTest::nulltesttype, restriction_is_or_clause(), and root.

Referenced by add_base_clause_to_rel(), add_join_clause_to_rels(), and apply_child_basequals().

◆ restriction_is_always_true()

bool restriction_is_always_true ( PlannerInfo root,
RestrictInfo restrictinfo 
)

Definition at line 2842 of file initsplan.c.

2844 {
2845  /* Check for NullTest qual */
2846  if (IsA(restrictinfo->clause, NullTest))
2847  {
2848  NullTest *nulltest = (NullTest *) restrictinfo->clause;
2849 
2850  /* is this NullTest an IS_NOT_NULL qual? */
2851  if (nulltest->nulltesttype != IS_NOT_NULL)
2852  return false;
2853 
2854  return expr_is_nonnullable(root, nulltest->arg);
2855  }
2856 
2857  /* If it's an OR, check its sub-clauses */
2858  if (restriction_is_or_clause(restrictinfo))
2859  {
2860  ListCell *lc;
2861 
2862  Assert(is_orclause(restrictinfo->orclause));
2863 
2864  /*
2865  * if any of the given OR branches is provably always true then the
2866  * entire condition is true.
2867  */
2868  foreach(lc, ((BoolExpr *) restrictinfo->orclause)->args)
2869  {
2870  Node *orarg = (Node *) lfirst(lc);
2871 
2872  if (!IsA(orarg, RestrictInfo))
2873  continue;
2874 
2876  return true;
2877  }
2878  }
2879 
2880  return false;
2881 }
bool restriction_is_always_true(PlannerInfo *root, RestrictInfo *restrictinfo)
Definition: initsplan.c:2842
@ IS_NOT_NULL
Definition: primnodes.h:1952

References NullTest::arg, Assert, RestrictInfo::clause, expr_is_nonnullable(), if(), IS_NOT_NULL, is_orclause(), IsA, lfirst, NullTest::nulltesttype, restriction_is_or_clause(), and root.

Referenced by add_base_clause_to_rel(), add_join_clause_to_rels(), and apply_child_basequals().

◆ set_plan_references()

Plan* set_plan_references ( PlannerInfo root,
Plan plan 
)

Definition at line 288 of file setrefs.c.

289 {
290  Plan *result;
291  PlannerGlobal *glob = root->glob;
292  int rtoffset = list_length(glob->finalrtable);
293  ListCell *lc;
294 
295  /*
296  * Add all the query's RTEs to the flattened rangetable. The live ones
297  * will have their rangetable indexes increased by rtoffset. (Additional
298  * RTEs, not referenced by the Plan tree, might get added after those.)
299  */
301 
302  /*
303  * Adjust RT indexes of PlanRowMarks and add to final rowmarks list
304  */
305  foreach(lc, root->rowMarks)
306  {
308  PlanRowMark *newrc;
309 
310  /* flat copy is enough since all fields are scalars */
311  newrc = (PlanRowMark *) palloc(sizeof(PlanRowMark));
312  memcpy(newrc, rc, sizeof(PlanRowMark));
313 
314  /* adjust indexes ... but *not* the rowmarkId */
315  newrc->rti += rtoffset;
316  newrc->prti += rtoffset;
317 
318  glob->finalrowmarks = lappend(glob->finalrowmarks, newrc);
319  }
320 
321  /*
322  * Adjust RT indexes of AppendRelInfos and add to final appendrels list.
323  * We assume the AppendRelInfos were built during planning and don't need
324  * to be copied.
325  */
326  foreach(lc, root->append_rel_list)
327  {
328  AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
329 
330  /* adjust RT indexes */
331  appinfo->parent_relid += rtoffset;
332  appinfo->child_relid += rtoffset;
333 
334  /*
335  * Rather than adjust the translated_vars entries, just drop 'em.
336  * Neither the executor nor EXPLAIN currently need that data.
337  */
338  appinfo->translated_vars = NIL;
339 
340  glob->appendRelations = lappend(glob->appendRelations, appinfo);
341  }
342 
343  /* If needed, create workspace for processing AlternativeSubPlans */
344  if (root->hasAlternativeSubPlans)
345  {
346  root->isAltSubplan = (bool *)
347  palloc0(list_length(glob->subplans) * sizeof(bool));
348  root->isUsedSubplan = (bool *)
349  palloc0(list_length(glob->subplans) * sizeof(bool));
350  }
351 
352  /* Now fix the Plan tree */
353  result = set_plan_refs(root, plan, rtoffset);
354 
355  /*
356  * If we have AlternativeSubPlans, it is likely that we now have some
357  * unreferenced subplans in glob->subplans. To avoid expending cycles on
358  * those subplans later, get rid of them by setting those list entries to
359  * NULL. (Note: we can't do this immediately upon processing an
360  * AlternativeSubPlan, because there may be multiple copies of the
361  * AlternativeSubPlan, and they can get resolved differently.)
362  */
363  if (root->hasAlternativeSubPlans)
364  {
365  foreach(lc, glob->subplans)
366  {
367  int ndx = foreach_current_index(lc);
368 
369  /*
370  * If it was used by some AlternativeSubPlan in this query level,
371  * but wasn't selected as best by any AlternativeSubPlan, then we
372  * don't need it. Do not touch subplans that aren't parts of
373  * AlternativeSubPlans.
374  */
375  if (root->isAltSubplan[ndx] && !root->isUsedSubplan[ndx])
376  lfirst(lc) = NULL;
377  }
378  }
379 
380  return result;
381 }
unsigned char bool
Definition: c.h:459
void * palloc0(Size size)
Definition: mcxt.c:1347
#define lfirst_node(type, lc)
Definition: pg_list.h:176
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing)
Definition: setrefs.c:392
static Plan * set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
Definition: setrefs.c:610
Index child_relid
Definition: pathnodes.h:2980
List * translated_vars
Definition: pathnodes.h:3007
Index parent_relid
Definition: pathnodes.h:2979
Index prti
Definition: plannodes.h:1384
List * subplans
Definition: pathnodes.h:105
List * appendRelations
Definition: pathnodes.h:129
List * finalrowmarks
Definition: pathnodes.h:123
List * finalrtable
Definition: pathnodes.h:117

References add_rtes_to_flat_rtable(), PlannerGlobal::appendRelations, AppendRelInfo::child_relid, PlannerGlobal::finalrowmarks, PlannerGlobal::finalrtable, foreach_current_index, lappend(), lfirst, lfirst_node, list_length(), NIL, palloc(), palloc0(), AppendRelInfo::parent_relid, plan, PlanRowMark::prti, root, PlanRowMark::rti, set_plan_refs(), PlannerGlobal::subplans, and AppendRelInfo::translated_vars.

Referenced by set_subqueryscan_references(), and standard_planner().

◆ trivial_subqueryscan()

bool trivial_subqueryscan ( SubqueryScan plan)

Definition at line 1466 of file setrefs.c.

1467 {
1468  int attrno;
1469  ListCell *lp,
1470  *lc;
1471 
1472  /* We might have detected this already; in which case reuse the result */
1473  if (plan->scanstatus == SUBQUERY_SCAN_TRIVIAL)
1474  return true;
1475  if (plan->scanstatus == SUBQUERY_SCAN_NONTRIVIAL)
1476  return false;
1477  Assert(plan->scanstatus == SUBQUERY_SCAN_UNKNOWN);
1478  /* Initially, mark the SubqueryScan as non-deletable from the plan tree */
1479  plan->scanstatus = SUBQUERY_SCAN_NONTRIVIAL;
1480 
1481  if (plan->scan.plan.qual != NIL)
1482  return false;
1483 
1484  if (list_length(plan->scan.plan.targetlist) !=
1485  list_length(plan->subplan->targetlist))
1486  return false; /* tlists not same length */
1487 
1488  attrno = 1;
1489  forboth(lp, plan->scan.plan.targetlist, lc, plan->subplan->targetlist)
1490  {
1491  TargetEntry *ptle = (TargetEntry *) lfirst(lp);
1492  TargetEntry *ctle = (TargetEntry *) lfirst(lc);
1493 
1494  if (ptle->resjunk != ctle->resjunk)
1495  return false; /* tlist doesn't match junk status */
1496 
1497  /*
1498  * We accept either a Var referencing the corresponding element of the
1499  * subplan tlist, or a Const equaling the subplan element. See
1500  * generate_setop_tlist() for motivation.
1501  */
1502  if (ptle->expr && IsA(ptle->expr, Var))
1503  {
1504  Var *var = (Var *) ptle->expr;
1505 
1506  Assert(var->varno == plan->scan.scanrelid);
1507  Assert(var->varlevelsup == 0);
1508  if (var->varattno != attrno)
1509  return false; /* out of order */
1510  }
1511  else if (ptle->expr && IsA(ptle->expr, Const))
1512  {
1513  if (!equal(ptle->expr, ctle->expr))
1514  return false;
1515  }
1516  else
1517  return false;
1518 
1519  attrno++;
1520  }
1521 
1522  /* Re-mark the SubqueryScan as deletable from the plan tree */
1523  plan->scanstatus = SUBQUERY_SCAN_TRIVIAL;
1524 
1525  return true;
1526 }
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
@ SUBQUERY_SCAN_NONTRIVIAL
Definition: plannodes.h:596
@ SUBQUERY_SCAN_UNKNOWN
Definition: plannodes.h:594
@ SUBQUERY_SCAN_TRIVIAL
Definition: plannodes.h:595
Index varlevelsup
Definition: primnodes.h:280

References Assert, equal(), TargetEntry::expr, forboth, IsA, lfirst, list_length(), NIL, plan, SUBQUERY_SCAN_NONTRIVIAL, SUBQUERY_SCAN_TRIVIAL, SUBQUERY_SCAN_UNKNOWN, Var::varattno, Var::varlevelsup, and Var::varno.

Referenced by mark_async_capable_plan(), and set_subqueryscan_references().

Variable Documentation

◆ cursor_tuple_fraction

PGDLLIMPORT double cursor_tuple_fraction
extern

Definition at line 67 of file planner.c.

Referenced by standard_planner().

◆ from_collapse_limit

PGDLLIMPORT int from_collapse_limit
extern

Definition at line 38 of file initsplan.c.

Referenced by deconstruct_recurse().

◆ join_collapse_limit

PGDLLIMPORT int join_collapse_limit
extern

Definition at line 39 of file initsplan.c.

Referenced by deconstruct_recurse().