PostgreSQL Source Code  git master
planmain.h File Reference
#include "nodes/pathnodes.h"
#include "nodes/plannodes.h"
Include dependency graph for planmain.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Macros

#define DEFAULT_CURSOR_TUPLE_FRACTION   0.1
 

Typedefs

typedef void(* query_pathkeys_callback) (PlannerInfo *root, void *extra)
 

Functions

RelOptInfoquery_planner (PlannerInfo *root, query_pathkeys_callback qp_callback, void *qp_extra)
 
void preprocess_minmax_aggregates (PlannerInfo *root)
 
Plancreate_plan (PlannerInfo *root, Path *best_path)
 
ForeignScanmake_foreignscan (List *qptlist, List *qpqual, Index scanrelid, List *fdw_exprs, List *fdw_private, List *fdw_scan_tlist, List *fdw_recheck_quals, Plan *outer_plan)
 
Planchange_plan_targetlist (Plan *subplan, List *tlist, bool tlist_parallel_safe)
 
Planmaterialize_finished_plan (Plan *subplan)
 
bool is_projection_capable_path (Path *path)
 
bool is_projection_capable_plan (Plan *plan)
 
Sortmake_sort_from_sortclauses (List *sortcls, Plan *lefttree)
 
Aggmake_agg (List *tlist, List *qual, AggStrategy aggstrategy, AggSplit aggsplit, int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations, List *groupingSets, List *chain, double dNumGroups, Size transitionSpace, Plan *lefttree)
 
Limitmake_limit (Plan *lefttree, Node *limitOffset, Node *limitCount, LimitOption limitOption, int uniqNumCols, AttrNumber *uniqColIdx, Oid *uniqOperators, Oid *uniqCollations)
 
void add_base_rels_to_query (PlannerInfo *root, Node *jtnode)
 
void add_other_rels_to_query (PlannerInfo *root)
 
void build_base_rel_tlists (PlannerInfo *root, List *final_tlist)
 
void add_vars_to_targetlist (PlannerInfo *root, List *vars, Relids where_needed)
 
void find_lateral_references (PlannerInfo *root)
 
void create_lateral_join_info (PlannerInfo *root)
 
Listdeconstruct_jointree (PlannerInfo *root)
 
bool restriction_is_always_true (PlannerInfo *root, RestrictInfo *restrictinfo)
 
bool restriction_is_always_false (PlannerInfo *root, RestrictInfo *restrictinfo)
 
void distribute_restrictinfo_to_rels (PlannerInfo *root, RestrictInfo *restrictinfo)
 
RestrictInfoprocess_implied_equality (PlannerInfo *root, Oid opno, Oid collation, Expr *item1, Expr *item2, Relids qualscope, Index security_level, bool both_const)
 
RestrictInfobuild_implied_join_equality (PlannerInfo *root, Oid opno, Oid collation, Expr *item1, Expr *item2, Relids qualscope, Index security_level)
 
void match_foreign_keys_to_quals (PlannerInfo *root)
 
Listremove_useless_joins (PlannerInfo *root, List *joinlist)
 
void reduce_unique_semijoins (PlannerInfo *root)
 
bool query_supports_distinctness (Query *query)
 
bool query_is_distinct_for (Query *query, List *colnos, List *opids)
 
bool innerrel_is_unique (PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist, bool force_cache)
 
bool innerrel_is_unique_ext (PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist, bool force_cache, List **uclauses)
 
Listremove_useless_self_joins (PlannerInfo *root, List *jointree)
 
Planset_plan_references (PlannerInfo *root, Plan *plan)
 
bool trivial_subqueryscan (SubqueryScan *plan)
 
Paramfind_minmax_agg_replacement_param (PlannerInfo *root, Aggref *aggref)
 
void record_plan_function_dependency (PlannerInfo *root, Oid funcid)
 
void record_plan_type_dependency (PlannerInfo *root, Oid typid)
 
bool extract_query_dependencies_walker (Node *node, PlannerInfo *context)
 

Variables

PGDLLIMPORT double cursor_tuple_fraction
 
PGDLLIMPORT bool enable_self_join_removal
 
PGDLLIMPORT int from_collapse_limit
 
PGDLLIMPORT int join_collapse_limit
 

Macro Definition Documentation

◆ DEFAULT_CURSOR_TUPLE_FRACTION

#define DEFAULT_CURSOR_TUPLE_FRACTION   0.1

Definition at line 21 of file planmain.h.

Typedef Documentation

◆ query_pathkeys_callback

typedef void(* query_pathkeys_callback) (PlannerInfo *root, void *extra)

Definition at line 26 of file planmain.h.

Function Documentation

◆ add_base_rels_to_query()

void add_base_rels_to_query ( PlannerInfo root,
Node jtnode 
)

Definition at line 156 of file initsplan.c.

157 {
158  if (jtnode == NULL)
159  return;
160  if (IsA(jtnode, RangeTblRef))
161  {
162  int varno = ((RangeTblRef *) jtnode)->rtindex;
163 
164  (void) build_simple_rel(root, varno, NULL);
165  }
166  else if (IsA(jtnode, FromExpr))
167  {
168  FromExpr *f = (FromExpr *) jtnode;
169  ListCell *l;
170 
171  foreach(l, f->fromlist)
172  add_base_rels_to_query(root, lfirst(l));
173  }
174  else if (IsA(jtnode, JoinExpr))
175  {
176  JoinExpr *j = (JoinExpr *) jtnode;
177 
178  add_base_rels_to_query(root, j->larg);
179  add_base_rels_to_query(root, j->rarg);
180  }
181  else
182  elog(ERROR, "unrecognized node type: %d",
183  (int) nodeTag(jtnode));
184 }
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
void add_base_rels_to_query(PlannerInfo *root, Node *jtnode)
Definition: initsplan.c:156
int j
Definition: isn.c:74
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define nodeTag(nodeptr)
Definition: nodes.h:133
#define lfirst(lc)
Definition: pg_list.h:172
RelOptInfo * build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent)
Definition: relnode.c:192
List * fromlist
Definition: primnodes.h:2061

References build_simple_rel(), elog, ERROR, FromExpr::fromlist, IsA, j, JoinTreeItem::jtnode, lfirst, and nodeTag.

Referenced by query_planner().

◆ add_other_rels_to_query()

void add_other_rels_to_query ( PlannerInfo root)

Definition at line 194 of file initsplan.c.

195 {
196  int rti;
197 
198  for (rti = 1; rti < root->simple_rel_array_size; rti++)
199  {
200  RelOptInfo *rel = root->simple_rel_array[rti];
201  RangeTblEntry *rte = root->simple_rte_array[rti];
202 
203  /* there may be empty slots corresponding to non-baserel RTEs */
204  if (rel == NULL)
205  continue;
206 
207  /* Ignore any "otherrels" that were already added. */
208  if (rel->reloptkind != RELOPT_BASEREL)
209  continue;
210 
211  /* If it's marked as inheritable, look for children. */
212  if (rte->inh)
213  expand_inherited_rtentry(root, rel, rte, rti);
214  }
215 }
void expand_inherited_rtentry(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte, Index rti)
Definition: inherit.c:86
@ RELOPT_BASEREL
Definition: pathnodes.h:812
int simple_rel_array_size
Definition: pathnodes.h:229
RelOptKind reloptkind
Definition: pathnodes.h:850

References expand_inherited_rtentry(), RangeTblEntry::inh, RELOPT_BASEREL, RelOptInfo::reloptkind, and PlannerInfo::simple_rel_array_size.

Referenced by query_planner().

◆ add_vars_to_targetlist()

void add_vars_to_targetlist ( PlannerInfo root,
List vars,
Relids  where_needed 
)

Definition at line 278 of file initsplan.c.

280 {
281  ListCell *temp;
282 
283  Assert(!bms_is_empty(where_needed));
284 
285  foreach(temp, vars)
286  {
287  Node *node = (Node *) lfirst(temp);
288 
289  if (IsA(node, Var))
290  {
291  Var *var = (Var *) node;
292  RelOptInfo *rel = find_base_rel(root, var->varno);
293  int attno = var->varattno;
294 
295  if (bms_is_subset(where_needed, rel->relids))
296  continue;
297  Assert(attno >= rel->min_attr && attno <= rel->max_attr);
298  attno -= rel->min_attr;
299  if (rel->attr_needed[attno] == NULL)
300  {
301  /*
302  * Variable not yet requested, so add to rel's targetlist.
303  *
304  * The value available at the rel's scan level has not been
305  * nulled by any outer join, so drop its varnullingrels.
306  * (We'll put those back as we climb up the join tree.)
307  */
308  var = copyObject(var);
309  var->varnullingrels = NULL;
310  rel->reltarget->exprs = lappend(rel->reltarget->exprs, var);
311  /* reltarget cost and width will be computed later */
312  }
313  rel->attr_needed[attno] = bms_add_members(rel->attr_needed[attno],
314  where_needed);
315  }
316  else if (IsA(node, PlaceHolderVar))
317  {
318  PlaceHolderVar *phv = (PlaceHolderVar *) node;
319  PlaceHolderInfo *phinfo = find_placeholder_info(root, phv);
320 
321  phinfo->ph_needed = bms_add_members(phinfo->ph_needed,
322  where_needed);
323  }
324  else
325  elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
326  }
327 }
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
#define bms_is_empty(a)
Definition: bitmapset.h:118
Assert(fmt[strlen(fmt) - 1] !='\n')
List * lappend(List *list, void *datum)
Definition: list.c:339
#define copyObject(obj)
Definition: nodes.h:223
PlaceHolderInfo * find_placeholder_info(PlannerInfo *root, PlaceHolderVar *phv)
Definition: placeholder.c:83
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:407
Definition: nodes.h:129
List * exprs
Definition: pathnodes.h:1513
Relids ph_needed
Definition: pathnodes.h:3068
Relids relids
Definition: pathnodes.h:856
struct PathTarget * reltarget
Definition: pathnodes.h:878
AttrNumber min_attr
Definition: pathnodes.h:909
Definition: primnodes.h:234
AttrNumber varattno
Definition: primnodes.h:246
int varno
Definition: primnodes.h:241
Definition: regcomp.c:281

References Assert(), bms_add_members(), bms_is_empty, bms_is_subset(), copyObject, elog, ERROR, PathTarget::exprs, find_base_rel(), find_placeholder_info(), IsA, lappend(), lfirst, RelOptInfo::min_attr, nodeTag, PlaceHolderInfo::ph_needed, RelOptInfo::relids, RelOptInfo::reltarget, Var::varattno, and Var::varno.

Referenced by build_base_rel_tlists(), distribute_qual_to_rels(), expand_inherited_rtentry(), extract_lateral_references(), fix_placeholder_input_needed_levels(), generate_base_implied_equalities_no_const(), and process_implied_equality().

◆ build_base_rel_tlists()

void build_base_rel_tlists ( PlannerInfo root,
List final_tlist 
)

Definition at line 233 of file initsplan.c.

234 {
235  List *tlist_vars = pull_var_clause((Node *) final_tlist,
239 
240  if (tlist_vars != NIL)
241  {
242  add_vars_to_targetlist(root, tlist_vars, bms_make_singleton(0));
243  list_free(tlist_vars);
244  }
245 
246  /*
247  * If there's a HAVING clause, we'll need the Vars it uses, too. Note
248  * that HAVING can contain Aggrefs but not WindowFuncs.
249  */
250  if (root->parse->havingQual)
251  {
252  List *having_vars = pull_var_clause(root->parse->havingQual,
255 
256  if (having_vars != NIL)
257  {
258  add_vars_to_targetlist(root, having_vars,
259  bms_make_singleton(0));
260  list_free(having_vars);
261  }
262  }
263 }
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
void add_vars_to_targetlist(PlannerInfo *root, List *vars, Relids where_needed)
Definition: initsplan.c:278
void list_free(List *list)
Definition: list.c:1546
#define PVC_RECURSE_AGGREGATES
Definition: optimizer.h:187
#define PVC_RECURSE_WINDOWFUNCS
Definition: optimizer.h:189
#define PVC_INCLUDE_PLACEHOLDERS
Definition: optimizer.h:190
#define NIL
Definition: pg_list.h:68
Definition: pg_list.h:54
Query * parse
Definition: pathnodes.h:199
Node * havingQual
Definition: parsenodes.h:204
List * pull_var_clause(Node *node, int flags)
Definition: var.c:607

References add_vars_to_targetlist(), bms_make_singleton(), Query::havingQual, list_free(), NIL, PlannerInfo::parse, pull_var_clause(), PVC_INCLUDE_PLACEHOLDERS, PVC_RECURSE_AGGREGATES, and PVC_RECURSE_WINDOWFUNCS.

Referenced by distribute_row_identity_vars(), and query_planner().

◆ build_implied_join_equality()

RestrictInfo* build_implied_join_equality ( PlannerInfo root,
Oid  opno,
Oid  collation,
Expr item1,
Expr item2,
Relids  qualscope,
Index  security_level 
)

Definition at line 3040 of file initsplan.c.

3047 {
3048  RestrictInfo *restrictinfo;
3049  Expr *clause;
3050 
3051  /*
3052  * Build the new clause. Copy to ensure it shares no substructure with
3053  * original (this is necessary in case there are subselects in there...)
3054  */
3055  clause = make_opclause(opno,
3056  BOOLOID, /* opresulttype */
3057  false, /* opretset */
3058  copyObject(item1),
3059  copyObject(item2),
3060  InvalidOid,
3061  collation);
3062 
3063  /*
3064  * Build the RestrictInfo node itself.
3065  */
3066  restrictinfo = make_restrictinfo(root,
3067  clause,
3068  true, /* is_pushed_down */
3069  false, /* !has_clone */
3070  false, /* !is_clone */
3071  false, /* pseudoconstant */
3072  security_level, /* security_level */
3073  qualscope, /* required_relids */
3074  NULL, /* incompatible_relids */
3075  NULL); /* outer_relids */
3076 
3077  /* Set mergejoinability/hashjoinability flags */
3078  check_mergejoinable(restrictinfo);
3079  check_hashjoinable(restrictinfo);
3080  check_memoizable(restrictinfo);
3081 
3082  return restrictinfo;
3083 }
static void check_hashjoinable(RestrictInfo *restrictinfo)
Definition: initsplan.c:3351
static void check_mergejoinable(RestrictInfo *restrictinfo)
Definition: initsplan.c:3314
static void check_memoizable(RestrictInfo *restrictinfo)
Definition: initsplan.c:3379
Expr * make_opclause(Oid opno, Oid opresulttype, bool opretset, Expr *leftop, Expr *rightop, Oid opcollid, Oid inputcollid)
Definition: makefuncs.c:612
#define InvalidOid
Definition: postgres_ext.h:36
RestrictInfo * make_restrictinfo(PlannerInfo *root, Expr *clause, bool is_pushed_down, bool has_clone, bool is_clone, bool pseudoconstant, Index security_level, Relids required_relids, Relids incompatible_relids, Relids outer_relids)
Definition: restrictinfo.c:63

References check_hashjoinable(), check_memoizable(), check_mergejoinable(), copyObject, InvalidOid, make_opclause(), make_restrictinfo(), and JoinTreeItem::qualscope.

Referenced by create_join_clause(), reconsider_full_join_clause(), and reconsider_outer_join_clause().

◆ change_plan_targetlist()

Plan* change_plan_targetlist ( Plan subplan,
List tlist,
bool  tlist_parallel_safe 
)

Definition at line 2150 of file createplan.c.

2151 {
2152  /*
2153  * If the top plan node can't do projections and its existing target list
2154  * isn't already what we need, we need to add a Result node to help it
2155  * along.
2156  */
2157  if (!is_projection_capable_plan(subplan) &&
2158  !tlist_same_exprs(tlist, subplan->targetlist))
2159  subplan = inject_projection_plan(subplan, tlist,
2160  subplan->parallel_safe &&
2161  tlist_parallel_safe);
2162  else
2163  {
2164  /* Else we can just replace the plan node's tlist */
2165  subplan->targetlist = tlist;
2166  subplan->parallel_safe &= tlist_parallel_safe;
2167  }
2168  return subplan;
2169 }
bool is_projection_capable_plan(Plan *plan)
Definition: createplan.c:7236
static Plan * inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe)
Definition: createplan.c:2118
bool parallel_safe
Definition: plannodes.h:141
List * targetlist
Definition: plannodes.h:152
bool tlist_same_exprs(List *tlist1, List *tlist2)
Definition: tlist.c:218

References inject_projection_plan(), is_projection_capable_plan(), Plan::parallel_safe, Plan::targetlist, and tlist_same_exprs().

Referenced by create_unique_plan(), and postgresGetForeignPlan().

◆ create_lateral_join_info()

void create_lateral_join_info ( PlannerInfo root)

Definition at line 500 of file initsplan.c.

501 {
502  bool found_laterals = false;
503  Index rti;
504  ListCell *lc;
505 
506  /* We need do nothing if the query contains no LATERAL RTEs */
507  if (!root->hasLateralRTEs)
508  return;
509 
510  /* We'll need to have the ph_eval_at values for PlaceHolderVars */
511  Assert(root->placeholdersFrozen);
512 
513  /*
514  * Examine all baserels (the rel array has been set up by now).
515  */
516  for (rti = 1; rti < root->simple_rel_array_size; rti++)
517  {
518  RelOptInfo *brel = root->simple_rel_array[rti];
519  Relids lateral_relids;
520 
521  /* there may be empty slots corresponding to non-baserel RTEs */
522  if (brel == NULL)
523  continue;
524 
525  Assert(brel->relid == rti); /* sanity check on array */
526 
527  /* ignore RTEs that are "other rels" */
528  if (brel->reloptkind != RELOPT_BASEREL)
529  continue;
530 
531  lateral_relids = NULL;
532 
533  /* consider each laterally-referenced Var or PHV */
534  foreach(lc, brel->lateral_vars)
535  {
536  Node *node = (Node *) lfirst(lc);
537 
538  if (IsA(node, Var))
539  {
540  Var *var = (Var *) node;
541 
542  found_laterals = true;
543  lateral_relids = bms_add_member(lateral_relids,
544  var->varno);
545  }
546  else if (IsA(node, PlaceHolderVar))
547  {
548  PlaceHolderVar *phv = (PlaceHolderVar *) node;
549  PlaceHolderInfo *phinfo = find_placeholder_info(root, phv);
550 
551  found_laterals = true;
552  lateral_relids = bms_add_members(lateral_relids,
553  phinfo->ph_eval_at);
554  }
555  else
556  Assert(false);
557  }
558 
559  /* We now have all the simple lateral refs from this rel */
560  brel->direct_lateral_relids = lateral_relids;
561  brel->lateral_relids = bms_copy(lateral_relids);
562  }
563 
564  /*
565  * Now check for lateral references within PlaceHolderVars, and mark their
566  * eval_at rels as having lateral references to the source rels.
567  *
568  * For a PHV that is due to be evaluated at a baserel, mark its source(s)
569  * as direct lateral dependencies of the baserel (adding onto the ones
570  * recorded above). If it's due to be evaluated at a join, mark its
571  * source(s) as indirect lateral dependencies of each baserel in the join,
572  * ie put them into lateral_relids but not direct_lateral_relids. This is
573  * appropriate because we can't put any such baserel on the outside of a
574  * join to one of the PHV's lateral dependencies, but on the other hand we
575  * also can't yet join it directly to the dependency.
576  */
577  foreach(lc, root->placeholder_list)
578  {
579  PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
580  Relids eval_at = phinfo->ph_eval_at;
581  Relids lateral_refs;
582  int varno;
583 
584  if (phinfo->ph_lateral == NULL)
585  continue; /* PHV is uninteresting if no lateral refs */
586 
587  found_laterals = true;
588 
589  /*
590  * Include only baserels not outer joins in the evaluation sites'
591  * lateral relids. This avoids problems when outer join order gets
592  * rearranged, and it should still ensure that the lateral values are
593  * available when needed.
594  */
595  lateral_refs = bms_intersect(phinfo->ph_lateral, root->all_baserels);
596  Assert(!bms_is_empty(lateral_refs));
597 
598  if (bms_get_singleton_member(eval_at, &varno))
599  {
600  /* Evaluation site is a baserel */
601  RelOptInfo *brel = find_base_rel(root, varno);
602 
603  brel->direct_lateral_relids =
605  lateral_refs);
606  brel->lateral_relids =
608  lateral_refs);
609  }
610  else
611  {
612  /* Evaluation site is a join */
613  varno = -1;
614  while ((varno = bms_next_member(eval_at, varno)) >= 0)
615  {
616  RelOptInfo *brel = find_base_rel_ignore_join(root, varno);
617 
618  if (brel == NULL)
619  continue; /* ignore outer joins in eval_at */
621  lateral_refs);
622  }
623  }
624  }
625 
626  /*
627  * If we found no actual lateral references, we're done; but reset the
628  * hasLateralRTEs flag to avoid useless work later.
629  */
630  if (!found_laterals)
631  {
632  root->hasLateralRTEs = false;
633  return;
634  }
635 
636  /*
637  * Calculate the transitive closure of the lateral_relids sets, so that
638  * they describe both direct and indirect lateral references. If relation
639  * X references Y laterally, and Y references Z laterally, then we will
640  * have to scan X on the inside of a nestloop with Z, so for all intents
641  * and purposes X is laterally dependent on Z too.
642  *
643  * This code is essentially Warshall's algorithm for transitive closure.
644  * The outer loop considers each baserel, and propagates its lateral
645  * dependencies to those baserels that have a lateral dependency on it.
646  */
647  for (rti = 1; rti < root->simple_rel_array_size; rti++)
648  {
649  RelOptInfo *brel = root->simple_rel_array[rti];
650  Relids outer_lateral_relids;
651  Index rti2;
652 
653  if (brel == NULL || brel->reloptkind != RELOPT_BASEREL)
654  continue;
655 
656  /* need not consider baserel further if it has no lateral refs */
657  outer_lateral_relids = brel->lateral_relids;
658  if (outer_lateral_relids == NULL)
659  continue;
660 
661  /* else scan all baserels */
662  for (rti2 = 1; rti2 < root->simple_rel_array_size; rti2++)
663  {
664  RelOptInfo *brel2 = root->simple_rel_array[rti2];
665 
666  if (brel2 == NULL || brel2->reloptkind != RELOPT_BASEREL)
667  continue;
668 
669  /* if brel2 has lateral ref to brel, propagate brel's refs */
670  if (bms_is_member(rti, brel2->lateral_relids))
672  outer_lateral_relids);
673  }
674  }
675 
676  /*
677  * Now that we've identified all lateral references, mark each baserel
678  * with the set of relids of rels that reference it laterally (possibly
679  * indirectly) --- that is, the inverse mapping of lateral_relids.
680  */
681  for (rti = 1; rti < root->simple_rel_array_size; rti++)
682  {
683  RelOptInfo *brel = root->simple_rel_array[rti];
684  Relids lateral_relids;
685  int rti2;
686 
687  if (brel == NULL || brel->reloptkind != RELOPT_BASEREL)
688  continue;
689 
690  /* Nothing to do at rels with no lateral refs */
691  lateral_relids = brel->lateral_relids;
692  if (bms_is_empty(lateral_relids))
693  continue;
694 
695  /* No rel should have a lateral dependency on itself */
696  Assert(!bms_is_member(rti, lateral_relids));
697 
698  /* Mark this rel's referencees */
699  rti2 = -1;
700  while ((rti2 = bms_next_member(lateral_relids, rti2)) >= 0)
701  {
702  RelOptInfo *brel2 = root->simple_rel_array[rti2];
703 
704  if (brel2 == NULL)
705  continue; /* must be an OJ */
706 
707  Assert(brel2->reloptkind == RELOPT_BASEREL);
708  brel2->lateral_referencers =
709  bms_add_member(brel2->lateral_referencers, rti);
710  }
711  }
712 }
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1306
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
Bitmapset * bms_intersect(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:292
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
bool bms_get_singleton_member(const Bitmapset *a, int *member)
Definition: bitmapset.c:715
unsigned int Index
Definition: c.h:601
RelOptInfo * find_base_rel_ignore_join(PlannerInfo *root, int relid)
Definition: relnode.c:447
Relids ph_lateral
Definition: pathnodes.h:3065
Relids ph_eval_at
Definition: pathnodes.h:3062
bool hasLateralRTEs
Definition: pathnodes.h:491
List * placeholder_list
Definition: pathnodes.h:371
bool placeholdersFrozen
Definition: pathnodes.h:499
Relids all_baserels
Definition: pathnodes.h:252
Index relid
Definition: pathnodes.h:903
List * lateral_vars
Definition: pathnodes.h:921
Relids lateral_relids
Definition: pathnodes.h:898
Relids lateral_referencers
Definition: pathnodes.h:923
Relids direct_lateral_relids
Definition: pathnodes.h:896

References PlannerInfo::all_baserels, Assert(), bms_add_member(), bms_add_members(), bms_copy(), bms_get_singleton_member(), bms_intersect(), bms_is_empty, bms_is_member(), bms_next_member(), RelOptInfo::direct_lateral_relids, find_base_rel(), find_base_rel_ignore_join(), find_placeholder_info(), PlannerInfo::hasLateralRTEs, IsA, RelOptInfo::lateral_referencers, RelOptInfo::lateral_relids, RelOptInfo::lateral_vars, lfirst, PlaceHolderInfo::ph_eval_at, PlaceHolderInfo::ph_lateral, PlannerInfo::placeholder_list, PlannerInfo::placeholdersFrozen, RelOptInfo::relid, RELOPT_BASEREL, RelOptInfo::reloptkind, PlannerInfo::simple_rel_array_size, and Var::varno.

Referenced by query_planner().

◆ create_plan()

Plan* create_plan ( PlannerInfo root,
Path best_path 
)

Definition at line 335 of file createplan.c.

336 {
337  Plan *plan;
338 
339  /* plan_params should not be in use in current query level */
340  Assert(root->plan_params == NIL);
341 
342  /* Initialize this module's workspace in PlannerInfo */
343  root->curOuterRels = NULL;
344  root->curOuterParams = NIL;
345 
346  /* Recursively process the path tree, demanding the correct tlist result */
347  plan = create_plan_recurse(root, best_path, CP_EXACT_TLIST);
348 
349  /*
350  * Make sure the topmost plan node's targetlist exposes the original
351  * column names and other decorative info. Targetlists generated within
352  * the planner don't bother with that stuff, but we must have it on the
353  * top-level tlist seen at execution time. However, ModifyTable plan
354  * nodes don't have a tlist matching the querytree targetlist.
355  */
356  if (!IsA(plan, ModifyTable))
357  apply_tlist_labeling(plan->targetlist, root->processed_tlist);
358 
359  /*
360  * Attach any initPlans created in this query level to the topmost plan
361  * node. (In principle the initplans could go in any plan node at or
362  * above where they're referenced, but there seems no reason to put them
363  * any lower than the topmost node for the query level. Also, see
364  * comments for SS_finalize_plan before you try to change this.)
365  */
366  SS_attach_initplans(root, plan);
367 
368  /* Check we successfully assigned all NestLoopParams to plan nodes */
369  if (root->curOuterParams != NIL)
370  elog(ERROR, "failed to assign all NestLoopParams to plan nodes");
371 
372  /*
373  * Reset plan_params to ensure param IDs used for nestloop params are not
374  * re-used later
375  */
376  root->plan_params = NIL;
377 
378  return plan;
379 }
static Plan * create_plan_recurse(PlannerInfo *root, Path *best_path, int flags)
Definition: createplan.c:386
#define CP_EXACT_TLIST
Definition: createplan.c:68
#define plan(x)
Definition: pg_regress.c:162
List * processed_tlist
Definition: pathnodes.h:453
Relids curOuterRels
Definition: pathnodes.h:529
List * plan_params
Definition: pathnodes.h:217
List * curOuterParams
Definition: pathnodes.h:531
void SS_attach_initplans(PlannerInfo *root, Plan *plan)
Definition: subselect.c:2252
void apply_tlist_labeling(List *dest_tlist, List *src_tlist)
Definition: tlist.c:318

References apply_tlist_labeling(), Assert(), CP_EXACT_TLIST, create_plan_recurse(), PlannerInfo::curOuterParams, PlannerInfo::curOuterRels, elog, ERROR, IsA, NIL, plan, PlannerInfo::plan_params, PlannerInfo::processed_tlist, and SS_attach_initplans().

Referenced by create_minmaxagg_plan(), create_subqueryscan_plan(), make_subplan(), SS_process_ctes(), and standard_planner().

◆ deconstruct_jointree()

List* deconstruct_jointree ( PlannerInfo root)

Definition at line 739 of file initsplan.c.

740 {
741  List *result;
742  JoinDomain *top_jdomain;
743  List *item_list = NIL;
744  ListCell *lc;
745 
746  /*
747  * After this point, no more PlaceHolderInfos may be made, because
748  * make_outerjoininfo requires all active placeholders to be present in
749  * root->placeholder_list while we crawl up the join tree.
750  */
751  root->placeholdersFrozen = true;
752 
753  /* Fetch the already-created top-level join domain for the query */
754  top_jdomain = linitial_node(JoinDomain, root->join_domains);
755  top_jdomain->jd_relids = NULL; /* filled during deconstruct_recurse */
756 
757  /* Start recursion at top of jointree */
758  Assert(root->parse->jointree != NULL &&
759  IsA(root->parse->jointree, FromExpr));
760 
761  /* These are filled as we scan the jointree */
762  root->all_baserels = NULL;
763  root->outer_join_rels = NULL;
764 
765  /* Perform the initial scan of the jointree */
766  result = deconstruct_recurse(root, (Node *) root->parse->jointree,
767  top_jdomain, NULL,
768  &item_list);
769 
770  /* Now we can form the value of all_query_rels, too */
772 
773  /* ... which should match what we computed for the top join domain */
774  Assert(bms_equal(root->all_query_rels, top_jdomain->jd_relids));
775 
776  /* Now scan all the jointree nodes again, and distribute quals */
777  foreach(lc, item_list)
778  {
779  JoinTreeItem *jtitem = (JoinTreeItem *) lfirst(lc);
780 
781  deconstruct_distribute(root, jtitem);
782  }
783 
784  /*
785  * If there were any special joins then we may have some postponed LEFT
786  * JOIN clauses to deal with.
787  */
788  if (root->join_info_list)
789  {
790  foreach(lc, item_list)
791  {
792  JoinTreeItem *jtitem = (JoinTreeItem *) lfirst(lc);
793 
794  if (jtitem->oj_joinclauses != NIL)
795  deconstruct_distribute_oj_quals(root, item_list, jtitem);
796  }
797  }
798 
799  /* Don't need the JoinTreeItems any more */
800  list_free_deep(item_list);
801 
802  return result;
803 }
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
static List * deconstruct_recurse(PlannerInfo *root, Node *jtnode, JoinDomain *parent_domain, JoinTreeItem *parent_jtitem, List **item_list)
Definition: initsplan.c:821
static void deconstruct_distribute_oj_quals(PlannerInfo *root, List *jtitems, JoinTreeItem *jtitem)
Definition: initsplan.c:1877
static void deconstruct_distribute(PlannerInfo *root, JoinTreeItem *jtitem)
Definition: initsplan.c:1119
void list_free_deep(List *list)
Definition: list.c:1560
#define linitial_node(type, l)
Definition: pg_list.h:181
Relids jd_relids
Definition: pathnodes.h:1308
List * oj_joinclauses
Definition: initsplan.c:76
Relids all_query_rels
Definition: pathnodes.h:266
Relids outer_join_rels
Definition: pathnodes.h:258
List * join_domains
Definition: pathnodes.h:308
List * join_info_list
Definition: pathnodes.h:337
FromExpr * jointree
Definition: parsenodes.h:175

References PlannerInfo::all_baserels, PlannerInfo::all_query_rels, Assert(), bms_equal(), bms_union(), deconstruct_distribute(), deconstruct_distribute_oj_quals(), deconstruct_recurse(), IsA, JoinDomain::jd_relids, PlannerInfo::join_domains, PlannerInfo::join_info_list, Query::jointree, lfirst, linitial_node, list_free_deep(), NIL, JoinTreeItem::oj_joinclauses, PlannerInfo::outer_join_rels, PlannerInfo::parse, and PlannerInfo::placeholdersFrozen.

Referenced by query_planner().

◆ distribute_restrictinfo_to_rels()

void distribute_restrictinfo_to_rels ( PlannerInfo root,
RestrictInfo restrictinfo 
)

Definition at line 2816 of file initsplan.c.

2818 {
2819  Relids relids = restrictinfo->required_relids;
2820 
2821  if (!bms_is_empty(relids))
2822  {
2823  int relid;
2824 
2825  if (bms_get_singleton_member(relids, &relid))
2826  {
2827  /*
2828  * There is only one relation participating in the clause, so it
2829  * is a restriction clause for that relation.
2830  */
2831  add_base_clause_to_rel(root, relid, restrictinfo);
2832  }
2833  else
2834  {
2835  /*
2836  * The clause is a join clause, since there is more than one rel
2837  * in its relid set.
2838  */
2839 
2840  /*
2841  * Check for hashjoinable operators. (We don't bother setting the
2842  * hashjoin info except in true join clauses.)
2843  */
2844  check_hashjoinable(restrictinfo);
2845 
2846  /*
2847  * Likewise, check if the clause is suitable to be used with a
2848  * Memoize node to cache inner tuples during a parameterized
2849  * nested loop.
2850  */
2851  check_memoizable(restrictinfo);
2852 
2853  /*
2854  * Add clause to the join lists of all the relevant relations.
2855  */
2856  add_join_clause_to_rels(root, restrictinfo, relids);
2857  }
2858  }
2859  else
2860  {
2861  /*
2862  * clause references no rels, and therefore we have no place to attach
2863  * it. Shouldn't get here if callers are working properly.
2864  */
2865  elog(ERROR, "cannot cope with variable-free clause");
2866  }
2867 }
static void add_base_clause_to_rel(PlannerInfo *root, Index relid, RestrictInfo *restrictinfo)
Definition: initsplan.c:2628
void add_join_clause_to_rels(PlannerInfo *root, RestrictInfo *restrictinfo, Relids join_relids)
Definition: joininfo.c:98
Relids required_relids
Definition: pathnodes.h:2572

References add_base_clause_to_rel(), add_join_clause_to_rels(), bms_get_singleton_member(), bms_is_empty, check_hashjoinable(), check_memoizable(), elog, ERROR, and RestrictInfo::required_relids.

Referenced by distribute_qual_to_rels(), generate_base_implied_equalities_broken(), generate_base_implied_equalities_const(), process_implied_equality(), reconsider_outer_join_clauses(), remove_leftjoinrel_from_query(), and remove_self_join_rel().

◆ extract_query_dependencies_walker()

bool extract_query_dependencies_walker ( Node node,
PlannerInfo context 
)

Definition at line 3561 of file setrefs.c.

3562 {
3563  if (node == NULL)
3564  return false;
3565  Assert(!IsA(node, PlaceHolderVar));
3566  if (IsA(node, Query))
3567  {
3568  Query *query = (Query *) node;
3569  ListCell *lc;
3570 
3571  if (query->commandType == CMD_UTILITY)
3572  {
3573  /*
3574  * This logic must handle any utility command for which parse
3575  * analysis was nontrivial (cf. stmt_requires_parse_analysis).
3576  *
3577  * Notably, CALL requires its own processing.
3578  */
3579  if (IsA(query->utilityStmt, CallStmt))
3580  {
3581  CallStmt *callstmt = (CallStmt *) query->utilityStmt;
3582 
3583  /* We need not examine funccall, just the transformed exprs */
3584  (void) extract_query_dependencies_walker((Node *) callstmt->funcexpr,
3585  context);
3586  (void) extract_query_dependencies_walker((Node *) callstmt->outargs,
3587  context);
3588  return false;
3589  }
3590 
3591  /*
3592  * Ignore other utility statements, except those (such as EXPLAIN)
3593  * that contain a parsed-but-not-planned query. For those, we
3594  * just need to transfer our attention to the contained query.
3595  */
3596  query = UtilityContainsQuery(query->utilityStmt);
3597  if (query == NULL)
3598  return false;
3599  }
3600 
3601  /* Remember if any Query has RLS quals applied by rewriter */
3602  if (query->hasRowSecurity)
3603  context->glob->dependsOnRole = true;
3604 
3605  /* Collect relation OIDs in this Query's rtable */
3606  foreach(lc, query->rtable)
3607  {
3608  RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
3609 
3610  if (rte->rtekind == RTE_RELATION ||
3611  (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)) ||
3612  (rte->rtekind == RTE_NAMEDTUPLESTORE && OidIsValid(rte->relid)))
3613  context->glob->relationOids =
3614  lappend_oid(context->glob->relationOids, rte->relid);
3615  }
3616 
3617  /* And recurse into the query's subexpressions */
3619  (void *) context, 0);
3620  }
3621  /* Extract function dependencies and check for regclass Consts */
3622  fix_expr_common(context, node);
3624  (void *) context);
3625 }
#define OidIsValid(objectId)
Definition: c.h:762
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:156
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:151
@ CMD_UTILITY
Definition: nodes.h:260
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1018
@ RTE_SUBQUERY
Definition: parsenodes.h:1012
@ RTE_RELATION
Definition: parsenodes.h:1011
static void fix_expr_common(PlannerInfo *root, Node *node)
Definition: setrefs.c:1950
bool extract_query_dependencies_walker(Node *node, PlannerInfo *context)
Definition: setrefs.c:3561
FuncExpr * funcexpr
Definition: parsenodes.h:3362
List * outargs
Definition: parsenodes.h:3364
bool dependsOnRole
Definition: pathnodes.h:150
List * relationOids
Definition: pathnodes.h:129
PlannerGlobal * glob
Definition: pathnodes.h:202
List * rtable
Definition: parsenodes.h:168
CmdType commandType
Definition: parsenodes.h:121
Node * utilityStmt
Definition: parsenodes.h:136
RTEKind rtekind
Definition: parsenodes.h:1030
Query * UtilityContainsQuery(Node *parsetree)
Definition: utility.c:2176

References Assert(), CMD_UTILITY, Query::commandType, PlannerGlobal::dependsOnRole, expression_tree_walker, fix_expr_common(), CallStmt::funcexpr, PlannerInfo::glob, IsA, lappend_oid(), lfirst, OidIsValid, CallStmt::outargs, query_tree_walker, PlannerGlobal::relationOids, RangeTblEntry::relid, Query::rtable, RTE_NAMEDTUPLESTORE, RTE_RELATION, RTE_SUBQUERY, RangeTblEntry::rtekind, UtilityContainsQuery(), and Query::utilityStmt.

Referenced by expression_planner_with_deps(), and extract_query_dependencies().

◆ find_lateral_references()

void find_lateral_references ( PlannerInfo root)

Definition at line 357 of file initsplan.c.

358 {
359  Index rti;
360 
361  /* We need do nothing if the query contains no LATERAL RTEs */
362  if (!root->hasLateralRTEs)
363  return;
364 
365  /*
366  * Examine all baserels (the rel array has been set up by now).
367  */
368  for (rti = 1; rti < root->simple_rel_array_size; rti++)
369  {
370  RelOptInfo *brel = root->simple_rel_array[rti];
371 
372  /* there may be empty slots corresponding to non-baserel RTEs */
373  if (brel == NULL)
374  continue;
375 
376  Assert(brel->relid == rti); /* sanity check on array */
377 
378  /*
379  * This bit is less obvious than it might look. We ignore appendrel
380  * otherrels and consider only their parent baserels. In a case where
381  * a LATERAL-containing UNION ALL subquery was pulled up, it is the
382  * otherrel that is actually going to be in the plan. However, we
383  * want to mark all its lateral references as needed by the parent,
384  * because it is the parent's relid that will be used for join
385  * planning purposes. And the parent's RTE will contain all the
386  * lateral references we need to know, since the pulled-up member is
387  * nothing but a copy of parts of the original RTE's subquery. We
388  * could visit the parent's children instead and transform their
389  * references back to the parent's relid, but it would be much more
390  * complicated for no real gain. (Important here is that the child
391  * members have not yet received any processing beyond being pulled
392  * up.) Similarly, in appendrels created by inheritance expansion,
393  * it's sufficient to look at the parent relation.
394  */
395 
396  /* ignore RTEs that are "other rels" */
397  if (brel->reloptkind != RELOPT_BASEREL)
398  continue;
399 
400  extract_lateral_references(root, brel, rti);
401  }
402 }
static void extract_lateral_references(PlannerInfo *root, RelOptInfo *brel, Index rtindex)
Definition: initsplan.c:405

References Assert(), extract_lateral_references(), PlannerInfo::hasLateralRTEs, RelOptInfo::relid, RELOPT_BASEREL, RelOptInfo::reloptkind, and PlannerInfo::simple_rel_array_size.

Referenced by query_planner().

◆ find_minmax_agg_replacement_param()

Param* find_minmax_agg_replacement_param ( PlannerInfo root,
Aggref aggref 
)

Definition at line 3411 of file setrefs.c.

3412 {
3413  if (root->minmax_aggs != NIL &&
3414  list_length(aggref->args) == 1)
3415  {
3416  TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args);
3417  ListCell *lc;
3418 
3419  foreach(lc, root->minmax_aggs)
3420  {
3421  MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
3422 
3423  if (mminfo->aggfnoid == aggref->aggfnoid &&
3424  equal(mminfo->target, curTarget->expr))
3425  return mminfo->param;
3426  }
3427  }
3428  return NULL;
3429 }
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
static int list_length(const List *l)
Definition: pg_list.h:152
#define linitial(l)
Definition: pg_list.h:178
Oid aggfnoid
Definition: primnodes.h:430
List * args
Definition: primnodes.h:454
Param * param
Definition: pathnodes.h:3107
Expr * target
Definition: pathnodes.h:3092
List * minmax_aggs
Definition: pathnodes.h:469
Expr * expr
Definition: primnodes.h:1943

References MinMaxAggInfo::aggfnoid, Aggref::aggfnoid, Aggref::args, equal(), TargetEntry::expr, lfirst, linitial, list_length(), PlannerInfo::minmax_aggs, NIL, MinMaxAggInfo::param, and MinMaxAggInfo::target.

Referenced by finalize_primnode(), fix_scan_expr_mutator(), and fix_upper_expr_mutator().

◆ innerrel_is_unique()

bool innerrel_is_unique ( PlannerInfo root,
Relids  joinrelids,
Relids  outerrelids,
RelOptInfo innerrel,
JoinType  jointype,
List restrictlist,
bool  force_cache 
)

Definition at line 1224 of file analyzejoins.c.

1231 {
1232  return innerrel_is_unique_ext(root, joinrelids, outerrelids, innerrel,
1233  jointype, restrictlist, force_cache, NULL);
1234 }
bool innerrel_is_unique_ext(PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist, bool force_cache, List **extra_clauses)

References innerrel_is_unique_ext().

Referenced by add_paths_to_joinrel(), and reduce_unique_semijoins().

◆ innerrel_is_unique_ext()

bool innerrel_is_unique_ext ( PlannerInfo root,
Relids  joinrelids,
Relids  outerrelids,
RelOptInfo innerrel,
JoinType  jointype,
List restrictlist,
bool  force_cache,
List **  uclauses 
)

Definition at line 1244 of file analyzejoins.c.

1252 {
1253  MemoryContext old_context;
1254  ListCell *lc;
1255  UniqueRelInfo *uniqueRelInfo;
1256  List *outer_exprs = NIL;
1257  bool self_join = (extra_clauses != NULL);
1258 
1259  /* Certainly can't prove uniqueness when there are no joinclauses */
1260  if (restrictlist == NIL)
1261  return false;
1262 
1263  /*
1264  * Make a quick check to eliminate cases in which we will surely be unable
1265  * to prove uniqueness of the innerrel.
1266  */
1267  if (!rel_supports_distinctness(root, innerrel))
1268  return false;
1269 
1270  /*
1271  * Query the cache to see if we've managed to prove that innerrel is
1272  * unique for any subset of this outerrel. For non self-join search, we
1273  * don't need an exact match, as extra outerrels can't make the innerrel
1274  * any less unique (or more formally, the restrictlist for a join to a
1275  * superset outerrel must be a superset of the conditions we successfully
1276  * used before). For self-join search, we require an exact match of
1277  * outerrels, because we need extra clauses to be valid for our case.
1278  * Also, for self-join checking we've filtered the clauses list. Thus,
1279  * for a self-join search, we can match only the result cached for another
1280  * self-join check.
1281  */
1282  foreach(lc, innerrel->unique_for_rels)
1283  {
1284  uniqueRelInfo = (UniqueRelInfo *) lfirst(lc);
1285 
1286  if ((!self_join && bms_is_subset(uniqueRelInfo->outerrelids, outerrelids)) ||
1287  (self_join && bms_equal(uniqueRelInfo->outerrelids, outerrelids) &&
1288  uniqueRelInfo->self_join))
1289  {
1290  if (extra_clauses)
1291  *extra_clauses = uniqueRelInfo->extra_clauses;
1292  return true; /* Success! */
1293  }
1294  }
1295 
1296  /*
1297  * Conversely, we may have already determined that this outerrel, or some
1298  * superset thereof, cannot prove this innerrel to be unique.
1299  */
1300  foreach(lc, innerrel->non_unique_for_rels)
1301  {
1302  Relids unique_for_rels = (Relids) lfirst(lc);
1303 
1304  if (bms_is_subset(outerrelids, unique_for_rels))
1305  return false;
1306  }
1307 
1308  /* No cached information, so try to make the proof. */
1309  if (is_innerrel_unique_for(root, joinrelids, outerrelids, innerrel,
1310  jointype, restrictlist,
1311  self_join ? &outer_exprs : NULL))
1312  {
1313  /*
1314  * Cache the positive result for future probes, being sure to keep it
1315  * in the planner_cxt even if we are working in GEQO.
1316  *
1317  * Note: one might consider trying to isolate the minimal subset of
1318  * the outerrels that proved the innerrel unique. But it's not worth
1319  * the trouble, because the planner builds up joinrels incrementally
1320  * and so we'll see the minimally sufficient outerrels before any
1321  * supersets of them anyway.
1322  */
1323  old_context = MemoryContextSwitchTo(root->planner_cxt);
1324  uniqueRelInfo = makeNode(UniqueRelInfo);
1325  uniqueRelInfo->outerrelids = bms_copy(outerrelids);
1326  uniqueRelInfo->self_join = self_join;
1327  uniqueRelInfo->extra_clauses = outer_exprs;
1328  innerrel->unique_for_rels = lappend(innerrel->unique_for_rels,
1329  uniqueRelInfo);
1330  MemoryContextSwitchTo(old_context);
1331 
1332  if (extra_clauses)
1333  *extra_clauses = outer_exprs;
1334  return true; /* Success! */
1335  }
1336  else
1337  {
1338  /*
1339  * None of the join conditions for outerrel proved innerrel unique, so
1340  * we can safely reject this outerrel or any subset of it in future
1341  * checks.
1342  *
1343  * However, in normal planning mode, caching this knowledge is totally
1344  * pointless; it won't be queried again, because we build up joinrels
1345  * from smaller to larger. It is useful in GEQO mode, where the
1346  * knowledge can be carried across successive planning attempts; and
1347  * it's likely to be useful when using join-search plugins, too. Hence
1348  * cache when join_search_private is non-NULL. (Yeah, that's a hack,
1349  * but it seems reasonable.)
1350  *
1351  * Also, allow callers to override that heuristic and force caching;
1352  * that's useful for reduce_unique_semijoins, which calls here before
1353  * the normal join search starts.
1354  */
1355  if (force_cache || root->join_search_private)
1356  {
1357  old_context = MemoryContextSwitchTo(root->planner_cxt);
1358  innerrel->non_unique_for_rels =
1359  lappend(innerrel->non_unique_for_rels,
1360  bms_copy(outerrelids));
1361  MemoryContextSwitchTo(old_context);
1362  }
1363 
1364  return false;
1365  }
1366 }
static bool is_innerrel_unique_for(PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist, List **extra_clauses)
static bool rel_supports_distinctness(PlannerInfo *root, RelOptInfo *rel)
Definition: analyzejoins.c:840
#define makeNode(_type_)
Definition: nodes.h:155
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
Bitmapset * Relids
Definition: pathnodes.h:30
List * unique_for_rels
Definition: pathnodes.h:958
List * non_unique_for_rels
Definition: pathnodes.h:960
Relids outerrelids
Definition: pathnodes.h:3423
List * extra_clauses
Definition: pathnodes.h:3437

References bms_copy(), bms_equal(), bms_is_subset(), UniqueRelInfo::extra_clauses, is_innerrel_unique_for(), lappend(), lfirst, makeNode, MemoryContextSwitchTo(), NIL, RelOptInfo::non_unique_for_rels, UniqueRelInfo::outerrelids, rel_supports_distinctness(), UniqueRelInfo::self_join, and RelOptInfo::unique_for_rels.

Referenced by innerrel_is_unique(), and remove_self_joins_one_group().

◆ is_projection_capable_path()

bool is_projection_capable_path ( Path path)

Definition at line 7186 of file createplan.c.

7187 {
7188  /* Most plan types can project, so just list the ones that can't */
7189  switch (path->pathtype)
7190  {
7191  case T_Hash:
7192  case T_Material:
7193  case T_Memoize:
7194  case T_Sort:
7195  case T_IncrementalSort:
7196  case T_Unique:
7197  case T_SetOp:
7198  case T_LockRows:
7199  case T_Limit:
7200  case T_ModifyTable:
7201  case T_MergeAppend:
7202  case T_RecursiveUnion:
7203  return false;
7204  case T_CustomScan:
7206  return true;
7207  return false;
7208  case T_Append:
7209 
7210  /*
7211  * Append can't project, but if an AppendPath is being used to
7212  * represent a dummy path, what will actually be generated is a
7213  * Result which can project.
7214  */
7215  return IS_DUMMY_APPEND(path);
7216  case T_ProjectSet:
7217 
7218  /*
7219  * Although ProjectSet certainly projects, say "no" because we
7220  * don't want the planner to randomly replace its tlist with
7221  * something else; the SRFs have to stay at top level. This might
7222  * get relaxed later.
7223  */
7224  return false;
7225  default:
7226  break;
7227  }
7228  return true;
7229 }
#define CUSTOMPATH_SUPPORT_PROJECTION
Definition: extensible.h:86
#define castNode(_type_, nodeptr)
Definition: nodes.h:176
#define IS_DUMMY_APPEND(p)
Definition: pathnodes.h:1918
NodeTag pathtype
Definition: pathnodes.h:1606

References castNode, CUSTOMPATH_SUPPORT_PROJECTION, IS_DUMMY_APPEND, and Path::pathtype.

Referenced by add_paths_with_pathkeys_for_rel(), apply_projection_to_path(), create_projection_path(), and create_projection_plan().

◆ is_projection_capable_plan()

bool is_projection_capable_plan ( Plan plan)

Definition at line 7236 of file createplan.c.

7237 {
7238  /* Most plan types can project, so just list the ones that can't */
7239  switch (nodeTag(plan))
7240  {
7241  case T_Hash:
7242  case T_Material:
7243  case T_Memoize:
7244  case T_Sort:
7245  case T_Unique:
7246  case T_SetOp:
7247  case T_LockRows:
7248  case T_Limit:
7249  case T_ModifyTable:
7250  case T_Append:
7251  case T_MergeAppend:
7252  case T_RecursiveUnion:
7253  return false;
7254  case T_CustomScan:
7255  if (((CustomScan *) plan)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
7256  return true;
7257  return false;
7258  case T_ProjectSet:
7259 
7260  /*
7261  * Although ProjectSet certainly projects, say "no" because we
7262  * don't want the planner to randomly replace its tlist with
7263  * something else; the SRFs have to stay at top level. This might
7264  * get relaxed later.
7265  */
7266  return false;
7267  default:
7268  break;
7269  }
7270  return true;
7271 }

References CUSTOMPATH_SUPPORT_PROJECTION, nodeTag, and plan.

Referenced by change_plan_targetlist(), create_projection_plan(), and prepare_sort_from_pathkeys().

◆ make_agg()

Agg* make_agg ( List tlist,
List qual,
AggStrategy  aggstrategy,
AggSplit  aggsplit,
int  numGroupCols,
AttrNumber grpColIdx,
Oid grpOperators,
Oid grpCollations,
List groupingSets,
List chain,
double  dNumGroups,
Size  transitionSpace,
Plan lefttree 
)

Definition at line 6574 of file createplan.c.

6579 {
6580  Agg *node = makeNode(Agg);
6581  Plan *plan = &node->plan;
6582  long numGroups;
6583 
6584  /* Reduce to long, but 'ware overflow! */
6585  numGroups = clamp_cardinality_to_long(dNumGroups);
6586 
6587  node->aggstrategy = aggstrategy;
6588  node->aggsplit = aggsplit;
6589  node->numCols = numGroupCols;
6590  node->grpColIdx = grpColIdx;
6591  node->grpOperators = grpOperators;
6592  node->grpCollations = grpCollations;
6593  node->numGroups = numGroups;
6594  node->transitionSpace = transitionSpace;
6595  node->aggParams = NULL; /* SS_finalize_plan() will fill this */
6596  node->groupingSets = groupingSets;
6597  node->chain = chain;
6598 
6599  plan->qual = qual;
6600  plan->targetlist = tlist;
6601  plan->lefttree = lefttree;
6602  plan->righttree = NULL;
6603 
6604  return node;
6605 }
long clamp_cardinality_to_long(Cardinality x)
Definition: costsize.c:254
Definition: plannodes.h:995
AggSplit aggsplit
Definition: plannodes.h:1002
List * chain
Definition: plannodes.h:1029
long numGroups
Definition: plannodes.h:1015
List * groupingSets
Definition: plannodes.h:1026
Bitmapset * aggParams
Definition: plannodes.h:1021
Plan plan
Definition: plannodes.h:996
int numCols
Definition: plannodes.h:1005
uint64 transitionSpace
Definition: plannodes.h:1018
AggStrategy aggstrategy
Definition: plannodes.h:999

References Agg::aggParams, Agg::aggsplit, Agg::aggstrategy, Agg::chain, clamp_cardinality_to_long(), Agg::groupingSets, makeNode, Agg::numCols, Agg::numGroups, Agg::plan, plan, and Agg::transitionSpace.

Referenced by create_agg_plan(), create_groupingsets_plan(), and create_unique_plan().

◆ make_foreignscan()

ForeignScan* make_foreignscan ( List qptlist,
List qpqual,
Index  scanrelid,
List fdw_exprs,
List fdw_private,
List fdw_scan_tlist,
List fdw_recheck_quals,
Plan outer_plan 
)

Definition at line 5803 of file createplan.c.

5811 {
5812  ForeignScan *node = makeNode(ForeignScan);
5813  Plan *plan = &node->scan.plan;
5814 
5815  /* cost will be filled in by create_foreignscan_plan */
5816  plan->targetlist = qptlist;
5817  plan->qual = qpqual;
5818  plan->lefttree = outer_plan;
5819  plan->righttree = NULL;
5820  node->scan.scanrelid = scanrelid;
5821 
5822  /* these may be overridden by the FDW's PlanDirectModify callback. */
5823  node->operation = CMD_SELECT;
5824  node->resultRelation = 0;
5825 
5826  /* checkAsUser, fs_server will be filled in by create_foreignscan_plan */
5827  node->checkAsUser = InvalidOid;
5828  node->fs_server = InvalidOid;
5829  node->fdw_exprs = fdw_exprs;
5830  node->fdw_private = fdw_private;
5831  node->fdw_scan_tlist = fdw_scan_tlist;
5832  node->fdw_recheck_quals = fdw_recheck_quals;
5833  /* fs_relids, fs_base_relids will be filled by create_foreignscan_plan */
5834  node->fs_relids = NULL;
5835  node->fs_base_relids = NULL;
5836  /* fsSystemCol will be filled in by create_foreignscan_plan */
5837  node->fsSystemCol = false;
5838 
5839  return node;
5840 }
@ CMD_SELECT
Definition: nodes.h:255
Oid checkAsUser
Definition: plannodes.h:710
CmdType operation
Definition: plannodes.h:708
Oid fs_server
Definition: plannodes.h:712
List * fdw_exprs
Definition: plannodes.h:713
bool fsSystemCol
Definition: plannodes.h:719
Bitmapset * fs_relids
Definition: plannodes.h:717
List * fdw_private
Definition: plannodes.h:714
Bitmapset * fs_base_relids
Definition: plannodes.h:718
Index resultRelation
Definition: plannodes.h:709
List * fdw_recheck_quals
Definition: plannodes.h:716
List * fdw_scan_tlist
Definition: plannodes.h:715
Index scanrelid
Definition: plannodes.h:387

References ForeignScan::checkAsUser, CMD_SELECT, ForeignScan::fdw_exprs, ForeignScan::fdw_private, ForeignScan::fdw_recheck_quals, ForeignScan::fdw_scan_tlist, ForeignScan::fs_base_relids, ForeignScan::fs_relids, ForeignScan::fs_server, ForeignScan::fsSystemCol, InvalidOid, makeNode, ForeignScan::operation, plan, ForeignScan::resultRelation, ForeignScan::scan, and Scan::scanrelid.

Referenced by fileGetForeignPlan(), and postgresGetForeignPlan().

◆ make_limit()

Limit* make_limit ( Plan lefttree,
Node limitOffset,
Node limitCount,
LimitOption  limitOption,
int  uniqNumCols,
AttrNumber uniqColIdx,
Oid uniqOperators,
Oid uniqCollations 
)

Definition at line 6941 of file createplan.c.

6944 {
6945  Limit *node = makeNode(Limit);
6946  Plan *plan = &node->plan;
6947 
6948  plan->targetlist = lefttree->targetlist;
6949  plan->qual = NIL;
6950  plan->lefttree = lefttree;
6951  plan->righttree = NULL;
6952 
6953  node->limitOffset = limitOffset;
6954  node->limitCount = limitCount;
6955  node->limitOption = limitOption;
6956  node->uniqNumCols = uniqNumCols;
6957  node->uniqColIdx = uniqColIdx;
6958  node->uniqOperators = uniqOperators;
6959  node->uniqCollations = uniqCollations;
6960 
6961  return node;
6962 }
LimitOption limitOption
Definition: plannodes.h:1279
Plan plan
Definition: plannodes.h:1270
Node * limitCount
Definition: plannodes.h:1276
int uniqNumCols
Definition: plannodes.h:1282
Node * limitOffset
Definition: plannodes.h:1273

References Limit::limitCount, Limit::limitOffset, Limit::limitOption, makeNode, NIL, Limit::plan, plan, Plan::targetlist, and Limit::uniqNumCols.

Referenced by create_limit_plan(), and create_minmaxagg_plan().

◆ make_sort_from_sortclauses()

Sort* make_sort_from_sortclauses ( List sortcls,
Plan lefttree 
)

Definition at line 6396 of file createplan.c.

6397 {
6398  List *sub_tlist = lefttree->targetlist;
6399  ListCell *l;
6400  int numsortkeys;
6401  AttrNumber *sortColIdx;
6402  Oid *sortOperators;
6403  Oid *collations;
6404  bool *nullsFirst;
6405 
6406  /* Convert list-ish representation to arrays wanted by executor */
6407  numsortkeys = list_length(sortcls);
6408  sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6409  sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6410  collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6411  nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6412 
6413  numsortkeys = 0;
6414  foreach(l, sortcls)
6415  {
6416  SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
6417  TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);
6418 
6419  sortColIdx[numsortkeys] = tle->resno;
6420  sortOperators[numsortkeys] = sortcl->sortop;
6421  collations[numsortkeys] = exprCollation((Node *) tle->expr);
6422  nullsFirst[numsortkeys] = sortcl->nulls_first;
6423  numsortkeys++;
6424  }
6425 
6426  return make_sort(lefttree, numsortkeys,
6427  sortColIdx, sortOperators,
6428  collations, nullsFirst);
6429 }
int16 AttrNumber
Definition: attnum.h:21
static Sort * make_sort(Plan *lefttree, int numCols, AttrNumber *sortColIdx, Oid *sortOperators, Oid *collations, bool *nullsFirst)
Definition: createplan.c:6049
void * palloc(Size size)
Definition: mcxt.c:1304
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:788
unsigned int Oid
Definition: postgres_ext.h:31
AttrNumber resno
Definition: primnodes.h:1945
TargetEntry * get_sortgroupclause_tle(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:367

References TargetEntry::expr, exprCollation(), get_sortgroupclause_tle(), lfirst, list_length(), make_sort(), SortGroupClause::nulls_first, palloc(), TargetEntry::resno, SortGroupClause::sortop, and Plan::targetlist.

Referenced by create_unique_plan().

◆ match_foreign_keys_to_quals()

void match_foreign_keys_to_quals ( PlannerInfo root)

Definition at line 3149 of file initsplan.c.

3150 {
3151  List *newlist = NIL;
3152  ListCell *lc;
3153 
3154  foreach(lc, root->fkey_list)
3155  {
3156  ForeignKeyOptInfo *fkinfo = (ForeignKeyOptInfo *) lfirst(lc);
3157  RelOptInfo *con_rel;
3158  RelOptInfo *ref_rel;
3159  int colno;
3160 
3161  /*
3162  * Either relid might identify a rel that is in the query's rtable but
3163  * isn't referenced by the jointree, or has been removed by join
3164  * removal, so that it won't have a RelOptInfo. Hence don't use
3165  * find_base_rel() here. We can ignore such FKs.
3166  */
3167  if (fkinfo->con_relid >= root->simple_rel_array_size ||
3168  fkinfo->ref_relid >= root->simple_rel_array_size)
3169  continue; /* just paranoia */
3170  con_rel = root->simple_rel_array[fkinfo->con_relid];
3171  if (con_rel == NULL)
3172  continue;
3173  ref_rel = root->simple_rel_array[fkinfo->ref_relid];
3174  if (ref_rel == NULL)
3175  continue;
3176 
3177  /*
3178  * Ignore FK unless both rels are baserels. This gets rid of FKs that
3179  * link to inheritance child rels (otherrels).
3180  */
3181  if (con_rel->reloptkind != RELOPT_BASEREL ||
3182  ref_rel->reloptkind != RELOPT_BASEREL)
3183  continue;
3184 
3185  /*
3186  * Scan the columns and try to match them to eclasses and quals.
3187  *
3188  * Note: for simple inner joins, any match should be in an eclass.
3189  * "Loose" quals that syntactically match an FK equality must have
3190  * been rejected for EC status because they are outer-join quals or
3191  * similar. We can still consider them to match the FK.
3192  */
3193  for (colno = 0; colno < fkinfo->nkeys; colno++)
3194  {
3195  EquivalenceClass *ec;
3196  AttrNumber con_attno,
3197  ref_attno;
3198  Oid fpeqop;
3199  ListCell *lc2;
3200 
3201  ec = match_eclasses_to_foreign_key_col(root, fkinfo, colno);
3202  /* Don't bother looking for loose quals if we got an EC match */
3203  if (ec != NULL)
3204  {
3205  fkinfo->nmatched_ec++;
3206  if (ec->ec_has_const)
3207  fkinfo->nconst_ec++;
3208  continue;
3209  }
3210 
3211  /*
3212  * Scan joininfo list for relevant clauses. Either rel's joininfo
3213  * list would do equally well; we use con_rel's.
3214  */
3215  con_attno = fkinfo->conkey[colno];
3216  ref_attno = fkinfo->confkey[colno];
3217  fpeqop = InvalidOid; /* we'll look this up only if needed */
3218 
3219  foreach(lc2, con_rel->joininfo)
3220  {
3221  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc2);
3222  OpExpr *clause = (OpExpr *) rinfo->clause;
3223  Var *leftvar;
3224  Var *rightvar;
3225 
3226  /* Only binary OpExprs are useful for consideration */
3227  if (!IsA(clause, OpExpr) ||
3228  list_length(clause->args) != 2)
3229  continue;
3230  leftvar = (Var *) get_leftop((Expr *) clause);
3231  rightvar = (Var *) get_rightop((Expr *) clause);
3232 
3233  /* Operands must be Vars, possibly with RelabelType */
3234  while (leftvar && IsA(leftvar, RelabelType))
3235  leftvar = (Var *) ((RelabelType *) leftvar)->arg;
3236  if (!(leftvar && IsA(leftvar, Var)))
3237  continue;
3238  while (rightvar && IsA(rightvar, RelabelType))
3239  rightvar = (Var *) ((RelabelType *) rightvar)->arg;
3240  if (!(rightvar && IsA(rightvar, Var)))
3241  continue;
3242 
3243  /* Now try to match the vars to the current foreign key cols */
3244  if (fkinfo->ref_relid == leftvar->varno &&
3245  ref_attno == leftvar->varattno &&
3246  fkinfo->con_relid == rightvar->varno &&
3247  con_attno == rightvar->varattno)
3248  {
3249  /* Vars match, but is it the right operator? */
3250  if (clause->opno == fkinfo->conpfeqop[colno])
3251  {
3252  fkinfo->rinfos[colno] = lappend(fkinfo->rinfos[colno],
3253  rinfo);
3254  fkinfo->nmatched_ri++;
3255  }
3256  }
3257  else if (fkinfo->ref_relid == rightvar->varno &&
3258  ref_attno == rightvar->varattno &&
3259  fkinfo->con_relid == leftvar->varno &&
3260  con_attno == leftvar->varattno)
3261  {
3262  /*
3263  * Reverse match, must check commutator operator. Look it
3264  * up if we didn't already. (In the worst case we might
3265  * do multiple lookups here, but that would require an FK
3266  * equality operator without commutator, which is
3267  * unlikely.)
3268  */
3269  if (!OidIsValid(fpeqop))
3270  fpeqop = get_commutator(fkinfo->conpfeqop[colno]);
3271  if (clause->opno == fpeqop)
3272  {
3273  fkinfo->rinfos[colno] = lappend(fkinfo->rinfos[colno],
3274  rinfo);
3275  fkinfo->nmatched_ri++;
3276  }
3277  }
3278  }
3279  /* If we found any matching loose quals, count col as matched */
3280  if (fkinfo->rinfos[colno])
3281  fkinfo->nmatched_rcols++;
3282  }
3283 
3284  /*
3285  * Currently, we drop multicolumn FKs that aren't fully matched to the
3286  * query. Later we might figure out how to derive some sort of
3287  * estimate from them, in which case this test should be weakened to
3288  * "if ((fkinfo->nmatched_ec + fkinfo->nmatched_rcols) > 0)".
3289  */
3290  if ((fkinfo->nmatched_ec + fkinfo->nmatched_rcols) == fkinfo->nkeys)
3291  newlist = lappend(newlist, fkinfo);
3292  }
3293  /* Replace fkey_list, thereby discarding any useless entries */
3294  root->fkey_list = newlist;
3295 }
EquivalenceClass * match_eclasses_to_foreign_key_col(PlannerInfo *root, ForeignKeyOptInfo *fkinfo, int colno)
Definition: equivclass.c:2501
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
Oid get_commutator(Oid opno)
Definition: lsyscache.c:1487
static Node * get_rightop(const void *clause)
Definition: nodeFuncs.h:93
static Node * get_leftop(const void *clause)
Definition: nodeFuncs.h:81
List * rinfos[INDEX_MAX_KEYS]
Definition: pathnodes.h:1241
Oid opno
Definition: primnodes.h:774
List * args
Definition: primnodes.h:792
List * fkey_list
Definition: pathnodes.h:379
List * joininfo
Definition: pathnodes.h:972
Expr * clause
Definition: pathnodes.h:2541

References OpExpr::args, RestrictInfo::clause, ForeignKeyOptInfo::con_relid, EquivalenceClass::ec_has_const, PlannerInfo::fkey_list, get_commutator(), get_leftop(), get_rightop(), if(), InvalidOid, IsA, RelOptInfo::joininfo, lappend(), lfirst, list_length(), match_eclasses_to_foreign_key_col(), ForeignKeyOptInfo::nconst_ec, NIL, ForeignKeyOptInfo::nkeys, ForeignKeyOptInfo::nmatched_ec, ForeignKeyOptInfo::nmatched_rcols, ForeignKeyOptInfo::nmatched_ri, OidIsValid, OpExpr::opno, ForeignKeyOptInfo::ref_relid, RELOPT_BASEREL, RelOptInfo::reloptkind, ForeignKeyOptInfo::rinfos, and PlannerInfo::simple_rel_array_size.

Referenced by query_planner().

◆ materialize_finished_plan()

Plan* materialize_finished_plan ( Plan subplan)

Definition at line 6508 of file createplan.c.

6509 {
6510  Plan *matplan;
6511  Path matpath; /* dummy for result of cost_material */
6512  Cost initplan_cost;
6513  bool unsafe_initplans;
6514 
6515  matplan = (Plan *) make_material(subplan);
6516 
6517  /*
6518  * XXX horrid kluge: if there are any initPlans attached to the subplan,
6519  * move them up to the Material node, which is now effectively the top
6520  * plan node in its query level. This prevents failure in
6521  * SS_finalize_plan(), which see for comments.
6522  */
6523  matplan->initPlan = subplan->initPlan;
6524  subplan->initPlan = NIL;
6525 
6526  /* Move the initplans' cost delta, as well */
6528  &initplan_cost, &unsafe_initplans);
6529  subplan->startup_cost -= initplan_cost;
6530  subplan->total_cost -= initplan_cost;
6531 
6532  /* Set cost data */
6533  cost_material(&matpath,
6534  subplan->startup_cost,
6535  subplan->total_cost,
6536  subplan->plan_rows,
6537  subplan->plan_width);
6538  matplan->startup_cost = matpath.startup_cost + initplan_cost;
6539  matplan->total_cost = matpath.total_cost + initplan_cost;
6540  matplan->plan_rows = subplan->plan_rows;
6541  matplan->plan_width = subplan->plan_width;
6542  matplan->parallel_aware = false;
6543  matplan->parallel_safe = subplan->parallel_safe;
6544 
6545  return matplan;
6546 }
void cost_material(Path *path, Cost input_startup_cost, Cost input_total_cost, double tuples, int width)
Definition: costsize.c:2453
static Material * make_material(Plan *lefttree)
Definition: createplan.c:6486
double Cost
Definition: nodes.h:241
Cost startup_cost
Definition: pathnodes.h:1641
Cost total_cost
Definition: pathnodes.h:1642
Cost total_cost
Definition: plannodes.h:129
bool parallel_aware
Definition: plannodes.h:140
Cost startup_cost
Definition: plannodes.h:128
int plan_width
Definition: plannodes.h:135
Cardinality plan_rows
Definition: plannodes.h:134
List * initPlan
Definition: plannodes.h:156
void SS_compute_initplan_cost(List *init_plans, Cost *initplan_cost_p, bool *unsafe_initplans_p)
Definition: subselect.c:2211

References cost_material(), Plan::initPlan, make_material(), NIL, Plan::parallel_aware, Plan::parallel_safe, Plan::plan_rows, Plan::plan_width, SS_compute_initplan_cost(), Path::startup_cost, Plan::startup_cost, Path::total_cost, and Plan::total_cost.

Referenced by build_subplan(), and standard_planner().

◆ preprocess_minmax_aggregates()

void preprocess_minmax_aggregates ( PlannerInfo root)

Definition at line 72 of file planagg.c.

73 {
74  Query *parse = root->parse;
75  FromExpr *jtnode;
76  RangeTblRef *rtr;
77  RangeTblEntry *rte;
78  List *aggs_list;
79  RelOptInfo *grouped_rel;
80  ListCell *lc;
81 
82  /* minmax_aggs list should be empty at this point */
83  Assert(root->minmax_aggs == NIL);
84 
85  /* Nothing to do if query has no aggregates */
86  if (!parse->hasAggs)
87  return;
88 
89  Assert(!parse->setOperations); /* shouldn't get here if a setop */
90  Assert(parse->rowMarks == NIL); /* nor if FOR UPDATE */
91 
92  /*
93  * Reject unoptimizable cases.
94  *
95  * We don't handle GROUP BY or windowing, because our current
96  * implementations of grouping require looking at all the rows anyway, and
97  * so there's not much point in optimizing MIN/MAX.
98  */
99  if (parse->groupClause || list_length(parse->groupingSets) > 1 ||
100  parse->hasWindowFuncs)
101  return;
102 
103  /*
104  * Reject if query contains any CTEs; there's no way to build an indexscan
105  * on one so we couldn't succeed here. (If the CTEs are unreferenced,
106  * that's not true, but it doesn't seem worth expending cycles to check.)
107  */
108  if (parse->cteList)
109  return;
110 
111  /*
112  * We also restrict the query to reference exactly one table, since join
113  * conditions can't be handled reasonably. (We could perhaps handle a
114  * query containing cartesian-product joins, but it hardly seems worth the
115  * trouble.) However, the single table could be buried in several levels
116  * of FromExpr due to subqueries. Note the "single" table could be an
117  * inheritance parent, too, including the case of a UNION ALL subquery
118  * that's been flattened to an appendrel.
119  */
120  jtnode = parse->jointree;
121  while (IsA(jtnode, FromExpr))
122  {
123  if (list_length(jtnode->fromlist) != 1)
124  return;
125  jtnode = linitial(jtnode->fromlist);
126  }
127  if (!IsA(jtnode, RangeTblRef))
128  return;
129  rtr = (RangeTblRef *) jtnode;
130  rte = planner_rt_fetch(rtr->rtindex, root);
131  if (rte->rtekind == RTE_RELATION)
132  /* ordinary relation, ok */ ;
133  else if (rte->rtekind == RTE_SUBQUERY && rte->inh)
134  /* flattened UNION ALL subquery, ok */ ;
135  else
136  return;
137 
138  /*
139  * Examine all the aggregates and verify all are MIN/MAX aggregates. Stop
140  * as soon as we find one that isn't.
141  */
142  aggs_list = NIL;
143  if (!can_minmax_aggs(root, &aggs_list))
144  return;
145 
146  /*
147  * OK, there is at least the possibility of performing the optimization.
148  * Build an access path for each aggregate. If any of the aggregates
149  * prove to be non-indexable, give up; there is no point in optimizing
150  * just some of them.
151  */
152  foreach(lc, aggs_list)
153  {
154  MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
155  Oid eqop;
156  bool reverse;
157 
158  /*
159  * We'll need the equality operator that goes with the aggregate's
160  * ordering operator.
161  */
162  eqop = get_equality_op_for_ordering_op(mminfo->aggsortop, &reverse);
163  if (!OidIsValid(eqop)) /* shouldn't happen */
164  elog(ERROR, "could not find equality operator for ordering operator %u",
165  mminfo->aggsortop);
166 
167  /*
168  * We can use either an ordering that gives NULLS FIRST or one that
169  * gives NULLS LAST; furthermore there's unlikely to be much
170  * performance difference between them, so it doesn't seem worth
171  * costing out both ways if we get a hit on the first one. NULLS
172  * FIRST is more likely to be available if the operator is a
173  * reverse-sort operator, so try that first if reverse.
174  */
175  if (build_minmax_path(root, mminfo, eqop, mminfo->aggsortop, reverse))
176  continue;
177  if (build_minmax_path(root, mminfo, eqop, mminfo->aggsortop, !reverse))
178  continue;
179 
180  /* No indexable path for this aggregate, so fail */
181  return;
182  }
183 
184  /*
185  * OK, we can do the query this way. Prepare to create a MinMaxAggPath
186  * node.
187  *
188  * First, create an output Param node for each agg. (If we end up not
189  * using the MinMaxAggPath, we'll waste a PARAM_EXEC slot for each agg,
190  * which is not worth worrying about. We can't wait till create_plan time
191  * to decide whether to make the Param, unfortunately.)
192  */
193  foreach(lc, aggs_list)
194  {
195  MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
196 
197  mminfo->param =
199  exprType((Node *) mminfo->target),
200  -1,
201  exprCollation((Node *) mminfo->target));
202  }
203 
204  /*
205  * Create a MinMaxAggPath node with the appropriate estimated costs and
206  * other needed data, and add it to the UPPERREL_GROUP_AGG upperrel, where
207  * it will compete against the standard aggregate implementation. (It
208  * will likely always win, but we need not assume that here.)
209  *
210  * Note: grouping_planner won't have created this upperrel yet, but it's
211  * fine for us to create it first. We will not have inserted the correct
212  * consider_parallel value in it, but MinMaxAggPath paths are currently
213  * never parallel-safe anyway, so that doesn't matter. Likewise, it
214  * doesn't matter that we haven't filled FDW-related fields in the rel.
215  * Also, because there are no rowmarks, we know that the processed_tlist
216  * doesn't need to change anymore, so making the pathtarget now is safe.
217  */
218  grouped_rel = fetch_upper_rel(root, UPPERREL_GROUP_AGG, NULL);
219  add_path(grouped_rel, (Path *)
220  create_minmaxagg_path(root, grouped_rel,
221  create_pathtarget(root,
222  root->processed_tlist),
223  aggs_list,
224  (List *) parse->havingQual));
225 }
Oid get_equality_op_for_ordering_op(Oid opno, bool *reverse)
Definition: lsyscache.c:267
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
MinMaxAggPath * create_minmaxagg_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *mmaggregates, List *quals)
Definition: pathnode.c:3383
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:418
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:555
@ UPPERREL_GROUP_AGG
Definition: pathnodes.h:74
static bool can_minmax_aggs(PlannerInfo *root, List **context)
Definition: planagg.c:236
static bool build_minmax_path(PlannerInfo *root, MinMaxAggInfo *mminfo, Oid eqop, Oid sortop, bool nulls_first)
Definition: planagg.c:316
static struct subre * parse(struct vars *v, int stopper, int type, struct state *init, struct state *final)
Definition: regcomp.c:715
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1463
Param * SS_make_initplan_output_param(PlannerInfo *root, Oid resulttype, int32 resulttypmod, Oid resultcollation)
Definition: subselect.c:3014
#define create_pathtarget(root, tlist)
Definition: tlist.h:53

References add_path(), MinMaxAggInfo::aggsortop, Assert(), build_minmax_path(), can_minmax_aggs(), create_minmaxagg_path(), create_pathtarget, elog, ERROR, exprCollation(), exprType(), fetch_upper_rel(), FromExpr::fromlist, get_equality_op_for_ordering_op(), RangeTblEntry::inh, IsA, lfirst, linitial, list_length(), PlannerInfo::minmax_aggs, NIL, OidIsValid, MinMaxAggInfo::param, parse(), PlannerInfo::parse, planner_rt_fetch, PlannerInfo::processed_tlist, RTE_RELATION, RTE_SUBQUERY, RangeTblEntry::rtekind, RangeTblRef::rtindex, SS_make_initplan_output_param(), MinMaxAggInfo::target, and UPPERREL_GROUP_AGG.

Referenced by grouping_planner().

◆ process_implied_equality()

RestrictInfo* process_implied_equality ( PlannerInfo root,
Oid  opno,
Oid  collation,
Expr item1,
Expr item2,
Relids  qualscope,
Index  security_level,
bool  both_const 
)

Definition at line 2901 of file initsplan.c.

2909 {
2910  RestrictInfo *restrictinfo;
2911  Node *clause;
2912  Relids relids;
2913  bool pseudoconstant = false;
2914 
2915  /*
2916  * Build the new clause. Copy to ensure it shares no substructure with
2917  * original (this is necessary in case there are subselects in there...)
2918  */
2919  clause = (Node *) make_opclause(opno,
2920  BOOLOID, /* opresulttype */
2921  false, /* opretset */
2922  copyObject(item1),
2923  copyObject(item2),
2924  InvalidOid,
2925  collation);
2926 
2927  /* If both constant, try to reduce to a boolean constant. */
2928  if (both_const)
2929  {
2930  clause = eval_const_expressions(root, clause);
2931 
2932  /* If we produced const TRUE, just drop the clause */
2933  if (clause && IsA(clause, Const))
2934  {
2935  Const *cclause = (Const *) clause;
2936 
2937  Assert(cclause->consttype == BOOLOID);
2938  if (!cclause->constisnull && DatumGetBool(cclause->constvalue))
2939  return NULL;
2940  }
2941  }
2942 
2943  /*
2944  * The rest of this is a very cut-down version of distribute_qual_to_rels.
2945  * We can skip most of the work therein, but there are a couple of special
2946  * cases we still have to handle.
2947  *
2948  * Retrieve all relids mentioned within the possibly-simplified clause.
2949  */
2950  relids = pull_varnos(root, clause);
2951  Assert(bms_is_subset(relids, qualscope));
2952 
2953  /*
2954  * If the clause is variable-free, our normal heuristic for pushing it
2955  * down to just the mentioned rels doesn't work, because there are none.
2956  * Apply it as a gating qual at the appropriate level (see comments for
2957  * get_join_domain_min_rels).
2958  */
2959  if (bms_is_empty(relids))
2960  {
2961  /* eval at join domain's safe level */
2962  relids = get_join_domain_min_rels(root, qualscope);
2963  /* mark as gating qual */
2964  pseudoconstant = true;
2965  /* tell createplan.c to check for gating quals */
2966  root->hasPseudoConstantQuals = true;
2967  }
2968 
2969  /*
2970  * Build the RestrictInfo node itself.
2971  */
2972  restrictinfo = make_restrictinfo(root,
2973  (Expr *) clause,
2974  true, /* is_pushed_down */
2975  false, /* !has_clone */
2976  false, /* !is_clone */
2977  pseudoconstant,
2978  security_level,
2979  relids,
2980  NULL, /* incompatible_relids */
2981  NULL); /* outer_relids */
2982 
2983  /*
2984  * If it's a join clause, add vars used in the clause to targetlists of
2985  * their relations, so that they will be emitted by the plan nodes that
2986  * scan those relations (else they won't be available at the join node!).
2987  *
2988  * Typically, we'd have already done this when the component expressions
2989  * were first seen by distribute_qual_to_rels; but it is possible that
2990  * some of the Vars could have missed having that done because they only
2991  * appeared in single-relation clauses originally. So do it here for
2992  * safety.
2993  */
2994  if (bms_membership(relids) == BMS_MULTIPLE)
2995  {
2996  List *vars = pull_var_clause(clause,
3000 
3001  add_vars_to_targetlist(root, vars, relids);
3002  list_free(vars);
3003  }
3004 
3005  /*
3006  * Check mergejoinability. This will usually succeed, since the op came
3007  * from an EquivalenceClass; but we could have reduced the original clause
3008  * to a constant.
3009  */
3010  check_mergejoinable(restrictinfo);
3011 
3012  /*
3013  * Note we don't do initialize_mergeclause_eclasses(); the caller can
3014  * handle that much more cheaply than we can. It's okay to call
3015  * distribute_restrictinfo_to_rels() before that happens.
3016  */
3017 
3018  /*
3019  * Push the new clause into all the appropriate restrictinfo lists.
3020  */
3021  distribute_restrictinfo_to_rels(root, restrictinfo);
3022 
3023  return restrictinfo;
3024 }
BMS_Membership bms_membership(const Bitmapset *a)
Definition: bitmapset.c:781
@ BMS_MULTIPLE
Definition: bitmapset.h:73
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2234
void distribute_restrictinfo_to_rels(PlannerInfo *root, RestrictInfo *restrictinfo)
Definition: initsplan.c:2816
static Relids get_join_domain_min_rels(PlannerInfo *root, Relids domain_relids)
Definition: initsplan.c:3109
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
Oid consttype
Definition: primnodes.h:298
bool hasPseudoConstantQuals
Definition: pathnodes.h:495
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:108

References add_vars_to_targetlist(), Assert(), bms_is_empty, bms_is_subset(), bms_membership(), BMS_MULTIPLE, check_mergejoinable(), Const::consttype, copyObject, DatumGetBool(), distribute_restrictinfo_to_rels(), eval_const_expressions(), get_join_domain_min_rels(), PlannerInfo::hasPseudoConstantQuals, InvalidOid, IsA, list_free(), make_opclause(), make_restrictinfo(), pull_var_clause(), pull_varnos(), PVC_INCLUDE_PLACEHOLDERS, PVC_RECURSE_AGGREGATES, PVC_RECURSE_WINDOWFUNCS, and JoinTreeItem::qualscope.

Referenced by generate_base_implied_equalities_const(), and generate_base_implied_equalities_no_const().

◆ query_is_distinct_for()

bool query_is_distinct_for ( Query query,
List colnos,
List opids 
)

Definition at line 1035 of file analyzejoins.c.

1036 {
1037  ListCell *l;
1038  Oid opid;
1039 
1040  Assert(list_length(colnos) == list_length(opids));
1041 
1042  /*
1043  * DISTINCT (including DISTINCT ON) guarantees uniqueness if all the
1044  * columns in the DISTINCT clause appear in colnos and operator semantics
1045  * match. This is true even if there are SRFs in the DISTINCT columns or
1046  * elsewhere in the tlist.
1047  */
1048  if (query->distinctClause)
1049  {
1050  foreach(l, query->distinctClause)
1051  {
1052  SortGroupClause *sgc = (SortGroupClause *) lfirst(l);
1054  query->targetList);
1055 
1056  opid = distinct_col_search(tle->resno, colnos, opids);
1057  if (!OidIsValid(opid) ||
1058  !equality_ops_are_compatible(opid, sgc->eqop))
1059  break; /* exit early if no match */
1060  }
1061  if (l == NULL) /* had matches for all? */
1062  return true;
1063  }
1064 
1065  /*
1066  * Otherwise, a set-returning function in the query's targetlist can
1067  * result in returning duplicate rows, despite any grouping that might
1068  * occur before tlist evaluation. (If all tlist SRFs are within GROUP BY
1069  * columns, it would be safe because they'd be expanded before grouping.
1070  * But it doesn't currently seem worth the effort to check for that.)
1071  */
1072  if (query->hasTargetSRFs)
1073  return false;
1074 
1075  /*
1076  * Similarly, GROUP BY without GROUPING SETS guarantees uniqueness if all
1077  * the grouped columns appear in colnos and operator semantics match.
1078  */
1079  if (query->groupClause && !query->groupingSets)
1080  {
1081  foreach(l, query->groupClause)
1082  {
1083  SortGroupClause *sgc = (SortGroupClause *) lfirst(l);
1085  query->targetList);
1086 
1087  opid = distinct_col_search(tle->resno, colnos, opids);
1088  if (!OidIsValid(opid) ||
1089  !equality_ops_are_compatible(opid, sgc->eqop))
1090  break; /* exit early if no match */
1091  }
1092  if (l == NULL) /* had matches for all? */
1093  return true;
1094  }
1095  else if (query->groupingSets)
1096  {
1097  /*
1098  * If we have grouping sets with expressions, we probably don't have
1099  * uniqueness and analysis would be hard. Punt.
1100  */
1101  if (query->groupClause)
1102  return false;
1103 
1104  /*
1105  * If we have no groupClause (therefore no grouping expressions), we
1106  * might have one or many empty grouping sets. If there's just one,
1107  * then we're returning only one row and are certainly unique. But
1108  * otherwise, we know we're certainly not unique.
1109  */
1110  if (list_length(query->groupingSets) == 1 &&
1111  ((GroupingSet *) linitial(query->groupingSets))->kind == GROUPING_SET_EMPTY)
1112  return true;
1113  else
1114  return false;
1115  }
1116  else
1117  {
1118  /*
1119  * If we have no GROUP BY, but do have aggregates or HAVING, then the
1120  * result is at most one row so it's surely unique, for any operators.
1121  */
1122  if (query->hasAggs || query->havingQual)
1123  return true;
1124  }
1125 
1126  /*
1127  * UNION, INTERSECT, EXCEPT guarantee uniqueness of the whole output row,
1128  * except with ALL.
1129  */
1130  if (query->setOperations)
1131  {
1133 
1134  Assert(topop->op != SETOP_NONE);
1135 
1136  if (!topop->all)
1137  {
1138  ListCell *lg;
1139 
1140  /* We're good if all the nonjunk output columns are in colnos */
1141  lg = list_head(topop->groupClauses);
1142  foreach(l, query->targetList)
1143  {
1144  TargetEntry *tle = (TargetEntry *) lfirst(l);
1145  SortGroupClause *sgc;
1146 
1147  if (tle->resjunk)
1148  continue; /* ignore resjunk columns */
1149 
1150  /* non-resjunk columns should have grouping clauses */
1151  Assert(lg != NULL);
1152  sgc = (SortGroupClause *) lfirst(lg);
1153  lg = lnext(topop->groupClauses, lg);
1154 
1155  opid = distinct_col_search(tle->resno, colnos, opids);
1156  if (!OidIsValid(opid) ||
1157  !equality_ops_are_compatible(opid, sgc->eqop))
1158  break; /* exit early if no match */
1159  }
1160  if (l == NULL) /* had matches for all? */
1161  return true;
1162  }
1163  }
1164 
1165  /*
1166  * XXX Are there any other cases in which we can easily see the result
1167  * must be distinct?
1168  *
1169  * If you do add more smarts to this function, be sure to update
1170  * query_supports_distinctness() to match.
1171  */
1172 
1173  return false;
1174 }
static Oid distinct_col_search(int colno, List *colnos, List *opids)
bool equality_ops_are_compatible(Oid opno1, Oid opno2)
Definition: lsyscache.c:698
@ GROUPING_SET_EMPTY
Definition: parsenodes.h:1457
@ SETOP_NONE
Definition: parsenodes.h:1961
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
Node * setOperations
Definition: parsenodes.h:218
List * groupClause
Definition: parsenodes.h:199
List * targetList
Definition: parsenodes.h:190
List * groupingSets
Definition: parsenodes.h:202
List * distinctClause
Definition: parsenodes.h:208
SetOperation op
Definition: parsenodes.h:2039

References SetOperationStmt::all, Assert(), castNode, distinct_col_search(), Query::distinctClause, SortGroupClause::eqop, equality_ops_are_compatible(), get_sortgroupclause_tle(), Query::groupClause, GROUPING_SET_EMPTY, Query::groupingSets, Query::havingQual, lfirst, linitial, list_head(), list_length(), lnext(), OidIsValid, SetOperationStmt::op, TargetEntry::resno, SETOP_NONE, Query::setOperations, and Query::targetList.

Referenced by create_unique_path(), and rel_is_distinct_for().

◆ query_planner()

RelOptInfo* query_planner ( PlannerInfo root,
query_pathkeys_callback  qp_callback,
void *  qp_extra 
)

Definition at line 54 of file planmain.c.

56 {
57  Query *parse = root->parse;
58  List *joinlist;
59  RelOptInfo *final_rel;
60 
61  /*
62  * Init planner lists to empty.
63  *
64  * NOTE: append_rel_list was set up by subquery_planner, so do not touch
65  * here.
66  */
67  root->join_rel_list = NIL;
68  root->join_rel_hash = NULL;
69  root->join_rel_level = NULL;
70  root->join_cur_level = 0;
71  root->canon_pathkeys = NIL;
72  root->left_join_clauses = NIL;
73  root->right_join_clauses = NIL;
74  root->full_join_clauses = NIL;
75  root->join_info_list = NIL;
76  root->placeholder_list = NIL;
77  root->placeholder_array = NULL;
78  root->placeholder_array_size = 0;
79  root->fkey_list = NIL;
80  root->initial_rels = NIL;
81 
82  /*
83  * Set up arrays for accessing base relations and AppendRelInfos.
84  */
86 
87  /*
88  * In the trivial case where the jointree is a single RTE_RESULT relation,
89  * bypass all the rest of this function and just make a RelOptInfo and its
90  * one access path. This is worth optimizing because it applies for
91  * common cases like "SELECT expression" and "INSERT ... VALUES()".
92  */
93  Assert(parse->jointree->fromlist != NIL);
94  if (list_length(parse->jointree->fromlist) == 1)
95  {
96  Node *jtnode = (Node *) linitial(parse->jointree->fromlist);
97 
98  if (IsA(jtnode, RangeTblRef))
99  {
100  int varno = ((RangeTblRef *) jtnode)->rtindex;
101  RangeTblEntry *rte = root->simple_rte_array[varno];
102 
103  Assert(rte != NULL);
104  if (rte->rtekind == RTE_RESULT)
105  {
106  /* Make the RelOptInfo for it directly */
107  final_rel = build_simple_rel(root, varno, NULL);
108 
109  /*
110  * If query allows parallelism in general, check whether the
111  * quals are parallel-restricted. (We need not check
112  * final_rel->reltarget because it's empty at this point.
113  * Anything parallel-restricted in the query tlist will be
114  * dealt with later.) We should always do this in a subquery,
115  * since it might be useful to use the subquery in parallel
116  * paths in the parent level. At top level this is normally
117  * not worth the cycles, because a Result-only plan would
118  * never be interesting to parallelize. However, if
119  * debug_parallel_query is on, then we want to execute the
120  * Result in a parallel worker if possible, so we must check.
121  */
122  if (root->glob->parallelModeOK &&
123  (root->query_level > 1 ||
125  final_rel->consider_parallel =
126  is_parallel_safe(root, parse->jointree->quals);
127 
128  /*
129  * The only path for it is a trivial Result path. We cheat a
130  * bit here by using a GroupResultPath, because that way we
131  * can just jam the quals into it without preprocessing them.
132  * (But, if you hold your head at the right angle, a FROM-less
133  * SELECT is a kind of degenerate-grouping case, so it's not
134  * that much of a cheat.)
135  */
136  add_path(final_rel, (Path *)
137  create_group_result_path(root, final_rel,
138  final_rel->reltarget,
139  (List *) parse->jointree->quals));
140 
141  /* Select cheapest path (pretty easy in this case...) */
142  set_cheapest(final_rel);
143 
144  /*
145  * We don't need to run generate_base_implied_equalities, but
146  * we do need to pretend that EC merging is complete.
147  */
148  root->ec_merging_done = true;
149 
150  /*
151  * We still are required to call qp_callback, in case it's
152  * something like "SELECT 2+2 ORDER BY 1".
153  */
154  (*qp_callback) (root, qp_extra);
155 
156  return final_rel;
157  }
158  }
159  }
160 
161  /*
162  * Construct RelOptInfo nodes for all base relations used in the query.
163  * Appendrel member relations ("other rels") will be added later.
164  *
165  * Note: the reason we find the baserels by searching the jointree, rather
166  * than scanning the rangetable, is that the rangetable may contain RTEs
167  * for rels not actively part of the query, for example views. We don't
168  * want to make RelOptInfos for them.
169  */
170  add_base_rels_to_query(root, (Node *) parse->jointree);
171 
172  /*
173  * Examine the targetlist and join tree, adding entries to baserel
174  * targetlists for all referenced Vars, and generating PlaceHolderInfo
175  * entries for all referenced PlaceHolderVars. Restrict and join clauses
176  * are added to appropriate lists belonging to the mentioned relations. We
177  * also build EquivalenceClasses for provably equivalent expressions. The
178  * SpecialJoinInfo list is also built to hold information about join order
179  * restrictions. Finally, we form a target joinlist for make_one_rel() to
180  * work from.
181  */
183 
185 
187 
188  joinlist = deconstruct_jointree(root);
189 
190  /*
191  * Reconsider any postponed outer-join quals now that we have built up
192  * equivalence classes. (This could result in further additions or
193  * mergings of classes.)
194  */
196 
197  /*
198  * If we formed any equivalence classes, generate additional restriction
199  * clauses as appropriate. (Implied join clauses are formed on-the-fly
200  * later.)
201  */
203 
204  /*
205  * We have completed merging equivalence sets, so it's now possible to
206  * generate pathkeys in canonical form; so compute query_pathkeys and
207  * other pathkeys fields in PlannerInfo.
208  */
209  (*qp_callback) (root, qp_extra);
210 
211  /*
212  * Examine any "placeholder" expressions generated during subquery pullup.
213  * Make sure that the Vars they need are marked as needed at the relevant
214  * join level. This must be done before join removal because it might
215  * cause Vars or placeholders to be needed above a join when they weren't
216  * so marked before.
217  */
219 
220  /*
221  * Remove any useless outer joins. Ideally this would be done during
222  * jointree preprocessing, but the necessary information isn't available
223  * until we've built baserel data structures and classified qual clauses.
224  */
225  joinlist = remove_useless_joins(root, joinlist);
226 
227  /*
228  * Also, reduce any semijoins with unique inner rels to plain inner joins.
229  * Likewise, this can't be done until now for lack of needed info.
230  */
232 
233  /*
234  * Remove self joins on a unique column.
235  */
236  joinlist = remove_useless_self_joins(root, joinlist);
237 
238  /*
239  * Now distribute "placeholders" to base rels as needed. This has to be
240  * done after join removal because removal could change whether a
241  * placeholder is evaluable at a base rel.
242  */
244 
245  /*
246  * Construct the lateral reference sets now that we have finalized
247  * PlaceHolderVar eval levels.
248  */
250 
251  /*
252  * Match foreign keys to equivalence classes and join quals. This must be
253  * done after finalizing equivalence classes, and it's useful to wait till
254  * after join removal so that we can skip processing foreign keys
255  * involving removed relations.
256  */
258 
259  /*
260  * Look for join OR clauses that we can extract single-relation
261  * restriction OR clauses from.
262  */
264 
265  /*
266  * Now expand appendrels by adding "otherrels" for their children. We
267  * delay this to the end so that we have as much information as possible
268  * available for each baserel, including all restriction clauses. That
269  * let us prune away partitions that don't satisfy a restriction clause.
270  * Also note that some information such as lateral_relids is propagated
271  * from baserels to otherrels here, so we must have computed it already.
272  */
274 
275  /*
276  * Distribute any UPDATE/DELETE/MERGE row identity variables to the target
277  * relations. This can't be done till we've finished expansion of
278  * appendrels.
279  */
281 
282  /*
283  * Ready to do the primary planning.
284  */
285  final_rel = make_one_rel(root, joinlist);
286 
287  /* Check that we got at least one usable path */
288  if (!final_rel || !final_rel->cheapest_total_path ||
289  final_rel->cheapest_total_path->param_info != NULL)
290  elog(ERROR, "failed to construct the join relation");
291 
292  return final_rel;
293 }
RelOptInfo * make_one_rel(PlannerInfo *root, List *joinlist)
Definition: allpaths.c:171
List * remove_useless_joins(PlannerInfo *root, List *joinlist)
Definition: analyzejoins.c:81
List * remove_useless_self_joins(PlannerInfo *root, List *joinlist)
void reduce_unique_semijoins(PlannerInfo *root)
Definition: analyzejoins.c:764
void distribute_row_identity_vars(PlannerInfo *root)
Definition: appendinfo.c:965
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:733
void generate_base_implied_equalities(PlannerInfo *root)
Definition: equivclass.c:1044
void reconsider_outer_join_clauses(PlannerInfo *root)
Definition: equivclass.c:1993
List * deconstruct_jointree(PlannerInfo *root)
Definition: initsplan.c:739
void match_foreign_keys_to_quals(PlannerInfo *root)
Definition: initsplan.c:3149
void find_lateral_references(PlannerInfo *root)
Definition: initsplan.c:357
void build_base_rel_tlists(PlannerInfo *root, List *final_tlist)
Definition: initsplan.c:233
void add_other_rels_to_query(PlannerInfo *root)
Definition: initsplan.c:194
void create_lateral_join_info(PlannerInfo *root)
Definition: initsplan.c:500
@ DEBUG_PARALLEL_OFF
Definition: optimizer.h:106
void extract_restriction_or_clauses(PlannerInfo *root)
Definition: orclauses.c:74
@ RTE_RESULT
Definition: parsenodes.h:1019
GroupResultPath * create_group_result_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *havingqual)
Definition: pathnode.c:1516
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:240
void add_placeholders_to_base_rels(PlannerInfo *root)
Definition: placeholder.c:329
void fix_placeholder_input_needed_levels(PlannerInfo *root)
Definition: placeholder.c:300
void find_placeholders_in_jointree(PlannerInfo *root)
Definition: placeholder.c:185
int debug_parallel_query
Definition: planner.c:66
void setup_simple_rel_arrays(PlannerInfo *root)
Definition: relnode.c:94
bool parallelModeOK
Definition: pathnodes.h:153
List * canon_pathkeys
Definition: pathnodes.h:317
List * join_rel_list
Definition: pathnodes.h:277
bool ec_merging_done
Definition: pathnodes.h:314
List * left_join_clauses
Definition: pathnodes.h:323
List * full_join_clauses
Definition: pathnodes.h:334
Index query_level
Definition: pathnodes.h:205
List * right_join_clauses
Definition: pathnodes.h:329
int join_cur_level
Definition: pathnodes.h:293
bool consider_parallel
Definition: pathnodes.h:872
struct Path * cheapest_total_path
Definition: pathnodes.h:887

References add_base_rels_to_query(), add_other_rels_to_query(), add_path(), add_placeholders_to_base_rels(), Assert(), build_base_rel_tlists(), build_simple_rel(), PlannerInfo::canon_pathkeys, RelOptInfo::cheapest_total_path, RelOptInfo::consider_parallel, create_group_result_path(), create_lateral_join_info(), DEBUG_PARALLEL_OFF, debug_parallel_query, deconstruct_jointree(), distribute_row_identity_vars(), PlannerInfo::ec_merging_done, elog, ERROR, extract_restriction_or_clauses(), find_lateral_references(), find_placeholders_in_jointree(), fix_placeholder_input_needed_levels(), PlannerInfo::fkey_list, PlannerInfo::full_join_clauses, generate_base_implied_equalities(), PlannerInfo::glob, is_parallel_safe(), IsA, PlannerInfo::join_cur_level, PlannerInfo::join_info_list, PlannerInfo::join_rel_list, PlannerInfo::left_join_clauses, linitial, list_length(), make_one_rel(), match_foreign_keys_to_quals(), NIL, PlannerGlobal::parallelModeOK, parse(), PlannerInfo::parse, PlannerInfo::placeholder_list, PlannerInfo::processed_tlist, PlannerInfo::query_level, reconsider_outer_join_clauses(), reduce_unique_semijoins(), RelOptInfo::reltarget, remove_useless_joins(), remove_useless_self_joins(), PlannerInfo::right_join_clauses, RTE_RESULT, RangeTblEntry::rtekind, set_cheapest(), and setup_simple_rel_arrays().

Referenced by build_minmax_path(), and grouping_planner().

◆ query_supports_distinctness()

bool query_supports_distinctness ( Query query)

Definition at line 998 of file analyzejoins.c.

999 {
1000  /* SRFs break distinctness except with DISTINCT, see below */
1001  if (query->hasTargetSRFs && query->distinctClause == NIL)
1002  return false;
1003 
1004  /* check for features we can prove distinctness with */
1005  if (query->distinctClause != NIL ||
1006  query->groupClause != NIL ||
1007  query->groupingSets != NIL ||
1008  query->hasAggs ||
1009  query->havingQual ||
1010  query->setOperations)
1011  return true;
1012 
1013  return false;
1014 }

References Query::distinctClause, Query::groupClause, Query::groupingSets, Query::havingQual, NIL, and Query::setOperations.

Referenced by create_unique_path(), and rel_supports_distinctness().

◆ record_plan_function_dependency()

void record_plan_function_dependency ( PlannerInfo root,
Oid  funcid 
)

Definition at line 3444 of file setrefs.c.

3445 {
3446  /*
3447  * For performance reasons, we don't bother to track built-in functions;
3448  * we just assume they'll never change (or at least not in ways that'd
3449  * invalidate plans using them). For this purpose we can consider a
3450  * built-in function to be one with OID less than FirstUnpinnedObjectId.
3451  * Note that the OID generator guarantees never to generate such an OID
3452  * after startup, even at OID wraparound.
3453  */
3454  if (funcid >= (Oid) FirstUnpinnedObjectId)
3455  {
3456  PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3457 
3458  /*
3459  * It would work to use any syscache on pg_proc, but the easiest is
3460  * PROCOID since we already have the function's OID at hand. Note
3461  * that plancache.c knows we use PROCOID.
3462  */
3463  inval_item->cacheId = PROCOID;
3464  inval_item->hashValue = GetSysCacheHashValue1(PROCOID,
3465  ObjectIdGetDatum(funcid));
3466 
3467  root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3468  }
3469 }
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
uint32 hashValue
Definition: plannodes.h:1571
List * invalItems
Definition: pathnodes.h:132
#define GetSysCacheHashValue1(cacheId, key1)
Definition: syscache.h:113
#define FirstUnpinnedObjectId
Definition: transam.h:196

References PlanInvalItem::cacheId, FirstUnpinnedObjectId, GetSysCacheHashValue1, PlannerInfo::glob, PlanInvalItem::hashValue, PlannerGlobal::invalItems, lappend(), makeNode, and ObjectIdGetDatum().

Referenced by fix_expr_common(), inline_function(), and inline_set_returning_function().

◆ record_plan_type_dependency()

void record_plan_type_dependency ( PlannerInfo root,
Oid  typid 
)

Definition at line 3484 of file setrefs.c.

3485 {
3486  /*
3487  * As in record_plan_function_dependency, ignore the possibility that
3488  * someone would change a built-in domain.
3489  */
3490  if (typid >= (Oid) FirstUnpinnedObjectId)
3491  {
3492  PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3493 
3494  /*
3495  * It would work to use any syscache on pg_type, but the easiest is
3496  * TYPEOID since we already have the type's OID at hand. Note that
3497  * plancache.c knows we use TYPEOID.
3498  */
3499  inval_item->cacheId = TYPEOID;
3500  inval_item->hashValue = GetSysCacheHashValue1(TYPEOID,
3501  ObjectIdGetDatum(typid));
3502 
3503  root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3504  }
3505 }

References PlanInvalItem::cacheId, FirstUnpinnedObjectId, GetSysCacheHashValue1, PlannerInfo::glob, PlanInvalItem::hashValue, PlannerGlobal::invalItems, lappend(), makeNode, and ObjectIdGetDatum().

Referenced by eval_const_expressions_mutator().

◆ reduce_unique_semijoins()

void reduce_unique_semijoins ( PlannerInfo root)

Definition at line 764 of file analyzejoins.c.

765 {
766  ListCell *lc;
767 
768  /*
769  * Scan the join_info_list to find semijoins.
770  */
771  foreach(lc, root->join_info_list)
772  {
773  SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
774  int innerrelid;
775  RelOptInfo *innerrel;
776  Relids joinrelids;
777  List *restrictlist;
778 
779  /*
780  * Must be a semijoin to a single baserel, else we aren't going to be
781  * able to do anything with it.
782  */
783  if (sjinfo->jointype != JOIN_SEMI)
784  continue;
785 
786  if (!bms_get_singleton_member(sjinfo->min_righthand, &innerrelid))
787  continue;
788 
789  innerrel = find_base_rel(root, innerrelid);
790 
791  /*
792  * Before we trouble to run generate_join_implied_equalities, make a
793  * quick check to eliminate cases in which we will surely be unable to
794  * prove uniqueness of the innerrel.
795  */
796  if (!rel_supports_distinctness(root, innerrel))
797  continue;
798 
799  /* Compute the relid set for the join we are considering */
800  joinrelids = bms_union(sjinfo->min_lefthand, sjinfo->min_righthand);
801  Assert(sjinfo->ojrelid == 0); /* SEMI joins don't have RT indexes */
802 
803  /*
804  * Since we're only considering a single-rel RHS, any join clauses it
805  * has must be clauses linking it to the semijoin's min_lefthand. We
806  * can also consider EC-derived join clauses.
807  */
808  restrictlist =
810  joinrelids,
811  sjinfo->min_lefthand,
812  innerrel,
813  NULL),
814  innerrel->joininfo);
815 
816  /* Test whether the innerrel is unique for those clauses. */
817  if (!innerrel_is_unique(root,
818  joinrelids, sjinfo->min_lefthand, innerrel,
819  JOIN_SEMI, restrictlist, true))
820  continue;
821 
822  /* OK, remove the SpecialJoinInfo from the list. */
824  }
825 }
bool innerrel_is_unique(PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist, bool force_cache)
List * generate_join_implied_equalities(PlannerInfo *root, Relids join_relids, Relids outer_relids, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo)
Definition: equivclass.c:1392
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
@ JOIN_SEMI
Definition: nodes.h:297
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
Relids min_righthand
Definition: pathnodes.h:2869
JoinType jointype
Definition: pathnodes.h:2872
Relids min_lefthand
Definition: pathnodes.h:2868

References Assert(), bms_get_singleton_member(), bms_union(), find_base_rel(), foreach_delete_current, generate_join_implied_equalities(), innerrel_is_unique(), PlannerInfo::join_info_list, JOIN_SEMI, RelOptInfo::joininfo, SpecialJoinInfo::jointype, lfirst, list_concat(), SpecialJoinInfo::min_lefthand, SpecialJoinInfo::min_righthand, SpecialJoinInfo::ojrelid, and rel_supports_distinctness().

Referenced by query_planner().

◆ remove_useless_joins()

List* remove_useless_joins ( PlannerInfo root,
List joinlist 
)

Definition at line 81 of file analyzejoins.c.

82 {
83  ListCell *lc;
84 
85  /*
86  * We are only interested in relations that are left-joined to, so we can
87  * scan the join_info_list to find them easily.
88  */
89 restart:
90  foreach(lc, root->join_info_list)
91  {
92  SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
93  int innerrelid;
94  int nremoved;
95 
96  /* Skip if not removable */
97  if (!join_is_removable(root, sjinfo))
98  continue;
99 
100  /*
101  * Currently, join_is_removable can only succeed when the sjinfo's
102  * righthand is a single baserel. Remove that rel from the query and
103  * joinlist.
104  */
105  innerrelid = bms_singleton_member(sjinfo->min_righthand);
106 
107  remove_leftjoinrel_from_query(root, innerrelid, sjinfo);
108 
109  /* We verify that exactly one reference gets removed from joinlist */
110  nremoved = 0;
111  joinlist = remove_rel_from_joinlist(joinlist, innerrelid, &nremoved);
112  if (nremoved != 1)
113  elog(ERROR, "failed to find relation %d in joinlist", innerrelid);
114 
115  /*
116  * We can delete this SpecialJoinInfo from the list too, since it's no
117  * longer of interest. (Since we'll restart the foreach loop
118  * immediately, we don't bother with foreach_delete_current.)
119  */
121 
122  /*
123  * Restart the scan. This is necessary to ensure we find all
124  * removable joins independently of ordering of the join_info_list
125  * (note that removal of attr_needed bits may make a join appear
126  * removable that did not before).
127  */
128  goto restart;
129  }
130 
131  return joinlist;
132 }
static List * remove_rel_from_joinlist(List *joinlist, int relid, int *nremoved)
Definition: analyzejoins.c:710
static void remove_leftjoinrel_from_query(PlannerInfo *root, int relid, SpecialJoinInfo *sjinfo)
Definition: analyzejoins.c:483
static bool join_is_removable(PlannerInfo *root, SpecialJoinInfo *sjinfo)
Definition: analyzejoins.c:177
int bms_singleton_member(const Bitmapset *a)
Definition: bitmapset.c:672
List * list_delete_cell(List *list, ListCell *cell)
Definition: list.c:841

References bms_singleton_member(), elog, ERROR, PlannerInfo::join_info_list, join_is_removable(), lfirst, list_delete_cell(), SpecialJoinInfo::min_righthand, remove_leftjoinrel_from_query(), and remove_rel_from_joinlist().

Referenced by query_planner().

◆ remove_useless_self_joins()

List* remove_useless_self_joins ( PlannerInfo root,
List jointree 
)

Definition at line 2453 of file analyzejoins.c.

2454 {
2455  Relids toRemove = NULL;
2456  int relid = -1;
2457 
2458  if (!enable_self_join_removal || joinlist == NIL ||
2459  (list_length(joinlist) == 1 && !IsA(linitial(joinlist), List)))
2460  return joinlist;
2461 
2462  /*
2463  * Merge pairs of relations participated in self-join. Remove unnecessary
2464  * range table entries.
2465  */
2466  toRemove = remove_self_joins_recurse(root, joinlist, toRemove);
2467 
2468  if (unlikely(toRemove != NULL))
2469  {
2470  int nremoved = 0;
2471 
2472  /* At the end, remove orphaned relation links */
2473  while ((relid = bms_next_member(toRemove, relid)) >= 0)
2474  joinlist = remove_rel_from_joinlist(joinlist, relid, &nremoved);
2475  }
2476 
2477  return joinlist;
2478 }
bool enable_self_join_removal
Definition: analyzejoins.c:44
static Relids remove_self_joins_recurse(PlannerInfo *root, List *joinlist, Relids toRemove)
#define unlikely(x)
Definition: c.h:298

References bms_next_member(), enable_self_join_removal, IsA, linitial, list_length(), NIL, remove_rel_from_joinlist(), remove_self_joins_recurse(), and unlikely.

Referenced by query_planner().

◆ restriction_is_always_false()

bool restriction_is_always_false ( PlannerInfo root,
RestrictInfo restrictinfo 
)

Definition at line 2761 of file initsplan.c.

2763 {
2764  /* Check for NullTest qual */
2765  if (IsA(restrictinfo->clause, NullTest))
2766  {
2767  NullTest *nulltest = (NullTest *) restrictinfo->clause;
2768 
2769  /* is this NullTest an IS_NULL qual? */
2770  if (nulltest->nulltesttype != IS_NULL)
2771  return false;
2772 
2773  return expr_is_nonnullable(root, nulltest->arg);
2774  }
2775 
2776  /* If it's an OR, check its sub-clauses */
2777  if (restriction_is_or_clause(restrictinfo))
2778  {
2779  ListCell *lc;
2780 
2781  Assert(is_orclause(restrictinfo->orclause));
2782 
2783  /*
2784  * Currently, when processing OR expressions, we only return true when
2785  * all of the OR branches are always false. This could perhaps be
2786  * expanded to remove OR branches that are provably false. This may
2787  * be a useful thing to do as it could result in the OR being left
2788  * with a single arg. That's useful as it would allow the OR
2789  * condition to be replaced with its single argument which may allow
2790  * use of an index for faster filtering on the remaining condition.
2791  */
2792  foreach(lc, ((BoolExpr *) restrictinfo->orclause)->args)
2793  {
2794  Node *orarg = (Node *) lfirst(lc);
2795 
2796  if (!IsA(orarg, RestrictInfo) ||
2797  !restriction_is_always_false(root, (RestrictInfo *) orarg))
2798  return false;
2799  }
2800  return true;
2801  }
2802 
2803  return false;
2804 }
bool restriction_is_always_false(PlannerInfo *root, RestrictInfo *restrictinfo)
Definition: initsplan.c:2761
static bool expr_is_nonnullable(PlannerInfo *root, Expr *expr)
Definition: initsplan.c:2676
static bool is_orclause(const void *clause)
Definition: nodeFuncs.h:114
@ IS_NULL
Definition: primnodes.h:1715
bool restriction_is_or_clause(RestrictInfo *restrictinfo)
Definition: restrictinfo.c:416
NullTestType nulltesttype
Definition: primnodes.h:1722
Expr * arg
Definition: primnodes.h:1721

References NullTest::arg, Assert(), RestrictInfo::clause, expr_is_nonnullable(), if(), IS_NULL, is_orclause(), IsA, lfirst, NullTest::nulltesttype, and restriction_is_or_clause().

Referenced by add_base_clause_to_rel(), and add_join_clause_to_rels().

◆ restriction_is_always_true()

bool restriction_is_always_true ( PlannerInfo root,
RestrictInfo restrictinfo 
)

Definition at line 2712 of file initsplan.c.

2714 {
2715  /* Check for NullTest qual */
2716  if (IsA(restrictinfo->clause, NullTest))
2717  {
2718  NullTest *nulltest = (NullTest *) restrictinfo->clause;
2719 
2720  /* is this NullTest an IS_NOT_NULL qual? */
2721  if (nulltest->nulltesttype != IS_NOT_NULL)
2722  return false;
2723 
2724  return expr_is_nonnullable(root, nulltest->arg);
2725  }
2726 
2727  /* If it's an OR, check its sub-clauses */
2728  if (restriction_is_or_clause(restrictinfo))
2729  {
2730  ListCell *lc;
2731 
2732  Assert(is_orclause(restrictinfo->orclause));
2733 
2734  /*
2735  * if any of the given OR branches is provably always true then the
2736  * entire condition is true.
2737  */
2738  foreach(lc, ((BoolExpr *) restrictinfo->orclause)->args)
2739  {
2740  Node *orarg = (Node *) lfirst(lc);
2741 
2742  if (!IsA(orarg, RestrictInfo))
2743  continue;
2744 
2745  if (restriction_is_always_true(root, (RestrictInfo *) orarg))
2746  return true;
2747  }
2748  }
2749 
2750  return false;
2751 }
bool restriction_is_always_true(PlannerInfo *root, RestrictInfo *restrictinfo)
Definition: initsplan.c:2712
@ IS_NOT_NULL
Definition: primnodes.h:1715

References NullTest::arg, Assert(), RestrictInfo::clause, expr_is_nonnullable(), if(), IS_NOT_NULL, is_orclause(), IsA, lfirst, NullTest::nulltesttype, and restriction_is_or_clause().

Referenced by add_base_clause_to_rel(), and add_join_clause_to_rels().

◆ set_plan_references()

Plan* set_plan_references ( PlannerInfo root,
Plan plan 
)

Definition at line 287 of file setrefs.c.

288 {
289  Plan *result;
290  PlannerGlobal *glob = root->glob;
291  int rtoffset = list_length(glob->finalrtable);
292  ListCell *lc;
293 
294  /*
295  * Add all the query's RTEs to the flattened rangetable. The live ones
296  * will have their rangetable indexes increased by rtoffset. (Additional
297  * RTEs, not referenced by the Plan tree, might get added after those.)
298  */
299  add_rtes_to_flat_rtable(root, false);
300 
301  /*
302  * Adjust RT indexes of PlanRowMarks and add to final rowmarks list
303  */
304  foreach(lc, root->rowMarks)
305  {
307  PlanRowMark *newrc;
308 
309  /* flat copy is enough since all fields are scalars */
310  newrc = (PlanRowMark *) palloc(sizeof(PlanRowMark));
311  memcpy(newrc, rc, sizeof(PlanRowMark));
312 
313  /* adjust indexes ... but *not* the rowmarkId */
314  newrc->rti += rtoffset;
315  newrc->prti += rtoffset;
316 
317  glob->finalrowmarks = lappend(glob->finalrowmarks, newrc);
318  }
319 
320  /*
321  * Adjust RT indexes of AppendRelInfos and add to final appendrels list.
322  * We assume the AppendRelInfos were built during planning and don't need
323  * to be copied.
324  */
325  foreach(lc, root->append_rel_list)
326  {
327  AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
328 
329  /* adjust RT indexes */
330  appinfo->parent_relid += rtoffset;
331  appinfo->child_relid += rtoffset;
332 
333  /*
334  * Rather than adjust the translated_vars entries, just drop 'em.
335  * Neither the executor nor EXPLAIN currently need that data.
336  */
337  appinfo->translated_vars = NIL;
338 
339  glob->appendRelations = lappend(glob->appendRelations, appinfo);
340  }
341 
342  /* If needed, create workspace for processing AlternativeSubPlans */
343  if (root->hasAlternativeSubPlans)
344  {
345  root->isAltSubplan = (bool *)
346  palloc0(list_length(glob->subplans) * sizeof(bool));
347  root->isUsedSubplan = (bool *)
348  palloc0(list_length(glob->subplans) * sizeof(bool));
349  }
350 
351  /* Now fix the Plan tree */
352  result = set_plan_refs(root, plan, rtoffset);
353 
354  /*
355  * If we have AlternativeSubPlans, it is likely that we now have some
356  * unreferenced subplans in glob->subplans. To avoid expending cycles on
357  * those subplans later, get rid of them by setting those list entries to
358  * NULL. (Note: we can't do this immediately upon processing an
359  * AlternativeSubPlan, because there may be multiple copies of the
360  * AlternativeSubPlan, and they can get resolved differently.)
361  */
362  if (root->hasAlternativeSubPlans)
363  {
364  foreach(lc, glob->subplans)
365  {
366  int ndx = foreach_current_index(lc);
367 
368  /*
369  * If it was used by some AlternativeSubPlan in this query level,
370  * but wasn't selected as best by any AlternativeSubPlan, then we
371  * don't need it. Do not touch subplans that aren't parts of
372  * AlternativeSubPlans.
373  */
374  if (root->isAltSubplan[ndx] && !root->isUsedSubplan[ndx])
375  lfirst(lc) = NULL;
376  }
377  }
378 
379  return result;
380 }
unsigned char bool
Definition: c.h:443
void * palloc0(Size size)
Definition: mcxt.c:1334
#define lfirst_node(type, lc)
Definition: pg_list.h:176
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing)
Definition: setrefs.c:391
static Plan * set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
Definition: setrefs.c:608
Index child_relid
Definition: pathnodes.h:2944
List * translated_vars
Definition: pathnodes.h:2971
Index parent_relid
Definition: pathnodes.h:2943
Index prti
Definition: plannodes.h:1381
List * subplans
Definition: pathnodes.h:105
List * appendRelations
Definition: pathnodes.h:126
List * finalrowmarks
Definition: pathnodes.h:120
List * finalrtable
Definition: pathnodes.h:114
List * append_rel_list
Definition: pathnodes.h:362
bool hasAlternativeSubPlans
Definition: pathnodes.h:497
List * rowMarks
Definition: pathnodes.h:368

References add_rtes_to_flat_rtable(), PlannerInfo::append_rel_list, PlannerGlobal::appendRelations, AppendRelInfo::child_relid, PlannerGlobal::finalrowmarks, PlannerGlobal::finalrtable, foreach_current_index, PlannerInfo::glob, PlannerInfo::hasAlternativeSubPlans, lappend(), lfirst, lfirst_node, list_length(), NIL, palloc(), palloc0(), AppendRelInfo::parent_relid, plan, PlanRowMark::prti, PlannerInfo::rowMarks, PlanRowMark::rti, set_plan_refs(), PlannerGlobal::subplans, and AppendRelInfo::translated_vars.

Referenced by set_subqueryscan_references(), and standard_planner().

◆ trivial_subqueryscan()

bool trivial_subqueryscan ( SubqueryScan plan)

Definition at line 1448 of file setrefs.c.

1449 {
1450  int attrno;
1451  ListCell *lp,
1452  *lc;
1453 
1454  /* We might have detected this already; in which case reuse the result */
1455  if (plan->scanstatus == SUBQUERY_SCAN_TRIVIAL)
1456  return true;
1457  if (plan->scanstatus == SUBQUERY_SCAN_NONTRIVIAL)
1458  return false;
1459  Assert(plan->scanstatus == SUBQUERY_SCAN_UNKNOWN);
1460  /* Initially, mark the SubqueryScan as non-deletable from the plan tree */
1461  plan->scanstatus = SUBQUERY_SCAN_NONTRIVIAL;
1462 
1463  if (plan->scan.plan.qual != NIL)
1464  return false;
1465 
1466  if (list_length(plan->scan.plan.targetlist) !=
1467  list_length(plan->subplan->targetlist))
1468  return false; /* tlists not same length */
1469 
1470  attrno = 1;
1471  forboth(lp, plan->scan.plan.targetlist, lc, plan->subplan->targetlist)
1472  {
1473  TargetEntry *ptle = (TargetEntry *) lfirst(lp);
1474  TargetEntry *ctle = (TargetEntry *) lfirst(lc);
1475 
1476  if (ptle->resjunk != ctle->resjunk)
1477  return false; /* tlist doesn't match junk status */
1478 
1479  /*
1480  * We accept either a Var referencing the corresponding element of the
1481  * subplan tlist, or a Const equaling the subplan element. See
1482  * generate_setop_tlist() for motivation.
1483  */
1484  if (ptle->expr && IsA(ptle->expr, Var))
1485  {
1486  Var *var = (Var *) ptle->expr;
1487 
1488  Assert(var->varno == plan->scan.scanrelid);
1489  Assert(var->varlevelsup == 0);
1490  if (var->varattno != attrno)
1491  return false; /* out of order */
1492  }
1493  else if (ptle->expr && IsA(ptle->expr, Const))
1494  {
1495  if (!equal(ptle->expr, ctle->expr))
1496  return false;
1497  }
1498  else
1499  return false;
1500 
1501  attrno++;
1502  }
1503 
1504  /* Re-mark the SubqueryScan as deletable from the plan tree */
1505  plan->scanstatus = SUBQUERY_SCAN_TRIVIAL;
1506 
1507  return true;
1508 }
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
@ SUBQUERY_SCAN_NONTRIVIAL
Definition: plannodes.h:593
@ SUBQUERY_SCAN_UNKNOWN
Definition: plannodes.h:591
@ SUBQUERY_SCAN_TRIVIAL
Definition: plannodes.h:592
Index varlevelsup
Definition: primnodes.h:266

References Assert(), equal(), TargetEntry::expr, forboth, IsA, lfirst, list_length(), NIL, plan, SUBQUERY_SCAN_NONTRIVIAL, SUBQUERY_SCAN_TRIVIAL, SUBQUERY_SCAN_UNKNOWN, Var::varattno, Var::varlevelsup, and Var::varno.

Referenced by mark_async_capable_plan(), and set_subqueryscan_references().

Variable Documentation

◆ cursor_tuple_fraction

PGDLLIMPORT double cursor_tuple_fraction
extern

Definition at line 65 of file planner.c.

Referenced by standard_planner().

◆ enable_self_join_removal

PGDLLIMPORT bool enable_self_join_removal
extern

Definition at line 44 of file analyzejoins.c.

Referenced by remove_useless_self_joins().

◆ from_collapse_limit

PGDLLIMPORT int from_collapse_limit
extern

Definition at line 37 of file initsplan.c.

Referenced by deconstruct_recurse().

◆ join_collapse_limit

PGDLLIMPORT int join_collapse_limit
extern

Definition at line 38 of file initsplan.c.

Referenced by deconstruct_recurse().