PostgreSQL Source Code  git master
planmain.h File Reference
#include "nodes/pathnodes.h"
#include "nodes/plannodes.h"
Include dependency graph for planmain.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Macros

#define DEFAULT_CURSOR_TUPLE_FRACTION   0.1
 

Typedefs

typedef void(* query_pathkeys_callback) (PlannerInfo *root, void *extra)
 

Functions

RelOptInfoquery_planner (PlannerInfo *root, query_pathkeys_callback qp_callback, void *qp_extra)
 
void preprocess_minmax_aggregates (PlannerInfo *root)
 
Plancreate_plan (PlannerInfo *root, Path *best_path)
 
ForeignScanmake_foreignscan (List *qptlist, List *qpqual, Index scanrelid, List *fdw_exprs, List *fdw_private, List *fdw_scan_tlist, List *fdw_recheck_quals, Plan *outer_plan)
 
Planchange_plan_targetlist (Plan *subplan, List *tlist, bool tlist_parallel_safe)
 
Planmaterialize_finished_plan (Plan *subplan)
 
bool is_projection_capable_path (Path *path)
 
bool is_projection_capable_plan (Plan *plan)
 
Sortmake_sort_from_sortclauses (List *sortcls, Plan *lefttree)
 
Aggmake_agg (List *tlist, List *qual, AggStrategy aggstrategy, AggSplit aggsplit, int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations, List *groupingSets, List *chain, double dNumGroups, Size transitionSpace, Plan *lefttree)
 
Limitmake_limit (Plan *lefttree, Node *limitOffset, Node *limitCount, LimitOption limitOption, int uniqNumCols, AttrNumber *uniqColIdx, Oid *uniqOperators, Oid *uniqCollations)
 
void add_base_rels_to_query (PlannerInfo *root, Node *jtnode)
 
void add_other_rels_to_query (PlannerInfo *root)
 
void build_base_rel_tlists (PlannerInfo *root, List *final_tlist)
 
void add_vars_to_targetlist (PlannerInfo *root, List *vars, Relids where_needed)
 
void find_lateral_references (PlannerInfo *root)
 
void create_lateral_join_info (PlannerInfo *root)
 
Listdeconstruct_jointree (PlannerInfo *root)
 
void distribute_restrictinfo_to_rels (PlannerInfo *root, RestrictInfo *restrictinfo)
 
RestrictInfoprocess_implied_equality (PlannerInfo *root, Oid opno, Oid collation, Expr *item1, Expr *item2, Relids qualscope, Index security_level, bool both_const)
 
RestrictInfobuild_implied_join_equality (PlannerInfo *root, Oid opno, Oid collation, Expr *item1, Expr *item2, Relids qualscope, Index security_level)
 
void match_foreign_keys_to_quals (PlannerInfo *root)
 
Listremove_useless_joins (PlannerInfo *root, List *joinlist)
 
void reduce_unique_semijoins (PlannerInfo *root)
 
bool query_supports_distinctness (Query *query)
 
bool query_is_distinct_for (Query *query, List *colnos, List *opids)
 
bool innerrel_is_unique (PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist, bool force_cache)
 
Planset_plan_references (PlannerInfo *root, Plan *plan)
 
bool trivial_subqueryscan (SubqueryScan *plan)
 
void record_plan_function_dependency (PlannerInfo *root, Oid funcid)
 
void record_plan_type_dependency (PlannerInfo *root, Oid typid)
 
bool extract_query_dependencies_walker (Node *node, PlannerInfo *context)
 

Variables

PGDLLIMPORT double cursor_tuple_fraction
 
PGDLLIMPORT int from_collapse_limit
 
PGDLLIMPORT int join_collapse_limit
 

Macro Definition Documentation

◆ DEFAULT_CURSOR_TUPLE_FRACTION

#define DEFAULT_CURSOR_TUPLE_FRACTION   0.1

Definition at line 21 of file planmain.h.

Typedef Documentation

◆ query_pathkeys_callback

typedef void(* query_pathkeys_callback) (PlannerInfo *root, void *extra)

Definition at line 25 of file planmain.h.

Function Documentation

◆ add_base_rels_to_query()

void add_base_rels_to_query ( PlannerInfo root,
Node jtnode 
)

Definition at line 158 of file initsplan.c.

159 {
160  if (jtnode == NULL)
161  return;
162  if (IsA(jtnode, RangeTblRef))
163  {
164  int varno = ((RangeTblRef *) jtnode)->rtindex;
165 
166  (void) build_simple_rel(root, varno, NULL);
167  }
168  else if (IsA(jtnode, FromExpr))
169  {
170  FromExpr *f = (FromExpr *) jtnode;
171  ListCell *l;
172 
173  foreach(l, f->fromlist)
174  add_base_rels_to_query(root, lfirst(l));
175  }
176  else if (IsA(jtnode, JoinExpr))
177  {
178  JoinExpr *j = (JoinExpr *) jtnode;
179 
180  add_base_rels_to_query(root, j->larg);
181  add_base_rels_to_query(root, j->rarg);
182  }
183  else
184  elog(ERROR, "unrecognized node type: %d",
185  (int) nodeTag(jtnode));
186 }
#define ERROR
Definition: elog.h:39
void add_base_rels_to_query(PlannerInfo *root, Node *jtnode)
Definition: initsplan.c:158
int j
Definition: isn.c:74
#define IsA(nodeptr, _type_)
Definition: nodes.h:179
#define nodeTag(nodeptr)
Definition: nodes.h:133
#define lfirst(lc)
Definition: pg_list.h:172
RelOptInfo * build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent)
Definition: relnode.c:191
List * fromlist
Definition: primnodes.h:2004

References build_simple_rel(), elog(), ERROR, FromExpr::fromlist, IsA, j, JoinTreeItem::jtnode, lfirst, and nodeTag.

Referenced by query_planner().

◆ add_other_rels_to_query()

void add_other_rels_to_query ( PlannerInfo root)

Definition at line 196 of file initsplan.c.

197 {
198  int rti;
199 
200  for (rti = 1; rti < root->simple_rel_array_size; rti++)
201  {
202  RelOptInfo *rel = root->simple_rel_array[rti];
203  RangeTblEntry *rte = root->simple_rte_array[rti];
204 
205  /* there may be empty slots corresponding to non-baserel RTEs */
206  if (rel == NULL)
207  continue;
208 
209  /* Ignore any "otherrels" that were already added. */
210  if (rel->reloptkind != RELOPT_BASEREL)
211  continue;
212 
213  /* If it's marked as inheritable, look for children. */
214  if (rte->inh)
215  expand_inherited_rtentry(root, rel, rte, rti);
216  }
217 }
void expand_inherited_rtentry(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte, Index rti)
Definition: inherit.c:86
@ RELOPT_BASEREL
Definition: pathnodes.h:812
int simple_rel_array_size
Definition: pathnodes.h:229
RelOptKind reloptkind
Definition: pathnodes.h:850

References expand_inherited_rtentry(), RangeTblEntry::inh, RELOPT_BASEREL, RelOptInfo::reloptkind, and PlannerInfo::simple_rel_array_size.

Referenced by query_planner().

◆ add_vars_to_targetlist()

void add_vars_to_targetlist ( PlannerInfo root,
List vars,
Relids  where_needed 
)

Definition at line 280 of file initsplan.c.

282 {
283  ListCell *temp;
284 
285  Assert(!bms_is_empty(where_needed));
286 
287  foreach(temp, vars)
288  {
289  Node *node = (Node *) lfirst(temp);
290 
291  if (IsA(node, Var))
292  {
293  Var *var = (Var *) node;
294  RelOptInfo *rel = find_base_rel(root, var->varno);
295  int attno = var->varattno;
296 
297  if (bms_is_subset(where_needed, rel->relids))
298  continue;
299  Assert(attno >= rel->min_attr && attno <= rel->max_attr);
300  attno -= rel->min_attr;
301  if (rel->attr_needed[attno] == NULL)
302  {
303  /*
304  * Variable not yet requested, so add to rel's targetlist.
305  *
306  * The value available at the rel's scan level has not been
307  * nulled by any outer join, so drop its varnullingrels.
308  * (We'll put those back as we climb up the join tree.)
309  */
310  var = copyObject(var);
311  var->varnullingrels = NULL;
312  rel->reltarget->exprs = lappend(rel->reltarget->exprs, var);
313  /* reltarget cost and width will be computed later */
314  }
315  rel->attr_needed[attno] = bms_add_members(rel->attr_needed[attno],
316  where_needed);
317  }
318  else if (IsA(node, PlaceHolderVar))
319  {
320  PlaceHolderVar *phv = (PlaceHolderVar *) node;
321  PlaceHolderInfo *phinfo = find_placeholder_info(root, phv);
322 
323  phinfo->ph_needed = bms_add_members(phinfo->ph_needed,
324  where_needed);
325  }
326  else
327  elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
328  }
329 }
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:332
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:818
#define bms_is_empty(a)
Definition: bitmapset.h:105
Assert(fmt[strlen(fmt) - 1] !='\n')
List * lappend(List *list, void *datum)
Definition: list.c:338
#define copyObject(obj)
Definition: nodes.h:244
PlaceHolderInfo * find_placeholder_info(PlannerInfo *root, PlaceHolderVar *phv)
Definition: placeholder.c:83
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:405
Definition: nodes.h:129
List * exprs
Definition: pathnodes.h:1501
Relids ph_needed
Definition: pathnodes.h:3040
Relids relids
Definition: pathnodes.h:856
struct PathTarget * reltarget
Definition: pathnodes.h:878
AttrNumber min_attr
Definition: pathnodes.h:909
Definition: primnodes.h:226
AttrNumber varattno
Definition: primnodes.h:238
int varno
Definition: primnodes.h:233
Definition: regcomp.c:281

References Assert(), bms_add_members(), bms_is_empty, bms_is_subset(), copyObject, elog(), ERROR, PathTarget::exprs, find_base_rel(), find_placeholder_info(), IsA, lappend(), lfirst, RelOptInfo::min_attr, nodeTag, PlaceHolderInfo::ph_needed, RelOptInfo::relids, RelOptInfo::reltarget, Var::varattno, and Var::varno.

Referenced by build_base_rel_tlists(), distribute_qual_to_rels(), expand_inherited_rtentry(), extract_lateral_references(), fix_placeholder_input_needed_levels(), generate_base_implied_equalities_no_const(), and process_implied_equality().

◆ build_base_rel_tlists()

void build_base_rel_tlists ( PlannerInfo root,
List final_tlist 
)

Definition at line 235 of file initsplan.c.

236 {
237  List *tlist_vars = pull_var_clause((Node *) final_tlist,
241 
242  if (tlist_vars != NIL)
243  {
244  add_vars_to_targetlist(root, tlist_vars, bms_make_singleton(0));
245  list_free(tlist_vars);
246  }
247 
248  /*
249  * If there's a HAVING clause, we'll need the Vars it uses, too. Note
250  * that HAVING can contain Aggrefs but not WindowFuncs.
251  */
252  if (root->parse->havingQual)
253  {
254  List *having_vars = pull_var_clause(root->parse->havingQual,
257 
258  if (having_vars != NIL)
259  {
260  add_vars_to_targetlist(root, having_vars,
261  bms_make_singleton(0));
262  list_free(having_vars);
263  }
264  }
265 }
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:186
void add_vars_to_targetlist(PlannerInfo *root, List *vars, Relids where_needed)
Definition: initsplan.c:280
void list_free(List *list)
Definition: list.c:1545
#define PVC_RECURSE_AGGREGATES
Definition: optimizer.h:184
#define PVC_RECURSE_WINDOWFUNCS
Definition: optimizer.h:186
#define PVC_INCLUDE_PLACEHOLDERS
Definition: optimizer.h:187
#define NIL
Definition: pg_list.h:68
Definition: pg_list.h:54
Query * parse
Definition: pathnodes.h:199
Node * havingQual
Definition: parsenodes.h:203
List * pull_var_clause(Node *node, int flags)
Definition: var.c:607

References add_vars_to_targetlist(), bms_make_singleton(), Query::havingQual, list_free(), NIL, PlannerInfo::parse, pull_var_clause(), PVC_INCLUDE_PLACEHOLDERS, PVC_RECURSE_AGGREGATES, and PVC_RECURSE_WINDOWFUNCS.

Referenced by distribute_row_identity_vars(), and query_planner().

◆ build_implied_join_equality()

RestrictInfo* build_implied_join_equality ( PlannerInfo root,
Oid  opno,
Oid  collation,
Expr item1,
Expr item2,
Relids  qualscope,
Index  security_level 
)

Definition at line 2851 of file initsplan.c.

2858 {
2859  RestrictInfo *restrictinfo;
2860  Expr *clause;
2861 
2862  /*
2863  * Build the new clause. Copy to ensure it shares no substructure with
2864  * original (this is necessary in case there are subselects in there...)
2865  */
2866  clause = make_opclause(opno,
2867  BOOLOID, /* opresulttype */
2868  false, /* opretset */
2869  copyObject(item1),
2870  copyObject(item2),
2871  InvalidOid,
2872  collation);
2873 
2874  /*
2875  * Build the RestrictInfo node itself.
2876  */
2877  restrictinfo = make_restrictinfo(root,
2878  clause,
2879  true, /* is_pushed_down */
2880  false, /* !has_clone */
2881  false, /* !is_clone */
2882  false, /* pseudoconstant */
2883  security_level, /* security_level */
2884  qualscope, /* required_relids */
2885  NULL, /* incompatible_relids */
2886  NULL); /* outer_relids */
2887 
2888  /* Set mergejoinability/hashjoinability flags */
2889  check_mergejoinable(restrictinfo);
2890  check_hashjoinable(restrictinfo);
2891  check_memoizable(restrictinfo);
2892 
2893  return restrictinfo;
2894 }
static void check_hashjoinable(RestrictInfo *restrictinfo)
Definition: initsplan.c:3162
static void check_mergejoinable(RestrictInfo *restrictinfo)
Definition: initsplan.c:3125
static void check_memoizable(RestrictInfo *restrictinfo)
Definition: initsplan.c:3190
Expr * make_opclause(Oid opno, Oid opresulttype, bool opretset, Expr *leftop, Expr *rightop, Oid opcollid, Oid inputcollid)
Definition: makefuncs.c:613
#define InvalidOid
Definition: postgres_ext.h:36
RestrictInfo * make_restrictinfo(PlannerInfo *root, Expr *clause, bool is_pushed_down, bool has_clone, bool is_clone, bool pseudoconstant, Index security_level, Relids required_relids, Relids incompatible_relids, Relids outer_relids)
Definition: restrictinfo.c:63

References check_hashjoinable(), check_memoizable(), check_mergejoinable(), copyObject, InvalidOid, make_opclause(), make_restrictinfo(), and JoinTreeItem::qualscope.

Referenced by create_join_clause(), reconsider_full_join_clause(), and reconsider_outer_join_clause().

◆ change_plan_targetlist()

Plan* change_plan_targetlist ( Plan subplan,
List tlist,
bool  tlist_parallel_safe 
)

Definition at line 2131 of file createplan.c.

2132 {
2133  /*
2134  * If the top plan node can't do projections and its existing target list
2135  * isn't already what we need, we need to add a Result node to help it
2136  * along.
2137  */
2138  if (!is_projection_capable_plan(subplan) &&
2139  !tlist_same_exprs(tlist, subplan->targetlist))
2140  subplan = inject_projection_plan(subplan, tlist,
2141  subplan->parallel_safe &&
2142  tlist_parallel_safe);
2143  else
2144  {
2145  /* Else we can just replace the plan node's tlist */
2146  subplan->targetlist = tlist;
2147  subplan->parallel_safe &= tlist_parallel_safe;
2148  }
2149  return subplan;
2150 }
bool is_projection_capable_plan(Plan *plan)
Definition: createplan.c:7206
static Plan * inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe)
Definition: createplan.c:2099
bool parallel_safe
Definition: plannodes.h:142
List * targetlist
Definition: plannodes.h:153
bool tlist_same_exprs(List *tlist1, List *tlist2)
Definition: tlist.c:218

References inject_projection_plan(), is_projection_capable_plan(), Plan::parallel_safe, Plan::targetlist, and tlist_same_exprs().

Referenced by create_unique_plan(), and postgresGetForeignPlan().

◆ create_lateral_join_info()

void create_lateral_join_info ( PlannerInfo root)

Definition at line 502 of file initsplan.c.

503 {
504  bool found_laterals = false;
505  Index rti;
506  ListCell *lc;
507 
508  /* We need do nothing if the query contains no LATERAL RTEs */
509  if (!root->hasLateralRTEs)
510  return;
511 
512  /* We'll need to have the ph_eval_at values for PlaceHolderVars */
513  Assert(root->placeholdersFrozen);
514 
515  /*
516  * Examine all baserels (the rel array has been set up by now).
517  */
518  for (rti = 1; rti < root->simple_rel_array_size; rti++)
519  {
520  RelOptInfo *brel = root->simple_rel_array[rti];
521  Relids lateral_relids;
522 
523  /* there may be empty slots corresponding to non-baserel RTEs */
524  if (brel == NULL)
525  continue;
526 
527  Assert(brel->relid == rti); /* sanity check on array */
528 
529  /* ignore RTEs that are "other rels" */
530  if (brel->reloptkind != RELOPT_BASEREL)
531  continue;
532 
533  lateral_relids = NULL;
534 
535  /* consider each laterally-referenced Var or PHV */
536  foreach(lc, brel->lateral_vars)
537  {
538  Node *node = (Node *) lfirst(lc);
539 
540  if (IsA(node, Var))
541  {
542  Var *var = (Var *) node;
543 
544  found_laterals = true;
545  lateral_relids = bms_add_member(lateral_relids,
546  var->varno);
547  }
548  else if (IsA(node, PlaceHolderVar))
549  {
550  PlaceHolderVar *phv = (PlaceHolderVar *) node;
551  PlaceHolderInfo *phinfo = find_placeholder_info(root, phv);
552 
553  found_laterals = true;
554  lateral_relids = bms_add_members(lateral_relids,
555  phinfo->ph_eval_at);
556  }
557  else
558  Assert(false);
559  }
560 
561  /* We now have all the simple lateral refs from this rel */
562  brel->direct_lateral_relids = lateral_relids;
563  brel->lateral_relids = bms_copy(lateral_relids);
564  }
565 
566  /*
567  * Now check for lateral references within PlaceHolderVars, and mark their
568  * eval_at rels as having lateral references to the source rels.
569  *
570  * For a PHV that is due to be evaluated at a baserel, mark its source(s)
571  * as direct lateral dependencies of the baserel (adding onto the ones
572  * recorded above). If it's due to be evaluated at a join, mark its
573  * source(s) as indirect lateral dependencies of each baserel in the join,
574  * ie put them into lateral_relids but not direct_lateral_relids. This is
575  * appropriate because we can't put any such baserel on the outside of a
576  * join to one of the PHV's lateral dependencies, but on the other hand we
577  * also can't yet join it directly to the dependency.
578  */
579  foreach(lc, root->placeholder_list)
580  {
581  PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
582  Relids eval_at = phinfo->ph_eval_at;
583  int varno;
584 
585  if (phinfo->ph_lateral == NULL)
586  continue; /* PHV is uninteresting if no lateral refs */
587 
588  found_laterals = true;
589 
590  if (bms_get_singleton_member(eval_at, &varno))
591  {
592  /* Evaluation site is a baserel */
593  RelOptInfo *brel = find_base_rel(root, varno);
594 
595  brel->direct_lateral_relids =
597  phinfo->ph_lateral);
598  brel->lateral_relids =
600  phinfo->ph_lateral);
601  }
602  else
603  {
604  /* Evaluation site is a join */
605  varno = -1;
606  while ((varno = bms_next_member(eval_at, varno)) >= 0)
607  {
608  RelOptInfo *brel = find_base_rel_ignore_join(root, varno);
609 
610  if (brel == NULL)
611  continue; /* ignore outer joins in eval_at */
613  phinfo->ph_lateral);
614  }
615  }
616  }
617 
618  /*
619  * If we found no actual lateral references, we're done; but reset the
620  * hasLateralRTEs flag to avoid useless work later.
621  */
622  if (!found_laterals)
623  {
624  root->hasLateralRTEs = false;
625  return;
626  }
627 
628  /*
629  * Calculate the transitive closure of the lateral_relids sets, so that
630  * they describe both direct and indirect lateral references. If relation
631  * X references Y laterally, and Y references Z laterally, then we will
632  * have to scan X on the inside of a nestloop with Z, so for all intents
633  * and purposes X is laterally dependent on Z too.
634  *
635  * This code is essentially Warshall's algorithm for transitive closure.
636  * The outer loop considers each baserel, and propagates its lateral
637  * dependencies to those baserels that have a lateral dependency on it.
638  */
639  for (rti = 1; rti < root->simple_rel_array_size; rti++)
640  {
641  RelOptInfo *brel = root->simple_rel_array[rti];
642  Relids outer_lateral_relids;
643  Index rti2;
644 
645  if (brel == NULL || brel->reloptkind != RELOPT_BASEREL)
646  continue;
647 
648  /* need not consider baserel further if it has no lateral refs */
649  outer_lateral_relids = brel->lateral_relids;
650  if (outer_lateral_relids == NULL)
651  continue;
652 
653  /* else scan all baserels */
654  for (rti2 = 1; rti2 < root->simple_rel_array_size; rti2++)
655  {
656  RelOptInfo *brel2 = root->simple_rel_array[rti2];
657 
658  if (brel2 == NULL || brel2->reloptkind != RELOPT_BASEREL)
659  continue;
660 
661  /* if brel2 has lateral ref to brel, propagate brel's refs */
662  if (bms_is_member(rti, brel2->lateral_relids))
664  outer_lateral_relids);
665  }
666  }
667 
668  /*
669  * Now that we've identified all lateral references, mark each baserel
670  * with the set of relids of rels that reference it laterally (possibly
671  * indirectly) --- that is, the inverse mapping of lateral_relids.
672  */
673  for (rti = 1; rti < root->simple_rel_array_size; rti++)
674  {
675  RelOptInfo *brel = root->simple_rel_array[rti];
676  Relids lateral_relids;
677  int rti2;
678 
679  if (brel == NULL || brel->reloptkind != RELOPT_BASEREL)
680  continue;
681 
682  /* Nothing to do at rels with no lateral refs */
683  lateral_relids = brel->lateral_relids;
684  if (bms_is_empty(lateral_relids))
685  continue;
686 
687  /* No rel should have a lateral dependency on itself */
688  Assert(!bms_is_member(rti, lateral_relids));
689 
690  /* Mark this rel's referencees */
691  rti2 = -1;
692  while ((rti2 = bms_next_member(lateral_relids, rti2)) >= 0)
693  {
694  RelOptInfo *brel2 = root->simple_rel_array[rti2];
695 
696  if (brel2 == NULL)
697  continue; /* must be an OJ */
698 
699  Assert(brel2->reloptkind == RELOPT_BASEREL);
700  brel2->lateral_referencers =
701  bms_add_member(brel2->lateral_referencers, rti);
702  }
703  }
704 }
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1039
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:444
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:755
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:74
bool bms_get_singleton_member(const Bitmapset *a, int *member)
Definition: bitmapset.c:634
unsigned int Index
Definition: c.h:598
RelOptInfo * find_base_rel_ignore_join(PlannerInfo *root, int relid)
Definition: relnode.c:433
Relids ph_lateral
Definition: pathnodes.h:3037
Relids ph_eval_at
Definition: pathnodes.h:3034
bool hasLateralRTEs
Definition: pathnodes.h:491
List * placeholder_list
Definition: pathnodes.h:371
bool placeholdersFrozen
Definition: pathnodes.h:499
Index relid
Definition: pathnodes.h:903
List * lateral_vars
Definition: pathnodes.h:919
Relids lateral_relids
Definition: pathnodes.h:898
Relids lateral_referencers
Definition: pathnodes.h:921
Relids direct_lateral_relids
Definition: pathnodes.h:896

References Assert(), bms_add_member(), bms_add_members(), bms_copy(), bms_get_singleton_member(), bms_is_empty, bms_is_member(), bms_next_member(), RelOptInfo::direct_lateral_relids, find_base_rel(), find_base_rel_ignore_join(), find_placeholder_info(), PlannerInfo::hasLateralRTEs, IsA, RelOptInfo::lateral_referencers, RelOptInfo::lateral_relids, RelOptInfo::lateral_vars, lfirst, PlaceHolderInfo::ph_eval_at, PlaceHolderInfo::ph_lateral, PlannerInfo::placeholder_list, PlannerInfo::placeholdersFrozen, RelOptInfo::relid, RELOPT_BASEREL, RelOptInfo::reloptkind, PlannerInfo::simple_rel_array_size, and Var::varno.

Referenced by query_planner().

◆ create_plan()

Plan* create_plan ( PlannerInfo root,
Path best_path 
)

Definition at line 335 of file createplan.c.

336 {
337  Plan *plan;
338 
339  /* plan_params should not be in use in current query level */
340  Assert(root->plan_params == NIL);
341 
342  /* Initialize this module's workspace in PlannerInfo */
343  root->curOuterRels = NULL;
344  root->curOuterParams = NIL;
345 
346  /* Recursively process the path tree, demanding the correct tlist result */
347  plan = create_plan_recurse(root, best_path, CP_EXACT_TLIST);
348 
349  /*
350  * Make sure the topmost plan node's targetlist exposes the original
351  * column names and other decorative info. Targetlists generated within
352  * the planner don't bother with that stuff, but we must have it on the
353  * top-level tlist seen at execution time. However, ModifyTable plan
354  * nodes don't have a tlist matching the querytree targetlist.
355  */
356  if (!IsA(plan, ModifyTable))
357  apply_tlist_labeling(plan->targetlist, root->processed_tlist);
358 
359  /*
360  * Attach any initPlans created in this query level to the topmost plan
361  * node. (In principle the initplans could go in any plan node at or
362  * above where they're referenced, but there seems no reason to put them
363  * any lower than the topmost node for the query level. Also, see
364  * comments for SS_finalize_plan before you try to change this.)
365  */
366  SS_attach_initplans(root, plan);
367 
368  /* Check we successfully assigned all NestLoopParams to plan nodes */
369  if (root->curOuterParams != NIL)
370  elog(ERROR, "failed to assign all NestLoopParams to plan nodes");
371 
372  /*
373  * Reset plan_params to ensure param IDs used for nestloop params are not
374  * re-used later
375  */
376  root->plan_params = NIL;
377 
378  return plan;
379 }
static Plan * create_plan_recurse(PlannerInfo *root, Path *best_path, int flags)
Definition: createplan.c:386
#define CP_EXACT_TLIST
Definition: createplan.c:68
#define plan(x)
Definition: pg_regress.c:154
List * processed_tlist
Definition: pathnodes.h:453
Relids curOuterRels
Definition: pathnodes.h:529
List * plan_params
Definition: pathnodes.h:217
List * curOuterParams
Definition: pathnodes.h:531
void SS_attach_initplans(PlannerInfo *root, Plan *plan)
Definition: subselect.c:2191
void apply_tlist_labeling(List *dest_tlist, List *src_tlist)
Definition: tlist.c:318

References apply_tlist_labeling(), Assert(), CP_EXACT_TLIST, create_plan_recurse(), PlannerInfo::curOuterParams, PlannerInfo::curOuterRels, elog(), ERROR, IsA, NIL, plan, PlannerInfo::plan_params, PlannerInfo::processed_tlist, and SS_attach_initplans().

Referenced by create_minmaxagg_plan(), create_subqueryscan_plan(), make_subplan(), SS_process_ctes(), and standard_planner().

◆ deconstruct_jointree()

List* deconstruct_jointree ( PlannerInfo root)

Definition at line 731 of file initsplan.c.

732 {
733  List *result;
734  JoinDomain *top_jdomain;
735  List *item_list = NIL;
736  ListCell *lc;
737 
738  /*
739  * After this point, no more PlaceHolderInfos may be made, because
740  * make_outerjoininfo requires all active placeholders to be present in
741  * root->placeholder_list while we crawl up the join tree.
742  */
743  root->placeholdersFrozen = true;
744 
745  /* Fetch the already-created top-level join domain for the query */
746  top_jdomain = linitial_node(JoinDomain, root->join_domains);
747  top_jdomain->jd_relids = NULL; /* filled during deconstruct_recurse */
748 
749  /* Start recursion at top of jointree */
750  Assert(root->parse->jointree != NULL &&
751  IsA(root->parse->jointree, FromExpr));
752 
753  /* These are filled as we scan the jointree */
754  root->all_baserels = NULL;
755  root->outer_join_rels = NULL;
756 
757  /* Perform the initial scan of the jointree */
758  result = deconstruct_recurse(root, (Node *) root->parse->jointree,
759  top_jdomain, NULL,
760  &item_list);
761 
762  /* Now we can form the value of all_query_rels, too */
764 
765  /* ... which should match what we computed for the top join domain */
766  Assert(bms_equal(root->all_query_rels, top_jdomain->jd_relids));
767 
768  /* Now scan all the jointree nodes again, and distribute quals */
769  foreach(lc, item_list)
770  {
771  JoinTreeItem *jtitem = (JoinTreeItem *) lfirst(lc);
772 
773  deconstruct_distribute(root, jtitem);
774  }
775 
776  /*
777  * If there were any special joins then we may have some postponed LEFT
778  * JOIN clauses to deal with.
779  */
780  if (root->join_info_list)
781  {
782  foreach(lc, item_list)
783  {
784  JoinTreeItem *jtitem = (JoinTreeItem *) lfirst(lc);
785 
786  if (jtitem->oj_joinclauses != NIL)
787  deconstruct_distribute_oj_quals(root, item_list, jtitem);
788  }
789  }
790 
791  /* Don't need the JoinTreeItems any more */
792  list_free_deep(item_list);
793 
794  return result;
795 }
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:94
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:226
static List * deconstruct_recurse(PlannerInfo *root, Node *jtnode, JoinDomain *parent_domain, JoinTreeItem *parent_jtitem, List **item_list)
Definition: initsplan.c:813
static void deconstruct_distribute_oj_quals(PlannerInfo *root, List *jtitems, JoinTreeItem *jtitem)
Definition: initsplan.c:1869
static void deconstruct_distribute(PlannerInfo *root, JoinTreeItem *jtitem)
Definition: initsplan.c:1111
void list_free_deep(List *list)
Definition: list.c:1559
#define linitial_node(type, l)
Definition: pg_list.h:181
Relids jd_relids
Definition: pathnodes.h:1306
List * oj_joinclauses
Definition: initsplan.c:78
Relids all_query_rels
Definition: pathnodes.h:266
Relids outer_join_rels
Definition: pathnodes.h:258
List * join_domains
Definition: pathnodes.h:308
List * join_info_list
Definition: pathnodes.h:337
Relids all_baserels
Definition: pathnodes.h:252
FromExpr * jointree
Definition: parsenodes.h:182

References PlannerInfo::all_baserels, PlannerInfo::all_query_rels, Assert(), bms_equal(), bms_union(), deconstruct_distribute(), deconstruct_distribute_oj_quals(), deconstruct_recurse(), IsA, JoinDomain::jd_relids, PlannerInfo::join_domains, PlannerInfo::join_info_list, Query::jointree, lfirst, linitial_node, list_free_deep(), NIL, JoinTreeItem::oj_joinclauses, PlannerInfo::outer_join_rels, PlannerInfo::parse, and PlannerInfo::placeholdersFrozen.

Referenced by query_planner().

◆ distribute_restrictinfo_to_rels()

void distribute_restrictinfo_to_rels ( PlannerInfo root,
RestrictInfo restrictinfo 
)

Definition at line 2621 of file initsplan.c.

2623 {
2624  Relids relids = restrictinfo->required_relids;
2625  RelOptInfo *rel;
2626 
2627  switch (bms_membership(relids))
2628  {
2629  case BMS_SINGLETON:
2630 
2631  /*
2632  * There is only one relation participating in the clause, so it
2633  * is a restriction clause for that relation.
2634  */
2635  rel = find_base_rel(root, bms_singleton_member(relids));
2636 
2637  /* Add clause to rel's restriction list */
2639  restrictinfo);
2640  /* Update security level info */
2642  restrictinfo->security_level);
2643  break;
2644  case BMS_MULTIPLE:
2645 
2646  /*
2647  * The clause is a join clause, since there is more than one rel
2648  * in its relid set.
2649  */
2650 
2651  /*
2652  * Check for hashjoinable operators. (We don't bother setting the
2653  * hashjoin info except in true join clauses.)
2654  */
2655  check_hashjoinable(restrictinfo);
2656 
2657  /*
2658  * Likewise, check if the clause is suitable to be used with a
2659  * Memoize node to cache inner tuples during a parameterized
2660  * nested loop.
2661  */
2662  check_memoizable(restrictinfo);
2663 
2664  /*
2665  * Add clause to the join lists of all the relevant relations.
2666  */
2667  add_join_clause_to_rels(root, restrictinfo, relids);
2668  break;
2669  default:
2670 
2671  /*
2672  * clause references no rels, and therefore we have no place to
2673  * attach it. Shouldn't get here if callers are working properly.
2674  */
2675  elog(ERROR, "cannot cope with variable-free clause");
2676  break;
2677  }
2678 }
int bms_singleton_member(const Bitmapset *a)
Definition: bitmapset.c:596
BMS_Membership bms_membership(const Bitmapset *a)
Definition: bitmapset.c:691
@ BMS_SINGLETON
Definition: bitmapset.h:72
@ BMS_MULTIPLE
Definition: bitmapset.h:73
#define Min(x, y)
Definition: c.h:988
void add_join_clause_to_rels(PlannerInfo *root, RestrictInfo *restrictinfo, Relids join_relids)
Definition: joininfo.c:95
List * baserestrictinfo
Definition: pathnodes.h:964
Index baserestrict_min_security
Definition: pathnodes.h:968
Index security_level
Definition: pathnodes.h:2538
Relids required_relids
Definition: pathnodes.h:2547

References add_join_clause_to_rels(), RelOptInfo::baserestrict_min_security, RelOptInfo::baserestrictinfo, bms_membership(), BMS_MULTIPLE, BMS_SINGLETON, bms_singleton_member(), check_hashjoinable(), check_memoizable(), elog(), ERROR, find_base_rel(), lappend(), Min, RestrictInfo::required_relids, and RestrictInfo::security_level.

Referenced by distribute_qual_to_rels(), generate_base_implied_equalities_broken(), generate_base_implied_equalities_const(), process_implied_equality(), reconsider_outer_join_clauses(), and remove_rel_from_query().

◆ extract_query_dependencies_walker()

bool extract_query_dependencies_walker ( Node node,
PlannerInfo context 
)

Definition at line 3525 of file setrefs.c.

3526 {
3527  if (node == NULL)
3528  return false;
3529  Assert(!IsA(node, PlaceHolderVar));
3530  if (IsA(node, Query))
3531  {
3532  Query *query = (Query *) node;
3533  ListCell *lc;
3534 
3535  if (query->commandType == CMD_UTILITY)
3536  {
3537  /*
3538  * Ignore utility statements, except those (such as EXPLAIN) that
3539  * contain a parsed-but-not-planned query.
3540  */
3541  query = UtilityContainsQuery(query->utilityStmt);
3542  if (query == NULL)
3543  return false;
3544  }
3545 
3546  /* Remember if any Query has RLS quals applied by rewriter */
3547  if (query->hasRowSecurity)
3548  context->glob->dependsOnRole = true;
3549 
3550  /* Collect relation OIDs in this Query's rtable */
3551  foreach(lc, query->rtable)
3552  {
3553  RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
3554 
3555  if (rte->rtekind == RTE_RELATION ||
3556  (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)) ||
3557  (rte->rtekind == RTE_NAMEDTUPLESTORE && OidIsValid(rte->relid)))
3558  context->glob->relationOids =
3559  lappend_oid(context->glob->relationOids, rte->relid);
3560  }
3561 
3562  /* And recurse into the query's subexpressions */
3564  (void *) context, 0);
3565  }
3566  /* Extract function dependencies and check for regclass Consts */
3567  fix_expr_common(context, node);
3569  (void *) context);
3570 }
#define OidIsValid(objectId)
Definition: c.h:759
List * lappend_oid(List *list, Oid datum)
Definition: list.c:374
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:156
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:151
@ CMD_UTILITY
Definition: nodes.h:281
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1021
@ RTE_SUBQUERY
Definition: parsenodes.h:1015
@ RTE_RELATION
Definition: parsenodes.h:1014
static void fix_expr_common(PlannerInfo *root, Node *node)
Definition: setrefs.c:1939
bool extract_query_dependencies_walker(Node *node, PlannerInfo *context)
Definition: setrefs.c:3525
bool dependsOnRole
Definition: pathnodes.h:150
List * relationOids
Definition: pathnodes.h:129
PlannerGlobal * glob
Definition: pathnodes.h:202
List * rtable
Definition: parsenodes.h:175
CmdType commandType
Definition: parsenodes.h:128
Node * utilityStmt
Definition: parsenodes.h:143
RTEKind rtekind
Definition: parsenodes.h:1033
Query * UtilityContainsQuery(Node *parsetree)
Definition: utility.c:2180

References Assert(), CMD_UTILITY, Query::commandType, PlannerGlobal::dependsOnRole, expression_tree_walker, fix_expr_common(), PlannerInfo::glob, IsA, lappend_oid(), lfirst, OidIsValid, query_tree_walker, PlannerGlobal::relationOids, RangeTblEntry::relid, Query::rtable, RTE_NAMEDTUPLESTORE, RTE_RELATION, RTE_SUBQUERY, RangeTblEntry::rtekind, UtilityContainsQuery(), and Query::utilityStmt.

Referenced by expression_planner_with_deps(), and extract_query_dependencies().

◆ find_lateral_references()

void find_lateral_references ( PlannerInfo root)

Definition at line 359 of file initsplan.c.

360 {
361  Index rti;
362 
363  /* We need do nothing if the query contains no LATERAL RTEs */
364  if (!root->hasLateralRTEs)
365  return;
366 
367  /*
368  * Examine all baserels (the rel array has been set up by now).
369  */
370  for (rti = 1; rti < root->simple_rel_array_size; rti++)
371  {
372  RelOptInfo *brel = root->simple_rel_array[rti];
373 
374  /* there may be empty slots corresponding to non-baserel RTEs */
375  if (brel == NULL)
376  continue;
377 
378  Assert(brel->relid == rti); /* sanity check on array */
379 
380  /*
381  * This bit is less obvious than it might look. We ignore appendrel
382  * otherrels and consider only their parent baserels. In a case where
383  * a LATERAL-containing UNION ALL subquery was pulled up, it is the
384  * otherrel that is actually going to be in the plan. However, we
385  * want to mark all its lateral references as needed by the parent,
386  * because it is the parent's relid that will be used for join
387  * planning purposes. And the parent's RTE will contain all the
388  * lateral references we need to know, since the pulled-up member is
389  * nothing but a copy of parts of the original RTE's subquery. We
390  * could visit the parent's children instead and transform their
391  * references back to the parent's relid, but it would be much more
392  * complicated for no real gain. (Important here is that the child
393  * members have not yet received any processing beyond being pulled
394  * up.) Similarly, in appendrels created by inheritance expansion,
395  * it's sufficient to look at the parent relation.
396  */
397 
398  /* ignore RTEs that are "other rels" */
399  if (brel->reloptkind != RELOPT_BASEREL)
400  continue;
401 
402  extract_lateral_references(root, brel, rti);
403  }
404 }
static void extract_lateral_references(PlannerInfo *root, RelOptInfo *brel, Index rtindex)
Definition: initsplan.c:407

References Assert(), extract_lateral_references(), PlannerInfo::hasLateralRTEs, RelOptInfo::relid, RELOPT_BASEREL, RelOptInfo::reloptkind, and PlannerInfo::simple_rel_array_size.

Referenced by query_planner().

◆ innerrel_is_unique()

bool innerrel_is_unique ( PlannerInfo root,
Relids  joinrelids,
Relids  outerrelids,
RelOptInfo innerrel,
JoinType  jointype,
List restrictlist,
bool  force_cache 
)

Definition at line 1104 of file analyzejoins.c.

1111 {
1112  MemoryContext old_context;
1113  ListCell *lc;
1114 
1115  /* Certainly can't prove uniqueness when there are no joinclauses */
1116  if (restrictlist == NIL)
1117  return false;
1118 
1119  /*
1120  * Make a quick check to eliminate cases in which we will surely be unable
1121  * to prove uniqueness of the innerrel.
1122  */
1123  if (!rel_supports_distinctness(root, innerrel))
1124  return false;
1125 
1126  /*
1127  * Query the cache to see if we've managed to prove that innerrel is
1128  * unique for any subset of this outerrel. We don't need an exact match,
1129  * as extra outerrels can't make the innerrel any less unique (or more
1130  * formally, the restrictlist for a join to a superset outerrel must be a
1131  * superset of the conditions we successfully used before).
1132  */
1133  foreach(lc, innerrel->unique_for_rels)
1134  {
1135  Relids unique_for_rels = (Relids) lfirst(lc);
1136 
1137  if (bms_is_subset(unique_for_rels, outerrelids))
1138  return true; /* Success! */
1139  }
1140 
1141  /*
1142  * Conversely, we may have already determined that this outerrel, or some
1143  * superset thereof, cannot prove this innerrel to be unique.
1144  */
1145  foreach(lc, innerrel->non_unique_for_rels)
1146  {
1147  Relids unique_for_rels = (Relids) lfirst(lc);
1148 
1149  if (bms_is_subset(outerrelids, unique_for_rels))
1150  return false;
1151  }
1152 
1153  /* No cached information, so try to make the proof. */
1154  if (is_innerrel_unique_for(root, joinrelids, outerrelids, innerrel,
1155  jointype, restrictlist))
1156  {
1157  /*
1158  * Cache the positive result for future probes, being sure to keep it
1159  * in the planner_cxt even if we are working in GEQO.
1160  *
1161  * Note: one might consider trying to isolate the minimal subset of
1162  * the outerrels that proved the innerrel unique. But it's not worth
1163  * the trouble, because the planner builds up joinrels incrementally
1164  * and so we'll see the minimally sufficient outerrels before any
1165  * supersets of them anyway.
1166  */
1167  old_context = MemoryContextSwitchTo(root->planner_cxt);
1168  innerrel->unique_for_rels = lappend(innerrel->unique_for_rels,
1169  bms_copy(outerrelids));
1170  MemoryContextSwitchTo(old_context);
1171 
1172  return true; /* Success! */
1173  }
1174  else
1175  {
1176  /*
1177  * None of the join conditions for outerrel proved innerrel unique, so
1178  * we can safely reject this outerrel or any subset of it in future
1179  * checks.
1180  *
1181  * However, in normal planning mode, caching this knowledge is totally
1182  * pointless; it won't be queried again, because we build up joinrels
1183  * from smaller to larger. It is useful in GEQO mode, where the
1184  * knowledge can be carried across successive planning attempts; and
1185  * it's likely to be useful when using join-search plugins, too. Hence
1186  * cache when join_search_private is non-NULL. (Yeah, that's a hack,
1187  * but it seems reasonable.)
1188  *
1189  * Also, allow callers to override that heuristic and force caching;
1190  * that's useful for reduce_unique_semijoins, which calls here before
1191  * the normal join search starts.
1192  */
1193  if (force_cache || root->join_search_private)
1194  {
1195  old_context = MemoryContextSwitchTo(root->planner_cxt);
1196  innerrel->non_unique_for_rels =
1197  lappend(innerrel->non_unique_for_rels,
1198  bms_copy(outerrelids));
1199  MemoryContextSwitchTo(old_context);
1200  }
1201 
1202  return false;
1203  }
1204 }
static bool is_innerrel_unique_for(PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist)
static bool rel_supports_distinctness(PlannerInfo *root, RelOptInfo *rel)
Definition: analyzejoins.c:725
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:138
Bitmapset * Relids
Definition: pathnodes.h:30
List * unique_for_rels
Definition: pathnodes.h:956
List * non_unique_for_rels
Definition: pathnodes.h:958

References bms_copy(), bms_is_subset(), is_innerrel_unique_for(), lappend(), lfirst, MemoryContextSwitchTo(), NIL, RelOptInfo::non_unique_for_rels, rel_supports_distinctness(), and RelOptInfo::unique_for_rels.

Referenced by add_paths_to_joinrel(), and reduce_unique_semijoins().

◆ is_projection_capable_path()

bool is_projection_capable_path ( Path path)

Definition at line 7156 of file createplan.c.

7157 {
7158  /* Most plan types can project, so just list the ones that can't */
7159  switch (path->pathtype)
7160  {
7161  case T_Hash:
7162  case T_Material:
7163  case T_Memoize:
7164  case T_Sort:
7165  case T_IncrementalSort:
7166  case T_Unique:
7167  case T_SetOp:
7168  case T_LockRows:
7169  case T_Limit:
7170  case T_ModifyTable:
7171  case T_MergeAppend:
7172  case T_RecursiveUnion:
7173  return false;
7174  case T_CustomScan:
7176  return true;
7177  return false;
7178  case T_Append:
7179 
7180  /*
7181  * Append can't project, but if an AppendPath is being used to
7182  * represent a dummy path, what will actually be generated is a
7183  * Result which can project.
7184  */
7185  return IS_DUMMY_APPEND(path);
7186  case T_ProjectSet:
7187 
7188  /*
7189  * Although ProjectSet certainly projects, say "no" because we
7190  * don't want the planner to randomly replace its tlist with
7191  * something else; the SRFs have to stay at top level. This might
7192  * get relaxed later.
7193  */
7194  return false;
7195  default:
7196  break;
7197  }
7198  return true;
7199 }
#define CUSTOMPATH_SUPPORT_PROJECTION
Definition: extensible.h:86
#define castNode(_type_, nodeptr)
Definition: nodes.h:197
#define IS_DUMMY_APPEND(p)
Definition: pathnodes.h:1893
NodeTag pathtype
Definition: pathnodes.h:1594

References castNode, CUSTOMPATH_SUPPORT_PROJECTION, IS_DUMMY_APPEND, and Path::pathtype.

Referenced by add_paths_with_pathkeys_for_rel(), apply_projection_to_path(), create_projection_path(), and create_projection_plan().

◆ is_projection_capable_plan()

bool is_projection_capable_plan ( Plan plan)

Definition at line 7206 of file createplan.c.

7207 {
7208  /* Most plan types can project, so just list the ones that can't */
7209  switch (nodeTag(plan))
7210  {
7211  case T_Hash:
7212  case T_Material:
7213  case T_Memoize:
7214  case T_Sort:
7215  case T_Unique:
7216  case T_SetOp:
7217  case T_LockRows:
7218  case T_Limit:
7219  case T_ModifyTable:
7220  case T_Append:
7221  case T_MergeAppend:
7222  case T_RecursiveUnion:
7223  return false;
7224  case T_CustomScan:
7225  if (((CustomScan *) plan)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
7226  return true;
7227  return false;
7228  case T_ProjectSet:
7229 
7230  /*
7231  * Although ProjectSet certainly projects, say "no" because we
7232  * don't want the planner to randomly replace its tlist with
7233  * something else; the SRFs have to stay at top level. This might
7234  * get relaxed later.
7235  */
7236  return false;
7237  default:
7238  break;
7239  }
7240  return true;
7241 }

References CUSTOMPATH_SUPPORT_PROJECTION, nodeTag, and plan.

Referenced by change_plan_targetlist(), create_projection_plan(), and prepare_sort_from_pathkeys().

◆ make_agg()

Agg* make_agg ( List tlist,
List qual,
AggStrategy  aggstrategy,
AggSplit  aggsplit,
int  numGroupCols,
AttrNumber grpColIdx,
Oid grpOperators,
Oid grpCollations,
List groupingSets,
List chain,
double  dNumGroups,
Size  transitionSpace,
Plan lefttree 
)

Definition at line 6544 of file createplan.c.

6549 {
6550  Agg *node = makeNode(Agg);
6551  Plan *plan = &node->plan;
6552  long numGroups;
6553 
6554  /* Reduce to long, but 'ware overflow! */
6555  numGroups = clamp_cardinality_to_long(dNumGroups);
6556 
6557  node->aggstrategy = aggstrategy;
6558  node->aggsplit = aggsplit;
6559  node->numCols = numGroupCols;
6560  node->grpColIdx = grpColIdx;
6561  node->grpOperators = grpOperators;
6562  node->grpCollations = grpCollations;
6563  node->numGroups = numGroups;
6564  node->transitionSpace = transitionSpace;
6565  node->aggParams = NULL; /* SS_finalize_plan() will fill this */
6566  node->groupingSets = groupingSets;
6567  node->chain = chain;
6568 
6569  plan->qual = qual;
6570  plan->targetlist = tlist;
6571  plan->lefttree = lefttree;
6572  plan->righttree = NULL;
6573 
6574  return node;
6575 }
long clamp_cardinality_to_long(Cardinality x)
Definition: costsize.c:226
#define makeNode(_type_)
Definition: nodes.h:176
Definition: plannodes.h:995
AggSplit aggsplit
Definition: plannodes.h:1002
List * chain
Definition: plannodes.h:1029
long numGroups
Definition: plannodes.h:1015
List * groupingSets
Definition: plannodes.h:1026
Bitmapset * aggParams
Definition: plannodes.h:1021
Plan plan
Definition: plannodes.h:996
int numCols
Definition: plannodes.h:1005
uint64 transitionSpace
Definition: plannodes.h:1018
AggStrategy aggstrategy
Definition: plannodes.h:999

References Agg::aggParams, Agg::aggsplit, Agg::aggstrategy, Agg::chain, clamp_cardinality_to_long(), Agg::groupingSets, makeNode, Agg::numCols, Agg::numGroups, Agg::plan, plan, and Agg::transitionSpace.

Referenced by create_agg_plan(), create_groupingsets_plan(), and create_unique_plan().

◆ make_foreignscan()

ForeignScan* make_foreignscan ( List qptlist,
List qpqual,
Index  scanrelid,
List fdw_exprs,
List fdw_private,
List fdw_scan_tlist,
List fdw_recheck_quals,
Plan outer_plan 
)

Definition at line 5780 of file createplan.c.

5788 {
5789  ForeignScan *node = makeNode(ForeignScan);
5790  Plan *plan = &node->scan.plan;
5791 
5792  /* cost will be filled in by create_foreignscan_plan */
5793  plan->targetlist = qptlist;
5794  plan->qual = qpqual;
5795  plan->lefttree = outer_plan;
5796  plan->righttree = NULL;
5797  node->scan.scanrelid = scanrelid;
5798 
5799  /* these may be overridden by the FDW's PlanDirectModify callback. */
5800  node->operation = CMD_SELECT;
5801  node->resultRelation = 0;
5802 
5803  /* checkAsUser, fs_server will be filled in by create_foreignscan_plan */
5804  node->checkAsUser = InvalidOid;
5805  node->fs_server = InvalidOid;
5806  node->fdw_exprs = fdw_exprs;
5807  node->fdw_private = fdw_private;
5808  node->fdw_scan_tlist = fdw_scan_tlist;
5809  node->fdw_recheck_quals = fdw_recheck_quals;
5810  /* fs_relids, fs_base_relids will be filled by create_foreignscan_plan */
5811  node->fs_relids = NULL;
5812  node->fs_base_relids = NULL;
5813  /* fsSystemCol will be filled in by create_foreignscan_plan */
5814  node->fsSystemCol = false;
5815 
5816  return node;
5817 }
@ CMD_SELECT
Definition: nodes.h:276
Oid checkAsUser
Definition: plannodes.h:710
CmdType operation
Definition: plannodes.h:708
Oid fs_server
Definition: plannodes.h:712
List * fdw_exprs
Definition: plannodes.h:713
bool fsSystemCol
Definition: plannodes.h:719
Bitmapset * fs_relids
Definition: plannodes.h:717
List * fdw_private
Definition: plannodes.h:714
Bitmapset * fs_base_relids
Definition: plannodes.h:718
Index resultRelation
Definition: plannodes.h:709
List * fdw_recheck_quals
Definition: plannodes.h:716
List * fdw_scan_tlist
Definition: plannodes.h:715
Index scanrelid
Definition: plannodes.h:387

References ForeignScan::checkAsUser, CMD_SELECT, ForeignScan::fdw_exprs, ForeignScan::fdw_private, ForeignScan::fdw_recheck_quals, ForeignScan::fdw_scan_tlist, ForeignScan::fs_base_relids, ForeignScan::fs_relids, ForeignScan::fs_server, ForeignScan::fsSystemCol, InvalidOid, makeNode, ForeignScan::operation, plan, ForeignScan::resultRelation, ForeignScan::scan, and Scan::scanrelid.

Referenced by fileGetForeignPlan(), and postgresGetForeignPlan().

◆ make_limit()

Limit* make_limit ( Plan lefttree,
Node limitOffset,
Node limitCount,
LimitOption  limitOption,
int  uniqNumCols,
AttrNumber uniqColIdx,
Oid uniqOperators,
Oid uniqCollations 
)

Definition at line 6911 of file createplan.c.

6914 {
6915  Limit *node = makeNode(Limit);
6916  Plan *plan = &node->plan;
6917 
6918  plan->targetlist = lefttree->targetlist;
6919  plan->qual = NIL;
6920  plan->lefttree = lefttree;
6921  plan->righttree = NULL;
6922 
6923  node->limitOffset = limitOffset;
6924  node->limitCount = limitCount;
6925  node->limitOption = limitOption;
6926  node->uniqNumCols = uniqNumCols;
6927  node->uniqColIdx = uniqColIdx;
6928  node->uniqOperators = uniqOperators;
6929  node->uniqCollations = uniqCollations;
6930 
6931  return node;
6932 }
LimitOption limitOption
Definition: plannodes.h:1279
Plan plan
Definition: plannodes.h:1270
Node * limitCount
Definition: plannodes.h:1276
int uniqNumCols
Definition: plannodes.h:1282
Node * limitOffset
Definition: plannodes.h:1273

References Limit::limitCount, Limit::limitOffset, Limit::limitOption, makeNode, NIL, Limit::plan, plan, Plan::targetlist, and Limit::uniqNumCols.

Referenced by create_limit_plan(), and create_minmaxagg_plan().

◆ make_sort_from_sortclauses()

Sort* make_sort_from_sortclauses ( List sortcls,
Plan lefttree 
)

Definition at line 6373 of file createplan.c.

6374 {
6375  List *sub_tlist = lefttree->targetlist;
6376  ListCell *l;
6377  int numsortkeys;
6378  AttrNumber *sortColIdx;
6379  Oid *sortOperators;
6380  Oid *collations;
6381  bool *nullsFirst;
6382 
6383  /* Convert list-ish representation to arrays wanted by executor */
6384  numsortkeys = list_length(sortcls);
6385  sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6386  sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6387  collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6388  nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6389 
6390  numsortkeys = 0;
6391  foreach(l, sortcls)
6392  {
6393  SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
6394  TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);
6395 
6396  sortColIdx[numsortkeys] = tle->resno;
6397  sortOperators[numsortkeys] = sortcl->sortop;
6398  collations[numsortkeys] = exprCollation((Node *) tle->expr);
6399  nullsFirst[numsortkeys] = sortcl->nulls_first;
6400  numsortkeys++;
6401  }
6402 
6403  return make_sort(lefttree, numsortkeys,
6404  sortColIdx, sortOperators,
6405  collations, nullsFirst);
6406 }
int16 AttrNumber
Definition: attnum.h:21
static Sort * make_sort(Plan *lefttree, int numCols, AttrNumber *sortColIdx, Oid *sortOperators, Oid *collations, bool *nullsFirst)
Definition: createplan.c:6026
void * palloc(Size size)
Definition: mcxt.c:1226
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:788
static int list_length(const List *l)
Definition: pg_list.h:152
unsigned int Oid
Definition: postgres_ext.h:31
Expr * expr
Definition: primnodes.h:1886
AttrNumber resno
Definition: primnodes.h:1888
TargetEntry * get_sortgroupclause_tle(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:367

References TargetEntry::expr, exprCollation(), get_sortgroupclause_tle(), lfirst, list_length(), make_sort(), SortGroupClause::nulls_first, palloc(), TargetEntry::resno, SortGroupClause::sortop, and Plan::targetlist.

Referenced by create_unique_plan().

◆ match_foreign_keys_to_quals()

void match_foreign_keys_to_quals ( PlannerInfo root)

Definition at line 2960 of file initsplan.c.

2961 {
2962  List *newlist = NIL;
2963  ListCell *lc;
2964 
2965  foreach(lc, root->fkey_list)
2966  {
2967  ForeignKeyOptInfo *fkinfo = (ForeignKeyOptInfo *) lfirst(lc);
2968  RelOptInfo *con_rel;
2969  RelOptInfo *ref_rel;
2970  int colno;
2971 
2972  /*
2973  * Either relid might identify a rel that is in the query's rtable but
2974  * isn't referenced by the jointree, or has been removed by join
2975  * removal, so that it won't have a RelOptInfo. Hence don't use
2976  * find_base_rel() here. We can ignore such FKs.
2977  */
2978  if (fkinfo->con_relid >= root->simple_rel_array_size ||
2979  fkinfo->ref_relid >= root->simple_rel_array_size)
2980  continue; /* just paranoia */
2981  con_rel = root->simple_rel_array[fkinfo->con_relid];
2982  if (con_rel == NULL)
2983  continue;
2984  ref_rel = root->simple_rel_array[fkinfo->ref_relid];
2985  if (ref_rel == NULL)
2986  continue;
2987 
2988  /*
2989  * Ignore FK unless both rels are baserels. This gets rid of FKs that
2990  * link to inheritance child rels (otherrels).
2991  */
2992  if (con_rel->reloptkind != RELOPT_BASEREL ||
2993  ref_rel->reloptkind != RELOPT_BASEREL)
2994  continue;
2995 
2996  /*
2997  * Scan the columns and try to match them to eclasses and quals.
2998  *
2999  * Note: for simple inner joins, any match should be in an eclass.
3000  * "Loose" quals that syntactically match an FK equality must have
3001  * been rejected for EC status because they are outer-join quals or
3002  * similar. We can still consider them to match the FK.
3003  */
3004  for (colno = 0; colno < fkinfo->nkeys; colno++)
3005  {
3006  EquivalenceClass *ec;
3007  AttrNumber con_attno,
3008  ref_attno;
3009  Oid fpeqop;
3010  ListCell *lc2;
3011 
3012  ec = match_eclasses_to_foreign_key_col(root, fkinfo, colno);
3013  /* Don't bother looking for loose quals if we got an EC match */
3014  if (ec != NULL)
3015  {
3016  fkinfo->nmatched_ec++;
3017  if (ec->ec_has_const)
3018  fkinfo->nconst_ec++;
3019  continue;
3020  }
3021 
3022  /*
3023  * Scan joininfo list for relevant clauses. Either rel's joininfo
3024  * list would do equally well; we use con_rel's.
3025  */
3026  con_attno = fkinfo->conkey[colno];
3027  ref_attno = fkinfo->confkey[colno];
3028  fpeqop = InvalidOid; /* we'll look this up only if needed */
3029 
3030  foreach(lc2, con_rel->joininfo)
3031  {
3032  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc2);
3033  OpExpr *clause = (OpExpr *) rinfo->clause;
3034  Var *leftvar;
3035  Var *rightvar;
3036 
3037  /* Only binary OpExprs are useful for consideration */
3038  if (!IsA(clause, OpExpr) ||
3039  list_length(clause->args) != 2)
3040  continue;
3041  leftvar = (Var *) get_leftop((Expr *) clause);
3042  rightvar = (Var *) get_rightop((Expr *) clause);
3043 
3044  /* Operands must be Vars, possibly with RelabelType */
3045  while (leftvar && IsA(leftvar, RelabelType))
3046  leftvar = (Var *) ((RelabelType *) leftvar)->arg;
3047  if (!(leftvar && IsA(leftvar, Var)))
3048  continue;
3049  while (rightvar && IsA(rightvar, RelabelType))
3050  rightvar = (Var *) ((RelabelType *) rightvar)->arg;
3051  if (!(rightvar && IsA(rightvar, Var)))
3052  continue;
3053 
3054  /* Now try to match the vars to the current foreign key cols */
3055  if (fkinfo->ref_relid == leftvar->varno &&
3056  ref_attno == leftvar->varattno &&
3057  fkinfo->con_relid == rightvar->varno &&
3058  con_attno == rightvar->varattno)
3059  {
3060  /* Vars match, but is it the right operator? */
3061  if (clause->opno == fkinfo->conpfeqop[colno])
3062  {
3063  fkinfo->rinfos[colno] = lappend(fkinfo->rinfos[colno],
3064  rinfo);
3065  fkinfo->nmatched_ri++;
3066  }
3067  }
3068  else if (fkinfo->ref_relid == rightvar->varno &&
3069  ref_attno == rightvar->varattno &&
3070  fkinfo->con_relid == leftvar->varno &&
3071  con_attno == leftvar->varattno)
3072  {
3073  /*
3074  * Reverse match, must check commutator operator. Look it
3075  * up if we didn't already. (In the worst case we might
3076  * do multiple lookups here, but that would require an FK
3077  * equality operator without commutator, which is
3078  * unlikely.)
3079  */
3080  if (!OidIsValid(fpeqop))
3081  fpeqop = get_commutator(fkinfo->conpfeqop[colno]);
3082  if (clause->opno == fpeqop)
3083  {
3084  fkinfo->rinfos[colno] = lappend(fkinfo->rinfos[colno],
3085  rinfo);
3086  fkinfo->nmatched_ri++;
3087  }
3088  }
3089  }
3090  /* If we found any matching loose quals, count col as matched */
3091  if (fkinfo->rinfos[colno])
3092  fkinfo->nmatched_rcols++;
3093  }
3094 
3095  /*
3096  * Currently, we drop multicolumn FKs that aren't fully matched to the
3097  * query. Later we might figure out how to derive some sort of
3098  * estimate from them, in which case this test should be weakened to
3099  * "if ((fkinfo->nmatched_ec + fkinfo->nmatched_rcols) > 0)".
3100  */
3101  if ((fkinfo->nmatched_ec + fkinfo->nmatched_rcols) == fkinfo->nkeys)
3102  newlist = lappend(newlist, fkinfo);
3103  }
3104  /* Replace fkey_list, thereby discarding any useless entries */
3105  root->fkey_list = newlist;
3106 }
EquivalenceClass * match_eclasses_to_foreign_key_col(PlannerInfo *root, ForeignKeyOptInfo *fkinfo, int colno)
Definition: equivclass.c:2490
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
Oid get_commutator(Oid opno)
Definition: lsyscache.c:1491
static Node * get_rightop(const void *clause)
Definition: nodeFuncs.h:93
static Node * get_leftop(const void *clause)
Definition: nodeFuncs.h:81
List * rinfos[INDEX_MAX_KEYS]
Definition: pathnodes.h:1239
Oid opno
Definition: primnodes.h:745
List * args
Definition: primnodes.h:763
List * fkey_list
Definition: pathnodes.h:379
List * joininfo
Definition: pathnodes.h:970
Expr * clause
Definition: pathnodes.h:2516

References OpExpr::args, RestrictInfo::clause, ForeignKeyOptInfo::con_relid, EquivalenceClass::ec_has_const, PlannerInfo::fkey_list, get_commutator(), get_leftop(), get_rightop(), if(), InvalidOid, IsA, RelOptInfo::joininfo, lappend(), lfirst, list_length(), match_eclasses_to_foreign_key_col(), ForeignKeyOptInfo::nconst_ec, NIL, ForeignKeyOptInfo::nkeys, ForeignKeyOptInfo::nmatched_ec, ForeignKeyOptInfo::nmatched_rcols, ForeignKeyOptInfo::nmatched_ri, OidIsValid, OpExpr::opno, ForeignKeyOptInfo::ref_relid, RELOPT_BASEREL, RelOptInfo::reloptkind, ForeignKeyOptInfo::rinfos, and PlannerInfo::simple_rel_array_size.

Referenced by query_planner().

◆ materialize_finished_plan()

Plan* materialize_finished_plan ( Plan subplan)

Definition at line 6485 of file createplan.c.

6486 {
6487  Plan *matplan;
6488  Path matpath; /* dummy for result of cost_material */
6489 
6490  matplan = (Plan *) make_material(subplan);
6491 
6492  /*
6493  * XXX horrid kluge: if there are any initPlans attached to the subplan,
6494  * move them up to the Material node, which is now effectively the top
6495  * plan node in its query level. This prevents failure in
6496  * SS_finalize_plan(), which see for comments. We don't bother adjusting
6497  * the subplan's cost estimate for this.
6498  */
6499  matplan->initPlan = subplan->initPlan;
6500  subplan->initPlan = NIL;
6501 
6502  /* Set cost data */
6503  cost_material(&matpath,
6504  subplan->startup_cost,
6505  subplan->total_cost,
6506  subplan->plan_rows,
6507  subplan->plan_width);
6508  matplan->startup_cost = matpath.startup_cost;
6509  matplan->total_cost = matpath.total_cost;
6510  matplan->plan_rows = subplan->plan_rows;
6511  matplan->plan_width = subplan->plan_width;
6512  matplan->parallel_aware = false;
6513  matplan->parallel_safe = subplan->parallel_safe;
6514 
6515  return matplan;
6516 }
void cost_material(Path *path, Cost input_startup_cost, Cost input_total_cost, double tuples, int width)
Definition: costsize.c:2425
static Material * make_material(Plan *lefttree)
Definition: createplan.c:6463
Cost startup_cost
Definition: pathnodes.h:1629
Cost total_cost
Definition: pathnodes.h:1630
Cost total_cost
Definition: plannodes.h:130
bool parallel_aware
Definition: plannodes.h:141
Cost startup_cost
Definition: plannodes.h:129
int plan_width
Definition: plannodes.h:136
Cardinality plan_rows
Definition: plannodes.h:135
List * initPlan
Definition: plannodes.h:157

References cost_material(), Plan::initPlan, make_material(), NIL, Plan::parallel_aware, Plan::parallel_safe, Plan::plan_rows, Plan::plan_width, Path::startup_cost, Plan::startup_cost, Path::total_cost, and Plan::total_cost.

Referenced by build_subplan(), and standard_planner().

◆ preprocess_minmax_aggregates()

void preprocess_minmax_aggregates ( PlannerInfo root)

Definition at line 73 of file planagg.c.

74 {
75  Query *parse = root->parse;
76  FromExpr *jtnode;
77  RangeTblRef *rtr;
78  RangeTblEntry *rte;
79  List *aggs_list;
80  RelOptInfo *grouped_rel;
81  ListCell *lc;
82 
83  /* minmax_aggs list should be empty at this point */
84  Assert(root->minmax_aggs == NIL);
85 
86  /* Nothing to do if query has no aggregates */
87  if (!parse->hasAggs)
88  return;
89 
90  Assert(!parse->setOperations); /* shouldn't get here if a setop */
91  Assert(parse->rowMarks == NIL); /* nor if FOR UPDATE */
92 
93  /*
94  * Reject unoptimizable cases.
95  *
96  * We don't handle GROUP BY or windowing, because our current
97  * implementations of grouping require looking at all the rows anyway, and
98  * so there's not much point in optimizing MIN/MAX.
99  */
100  if (parse->groupClause || list_length(parse->groupingSets) > 1 ||
101  parse->hasWindowFuncs)
102  return;
103 
104  /*
105  * Reject if query contains any CTEs; there's no way to build an indexscan
106  * on one so we couldn't succeed here. (If the CTEs are unreferenced,
107  * that's not true, but it doesn't seem worth expending cycles to check.)
108  */
109  if (parse->cteList)
110  return;
111 
112  /*
113  * We also restrict the query to reference exactly one table, since join
114  * conditions can't be handled reasonably. (We could perhaps handle a
115  * query containing cartesian-product joins, but it hardly seems worth the
116  * trouble.) However, the single table could be buried in several levels
117  * of FromExpr due to subqueries. Note the "single" table could be an
118  * inheritance parent, too, including the case of a UNION ALL subquery
119  * that's been flattened to an appendrel.
120  */
121  jtnode = parse->jointree;
122  while (IsA(jtnode, FromExpr))
123  {
124  if (list_length(jtnode->fromlist) != 1)
125  return;
126  jtnode = linitial(jtnode->fromlist);
127  }
128  if (!IsA(jtnode, RangeTblRef))
129  return;
130  rtr = (RangeTblRef *) jtnode;
131  rte = planner_rt_fetch(rtr->rtindex, root);
132  if (rte->rtekind == RTE_RELATION)
133  /* ordinary relation, ok */ ;
134  else if (rte->rtekind == RTE_SUBQUERY && rte->inh)
135  /* flattened UNION ALL subquery, ok */ ;
136  else
137  return;
138 
139  /*
140  * Examine all the aggregates and verify all are MIN/MAX aggregates. Stop
141  * as soon as we find one that isn't.
142  */
143  aggs_list = NIL;
144  if (!can_minmax_aggs(root, &aggs_list))
145  return;
146 
147  /*
148  * OK, there is at least the possibility of performing the optimization.
149  * Build an access path for each aggregate. If any of the aggregates
150  * prove to be non-indexable, give up; there is no point in optimizing
151  * just some of them.
152  */
153  foreach(lc, aggs_list)
154  {
155  MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
156  Oid eqop;
157  bool reverse;
158 
159  /*
160  * We'll need the equality operator that goes with the aggregate's
161  * ordering operator.
162  */
163  eqop = get_equality_op_for_ordering_op(mminfo->aggsortop, &reverse);
164  if (!OidIsValid(eqop)) /* shouldn't happen */
165  elog(ERROR, "could not find equality operator for ordering operator %u",
166  mminfo->aggsortop);
167 
168  /*
169  * We can use either an ordering that gives NULLS FIRST or one that
170  * gives NULLS LAST; furthermore there's unlikely to be much
171  * performance difference between them, so it doesn't seem worth
172  * costing out both ways if we get a hit on the first one. NULLS
173  * FIRST is more likely to be available if the operator is a
174  * reverse-sort operator, so try that first if reverse.
175  */
176  if (build_minmax_path(root, mminfo, eqop, mminfo->aggsortop, reverse))
177  continue;
178  if (build_minmax_path(root, mminfo, eqop, mminfo->aggsortop, !reverse))
179  continue;
180 
181  /* No indexable path for this aggregate, so fail */
182  return;
183  }
184 
185  /*
186  * OK, we can do the query this way. Prepare to create a MinMaxAggPath
187  * node.
188  *
189  * First, create an output Param node for each agg. (If we end up not
190  * using the MinMaxAggPath, we'll waste a PARAM_EXEC slot for each agg,
191  * which is not worth worrying about. We can't wait till create_plan time
192  * to decide whether to make the Param, unfortunately.)
193  */
194  foreach(lc, aggs_list)
195  {
196  MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
197 
198  mminfo->param =
200  exprType((Node *) mminfo->target),
201  -1,
202  exprCollation((Node *) mminfo->target));
203  }
204 
205  /*
206  * Create a MinMaxAggPath node with the appropriate estimated costs and
207  * other needed data, and add it to the UPPERREL_GROUP_AGG upperrel, where
208  * it will compete against the standard aggregate implementation. (It
209  * will likely always win, but we need not assume that here.)
210  *
211  * Note: grouping_planner won't have created this upperrel yet, but it's
212  * fine for us to create it first. We will not have inserted the correct
213  * consider_parallel value in it, but MinMaxAggPath paths are currently
214  * never parallel-safe anyway, so that doesn't matter. Likewise, it
215  * doesn't matter that we haven't filled FDW-related fields in the rel.
216  * Also, because there are no rowmarks, we know that the processed_tlist
217  * doesn't need to change anymore, so making the pathtarget now is safe.
218  */
219  grouped_rel = fetch_upper_rel(root, UPPERREL_GROUP_AGG, NULL);
220  add_path(grouped_rel, (Path *)
221  create_minmaxagg_path(root, grouped_rel,
222  create_pathtarget(root,
223  root->processed_tlist),
224  aggs_list,
225  (List *) parse->havingQual));
226 }
Oid get_equality_op_for_ordering_op(Oid opno, bool *reverse)
Definition: lsyscache.c:266
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:43
MinMaxAggPath * create_minmaxagg_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *mmaggregates, List *quals)
Definition: pathnode.c:3334
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:555
@ UPPERREL_GROUP_AGG
Definition: pathnodes.h:74
#define linitial(l)
Definition: pg_list.h:178
static bool can_minmax_aggs(PlannerInfo *root, List **context)
Definition: planagg.c:237
static bool build_minmax_path(PlannerInfo *root, MinMaxAggInfo *mminfo, Oid eqop, Oid sortop, bool nulls_first)
Definition: planagg.c:317
static struct subre * parse(struct vars *v, int stopper, int type, struct state *init, struct state *final)
Definition: regcomp.c:715
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1439
Param * param
Definition: pathnodes.h:3079
Expr * target
Definition: pathnodes.h:3064
List * minmax_aggs
Definition: pathnodes.h:469
Param * SS_make_initplan_output_param(PlannerInfo *root, Oid resulttype, int32 resulttypmod, Oid resultcollation)
Definition: subselect.c:2930
#define create_pathtarget(root, tlist)
Definition: tlist.h:53

References add_path(), MinMaxAggInfo::aggsortop, Assert(), build_minmax_path(), can_minmax_aggs(), create_minmaxagg_path(), create_pathtarget, elog(), ERROR, exprCollation(), exprType(), fetch_upper_rel(), FromExpr::fromlist, get_equality_op_for_ordering_op(), RangeTblEntry::inh, IsA, lfirst, linitial, list_length(), PlannerInfo::minmax_aggs, NIL, OidIsValid, MinMaxAggInfo::param, parse(), PlannerInfo::parse, planner_rt_fetch, PlannerInfo::processed_tlist, RTE_RELATION, RTE_SUBQUERY, RangeTblEntry::rtekind, RangeTblRef::rtindex, SS_make_initplan_output_param(), MinMaxAggInfo::target, and UPPERREL_GROUP_AGG.

Referenced by grouping_planner().

◆ process_implied_equality()

RestrictInfo* process_implied_equality ( PlannerInfo root,
Oid  opno,
Oid  collation,
Expr item1,
Expr item2,
Relids  qualscope,
Index  security_level,
bool  both_const 
)

Definition at line 2712 of file initsplan.c.

2720 {
2721  RestrictInfo *restrictinfo;
2722  Node *clause;
2723  Relids relids;
2724  bool pseudoconstant = false;
2725 
2726  /*
2727  * Build the new clause. Copy to ensure it shares no substructure with
2728  * original (this is necessary in case there are subselects in there...)
2729  */
2730  clause = (Node *) make_opclause(opno,
2731  BOOLOID, /* opresulttype */
2732  false, /* opretset */
2733  copyObject(item1),
2734  copyObject(item2),
2735  InvalidOid,
2736  collation);
2737 
2738  /* If both constant, try to reduce to a boolean constant. */
2739  if (both_const)
2740  {
2741  clause = eval_const_expressions(root, clause);
2742 
2743  /* If we produced const TRUE, just drop the clause */
2744  if (clause && IsA(clause, Const))
2745  {
2746  Const *cclause = (Const *) clause;
2747 
2748  Assert(cclause->consttype == BOOLOID);
2749  if (!cclause->constisnull && DatumGetBool(cclause->constvalue))
2750  return NULL;
2751  }
2752  }
2753 
2754  /*
2755  * The rest of this is a very cut-down version of distribute_qual_to_rels.
2756  * We can skip most of the work therein, but there are a couple of special
2757  * cases we still have to handle.
2758  *
2759  * Retrieve all relids mentioned within the possibly-simplified clause.
2760  */
2761  relids = pull_varnos(root, clause);
2762  Assert(bms_is_subset(relids, qualscope));
2763 
2764  /*
2765  * If the clause is variable-free, our normal heuristic for pushing it
2766  * down to just the mentioned rels doesn't work, because there are none.
2767  * Apply it as a gating qual at the appropriate level (see comments for
2768  * get_join_domain_min_rels).
2769  */
2770  if (bms_is_empty(relids))
2771  {
2772  /* eval at join domain's safe level */
2773  relids = get_join_domain_min_rels(root, qualscope);
2774  /* mark as gating qual */
2775  pseudoconstant = true;
2776  /* tell createplan.c to check for gating quals */
2777  root->hasPseudoConstantQuals = true;
2778  }
2779 
2780  /*
2781  * Build the RestrictInfo node itself.
2782  */
2783  restrictinfo = make_restrictinfo(root,
2784  (Expr *) clause,
2785  true, /* is_pushed_down */
2786  false, /* !has_clone */
2787  false, /* !is_clone */
2788  pseudoconstant,
2789  security_level,
2790  relids,
2791  NULL, /* incompatible_relids */
2792  NULL); /* outer_relids */
2793 
2794  /*
2795  * If it's a join clause, add vars used in the clause to targetlists of
2796  * their relations, so that they will be emitted by the plan nodes that
2797  * scan those relations (else they won't be available at the join node!).
2798  *
2799  * Typically, we'd have already done this when the component expressions
2800  * were first seen by distribute_qual_to_rels; but it is possible that
2801  * some of the Vars could have missed having that done because they only
2802  * appeared in single-relation clauses originally. So do it here for
2803  * safety.
2804  */
2805  if (bms_membership(relids) == BMS_MULTIPLE)
2806  {
2807  List *vars = pull_var_clause(clause,
2811 
2812  add_vars_to_targetlist(root, vars, relids);
2813  list_free(vars);
2814  }
2815 
2816  /*
2817  * Check mergejoinability. This will usually succeed, since the op came
2818  * from an EquivalenceClass; but we could have reduced the original clause
2819  * to a constant.
2820  */
2821  check_mergejoinable(restrictinfo);
2822 
2823  /*
2824  * Note we don't do initialize_mergeclause_eclasses(); the caller can
2825  * handle that much more cheaply than we can. It's okay to call
2826  * distribute_restrictinfo_to_rels() before that happens.
2827  */
2828 
2829  /*
2830  * Push the new clause into all the appropriate restrictinfo lists.
2831  */
2832  distribute_restrictinfo_to_rels(root, restrictinfo);
2833 
2834  return restrictinfo;
2835 }
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2171
void distribute_restrictinfo_to_rels(PlannerInfo *root, RestrictInfo *restrictinfo)
Definition: initsplan.c:2621
static Relids get_join_domain_min_rels(PlannerInfo *root, Relids domain_relids)
Definition: initsplan.c:2920
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
Oid consttype
Definition: primnodes.h:290
bool hasPseudoConstantQuals
Definition: pathnodes.h:495
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:108

References add_vars_to_targetlist(), Assert(), bms_is_empty, bms_is_subset(), bms_membership(), BMS_MULTIPLE, check_mergejoinable(), Const::consttype, copyObject, DatumGetBool(), distribute_restrictinfo_to_rels(), eval_const_expressions(), get_join_domain_min_rels(), PlannerInfo::hasPseudoConstantQuals, InvalidOid, IsA, list_free(), make_opclause(), make_restrictinfo(), pull_var_clause(), pull_varnos(), PVC_INCLUDE_PLACEHOLDERS, PVC_RECURSE_AGGREGATES, PVC_RECURSE_WINDOWFUNCS, and JoinTreeItem::qualscope.

Referenced by generate_base_implied_equalities_const(), and generate_base_implied_equalities_no_const().

◆ query_is_distinct_for()

bool query_is_distinct_for ( Query query,
List colnos,
List opids 
)

Definition at line 915 of file analyzejoins.c.

916 {
917  ListCell *l;
918  Oid opid;
919 
920  Assert(list_length(colnos) == list_length(opids));
921 
922  /*
923  * DISTINCT (including DISTINCT ON) guarantees uniqueness if all the
924  * columns in the DISTINCT clause appear in colnos and operator semantics
925  * match. This is true even if there are SRFs in the DISTINCT columns or
926  * elsewhere in the tlist.
927  */
928  if (query->distinctClause)
929  {
930  foreach(l, query->distinctClause)
931  {
932  SortGroupClause *sgc = (SortGroupClause *) lfirst(l);
934  query->targetList);
935 
936  opid = distinct_col_search(tle->resno, colnos, opids);
937  if (!OidIsValid(opid) ||
938  !equality_ops_are_compatible(opid, sgc->eqop))
939  break; /* exit early if no match */
940  }
941  if (l == NULL) /* had matches for all? */
942  return true;
943  }
944 
945  /*
946  * Otherwise, a set-returning function in the query's targetlist can
947  * result in returning duplicate rows, despite any grouping that might
948  * occur before tlist evaluation. (If all tlist SRFs are within GROUP BY
949  * columns, it would be safe because they'd be expanded before grouping.
950  * But it doesn't currently seem worth the effort to check for that.)
951  */
952  if (query->hasTargetSRFs)
953  return false;
954 
955  /*
956  * Similarly, GROUP BY without GROUPING SETS guarantees uniqueness if all
957  * the grouped columns appear in colnos and operator semantics match.
958  */
959  if (query->groupClause && !query->groupingSets)
960  {
961  foreach(l, query->groupClause)
962  {
963  SortGroupClause *sgc = (SortGroupClause *) lfirst(l);
965  query->targetList);
966 
967  opid = distinct_col_search(tle->resno, colnos, opids);
968  if (!OidIsValid(opid) ||
969  !equality_ops_are_compatible(opid, sgc->eqop))
970  break; /* exit early if no match */
971  }
972  if (l == NULL) /* had matches for all? */
973  return true;
974  }
975  else if (query->groupingSets)
976  {
977  /*
978  * If we have grouping sets with expressions, we probably don't have
979  * uniqueness and analysis would be hard. Punt.
980  */
981  if (query->groupClause)
982  return false;
983 
984  /*
985  * If we have no groupClause (therefore no grouping expressions), we
986  * might have one or many empty grouping sets. If there's just one,
987  * then we're returning only one row and are certainly unique. But
988  * otherwise, we know we're certainly not unique.
989  */
990  if (list_length(query->groupingSets) == 1 &&
991  ((GroupingSet *) linitial(query->groupingSets))->kind == GROUPING_SET_EMPTY)
992  return true;
993  else
994  return false;
995  }
996  else
997  {
998  /*
999  * If we have no GROUP BY, but do have aggregates or HAVING, then the
1000  * result is at most one row so it's surely unique, for any operators.
1001  */
1002  if (query->hasAggs || query->havingQual)
1003  return true;
1004  }
1005 
1006  /*
1007  * UNION, INTERSECT, EXCEPT guarantee uniqueness of the whole output row,
1008  * except with ALL.
1009  */
1010  if (query->setOperations)
1011  {
1013 
1014  Assert(topop->op != SETOP_NONE);
1015 
1016  if (!topop->all)
1017  {
1018  ListCell *lg;
1019 
1020  /* We're good if all the nonjunk output columns are in colnos */
1021  lg = list_head(topop->groupClauses);
1022  foreach(l, query->targetList)
1023  {
1024  TargetEntry *tle = (TargetEntry *) lfirst(l);
1025  SortGroupClause *sgc;
1026 
1027  if (tle->resjunk)
1028  continue; /* ignore resjunk columns */
1029 
1030  /* non-resjunk columns should have grouping clauses */
1031  Assert(lg != NULL);
1032  sgc = (SortGroupClause *) lfirst(lg);
1033  lg = lnext(topop->groupClauses, lg);
1034 
1035  opid = distinct_col_search(tle->resno, colnos, opids);
1036  if (!OidIsValid(opid) ||
1037  !equality_ops_are_compatible(opid, sgc->eqop))
1038  break; /* exit early if no match */
1039  }
1040  if (l == NULL) /* had matches for all? */
1041  return true;
1042  }
1043  }
1044 
1045  /*
1046  * XXX Are there any other cases in which we can easily see the result
1047  * must be distinct?
1048  *
1049  * If you do add more smarts to this function, be sure to update
1050  * query_supports_distinctness() to match.
1051  */
1052 
1053  return false;
1054 }
static Oid distinct_col_search(int colno, List *colnos, List *opids)
bool equality_ops_are_compatible(Oid opno1, Oid opno2)
Definition: lsyscache.c:697
@ GROUPING_SET_EMPTY
Definition: parsenodes.h:1453
@ SETOP_NONE
Definition: parsenodes.h:1934
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
Node * setOperations
Definition: parsenodes.h:217
List * groupClause
Definition: parsenodes.h:198
List * targetList
Definition: parsenodes.h:189
List * groupingSets
Definition: parsenodes.h:201
List * distinctClause
Definition: parsenodes.h:207
SetOperation op
Definition: parsenodes.h:2012

References SetOperationStmt::all, Assert(), castNode, distinct_col_search(), Query::distinctClause, SortGroupClause::eqop, equality_ops_are_compatible(), get_sortgroupclause_tle(), Query::groupClause, GROUPING_SET_EMPTY, Query::groupingSets, Query::havingQual, lfirst, linitial, list_head(), list_length(), lnext(), OidIsValid, SetOperationStmt::op, TargetEntry::resno, SETOP_NONE, Query::setOperations, and Query::targetList.

Referenced by create_unique_path(), and rel_is_distinct_for().

◆ query_planner()

RelOptInfo* query_planner ( PlannerInfo root,
query_pathkeys_callback  qp_callback,
void *  qp_extra 
)

Definition at line 55 of file planmain.c.

57 {
58  Query *parse = root->parse;
59  List *joinlist;
60  RelOptInfo *final_rel;
61 
62  /*
63  * Init planner lists to empty.
64  *
65  * NOTE: append_rel_list was set up by subquery_planner, so do not touch
66  * here.
67  */
68  root->join_rel_list = NIL;
69  root->join_rel_hash = NULL;
70  root->join_rel_level = NULL;
71  root->join_cur_level = 0;
72  root->canon_pathkeys = NIL;
73  root->left_join_clauses = NIL;
74  root->right_join_clauses = NIL;
75  root->full_join_clauses = NIL;
76  root->join_info_list = NIL;
77  root->placeholder_list = NIL;
78  root->placeholder_array = NULL;
79  root->placeholder_array_size = 0;
80  root->fkey_list = NIL;
81  root->initial_rels = NIL;
82 
83  /*
84  * Set up arrays for accessing base relations and AppendRelInfos.
85  */
87 
88  /*
89  * In the trivial case where the jointree is a single RTE_RESULT relation,
90  * bypass all the rest of this function and just make a RelOptInfo and its
91  * one access path. This is worth optimizing because it applies for
92  * common cases like "SELECT expression" and "INSERT ... VALUES()".
93  */
94  Assert(parse->jointree->fromlist != NIL);
95  if (list_length(parse->jointree->fromlist) == 1)
96  {
97  Node *jtnode = (Node *) linitial(parse->jointree->fromlist);
98 
99  if (IsA(jtnode, RangeTblRef))
100  {
101  int varno = ((RangeTblRef *) jtnode)->rtindex;
102  RangeTblEntry *rte = root->simple_rte_array[varno];
103 
104  Assert(rte != NULL);
105  if (rte->rtekind == RTE_RESULT)
106  {
107  /* Make the RelOptInfo for it directly */
108  final_rel = build_simple_rel(root, varno, NULL);
109 
110  /*
111  * If query allows parallelism in general, check whether the
112  * quals are parallel-restricted. (We need not check
113  * final_rel->reltarget because it's empty at this point.
114  * Anything parallel-restricted in the query tlist will be
115  * dealt with later.) This is normally pretty silly, because
116  * a Result-only plan would never be interesting to
117  * parallelize. However, if debug_parallel_query is on, then
118  * we want to execute the Result in a parallel worker if
119  * possible, so we must do this.
120  */
121  if (root->glob->parallelModeOK &&
123  final_rel->consider_parallel =
124  is_parallel_safe(root, parse->jointree->quals);
125 
126  /*
127  * The only path for it is a trivial Result path. We cheat a
128  * bit here by using a GroupResultPath, because that way we
129  * can just jam the quals into it without preprocessing them.
130  * (But, if you hold your head at the right angle, a FROM-less
131  * SELECT is a kind of degenerate-grouping case, so it's not
132  * that much of a cheat.)
133  */
134  add_path(final_rel, (Path *)
135  create_group_result_path(root, final_rel,
136  final_rel->reltarget,
137  (List *) parse->jointree->quals));
138 
139  /* Select cheapest path (pretty easy in this case...) */
140  set_cheapest(final_rel);
141 
142  /*
143  * We don't need to run generate_base_implied_equalities, but
144  * we do need to pretend that EC merging is complete.
145  */
146  root->ec_merging_done = true;
147 
148  /*
149  * We still are required to call qp_callback, in case it's
150  * something like "SELECT 2+2 ORDER BY 1".
151  */
152  (*qp_callback) (root, qp_extra);
153 
154  return final_rel;
155  }
156  }
157  }
158 
159  /*
160  * Construct RelOptInfo nodes for all base relations used in the query.
161  * Appendrel member relations ("other rels") will be added later.
162  *
163  * Note: the reason we find the baserels by searching the jointree, rather
164  * than scanning the rangetable, is that the rangetable may contain RTEs
165  * for rels not actively part of the query, for example views. We don't
166  * want to make RelOptInfos for them.
167  */
168  add_base_rels_to_query(root, (Node *) parse->jointree);
169 
170  /*
171  * Examine the targetlist and join tree, adding entries to baserel
172  * targetlists for all referenced Vars, and generating PlaceHolderInfo
173  * entries for all referenced PlaceHolderVars. Restrict and join clauses
174  * are added to appropriate lists belonging to the mentioned relations. We
175  * also build EquivalenceClasses for provably equivalent expressions. The
176  * SpecialJoinInfo list is also built to hold information about join order
177  * restrictions. Finally, we form a target joinlist for make_one_rel() to
178  * work from.
179  */
181 
183 
185 
186  joinlist = deconstruct_jointree(root);
187 
188  /*
189  * Reconsider any postponed outer-join quals now that we have built up
190  * equivalence classes. (This could result in further additions or
191  * mergings of classes.)
192  */
194 
195  /*
196  * If we formed any equivalence classes, generate additional restriction
197  * clauses as appropriate. (Implied join clauses are formed on-the-fly
198  * later.)
199  */
201 
202  /*
203  * We have completed merging equivalence sets, so it's now possible to
204  * generate pathkeys in canonical form; so compute query_pathkeys and
205  * other pathkeys fields in PlannerInfo.
206  */
207  (*qp_callback) (root, qp_extra);
208 
209  /*
210  * Examine any "placeholder" expressions generated during subquery pullup.
211  * Make sure that the Vars they need are marked as needed at the relevant
212  * join level. This must be done before join removal because it might
213  * cause Vars or placeholders to be needed above a join when they weren't
214  * so marked before.
215  */
217 
218  /*
219  * Remove any useless outer joins. Ideally this would be done during
220  * jointree preprocessing, but the necessary information isn't available
221  * until we've built baserel data structures and classified qual clauses.
222  */
223  joinlist = remove_useless_joins(root, joinlist);
224 
225  /*
226  * Also, reduce any semijoins with unique inner rels to plain inner joins.
227  * Likewise, this can't be done until now for lack of needed info.
228  */
230 
231  /*
232  * Now distribute "placeholders" to base rels as needed. This has to be
233  * done after join removal because removal could change whether a
234  * placeholder is evaluable at a base rel.
235  */
237 
238  /*
239  * Construct the lateral reference sets now that we have finalized
240  * PlaceHolderVar eval levels.
241  */
243 
244  /*
245  * Match foreign keys to equivalence classes and join quals. This must be
246  * done after finalizing equivalence classes, and it's useful to wait till
247  * after join removal so that we can skip processing foreign keys
248  * involving removed relations.
249  */
251 
252  /*
253  * Look for join OR clauses that we can extract single-relation
254  * restriction OR clauses from.
255  */
257 
258  /*
259  * Now expand appendrels by adding "otherrels" for their children. We
260  * delay this to the end so that we have as much information as possible
261  * available for each baserel, including all restriction clauses. That
262  * let us prune away partitions that don't satisfy a restriction clause.
263  * Also note that some information such as lateral_relids is propagated
264  * from baserels to otherrels here, so we must have computed it already.
265  */
267 
268  /*
269  * Distribute any UPDATE/DELETE/MERGE row identity variables to the target
270  * relations. This can't be done till we've finished expansion of
271  * appendrels.
272  */
274 
275  /*
276  * Ready to do the primary planning.
277  */
278  final_rel = make_one_rel(root, joinlist);
279 
280  /* Check that we got at least one usable path */
281  if (!final_rel || !final_rel->cheapest_total_path ||
282  final_rel->cheapest_total_path->param_info != NULL)
283  elog(ERROR, "failed to construct the join relation");
284 
285  return final_rel;
286 }
RelOptInfo * make_one_rel(PlannerInfo *root, List *joinlist)
Definition: allpaths.c:174
List * remove_useless_joins(PlannerInfo *root, List *joinlist)
Definition: analyzejoins.c:64
void reduce_unique_semijoins(PlannerInfo *root)
Definition: analyzejoins.c:649
void distribute_row_identity_vars(PlannerInfo *root)
Definition: appendinfo.c:966
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:670
void generate_base_implied_equalities(PlannerInfo *root)
Definition: equivclass.c:1033
void reconsider_outer_join_clauses(PlannerInfo *root)
Definition: equivclass.c:1982
List * deconstruct_jointree(PlannerInfo *root)
Definition: initsplan.c:731
void match_foreign_keys_to_quals(PlannerInfo *root)
Definition: initsplan.c:2960
void find_lateral_references(PlannerInfo *root)
Definition: initsplan.c:359
void build_base_rel_tlists(PlannerInfo *root, List *final_tlist)
Definition: initsplan.c:235
void add_other_rels_to_query(PlannerInfo *root)
Definition: initsplan.c:196
void create_lateral_join_info(PlannerInfo *root)
Definition: initsplan.c:502
@ DEBUG_PARALLEL_OFF
Definition: optimizer.h:105
void extract_restriction_or_clauses(PlannerInfo *root)
Definition: orclauses.c:76
@ RTE_RESULT
Definition: parsenodes.h:1022
GroupResultPath * create_group_result_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *havingqual)
Definition: pathnode.c:1516
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:244
void add_placeholders_to_base_rels(PlannerInfo *root)
Definition: placeholder.c:329
void fix_placeholder_input_needed_levels(PlannerInfo *root)
Definition: placeholder.c:300
void find_placeholders_in_jointree(PlannerInfo *root)
Definition: placeholder.c:185
int debug_parallel_query
Definition: planner.c:73
void setup_simple_rel_arrays(PlannerInfo *root)
Definition: relnode.c:93
bool parallelModeOK
Definition: pathnodes.h:153
List * canon_pathkeys
Definition: pathnodes.h:317
List * join_rel_list
Definition: pathnodes.h:277
bool ec_merging_done
Definition: pathnodes.h:314
List * left_join_clauses
Definition: pathnodes.h:323
List * full_join_clauses
Definition: pathnodes.h:334
List * right_join_clauses
Definition: pathnodes.h:329
int join_cur_level
Definition: pathnodes.h:293
bool consider_parallel
Definition: pathnodes.h:872
struct Path * cheapest_total_path
Definition: pathnodes.h:887

References add_base_rels_to_query(), add_other_rels_to_query(), add_path(), add_placeholders_to_base_rels(), Assert(), build_base_rel_tlists(), build_simple_rel(), PlannerInfo::canon_pathkeys, RelOptInfo::cheapest_total_path, RelOptInfo::consider_parallel, create_group_result_path(), create_lateral_join_info(), DEBUG_PARALLEL_OFF, debug_parallel_query, deconstruct_jointree(), distribute_row_identity_vars(), PlannerInfo::ec_merging_done, elog(), ERROR, extract_restriction_or_clauses(), find_lateral_references(), find_placeholders_in_jointree(), fix_placeholder_input_needed_levels(), PlannerInfo::fkey_list, PlannerInfo::full_join_clauses, generate_base_implied_equalities(), PlannerInfo::glob, is_parallel_safe(), IsA, PlannerInfo::join_cur_level, PlannerInfo::join_info_list, PlannerInfo::join_rel_list, PlannerInfo::left_join_clauses, linitial, list_length(), make_one_rel(), match_foreign_keys_to_quals(), NIL, PlannerGlobal::parallelModeOK, parse(), PlannerInfo::parse, PlannerInfo::placeholder_list, PlannerInfo::processed_tlist, reconsider_outer_join_clauses(), reduce_unique_semijoins(), RelOptInfo::reltarget, remove_useless_joins(), PlannerInfo::right_join_clauses, RTE_RESULT, RangeTblEntry::rtekind, set_cheapest(), and setup_simple_rel_arrays().

Referenced by build_minmax_path(), and grouping_planner().

◆ query_supports_distinctness()

bool query_supports_distinctness ( Query query)

Definition at line 878 of file analyzejoins.c.

879 {
880  /* SRFs break distinctness except with DISTINCT, see below */
881  if (query->hasTargetSRFs && query->distinctClause == NIL)
882  return false;
883 
884  /* check for features we can prove distinctness with */
885  if (query->distinctClause != NIL ||
886  query->groupClause != NIL ||
887  query->groupingSets != NIL ||
888  query->hasAggs ||
889  query->havingQual ||
890  query->setOperations)
891  return true;
892 
893  return false;
894 }

References Query::distinctClause, Query::groupClause, Query::groupingSets, Query::havingQual, NIL, and Query::setOperations.

Referenced by create_unique_path(), and rel_supports_distinctness().

◆ record_plan_function_dependency()

void record_plan_function_dependency ( PlannerInfo root,
Oid  funcid 
)

Definition at line 3408 of file setrefs.c.

3409 {
3410  /*
3411  * For performance reasons, we don't bother to track built-in functions;
3412  * we just assume they'll never change (or at least not in ways that'd
3413  * invalidate plans using them). For this purpose we can consider a
3414  * built-in function to be one with OID less than FirstUnpinnedObjectId.
3415  * Note that the OID generator guarantees never to generate such an OID
3416  * after startup, even at OID wraparound.
3417  */
3418  if (funcid >= (Oid) FirstUnpinnedObjectId)
3419  {
3420  PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3421 
3422  /*
3423  * It would work to use any syscache on pg_proc, but the easiest is
3424  * PROCOID since we already have the function's OID at hand. Note
3425  * that plancache.c knows we use PROCOID.
3426  */
3427  inval_item->cacheId = PROCOID;
3428  inval_item->hashValue = GetSysCacheHashValue1(PROCOID,
3429  ObjectIdGetDatum(funcid));
3430 
3431  root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3432  }
3433 }
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
uint32 hashValue
Definition: plannodes.h:1571
List * invalItems
Definition: pathnodes.h:132
@ PROCOID
Definition: syscache.h:79
#define GetSysCacheHashValue1(cacheId, key1)
Definition: syscache.h:209
#define FirstUnpinnedObjectId
Definition: transam.h:196

References PlanInvalItem::cacheId, FirstUnpinnedObjectId, GetSysCacheHashValue1, PlannerInfo::glob, PlanInvalItem::hashValue, PlannerGlobal::invalItems, lappend(), makeNode, ObjectIdGetDatum(), and PROCOID.

Referenced by fix_expr_common(), inline_function(), and inline_set_returning_function().

◆ record_plan_type_dependency()

void record_plan_type_dependency ( PlannerInfo root,
Oid  typid 
)

Definition at line 3448 of file setrefs.c.

3449 {
3450  /*
3451  * As in record_plan_function_dependency, ignore the possibility that
3452  * someone would change a built-in domain.
3453  */
3454  if (typid >= (Oid) FirstUnpinnedObjectId)
3455  {
3456  PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3457 
3458  /*
3459  * It would work to use any syscache on pg_type, but the easiest is
3460  * TYPEOID since we already have the type's OID at hand. Note that
3461  * plancache.c knows we use TYPEOID.
3462  */
3463  inval_item->cacheId = TYPEOID;
3464  inval_item->hashValue = GetSysCacheHashValue1(TYPEOID,
3465  ObjectIdGetDatum(typid));
3466 
3467  root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3468  }
3469 }
@ TYPEOID
Definition: syscache.h:114

References PlanInvalItem::cacheId, FirstUnpinnedObjectId, GetSysCacheHashValue1, PlannerInfo::glob, PlanInvalItem::hashValue, PlannerGlobal::invalItems, lappend(), makeNode, ObjectIdGetDatum(), and TYPEOID.

Referenced by eval_const_expressions_mutator().

◆ reduce_unique_semijoins()

void reduce_unique_semijoins ( PlannerInfo root)

Definition at line 649 of file analyzejoins.c.

650 {
651  ListCell *lc;
652 
653  /*
654  * Scan the join_info_list to find semijoins.
655  */
656  foreach(lc, root->join_info_list)
657  {
658  SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
659  int innerrelid;
660  RelOptInfo *innerrel;
661  Relids joinrelids;
662  List *restrictlist;
663 
664  /*
665  * Must be a semijoin to a single baserel, else we aren't going to be
666  * able to do anything with it.
667  */
668  if (sjinfo->jointype != JOIN_SEMI)
669  continue;
670 
671  if (!bms_get_singleton_member(sjinfo->min_righthand, &innerrelid))
672  continue;
673 
674  innerrel = find_base_rel(root, innerrelid);
675 
676  /*
677  * Before we trouble to run generate_join_implied_equalities, make a
678  * quick check to eliminate cases in which we will surely be unable to
679  * prove uniqueness of the innerrel.
680  */
681  if (!rel_supports_distinctness(root, innerrel))
682  continue;
683 
684  /* Compute the relid set for the join we are considering */
685  joinrelids = bms_union(sjinfo->min_lefthand, sjinfo->min_righthand);
686  Assert(sjinfo->ojrelid == 0); /* SEMI joins don't have RT indexes */
687 
688  /*
689  * Since we're only considering a single-rel RHS, any join clauses it
690  * has must be clauses linking it to the semijoin's min_lefthand. We
691  * can also consider EC-derived join clauses.
692  */
693  restrictlist =
695  joinrelids,
696  sjinfo->min_lefthand,
697  innerrel,
698  NULL),
699  innerrel->joininfo);
700 
701  /* Test whether the innerrel is unique for those clauses. */
702  if (!innerrel_is_unique(root,
703  joinrelids, sjinfo->min_lefthand, innerrel,
704  JOIN_SEMI, restrictlist, true))
705  continue;
706 
707  /* OK, remove the SpecialJoinInfo from the list. */
709  }
710 }
bool innerrel_is_unique(PlannerInfo *root, Relids joinrelids, Relids outerrelids, RelOptInfo *innerrel, JoinType jointype, List *restrictlist, bool force_cache)
List * generate_join_implied_equalities(PlannerInfo *root, Relids join_relids, Relids outer_relids, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo)
Definition: equivclass.c:1381
List * list_concat(List *list1, const List *list2)
Definition: list.c:560
@ JOIN_SEMI
Definition: nodes.h:318
#define foreach_delete_current(lst, cell)
Definition: pg_list.h:390
Relids min_righthand
Definition: pathnodes.h:2841
JoinType jointype
Definition: pathnodes.h:2844
Relids min_lefthand
Definition: pathnodes.h:2840

References Assert(), bms_get_singleton_member(), bms_union(), find_base_rel(), foreach_delete_current, generate_join_implied_equalities(), innerrel_is_unique(), PlannerInfo::join_info_list, JOIN_SEMI, RelOptInfo::joininfo, SpecialJoinInfo::jointype, lfirst, list_concat(), SpecialJoinInfo::min_lefthand, SpecialJoinInfo::min_righthand, SpecialJoinInfo::ojrelid, and rel_supports_distinctness().

Referenced by query_planner().

◆ remove_useless_joins()

List* remove_useless_joins ( PlannerInfo root,
List joinlist 
)

Definition at line 64 of file analyzejoins.c.

65 {
66  ListCell *lc;
67 
68  /*
69  * We are only interested in relations that are left-joined to, so we can
70  * scan the join_info_list to find them easily.
71  */
72 restart:
73  foreach(lc, root->join_info_list)
74  {
75  SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
76  int innerrelid;
77  int nremoved;
78 
79  /* Skip if not removable */
80  if (!join_is_removable(root, sjinfo))
81  continue;
82 
83  /*
84  * Currently, join_is_removable can only succeed when the sjinfo's
85  * righthand is a single baserel. Remove that rel from the query and
86  * joinlist.
87  */
88  innerrelid = bms_singleton_member(sjinfo->min_righthand);
89 
90  remove_rel_from_query(root, innerrelid, sjinfo);
91 
92  /* We verify that exactly one reference gets removed from joinlist */
93  nremoved = 0;
94  joinlist = remove_rel_from_joinlist(joinlist, innerrelid, &nremoved);
95  if (nremoved != 1)
96  elog(ERROR, "failed to find relation %d in joinlist", innerrelid);
97 
98  /*
99  * We can delete this SpecialJoinInfo from the list too, since it's no
100  * longer of interest. (Since we'll restart the foreach loop
101  * immediately, we don't bother with foreach_delete_current.)
102  */
104 
105  /*
106  * Restart the scan. This is necessary to ensure we find all
107  * removable joins independently of ordering of the join_info_list
108  * (note that removal of attr_needed bits may make a join appear
109  * removable that did not before).
110  */
111  goto restart;
112  }
113 
114  return joinlist;
115 }
static void remove_rel_from_query(PlannerInfo *root, int relid, SpecialJoinInfo *sjinfo)
Definition: analyzejoins.c:329
static List * remove_rel_from_joinlist(List *joinlist, int relid, int *nremoved)
Definition: analyzejoins.c:595
static bool join_is_removable(PlannerInfo *root, SpecialJoinInfo *sjinfo)
Definition: analyzejoins.c:160
List * list_delete_cell(List *list, ListCell *cell)
Definition: list.c:840

References bms_singleton_member(), elog(), ERROR, PlannerInfo::join_info_list, join_is_removable(), lfirst, list_delete_cell(), SpecialJoinInfo::min_righthand, remove_rel_from_joinlist(), and remove_rel_from_query().

Referenced by query_planner().

◆ set_plan_references()

Plan* set_plan_references ( PlannerInfo root,
Plan plan 
)

Definition at line 287 of file setrefs.c.

288 {
289  Plan *result;
290  PlannerGlobal *glob = root->glob;
291  int rtoffset = list_length(glob->finalrtable);
292  ListCell *lc;
293 
294  /*
295  * Add all the query's RTEs to the flattened rangetable. The live ones
296  * will have their rangetable indexes increased by rtoffset. (Additional
297  * RTEs, not referenced by the Plan tree, might get added after those.)
298  */
299  add_rtes_to_flat_rtable(root, false);
300 
301  /*
302  * Adjust RT indexes of PlanRowMarks and add to final rowmarks list
303  */
304  foreach(lc, root->rowMarks)
305  {
307  PlanRowMark *newrc;
308 
309  /* flat copy is enough since all fields are scalars */
310  newrc = (PlanRowMark *) palloc(sizeof(PlanRowMark));
311  memcpy(newrc, rc, sizeof(PlanRowMark));
312 
313  /* adjust indexes ... but *not* the rowmarkId */
314  newrc->rti += rtoffset;
315  newrc->prti += rtoffset;
316 
317  glob->finalrowmarks = lappend(glob->finalrowmarks, newrc);
318  }
319 
320  /*
321  * Adjust RT indexes of AppendRelInfos and add to final appendrels list.
322  * We assume the AppendRelInfos were built during planning and don't need
323  * to be copied.
324  */
325  foreach(lc, root->append_rel_list)
326  {
327  AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
328 
329  /* adjust RT indexes */
330  appinfo->parent_relid += rtoffset;
331  appinfo->child_relid += rtoffset;
332 
333  /*
334  * Rather than adjust the translated_vars entries, just drop 'em.
335  * Neither the executor nor EXPLAIN currently need that data.
336  */
337  appinfo->translated_vars = NIL;
338 
339  glob->appendRelations = lappend(glob->appendRelations, appinfo);
340  }
341 
342  /* If needed, create workspace for processing AlternativeSubPlans */
343  if (root->hasAlternativeSubPlans)
344  {
345  root->isAltSubplan = (bool *)
346  palloc0(list_length(glob->subplans) * sizeof(bool));
347  root->isUsedSubplan = (bool *)
348  palloc0(list_length(glob->subplans) * sizeof(bool));
349  }
350 
351  /* Now fix the Plan tree */
352  result = set_plan_refs(root, plan, rtoffset);
353 
354  /*
355  * If we have AlternativeSubPlans, it is likely that we now have some
356  * unreferenced subplans in glob->subplans. To avoid expending cycles on
357  * those subplans later, get rid of them by setting those list entries to
358  * NULL. (Note: we can't do this immediately upon processing an
359  * AlternativeSubPlan, because there may be multiple copies of the
360  * AlternativeSubPlan, and they can get resolved differently.)
361  */
362  if (root->hasAlternativeSubPlans)
363  {
364  foreach(lc, glob->subplans)
365  {
366  int ndx = foreach_current_index(lc);
367 
368  /*
369  * If it was used by some AlternativeSubPlan in this query level,
370  * but wasn't selected as best by any AlternativeSubPlan, then we
371  * don't need it. Do not touch subplans that aren't parts of
372  * AlternativeSubPlans.
373  */
374  if (root->isAltSubplan[ndx] && !root->isUsedSubplan[ndx])
375  lfirst(lc) = NULL;
376  }
377  }
378 
379  return result;
380 }
unsigned char bool
Definition: c.h:440
void * palloc0(Size size)
Definition: mcxt.c:1257
#define lfirst_node(type, lc)
Definition: pg_list.h:176
#define foreach_current_index(cell)
Definition: pg_list.h:403
static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing)
Definition: setrefs.c:391
static Plan * set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
Definition: setrefs.c:608
Index child_relid
Definition: pathnodes.h:2916
List * translated_vars
Definition: pathnodes.h:2943
Index parent_relid
Definition: pathnodes.h:2915
Index prti
Definition: plannodes.h:1381
List * subplans
Definition: pathnodes.h:105
List * appendRelations
Definition: pathnodes.h:126
List * finalrowmarks
Definition: pathnodes.h:120
List * finalrtable
Definition: pathnodes.h:114
List * append_rel_list
Definition: pathnodes.h:362
bool hasAlternativeSubPlans
Definition: pathnodes.h:497
List * rowMarks
Definition: pathnodes.h:368

References add_rtes_to_flat_rtable(), PlannerInfo::append_rel_list, PlannerGlobal::appendRelations, AppendRelInfo::child_relid, PlannerGlobal::finalrowmarks, PlannerGlobal::finalrtable, foreach_current_index, PlannerInfo::glob, PlannerInfo::hasAlternativeSubPlans, lappend(), lfirst, lfirst_node, list_length(), NIL, palloc(), palloc0(), AppendRelInfo::parent_relid, plan, PlanRowMark::prti, PlannerInfo::rowMarks, PlanRowMark::rti, set_plan_refs(), PlannerGlobal::subplans, and AppendRelInfo::translated_vars.

Referenced by set_subqueryscan_references(), and standard_planner().

◆ trivial_subqueryscan()

bool trivial_subqueryscan ( SubqueryScan plan)

Definition at line 1448 of file setrefs.c.

1449 {
1450  int attrno;
1451  ListCell *lp,
1452  *lc;
1453 
1454  /* We might have detected this already; in which case reuse the result */
1455  if (plan->scanstatus == SUBQUERY_SCAN_TRIVIAL)
1456  return true;
1457  if (plan->scanstatus == SUBQUERY_SCAN_NONTRIVIAL)
1458  return false;
1459  Assert(plan->scanstatus == SUBQUERY_SCAN_UNKNOWN);
1460  /* Initially, mark the SubqueryScan as non-deletable from the plan tree */
1461  plan->scanstatus = SUBQUERY_SCAN_NONTRIVIAL;
1462 
1463  if (plan->scan.plan.qual != NIL)
1464  return false;
1465 
1466  if (list_length(plan->scan.plan.targetlist) !=
1467  list_length(plan->subplan->targetlist))
1468  return false; /* tlists not same length */
1469 
1470  attrno = 1;
1471  forboth(lp, plan->scan.plan.targetlist, lc, plan->subplan->targetlist)
1472  {
1473  TargetEntry *ptle = (TargetEntry *) lfirst(lp);
1474  TargetEntry *ctle = (TargetEntry *) lfirst(lc);
1475 
1476  if (ptle->resjunk != ctle->resjunk)
1477  return false; /* tlist doesn't match junk status */
1478 
1479  /*
1480  * We accept either a Var referencing the corresponding element of the
1481  * subplan tlist, or a Const equaling the subplan element. See
1482  * generate_setop_tlist() for motivation.
1483  */
1484  if (ptle->expr && IsA(ptle->expr, Var))
1485  {
1486  Var *var = (Var *) ptle->expr;
1487 
1488  Assert(var->varno == plan->scan.scanrelid);
1489  Assert(var->varlevelsup == 0);
1490  if (var->varattno != attrno)
1491  return false; /* out of order */
1492  }
1493  else if (ptle->expr && IsA(ptle->expr, Const))
1494  {
1495  if (!equal(ptle->expr, ctle->expr))
1496  return false;
1497  }
1498  else
1499  return false;
1500 
1501  attrno++;
1502  }
1503 
1504  /* Re-mark the SubqueryScan as deletable from the plan tree */
1505  plan->scanstatus = SUBQUERY_SCAN_TRIVIAL;
1506 
1507  return true;
1508 }
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:467
@ SUBQUERY_SCAN_NONTRIVIAL
Definition: plannodes.h:593
@ SUBQUERY_SCAN_UNKNOWN
Definition: plannodes.h:591
@ SUBQUERY_SCAN_TRIVIAL
Definition: plannodes.h:592
Index varlevelsup
Definition: primnodes.h:258

References Assert(), equal(), TargetEntry::expr, forboth, IsA, lfirst, list_length(), NIL, plan, SUBQUERY_SCAN_NONTRIVIAL, SUBQUERY_SCAN_TRIVIAL, SUBQUERY_SCAN_UNKNOWN, Var::varattno, Var::varlevelsup, and Var::varno.

Referenced by mark_async_capable_plan(), and set_subqueryscan_references().

Variable Documentation

◆ cursor_tuple_fraction

PGDLLIMPORT double cursor_tuple_fraction
extern

Definition at line 72 of file planner.c.

Referenced by standard_planner().

◆ from_collapse_limit

PGDLLIMPORT int from_collapse_limit
extern

Definition at line 39 of file initsplan.c.

Referenced by deconstruct_recurse().

◆ join_collapse_limit

PGDLLIMPORT int join_collapse_limit
extern

Definition at line 40 of file initsplan.c.

Referenced by deconstruct_recurse().