PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
planmain.h File Reference
#include "nodes/pathnodes.h"
#include "nodes/plannodes.h"
Include dependency graph for planmain.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Macros

#define DEFAULT_CURSOR_TUPLE_FRACTION   0.1
 

Typedefs

typedef void(* query_pathkeys_callback) (PlannerInfo *root, void *extra)
 

Functions

RelOptInfoquery_planner (PlannerInfo *root, query_pathkeys_callback qp_callback, void *qp_extra)
 
void preprocess_minmax_aggregates (PlannerInfo *root)
 
Plancreate_plan (PlannerInfo *root, Path *best_path)
 
ForeignScanmake_foreignscan (List *qptlist, List *qpqual, Index scanrelid, List *fdw_exprs, List *fdw_private, List *fdw_scan_tlist, List *fdw_recheck_quals, Plan *outer_plan)
 
Planchange_plan_targetlist (Plan *subplan, List *tlist, bool tlist_parallel_safe)
 
Planmaterialize_finished_plan (Plan *subplan)
 
bool is_projection_capable_path (Path *path)
 
bool is_projection_capable_plan (Plan *plan)
 
Sortmake_sort_from_sortclauses (List *sortcls, Plan *lefttree)
 
Aggmake_agg (List *tlist, List *qual, AggStrategy aggstrategy, AggSplit aggsplit, int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations, List *groupingSets, List *chain, double dNumGroups, Size transitionSpace, Plan *lefttree)
 
Limitmake_limit (Plan *lefttree, Node *limitOffset, Node *limitCount, LimitOption limitOption, int uniqNumCols, AttrNumber *uniqColIdx, Oid *uniqOperators, Oid *uniqCollations)
 
void add_base_rels_to_query (PlannerInfo *root, Node *jtnode)
 
void add_other_rels_to_query (PlannerInfo *root)
 
void build_base_rel_tlists (PlannerInfo *root, List *final_tlist)
 
void add_vars_to_targetlist (PlannerInfo *root, List *vars, Relids where_needed)
 
void add_vars_to_attr_needed (PlannerInfo *root, List *vars, Relids where_needed)
 
void remove_useless_groupby_columns (PlannerInfo *root)
 
void find_lateral_references (PlannerInfo *root)
 
void rebuild_lateral_attr_needed (PlannerInfo *root)
 
void create_lateral_join_info (PlannerInfo *root)
 
Listdeconstruct_jointree (PlannerInfo *root)
 
bool restriction_is_always_true (PlannerInfo *root, RestrictInfo *restrictinfo)
 
bool restriction_is_always_false (PlannerInfo *root, RestrictInfo *restrictinfo)
 
void distribute_restrictinfo_to_rels (PlannerInfo *root, RestrictInfo *restrictinfo)
 
RestrictInfoprocess_implied_equality (PlannerInfo *root, Oid opno, Oid collation, Expr *item1, Expr *item2, Relids qualscope, Index security_level, bool both_const)
 
RestrictInfobuild_implied_join_equality (PlannerInfo *root, Oid opno, Oid collation, Expr *item1, Expr *item2, Relids qualscope, Index security_level)
 
void rebuild_joinclause_attr_needed (PlannerInfo *root)
 
void match_foreign_keys_to_quals (PlannerInfo *root)
 
Listremove_useless_joins (PlannerInfo *root, List *joinlist)
 
void reduce_unique_semijoins (PlannerInfo *root)
 
bool query_supports_distinctness (Query *query)
 
bool query_is_distinct_for (Query *query, List *colnos, List *opids)
 
bool innerrel_is_unique (PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist, bool force_cache)
 
Planset_plan_references (PlannerInfo *root, Plan *plan)
 
bool trivial_subqueryscan (SubqueryScan *plan)
 
Paramfind_minmax_agg_replacement_param (PlannerInfo *root, Aggref *aggref)
 
void record_plan_function_dependency (PlannerInfo *root, Oid funcid)
 
void record_plan_type_dependency (PlannerInfo *root, Oid typid)
 
bool extract_query_dependencies_walker (Node *node, PlannerInfo *context)
 

Variables

PGDLLIMPORT double cursor_tuple_fraction
 
PGDLLIMPORT int from_collapse_limit
 
PGDLLIMPORT int join_collapse_limit
 

Macro Definition Documentation

◆ DEFAULT_CURSOR_TUPLE_FRACTION

#define DEFAULT_CURSOR_TUPLE_FRACTION   0.1

Definition at line 21 of file planmain.h.

Typedef Documentation

◆ query_pathkeys_callback

typedef void(* query_pathkeys_callback) (PlannerInfo *root, void *extra)

Definition at line 25 of file planmain.h.

Function Documentation

◆ add_base_rels_to_query()

void add_base_rels_to_query ( PlannerInfo root,
Node jtnode 
)

Definition at line 158 of file initsplan.c.

159{
160 if (jtnode == NULL)
161 return;
162 if (IsA(jtnode, RangeTblRef))
163 {
164 int varno = ((RangeTblRef *) jtnode)->rtindex;
165
166 (void) build_simple_rel(root, varno, NULL);
167 }
168 else if (IsA(jtnode, FromExpr))
169 {
170 FromExpr *f = (FromExpr *) jtnode;
171 ListCell *l;
172
173 foreach(l, f->fromlist)
175 }
176 else if (IsA(jtnode, JoinExpr))
177 {
178 JoinExpr *j = (JoinExpr *) jtnode;
179
182 }
183 else
184 elog(ERROR, "unrecognized node type: %d",
185 (int) nodeTag(jtnode));
186}
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
void add_base_rels_to_query(PlannerInfo *root, Node *jtnode)
Definition: initsplan.c:158
int j
Definition: isn.c:73
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define nodeTag(nodeptr)
Definition: nodes.h:133
#define lfirst(lc)
Definition: pg_list.h:172
tree ctl root
Definition: radixtree.h:1857
RelOptInfo * build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent)
Definition: relnode.c:192
List * fromlist
Definition: primnodes.h:2308

References add_base_rels_to_query(), build_simple_rel(), elog, ERROR, FromExpr::fromlist, IsA, j, JoinTreeItem::jtnode, lfirst, nodeTag, and root.

Referenced by add_base_rels_to_query(), and query_planner().

◆ add_other_rels_to_query()

void add_other_rels_to_query ( PlannerInfo root)

Definition at line 196 of file initsplan.c.

197{
198 int rti;
199
200 for (rti = 1; rti < root->simple_rel_array_size; rti++)
201 {
202 RelOptInfo *rel = root->simple_rel_array[rti];
203 RangeTblEntry *rte = root->simple_rte_array[rti];
204
205 /* there may be empty slots corresponding to non-baserel RTEs */
206 if (rel == NULL)
207 continue;
208
209 /* Ignore any "otherrels" that were already added. */
210 if (rel->reloptkind != RELOPT_BASEREL)
211 continue;
212
213 /* If it's marked as inheritable, look for children. */
214 if (rte->inh)
215 expand_inherited_rtentry(root, rel, rte, rti);
216 }
217}
void expand_inherited_rtentry(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte, Index rti)
Definition: inherit.c:86
@ RELOPT_BASEREL
Definition: pathnodes.h:827
RelOptKind reloptkind
Definition: pathnodes.h:865

References expand_inherited_rtentry(), RangeTblEntry::inh, RELOPT_BASEREL, RelOptInfo::reloptkind, and root.

Referenced by query_planner().

◆ add_vars_to_attr_needed()

void add_vars_to_attr_needed ( PlannerInfo root,
List vars,
Relids  where_needed 
)

Definition at line 353 of file initsplan.c.

355{
356 ListCell *temp;
357
358 Assert(!bms_is_empty(where_needed));
359
360 foreach(temp, vars)
361 {
362 Node *node = (Node *) lfirst(temp);
363
364 if (IsA(node, Var))
365 {
366 Var *var = (Var *) node;
367 RelOptInfo *rel = find_base_rel(root, var->varno);
368 int attno = var->varattno;
369
370 if (bms_is_subset(where_needed, rel->relids))
371 continue;
372 Assert(attno >= rel->min_attr && attno <= rel->max_attr);
373 attno -= rel->min_attr;
374 rel->attr_needed[attno] = bms_add_members(rel->attr_needed[attno],
375 where_needed);
376 }
377 else if (IsA(node, PlaceHolderVar))
378 {
379 PlaceHolderVar *phv = (PlaceHolderVar *) node;
381
382 phinfo->ph_needed = bms_add_members(phinfo->ph_needed,
383 where_needed);
384 }
385 else
386 elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
387 }
388}
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
#define bms_is_empty(a)
Definition: bitmapset.h:118
#define Assert(condition)
Definition: c.h:812
PlaceHolderInfo * find_placeholder_info(PlannerInfo *root, PlaceHolderVar *phv)
Definition: placeholder.c:83
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:414
Definition: nodes.h:129
Relids ph_needed
Definition: pathnodes.h:3105
Relids relids
Definition: pathnodes.h:871
AttrNumber min_attr
Definition: pathnodes.h:924
Definition: primnodes.h:248
AttrNumber varattno
Definition: primnodes.h:260
int varno
Definition: primnodes.h:255
Definition: regcomp.c:282

References Assert, bms_add_members(), bms_is_empty, bms_is_subset(), elog, ERROR, find_base_rel(), find_placeholder_info(), IsA, lfirst, RelOptInfo::min_attr, nodeTag, PlaceHolderInfo::ph_needed, RelOptInfo::relids, root, Var::varattno, and Var::varno.

Referenced by rebuild_eclass_attr_needed(), rebuild_joinclause_attr_needed(), rebuild_lateral_attr_needed(), and rebuild_placeholder_attr_needed().

◆ add_vars_to_targetlist()

void add_vars_to_targetlist ( PlannerInfo root,
List vars,
Relids  where_needed 
)

Definition at line 282 of file initsplan.c.

284{
285 ListCell *temp;
286
287 Assert(!bms_is_empty(where_needed));
288
289 foreach(temp, vars)
290 {
291 Node *node = (Node *) lfirst(temp);
292
293 if (IsA(node, Var))
294 {
295 Var *var = (Var *) node;
296 RelOptInfo *rel = find_base_rel(root, var->varno);
297 int attno = var->varattno;
298
299 if (bms_is_subset(where_needed, rel->relids))
300 continue;
301 Assert(attno >= rel->min_attr && attno <= rel->max_attr);
302 attno -= rel->min_attr;
303 if (rel->attr_needed[attno] == NULL)
304 {
305 /*
306 * Variable not yet requested, so add to rel's targetlist.
307 *
308 * The value available at the rel's scan level has not been
309 * nulled by any outer join, so drop its varnullingrels.
310 * (We'll put those back as we climb up the join tree.)
311 */
312 var = copyObject(var);
313 var->varnullingrels = NULL;
314 rel->reltarget->exprs = lappend(rel->reltarget->exprs, var);
315 /* reltarget cost and width will be computed later */
316 }
317 rel->attr_needed[attno] = bms_add_members(rel->attr_needed[attno],
318 where_needed);
319 }
320 else if (IsA(node, PlaceHolderVar))
321 {
322 PlaceHolderVar *phv = (PlaceHolderVar *) node;
324
325 phinfo->ph_needed = bms_add_members(phinfo->ph_needed,
326 where_needed);
327 }
328 else
329 elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
330 }
331}
List * lappend(List *list, void *datum)
Definition: list.c:339
#define copyObject(obj)
Definition: nodes.h:224
List * exprs
Definition: pathnodes.h:1544
struct PathTarget * reltarget
Definition: pathnodes.h:893

References Assert, bms_add_members(), bms_is_empty, bms_is_subset(), copyObject, elog, ERROR, PathTarget::exprs, find_base_rel(), find_placeholder_info(), IsA, lappend(), lfirst, RelOptInfo::min_attr, nodeTag, PlaceHolderInfo::ph_needed, RelOptInfo::relids, RelOptInfo::reltarget, root, Var::varattno, and Var::varno.

Referenced by build_base_rel_tlists(), distribute_qual_to_rels(), expand_inherited_rtentry(), extract_lateral_references(), fix_placeholder_input_needed_levels(), generate_base_implied_equalities_no_const(), and process_implied_equality().

◆ build_base_rel_tlists()

void build_base_rel_tlists ( PlannerInfo root,
List final_tlist 
)

Definition at line 235 of file initsplan.c.

236{
237 List *tlist_vars = pull_var_clause((Node *) final_tlist,
241
242 if (tlist_vars != NIL)
243 {
245 list_free(tlist_vars);
246 }
247
248 /*
249 * If there's a HAVING clause, we'll need the Vars it uses, too. Note
250 * that HAVING can contain Aggrefs but not WindowFuncs.
251 */
252 if (root->parse->havingQual)
253 {
254 List *having_vars = pull_var_clause(root->parse->havingQual,
257
258 if (having_vars != NIL)
259 {
260 add_vars_to_targetlist(root, having_vars,
262 list_free(having_vars);
263 }
264 }
265}
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
void add_vars_to_targetlist(PlannerInfo *root, List *vars, Relids where_needed)
Definition: initsplan.c:282
void list_free(List *list)
Definition: list.c:1546
#define PVC_RECURSE_AGGREGATES
Definition: optimizer.h:188
#define PVC_RECURSE_WINDOWFUNCS
Definition: optimizer.h:190
#define PVC_INCLUDE_PLACEHOLDERS
Definition: optimizer.h:191
#define NIL
Definition: pg_list.h:68
Definition: pg_list.h:54
List * pull_var_clause(Node *node, int flags)
Definition: var.c:609

References add_vars_to_targetlist(), bms_make_singleton(), list_free(), NIL, pull_var_clause(), PVC_INCLUDE_PLACEHOLDERS, PVC_RECURSE_AGGREGATES, PVC_RECURSE_WINDOWFUNCS, and root.

Referenced by distribute_row_identity_vars(), and query_planner().

◆ build_implied_join_equality()

RestrictInfo * build_implied_join_equality ( PlannerInfo root,
Oid  opno,
Oid  collation,
Expr item1,
Expr item2,
Relids  qualscope,
Index  security_level 
)

Definition at line 3424 of file initsplan.c.

3431{
3432 RestrictInfo *restrictinfo;
3433 Expr *clause;
3434
3435 /*
3436 * Build the new clause. Copy to ensure it shares no substructure with
3437 * original (this is necessary in case there are subselects in there...)
3438 */
3439 clause = make_opclause(opno,
3440 BOOLOID, /* opresulttype */
3441 false, /* opretset */
3442 copyObject(item1),
3443 copyObject(item2),
3444 InvalidOid,
3445 collation);
3446
3447 /*
3448 * Build the RestrictInfo node itself.
3449 */
3450 restrictinfo = make_restrictinfo(root,
3451 clause,
3452 true, /* is_pushed_down */
3453 false, /* !has_clone */
3454 false, /* !is_clone */
3455 false, /* pseudoconstant */
3456 security_level, /* security_level */
3457 qualscope, /* required_relids */
3458 NULL, /* incompatible_relids */
3459 NULL); /* outer_relids */
3460
3461 /* Set mergejoinability/hashjoinability flags */
3462 check_mergejoinable(restrictinfo);
3463 check_hashjoinable(restrictinfo);
3464 check_memoizable(restrictinfo);
3465
3466 return restrictinfo;
3467}
static void check_hashjoinable(RestrictInfo *restrictinfo)
Definition: initsplan.c:3801
static void check_mergejoinable(RestrictInfo *restrictinfo)
Definition: initsplan.c:3764
static void check_memoizable(RestrictInfo *restrictinfo)
Definition: initsplan.c:3829
Expr * make_opclause(Oid opno, Oid opresulttype, bool opretset, Expr *leftop, Expr *rightop, Oid opcollid, Oid inputcollid)
Definition: makefuncs.c:651
#define InvalidOid
Definition: postgres_ext.h:36
RestrictInfo * make_restrictinfo(PlannerInfo *root, Expr *clause, bool is_pushed_down, bool has_clone, bool is_clone, bool pseudoconstant, Index security_level, Relids required_relids, Relids incompatible_relids, Relids outer_relids)
Definition: restrictinfo.c:52

References check_hashjoinable(), check_memoizable(), check_mergejoinable(), copyObject, InvalidOid, make_opclause(), make_restrictinfo(), JoinTreeItem::qualscope, and root.

Referenced by create_join_clause(), reconsider_full_join_clause(), and reconsider_outer_join_clause().

◆ change_plan_targetlist()

Plan * change_plan_targetlist ( Plan subplan,
List tlist,
bool  tlist_parallel_safe 
)

Definition at line 2151 of file createplan.c.

2152{
2153 /*
2154 * If the top plan node can't do projections and its existing target list
2155 * isn't already what we need, we need to add a Result node to help it
2156 * along.
2157 */
2158 if (!is_projection_capable_plan(subplan) &&
2159 !tlist_same_exprs(tlist, subplan->targetlist))
2160 subplan = inject_projection_plan(subplan, tlist,
2161 subplan->parallel_safe &&
2162 tlist_parallel_safe);
2163 else
2164 {
2165 /* Else we can just replace the plan node's tlist */
2166 subplan->targetlist = tlist;
2167 subplan->parallel_safe &= tlist_parallel_safe;
2168 }
2169 return subplan;
2170}
bool is_projection_capable_plan(Plan *plan)
Definition: createplan.c:7353
static Plan * inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe)
Definition: createplan.c:2119
bool parallel_safe
Definition: plannodes.h:142
List * targetlist
Definition: plannodes.h:153
bool tlist_same_exprs(List *tlist1, List *tlist2)
Definition: tlist.c:218

References inject_projection_plan(), is_projection_capable_plan(), Plan::parallel_safe, Plan::targetlist, and tlist_same_exprs().

Referenced by create_unique_plan(), and postgresGetForeignPlan().

◆ create_lateral_join_info()

void create_lateral_join_info ( PlannerInfo root)

Definition at line 845 of file initsplan.c.

846{
847 bool found_laterals = false;
848 Index rti;
849 ListCell *lc;
850
851 /* We need do nothing if the query contains no LATERAL RTEs */
852 if (!root->hasLateralRTEs)
853 return;
854
855 /* We'll need to have the ph_eval_at values for PlaceHolderVars */
856 Assert(root->placeholdersFrozen);
857
858 /*
859 * Examine all baserels (the rel array has been set up by now).
860 */
861 for (rti = 1; rti < root->simple_rel_array_size; rti++)
862 {
863 RelOptInfo *brel = root->simple_rel_array[rti];
864 Relids lateral_relids;
865
866 /* there may be empty slots corresponding to non-baserel RTEs */
867 if (brel == NULL)
868 continue;
869
870 Assert(brel->relid == rti); /* sanity check on array */
871
872 /* ignore RTEs that are "other rels" */
873 if (brel->reloptkind != RELOPT_BASEREL)
874 continue;
875
876 lateral_relids = NULL;
877
878 /* consider each laterally-referenced Var or PHV */
879 foreach(lc, brel->lateral_vars)
880 {
881 Node *node = (Node *) lfirst(lc);
882
883 if (IsA(node, Var))
884 {
885 Var *var = (Var *) node;
886
887 found_laterals = true;
888 lateral_relids = bms_add_member(lateral_relids,
889 var->varno);
890 }
891 else if (IsA(node, PlaceHolderVar))
892 {
893 PlaceHolderVar *phv = (PlaceHolderVar *) node;
895
896 found_laterals = true;
897 lateral_relids = bms_add_members(lateral_relids,
898 phinfo->ph_eval_at);
899 }
900 else
901 Assert(false);
902 }
903
904 /* We now have all the simple lateral refs from this rel */
905 brel->direct_lateral_relids = lateral_relids;
906 brel->lateral_relids = bms_copy(lateral_relids);
907 }
908
909 /*
910 * Now check for lateral references within PlaceHolderVars, and mark their
911 * eval_at rels as having lateral references to the source rels.
912 *
913 * For a PHV that is due to be evaluated at a baserel, mark its source(s)
914 * as direct lateral dependencies of the baserel (adding onto the ones
915 * recorded above). If it's due to be evaluated at a join, mark its
916 * source(s) as indirect lateral dependencies of each baserel in the join,
917 * ie put them into lateral_relids but not direct_lateral_relids. This is
918 * appropriate because we can't put any such baserel on the outside of a
919 * join to one of the PHV's lateral dependencies, but on the other hand we
920 * also can't yet join it directly to the dependency.
921 */
922 foreach(lc, root->placeholder_list)
923 {
924 PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
925 Relids eval_at = phinfo->ph_eval_at;
926 Relids lateral_refs;
927 int varno;
928
929 if (phinfo->ph_lateral == NULL)
930 continue; /* PHV is uninteresting if no lateral refs */
931
932 found_laterals = true;
933
934 /*
935 * Include only baserels not outer joins in the evaluation sites'
936 * lateral relids. This avoids problems when outer join order gets
937 * rearranged, and it should still ensure that the lateral values are
938 * available when needed.
939 */
940 lateral_refs = bms_intersect(phinfo->ph_lateral, root->all_baserels);
941 Assert(!bms_is_empty(lateral_refs));
942
943 if (bms_get_singleton_member(eval_at, &varno))
944 {
945 /* Evaluation site is a baserel */
946 RelOptInfo *brel = find_base_rel(root, varno);
947
950 lateral_refs);
951 brel->lateral_relids =
953 lateral_refs);
954 }
955 else
956 {
957 /* Evaluation site is a join */
958 varno = -1;
959 while ((varno = bms_next_member(eval_at, varno)) >= 0)
960 {
962
963 if (brel == NULL)
964 continue; /* ignore outer joins in eval_at */
966 lateral_refs);
967 }
968 }
969 }
970
971 /*
972 * If we found no actual lateral references, we're done; but reset the
973 * hasLateralRTEs flag to avoid useless work later.
974 */
975 if (!found_laterals)
976 {
977 root->hasLateralRTEs = false;
978 return;
979 }
980
981 /*
982 * Calculate the transitive closure of the lateral_relids sets, so that
983 * they describe both direct and indirect lateral references. If relation
984 * X references Y laterally, and Y references Z laterally, then we will
985 * have to scan X on the inside of a nestloop with Z, so for all intents
986 * and purposes X is laterally dependent on Z too.
987 *
988 * This code is essentially Warshall's algorithm for transitive closure.
989 * The outer loop considers each baserel, and propagates its lateral
990 * dependencies to those baserels that have a lateral dependency on it.
991 */
992 for (rti = 1; rti < root->simple_rel_array_size; rti++)
993 {
994 RelOptInfo *brel = root->simple_rel_array[rti];
995 Relids outer_lateral_relids;
996 Index rti2;
997
998 if (brel == NULL || brel->reloptkind != RELOPT_BASEREL)
999 continue;
1000
1001 /* need not consider baserel further if it has no lateral refs */
1002 outer_lateral_relids = brel->lateral_relids;
1003 if (outer_lateral_relids == NULL)
1004 continue;
1005
1006 /* else scan all baserels */
1007 for (rti2 = 1; rti2 < root->simple_rel_array_size; rti2++)
1008 {
1009 RelOptInfo *brel2 = root->simple_rel_array[rti2];
1010
1011 if (brel2 == NULL || brel2->reloptkind != RELOPT_BASEREL)
1012 continue;
1013
1014 /* if brel2 has lateral ref to brel, propagate brel's refs */
1015 if (bms_is_member(rti, brel2->lateral_relids))
1017 outer_lateral_relids);
1018 }
1019 }
1020
1021 /*
1022 * Now that we've identified all lateral references, mark each baserel
1023 * with the set of relids of rels that reference it laterally (possibly
1024 * indirectly) --- that is, the inverse mapping of lateral_relids.
1025 */
1026 for (rti = 1; rti < root->simple_rel_array_size; rti++)
1027 {
1028 RelOptInfo *brel = root->simple_rel_array[rti];
1029 Relids lateral_relids;
1030 int rti2;
1031
1032 if (brel == NULL || brel->reloptkind != RELOPT_BASEREL)
1033 continue;
1034
1035 /* Nothing to do at rels with no lateral refs */
1036 lateral_relids = brel->lateral_relids;
1037 if (bms_is_empty(lateral_relids))
1038 continue;
1039
1040 /* No rel should have a lateral dependency on itself */
1041 Assert(!bms_is_member(rti, lateral_relids));
1042
1043 /* Mark this rel's referencees */
1044 rti2 = -1;
1045 while ((rti2 = bms_next_member(lateral_relids, rti2)) >= 0)
1046 {
1047 RelOptInfo *brel2 = root->simple_rel_array[rti2];
1048
1049 if (brel2 == NULL)
1050 continue; /* must be an OJ */
1051
1052 Assert(brel2->reloptkind == RELOPT_BASEREL);
1053 brel2->lateral_referencers =
1055 }
1056 }
1057}
Bitmapset * bms_intersect(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:292
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1306
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
bool bms_get_singleton_member(const Bitmapset *a, int *member)
Definition: bitmapset.c:715
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
unsigned int Index
Definition: c.h:568
RelOptInfo * find_base_rel_ignore_join(PlannerInfo *root, int relid)
Definition: relnode.c:454
Relids ph_lateral
Definition: pathnodes.h:3102
Relids ph_eval_at
Definition: pathnodes.h:3099
Index relid
Definition: pathnodes.h:918
List * lateral_vars
Definition: pathnodes.h:940
Relids lateral_relids
Definition: pathnodes.h:913
Relids lateral_referencers
Definition: pathnodes.h:942
Relids direct_lateral_relids
Definition: pathnodes.h:911

References Assert, bms_add_member(), bms_add_members(), bms_copy(), bms_get_singleton_member(), bms_intersect(), bms_is_empty, bms_is_member(), bms_next_member(), RelOptInfo::direct_lateral_relids, find_base_rel(), find_base_rel_ignore_join(), find_placeholder_info(), IsA, RelOptInfo::lateral_referencers, RelOptInfo::lateral_relids, RelOptInfo::lateral_vars, lfirst, PlaceHolderInfo::ph_eval_at, PlaceHolderInfo::ph_lateral, RelOptInfo::relid, RELOPT_BASEREL, RelOptInfo::reloptkind, root, and Var::varno.

Referenced by query_planner().

◆ create_plan()

Plan * create_plan ( PlannerInfo root,
Path best_path 
)

Definition at line 340 of file createplan.c.

341{
342 Plan *plan;
343
344 /* plan_params should not be in use in current query level */
345 Assert(root->plan_params == NIL);
346
347 /* Initialize this module's workspace in PlannerInfo */
348 root->curOuterRels = NULL;
349 root->curOuterParams = NIL;
350
351 /* Recursively process the path tree, demanding the correct tlist result */
353
354 /*
355 * Make sure the topmost plan node's targetlist exposes the original
356 * column names and other decorative info. Targetlists generated within
357 * the planner don't bother with that stuff, but we must have it on the
358 * top-level tlist seen at execution time. However, ModifyTable plan
359 * nodes don't have a tlist matching the querytree targetlist.
360 */
361 if (!IsA(plan, ModifyTable))
362 apply_tlist_labeling(plan->targetlist, root->processed_tlist);
363
364 /*
365 * Attach any initPlans created in this query level to the topmost plan
366 * node. (In principle the initplans could go in any plan node at or
367 * above where they're referenced, but there seems no reason to put them
368 * any lower than the topmost node for the query level. Also, see
369 * comments for SS_finalize_plan before you try to change this.)
370 */
372
373 /* Check we successfully assigned all NestLoopParams to plan nodes */
374 if (root->curOuterParams != NIL)
375 elog(ERROR, "failed to assign all NestLoopParams to plan nodes");
376
377 /*
378 * Reset plan_params to ensure param IDs used for nestloop params are not
379 * re-used later
380 */
381 root->plan_params = NIL;
382
383 return plan;
384}
static Plan * create_plan_recurse(PlannerInfo *root, Path *best_path, int flags)
Definition: createplan.c:391
#define CP_EXACT_TLIST
Definition: createplan.c:70
#define plan(x)
Definition: pg_regress.c:161
void SS_attach_initplans(PlannerInfo *root, Plan *plan)
Definition: subselect.c:2258
void apply_tlist_labeling(List *dest_tlist, List *src_tlist)
Definition: tlist.c:318

References apply_tlist_labeling(), Assert, CP_EXACT_TLIST, create_plan_recurse(), elog, ERROR, IsA, NIL, plan, root, and SS_attach_initplans().

Referenced by create_minmaxagg_plan(), create_subqueryscan_plan(), make_subplan(), SS_process_ctes(), and standard_planner().

◆ deconstruct_jointree()

List * deconstruct_jointree ( PlannerInfo root)

Definition at line 1084 of file initsplan.c.

1085{
1086 List *result;
1087 JoinDomain *top_jdomain;
1088 List *item_list = NIL;
1089 ListCell *lc;
1090
1091 /*
1092 * After this point, no more PlaceHolderInfos may be made, because
1093 * make_outerjoininfo requires all active placeholders to be present in
1094 * root->placeholder_list while we crawl up the join tree.
1095 */
1096 root->placeholdersFrozen = true;
1097
1098 /* Fetch the already-created top-level join domain for the query */
1099 top_jdomain = linitial_node(JoinDomain, root->join_domains);
1100 top_jdomain->jd_relids = NULL; /* filled during deconstruct_recurse */
1101
1102 /* Start recursion at top of jointree */
1103 Assert(root->parse->jointree != NULL &&
1104 IsA(root->parse->jointree, FromExpr));
1105
1106 /* These are filled as we scan the jointree */
1107 root->all_baserels = NULL;
1108 root->outer_join_rels = NULL;
1109
1110 /* Perform the initial scan of the jointree */
1111 result = deconstruct_recurse(root, (Node *) root->parse->jointree,
1112 top_jdomain, NULL,
1113 &item_list);
1114
1115 /* Now we can form the value of all_query_rels, too */
1116 root->all_query_rels = bms_union(root->all_baserels, root->outer_join_rels);
1117
1118 /* ... which should match what we computed for the top join domain */
1119 Assert(bms_equal(root->all_query_rels, top_jdomain->jd_relids));
1120
1121 /* Now scan all the jointree nodes again, and distribute quals */
1122 foreach(lc, item_list)
1123 {
1124 JoinTreeItem *jtitem = (JoinTreeItem *) lfirst(lc);
1125
1127 }
1128
1129 /*
1130 * If there were any special joins then we may have some postponed LEFT
1131 * JOIN clauses to deal with.
1132 */
1133 if (root->join_info_list)
1134 {
1135 foreach(lc, item_list)
1136 {
1137 JoinTreeItem *jtitem = (JoinTreeItem *) lfirst(lc);
1138
1139 if (jtitem->oj_joinclauses != NIL)
1140 deconstruct_distribute_oj_quals(root, item_list, jtitem);
1141 }
1142 }
1143
1144 /* Don't need the JoinTreeItems any more */
1145 list_free_deep(item_list);
1146
1147 return result;
1148}
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
static List * deconstruct_recurse(PlannerInfo *root, Node *jtnode, JoinDomain *parent_domain, JoinTreeItem *parent_jtitem, List **item_list)
Definition: initsplan.c:1166
static void deconstruct_distribute_oj_quals(PlannerInfo *root, List *jtitems, JoinTreeItem *jtitem)
Definition: initsplan.c:2226
static void deconstruct_distribute(PlannerInfo *root, JoinTreeItem *jtitem)
Definition: initsplan.c:1464
void list_free_deep(List *list)
Definition: list.c:1560
#define linitial_node(type, l)
Definition: pg_list.h:181
Relids jd_relids
Definition: pathnodes.h:1332
List * oj_joinclauses
Definition: initsplan.c:78

References Assert, bms_equal(), bms_union(), deconstruct_distribute(), deconstruct_distribute_oj_quals(), deconstruct_recurse(), IsA, JoinDomain::jd_relids, lfirst, linitial_node, list_free_deep(), NIL, JoinTreeItem::oj_joinclauses, and root.

Referenced by query_planner().

◆ distribute_restrictinfo_to_rels()

void distribute_restrictinfo_to_rels ( PlannerInfo root,
RestrictInfo restrictinfo 
)

Definition at line 3195 of file initsplan.c.

3197{
3198 Relids relids = restrictinfo->required_relids;
3199
3200 if (!bms_is_empty(relids))
3201 {
3202 int relid;
3203
3204 if (bms_get_singleton_member(relids, &relid))
3205 {
3206 /*
3207 * There is only one relation participating in the clause, so it
3208 * is a restriction clause for that relation.
3209 */
3210 add_base_clause_to_rel(root, relid, restrictinfo);
3211 }
3212 else
3213 {
3214 /*
3215 * The clause is a join clause, since there is more than one rel
3216 * in its relid set.
3217 */
3218
3219 /*
3220 * Check for hashjoinable operators. (We don't bother setting the
3221 * hashjoin info except in true join clauses.)
3222 */
3223 check_hashjoinable(restrictinfo);
3224
3225 /*
3226 * Likewise, check if the clause is suitable to be used with a
3227 * Memoize node to cache inner tuples during a parameterized
3228 * nested loop.
3229 */
3230 check_memoizable(restrictinfo);
3231
3232 /*
3233 * Add clause to the join lists of all the relevant relations.
3234 */
3235 add_join_clause_to_rels(root, restrictinfo, relids);
3236 }
3237 }
3238 else
3239 {
3240 /*
3241 * clause references no rels, and therefore we have no place to attach
3242 * it. Shouldn't get here if callers are working properly.
3243 */
3244 elog(ERROR, "cannot cope with variable-free clause");
3245 }
3246}
static void add_base_clause_to_rel(PlannerInfo *root, Index relid, RestrictInfo *restrictinfo)
Definition: initsplan.c:2980
void add_join_clause_to_rels(PlannerInfo *root, RestrictInfo *restrictinfo, Relids join_relids)
Definition: joininfo.c:98
Relids required_relids
Definition: pathnodes.h:2606

References add_base_clause_to_rel(), add_join_clause_to_rels(), bms_get_singleton_member(), bms_is_empty, check_hashjoinable(), check_memoizable(), elog, ERROR, RestrictInfo::required_relids, and root.

Referenced by distribute_qual_to_rels(), generate_base_implied_equalities_broken(), generate_base_implied_equalities_const(), process_implied_equality(), reconsider_outer_join_clauses(), and remove_rel_from_query().

◆ extract_query_dependencies_walker()

bool extract_query_dependencies_walker ( Node node,
PlannerInfo context 
)

Definition at line 3593 of file setrefs.c.

3594{
3595 if (node == NULL)
3596 return false;
3597 Assert(!IsA(node, PlaceHolderVar));
3598 if (IsA(node, Query))
3599 {
3600 Query *query = (Query *) node;
3601 ListCell *lc;
3602
3603 if (query->commandType == CMD_UTILITY)
3604 {
3605 /*
3606 * This logic must handle any utility command for which parse
3607 * analysis was nontrivial (cf. stmt_requires_parse_analysis).
3608 *
3609 * Notably, CALL requires its own processing.
3610 */
3611 if (IsA(query->utilityStmt, CallStmt))
3612 {
3613 CallStmt *callstmt = (CallStmt *) query->utilityStmt;
3614
3615 /* We need not examine funccall, just the transformed exprs */
3616 (void) extract_query_dependencies_walker((Node *) callstmt->funcexpr,
3617 context);
3618 (void) extract_query_dependencies_walker((Node *) callstmt->outargs,
3619 context);
3620 return false;
3621 }
3622
3623 /*
3624 * Ignore other utility statements, except those (such as EXPLAIN)
3625 * that contain a parsed-but-not-planned query. For those, we
3626 * just need to transfer our attention to the contained query.
3627 */
3628 query = UtilityContainsQuery(query->utilityStmt);
3629 if (query == NULL)
3630 return false;
3631 }
3632
3633 /* Remember if any Query has RLS quals applied by rewriter */
3634 if (query->hasRowSecurity)
3635 context->glob->dependsOnRole = true;
3636
3637 /* Collect relation OIDs in this Query's rtable */
3638 foreach(lc, query->rtable)
3639 {
3640 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
3641
3642 if (rte->rtekind == RTE_RELATION ||
3643 (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)) ||
3644 (rte->rtekind == RTE_NAMEDTUPLESTORE && OidIsValid(rte->relid)))
3645 context->glob->relationOids =
3646 lappend_oid(context->glob->relationOids, rte->relid);
3647 }
3648
3649 /* And recurse into the query's subexpressions */
3651 context, 0);
3652 }
3653 /* Extract function dependencies and check for regclass Consts */
3654 fix_expr_common(context, node);
3656 context);
3657}
#define OidIsValid(objectId)
Definition: c.h:729
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
@ CMD_UTILITY
Definition: nodes.h:270
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1024
@ RTE_SUBQUERY
Definition: parsenodes.h:1018
@ RTE_RELATION
Definition: parsenodes.h:1017
static void fix_expr_common(PlannerInfo *root, Node *node)
Definition: setrefs.c:1967
bool extract_query_dependencies_walker(Node *node, PlannerInfo *context)
Definition: setrefs.c:3593
FuncExpr * funcexpr
Definition: parsenodes.h:3536
List * outargs
Definition: parsenodes.h:3538
bool dependsOnRole
Definition: pathnodes.h:153
List * relationOids
Definition: pathnodes.h:132
PlannerGlobal * glob
Definition: pathnodes.h:205
List * rtable
Definition: parsenodes.h:170
CmdType commandType
Definition: parsenodes.h:121
Node * utilityStmt
Definition: parsenodes.h:136
RTEKind rtekind
Definition: parsenodes.h:1047
Query * UtilityContainsQuery(Node *parsetree)
Definition: utility.c:2179

References Assert, CMD_UTILITY, Query::commandType, PlannerGlobal::dependsOnRole, expression_tree_walker, extract_query_dependencies_walker(), fix_expr_common(), CallStmt::funcexpr, PlannerInfo::glob, IsA, lappend_oid(), lfirst, OidIsValid, CallStmt::outargs, query_tree_walker, PlannerGlobal::relationOids, RangeTblEntry::relid, Query::rtable, RTE_NAMEDTUPLESTORE, RTE_RELATION, RTE_SUBQUERY, RangeTblEntry::rtekind, UtilityContainsQuery(), and Query::utilityStmt.

Referenced by expression_planner_with_deps(), extract_query_dependencies(), and extract_query_dependencies_walker().

◆ find_lateral_references()

void find_lateral_references ( PlannerInfo root)

Definition at line 658 of file initsplan.c.

659{
660 Index rti;
661
662 /* We need do nothing if the query contains no LATERAL RTEs */
663 if (!root->hasLateralRTEs)
664 return;
665
666 /*
667 * Examine all baserels (the rel array has been set up by now).
668 */
669 for (rti = 1; rti < root->simple_rel_array_size; rti++)
670 {
671 RelOptInfo *brel = root->simple_rel_array[rti];
672
673 /* there may be empty slots corresponding to non-baserel RTEs */
674 if (brel == NULL)
675 continue;
676
677 Assert(brel->relid == rti); /* sanity check on array */
678
679 /*
680 * This bit is less obvious than it might look. We ignore appendrel
681 * otherrels and consider only their parent baserels. In a case where
682 * a LATERAL-containing UNION ALL subquery was pulled up, it is the
683 * otherrel that is actually going to be in the plan. However, we
684 * want to mark all its lateral references as needed by the parent,
685 * because it is the parent's relid that will be used for join
686 * planning purposes. And the parent's RTE will contain all the
687 * lateral references we need to know, since the pulled-up member is
688 * nothing but a copy of parts of the original RTE's subquery. We
689 * could visit the parent's children instead and transform their
690 * references back to the parent's relid, but it would be much more
691 * complicated for no real gain. (Important here is that the child
692 * members have not yet received any processing beyond being pulled
693 * up.) Similarly, in appendrels created by inheritance expansion,
694 * it's sufficient to look at the parent relation.
695 */
696
697 /* ignore RTEs that are "other rels" */
698 if (brel->reloptkind != RELOPT_BASEREL)
699 continue;
700
702 }
703}
static void extract_lateral_references(PlannerInfo *root, RelOptInfo *brel, Index rtindex)
Definition: initsplan.c:706

References Assert, extract_lateral_references(), RelOptInfo::relid, RELOPT_BASEREL, RelOptInfo::reloptkind, and root.

Referenced by query_planner().

◆ find_minmax_agg_replacement_param()

Param * find_minmax_agg_replacement_param ( PlannerInfo root,
Aggref aggref 
)

Definition at line 3443 of file setrefs.c.

3444{
3445 if (root->minmax_aggs != NIL &&
3446 list_length(aggref->args) == 1)
3447 {
3448 TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args);
3449 ListCell *lc;
3450
3451 foreach(lc, root->minmax_aggs)
3452 {
3453 MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
3454
3455 if (mminfo->aggfnoid == aggref->aggfnoid &&
3456 equal(mminfo->target, curTarget->expr))
3457 return mminfo->param;
3458 }
3459 }
3460 return NULL;
3461}
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
static int list_length(const List *l)
Definition: pg_list.h:152
#define linitial(l)
Definition: pg_list.h:178
Oid aggfnoid
Definition: primnodes.h:444
List * args
Definition: primnodes.h:468
Param * param
Definition: pathnodes.h:3144
Expr * target
Definition: pathnodes.h:3129
Expr * expr
Definition: primnodes.h:2190

References MinMaxAggInfo::aggfnoid, Aggref::aggfnoid, Aggref::args, equal(), TargetEntry::expr, lfirst, linitial, list_length(), NIL, MinMaxAggInfo::param, root, and MinMaxAggInfo::target.

Referenced by finalize_primnode(), fix_scan_expr_mutator(), and fix_upper_expr_mutator().

◆ innerrel_is_unique()

bool innerrel_is_unique ( PlannerInfo root,
Relids  joinrelids,
Relids  outerrelids,
RelOptInfo innerrel,
JoinType  jointype,
List restrictlist,
bool  force_cache 
)

Definition at line 1172 of file analyzejoins.c.

1179{
1180 MemoryContext old_context;
1181 ListCell *lc;
1182
1183 /* Certainly can't prove uniqueness when there are no joinclauses */
1184 if (restrictlist == NIL)
1185 return false;
1186
1187 /*
1188 * Make a quick check to eliminate cases in which we will surely be unable
1189 * to prove uniqueness of the innerrel.
1190 */
1191 if (!rel_supports_distinctness(root, innerrel))
1192 return false;
1193
1194 /*
1195 * Query the cache to see if we've managed to prove that innerrel is
1196 * unique for any subset of this outerrel. We don't need an exact match,
1197 * as extra outerrels can't make the innerrel any less unique (or more
1198 * formally, the restrictlist for a join to a superset outerrel must be a
1199 * superset of the conditions we successfully used before).
1200 */
1201 foreach(lc, innerrel->unique_for_rels)
1202 {
1203 Relids unique_for_rels = (Relids) lfirst(lc);
1204
1205 if (bms_is_subset(unique_for_rels, outerrelids))
1206 return true; /* Success! */
1207 }
1208
1209 /*
1210 * Conversely, we may have already determined that this outerrel, or some
1211 * superset thereof, cannot prove this innerrel to be unique.
1212 */
1213 foreach(lc, innerrel->non_unique_for_rels)
1214 {
1215 Relids unique_for_rels = (Relids) lfirst(lc);
1216
1217 if (bms_is_subset(outerrelids, unique_for_rels))
1218 return false;
1219 }
1220
1221 /* No cached information, so try to make the proof. */
1222 if (is_innerrel_unique_for(root, joinrelids, outerrelids, innerrel,
1223 jointype, restrictlist))
1224 {
1225 /*
1226 * Cache the positive result for future probes, being sure to keep it
1227 * in the planner_cxt even if we are working in GEQO.
1228 *
1229 * Note: one might consider trying to isolate the minimal subset of
1230 * the outerrels that proved the innerrel unique. But it's not worth
1231 * the trouble, because the planner builds up joinrels incrementally
1232 * and so we'll see the minimally sufficient outerrels before any
1233 * supersets of them anyway.
1234 */
1235 old_context = MemoryContextSwitchTo(root->planner_cxt);
1236 innerrel->unique_for_rels = lappend(innerrel->unique_for_rels,
1237 bms_copy(outerrelids));
1238 MemoryContextSwitchTo(old_context);
1239
1240 return true; /* Success! */
1241 }
1242 else
1243 {
1244 /*
1245 * None of the join conditions for outerrel proved innerrel unique, so
1246 * we can safely reject this outerrel or any subset of it in future
1247 * checks.
1248 *
1249 * However, in normal planning mode, caching this knowledge is totally
1250 * pointless; it won't be queried again, because we build up joinrels
1251 * from smaller to larger. It is useful in GEQO mode, where the
1252 * knowledge can be carried across successive planning attempts; and
1253 * it's likely to be useful when using join-search plugins, too. Hence
1254 * cache when join_search_private is non-NULL. (Yeah, that's a hack,
1255 * but it seems reasonable.)
1256 *
1257 * Also, allow callers to override that heuristic and force caching;
1258 * that's useful for reduce_unique_semijoins, which calls here before
1259 * the normal join search starts.
1260 */
1261 if (force_cache || root->join_search_private)
1262 {
1263 old_context = MemoryContextSwitchTo(root->planner_cxt);
1264 innerrel->non_unique_for_rels =
1265 lappend(innerrel->non_unique_for_rels,
1266 bms_copy(outerrelids));
1267 MemoryContextSwitchTo(old_context);
1268 }
1269
1270 return false;
1271 }
1272}
static bool is_innerrel_unique_for(PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist)
static bool rel_supports_distinctness(PlannerInfo *root, RelOptInfo *rel)
Definition: analyzejoins.c:794
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
Bitmapset * Relids
Definition: pathnodes.h:30
List * unique_for_rels
Definition: pathnodes.h:977
List * non_unique_for_rels
Definition: pathnodes.h:979

References bms_copy(), bms_is_subset(), is_innerrel_unique_for(), lappend(), lfirst, MemoryContextSwitchTo(), NIL, RelOptInfo::non_unique_for_rels, rel_supports_distinctness(), root, and RelOptInfo::unique_for_rels.

Referenced by add_paths_to_joinrel(), and reduce_unique_semijoins().

◆ is_projection_capable_path()

bool is_projection_capable_path ( Path path)

Definition at line 7303 of file createplan.c.

7304{
7305 /* Most plan types can project, so just list the ones that can't */
7306 switch (path->pathtype)
7307 {
7308 case T_Hash:
7309 case T_Material:
7310 case T_Memoize:
7311 case T_Sort:
7312 case T_IncrementalSort:
7313 case T_Unique:
7314 case T_SetOp:
7315 case T_LockRows:
7316 case T_Limit:
7317 case T_ModifyTable:
7318 case T_MergeAppend:
7319 case T_RecursiveUnion:
7320 return false;
7321 case T_CustomScan:
7323 return true;
7324 return false;
7325 case T_Append:
7326
7327 /*
7328 * Append can't project, but if an AppendPath is being used to
7329 * represent a dummy path, what will actually be generated is a
7330 * Result which can project.
7331 */
7332 return IS_DUMMY_APPEND(path);
7333 case T_ProjectSet:
7334
7335 /*
7336 * Although ProjectSet certainly projects, say "no" because we
7337 * don't want the planner to randomly replace its tlist with
7338 * something else; the SRFs have to stay at top level. This might
7339 * get relaxed later.
7340 */
7341 return false;
7342 default:
7343 break;
7344 }
7345 return true;
7346}
#define CUSTOMPATH_SUPPORT_PROJECTION
Definition: extensible.h:86
#define castNode(_type_, nodeptr)
Definition: nodes.h:176
#define IS_DUMMY_APPEND(p)
Definition: pathnodes.h:1950
NodeTag pathtype
Definition: pathnodes.h:1637

References castNode, CUSTOMPATH_SUPPORT_PROJECTION, IS_DUMMY_APPEND, and Path::pathtype.

Referenced by add_paths_with_pathkeys_for_rel(), apply_projection_to_path(), create_projection_path(), and create_projection_plan().

◆ is_projection_capable_plan()

bool is_projection_capable_plan ( Plan plan)

Definition at line 7353 of file createplan.c.

7354{
7355 /* Most plan types can project, so just list the ones that can't */
7356 switch (nodeTag(plan))
7357 {
7358 case T_Hash:
7359 case T_Material:
7360 case T_Memoize:
7361 case T_Sort:
7362 case T_Unique:
7363 case T_SetOp:
7364 case T_LockRows:
7365 case T_Limit:
7366 case T_ModifyTable:
7367 case T_Append:
7368 case T_MergeAppend:
7369 case T_RecursiveUnion:
7370 return false;
7371 case T_CustomScan:
7373 return true;
7374 return false;
7375 case T_ProjectSet:
7376
7377 /*
7378 * Although ProjectSet certainly projects, say "no" because we
7379 * don't want the planner to randomly replace its tlist with
7380 * something else; the SRFs have to stay at top level. This might
7381 * get relaxed later.
7382 */
7383 return false;
7384 default:
7385 break;
7386 }
7387 return true;
7388}

References CUSTOMPATH_SUPPORT_PROJECTION, nodeTag, and plan.

Referenced by change_plan_targetlist(), create_projection_plan(), and prepare_sort_from_pathkeys().

◆ make_agg()

Agg * make_agg ( List tlist,
List qual,
AggStrategy  aggstrategy,
AggSplit  aggsplit,
int  numGroupCols,
AttrNumber grpColIdx,
Oid grpOperators,
Oid grpCollations,
List groupingSets,
List chain,
double  dNumGroups,
Size  transitionSpace,
Plan lefttree 
)

Definition at line 6672 of file createplan.c.

6677{
6678 Agg *node = makeNode(Agg);
6679 Plan *plan = &node->plan;
6680 long numGroups;
6681
6682 /* Reduce to long, but 'ware overflow! */
6683 numGroups = clamp_cardinality_to_long(dNumGroups);
6684
6685 node->aggstrategy = aggstrategy;
6686 node->aggsplit = aggsplit;
6687 node->numCols = numGroupCols;
6688 node->grpColIdx = grpColIdx;
6689 node->grpOperators = grpOperators;
6690 node->grpCollations = grpCollations;
6691 node->numGroups = numGroups;
6692 node->transitionSpace = transitionSpace;
6693 node->aggParams = NULL; /* SS_finalize_plan() will fill this */
6694 node->groupingSets = groupingSets;
6695 node->chain = chain;
6696
6697 plan->qual = qual;
6698 plan->targetlist = tlist;
6699 plan->lefttree = lefttree;
6700 plan->righttree = NULL;
6701
6702 return node;
6703}
long clamp_cardinality_to_long(Cardinality x)
Definition: costsize.c:265
#define makeNode(_type_)
Definition: nodes.h:155
Definition: plannodes.h:998
AggSplit aggsplit
Definition: plannodes.h:1005
List * chain
Definition: plannodes.h:1032
long numGroups
Definition: plannodes.h:1018
List * groupingSets
Definition: plannodes.h:1029
Bitmapset * aggParams
Definition: plannodes.h:1024
Plan plan
Definition: plannodes.h:999
int numCols
Definition: plannodes.h:1008
uint64 transitionSpace
Definition: plannodes.h:1021
AggStrategy aggstrategy
Definition: plannodes.h:1002

References Agg::aggParams, Agg::aggsplit, Agg::aggstrategy, Agg::chain, clamp_cardinality_to_long(), Agg::groupingSets, makeNode, Agg::numCols, Agg::numGroups, Agg::plan, plan, and Agg::transitionSpace.

Referenced by create_agg_plan(), create_groupingsets_plan(), and create_unique_plan().

◆ make_foreignscan()

ForeignScan * make_foreignscan ( List qptlist,
List qpqual,
Index  scanrelid,
List fdw_exprs,
List fdw_private,
List fdw_scan_tlist,
List fdw_recheck_quals,
Plan outer_plan 
)

Definition at line 5898 of file createplan.c.

5906{
5908 Plan *plan = &node->scan.plan;
5909
5910 /* cost will be filled in by create_foreignscan_plan */
5911 plan->targetlist = qptlist;
5912 plan->qual = qpqual;
5913 plan->lefttree = outer_plan;
5914 plan->righttree = NULL;
5915 node->scan.scanrelid = scanrelid;
5916
5917 /* these may be overridden by the FDW's PlanDirectModify callback. */
5918 node->operation = CMD_SELECT;
5919 node->resultRelation = 0;
5920
5921 /* checkAsUser, fs_server will be filled in by create_foreignscan_plan */
5922 node->checkAsUser = InvalidOid;
5923 node->fs_server = InvalidOid;
5924 node->fdw_exprs = fdw_exprs;
5925 node->fdw_private = fdw_private;
5926 node->fdw_scan_tlist = fdw_scan_tlist;
5927 node->fdw_recheck_quals = fdw_recheck_quals;
5928 /* fs_relids, fs_base_relids will be filled by create_foreignscan_plan */
5929 node->fs_relids = NULL;
5930 node->fs_base_relids = NULL;
5931 /* fsSystemCol will be filled in by create_foreignscan_plan */
5932 node->fsSystemCol = false;
5933
5934 return node;
5935}
@ CMD_SELECT
Definition: nodes.h:265
Oid checkAsUser
Definition: plannodes.h:713
CmdType operation
Definition: plannodes.h:711
Oid fs_server
Definition: plannodes.h:715
List * fdw_exprs
Definition: plannodes.h:716
bool fsSystemCol
Definition: plannodes.h:722
Bitmapset * fs_relids
Definition: plannodes.h:720
List * fdw_private
Definition: plannodes.h:717
Bitmapset * fs_base_relids
Definition: plannodes.h:721
Index resultRelation
Definition: plannodes.h:712
List * fdw_recheck_quals
Definition: plannodes.h:719
List * fdw_scan_tlist
Definition: plannodes.h:718
Index scanrelid
Definition: plannodes.h:390

References ForeignScan::checkAsUser, CMD_SELECT, ForeignScan::fdw_exprs, ForeignScan::fdw_private, ForeignScan::fdw_recheck_quals, ForeignScan::fdw_scan_tlist, ForeignScan::fs_base_relids, ForeignScan::fs_relids, ForeignScan::fs_server, ForeignScan::fsSystemCol, InvalidOid, makeNode, ForeignScan::operation, plan, ForeignScan::resultRelation, ForeignScan::scan, and Scan::scanrelid.

Referenced by fileGetForeignPlan(), and postgresGetForeignPlan().

◆ make_limit()

Limit * make_limit ( Plan lefttree,
Node limitOffset,
Node limitCount,
LimitOption  limitOption,
int  uniqNumCols,
AttrNumber uniqColIdx,
Oid uniqOperators,
Oid uniqCollations 
)

Definition at line 7044 of file createplan.c.

7047{
7048 Limit *node = makeNode(Limit);
7049 Plan *plan = &node->plan;
7050
7051 plan->targetlist = lefttree->targetlist;
7052 plan->qual = NIL;
7053 plan->lefttree = lefttree;
7054 plan->righttree = NULL;
7055
7056 node->limitOffset = limitOffset;
7057 node->limitCount = limitCount;
7058 node->limitOption = limitOption;
7059 node->uniqNumCols = uniqNumCols;
7060 node->uniqColIdx = uniqColIdx;
7061 node->uniqOperators = uniqOperators;
7062 node->uniqCollations = uniqCollations;
7063
7064 return node;
7065}
LimitOption limitOption
Definition: plannodes.h:1279
Plan plan
Definition: plannodes.h:1270
Node * limitCount
Definition: plannodes.h:1276
int uniqNumCols
Definition: plannodes.h:1282
Node * limitOffset
Definition: plannodes.h:1273

References Limit::limitCount, Limit::limitOffset, Limit::limitOption, makeNode, NIL, Limit::plan, plan, Plan::targetlist, and Limit::uniqNumCols.

Referenced by create_limit_plan(), and create_minmaxagg_plan().

◆ make_sort_from_sortclauses()

Sort * make_sort_from_sortclauses ( List sortcls,
Plan lefttree 
)

Definition at line 6492 of file createplan.c.

6493{
6494 List *sub_tlist = lefttree->targetlist;
6495 ListCell *l;
6496 int numsortkeys;
6497 AttrNumber *sortColIdx;
6498 Oid *sortOperators;
6499 Oid *collations;
6500 bool *nullsFirst;
6501
6502 /* Convert list-ish representation to arrays wanted by executor */
6503 numsortkeys = list_length(sortcls);
6504 sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6505 sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6506 collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6507 nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6508
6509 numsortkeys = 0;
6510 foreach(l, sortcls)
6511 {
6512 SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
6513 TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);
6514
6515 sortColIdx[numsortkeys] = tle->resno;
6516 sortOperators[numsortkeys] = sortcl->sortop;
6517 collations[numsortkeys] = exprCollation((Node *) tle->expr);
6518 nullsFirst[numsortkeys] = sortcl->nulls_first;
6519 numsortkeys++;
6520 }
6521
6522 return make_sort(lefttree, numsortkeys,
6523 sortColIdx, sortOperators,
6524 collations, nullsFirst);
6525}
int16 AttrNumber
Definition: attnum.h:21
static Sort * make_sort(Plan *lefttree, int numCols, AttrNumber *sortColIdx, Oid *sortOperators, Oid *collations, bool *nullsFirst)
Definition: createplan.c:6144
void * palloc(Size size)
Definition: mcxt.c:1317
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:816
unsigned int Oid
Definition: postgres_ext.h:31
AttrNumber resno
Definition: primnodes.h:2192
TargetEntry * get_sortgroupclause_tle(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:367

References TargetEntry::expr, exprCollation(), get_sortgroupclause_tle(), lfirst, list_length(), make_sort(), SortGroupClause::nulls_first, palloc(), TargetEntry::resno, SortGroupClause::sortop, and Plan::targetlist.

Referenced by create_unique_plan().

◆ match_foreign_keys_to_quals()

void match_foreign_keys_to_quals ( PlannerInfo root)

Definition at line 3599 of file initsplan.c.

3600{
3601 List *newlist = NIL;
3602 ListCell *lc;
3603
3604 foreach(lc, root->fkey_list)
3605 {
3606 ForeignKeyOptInfo *fkinfo = (ForeignKeyOptInfo *) lfirst(lc);
3607 RelOptInfo *con_rel;
3608 RelOptInfo *ref_rel;
3609 int colno;
3610
3611 /*
3612 * Either relid might identify a rel that is in the query's rtable but
3613 * isn't referenced by the jointree, or has been removed by join
3614 * removal, so that it won't have a RelOptInfo. Hence don't use
3615 * find_base_rel() here. We can ignore such FKs.
3616 */
3617 if (fkinfo->con_relid >= root->simple_rel_array_size ||
3618 fkinfo->ref_relid >= root->simple_rel_array_size)
3619 continue; /* just paranoia */
3620 con_rel = root->simple_rel_array[fkinfo->con_relid];
3621 if (con_rel == NULL)
3622 continue;
3623 ref_rel = root->simple_rel_array[fkinfo->ref_relid];
3624 if (ref_rel == NULL)
3625 continue;
3626
3627 /*
3628 * Ignore FK unless both rels are baserels. This gets rid of FKs that
3629 * link to inheritance child rels (otherrels).
3630 */
3631 if (con_rel->reloptkind != RELOPT_BASEREL ||
3632 ref_rel->reloptkind != RELOPT_BASEREL)
3633 continue;
3634
3635 /*
3636 * Scan the columns and try to match them to eclasses and quals.
3637 *
3638 * Note: for simple inner joins, any match should be in an eclass.
3639 * "Loose" quals that syntactically match an FK equality must have
3640 * been rejected for EC status because they are outer-join quals or
3641 * similar. We can still consider them to match the FK.
3642 */
3643 for (colno = 0; colno < fkinfo->nkeys; colno++)
3644 {
3645 EquivalenceClass *ec;
3646 AttrNumber con_attno,
3647 ref_attno;
3648 Oid fpeqop;
3649 ListCell *lc2;
3650
3651 ec = match_eclasses_to_foreign_key_col(root, fkinfo, colno);
3652 /* Don't bother looking for loose quals if we got an EC match */
3653 if (ec != NULL)
3654 {
3655 fkinfo->nmatched_ec++;
3656 if (ec->ec_has_const)
3657 fkinfo->nconst_ec++;
3658 continue;
3659 }
3660
3661 /*
3662 * Scan joininfo list for relevant clauses. Either rel's joininfo
3663 * list would do equally well; we use con_rel's.
3664 */
3665 con_attno = fkinfo->conkey[colno];
3666 ref_attno = fkinfo->confkey[colno];
3667 fpeqop = InvalidOid; /* we'll look this up only if needed */
3668
3669 foreach(lc2, con_rel->joininfo)
3670 {
3671 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc2);
3672 OpExpr *clause = (OpExpr *) rinfo->clause;
3673 Var *leftvar;
3674 Var *rightvar;
3675
3676 /* Only binary OpExprs are useful for consideration */
3677 if (!IsA(clause, OpExpr) ||
3678 list_length(clause->args) != 2)
3679 continue;
3680 leftvar = (Var *) get_leftop((Expr *) clause);
3681 rightvar = (Var *) get_rightop((Expr *) clause);
3682
3683 /* Operands must be Vars, possibly with RelabelType */
3684 while (leftvar && IsA(leftvar, RelabelType))
3685 leftvar = (Var *) ((RelabelType *) leftvar)->arg;
3686 if (!(leftvar && IsA(leftvar, Var)))
3687 continue;
3688 while (rightvar && IsA(rightvar, RelabelType))
3689 rightvar = (Var *) ((RelabelType *) rightvar)->arg;
3690 if (!(rightvar && IsA(rightvar, Var)))
3691 continue;
3692
3693 /* Now try to match the vars to the current foreign key cols */
3694 if (fkinfo->ref_relid == leftvar->varno &&
3695 ref_attno == leftvar->varattno &&
3696 fkinfo->con_relid == rightvar->varno &&
3697 con_attno == rightvar->varattno)
3698 {
3699 /* Vars match, but is it the right operator? */
3700 if (clause->opno == fkinfo->conpfeqop[colno])
3701 {
3702 fkinfo->rinfos[colno] = lappend(fkinfo->rinfos[colno],
3703 rinfo);
3704 fkinfo->nmatched_ri++;
3705 }
3706 }
3707 else if (fkinfo->ref_relid == rightvar->varno &&
3708 ref_attno == rightvar->varattno &&
3709 fkinfo->con_relid == leftvar->varno &&
3710 con_attno == leftvar->varattno)
3711 {
3712 /*
3713 * Reverse match, must check commutator operator. Look it
3714 * up if we didn't already. (In the worst case we might
3715 * do multiple lookups here, but that would require an FK
3716 * equality operator without commutator, which is
3717 * unlikely.)
3718 */
3719 if (!OidIsValid(fpeqop))
3720 fpeqop = get_commutator(fkinfo->conpfeqop[colno]);
3721 if (clause->opno == fpeqop)
3722 {
3723 fkinfo->rinfos[colno] = lappend(fkinfo->rinfos[colno],
3724 rinfo);
3725 fkinfo->nmatched_ri++;
3726 }
3727 }
3728 }
3729 /* If we found any matching loose quals, count col as matched */
3730 if (fkinfo->rinfos[colno])
3731 fkinfo->nmatched_rcols++;
3732 }
3733
3734 /*
3735 * Currently, we drop multicolumn FKs that aren't fully matched to the
3736 * query. Later we might figure out how to derive some sort of
3737 * estimate from them, in which case this test should be weakened to
3738 * "if ((fkinfo->nmatched_ec + fkinfo->nmatched_rcols) > 0)".
3739 */
3740 if ((fkinfo->nmatched_ec + fkinfo->nmatched_rcols) == fkinfo->nkeys)
3741 newlist = lappend(newlist, fkinfo);
3742 }
3743 /* Replace fkey_list, thereby discarding any useless entries */
3744 root->fkey_list = newlist;
3745}
EquivalenceClass * match_eclasses_to_foreign_key_col(PlannerInfo *root, ForeignKeyOptInfo *fkinfo, int colno)
Definition: equivclass.c:2559
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:76
Oid get_commutator(Oid opno)
Definition: lsyscache.c:1509
static Node * get_rightop(const void *clause)
Definition: nodeFuncs.h:95
static Node * get_leftop(const void *clause)
Definition: nodeFuncs.h:83
List * rinfos[INDEX_MAX_KEYS]
Definition: pathnodes.h:1265
Oid opno
Definition: primnodes.h:818
List * args
Definition: primnodes.h:836
List * joininfo
Definition: pathnodes.h:991
Expr * clause
Definition: pathnodes.h:2575

References OpExpr::args, RestrictInfo::clause, ForeignKeyOptInfo::con_relid, EquivalenceClass::ec_has_const, get_commutator(), get_leftop(), get_rightop(), if(), InvalidOid, IsA, RelOptInfo::joininfo, lappend(), lfirst, list_length(), match_eclasses_to_foreign_key_col(), ForeignKeyOptInfo::nconst_ec, NIL, ForeignKeyOptInfo::nkeys, ForeignKeyOptInfo::nmatched_ec, ForeignKeyOptInfo::nmatched_rcols, ForeignKeyOptInfo::nmatched_ri, OidIsValid, OpExpr::opno, ForeignKeyOptInfo::ref_relid, RELOPT_BASEREL, RelOptInfo::reloptkind, ForeignKeyOptInfo::rinfos, and root.

Referenced by query_planner().

◆ materialize_finished_plan()

Plan * materialize_finished_plan ( Plan subplan)

Definition at line 6604 of file createplan.c.

6605{
6606 Plan *matplan;
6607 Path matpath; /* dummy for result of cost_material */
6608 Cost initplan_cost;
6609 bool unsafe_initplans;
6610
6611 matplan = (Plan *) make_material(subplan);
6612
6613 /*
6614 * XXX horrid kluge: if there are any initPlans attached to the subplan,
6615 * move them up to the Material node, which is now effectively the top
6616 * plan node in its query level. This prevents failure in
6617 * SS_finalize_plan(), which see for comments.
6618 */
6619 matplan->initPlan = subplan->initPlan;
6620 subplan->initPlan = NIL;
6621
6622 /* Move the initplans' cost delta, as well */
6624 &initplan_cost, &unsafe_initplans);
6625 subplan->startup_cost -= initplan_cost;
6626 subplan->total_cost -= initplan_cost;
6627
6628 /* Set cost data */
6629 cost_material(&matpath,
6630 subplan->disabled_nodes,
6631 subplan->startup_cost,
6632 subplan->total_cost,
6633 subplan->plan_rows,
6634 subplan->plan_width);
6635 matplan->disabled_nodes = subplan->disabled_nodes;
6636 matplan->startup_cost = matpath.startup_cost + initplan_cost;
6637 matplan->total_cost = matpath.total_cost + initplan_cost;
6638 matplan->plan_rows = subplan->plan_rows;
6639 matplan->plan_width = subplan->plan_width;
6640 matplan->parallel_aware = false;
6641 matplan->parallel_safe = subplan->parallel_safe;
6642
6643 return matplan;
6644}
void cost_material(Path *path, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples, int width)
Definition: costsize.c:2483
static Material * make_material(Plan *lefttree)
Definition: createplan.c:6582
double Cost
Definition: nodes.h:251
Cost startup_cost
Definition: pathnodes.h:1673
Cost total_cost
Definition: pathnodes.h:1674
Cost total_cost
Definition: plannodes.h:130
bool parallel_aware
Definition: plannodes.h:141
Cost startup_cost
Definition: plannodes.h:129
int plan_width
Definition: plannodes.h:136
Cardinality plan_rows
Definition: plannodes.h:135
int disabled_nodes
Definition: plannodes.h:128
List * initPlan
Definition: plannodes.h:157
void SS_compute_initplan_cost(List *init_plans, Cost *initplan_cost_p, bool *unsafe_initplans_p)
Definition: subselect.c:2217

References cost_material(), Plan::disabled_nodes, Plan::initPlan, make_material(), NIL, Plan::parallel_aware, Plan::parallel_safe, Plan::plan_rows, Plan::plan_width, SS_compute_initplan_cost(), Path::startup_cost, Plan::startup_cost, Path::total_cost, and Plan::total_cost.

Referenced by build_subplan(), and standard_planner().

◆ preprocess_minmax_aggregates()

void preprocess_minmax_aggregates ( PlannerInfo root)

Definition at line 73 of file planagg.c.

74{
75 Query *parse = root->parse;
76 FromExpr *jtnode;
77 RangeTblRef *rtr;
78 RangeTblEntry *rte;
79 List *aggs_list;
80 RelOptInfo *grouped_rel;
81 ListCell *lc;
82
83 /* minmax_aggs list should be empty at this point */
84 Assert(root->minmax_aggs == NIL);
85
86 /* Nothing to do if query has no aggregates */
87 if (!parse->hasAggs)
88 return;
89
90 Assert(!parse->setOperations); /* shouldn't get here if a setop */
91 Assert(parse->rowMarks == NIL); /* nor if FOR UPDATE */
92
93 /*
94 * Reject unoptimizable cases.
95 *
96 * We don't handle GROUP BY or windowing, because our current
97 * implementations of grouping require looking at all the rows anyway, and
98 * so there's not much point in optimizing MIN/MAX.
99 */
100 if (parse->groupClause || list_length(parse->groupingSets) > 1 ||
101 parse->hasWindowFuncs)
102 return;
103
104 /*
105 * Reject if query contains any CTEs; there's no way to build an indexscan
106 * on one so we couldn't succeed here. (If the CTEs are unreferenced,
107 * that's not true, but it doesn't seem worth expending cycles to check.)
108 */
109 if (parse->cteList)
110 return;
111
112 /*
113 * We also restrict the query to reference exactly one table, since join
114 * conditions can't be handled reasonably. (We could perhaps handle a
115 * query containing cartesian-product joins, but it hardly seems worth the
116 * trouble.) However, the single table could be buried in several levels
117 * of FromExpr due to subqueries. Note the "single" table could be an
118 * inheritance parent, too, including the case of a UNION ALL subquery
119 * that's been flattened to an appendrel.
120 */
121 jtnode = parse->jointree;
122 while (IsA(jtnode, FromExpr))
123 {
124 if (list_length(jtnode->fromlist) != 1)
125 return;
126 jtnode = linitial(jtnode->fromlist);
127 }
128 if (!IsA(jtnode, RangeTblRef))
129 return;
130 rtr = (RangeTblRef *) jtnode;
131 rte = planner_rt_fetch(rtr->rtindex, root);
132 if (rte->rtekind == RTE_RELATION)
133 /* ordinary relation, ok */ ;
134 else if (rte->rtekind == RTE_SUBQUERY && rte->inh)
135 /* flattened UNION ALL subquery, ok */ ;
136 else
137 return;
138
139 /*
140 * Examine all the aggregates and verify all are MIN/MAX aggregates. Stop
141 * as soon as we find one that isn't.
142 */
143 aggs_list = NIL;
144 if (!can_minmax_aggs(root, &aggs_list))
145 return;
146
147 /*
148 * OK, there is at least the possibility of performing the optimization.
149 * Build an access path for each aggregate. If any of the aggregates
150 * prove to be non-indexable, give up; there is no point in optimizing
151 * just some of them.
152 */
153 foreach(lc, aggs_list)
154 {
155 MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
156 Oid eqop;
157 bool reverse;
158
159 /*
160 * We'll need the equality operator that goes with the aggregate's
161 * ordering operator.
162 */
163 eqop = get_equality_op_for_ordering_op(mminfo->aggsortop, &reverse);
164 if (!OidIsValid(eqop)) /* shouldn't happen */
165 elog(ERROR, "could not find equality operator for ordering operator %u",
166 mminfo->aggsortop);
167
168 /*
169 * We can use either an ordering that gives NULLS FIRST or one that
170 * gives NULLS LAST; furthermore there's unlikely to be much
171 * performance difference between them, so it doesn't seem worth
172 * costing out both ways if we get a hit on the first one. NULLS
173 * FIRST is more likely to be available if the operator is a
174 * reverse-sort operator, so try that first if reverse.
175 */
176 if (build_minmax_path(root, mminfo, eqop, mminfo->aggsortop, reverse, reverse))
177 continue;
178 if (build_minmax_path(root, mminfo, eqop, mminfo->aggsortop, reverse, !reverse))
179 continue;
180
181 /* No indexable path for this aggregate, so fail */
182 return;
183 }
184
185 /*
186 * OK, we can do the query this way. Prepare to create a MinMaxAggPath
187 * node.
188 *
189 * First, create an output Param node for each agg. (If we end up not
190 * using the MinMaxAggPath, we'll waste a PARAM_EXEC slot for each agg,
191 * which is not worth worrying about. We can't wait till create_plan time
192 * to decide whether to make the Param, unfortunately.)
193 */
194 foreach(lc, aggs_list)
195 {
196 MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
197
198 mminfo->param =
200 exprType((Node *) mminfo->target),
201 -1,
202 exprCollation((Node *) mminfo->target));
203 }
204
205 /*
206 * Create a MinMaxAggPath node with the appropriate estimated costs and
207 * other needed data, and add it to the UPPERREL_GROUP_AGG upperrel, where
208 * it will compete against the standard aggregate implementation. (It
209 * will likely always win, but we need not assume that here.)
210 *
211 * Note: grouping_planner won't have created this upperrel yet, but it's
212 * fine for us to create it first. We will not have inserted the correct
213 * consider_parallel value in it, but MinMaxAggPath paths are currently
214 * never parallel-safe anyway, so that doesn't matter. Likewise, it
215 * doesn't matter that we haven't filled FDW-related fields in the rel.
216 * Also, because there are no rowmarks, we know that the processed_tlist
217 * doesn't need to change anymore, so making the pathtarget now is safe.
218 */
219 grouped_rel = fetch_upper_rel(root, UPPERREL_GROUP_AGG, NULL);
220 add_path(grouped_rel, (Path *)
221 create_minmaxagg_path(root, grouped_rel,
223 root->processed_tlist),
224 aggs_list,
225 (List *) parse->havingQual));
226}
Oid get_equality_op_for_ordering_op(Oid opno, bool *reverse)
Definition: lsyscache.c:267
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
MinMaxAggPath * create_minmaxagg_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *mmaggregates, List *quals)
Definition: pathnode.c:3486
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:461
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:570
@ UPPERREL_GROUP_AGG
Definition: pathnodes.h:74
static bool can_minmax_aggs(PlannerInfo *root, List **context)
Definition: planagg.c:237
static bool build_minmax_path(PlannerInfo *root, MinMaxAggInfo *mminfo, Oid eqop, Oid sortop, bool reverse_sort, bool nulls_first)
Definition: planagg.c:317
static struct subre * parse(struct vars *v, int stopper, int type, struct state *init, struct state *final)
Definition: regcomp.c:717
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1458
Param * SS_make_initplan_output_param(PlannerInfo *root, Oid resulttype, int32 resulttypmod, Oid resultcollation)
Definition: subselect.c:3018
#define create_pathtarget(root, tlist)
Definition: tlist.h:53

References add_path(), MinMaxAggInfo::aggsortop, Assert, build_minmax_path(), can_minmax_aggs(), create_minmaxagg_path(), create_pathtarget, elog, ERROR, exprCollation(), exprType(), fetch_upper_rel(), FromExpr::fromlist, get_equality_op_for_ordering_op(), RangeTblEntry::inh, IsA, lfirst, linitial, list_length(), NIL, OidIsValid, MinMaxAggInfo::param, parse(), planner_rt_fetch, root, RTE_RELATION, RTE_SUBQUERY, RangeTblEntry::rtekind, RangeTblRef::rtindex, SS_make_initplan_output_param(), MinMaxAggInfo::target, and UPPERREL_GROUP_AGG.

Referenced by grouping_planner().

◆ process_implied_equality()

RestrictInfo * process_implied_equality ( PlannerInfo root,
Oid  opno,
Oid  collation,
Expr item1,
Expr item2,
Relids  qualscope,
Index  security_level,
bool  both_const 
)

Definition at line 3280 of file initsplan.c.

3288{
3289 RestrictInfo *restrictinfo;
3290 Node *clause;
3291 Relids relids;
3292 bool pseudoconstant = false;
3293
3294 /*
3295 * Build the new clause. Copy to ensure it shares no substructure with
3296 * original (this is necessary in case there are subselects in there...)
3297 */
3298 clause = (Node *) make_opclause(opno,
3299 BOOLOID, /* opresulttype */
3300 false, /* opretset */
3301 copyObject(item1),
3302 copyObject(item2),
3303 InvalidOid,
3304 collation);
3305
3306 /* If both constant, try to reduce to a boolean constant. */
3307 if (both_const)
3308 {
3309 clause = eval_const_expressions(root, clause);
3310
3311 /* If we produced const TRUE, just drop the clause */
3312 if (clause && IsA(clause, Const))
3313 {
3314 Const *cclause = (Const *) clause;
3315
3316 Assert(cclause->consttype == BOOLOID);
3317 if (!cclause->constisnull && DatumGetBool(cclause->constvalue))
3318 return NULL;
3319 }
3320 }
3321
3322 /*
3323 * The rest of this is a very cut-down version of distribute_qual_to_rels.
3324 * We can skip most of the work therein, but there are a couple of special
3325 * cases we still have to handle.
3326 *
3327 * Retrieve all relids mentioned within the possibly-simplified clause.
3328 */
3329 relids = pull_varnos(root, clause);
3330 Assert(bms_is_subset(relids, qualscope));
3331
3332 /*
3333 * If the clause is variable-free, our normal heuristic for pushing it
3334 * down to just the mentioned rels doesn't work, because there are none.
3335 * Apply it as a gating qual at the appropriate level (see comments for
3336 * get_join_domain_min_rels).
3337 */
3338 if (bms_is_empty(relids))
3339 {
3340 /* eval at join domain's safe level */
3341 relids = get_join_domain_min_rels(root, qualscope);
3342 /* mark as gating qual */
3343 pseudoconstant = true;
3344 /* tell createplan.c to check for gating quals */
3345 root->hasPseudoConstantQuals = true;
3346 }
3347
3348 /*
3349 * Build the RestrictInfo node itself.
3350 */
3351 restrictinfo = make_restrictinfo(root,
3352 (Expr *) clause,
3353 true, /* is_pushed_down */
3354 false, /* !has_clone */
3355 false, /* !is_clone */
3356 pseudoconstant,
3357 security_level,
3358 relids,
3359 NULL, /* incompatible_relids */
3360 NULL); /* outer_relids */
3361
3362 /*
3363 * If it's a join clause, add vars used in the clause to targetlists of
3364 * their relations, so that they will be emitted by the plan nodes that
3365 * scan those relations (else they won't be available at the join node!).
3366 *
3367 * Typically, we'd have already done this when the component expressions
3368 * were first seen by distribute_qual_to_rels; but it is possible that
3369 * some of the Vars could have missed having that done because they only
3370 * appeared in single-relation clauses originally. So do it here for
3371 * safety.
3372 *
3373 * See also rebuild_joinclause_attr_needed, which has to partially repeat
3374 * this work after removal of an outer join. (Since we will put this
3375 * clause into the joininfo lists, that function needn't do any extra work
3376 * to find it.)
3377 */
3378 if (bms_membership(relids) == BMS_MULTIPLE)
3379 {
3380 List *vars = pull_var_clause(clause,
3384
3386 list_free(vars);
3387 }
3388
3389 /*
3390 * Check mergejoinability. This will usually succeed, since the op came
3391 * from an EquivalenceClass; but we could have reduced the original clause
3392 * to a constant.
3393 */
3394 check_mergejoinable(restrictinfo);
3395
3396 /*
3397 * Note we don't do initialize_mergeclause_eclasses(); the caller can
3398 * handle that much more cheaply than we can. It's okay to call
3399 * distribute_restrictinfo_to_rels() before that happens.
3400 */
3401
3402 /*
3403 * Push the new clause into all the appropriate restrictinfo lists.
3404 */
3406
3407 return restrictinfo;
3408}
BMS_Membership bms_membership(const Bitmapset *a)
Definition: bitmapset.c:781
@ BMS_MULTIPLE
Definition: bitmapset.h:73
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2253
void distribute_restrictinfo_to_rels(PlannerInfo *root, RestrictInfo *restrictinfo)
Definition: initsplan.c:3195
static Relids get_join_domain_min_rels(PlannerInfo *root, Relids domain_relids)
Definition: initsplan.c:3493
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
Oid consttype
Definition: primnodes.h:312
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:113

References add_vars_to_targetlist(), Assert, bms_is_empty, bms_is_subset(), bms_membership(), BMS_MULTIPLE, check_mergejoinable(), Const::consttype, copyObject, DatumGetBool(), distribute_restrictinfo_to_rels(), eval_const_expressions(), get_join_domain_min_rels(), InvalidOid, IsA, list_free(), make_opclause(), make_restrictinfo(), pull_var_clause(), pull_varnos(), PVC_INCLUDE_PLACEHOLDERS, PVC_RECURSE_AGGREGATES, PVC_RECURSE_WINDOWFUNCS, JoinTreeItem::qualscope, and root.

Referenced by generate_base_implied_equalities_const(), and generate_base_implied_equalities_no_const().

◆ query_is_distinct_for()

bool query_is_distinct_for ( Query query,
List colnos,
List opids 
)

Definition at line 983 of file analyzejoins.c.

984{
985 ListCell *l;
986 Oid opid;
987
988 Assert(list_length(colnos) == list_length(opids));
989
990 /*
991 * DISTINCT (including DISTINCT ON) guarantees uniqueness if all the
992 * columns in the DISTINCT clause appear in colnos and operator semantics
993 * match. This is true even if there are SRFs in the DISTINCT columns or
994 * elsewhere in the tlist.
995 */
996 if (query->distinctClause)
997 {
998 foreach(l, query->distinctClause)
999 {
1002 query->targetList);
1003
1004 opid = distinct_col_search(tle->resno, colnos, opids);
1005 if (!OidIsValid(opid) ||
1006 !equality_ops_are_compatible(opid, sgc->eqop))
1007 break; /* exit early if no match */
1008 }
1009 if (l == NULL) /* had matches for all? */
1010 return true;
1011 }
1012
1013 /*
1014 * Otherwise, a set-returning function in the query's targetlist can
1015 * result in returning duplicate rows, despite any grouping that might
1016 * occur before tlist evaluation. (If all tlist SRFs are within GROUP BY
1017 * columns, it would be safe because they'd be expanded before grouping.
1018 * But it doesn't currently seem worth the effort to check for that.)
1019 */
1020 if (query->hasTargetSRFs)
1021 return false;
1022
1023 /*
1024 * Similarly, GROUP BY without GROUPING SETS guarantees uniqueness if all
1025 * the grouped columns appear in colnos and operator semantics match.
1026 */
1027 if (query->groupClause && !query->groupingSets)
1028 {
1029 foreach(l, query->groupClause)
1030 {
1033 query->targetList);
1034
1035 opid = distinct_col_search(tle->resno, colnos, opids);
1036 if (!OidIsValid(opid) ||
1037 !equality_ops_are_compatible(opid, sgc->eqop))
1038 break; /* exit early if no match */
1039 }
1040 if (l == NULL) /* had matches for all? */
1041 return true;
1042 }
1043 else if (query->groupingSets)
1044 {
1045 /*
1046 * If we have grouping sets with expressions, we probably don't have
1047 * uniqueness and analysis would be hard. Punt.
1048 */
1049 if (query->groupClause)
1050 return false;
1051
1052 /*
1053 * If we have no groupClause (therefore no grouping expressions), we
1054 * might have one or many empty grouping sets. If there's just one,
1055 * then we're returning only one row and are certainly unique. But
1056 * otherwise, we know we're certainly not unique.
1057 */
1058 if (list_length(query->groupingSets) == 1 &&
1059 ((GroupingSet *) linitial(query->groupingSets))->kind == GROUPING_SET_EMPTY)
1060 return true;
1061 else
1062 return false;
1063 }
1064 else
1065 {
1066 /*
1067 * If we have no GROUP BY, but do have aggregates or HAVING, then the
1068 * result is at most one row so it's surely unique, for any operators.
1069 */
1070 if (query->hasAggs || query->havingQual)
1071 return true;
1072 }
1073
1074 /*
1075 * UNION, INTERSECT, EXCEPT guarantee uniqueness of the whole output row,
1076 * except with ALL.
1077 */
1078 if (query->setOperations)
1079 {
1081
1082 Assert(topop->op != SETOP_NONE);
1083
1084 if (!topop->all)
1085 {
1086 ListCell *lg;
1087
1088 /* We're good if all the nonjunk output columns are in colnos */
1089 lg = list_head(topop->groupClauses);
1090 foreach(l, query->targetList)
1091 {
1092 TargetEntry *tle = (TargetEntry *) lfirst(l);
1093 SortGroupClause *sgc;
1094
1095 if (tle->resjunk)
1096 continue; /* ignore resjunk columns */
1097
1098 /* non-resjunk columns should have grouping clauses */
1099 Assert(lg != NULL);
1100 sgc = (SortGroupClause *) lfirst(lg);
1101 lg = lnext(topop->groupClauses, lg);
1102
1103 opid = distinct_col_search(tle->resno, colnos, opids);
1104 if (!OidIsValid(opid) ||
1105 !equality_ops_are_compatible(opid, sgc->eqop))
1106 break; /* exit early if no match */
1107 }
1108 if (l == NULL) /* had matches for all? */
1109 return true;
1110 }
1111 }
1112
1113 /*
1114 * XXX Are there any other cases in which we can easily see the result
1115 * must be distinct?
1116 *
1117 * If you do add more smarts to this function, be sure to update
1118 * query_supports_distinctness() to match.
1119 */
1120
1121 return false;
1122}
static Oid distinct_col_search(int colno, List *colnos, List *opids)
bool equality_ops_are_compatible(Oid opno1, Oid opno2)
Definition: lsyscache.c:698
@ GROUPING_SET_EMPTY
Definition: parsenodes.h:1499
@ SETOP_NONE
Definition: parsenodes.h:2118
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
Node * setOperations
Definition: parsenodes.h:221
List * groupClause
Definition: parsenodes.h:202
Node * havingQual
Definition: parsenodes.h:207
List * targetList
Definition: parsenodes.h:193
List * groupingSets
Definition: parsenodes.h:205
List * distinctClause
Definition: parsenodes.h:211
SetOperation op
Definition: parsenodes.h:2198

References SetOperationStmt::all, Assert, castNode, distinct_col_search(), Query::distinctClause, SortGroupClause::eqop, equality_ops_are_compatible(), get_sortgroupclause_tle(), Query::groupClause, GROUPING_SET_EMPTY, Query::groupingSets, Query::havingQual, lfirst, linitial, list_head(), list_length(), lnext(), OidIsValid, SetOperationStmt::op, TargetEntry::resno, SETOP_NONE, Query::setOperations, and Query::targetList.

Referenced by create_unique_path(), and rel_is_distinct_for().

◆ query_planner()

RelOptInfo * query_planner ( PlannerInfo root,
query_pathkeys_callback  qp_callback,
void *  qp_extra 
)

Definition at line 54 of file planmain.c.

56{
57 Query *parse = root->parse;
58 List *joinlist;
59 RelOptInfo *final_rel;
60
61 /*
62 * Init planner lists to empty.
63 *
64 * NOTE: append_rel_list was set up by subquery_planner, so do not touch
65 * here.
66 */
67 root->join_rel_list = NIL;
68 root->join_rel_hash = NULL;
69 root->join_rel_level = NULL;
70 root->join_cur_level = 0;
71 root->canon_pathkeys = NIL;
72 root->left_join_clauses = NIL;
73 root->right_join_clauses = NIL;
74 root->full_join_clauses = NIL;
75 root->join_info_list = NIL;
76 root->placeholder_list = NIL;
77 root->placeholder_array = NULL;
78 root->placeholder_array_size = 0;
79 root->fkey_list = NIL;
80 root->initial_rels = NIL;
81
82 /*
83 * Set up arrays for accessing base relations and AppendRelInfos.
84 */
86
87 /*
88 * In the trivial case where the jointree is a single RTE_RESULT relation,
89 * bypass all the rest of this function and just make a RelOptInfo and its
90 * one access path. This is worth optimizing because it applies for
91 * common cases like "SELECT expression" and "INSERT ... VALUES()".
92 */
93 Assert(parse->jointree->fromlist != NIL);
94 if (list_length(parse->jointree->fromlist) == 1)
95 {
96 Node *jtnode = (Node *) linitial(parse->jointree->fromlist);
97
98 if (IsA(jtnode, RangeTblRef))
99 {
100 int varno = ((RangeTblRef *) jtnode)->rtindex;
101 RangeTblEntry *rte = root->simple_rte_array[varno];
102
103 Assert(rte != NULL);
104 if (rte->rtekind == RTE_RESULT)
105 {
106 /* Make the RelOptInfo for it directly */
107 final_rel = build_simple_rel(root, varno, NULL);
108
109 /*
110 * If query allows parallelism in general, check whether the
111 * quals are parallel-restricted. (We need not check
112 * final_rel->reltarget because it's empty at this point.
113 * Anything parallel-restricted in the query tlist will be
114 * dealt with later.) We should always do this in a subquery,
115 * since it might be useful to use the subquery in parallel
116 * paths in the parent level. At top level this is normally
117 * not worth the cycles, because a Result-only plan would
118 * never be interesting to parallelize. However, if
119 * debug_parallel_query is on, then we want to execute the
120 * Result in a parallel worker if possible, so we must check.
121 */
122 if (root->glob->parallelModeOK &&
123 (root->query_level > 1 ||
125 final_rel->consider_parallel =
126 is_parallel_safe(root, parse->jointree->quals);
127
128 /*
129 * The only path for it is a trivial Result path. We cheat a
130 * bit here by using a GroupResultPath, because that way we
131 * can just jam the quals into it without preprocessing them.
132 * (But, if you hold your head at the right angle, a FROM-less
133 * SELECT is a kind of degenerate-grouping case, so it's not
134 * that much of a cheat.)
135 */
136 add_path(final_rel, (Path *)
138 final_rel->reltarget,
139 (List *) parse->jointree->quals));
140
141 /* Select cheapest path (pretty easy in this case...) */
142 set_cheapest(final_rel);
143
144 /*
145 * We don't need to run generate_base_implied_equalities, but
146 * we do need to pretend that EC merging is complete.
147 */
148 root->ec_merging_done = true;
149
150 /*
151 * We still are required to call qp_callback, in case it's
152 * something like "SELECT 2+2 ORDER BY 1".
153 */
154 (*qp_callback) (root, qp_extra);
155
156 return final_rel;
157 }
158 }
159 }
160
161 /*
162 * Construct RelOptInfo nodes for all base relations used in the query.
163 * Appendrel member relations ("other rels") will be added later.
164 *
165 * Note: the reason we find the baserels by searching the jointree, rather
166 * than scanning the rangetable, is that the rangetable may contain RTEs
167 * for rels not actively part of the query, for example views. We don't
168 * want to make RelOptInfos for them.
169 */
170 add_base_rels_to_query(root, (Node *) parse->jointree);
171
172 /* Remove any redundant GROUP BY columns */
174
175 /*
176 * Examine the targetlist and join tree, adding entries to baserel
177 * targetlists for all referenced Vars, and generating PlaceHolderInfo
178 * entries for all referenced PlaceHolderVars. Restrict and join clauses
179 * are added to appropriate lists belonging to the mentioned relations. We
180 * also build EquivalenceClasses for provably equivalent expressions. The
181 * SpecialJoinInfo list is also built to hold information about join order
182 * restrictions. Finally, we form a target joinlist for make_one_rel() to
183 * work from.
184 */
185 build_base_rel_tlists(root, root->processed_tlist);
186
188
190
191 joinlist = deconstruct_jointree(root);
192
193 /*
194 * Reconsider any postponed outer-join quals now that we have built up
195 * equivalence classes. (This could result in further additions or
196 * mergings of classes.)
197 */
199
200 /*
201 * If we formed any equivalence classes, generate additional restriction
202 * clauses as appropriate. (Implied join clauses are formed on-the-fly
203 * later.)
204 */
206
207 /*
208 * We have completed merging equivalence sets, so it's now possible to
209 * generate pathkeys in canonical form; so compute query_pathkeys and
210 * other pathkeys fields in PlannerInfo.
211 */
212 (*qp_callback) (root, qp_extra);
213
214 /*
215 * Examine any "placeholder" expressions generated during subquery pullup.
216 * Make sure that the Vars they need are marked as needed at the relevant
217 * join level. This must be done before join removal because it might
218 * cause Vars or placeholders to be needed above a join when they weren't
219 * so marked before.
220 */
222
223 /*
224 * Remove any useless outer joins. Ideally this would be done during
225 * jointree preprocessing, but the necessary information isn't available
226 * until we've built baserel data structures and classified qual clauses.
227 */
228 joinlist = remove_useless_joins(root, joinlist);
229
230 /*
231 * Also, reduce any semijoins with unique inner rels to plain inner joins.
232 * Likewise, this can't be done until now for lack of needed info.
233 */
235
236 /*
237 * Now distribute "placeholders" to base rels as needed. This has to be
238 * done after join removal because removal could change whether a
239 * placeholder is evaluable at a base rel.
240 */
242
243 /*
244 * Construct the lateral reference sets now that we have finalized
245 * PlaceHolderVar eval levels.
246 */
248
249 /*
250 * Match foreign keys to equivalence classes and join quals. This must be
251 * done after finalizing equivalence classes, and it's useful to wait till
252 * after join removal so that we can skip processing foreign keys
253 * involving removed relations.
254 */
256
257 /*
258 * Look for join OR clauses that we can extract single-relation
259 * restriction OR clauses from.
260 */
262
263 /*
264 * Now expand appendrels by adding "otherrels" for their children. We
265 * delay this to the end so that we have as much information as possible
266 * available for each baserel, including all restriction clauses. That
267 * let us prune away partitions that don't satisfy a restriction clause.
268 * Also note that some information such as lateral_relids is propagated
269 * from baserels to otherrels here, so we must have computed it already.
270 */
272
273 /*
274 * Distribute any UPDATE/DELETE/MERGE row identity variables to the target
275 * relations. This can't be done till we've finished expansion of
276 * appendrels.
277 */
279
280 /*
281 * Ready to do the primary planning.
282 */
283 final_rel = make_one_rel(root, joinlist);
284
285 /* Check that we got at least one usable path */
286 if (!final_rel || !final_rel->cheapest_total_path ||
287 final_rel->cheapest_total_path->param_info != NULL)
288 elog(ERROR, "failed to construct the join relation");
289
290 return final_rel;
291}
RelOptInfo * make_one_rel(PlannerInfo *root, List *joinlist)
Definition: allpaths.c:171
List * remove_useless_joins(PlannerInfo *root, List *joinlist)
Definition: analyzejoins.c:65
void reduce_unique_semijoins(PlannerInfo *root)
Definition: analyzejoins.c:718
void distribute_row_identity_vars(PlannerInfo *root)
Definition: appendinfo.c:968
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:752
void generate_base_implied_equalities(PlannerInfo *root)
Definition: equivclass.c:1032
void reconsider_outer_join_clauses(PlannerInfo *root)
Definition: equivclass.c:2001
void match_foreign_keys_to_quals(PlannerInfo *root)
Definition: initsplan.c:3599
void find_lateral_references(PlannerInfo *root)
Definition: initsplan.c:658
void remove_useless_groupby_columns(PlannerInfo *root)
Definition: initsplan.c:412
void build_base_rel_tlists(PlannerInfo *root, List *final_tlist)
Definition: initsplan.c:235
List * deconstruct_jointree(PlannerInfo *root)
Definition: initsplan.c:1084
void add_other_rels_to_query(PlannerInfo *root)
Definition: initsplan.c:196
void create_lateral_join_info(PlannerInfo *root)
Definition: initsplan.c:845
@ DEBUG_PARALLEL_OFF
Definition: optimizer.h:106
void extract_restriction_or_clauses(PlannerInfo *root)
Definition: orclauses.c:75
@ RTE_RESULT
Definition: parsenodes.h:1025
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:269
GroupResultPath * create_group_result_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *havingqual)
Definition: pathnode.c:1586
void add_placeholders_to_base_rels(PlannerInfo *root)
Definition: placeholder.c:356
void fix_placeholder_input_needed_levels(PlannerInfo *root)
Definition: placeholder.c:300
void find_placeholders_in_jointree(PlannerInfo *root)
Definition: placeholder.c:185
int debug_parallel_query
Definition: planner.c:67
void setup_simple_rel_arrays(PlannerInfo *root)
Definition: relnode.c:94
bool consider_parallel
Definition: pathnodes.h:887
struct Path * cheapest_total_path
Definition: pathnodes.h:902

References add_base_rels_to_query(), add_other_rels_to_query(), add_path(), add_placeholders_to_base_rels(), Assert, build_base_rel_tlists(), build_simple_rel(), RelOptInfo::cheapest_total_path, RelOptInfo::consider_parallel, create_group_result_path(), create_lateral_join_info(), DEBUG_PARALLEL_OFF, debug_parallel_query, deconstruct_jointree(), distribute_row_identity_vars(), elog, ERROR, extract_restriction_or_clauses(), find_lateral_references(), find_placeholders_in_jointree(), fix_placeholder_input_needed_levels(), generate_base_implied_equalities(), is_parallel_safe(), IsA, linitial, list_length(), make_one_rel(), match_foreign_keys_to_quals(), NIL, parse(), reconsider_outer_join_clauses(), reduce_unique_semijoins(), RelOptInfo::reltarget, remove_useless_groupby_columns(), remove_useless_joins(), root, RTE_RESULT, RangeTblEntry::rtekind, set_cheapest(), and setup_simple_rel_arrays().

Referenced by build_minmax_path(), and grouping_planner().

◆ query_supports_distinctness()

bool query_supports_distinctness ( Query query)

Definition at line 946 of file analyzejoins.c.

947{
948 /* SRFs break distinctness except with DISTINCT, see below */
949 if (query->hasTargetSRFs && query->distinctClause == NIL)
950 return false;
951
952 /* check for features we can prove distinctness with */
953 if (query->distinctClause != NIL ||
954 query->groupClause != NIL ||
955 query->groupingSets != NIL ||
956 query->hasAggs ||
957 query->havingQual ||
958 query->setOperations)
959 return true;
960
961 return false;
962}

References Query::distinctClause, Query::groupClause, Query::groupingSets, Query::havingQual, NIL, and Query::setOperations.

Referenced by create_unique_path(), and rel_supports_distinctness().

◆ rebuild_joinclause_attr_needed()

void rebuild_joinclause_attr_needed ( PlannerInfo root)

Definition at line 3527 of file initsplan.c.

3528{
3529 /*
3530 * We must examine all join clauses, but there's no value in processing
3531 * any join clause more than once. So it's slightly annoying that we have
3532 * to find them via the per-base-relation joininfo lists. Avoid duplicate
3533 * processing by tracking the rinfo_serial numbers of join clauses we've
3534 * already seen. (This doesn't work for is_clone clauses, so we must
3535 * waste effort on them.)
3536 */
3537 Bitmapset *seen_serials = NULL;
3538 Index rti;
3539
3540 /* Scan all baserels for join clauses */
3541 for (rti = 1; rti < root->simple_rel_array_size; rti++)
3542 {
3543 RelOptInfo *brel = root->simple_rel_array[rti];
3544 ListCell *lc;
3545
3546 if (brel == NULL)
3547 continue;
3548 if (brel->reloptkind != RELOPT_BASEREL)
3549 continue;
3550
3551 foreach(lc, brel->joininfo)
3552 {
3553 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
3554 Relids relids = rinfo->required_relids;
3555
3556 if (!rinfo->is_clone) /* else serial number is not unique */
3557 {
3558 if (bms_is_member(rinfo->rinfo_serial, seen_serials))
3559 continue; /* saw it already */
3560 seen_serials = bms_add_member(seen_serials,
3561 rinfo->rinfo_serial);
3562 }
3563
3564 if (bms_membership(relids) == BMS_MULTIPLE)
3565 {
3566 List *vars = pull_var_clause((Node *) rinfo->clause,
3570 Relids where_needed;
3571
3572 if (rinfo->is_clone)
3573 where_needed = bms_intersect(relids, root->all_baserels);
3574 else
3575 where_needed = relids;
3576 add_vars_to_attr_needed(root, vars, where_needed);
3577 list_free(vars);
3578 }
3579 }
3580 }
3581}
void add_vars_to_attr_needed(PlannerInfo *root, List *vars, Relids where_needed)
Definition: initsplan.c:353
int rinfo_serial
Definition: pathnodes.h:2647

References add_vars_to_attr_needed(), bms_add_member(), bms_intersect(), bms_is_member(), bms_membership(), BMS_MULTIPLE, RestrictInfo::clause, RestrictInfo::is_clone, RelOptInfo::joininfo, lfirst, list_free(), pull_var_clause(), PVC_INCLUDE_PLACEHOLDERS, PVC_RECURSE_AGGREGATES, PVC_RECURSE_WINDOWFUNCS, RELOPT_BASEREL, RelOptInfo::reloptkind, RestrictInfo::required_relids, RestrictInfo::rinfo_serial, and root.

Referenced by remove_rel_from_query().

◆ rebuild_lateral_attr_needed()

void rebuild_lateral_attr_needed ( PlannerInfo root)

Definition at line 807 of file initsplan.c.

808{
809 Index rti;
810
811 /* We need do nothing if the query contains no LATERAL RTEs */
812 if (!root->hasLateralRTEs)
813 return;
814
815 /* Examine the same baserels that find_lateral_references did */
816 for (rti = 1; rti < root->simple_rel_array_size; rti++)
817 {
818 RelOptInfo *brel = root->simple_rel_array[rti];
819 Relids where_needed;
820
821 if (brel == NULL)
822 continue;
823 if (brel->reloptkind != RELOPT_BASEREL)
824 continue;
825
826 /*
827 * We don't need to repeat all of extract_lateral_references, since it
828 * kindly saved the extracted Vars/PHVs in lateral_vars.
829 */
830 if (brel->lateral_vars == NIL)
831 continue;
832
833 where_needed = bms_make_singleton(rti);
834
835 add_vars_to_attr_needed(root, brel->lateral_vars, where_needed);
836 }
837}

References add_vars_to_attr_needed(), bms_make_singleton(), RelOptInfo::lateral_vars, NIL, RELOPT_BASEREL, RelOptInfo::reloptkind, and root.

Referenced by remove_rel_from_query().

◆ record_plan_function_dependency()

void record_plan_function_dependency ( PlannerInfo root,
Oid  funcid 
)

Definition at line 3476 of file setrefs.c.

3477{
3478 /*
3479 * For performance reasons, we don't bother to track built-in functions;
3480 * we just assume they'll never change (or at least not in ways that'd
3481 * invalidate plans using them). For this purpose we can consider a
3482 * built-in function to be one with OID less than FirstUnpinnedObjectId.
3483 * Note that the OID generator guarantees never to generate such an OID
3484 * after startup, even at OID wraparound.
3485 */
3486 if (funcid >= (Oid) FirstUnpinnedObjectId)
3487 {
3488 PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3489
3490 /*
3491 * It would work to use any syscache on pg_proc, but the easiest is
3492 * PROCOID since we already have the function's OID at hand. Note
3493 * that plancache.c knows we use PROCOID.
3494 */
3495 inval_item->cacheId = PROCOID;
3496 inval_item->hashValue = GetSysCacheHashValue1(PROCOID,
3497 ObjectIdGetDatum(funcid));
3498
3499 root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3500 }
3501}
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
uint32 hashValue
Definition: plannodes.h:1571
#define GetSysCacheHashValue1(cacheId, key1)
Definition: syscache.h:118
#define FirstUnpinnedObjectId
Definition: transam.h:196

References PlanInvalItem::cacheId, FirstUnpinnedObjectId, GetSysCacheHashValue1, PlanInvalItem::hashValue, lappend(), makeNode, ObjectIdGetDatum(), and root.

Referenced by fix_expr_common(), inline_function(), and inline_set_returning_function().

◆ record_plan_type_dependency()

void record_plan_type_dependency ( PlannerInfo root,
Oid  typid 
)

Definition at line 3516 of file setrefs.c.

3517{
3518 /*
3519 * As in record_plan_function_dependency, ignore the possibility that
3520 * someone would change a built-in domain.
3521 */
3522 if (typid >= (Oid) FirstUnpinnedObjectId)
3523 {
3524 PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3525
3526 /*
3527 * It would work to use any syscache on pg_type, but the easiest is
3528 * TYPEOID since we already have the type's OID at hand. Note that
3529 * plancache.c knows we use TYPEOID.
3530 */
3531 inval_item->cacheId = TYPEOID;
3532 inval_item->hashValue = GetSysCacheHashValue1(TYPEOID,
3533 ObjectIdGetDatum(typid));
3534
3535 root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3536 }
3537}

References PlanInvalItem::cacheId, FirstUnpinnedObjectId, GetSysCacheHashValue1, PlanInvalItem::hashValue, lappend(), makeNode, ObjectIdGetDatum(), and root.

Referenced by eval_const_expressions_mutator().

◆ reduce_unique_semijoins()

void reduce_unique_semijoins ( PlannerInfo root)

Definition at line 718 of file analyzejoins.c.

719{
720 ListCell *lc;
721
722 /*
723 * Scan the join_info_list to find semijoins.
724 */
725 foreach(lc, root->join_info_list)
726 {
727 SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
728 int innerrelid;
729 RelOptInfo *innerrel;
730 Relids joinrelids;
731 List *restrictlist;
732
733 /*
734 * Must be a semijoin to a single baserel, else we aren't going to be
735 * able to do anything with it.
736 */
737 if (sjinfo->jointype != JOIN_SEMI)
738 continue;
739
740 if (!bms_get_singleton_member(sjinfo->min_righthand, &innerrelid))
741 continue;
742
743 innerrel = find_base_rel(root, innerrelid);
744
745 /*
746 * Before we trouble to run generate_join_implied_equalities, make a
747 * quick check to eliminate cases in which we will surely be unable to
748 * prove uniqueness of the innerrel.
749 */
750 if (!rel_supports_distinctness(root, innerrel))
751 continue;
752
753 /* Compute the relid set for the join we are considering */
754 joinrelids = bms_union(sjinfo->min_lefthand, sjinfo->min_righthand);
755 Assert(sjinfo->ojrelid == 0); /* SEMI joins don't have RT indexes */
756
757 /*
758 * Since we're only considering a single-rel RHS, any join clauses it
759 * has must be clauses linking it to the semijoin's min_lefthand. We
760 * can also consider EC-derived join clauses.
761 */
762 restrictlist =
764 joinrelids,
765 sjinfo->min_lefthand,
766 innerrel,
767 NULL),
768 innerrel->joininfo);
769
770 /* Test whether the innerrel is unique for those clauses. */
772 joinrelids, sjinfo->min_lefthand, innerrel,
773 JOIN_SEMI, restrictlist, true))
774 continue;
775
776 /* OK, remove the SpecialJoinInfo from the list. */
777 root->join_info_list = foreach_delete_current(root->join_info_list, lc);
778 }
779}
bool innerrel_is_unique(PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist, bool force_cache)
List * generate_join_implied_equalities(PlannerInfo *root, Relids join_relids, Relids outer_relids, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo)
Definition: equivclass.c:1385
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
@ JOIN_SEMI
Definition: nodes.h:307
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
Relids min_righthand
Definition: pathnodes.h:2906
JoinType jointype
Definition: pathnodes.h:2909
Relids min_lefthand
Definition: pathnodes.h:2905

References Assert, bms_get_singleton_member(), bms_union(), find_base_rel(), foreach_delete_current, generate_join_implied_equalities(), innerrel_is_unique(), JOIN_SEMI, RelOptInfo::joininfo, SpecialJoinInfo::jointype, lfirst, list_concat(), SpecialJoinInfo::min_lefthand, SpecialJoinInfo::min_righthand, SpecialJoinInfo::ojrelid, rel_supports_distinctness(), and root.

Referenced by query_planner().

◆ remove_useless_groupby_columns()

void remove_useless_groupby_columns ( PlannerInfo root)

Definition at line 412 of file initsplan.c.

413{
414 Query *parse = root->parse;
415 Bitmapset **groupbyattnos;
416 Bitmapset **surplusvars;
417 bool tryremove = false;
418 ListCell *lc;
419 int relid;
420
421 /* No chance to do anything if there are less than two GROUP BY items */
422 if (list_length(root->processed_groupClause) < 2)
423 return;
424
425 /* Don't fiddle with the GROUP BY clause if the query has grouping sets */
426 if (parse->groupingSets)
427 return;
428
429 /*
430 * Scan the GROUP BY clause to find GROUP BY items that are simple Vars.
431 * Fill groupbyattnos[k] with a bitmapset of the column attnos of RTE k
432 * that are GROUP BY items.
433 */
434 groupbyattnos = (Bitmapset **) palloc0(sizeof(Bitmapset *) *
435 (list_length(parse->rtable) + 1));
436 foreach(lc, root->processed_groupClause)
437 {
439 TargetEntry *tle = get_sortgroupclause_tle(sgc, parse->targetList);
440 Var *var = (Var *) tle->expr;
441
442 /*
443 * Ignore non-Vars and Vars from other query levels.
444 *
445 * XXX in principle, stable expressions containing Vars could also be
446 * removed, if all the Vars are functionally dependent on other GROUP
447 * BY items. But it's not clear that such cases occur often enough to
448 * be worth troubling over.
449 */
450 if (!IsA(var, Var) ||
451 var->varlevelsup > 0)
452 continue;
453
454 /* OK, remember we have this Var */
455 relid = var->varno;
456 Assert(relid <= list_length(parse->rtable));
457
458 /*
459 * If this isn't the first column for this relation then we now have
460 * multiple columns. That means there might be some that can be
461 * removed.
462 */
463 tryremove |= !bms_is_empty(groupbyattnos[relid]);
464 groupbyattnos[relid] = bms_add_member(groupbyattnos[relid],
466 }
467
468 /*
469 * No Vars or didn't find multiple Vars for any relation in the GROUP BY?
470 * If so, nothing can be removed, so don't waste more effort trying.
471 */
472 if (!tryremove)
473 return;
474
475 /*
476 * Consider each relation and see if it is possible to remove some of its
477 * Vars from GROUP BY. For simplicity and speed, we do the actual removal
478 * in a separate pass. Here, we just fill surplusvars[k] with a bitmapset
479 * of the column attnos of RTE k that are removable GROUP BY items.
480 */
481 surplusvars = NULL; /* don't allocate array unless required */
482 relid = 0;
483 foreach(lc, parse->rtable)
484 {
486 RelOptInfo *rel;
487 Bitmapset *relattnos;
488 Bitmapset *best_keycolumns = NULL;
489 int32 best_nkeycolumns = PG_INT32_MAX;
490
491 relid++;
492
493 /* Only plain relations could have primary-key constraints */
494 if (rte->rtekind != RTE_RELATION)
495 continue;
496
497 /*
498 * We must skip inheritance parent tables as some of the child rels
499 * may cause duplicate rows. This cannot happen with partitioned
500 * tables, however.
501 */
502 if (rte->inh && rte->relkind != RELKIND_PARTITIONED_TABLE)
503 continue;
504
505 /* Nothing to do unless this rel has multiple Vars in GROUP BY */
506 relattnos = groupbyattnos[relid];
507 if (bms_membership(relattnos) != BMS_MULTIPLE)
508 continue;
509
510 rel = root->simple_rel_array[relid];
511
512 /*
513 * Now check each index for this relation to see if there are any with
514 * columns which are a proper subset of the grouping columns for this
515 * relation.
516 */
518 {
519 Bitmapset *ind_attnos;
520 bool nulls_check_ok;
521
522 /*
523 * Skip any non-unique and deferrable indexes. Predicate indexes
524 * have not been checked yet, so we must skip those too as the
525 * predOK check that's done later might fail.
526 */
527 if (!index->unique || !index->immediate || index->indpred != NIL)
528 continue;
529
530 /* For simplicity, we currently don't support expression indexes */
531 if (index->indexprs != NIL)
532 continue;
533
534 ind_attnos = NULL;
535 nulls_check_ok = true;
536 for (int i = 0; i < index->nkeycolumns; i++)
537 {
538 /*
539 * We must insist that the index columns are all defined NOT
540 * NULL otherwise duplicate NULLs could exist. However, we
541 * can relax this check when the index is defined with NULLS
542 * NOT DISTINCT as there can only be 1 NULL row, therefore
543 * functional dependency on the unique columns is maintained,
544 * despite the NULL.
545 */
546 if (!index->nullsnotdistinct &&
547 !bms_is_member(index->indexkeys[i],
548 rel->notnullattnums))
549 {
550 nulls_check_ok = false;
551 break;
552 }
553
554 ind_attnos =
555 bms_add_member(ind_attnos,
556 index->indexkeys[i] -
558 }
559
560 if (!nulls_check_ok)
561 continue;
562
563 /*
564 * Skip any indexes where the indexed columns aren't a proper
565 * subset of the GROUP BY.
566 */
567 if (bms_subset_compare(ind_attnos, relattnos) != BMS_SUBSET1)
568 continue;
569
570 /*
571 * Record the attribute numbers from the index with the fewest
572 * columns. This allows the largest number of columns to be
573 * removed from the GROUP BY clause. In the future, we may wish
574 * to consider using the narrowest set of columns and looking at
575 * pg_statistic.stawidth as it might be better to use an index
576 * with, say two INT4s, rather than, say, one long varlena column.
577 */
578 if (index->nkeycolumns < best_nkeycolumns)
579 {
580 best_keycolumns = ind_attnos;
581 best_nkeycolumns = index->nkeycolumns;
582 }
583 }
584
585 /* Did we find a suitable index? */
586 if (!bms_is_empty(best_keycolumns))
587 {
588 /*
589 * To easily remember whether we've found anything to do, we don't
590 * allocate the surplusvars[] array until we find something.
591 */
592 if (surplusvars == NULL)
593 surplusvars = (Bitmapset **) palloc0(sizeof(Bitmapset *) *
594 (list_length(parse->rtable) + 1));
595
596 /* Remember the attnos of the removable columns */
597 surplusvars[relid] = bms_difference(relattnos, best_keycolumns);
598 }
599 }
600
601 /*
602 * If we found any surplus Vars, build a new GROUP BY clause without them.
603 * (Note: this may leave some TLEs with unreferenced ressortgroupref
604 * markings, but that's harmless.)
605 */
606 if (surplusvars != NULL)
607 {
608 List *new_groupby = NIL;
609
610 foreach(lc, root->processed_groupClause)
611 {
613 TargetEntry *tle = get_sortgroupclause_tle(sgc, parse->targetList);
614 Var *var = (Var *) tle->expr;
615
616 /*
617 * New list must include non-Vars, outer Vars, and anything not
618 * marked as surplus.
619 */
620 if (!IsA(var, Var) ||
621 var->varlevelsup > 0 ||
623 surplusvars[var->varno]))
624 new_groupby = lappend(new_groupby, sgc);
625 }
626
627 root->processed_groupClause = new_groupby;
628 }
629}
Bitmapset * bms_difference(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:346
BMS_Comparison bms_subset_compare(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:445
@ BMS_SUBSET1
Definition: bitmapset.h:63
#define PG_INT32_MAX
Definition: c.h:543
int32_t int32
Definition: c.h:481
int i
Definition: isn.c:72
void * palloc0(Size size)
Definition: mcxt.c:1347
#define lfirst_node(type, lc)
Definition: pg_list.h:176
#define foreach_node(type, var, lst)
Definition: pg_list.h:496
Bitmapset * notnullattnums
Definition: pathnodes.h:936
List * indexlist
Definition: pathnodes.h:944
Index varlevelsup
Definition: primnodes.h:280
Definition: type.h:96
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27

References Assert, bms_add_member(), bms_difference(), bms_is_empty, bms_is_member(), bms_membership(), BMS_MULTIPLE, BMS_SUBSET1, bms_subset_compare(), TargetEntry::expr, FirstLowInvalidHeapAttributeNumber, foreach_node, get_sortgroupclause_tle(), i, if(), RelOptInfo::indexlist, RangeTblEntry::inh, IsA, lappend(), lfirst_node, list_length(), NIL, RelOptInfo::notnullattnums, palloc0(), parse(), PG_INT32_MAX, root, RTE_RELATION, RangeTblEntry::rtekind, Var::varattno, Var::varlevelsup, and Var::varno.

Referenced by query_planner().

◆ remove_useless_joins()

List * remove_useless_joins ( PlannerInfo root,
List joinlist 
)

Definition at line 65 of file analyzejoins.c.

66{
67 ListCell *lc;
68
69 /*
70 * We are only interested in relations that are left-joined to, so we can
71 * scan the join_info_list to find them easily.
72 */
73restart:
74 foreach(lc, root->join_info_list)
75 {
76 SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
77 int innerrelid;
78 int nremoved;
79
80 /* Skip if not removable */
81 if (!join_is_removable(root, sjinfo))
82 continue;
83
84 /*
85 * Currently, join_is_removable can only succeed when the sjinfo's
86 * righthand is a single baserel. Remove that rel from the query and
87 * joinlist.
88 */
89 innerrelid = bms_singleton_member(sjinfo->min_righthand);
90
91 remove_rel_from_query(root, innerrelid, sjinfo);
92
93 /* We verify that exactly one reference gets removed from joinlist */
94 nremoved = 0;
95 joinlist = remove_rel_from_joinlist(joinlist, innerrelid, &nremoved);
96 if (nremoved != 1)
97 elog(ERROR, "failed to find relation %d in joinlist", innerrelid);
98
99 /*
100 * We can delete this SpecialJoinInfo from the list too, since it's no
101 * longer of interest. (Since we'll restart the foreach loop
102 * immediately, we don't bother with foreach_delete_current.)
103 */
104 root->join_info_list = list_delete_cell(root->join_info_list, lc);
105
106 /*
107 * Restart the scan. This is necessary to ensure we find all
108 * removable joins independently of ordering of the join_info_list
109 * (note that removal of attr_needed bits may make a join appear
110 * removable that did not before).
111 */
112 goto restart;
113 }
114
115 return joinlist;
116}
static void remove_rel_from_query(PlannerInfo *root, int relid, SpecialJoinInfo *sjinfo)
Definition: analyzejoins.c:299
static List * remove_rel_from_joinlist(List *joinlist, int relid, int *nremoved)
Definition: analyzejoins.c:664
static bool join_is_removable(PlannerInfo *root, SpecialJoinInfo *sjinfo)
Definition: analyzejoins.c:130
int bms_singleton_member(const Bitmapset *a)
Definition: bitmapset.c:672
List * list_delete_cell(List *list, ListCell *cell)
Definition: list.c:841

References bms_singleton_member(), elog, ERROR, join_is_removable(), lfirst, list_delete_cell(), SpecialJoinInfo::min_righthand, remove_rel_from_joinlist(), remove_rel_from_query(), and root.

Referenced by query_planner().

◆ restriction_is_always_false()

bool restriction_is_always_false ( PlannerInfo root,
RestrictInfo restrictinfo 
)

Definition at line 3140 of file initsplan.c.

3142{
3143 /* Check for NullTest qual */
3144 if (IsA(restrictinfo->clause, NullTest))
3145 {
3146 NullTest *nulltest = (NullTest *) restrictinfo->clause;
3147
3148 /* is this NullTest an IS_NULL qual? */
3149 if (nulltest->nulltesttype != IS_NULL)
3150 return false;
3151
3152 return expr_is_nonnullable(root, nulltest->arg);
3153 }
3154
3155 /* If it's an OR, check its sub-clauses */
3156 if (restriction_is_or_clause(restrictinfo))
3157 {
3158 ListCell *lc;
3159
3160 Assert(is_orclause(restrictinfo->orclause));
3161
3162 /*
3163 * Currently, when processing OR expressions, we only return true when
3164 * all of the OR branches are always false. This could perhaps be
3165 * expanded to remove OR branches that are provably false. This may
3166 * be a useful thing to do as it could result in the OR being left
3167 * with a single arg. That's useful as it would allow the OR
3168 * condition to be replaced with its single argument which may allow
3169 * use of an index for faster filtering on the remaining condition.
3170 */
3171 foreach(lc, ((BoolExpr *) restrictinfo->orclause)->args)
3172 {
3173 Node *orarg = (Node *) lfirst(lc);
3174
3175 if (!IsA(orarg, RestrictInfo) ||
3177 return false;
3178 }
3179 return true;
3180 }
3181
3182 return false;
3183}
bool restriction_is_always_false(PlannerInfo *root, RestrictInfo *restrictinfo)
Definition: initsplan.c:3140
static bool expr_is_nonnullable(PlannerInfo *root, Expr *expr)
Definition: initsplan.c:3055
static bool is_orclause(const void *clause)
Definition: nodeFuncs.h:116
@ IS_NULL
Definition: primnodes.h:1952
bool restriction_is_or_clause(RestrictInfo *restrictinfo)
Definition: restrictinfo.c:407
NullTestType nulltesttype
Definition: primnodes.h:1959
Expr * arg
Definition: primnodes.h:1958

References NullTest::arg, Assert, RestrictInfo::clause, expr_is_nonnullable(), if(), IS_NULL, is_orclause(), IsA, lfirst, NullTest::nulltesttype, restriction_is_always_false(), restriction_is_or_clause(), and root.

Referenced by add_base_clause_to_rel(), add_join_clause_to_rels(), apply_child_basequals(), and restriction_is_always_false().

◆ restriction_is_always_true()

bool restriction_is_always_true ( PlannerInfo root,
RestrictInfo restrictinfo 
)

Definition at line 3091 of file initsplan.c.

3093{
3094 /* Check for NullTest qual */
3095 if (IsA(restrictinfo->clause, NullTest))
3096 {
3097 NullTest *nulltest = (NullTest *) restrictinfo->clause;
3098
3099 /* is this NullTest an IS_NOT_NULL qual? */
3100 if (nulltest->nulltesttype != IS_NOT_NULL)
3101 return false;
3102
3103 return expr_is_nonnullable(root, nulltest->arg);
3104 }
3105
3106 /* If it's an OR, check its sub-clauses */
3107 if (restriction_is_or_clause(restrictinfo))
3108 {
3109 ListCell *lc;
3110
3111 Assert(is_orclause(restrictinfo->orclause));
3112
3113 /*
3114 * if any of the given OR branches is provably always true then the
3115 * entire condition is true.
3116 */
3117 foreach(lc, ((BoolExpr *) restrictinfo->orclause)->args)
3118 {
3119 Node *orarg = (Node *) lfirst(lc);
3120
3121 if (!IsA(orarg, RestrictInfo))
3122 continue;
3123
3125 return true;
3126 }
3127 }
3128
3129 return false;
3130}
bool restriction_is_always_true(PlannerInfo *root, RestrictInfo *restrictinfo)
Definition: initsplan.c:3091
@ IS_NOT_NULL
Definition: primnodes.h:1952

References NullTest::arg, Assert, RestrictInfo::clause, expr_is_nonnullable(), if(), IS_NOT_NULL, is_orclause(), IsA, lfirst, NullTest::nulltesttype, restriction_is_always_true(), restriction_is_or_clause(), and root.

Referenced by add_base_clause_to_rel(), add_join_clause_to_rels(), apply_child_basequals(), and restriction_is_always_true().

◆ set_plan_references()

Plan * set_plan_references ( PlannerInfo root,
Plan plan 
)

Definition at line 288 of file setrefs.c.

289{
290 Plan *result;
291 PlannerGlobal *glob = root->glob;
292 int rtoffset = list_length(glob->finalrtable);
293 ListCell *lc;
294
295 /*
296 * Add all the query's RTEs to the flattened rangetable. The live ones
297 * will have their rangetable indexes increased by rtoffset. (Additional
298 * RTEs, not referenced by the Plan tree, might get added after those.)
299 */
301
302 /*
303 * Adjust RT indexes of PlanRowMarks and add to final rowmarks list
304 */
305 foreach(lc, root->rowMarks)
306 {
308 PlanRowMark *newrc;
309
310 /* flat copy is enough since all fields are scalars */
311 newrc = (PlanRowMark *) palloc(sizeof(PlanRowMark));
312 memcpy(newrc, rc, sizeof(PlanRowMark));
313
314 /* adjust indexes ... but *not* the rowmarkId */
315 newrc->rti += rtoffset;
316 newrc->prti += rtoffset;
317
318 glob->finalrowmarks = lappend(glob->finalrowmarks, newrc);
319 }
320
321 /*
322 * Adjust RT indexes of AppendRelInfos and add to final appendrels list.
323 * We assume the AppendRelInfos were built during planning and don't need
324 * to be copied.
325 */
326 foreach(lc, root->append_rel_list)
327 {
329
330 /* adjust RT indexes */
331 appinfo->parent_relid += rtoffset;
332 appinfo->child_relid += rtoffset;
333
334 /*
335 * Rather than adjust the translated_vars entries, just drop 'em.
336 * Neither the executor nor EXPLAIN currently need that data.
337 */
338 appinfo->translated_vars = NIL;
339
340 glob->appendRelations = lappend(glob->appendRelations, appinfo);
341 }
342
343 /* If needed, create workspace for processing AlternativeSubPlans */
344 if (root->hasAlternativeSubPlans)
345 {
346 root->isAltSubplan = (bool *)
347 palloc0(list_length(glob->subplans) * sizeof(bool));
348 root->isUsedSubplan = (bool *)
349 palloc0(list_length(glob->subplans) * sizeof(bool));
350 }
351
352 /* Now fix the Plan tree */
353 result = set_plan_refs(root, plan, rtoffset);
354
355 /*
356 * If we have AlternativeSubPlans, it is likely that we now have some
357 * unreferenced subplans in glob->subplans. To avoid expending cycles on
358 * those subplans later, get rid of them by setting those list entries to
359 * NULL. (Note: we can't do this immediately upon processing an
360 * AlternativeSubPlan, because there may be multiple copies of the
361 * AlternativeSubPlan, and they can get resolved differently.)
362 */
363 if (root->hasAlternativeSubPlans)
364 {
365 foreach(lc, glob->subplans)
366 {
367 int ndx = foreach_current_index(lc);
368
369 /*
370 * If it was used by some AlternativeSubPlan in this query level,
371 * but wasn't selected as best by any AlternativeSubPlan, then we
372 * don't need it. Do not touch subplans that aren't parts of
373 * AlternativeSubPlans.
374 */
375 if (root->isAltSubplan[ndx] && !root->isUsedSubplan[ndx])
376 lfirst(lc) = NULL;
377 }
378 }
379
380 return result;
381}
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing)
Definition: setrefs.c:392
static Plan * set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
Definition: setrefs.c:609
Index child_relid
Definition: pathnodes.h:2981
List * translated_vars
Definition: pathnodes.h:3008
Index parent_relid
Definition: pathnodes.h:2980
Index prti
Definition: plannodes.h:1381
List * subplans
Definition: pathnodes.h:105
List * appendRelations
Definition: pathnodes.h:129
List * finalrowmarks
Definition: pathnodes.h:123
List * finalrtable
Definition: pathnodes.h:117

References add_rtes_to_flat_rtable(), PlannerGlobal::appendRelations, AppendRelInfo::child_relid, PlannerGlobal::finalrowmarks, PlannerGlobal::finalrtable, foreach_current_index, lappend(), lfirst, lfirst_node, list_length(), NIL, palloc(), palloc0(), AppendRelInfo::parent_relid, plan, PlanRowMark::prti, root, PlanRowMark::rti, set_plan_refs(), PlannerGlobal::subplans, and AppendRelInfo::translated_vars.

Referenced by set_subqueryscan_references(), and standard_planner().

◆ trivial_subqueryscan()

bool trivial_subqueryscan ( SubqueryScan plan)

Definition at line 1465 of file setrefs.c.

1466{
1467 int attrno;
1468 ListCell *lp,
1469 *lc;
1470
1471 /* We might have detected this already; in which case reuse the result */
1472 if (plan->scanstatus == SUBQUERY_SCAN_TRIVIAL)
1473 return true;
1474 if (plan->scanstatus == SUBQUERY_SCAN_NONTRIVIAL)
1475 return false;
1476 Assert(plan->scanstatus == SUBQUERY_SCAN_UNKNOWN);
1477 /* Initially, mark the SubqueryScan as non-deletable from the plan tree */
1478 plan->scanstatus = SUBQUERY_SCAN_NONTRIVIAL;
1479
1480 if (plan->scan.plan.qual != NIL)
1481 return false;
1482
1483 if (list_length(plan->scan.plan.targetlist) !=
1484 list_length(plan->subplan->targetlist))
1485 return false; /* tlists not same length */
1486
1487 attrno = 1;
1488 forboth(lp, plan->scan.plan.targetlist, lc, plan->subplan->targetlist)
1489 {
1490 TargetEntry *ptle = (TargetEntry *) lfirst(lp);
1491 TargetEntry *ctle = (TargetEntry *) lfirst(lc);
1492
1493 if (ptle->resjunk != ctle->resjunk)
1494 return false; /* tlist doesn't match junk status */
1495
1496 /*
1497 * We accept either a Var referencing the corresponding element of the
1498 * subplan tlist, or a Const equaling the subplan element. See
1499 * generate_setop_tlist() for motivation.
1500 */
1501 if (ptle->expr && IsA(ptle->expr, Var))
1502 {
1503 Var *var = (Var *) ptle->expr;
1504
1505 Assert(var->varno == plan->scan.scanrelid);
1506 Assert(var->varlevelsup == 0);
1507 if (var->varattno != attrno)
1508 return false; /* out of order */
1509 }
1510 else if (ptle->expr && IsA(ptle->expr, Const))
1511 {
1512 if (!equal(ptle->expr, ctle->expr))
1513 return false;
1514 }
1515 else
1516 return false;
1517
1518 attrno++;
1519 }
1520
1521 /* Re-mark the SubqueryScan as deletable from the plan tree */
1522 plan->scanstatus = SUBQUERY_SCAN_TRIVIAL;
1523
1524 return true;
1525}
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
@ SUBQUERY_SCAN_NONTRIVIAL
Definition: plannodes.h:596
@ SUBQUERY_SCAN_UNKNOWN
Definition: plannodes.h:594
@ SUBQUERY_SCAN_TRIVIAL
Definition: plannodes.h:595

References Assert, equal(), TargetEntry::expr, forboth, IsA, lfirst, list_length(), NIL, plan, SUBQUERY_SCAN_NONTRIVIAL, SUBQUERY_SCAN_TRIVIAL, SUBQUERY_SCAN_UNKNOWN, Var::varattno, Var::varlevelsup, and Var::varno.

Referenced by mark_async_capable_plan(), and set_subqueryscan_references().

Variable Documentation

◆ cursor_tuple_fraction

PGDLLIMPORT double cursor_tuple_fraction
extern

Definition at line 66 of file planner.c.

Referenced by standard_planner().

◆ from_collapse_limit

PGDLLIMPORT int from_collapse_limit
extern

Definition at line 39 of file initsplan.c.

Referenced by deconstruct_recurse().

◆ join_collapse_limit

PGDLLIMPORT int join_collapse_limit
extern

Definition at line 40 of file initsplan.c.

Referenced by deconstruct_recurse().