PostgreSQL Source Code  git master
setrefs.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * setrefs.c
4  * Post-processing of a completed plan tree: fix references to subplan
5  * vars, compute regproc values for operators, etc
6  *
7  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  *
11  * IDENTIFICATION
12  * src/backend/optimizer/plan/setrefs.c
13  *
14  *-------------------------------------------------------------------------
15  */
16 #include "postgres.h"
17 
18 #include "access/transam.h"
19 #include "catalog/pg_type.h"
20 #include "nodes/makefuncs.h"
21 #include "nodes/nodeFuncs.h"
22 #include "optimizer/optimizer.h"
23 #include "optimizer/pathnode.h"
24 #include "optimizer/planmain.h"
25 #include "optimizer/planner.h"
26 #include "optimizer/tlist.h"
27 #include "tcop/utility.h"
28 #include "utils/lsyscache.h"
29 #include "utils/syscache.h"
30 
31 
32 typedef struct
33 {
34  Index varno; /* RT index of Var */
35  AttrNumber varattno; /* attr number of Var */
36  AttrNumber resno; /* TLE position of Var */
37 } tlist_vinfo;
38 
39 typedef struct
40 {
41  List *tlist; /* underlying target list */
42  int num_vars; /* number of plain Var tlist entries */
43  bool has_ph_vars; /* are there PlaceHolderVar entries? */
44  bool has_non_vars; /* are there other entries? */
45  tlist_vinfo vars[FLEXIBLE_ARRAY_MEMBER]; /* has num_vars entries */
47 
48 typedef struct
49 {
51  int rtoffset;
53 
54 typedef struct
55 {
60  int rtoffset;
62 
63 typedef struct
64 {
68  int rtoffset;
70 
71 /*
72  * Check if a Const node is a regclass value. We accept plain OID too,
73  * since a regclass Const will get folded to that type if it's an argument
74  * to oideq or similar operators. (This might result in some extraneous
75  * values in a plan's list of relation dependencies, but the worst result
76  * would be occasional useless replans.)
77  */
78 #define ISREGCLASSCONST(con) \
79  (((con)->consttype == REGCLASSOID || (con)->consttype == OIDOID) && \
80  !(con)->constisnull)
81 
82 #define fix_scan_list(root, lst, rtoffset) \
83  ((List *) fix_scan_expr(root, (Node *) (lst), rtoffset))
84 
85 static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing);
86 static void flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte);
87 static bool flatten_rtes_walker(Node *node, PlannerGlobal *glob);
88 static void add_rte_to_flat_rtable(PlannerGlobal *glob, RangeTblEntry *rte);
89 static Plan *set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset);
91  IndexOnlyScan *plan,
92  int rtoffset);
94  SubqueryScan *plan,
95  int rtoffset);
96 static bool trivial_subqueryscan(SubqueryScan *plan);
97 static Plan *clean_up_removed_plan_level(Plan *parent, Plan *child);
98 static void set_foreignscan_references(PlannerInfo *root,
99  ForeignScan *fscan,
100  int rtoffset);
101 static void set_customscan_references(PlannerInfo *root,
102  CustomScan *cscan,
103  int rtoffset);
105  Append *aplan,
106  int rtoffset);
108  MergeAppend *mplan,
109  int rtoffset);
110 static void set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset);
111 static Node *fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset);
112 static Node *fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context);
113 static bool fix_scan_expr_walker(Node *node, fix_scan_expr_context *context);
114 static void set_join_references(PlannerInfo *root, Join *join, int rtoffset);
115 static void set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset);
116 static void set_param_references(PlannerInfo *root, Plan *plan);
117 static Node *convert_combining_aggrefs(Node *node, void *context);
118 static void set_dummy_tlist_references(Plan *plan, int rtoffset);
119 static indexed_tlist *build_tlist_index(List *tlist);
121  indexed_tlist *itlist,
122  Index newvarno,
123  int rtoffset);
125  indexed_tlist *itlist,
126  Index newvarno);
128  Index sortgroupref,
129  indexed_tlist *itlist,
130  Index newvarno);
131 static List *fix_join_expr(PlannerInfo *root,
132  List *clauses,
133  indexed_tlist *outer_itlist,
134  indexed_tlist *inner_itlist,
135  Index acceptable_rel, int rtoffset);
136 static Node *fix_join_expr_mutator(Node *node,
137  fix_join_expr_context *context);
138 static Node *fix_upper_expr(PlannerInfo *root,
139  Node *node,
140  indexed_tlist *subplan_itlist,
141  Index newvarno,
142  int rtoffset);
143 static Node *fix_upper_expr_mutator(Node *node,
144  fix_upper_expr_context *context);
146  List *rlist,
147  Plan *topplan,
148  Index resultRelation,
149  int rtoffset);
150 
151 
152 /*****************************************************************************
153  *
154  * SUBPLAN REFERENCES
155  *
156  *****************************************************************************/
157 
158 /*
159  * set_plan_references
160  *
161  * This is the final processing pass of the planner/optimizer. The plan
162  * tree is complete; we just have to adjust some representational details
163  * for the convenience of the executor:
164  *
165  * 1. We flatten the various subquery rangetables into a single list, and
166  * zero out RangeTblEntry fields that are not useful to the executor.
167  *
168  * 2. We adjust Vars in scan nodes to be consistent with the flat rangetable.
169  *
170  * 3. We adjust Vars in upper plan nodes to refer to the outputs of their
171  * subplans.
172  *
173  * 4. Aggrefs in Agg plan nodes need to be adjusted in some cases involving
174  * partial aggregation or minmax aggregate optimization.
175  *
176  * 5. PARAM_MULTIEXPR Params are replaced by regular PARAM_EXEC Params,
177  * now that we have finished planning all MULTIEXPR subplans.
178  *
179  * 6. We compute regproc OIDs for operators (ie, we look up the function
180  * that implements each op).
181  *
182  * 7. We create lists of specific objects that the plan depends on.
183  * This will be used by plancache.c to drive invalidation of cached plans.
184  * Relation dependencies are represented by OIDs, and everything else by
185  * PlanInvalItems (this distinction is motivated by the shared-inval APIs).
186  * Currently, relations, user-defined functions, and domains are the only
187  * types of objects that are explicitly tracked this way.
188  *
189  * 8. We assign every plan node in the tree a unique ID.
190  *
191  * We also perform one final optimization step, which is to delete
192  * SubqueryScan, Append, and MergeAppend plan nodes that aren't doing
193  * anything useful. The reason for doing this last is that
194  * it can't readily be done before set_plan_references, because it would
195  * break set_upper_references: the Vars in the child plan's top tlist
196  * wouldn't match up with the Vars in the outer plan tree. A SubqueryScan
197  * serves a necessary function as a buffer between outer query and subquery
198  * variable numbering ... but after we've flattened the rangetable this is
199  * no longer a problem, since then there's only one rtindex namespace.
200  * Likewise, Append and MergeAppend buffer between the parent and child vars
201  * of an appendrel, but we don't need to worry about that once we've done
202  * set_plan_references.
203  *
204  * set_plan_references recursively traverses the whole plan tree.
205  *
206  * The return value is normally the same Plan node passed in, but can be
207  * different when the passed-in Plan is a node we decide isn't needed.
208  *
209  * The flattened rangetable entries are appended to root->glob->finalrtable.
210  * Also, rowmarks entries are appended to root->glob->finalrowmarks, and the
211  * RT indexes of ModifyTable result relations to root->glob->resultRelations.
212  * Plan dependencies are appended to root->glob->relationOids (for relations)
213  * and root->glob->invalItems (for everything else).
214  *
215  * Notice that we modify Plan nodes in-place, but use expression_tree_mutator
216  * to process targetlist and qual expressions. We can assume that the Plan
217  * nodes were just built by the planner and are not multiply referenced, but
218  * it's not so safe to assume that for expression tree nodes.
219  */
220 Plan *
222 {
223  PlannerGlobal *glob = root->glob;
224  int rtoffset = list_length(glob->finalrtable);
225  ListCell *lc;
226 
227  /*
228  * Add all the query's RTEs to the flattened rangetable. The live ones
229  * will have their rangetable indexes increased by rtoffset. (Additional
230  * RTEs, not referenced by the Plan tree, might get added after those.)
231  */
232  add_rtes_to_flat_rtable(root, false);
233 
234  /*
235  * Adjust RT indexes of PlanRowMarks and add to final rowmarks list
236  */
237  foreach(lc, root->rowMarks)
238  {
240  PlanRowMark *newrc;
241 
242  /* flat copy is enough since all fields are scalars */
243  newrc = (PlanRowMark *) palloc(sizeof(PlanRowMark));
244  memcpy(newrc, rc, sizeof(PlanRowMark));
245 
246  /* adjust indexes ... but *not* the rowmarkId */
247  newrc->rti += rtoffset;
248  newrc->prti += rtoffset;
249 
250  glob->finalrowmarks = lappend(glob->finalrowmarks, newrc);
251  }
252 
253  /* Now fix the Plan tree */
254  return set_plan_refs(root, plan, rtoffset);
255 }
256 
257 /*
258  * Extract RangeTblEntries from the plan's rangetable, and add to flat rtable
259  *
260  * This can recurse into subquery plans; "recursing" is true if so.
261  */
262 static void
263 add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing)
264 {
265  PlannerGlobal *glob = root->glob;
266  Index rti;
267  ListCell *lc;
268 
269  /*
270  * Add the query's own RTEs to the flattened rangetable.
271  *
272  * At top level, we must add all RTEs so that their indexes in the
273  * flattened rangetable match up with their original indexes. When
274  * recursing, we only care about extracting relation RTEs.
275  */
276  foreach(lc, root->parse->rtable)
277  {
278  RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
279 
280  if (!recursing || rte->rtekind == RTE_RELATION)
281  add_rte_to_flat_rtable(glob, rte);
282  }
283 
284  /*
285  * If there are any dead subqueries, they are not referenced in the Plan
286  * tree, so we must add RTEs contained in them to the flattened rtable
287  * separately. (If we failed to do this, the executor would not perform
288  * expected permission checks for tables mentioned in such subqueries.)
289  *
290  * Note: this pass over the rangetable can't be combined with the previous
291  * one, because that would mess up the numbering of the live RTEs in the
292  * flattened rangetable.
293  */
294  rti = 1;
295  foreach(lc, root->parse->rtable)
296  {
297  RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
298 
299  /*
300  * We should ignore inheritance-parent RTEs: their contents have been
301  * pulled up into our rangetable already. Also ignore any subquery
302  * RTEs without matching RelOptInfos, as they likewise have been
303  * pulled up.
304  */
305  if (rte->rtekind == RTE_SUBQUERY && !rte->inh &&
306  rti < root->simple_rel_array_size)
307  {
308  RelOptInfo *rel = root->simple_rel_array[rti];
309 
310  if (rel != NULL)
311  {
312  Assert(rel->relid == rti); /* sanity check on array */
313 
314  /*
315  * The subquery might never have been planned at all, if it
316  * was excluded on the basis of self-contradictory constraints
317  * in our query level. In this case apply
318  * flatten_unplanned_rtes.
319  *
320  * If it was planned but the result rel is dummy, we assume
321  * that it has been omitted from our plan tree (see
322  * set_subquery_pathlist), and recurse to pull up its RTEs.
323  *
324  * Otherwise, it should be represented by a SubqueryScan node
325  * somewhere in our plan tree, and we'll pull up its RTEs when
326  * we process that plan node.
327  *
328  * However, if we're recursing, then we should pull up RTEs
329  * whether the subquery is dummy or not, because we've found
330  * that some upper query level is treating this one as dummy,
331  * and so we won't scan this level's plan tree at all.
332  */
333  if (rel->subroot == NULL)
334  flatten_unplanned_rtes(glob, rte);
335  else if (recursing ||
337  UPPERREL_FINAL, NULL)))
338  add_rtes_to_flat_rtable(rel->subroot, true);
339  }
340  }
341  rti++;
342  }
343 }
344 
345 /*
346  * Extract RangeTblEntries from a subquery that was never planned at all
347  */
348 static void
350 {
351  /* Use query_tree_walker to find all RTEs in the parse tree */
352  (void) query_tree_walker(rte->subquery,
354  (void *) glob,
356 }
357 
358 static bool
360 {
361  if (node == NULL)
362  return false;
363  if (IsA(node, RangeTblEntry))
364  {
365  RangeTblEntry *rte = (RangeTblEntry *) node;
366 
367  /* As above, we need only save relation RTEs */
368  if (rte->rtekind == RTE_RELATION)
369  add_rte_to_flat_rtable(glob, rte);
370  return false;
371  }
372  if (IsA(node, Query))
373  {
374  /* Recurse into subselects */
375  return query_tree_walker((Query *) node,
377  (void *) glob,
379  }
381  (void *) glob);
382 }
383 
384 /*
385  * Add (a copy of) the given RTE to the final rangetable
386  *
387  * In the flat rangetable, we zero out substructure pointers that are not
388  * needed by the executor; this reduces the storage space and copying cost
389  * for cached plans. We keep only the ctename, alias and eref Alias fields,
390  * which are needed by EXPLAIN, and the selectedCols, insertedCols and
391  * updatedCols bitmaps, which are needed for executor-startup permissions
392  * checking and for trigger event checking.
393  */
394 static void
396 {
397  RangeTblEntry *newrte;
398 
399  /* flat copy to duplicate all the scalar fields */
400  newrte = (RangeTblEntry *) palloc(sizeof(RangeTblEntry));
401  memcpy(newrte, rte, sizeof(RangeTblEntry));
402 
403  /* zap unneeded sub-structure */
404  newrte->tablesample = NULL;
405  newrte->subquery = NULL;
406  newrte->joinaliasvars = NIL;
407  newrte->functions = NIL;
408  newrte->tablefunc = NULL;
409  newrte->values_lists = NIL;
410  newrte->coltypes = NIL;
411  newrte->coltypmods = NIL;
412  newrte->colcollations = NIL;
413  newrte->securityQuals = NIL;
414 
415  glob->finalrtable = lappend(glob->finalrtable, newrte);
416 
417  /*
418  * Check for RT index overflow; it's very unlikely, but if it did happen,
419  * the executor would get confused by varnos that match the special varno
420  * values.
421  */
423  ereport(ERROR,
424  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
425  errmsg("too many range table entries")));
426 
427  /*
428  * If it's a plain relation RTE, add the table to relationOids.
429  *
430  * We do this even though the RTE might be unreferenced in the plan tree;
431  * this would correspond to cases such as views that were expanded, child
432  * tables that were eliminated by constraint exclusion, etc. Schema
433  * invalidation on such a rel must still force rebuilding of the plan.
434  *
435  * Note we don't bother to avoid making duplicate list entries. We could,
436  * but it would probably cost more cycles than it would save.
437  */
438  if (newrte->rtekind == RTE_RELATION)
439  glob->relationOids = lappend_oid(glob->relationOids, newrte->relid);
440 }
441 
442 /*
443  * set_plan_refs: recurse through the Plan nodes of a single subquery level
444  */
445 static Plan *
446 set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
447 {
448  ListCell *l;
449 
450  if (plan == NULL)
451  return NULL;
452 
453  /* Assign this node a unique ID. */
454  plan->plan_node_id = root->glob->lastPlanNodeId++;
455 
456  /*
457  * Plan-type-specific fixes
458  */
459  switch (nodeTag(plan))
460  {
461  case T_SeqScan:
462  {
463  SeqScan *splan = (SeqScan *) plan;
464 
465  splan->scanrelid += rtoffset;
466  splan->plan.targetlist =
467  fix_scan_list(root, splan->plan.targetlist, rtoffset);
468  splan->plan.qual =
469  fix_scan_list(root, splan->plan.qual, rtoffset);
470  }
471  break;
472  case T_SampleScan:
473  {
474  SampleScan *splan = (SampleScan *) plan;
475 
476  splan->scan.scanrelid += rtoffset;
477  splan->scan.plan.targetlist =
478  fix_scan_list(root, splan->scan.plan.targetlist, rtoffset);
479  splan->scan.plan.qual =
480  fix_scan_list(root, splan->scan.plan.qual, rtoffset);
481  splan->tablesample = (TableSampleClause *)
482  fix_scan_expr(root, (Node *) splan->tablesample, rtoffset);
483  }
484  break;
485  case T_IndexScan:
486  {
487  IndexScan *splan = (IndexScan *) plan;
488 
489  splan->scan.scanrelid += rtoffset;
490  splan->scan.plan.targetlist =
491  fix_scan_list(root, splan->scan.plan.targetlist, rtoffset);
492  splan->scan.plan.qual =
493  fix_scan_list(root, splan->scan.plan.qual, rtoffset);
494  splan->indexqual =
495  fix_scan_list(root, splan->indexqual, rtoffset);
496  splan->indexqualorig =
497  fix_scan_list(root, splan->indexqualorig, rtoffset);
498  splan->indexorderby =
499  fix_scan_list(root, splan->indexorderby, rtoffset);
500  splan->indexorderbyorig =
501  fix_scan_list(root, splan->indexorderbyorig, rtoffset);
502  }
503  break;
504  case T_IndexOnlyScan:
505  {
506  IndexOnlyScan *splan = (IndexOnlyScan *) plan;
507 
508  return set_indexonlyscan_references(root, splan, rtoffset);
509  }
510  break;
511  case T_BitmapIndexScan:
512  {
514 
515  splan->scan.scanrelid += rtoffset;
516  /* no need to fix targetlist and qual */
517  Assert(splan->scan.plan.targetlist == NIL);
518  Assert(splan->scan.plan.qual == NIL);
519  splan->indexqual =
520  fix_scan_list(root, splan->indexqual, rtoffset);
521  splan->indexqualorig =
522  fix_scan_list(root, splan->indexqualorig, rtoffset);
523  }
524  break;
525  case T_BitmapHeapScan:
526  {
527  BitmapHeapScan *splan = (BitmapHeapScan *) plan;
528 
529  splan->scan.scanrelid += rtoffset;
530  splan->scan.plan.targetlist =
531  fix_scan_list(root, splan->scan.plan.targetlist, rtoffset);
532  splan->scan.plan.qual =
533  fix_scan_list(root, splan->scan.plan.qual, rtoffset);
534  splan->bitmapqualorig =
535  fix_scan_list(root, splan->bitmapqualorig, rtoffset);
536  }
537  break;
538  case T_TidScan:
539  {
540  TidScan *splan = (TidScan *) plan;
541 
542  splan->scan.scanrelid += rtoffset;
543  splan->scan.plan.targetlist =
544  fix_scan_list(root, splan->scan.plan.targetlist, rtoffset);
545  splan->scan.plan.qual =
546  fix_scan_list(root, splan->scan.plan.qual, rtoffset);
547  splan->tidquals =
548  fix_scan_list(root, splan->tidquals, rtoffset);
549  }
550  break;
551  case T_SubqueryScan:
552  /* Needs special treatment, see comments below */
553  return set_subqueryscan_references(root,
554  (SubqueryScan *) plan,
555  rtoffset);
556  case T_FunctionScan:
557  {
558  FunctionScan *splan = (FunctionScan *) plan;
559 
560  splan->scan.scanrelid += rtoffset;
561  splan->scan.plan.targetlist =
562  fix_scan_list(root, splan->scan.plan.targetlist, rtoffset);
563  splan->scan.plan.qual =
564  fix_scan_list(root, splan->scan.plan.qual, rtoffset);
565  splan->functions =
566  fix_scan_list(root, splan->functions, rtoffset);
567  }
568  break;
569  case T_TableFuncScan:
570  {
571  TableFuncScan *splan = (TableFuncScan *) plan;
572 
573  splan->scan.scanrelid += rtoffset;
574  splan->scan.plan.targetlist =
575  fix_scan_list(root, splan->scan.plan.targetlist, rtoffset);
576  splan->scan.plan.qual =
577  fix_scan_list(root, splan->scan.plan.qual, rtoffset);
578  splan->tablefunc = (TableFunc *)
579  fix_scan_expr(root, (Node *) splan->tablefunc, rtoffset);
580  }
581  break;
582  case T_ValuesScan:
583  {
584  ValuesScan *splan = (ValuesScan *) plan;
585 
586  splan->scan.scanrelid += rtoffset;
587  splan->scan.plan.targetlist =
588  fix_scan_list(root, splan->scan.plan.targetlist, rtoffset);
589  splan->scan.plan.qual =
590  fix_scan_list(root, splan->scan.plan.qual, rtoffset);
591  splan->values_lists =
592  fix_scan_list(root, splan->values_lists, rtoffset);
593  }
594  break;
595  case T_CteScan:
596  {
597  CteScan *splan = (CteScan *) plan;
598 
599  splan->scan.scanrelid += rtoffset;
600  splan->scan.plan.targetlist =
601  fix_scan_list(root, splan->scan.plan.targetlist, rtoffset);
602  splan->scan.plan.qual =
603  fix_scan_list(root, splan->scan.plan.qual, rtoffset);
604  }
605  break;
607  {
609 
610  splan->scan.scanrelid += rtoffset;
611  splan->scan.plan.targetlist =
612  fix_scan_list(root, splan->scan.plan.targetlist, rtoffset);
613  splan->scan.plan.qual =
614  fix_scan_list(root, splan->scan.plan.qual, rtoffset);
615  }
616  break;
617  case T_WorkTableScan:
618  {
619  WorkTableScan *splan = (WorkTableScan *) plan;
620 
621  splan->scan.scanrelid += rtoffset;
622  splan->scan.plan.targetlist =
623  fix_scan_list(root, splan->scan.plan.targetlist, rtoffset);
624  splan->scan.plan.qual =
625  fix_scan_list(root, splan->scan.plan.qual, rtoffset);
626  }
627  break;
628  case T_ForeignScan:
629  set_foreignscan_references(root, (ForeignScan *) plan, rtoffset);
630  break;
631  case T_CustomScan:
632  set_customscan_references(root, (CustomScan *) plan, rtoffset);
633  break;
634 
635  case T_NestLoop:
636  case T_MergeJoin:
637  case T_HashJoin:
638  set_join_references(root, (Join *) plan, rtoffset);
639  break;
640 
641  case T_Gather:
642  case T_GatherMerge:
643  {
644  set_upper_references(root, plan, rtoffset);
645  set_param_references(root, plan);
646  }
647  break;
648 
649  case T_Hash:
650  set_hash_references(root, plan, rtoffset);
651  break;
652 
653  case T_Material:
654  case T_Sort:
655  case T_Unique:
656  case T_SetOp:
657 
658  /*
659  * These plan types don't actually bother to evaluate their
660  * targetlists, because they just return their unmodified input
661  * tuples. Even though the targetlist won't be used by the
662  * executor, we fix it up for possible use by EXPLAIN (not to
663  * mention ease of debugging --- wrong varnos are very confusing).
664  */
665  set_dummy_tlist_references(plan, rtoffset);
666 
667  /*
668  * Since these plan types don't check quals either, we should not
669  * find any qual expression attached to them.
670  */
671  Assert(plan->qual == NIL);
672  break;
673  case T_LockRows:
674  {
675  LockRows *splan = (LockRows *) plan;
676 
677  /*
678  * Like the plan types above, LockRows doesn't evaluate its
679  * tlist or quals. But we have to fix up the RT indexes in
680  * its rowmarks.
681  */
682  set_dummy_tlist_references(plan, rtoffset);
683  Assert(splan->plan.qual == NIL);
684 
685  foreach(l, splan->rowMarks)
686  {
687  PlanRowMark *rc = (PlanRowMark *) lfirst(l);
688 
689  rc->rti += rtoffset;
690  rc->prti += rtoffset;
691  }
692  }
693  break;
694  case T_Limit:
695  {
696  Limit *splan = (Limit *) plan;
697 
698  /*
699  * Like the plan types above, Limit doesn't evaluate its tlist
700  * or quals. It does have live expressions for limit/offset,
701  * however; and those cannot contain subplan variable refs, so
702  * fix_scan_expr works for them.
703  */
704  set_dummy_tlist_references(plan, rtoffset);
705  Assert(splan->plan.qual == NIL);
706 
707  splan->limitOffset =
708  fix_scan_expr(root, splan->limitOffset, rtoffset);
709  splan->limitCount =
710  fix_scan_expr(root, splan->limitCount, rtoffset);
711  }
712  break;
713  case T_Agg:
714  {
715  Agg *agg = (Agg *) plan;
716 
717  /*
718  * If this node is combining partial-aggregation results, we
719  * must convert its Aggrefs to contain references to the
720  * partial-aggregate subexpressions that will be available
721  * from the child plan node.
722  */
723  if (DO_AGGSPLIT_COMBINE(agg->aggsplit))
724  {
725  plan->targetlist = (List *)
726  convert_combining_aggrefs((Node *) plan->targetlist,
727  NULL);
728  plan->qual = (List *)
729  convert_combining_aggrefs((Node *) plan->qual,
730  NULL);
731  }
732 
733  set_upper_references(root, plan, rtoffset);
734  }
735  break;
736  case T_Group:
737  set_upper_references(root, plan, rtoffset);
738  break;
739  case T_WindowAgg:
740  {
741  WindowAgg *wplan = (WindowAgg *) plan;
742 
743  set_upper_references(root, plan, rtoffset);
744 
745  /*
746  * Like Limit node limit/offset expressions, WindowAgg has
747  * frame offset expressions, which cannot contain subplan
748  * variable refs, so fix_scan_expr works for them.
749  */
750  wplan->startOffset =
751  fix_scan_expr(root, wplan->startOffset, rtoffset);
752  wplan->endOffset =
753  fix_scan_expr(root, wplan->endOffset, rtoffset);
754  }
755  break;
756  case T_Result:
757  {
758  Result *splan = (Result *) plan;
759 
760  /*
761  * Result may or may not have a subplan; if not, it's more
762  * like a scan node than an upper node.
763  */
764  if (splan->plan.lefttree != NULL)
765  set_upper_references(root, plan, rtoffset);
766  else
767  {
768  splan->plan.targetlist =
769  fix_scan_list(root, splan->plan.targetlist, rtoffset);
770  splan->plan.qual =
771  fix_scan_list(root, splan->plan.qual, rtoffset);
772  }
773  /* resconstantqual can't contain any subplan variable refs */
774  splan->resconstantqual =
775  fix_scan_expr(root, splan->resconstantqual, rtoffset);
776  }
777  break;
778  case T_ProjectSet:
779  set_upper_references(root, plan, rtoffset);
780  break;
781  case T_ModifyTable:
782  {
783  ModifyTable *splan = (ModifyTable *) plan;
784 
785  Assert(splan->plan.targetlist == NIL);
786  Assert(splan->plan.qual == NIL);
787 
788  splan->withCheckOptionLists =
789  fix_scan_list(root, splan->withCheckOptionLists, rtoffset);
790 
791  if (splan->returningLists)
792  {
793  List *newRL = NIL;
794  ListCell *lcrl,
795  *lcrr,
796  *lcp;
797 
798  /*
799  * Pass each per-subplan returningList through
800  * set_returning_clause_references().
801  */
803  Assert(list_length(splan->returningLists) == list_length(splan->plans));
804  forthree(lcrl, splan->returningLists,
805  lcrr, splan->resultRelations,
806  lcp, splan->plans)
807  {
808  List *rlist = (List *) lfirst(lcrl);
809  Index resultrel = lfirst_int(lcrr);
810  Plan *subplan = (Plan *) lfirst(lcp);
811 
812  rlist = set_returning_clause_references(root,
813  rlist,
814  subplan,
815  resultrel,
816  rtoffset);
817  newRL = lappend(newRL, rlist);
818  }
819  splan->returningLists = newRL;
820 
821  /*
822  * Set up the visible plan targetlist as being the same as
823  * the first RETURNING list. This is for the use of
824  * EXPLAIN; the executor won't pay any attention to the
825  * targetlist. We postpone this step until here so that
826  * we don't have to do set_returning_clause_references()
827  * twice on identical targetlists.
828  */
829  splan->plan.targetlist = copyObject(linitial(newRL));
830  }
831 
832  /*
833  * We treat ModifyTable with ON CONFLICT as a form of 'pseudo
834  * join', where the inner side is the EXCLUDED tuple.
835  * Therefore use fix_join_expr to setup the relevant variables
836  * to INNER_VAR. We explicitly don't create any OUTER_VARs as
837  * those are already used by RETURNING and it seems better to
838  * be non-conflicting.
839  */
840  if (splan->onConflictSet)
841  {
842  indexed_tlist *itlist;
843 
844  itlist = build_tlist_index(splan->exclRelTlist);
845 
846  splan->onConflictSet =
847  fix_join_expr(root, splan->onConflictSet,
848  NULL, itlist,
850  rtoffset);
851 
852  splan->onConflictWhere = (Node *)
853  fix_join_expr(root, (List *) splan->onConflictWhere,
854  NULL, itlist,
856  rtoffset);
857 
858  pfree(itlist);
859 
860  splan->exclRelTlist =
861  fix_scan_list(root, splan->exclRelTlist, rtoffset);
862  }
863 
864  splan->nominalRelation += rtoffset;
865  if (splan->rootRelation)
866  splan->rootRelation += rtoffset;
867  splan->exclRelRTI += rtoffset;
868 
869  foreach(l, splan->resultRelations)
870  {
871  lfirst_int(l) += rtoffset;
872  }
873  foreach(l, splan->rowMarks)
874  {
875  PlanRowMark *rc = (PlanRowMark *) lfirst(l);
876 
877  rc->rti += rtoffset;
878  rc->prti += rtoffset;
879  }
880  foreach(l, splan->plans)
881  {
882  lfirst(l) = set_plan_refs(root,
883  (Plan *) lfirst(l),
884  rtoffset);
885  }
886 
887  /*
888  * Append this ModifyTable node's final result relation RT
889  * index(es) to the global list for the plan, and set its
890  * resultRelIndex to reflect their starting position in the
891  * global list.
892  */
894  root->glob->resultRelations =
896  splan->resultRelations);
897 
898  /*
899  * If the main target relation is a partitioned table, also
900  * add the partition root's RT index to rootResultRelations,
901  * and remember its index in that list in rootResultRelIndex.
902  */
903  if (splan->rootRelation)
904  {
905  splan->rootResultRelIndex =
907  root->glob->rootResultRelations =
909  splan->rootRelation);
910  }
911  }
912  break;
913  case T_Append:
914  /* Needs special treatment, see comments below */
915  return set_append_references(root,
916  (Append *) plan,
917  rtoffset);
918  case T_MergeAppend:
919  /* Needs special treatment, see comments below */
920  return set_mergeappend_references(root,
921  (MergeAppend *) plan,
922  rtoffset);
923  case T_RecursiveUnion:
924  /* This doesn't evaluate targetlist or check quals either */
925  set_dummy_tlist_references(plan, rtoffset);
926  Assert(plan->qual == NIL);
927  break;
928  case T_BitmapAnd:
929  {
930  BitmapAnd *splan = (BitmapAnd *) plan;
931 
932  /* BitmapAnd works like Append, but has no tlist */
933  Assert(splan->plan.targetlist == NIL);
934  Assert(splan->plan.qual == NIL);
935  foreach(l, splan->bitmapplans)
936  {
937  lfirst(l) = set_plan_refs(root,
938  (Plan *) lfirst(l),
939  rtoffset);
940  }
941  }
942  break;
943  case T_BitmapOr:
944  {
945  BitmapOr *splan = (BitmapOr *) plan;
946 
947  /* BitmapOr works like Append, but has no tlist */
948  Assert(splan->plan.targetlist == NIL);
949  Assert(splan->plan.qual == NIL);
950  foreach(l, splan->bitmapplans)
951  {
952  lfirst(l) = set_plan_refs(root,
953  (Plan *) lfirst(l),
954  rtoffset);
955  }
956  }
957  break;
958  default:
959  elog(ERROR, "unrecognized node type: %d",
960  (int) nodeTag(plan));
961  break;
962  }
963 
964  /*
965  * Now recurse into child plans, if any
966  *
967  * NOTE: it is essential that we recurse into child plans AFTER we set
968  * subplan references in this plan's tlist and quals. If we did the
969  * reference-adjustments bottom-up, then we would fail to match this
970  * plan's var nodes against the already-modified nodes of the children.
971  */
972  plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset);
973  plan->righttree = set_plan_refs(root, plan->righttree, rtoffset);
974 
975  return plan;
976 }
977 
978 /*
979  * set_indexonlyscan_references
980  * Do set_plan_references processing on an IndexOnlyScan
981  *
982  * This is unlike the handling of a plain IndexScan because we have to
983  * convert Vars referencing the heap into Vars referencing the index.
984  * We can use the fix_upper_expr machinery for that, by working from a
985  * targetlist describing the index columns.
986  */
987 static Plan *
989  IndexOnlyScan *plan,
990  int rtoffset)
991 {
992  indexed_tlist *index_itlist;
993 
994  index_itlist = build_tlist_index(plan->indextlist);
995 
996  plan->scan.scanrelid += rtoffset;
997  plan->scan.plan.targetlist = (List *)
998  fix_upper_expr(root,
999  (Node *) plan->scan.plan.targetlist,
1000  index_itlist,
1001  INDEX_VAR,
1002  rtoffset);
1003  plan->scan.plan.qual = (List *)
1004  fix_upper_expr(root,
1005  (Node *) plan->scan.plan.qual,
1006  index_itlist,
1007  INDEX_VAR,
1008  rtoffset);
1009  /* indexqual is already transformed to reference index columns */
1010  plan->indexqual = fix_scan_list(root, plan->indexqual, rtoffset);
1011  /* indexorderby is already transformed to reference index columns */
1012  plan->indexorderby = fix_scan_list(root, plan->indexorderby, rtoffset);
1013  /* indextlist must NOT be transformed to reference index columns */
1014  plan->indextlist = fix_scan_list(root, plan->indextlist, rtoffset);
1015 
1016  pfree(index_itlist);
1017 
1018  return (Plan *) plan;
1019 }
1020 
1021 /*
1022  * set_subqueryscan_references
1023  * Do set_plan_references processing on a SubqueryScan
1024  *
1025  * We try to strip out the SubqueryScan entirely; if we can't, we have
1026  * to do the normal processing on it.
1027  */
1028 static Plan *
1030  SubqueryScan *plan,
1031  int rtoffset)
1032 {
1033  RelOptInfo *rel;
1034  Plan *result;
1035 
1036  /* Need to look up the subquery's RelOptInfo, since we need its subroot */
1037  rel = find_base_rel(root, plan->scan.scanrelid);
1038 
1039  /* Recursively process the subplan */
1040  plan->subplan = set_plan_references(rel->subroot, plan->subplan);
1041 
1042  if (trivial_subqueryscan(plan))
1043  {
1044  /*
1045  * We can omit the SubqueryScan node and just pull up the subplan.
1046  */
1047  result = clean_up_removed_plan_level((Plan *) plan, plan->subplan);
1048  }
1049  else
1050  {
1051  /*
1052  * Keep the SubqueryScan node. We have to do the processing that
1053  * set_plan_references would otherwise have done on it. Notice we do
1054  * not do set_upper_references() here, because a SubqueryScan will
1055  * always have been created with correct references to its subplan's
1056  * outputs to begin with.
1057  */
1058  plan->scan.scanrelid += rtoffset;
1059  plan->scan.plan.targetlist =
1060  fix_scan_list(root, plan->scan.plan.targetlist, rtoffset);
1061  plan->scan.plan.qual =
1062  fix_scan_list(root, plan->scan.plan.qual, rtoffset);
1063 
1064  result = (Plan *) plan;
1065  }
1066 
1067  return result;
1068 }
1069 
1070 /*
1071  * trivial_subqueryscan
1072  * Detect whether a SubqueryScan can be deleted from the plan tree.
1073  *
1074  * We can delete it if it has no qual to check and the targetlist just
1075  * regurgitates the output of the child plan.
1076  */
1077 static bool
1079 {
1080  int attrno;
1081  ListCell *lp,
1082  *lc;
1083 
1084  if (plan->scan.plan.qual != NIL)
1085  return false;
1086 
1087  if (list_length(plan->scan.plan.targetlist) !=
1088  list_length(plan->subplan->targetlist))
1089  return false; /* tlists not same length */
1090 
1091  attrno = 1;
1092  forboth(lp, plan->scan.plan.targetlist, lc, plan->subplan->targetlist)
1093  {
1094  TargetEntry *ptle = (TargetEntry *) lfirst(lp);
1095  TargetEntry *ctle = (TargetEntry *) lfirst(lc);
1096 
1097  if (ptle->resjunk != ctle->resjunk)
1098  return false; /* tlist doesn't match junk status */
1099 
1100  /*
1101  * We accept either a Var referencing the corresponding element of the
1102  * subplan tlist, or a Const equaling the subplan element. See
1103  * generate_setop_tlist() for motivation.
1104  */
1105  if (ptle->expr && IsA(ptle->expr, Var))
1106  {
1107  Var *var = (Var *) ptle->expr;
1108 
1109  Assert(var->varno == plan->scan.scanrelid);
1110  Assert(var->varlevelsup == 0);
1111  if (var->varattno != attrno)
1112  return false; /* out of order */
1113  }
1114  else if (ptle->expr && IsA(ptle->expr, Const))
1115  {
1116  if (!equal(ptle->expr, ctle->expr))
1117  return false;
1118  }
1119  else
1120  return false;
1121 
1122  attrno++;
1123  }
1124 
1125  return true;
1126 }
1127 
1128 /*
1129  * clean_up_removed_plan_level
1130  * Do necessary cleanup when we strip out a SubqueryScan, Append, etc
1131  *
1132  * We are dropping the "parent" plan in favor of returning just its "child".
1133  * A few small tweaks are needed.
1134  */
1135 static Plan *
1137 {
1138  /* We have to be sure we don't lose any initplans */
1139  child->initPlan = list_concat(parent->initPlan,
1140  child->initPlan);
1141 
1142  /*
1143  * We also have to transfer the parent's column labeling info into the
1144  * child, else columns sent to client will be improperly labeled if this
1145  * is the topmost plan level. resjunk and so on may be important too.
1146  */
1147  apply_tlist_labeling(child->targetlist, parent->targetlist);
1148 
1149  return child;
1150 }
1151 
1152 /*
1153  * set_foreignscan_references
1154  * Do set_plan_references processing on a ForeignScan
1155  */
1156 static void
1158  ForeignScan *fscan,
1159  int rtoffset)
1160 {
1161  /* Adjust scanrelid if it's valid */
1162  if (fscan->scan.scanrelid > 0)
1163  fscan->scan.scanrelid += rtoffset;
1164 
1165  if (fscan->fdw_scan_tlist != NIL || fscan->scan.scanrelid == 0)
1166  {
1167  /*
1168  * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals to reference
1169  * foreign scan tuple
1170  */
1172 
1173  fscan->scan.plan.targetlist = (List *)
1174  fix_upper_expr(root,
1175  (Node *) fscan->scan.plan.targetlist,
1176  itlist,
1177  INDEX_VAR,
1178  rtoffset);
1179  fscan->scan.plan.qual = (List *)
1180  fix_upper_expr(root,
1181  (Node *) fscan->scan.plan.qual,
1182  itlist,
1183  INDEX_VAR,
1184  rtoffset);
1185  fscan->fdw_exprs = (List *)
1186  fix_upper_expr(root,
1187  (Node *) fscan->fdw_exprs,
1188  itlist,
1189  INDEX_VAR,
1190  rtoffset);
1191  fscan->fdw_recheck_quals = (List *)
1192  fix_upper_expr(root,
1193  (Node *) fscan->fdw_recheck_quals,
1194  itlist,
1195  INDEX_VAR,
1196  rtoffset);
1197  pfree(itlist);
1198  /* fdw_scan_tlist itself just needs fix_scan_list() adjustments */
1199  fscan->fdw_scan_tlist =
1200  fix_scan_list(root, fscan->fdw_scan_tlist, rtoffset);
1201  }
1202  else
1203  {
1204  /*
1205  * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals in the standard
1206  * way
1207  */
1208  fscan->scan.plan.targetlist =
1209  fix_scan_list(root, fscan->scan.plan.targetlist, rtoffset);
1210  fscan->scan.plan.qual =
1211  fix_scan_list(root, fscan->scan.plan.qual, rtoffset);
1212  fscan->fdw_exprs =
1213  fix_scan_list(root, fscan->fdw_exprs, rtoffset);
1214  fscan->fdw_recheck_quals =
1215  fix_scan_list(root, fscan->fdw_recheck_quals, rtoffset);
1216  }
1217 
1218  /* Adjust fs_relids if needed */
1219  if (rtoffset > 0)
1220  {
1221  Bitmapset *tempset = NULL;
1222  int x = -1;
1223 
1224  while ((x = bms_next_member(fscan->fs_relids, x)) >= 0)
1225  tempset = bms_add_member(tempset, x + rtoffset);
1226  fscan->fs_relids = tempset;
1227  }
1228 }
1229 
1230 /*
1231  * set_customscan_references
1232  * Do set_plan_references processing on a CustomScan
1233  */
1234 static void
1236  CustomScan *cscan,
1237  int rtoffset)
1238 {
1239  ListCell *lc;
1240 
1241  /* Adjust scanrelid if it's valid */
1242  if (cscan->scan.scanrelid > 0)
1243  cscan->scan.scanrelid += rtoffset;
1244 
1245  if (cscan->custom_scan_tlist != NIL || cscan->scan.scanrelid == 0)
1246  {
1247  /* Adjust tlist, qual, custom_exprs to reference custom scan tuple */
1249 
1250  cscan->scan.plan.targetlist = (List *)
1251  fix_upper_expr(root,
1252  (Node *) cscan->scan.plan.targetlist,
1253  itlist,
1254  INDEX_VAR,
1255  rtoffset);
1256  cscan->scan.plan.qual = (List *)
1257  fix_upper_expr(root,
1258  (Node *) cscan->scan.plan.qual,
1259  itlist,
1260  INDEX_VAR,
1261  rtoffset);
1262  cscan->custom_exprs = (List *)
1263  fix_upper_expr(root,
1264  (Node *) cscan->custom_exprs,
1265  itlist,
1266  INDEX_VAR,
1267  rtoffset);
1268  pfree(itlist);
1269  /* custom_scan_tlist itself just needs fix_scan_list() adjustments */
1270  cscan->custom_scan_tlist =
1271  fix_scan_list(root, cscan->custom_scan_tlist, rtoffset);
1272  }
1273  else
1274  {
1275  /* Adjust tlist, qual, custom_exprs in the standard way */
1276  cscan->scan.plan.targetlist =
1277  fix_scan_list(root, cscan->scan.plan.targetlist, rtoffset);
1278  cscan->scan.plan.qual =
1279  fix_scan_list(root, cscan->scan.plan.qual, rtoffset);
1280  cscan->custom_exprs =
1281  fix_scan_list(root, cscan->custom_exprs, rtoffset);
1282  }
1283 
1284  /* Adjust child plan-nodes recursively, if needed */
1285  foreach(lc, cscan->custom_plans)
1286  {
1287  lfirst(lc) = set_plan_refs(root, (Plan *) lfirst(lc), rtoffset);
1288  }
1289 
1290  /* Adjust custom_relids if needed */
1291  if (rtoffset > 0)
1292  {
1293  Bitmapset *tempset = NULL;
1294  int x = -1;
1295 
1296  while ((x = bms_next_member(cscan->custom_relids, x)) >= 0)
1297  tempset = bms_add_member(tempset, x + rtoffset);
1298  cscan->custom_relids = tempset;
1299  }
1300 }
1301 
1302 /*
1303  * set_append_references
1304  * Do set_plan_references processing on an Append
1305  *
1306  * We try to strip out the Append entirely; if we can't, we have
1307  * to do the normal processing on it.
1308  */
1309 static Plan *
1311  Append *aplan,
1312  int rtoffset)
1313 {
1314  ListCell *l;
1315 
1316  /*
1317  * Append, like Sort et al, doesn't actually evaluate its targetlist or
1318  * check quals. If it's got exactly one child plan, then it's not doing
1319  * anything useful at all, and we can strip it out.
1320  */
1321  Assert(aplan->plan.qual == NIL);
1322 
1323  /* First, we gotta recurse on the children */
1324  foreach(l, aplan->appendplans)
1325  {
1326  lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
1327  }
1328 
1329  /* Now, if there's just one, forget the Append and return that child */
1330  if (list_length(aplan->appendplans) == 1)
1331  return clean_up_removed_plan_level((Plan *) aplan,
1332  (Plan *) linitial(aplan->appendplans));
1333 
1334  /*
1335  * Otherwise, clean up the Append as needed. It's okay to do this after
1336  * recursing to the children, because set_dummy_tlist_references doesn't
1337  * look at those.
1338  */
1339  set_dummy_tlist_references((Plan *) aplan, rtoffset);
1340 
1341  if (aplan->part_prune_info)
1342  {
1343  foreach(l, aplan->part_prune_info->prune_infos)
1344  {
1345  List *prune_infos = lfirst(l);
1346  ListCell *l2;
1347 
1348  foreach(l2, prune_infos)
1349  {
1350  PartitionedRelPruneInfo *pinfo = lfirst(l2);
1351 
1352  pinfo->rtindex += rtoffset;
1353  }
1354  }
1355  }
1356 
1357  /* We don't need to recurse to lefttree or righttree ... */
1358  Assert(aplan->plan.lefttree == NULL);
1359  Assert(aplan->plan.righttree == NULL);
1360 
1361  return (Plan *) aplan;
1362 }
1363 
1364 /*
1365  * set_mergeappend_references
1366  * Do set_plan_references processing on a MergeAppend
1367  *
1368  * We try to strip out the MergeAppend entirely; if we can't, we have
1369  * to do the normal processing on it.
1370  */
1371 static Plan *
1373  MergeAppend *mplan,
1374  int rtoffset)
1375 {
1376  ListCell *l;
1377 
1378  /*
1379  * MergeAppend, like Sort et al, doesn't actually evaluate its targetlist
1380  * or check quals. If it's got exactly one child plan, then it's not
1381  * doing anything useful at all, and we can strip it out.
1382  */
1383  Assert(mplan->plan.qual == NIL);
1384 
1385  /* First, we gotta recurse on the children */
1386  foreach(l, mplan->mergeplans)
1387  {
1388  lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
1389  }
1390 
1391  /* Now, if there's just one, forget the MergeAppend and return that child */
1392  if (list_length(mplan->mergeplans) == 1)
1393  return clean_up_removed_plan_level((Plan *) mplan,
1394  (Plan *) linitial(mplan->mergeplans));
1395 
1396  /*
1397  * Otherwise, clean up the MergeAppend as needed. It's okay to do this
1398  * after recursing to the children, because set_dummy_tlist_references
1399  * doesn't look at those.
1400  */
1401  set_dummy_tlist_references((Plan *) mplan, rtoffset);
1402 
1403  if (mplan->part_prune_info)
1404  {
1405  foreach(l, mplan->part_prune_info->prune_infos)
1406  {
1407  List *prune_infos = lfirst(l);
1408  ListCell *l2;
1409 
1410  foreach(l2, prune_infos)
1411  {
1412  PartitionedRelPruneInfo *pinfo = lfirst(l2);
1413 
1414  pinfo->rtindex += rtoffset;
1415  }
1416  }
1417  }
1418 
1419  /* We don't need to recurse to lefttree or righttree ... */
1420  Assert(mplan->plan.lefttree == NULL);
1421  Assert(mplan->plan.righttree == NULL);
1422 
1423  return (Plan *) mplan;
1424 }
1425 
1426 /*
1427  * set_hash_references
1428  * Do set_plan_references processing on a Hash node
1429  */
1430 static void
1431 set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset)
1432 {
1433  Hash *hplan = (Hash *) plan;
1434  Plan *outer_plan = plan->lefttree;
1435  indexed_tlist *outer_itlist;
1436 
1437  /*
1438  * Hash's hashkeys are used when feeding tuples into the hashtable,
1439  * therefore have them reference Hash's outer plan (which itself is the
1440  * inner plan of the HashJoin).
1441  */
1442  outer_itlist = build_tlist_index(outer_plan->targetlist);
1443  hplan->hashkeys = (List *)
1444  fix_upper_expr(root,
1445  (Node *) hplan->hashkeys,
1446  outer_itlist,
1447  OUTER_VAR,
1448  rtoffset);
1449 
1450  /* Hash doesn't project */
1451  set_dummy_tlist_references(plan, rtoffset);
1452 
1453  /* Hash nodes don't have their own quals */
1454  Assert(plan->qual == NIL);
1455 }
1456 
1457 /*
1458  * copyVar
1459  * Copy a Var node.
1460  *
1461  * fix_scan_expr and friends do this enough times that it's worth having
1462  * a bespoke routine instead of using the generic copyObject() function.
1463  */
1464 static inline Var *
1466 {
1467  Var *newvar = (Var *) palloc(sizeof(Var));
1468 
1469  *newvar = *var;
1470  return newvar;
1471 }
1472 
1473 /*
1474  * fix_expr_common
1475  * Do generic set_plan_references processing on an expression node
1476  *
1477  * This is code that is common to all variants of expression-fixing.
1478  * We must look up operator opcode info for OpExpr and related nodes,
1479  * add OIDs from regclass Const nodes into root->glob->relationOids, and
1480  * add PlanInvalItems for user-defined functions into root->glob->invalItems.
1481  * We also fill in column index lists for GROUPING() expressions.
1482  *
1483  * We assume it's okay to update opcode info in-place. So this could possibly
1484  * scribble on the planner's input data structures, but it's OK.
1485  */
1486 static void
1488 {
1489  /* We assume callers won't call us on a NULL pointer */
1490  if (IsA(node, Aggref))
1491  {
1493  ((Aggref *) node)->aggfnoid);
1494  }
1495  else if (IsA(node, WindowFunc))
1496  {
1498  ((WindowFunc *) node)->winfnoid);
1499  }
1500  else if (IsA(node, FuncExpr))
1501  {
1503  ((FuncExpr *) node)->funcid);
1504  }
1505  else if (IsA(node, OpExpr))
1506  {
1507  set_opfuncid((OpExpr *) node);
1509  ((OpExpr *) node)->opfuncid);
1510  }
1511  else if (IsA(node, DistinctExpr))
1512  {
1513  set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
1515  ((DistinctExpr *) node)->opfuncid);
1516  }
1517  else if (IsA(node, NullIfExpr))
1518  {
1519  set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
1521  ((NullIfExpr *) node)->opfuncid);
1522  }
1523  else if (IsA(node, ScalarArrayOpExpr))
1524  {
1527  ((ScalarArrayOpExpr *) node)->opfuncid);
1528  }
1529  else if (IsA(node, Const))
1530  {
1531  Const *con = (Const *) node;
1532 
1533  /* Check for regclass reference */
1534  if (ISREGCLASSCONST(con))
1535  root->glob->relationOids =
1536  lappend_oid(root->glob->relationOids,
1538  }
1539  else if (IsA(node, GroupingFunc))
1540  {
1541  GroupingFunc *g = (GroupingFunc *) node;
1542  AttrNumber *grouping_map = root->grouping_map;
1543 
1544  /* If there are no grouping sets, we don't need this. */
1545 
1546  Assert(grouping_map || g->cols == NIL);
1547 
1548  if (grouping_map)
1549  {
1550  ListCell *lc;
1551  List *cols = NIL;
1552 
1553  foreach(lc, g->refs)
1554  {
1555  cols = lappend_int(cols, grouping_map[lfirst_int(lc)]);
1556  }
1557 
1558  Assert(!g->cols || equal(cols, g->cols));
1559 
1560  if (!g->cols)
1561  g->cols = cols;
1562  }
1563  }
1564 }
1565 
1566 /*
1567  * fix_param_node
1568  * Do set_plan_references processing on a Param
1569  *
1570  * If it's a PARAM_MULTIEXPR, replace it with the appropriate Param from
1571  * root->multiexpr_params; otherwise no change is needed.
1572  * Just for paranoia's sake, we make a copy of the node in either case.
1573  */
1574 static Node *
1576 {
1577  if (p->paramkind == PARAM_MULTIEXPR)
1578  {
1579  int subqueryid = p->paramid >> 16;
1580  int colno = p->paramid & 0xFFFF;
1581  List *params;
1582 
1583  if (subqueryid <= 0 ||
1584  subqueryid > list_length(root->multiexpr_params))
1585  elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
1586  params = (List *) list_nth(root->multiexpr_params, subqueryid - 1);
1587  if (colno <= 0 || colno > list_length(params))
1588  elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
1589  return copyObject(list_nth(params, colno - 1));
1590  }
1591  return (Node *) copyObject(p);
1592 }
1593 
1594 /*
1595  * fix_scan_expr
1596  * Do set_plan_references processing on a scan-level expression
1597  *
1598  * This consists of incrementing all Vars' varnos by rtoffset,
1599  * replacing PARAM_MULTIEXPR Params, expanding PlaceHolderVars,
1600  * replacing Aggref nodes that should be replaced by initplan output Params,
1601  * looking up operator opcode info for OpExpr and related nodes,
1602  * and adding OIDs from regclass Const nodes into root->glob->relationOids.
1603  */
1604 static Node *
1605 fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset)
1606 {
1607  fix_scan_expr_context context;
1608 
1609  context.root = root;
1610  context.rtoffset = rtoffset;
1611 
1612  if (rtoffset != 0 ||
1613  root->multiexpr_params != NIL ||
1614  root->glob->lastPHId != 0 ||
1615  root->minmax_aggs != NIL)
1616  {
1617  return fix_scan_expr_mutator(node, &context);
1618  }
1619  else
1620  {
1621  /*
1622  * If rtoffset == 0, we don't need to change any Vars, and if there
1623  * are no MULTIEXPR subqueries then we don't need to replace
1624  * PARAM_MULTIEXPR Params, and if there are no placeholders anywhere
1625  * we won't need to remove them, and if there are no minmax Aggrefs we
1626  * won't need to replace them. Then it's OK to just scribble on the
1627  * input node tree instead of copying (since the only change, filling
1628  * in any unset opfuncid fields, is harmless). This saves just enough
1629  * cycles to be noticeable on trivial queries.
1630  */
1631  (void) fix_scan_expr_walker(node, &context);
1632  return node;
1633  }
1634 }
1635 
1636 static Node *
1638 {
1639  if (node == NULL)
1640  return NULL;
1641  if (IsA(node, Var))
1642  {
1643  Var *var = copyVar((Var *) node);
1644 
1645  Assert(var->varlevelsup == 0);
1646 
1647  /*
1648  * We should not see any Vars marked INNER_VAR or OUTER_VAR. But an
1649  * indexqual expression could contain INDEX_VAR Vars.
1650  */
1651  Assert(var->varno != INNER_VAR);
1652  Assert(var->varno != OUTER_VAR);
1653  if (!IS_SPECIAL_VARNO(var->varno))
1654  var->varno += context->rtoffset;
1655  if (var->varnoold > 0)
1656  var->varnoold += context->rtoffset;
1657  return (Node *) var;
1658  }
1659  if (IsA(node, Param))
1660  return fix_param_node(context->root, (Param *) node);
1661  if (IsA(node, Aggref))
1662  {
1663  Aggref *aggref = (Aggref *) node;
1664 
1665  /* See if the Aggref should be replaced by a Param */
1666  if (context->root->minmax_aggs != NIL &&
1667  list_length(aggref->args) == 1)
1668  {
1669  TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args);
1670  ListCell *lc;
1671 
1672  foreach(lc, context->root->minmax_aggs)
1673  {
1674  MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
1675 
1676  if (mminfo->aggfnoid == aggref->aggfnoid &&
1677  equal(mminfo->target, curTarget->expr))
1678  return (Node *) copyObject(mminfo->param);
1679  }
1680  }
1681  /* If no match, just fall through to process it normally */
1682  }
1683  if (IsA(node, CurrentOfExpr))
1684  {
1685  CurrentOfExpr *cexpr = (CurrentOfExpr *) copyObject(node);
1686 
1687  Assert(cexpr->cvarno != INNER_VAR);
1688  Assert(cexpr->cvarno != OUTER_VAR);
1689  if (!IS_SPECIAL_VARNO(cexpr->cvarno))
1690  cexpr->cvarno += context->rtoffset;
1691  return (Node *) cexpr;
1692  }
1693  if (IsA(node, PlaceHolderVar))
1694  {
1695  /* At scan level, we should always just evaluate the contained expr */
1696  PlaceHolderVar *phv = (PlaceHolderVar *) node;
1697 
1698  return fix_scan_expr_mutator((Node *) phv->phexpr, context);
1699  }
1700  fix_expr_common(context->root, node);
1702  (void *) context);
1703 }
1704 
1705 static bool
1707 {
1708  if (node == NULL)
1709  return false;
1710  Assert(!IsA(node, PlaceHolderVar));
1711  fix_expr_common(context->root, node);
1713  (void *) context);
1714 }
1715 
1716 /*
1717  * set_join_references
1718  * Modify the target list and quals of a join node to reference its
1719  * subplans, by setting the varnos to OUTER_VAR or INNER_VAR and setting
1720  * attno values to the result domain number of either the corresponding
1721  * outer or inner join tuple item. Also perform opcode lookup for these
1722  * expressions, and add regclass OIDs to root->glob->relationOids.
1723  */
1724 static void
1725 set_join_references(PlannerInfo *root, Join *join, int rtoffset)
1726 {
1727  Plan *outer_plan = join->plan.lefttree;
1728  Plan *inner_plan = join->plan.righttree;
1729  indexed_tlist *outer_itlist;
1730  indexed_tlist *inner_itlist;
1731 
1732  outer_itlist = build_tlist_index(outer_plan->targetlist);
1733  inner_itlist = build_tlist_index(inner_plan->targetlist);
1734 
1735  /*
1736  * First process the joinquals (including merge or hash clauses). These
1737  * are logically below the join so they can always use all values
1738  * available from the input tlists. It's okay to also handle
1739  * NestLoopParams now, because those couldn't refer to nullable
1740  * subexpressions.
1741  */
1742  join->joinqual = fix_join_expr(root,
1743  join->joinqual,
1744  outer_itlist,
1745  inner_itlist,
1746  (Index) 0,
1747  rtoffset);
1748 
1749  /* Now do join-type-specific stuff */
1750  if (IsA(join, NestLoop))
1751  {
1752  NestLoop *nl = (NestLoop *) join;
1753  ListCell *lc;
1754 
1755  foreach(lc, nl->nestParams)
1756  {
1757  NestLoopParam *nlp = (NestLoopParam *) lfirst(lc);
1758 
1759  nlp->paramval = (Var *) fix_upper_expr(root,
1760  (Node *) nlp->paramval,
1761  outer_itlist,
1762  OUTER_VAR,
1763  rtoffset);
1764  /* Check we replaced any PlaceHolderVar with simple Var */
1765  if (!(IsA(nlp->paramval, Var) &&
1766  nlp->paramval->varno == OUTER_VAR))
1767  elog(ERROR, "NestLoopParam was not reduced to a simple Var");
1768  }
1769  }
1770  else if (IsA(join, MergeJoin))
1771  {
1772  MergeJoin *mj = (MergeJoin *) join;
1773 
1774  mj->mergeclauses = fix_join_expr(root,
1775  mj->mergeclauses,
1776  outer_itlist,
1777  inner_itlist,
1778  (Index) 0,
1779  rtoffset);
1780  }
1781  else if (IsA(join, HashJoin))
1782  {
1783  HashJoin *hj = (HashJoin *) join;
1784 
1785  hj->hashclauses = fix_join_expr(root,
1786  hj->hashclauses,
1787  outer_itlist,
1788  inner_itlist,
1789  (Index) 0,
1790  rtoffset);
1791 
1792  /*
1793  * HashJoin's hashkeys are used to look for matching tuples from its
1794  * outer plan (not the Hash node!) in the hashtable.
1795  */
1796  hj->hashkeys = (List *) fix_upper_expr(root,
1797  (Node *) hj->hashkeys,
1798  outer_itlist,
1799  OUTER_VAR,
1800  rtoffset);
1801  }
1802 
1803  /*
1804  * Now we need to fix up the targetlist and qpqual, which are logically
1805  * above the join. This means they should not re-use any input expression
1806  * that was computed in the nullable side of an outer join. Vars and
1807  * PlaceHolderVars are fine, so we can implement this restriction just by
1808  * clearing has_non_vars in the indexed_tlist structs.
1809  *
1810  * XXX This is a grotty workaround for the fact that we don't clearly
1811  * distinguish between a Var appearing below an outer join and the "same"
1812  * Var appearing above it. If we did, we'd not need to hack the matching
1813  * rules this way.
1814  */
1815  switch (join->jointype)
1816  {
1817  case JOIN_LEFT:
1818  case JOIN_SEMI:
1819  case JOIN_ANTI:
1820  inner_itlist->has_non_vars = false;
1821  break;
1822  case JOIN_RIGHT:
1823  outer_itlist->has_non_vars = false;
1824  break;
1825  case JOIN_FULL:
1826  outer_itlist->has_non_vars = false;
1827  inner_itlist->has_non_vars = false;
1828  break;
1829  default:
1830  break;
1831  }
1832 
1833  join->plan.targetlist = fix_join_expr(root,
1834  join->plan.targetlist,
1835  outer_itlist,
1836  inner_itlist,
1837  (Index) 0,
1838  rtoffset);
1839  join->plan.qual = fix_join_expr(root,
1840  join->plan.qual,
1841  outer_itlist,
1842  inner_itlist,
1843  (Index) 0,
1844  rtoffset);
1845 
1846  pfree(outer_itlist);
1847  pfree(inner_itlist);
1848 }
1849 
1850 /*
1851  * set_upper_references
1852  * Update the targetlist and quals of an upper-level plan node
1853  * to refer to the tuples returned by its lefttree subplan.
1854  * Also perform opcode lookup for these expressions, and
1855  * add regclass OIDs to root->glob->relationOids.
1856  *
1857  * This is used for single-input plan types like Agg, Group, Result.
1858  *
1859  * In most cases, we have to match up individual Vars in the tlist and
1860  * qual expressions with elements of the subplan's tlist (which was
1861  * generated by flattening these selfsame expressions, so it should have all
1862  * the required variables). There is an important exception, however:
1863  * depending on where we are in the plan tree, sort/group columns may have
1864  * been pushed into the subplan tlist unflattened. If these values are also
1865  * needed in the output then we want to reference the subplan tlist element
1866  * rather than recomputing the expression.
1867  */
1868 static void
1869 set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset)
1870 {
1871  Plan *subplan = plan->lefttree;
1872  indexed_tlist *subplan_itlist;
1873  List *output_targetlist;
1874  ListCell *l;
1875 
1876  subplan_itlist = build_tlist_index(subplan->targetlist);
1877 
1878  output_targetlist = NIL;
1879  foreach(l, plan->targetlist)
1880  {
1881  TargetEntry *tle = (TargetEntry *) lfirst(l);
1882  Node *newexpr;
1883 
1884  /* If it's a sort/group item, first try to match by sortref */
1885  if (tle->ressortgroupref != 0)
1886  {
1887  newexpr = (Node *)
1889  tle->ressortgroupref,
1890  subplan_itlist,
1891  OUTER_VAR);
1892  if (!newexpr)
1893  newexpr = fix_upper_expr(root,
1894  (Node *) tle->expr,
1895  subplan_itlist,
1896  OUTER_VAR,
1897  rtoffset);
1898  }
1899  else
1900  newexpr = fix_upper_expr(root,
1901  (Node *) tle->expr,
1902  subplan_itlist,
1903  OUTER_VAR,
1904  rtoffset);
1905  tle = flatCopyTargetEntry(tle);
1906  tle->expr = (Expr *) newexpr;
1907  output_targetlist = lappend(output_targetlist, tle);
1908  }
1909  plan->targetlist = output_targetlist;
1910 
1911  plan->qual = (List *)
1912  fix_upper_expr(root,
1913  (Node *) plan->qual,
1914  subplan_itlist,
1915  OUTER_VAR,
1916  rtoffset);
1917 
1918  pfree(subplan_itlist);
1919 }
1920 
1921 /*
1922  * set_param_references
1923  * Initialize the initParam list in Gather or Gather merge node such that
1924  * it contains reference of all the params that needs to be evaluated
1925  * before execution of the node. It contains the initplan params that are
1926  * being passed to the plan nodes below it.
1927  */
1928 static void
1930 {
1931  Assert(IsA(plan, Gather) ||IsA(plan, GatherMerge));
1932 
1933  if (plan->lefttree->extParam)
1934  {
1935  PlannerInfo *proot;
1936  Bitmapset *initSetParam = NULL;
1937  ListCell *l;
1938 
1939  for (proot = root; proot != NULL; proot = proot->parent_root)
1940  {
1941  foreach(l, proot->init_plans)
1942  {
1943  SubPlan *initsubplan = (SubPlan *) lfirst(l);
1944  ListCell *l2;
1945 
1946  foreach(l2, initsubplan->setParam)
1947  {
1948  initSetParam = bms_add_member(initSetParam, lfirst_int(l2));
1949  }
1950  }
1951  }
1952 
1953  /*
1954  * Remember the list of all external initplan params that are used by
1955  * the children of Gather or Gather merge node.
1956  */
1957  if (IsA(plan, Gather))
1958  ((Gather *) plan)->initParam =
1959  bms_intersect(plan->lefttree->extParam, initSetParam);
1960  else
1961  ((GatherMerge *) plan)->initParam =
1962  bms_intersect(plan->lefttree->extParam, initSetParam);
1963  }
1964 }
1965 
1966 /*
1967  * Recursively scan an expression tree and convert Aggrefs to the proper
1968  * intermediate form for combining aggregates. This means (1) replacing each
1969  * one's argument list with a single argument that is the original Aggref
1970  * modified to show partial aggregation and (2) changing the upper Aggref to
1971  * show combining aggregation.
1972  *
1973  * After this step, set_upper_references will replace the partial Aggrefs
1974  * with Vars referencing the lower Agg plan node's outputs, so that the final
1975  * form seen by the executor is a combining Aggref with a Var as input.
1976  *
1977  * It's rather messy to postpone this step until setrefs.c; ideally it'd be
1978  * done in createplan.c. The difficulty is that once we modify the Aggref
1979  * expressions, they will no longer be equal() to their original form and
1980  * so cross-plan-node-level matches will fail. So this has to happen after
1981  * the plan node above the Agg has resolved its subplan references.
1982  */
1983 static Node *
1984 convert_combining_aggrefs(Node *node, void *context)
1985 {
1986  if (node == NULL)
1987  return NULL;
1988  if (IsA(node, Aggref))
1989  {
1990  Aggref *orig_agg = (Aggref *) node;
1991  Aggref *child_agg;
1992  Aggref *parent_agg;
1993 
1994  /* Assert we've not chosen to partial-ize any unsupported cases */
1995  Assert(orig_agg->aggorder == NIL);
1996  Assert(orig_agg->aggdistinct == NIL);
1997 
1998  /*
1999  * Since aggregate calls can't be nested, we needn't recurse into the
2000  * arguments. But for safety, flat-copy the Aggref node itself rather
2001  * than modifying it in-place.
2002  */
2003  child_agg = makeNode(Aggref);
2004  memcpy(child_agg, orig_agg, sizeof(Aggref));
2005 
2006  /*
2007  * For the parent Aggref, we want to copy all the fields of the
2008  * original aggregate *except* the args list, which we'll replace
2009  * below, and the aggfilter expression, which should be applied only
2010  * by the child not the parent. Rather than explicitly knowing about
2011  * all the other fields here, we can momentarily modify child_agg to
2012  * provide a suitable source for copyObject.
2013  */
2014  child_agg->args = NIL;
2015  child_agg->aggfilter = NULL;
2016  parent_agg = copyObject(child_agg);
2017  child_agg->args = orig_agg->args;
2018  child_agg->aggfilter = orig_agg->aggfilter;
2019 
2020  /*
2021  * Now, set up child_agg to represent the first phase of partial
2022  * aggregation. For now, assume serialization is required.
2023  */
2025 
2026  /*
2027  * And set up parent_agg to represent the second phase.
2028  */
2029  parent_agg->args = list_make1(makeTargetEntry((Expr *) child_agg,
2030  1, NULL, false));
2032 
2033  return (Node *) parent_agg;
2034  }
2036  (void *) context);
2037 }
2038 
2039 /*
2040  * set_dummy_tlist_references
2041  * Replace the targetlist of an upper-level plan node with a simple
2042  * list of OUTER_VAR references to its child.
2043  *
2044  * This is used for plan types like Sort and Append that don't evaluate
2045  * their targetlists. Although the executor doesn't care at all what's in
2046  * the tlist, EXPLAIN needs it to be realistic.
2047  *
2048  * Note: we could almost use set_upper_references() here, but it fails for
2049  * Append for lack of a lefttree subplan. Single-purpose code is faster
2050  * anyway.
2051  */
2052 static void
2053 set_dummy_tlist_references(Plan *plan, int rtoffset)
2054 {
2055  List *output_targetlist;
2056  ListCell *l;
2057 
2058  output_targetlist = NIL;
2059  foreach(l, plan->targetlist)
2060  {
2061  TargetEntry *tle = (TargetEntry *) lfirst(l);
2062  Var *oldvar = (Var *) tle->expr;
2063  Var *newvar;
2064 
2065  /*
2066  * As in search_indexed_tlist_for_non_var(), we prefer to keep Consts
2067  * as Consts, not Vars referencing Consts. Here, there's no speed
2068  * advantage to be had, but it makes EXPLAIN output look cleaner, and
2069  * again it avoids confusing the executor.
2070  */
2071  if (IsA(oldvar, Const))
2072  {
2073  /* just reuse the existing TLE node */
2074  output_targetlist = lappend(output_targetlist, tle);
2075  continue;
2076  }
2077 
2078  newvar = makeVar(OUTER_VAR,
2079  tle->resno,
2080  exprType((Node *) oldvar),
2081  exprTypmod((Node *) oldvar),
2082  exprCollation((Node *) oldvar),
2083  0);
2084  if (IsA(oldvar, Var))
2085  {
2086  newvar->varnoold = oldvar->varno + rtoffset;
2087  newvar->varoattno = oldvar->varattno;
2088  }
2089  else
2090  {
2091  newvar->varnoold = 0; /* wasn't ever a plain Var */
2092  newvar->varoattno = 0;
2093  }
2094 
2095  tle = flatCopyTargetEntry(tle);
2096  tle->expr = (Expr *) newvar;
2097  output_targetlist = lappend(output_targetlist, tle);
2098  }
2099  plan->targetlist = output_targetlist;
2100 
2101  /* We don't touch plan->qual here */
2102 }
2103 
2104 
2105 /*
2106  * build_tlist_index --- build an index data structure for a child tlist
2107  *
2108  * In most cases, subplan tlists will be "flat" tlists with only Vars,
2109  * so we try to optimize that case by extracting information about Vars
2110  * in advance. Matching a parent tlist to a child is still an O(N^2)
2111  * operation, but at least with a much smaller constant factor than plain
2112  * tlist_member() searches.
2113  *
2114  * The result of this function is an indexed_tlist struct to pass to
2115  * search_indexed_tlist_for_var() or search_indexed_tlist_for_non_var().
2116  * When done, the indexed_tlist may be freed with a single pfree().
2117  */
2118 static indexed_tlist *
2120 {
2121  indexed_tlist *itlist;
2122  tlist_vinfo *vinfo;
2123  ListCell *l;
2124 
2125  /* Create data structure with enough slots for all tlist entries */
2126  itlist = (indexed_tlist *)
2128  list_length(tlist) * sizeof(tlist_vinfo));
2129 
2130  itlist->tlist = tlist;
2131  itlist->has_ph_vars = false;
2132  itlist->has_non_vars = false;
2133 
2134  /* Find the Vars and fill in the index array */
2135  vinfo = itlist->vars;
2136  foreach(l, tlist)
2137  {
2138  TargetEntry *tle = (TargetEntry *) lfirst(l);
2139 
2140  if (tle->expr && IsA(tle->expr, Var))
2141  {
2142  Var *var = (Var *) tle->expr;
2143 
2144  vinfo->varno = var->varno;
2145  vinfo->varattno = var->varattno;
2146  vinfo->resno = tle->resno;
2147  vinfo++;
2148  }
2149  else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2150  itlist->has_ph_vars = true;
2151  else
2152  itlist->has_non_vars = true;
2153  }
2154 
2155  itlist->num_vars = (vinfo - itlist->vars);
2156 
2157  return itlist;
2158 }
2159 
2160 /*
2161  * build_tlist_index_other_vars --- build a restricted tlist index
2162  *
2163  * This is like build_tlist_index, but we only index tlist entries that
2164  * are Vars belonging to some rel other than the one specified. We will set
2165  * has_ph_vars (allowing PlaceHolderVars to be matched), but not has_non_vars
2166  * (so nothing other than Vars and PlaceHolderVars can be matched).
2167  */
2168 static indexed_tlist *
2170 {
2171  indexed_tlist *itlist;
2172  tlist_vinfo *vinfo;
2173  ListCell *l;
2174 
2175  /* Create data structure with enough slots for all tlist entries */
2176  itlist = (indexed_tlist *)
2178  list_length(tlist) * sizeof(tlist_vinfo));
2179 
2180  itlist->tlist = tlist;
2181  itlist->has_ph_vars = false;
2182  itlist->has_non_vars = false;
2183 
2184  /* Find the desired Vars and fill in the index array */
2185  vinfo = itlist->vars;
2186  foreach(l, tlist)
2187  {
2188  TargetEntry *tle = (TargetEntry *) lfirst(l);
2189 
2190  if (tle->expr && IsA(tle->expr, Var))
2191  {
2192  Var *var = (Var *) tle->expr;
2193 
2194  if (var->varno != ignore_rel)
2195  {
2196  vinfo->varno = var->varno;
2197  vinfo->varattno = var->varattno;
2198  vinfo->resno = tle->resno;
2199  vinfo++;
2200  }
2201  }
2202  else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2203  itlist->has_ph_vars = true;
2204  }
2205 
2206  itlist->num_vars = (vinfo - itlist->vars);
2207 
2208  return itlist;
2209 }
2210 
2211 /*
2212  * search_indexed_tlist_for_var --- find a Var in an indexed tlist
2213  *
2214  * If a match is found, return a copy of the given Var with suitably
2215  * modified varno/varattno (to wit, newvarno and the resno of the TLE entry).
2216  * Also ensure that varnoold is incremented by rtoffset.
2217  * If no match, return NULL.
2218  */
2219 static Var *
2221  Index newvarno, int rtoffset)
2222 {
2223  Index varno = var->varno;
2224  AttrNumber varattno = var->varattno;
2225  tlist_vinfo *vinfo;
2226  int i;
2227 
2228  vinfo = itlist->vars;
2229  i = itlist->num_vars;
2230  while (i-- > 0)
2231  {
2232  if (vinfo->varno == varno && vinfo->varattno == varattno)
2233  {
2234  /* Found a match */
2235  Var *newvar = copyVar(var);
2236 
2237  newvar->varno = newvarno;
2238  newvar->varattno = vinfo->resno;
2239  if (newvar->varnoold > 0)
2240  newvar->varnoold += rtoffset;
2241  return newvar;
2242  }
2243  vinfo++;
2244  }
2245  return NULL; /* no match */
2246 }
2247 
2248 /*
2249  * search_indexed_tlist_for_non_var --- find a non-Var in an indexed tlist
2250  *
2251  * If a match is found, return a Var constructed to reference the tlist item.
2252  * If no match, return NULL.
2253  *
2254  * NOTE: it is a waste of time to call this unless itlist->has_ph_vars or
2255  * itlist->has_non_vars. Furthermore, set_join_references() relies on being
2256  * able to prevent matching of non-Vars by clearing itlist->has_non_vars,
2257  * so there's a correctness reason not to call it unless that's set.
2258  */
2259 static Var *
2261  indexed_tlist *itlist, Index newvarno)
2262 {
2263  TargetEntry *tle;
2264 
2265  /*
2266  * If it's a simple Const, replacing it with a Var is silly, even if there
2267  * happens to be an identical Const below; a Var is more expensive to
2268  * execute than a Const. What's more, replacing it could confuse some
2269  * places in the executor that expect to see simple Consts for, eg,
2270  * dropped columns.
2271  */
2272  if (IsA(node, Const))
2273  return NULL;
2274 
2275  tle = tlist_member(node, itlist->tlist);
2276  if (tle)
2277  {
2278  /* Found a matching subplan output expression */
2279  Var *newvar;
2280 
2281  newvar = makeVarFromTargetEntry(newvarno, tle);
2282  newvar->varnoold = 0; /* wasn't ever a plain Var */
2283  newvar->varoattno = 0;
2284  return newvar;
2285  }
2286  return NULL; /* no match */
2287 }
2288 
2289 /*
2290  * search_indexed_tlist_for_sortgroupref --- find a sort/group expression
2291  *
2292  * If a match is found, return a Var constructed to reference the tlist item.
2293  * If no match, return NULL.
2294  *
2295  * This is needed to ensure that we select the right subplan TLE in cases
2296  * where there are multiple textually-equal()-but-volatile sort expressions.
2297  * And it's also faster than search_indexed_tlist_for_non_var.
2298  */
2299 static Var *
2301  Index sortgroupref,
2302  indexed_tlist *itlist,
2303  Index newvarno)
2304 {
2305  ListCell *lc;
2306 
2307  foreach(lc, itlist->tlist)
2308  {
2309  TargetEntry *tle = (TargetEntry *) lfirst(lc);
2310 
2311  /* The equal() check should be redundant, but let's be paranoid */
2312  if (tle->ressortgroupref == sortgroupref &&
2313  equal(node, tle->expr))
2314  {
2315  /* Found a matching subplan output expression */
2316  Var *newvar;
2317 
2318  newvar = makeVarFromTargetEntry(newvarno, tle);
2319  newvar->varnoold = 0; /* wasn't ever a plain Var */
2320  newvar->varoattno = 0;
2321  return newvar;
2322  }
2323  }
2324  return NULL; /* no match */
2325 }
2326 
2327 /*
2328  * fix_join_expr
2329  * Create a new set of targetlist entries or join qual clauses by
2330  * changing the varno/varattno values of variables in the clauses
2331  * to reference target list values from the outer and inner join
2332  * relation target lists. Also perform opcode lookup and add
2333  * regclass OIDs to root->glob->relationOids.
2334  *
2335  * This is used in three different scenarios:
2336  * 1) a normal join clause, where all the Vars in the clause *must* be
2337  * replaced by OUTER_VAR or INNER_VAR references. In this case
2338  * acceptable_rel should be zero so that any failure to match a Var will be
2339  * reported as an error.
2340  * 2) RETURNING clauses, which may contain both Vars of the target relation
2341  * and Vars of other relations. In this case we want to replace the
2342  * other-relation Vars by OUTER_VAR references, while leaving target Vars
2343  * alone. Thus inner_itlist = NULL and acceptable_rel = the ID of the
2344  * target relation should be passed.
2345  * 3) ON CONFLICT UPDATE SET/WHERE clauses. Here references to EXCLUDED are
2346  * to be replaced with INNER_VAR references, while leaving target Vars (the
2347  * to-be-updated relation) alone. Correspondingly inner_itlist is to be
2348  * EXCLUDED elements, outer_itlist = NULL and acceptable_rel the target
2349  * relation.
2350  *
2351  * 'clauses' is the targetlist or list of join clauses
2352  * 'outer_itlist' is the indexed target list of the outer join relation,
2353  * or NULL
2354  * 'inner_itlist' is the indexed target list of the inner join relation,
2355  * or NULL
2356  * 'acceptable_rel' is either zero or the rangetable index of a relation
2357  * whose Vars may appear in the clause without provoking an error
2358  * 'rtoffset': how much to increment varnoold by
2359  *
2360  * Returns the new expression tree. The original clause structure is
2361  * not modified.
2362  */
2363 static List *
2365  List *clauses,
2366  indexed_tlist *outer_itlist,
2367  indexed_tlist *inner_itlist,
2368  Index acceptable_rel,
2369  int rtoffset)
2370 {
2371  fix_join_expr_context context;
2372 
2373  context.root = root;
2374  context.outer_itlist = outer_itlist;
2375  context.inner_itlist = inner_itlist;
2376  context.acceptable_rel = acceptable_rel;
2377  context.rtoffset = rtoffset;
2378  return (List *) fix_join_expr_mutator((Node *) clauses, &context);
2379 }
2380 
2381 static Node *
2383 {
2384  Var *newvar;
2385 
2386  if (node == NULL)
2387  return NULL;
2388  if (IsA(node, Var))
2389  {
2390  Var *var = (Var *) node;
2391 
2392  /* Look for the var in the input tlists, first in the outer */
2393  if (context->outer_itlist)
2394  {
2395  newvar = search_indexed_tlist_for_var(var,
2396  context->outer_itlist,
2397  OUTER_VAR,
2398  context->rtoffset);
2399  if (newvar)
2400  return (Node *) newvar;
2401  }
2402 
2403  /* then in the inner. */
2404  if (context->inner_itlist)
2405  {
2406  newvar = search_indexed_tlist_for_var(var,
2407  context->inner_itlist,
2408  INNER_VAR,
2409  context->rtoffset);
2410  if (newvar)
2411  return (Node *) newvar;
2412  }
2413 
2414  /* If it's for acceptable_rel, adjust and return it */
2415  if (var->varno == context->acceptable_rel)
2416  {
2417  var = copyVar(var);
2418  var->varno += context->rtoffset;
2419  if (var->varnoold > 0)
2420  var->varnoold += context->rtoffset;
2421  return (Node *) var;
2422  }
2423 
2424  /* No referent found for Var */
2425  elog(ERROR, "variable not found in subplan target lists");
2426  }
2427  if (IsA(node, PlaceHolderVar))
2428  {
2429  PlaceHolderVar *phv = (PlaceHolderVar *) node;
2430 
2431  /* See if the PlaceHolderVar has bubbled up from a lower plan node */
2432  if (context->outer_itlist && context->outer_itlist->has_ph_vars)
2433  {
2434  newvar = search_indexed_tlist_for_non_var((Expr *) phv,
2435  context->outer_itlist,
2436  OUTER_VAR);
2437  if (newvar)
2438  return (Node *) newvar;
2439  }
2440  if (context->inner_itlist && context->inner_itlist->has_ph_vars)
2441  {
2442  newvar = search_indexed_tlist_for_non_var((Expr *) phv,
2443  context->inner_itlist,
2444  INNER_VAR);
2445  if (newvar)
2446  return (Node *) newvar;
2447  }
2448 
2449  /* If not supplied by input plans, evaluate the contained expr */
2450  return fix_join_expr_mutator((Node *) phv->phexpr, context);
2451  }
2452  /* Try matching more complex expressions too, if tlists have any */
2453  if (context->outer_itlist && context->outer_itlist->has_non_vars)
2454  {
2455  newvar = search_indexed_tlist_for_non_var((Expr *) node,
2456  context->outer_itlist,
2457  OUTER_VAR);
2458  if (newvar)
2459  return (Node *) newvar;
2460  }
2461  if (context->inner_itlist && context->inner_itlist->has_non_vars)
2462  {
2463  newvar = search_indexed_tlist_for_non_var((Expr *) node,
2464  context->inner_itlist,
2465  INNER_VAR);
2466  if (newvar)
2467  return (Node *) newvar;
2468  }
2469  /* Special cases (apply only AFTER failing to match to lower tlist) */
2470  if (IsA(node, Param))
2471  return fix_param_node(context->root, (Param *) node);
2472  fix_expr_common(context->root, node);
2473  return expression_tree_mutator(node,
2475  (void *) context);
2476 }
2477 
2478 /*
2479  * fix_upper_expr
2480  * Modifies an expression tree so that all Var nodes reference outputs
2481  * of a subplan. Also looks for Aggref nodes that should be replaced
2482  * by initplan output Params. Also performs opcode lookup, and adds
2483  * regclass OIDs to root->glob->relationOids.
2484  *
2485  * This is used to fix up target and qual expressions of non-join upper-level
2486  * plan nodes, as well as index-only scan nodes.
2487  *
2488  * An error is raised if no matching var can be found in the subplan tlist
2489  * --- so this routine should only be applied to nodes whose subplans'
2490  * targetlists were generated by flattening the expressions used in the
2491  * parent node.
2492  *
2493  * If itlist->has_non_vars is true, then we try to match whole subexpressions
2494  * against elements of the subplan tlist, so that we can avoid recomputing
2495  * expressions that were already computed by the subplan. (This is relatively
2496  * expensive, so we don't want to try it in the common case where the
2497  * subplan tlist is just a flattened list of Vars.)
2498  *
2499  * 'node': the tree to be fixed (a target item or qual)
2500  * 'subplan_itlist': indexed target list for subplan (or index)
2501  * 'newvarno': varno to use for Vars referencing tlist elements
2502  * 'rtoffset': how much to increment varnoold by
2503  *
2504  * The resulting tree is a copy of the original in which all Var nodes have
2505  * varno = newvarno, varattno = resno of corresponding targetlist element.
2506  * The original tree is not modified.
2507  */
2508 static Node *
2510  Node *node,
2511  indexed_tlist *subplan_itlist,
2512  Index newvarno,
2513  int rtoffset)
2514 {
2515  fix_upper_expr_context context;
2516 
2517  context.root = root;
2518  context.subplan_itlist = subplan_itlist;
2519  context.newvarno = newvarno;
2520  context.rtoffset = rtoffset;
2521  return fix_upper_expr_mutator(node, &context);
2522 }
2523 
2524 static Node *
2526 {
2527  Var *newvar;
2528 
2529  if (node == NULL)
2530  return NULL;
2531  if (IsA(node, Var))
2532  {
2533  Var *var = (Var *) node;
2534 
2535  newvar = search_indexed_tlist_for_var(var,
2536  context->subplan_itlist,
2537  context->newvarno,
2538  context->rtoffset);
2539  if (!newvar)
2540  elog(ERROR, "variable not found in subplan target list");
2541  return (Node *) newvar;
2542  }
2543  if (IsA(node, PlaceHolderVar))
2544  {
2545  PlaceHolderVar *phv = (PlaceHolderVar *) node;
2546 
2547  /* See if the PlaceHolderVar has bubbled up from a lower plan node */
2548  if (context->subplan_itlist->has_ph_vars)
2549  {
2550  newvar = search_indexed_tlist_for_non_var((Expr *) phv,
2551  context->subplan_itlist,
2552  context->newvarno);
2553  if (newvar)
2554  return (Node *) newvar;
2555  }
2556  /* If not supplied by input plan, evaluate the contained expr */
2557  return fix_upper_expr_mutator((Node *) phv->phexpr, context);
2558  }
2559  /* Try matching more complex expressions too, if tlist has any */
2560  if (context->subplan_itlist->has_non_vars)
2561  {
2562  newvar = search_indexed_tlist_for_non_var((Expr *) node,
2563  context->subplan_itlist,
2564  context->newvarno);
2565  if (newvar)
2566  return (Node *) newvar;
2567  }
2568  /* Special cases (apply only AFTER failing to match to lower tlist) */
2569  if (IsA(node, Param))
2570  return fix_param_node(context->root, (Param *) node);
2571  if (IsA(node, Aggref))
2572  {
2573  Aggref *aggref = (Aggref *) node;
2574 
2575  /* See if the Aggref should be replaced by a Param */
2576  if (context->root->minmax_aggs != NIL &&
2577  list_length(aggref->args) == 1)
2578  {
2579  TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args);
2580  ListCell *lc;
2581 
2582  foreach(lc, context->root->minmax_aggs)
2583  {
2584  MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
2585 
2586  if (mminfo->aggfnoid == aggref->aggfnoid &&
2587  equal(mminfo->target, curTarget->expr))
2588  return (Node *) copyObject(mminfo->param);
2589  }
2590  }
2591  /* If no match, just fall through to process it normally */
2592  }
2593  fix_expr_common(context->root, node);
2594  return expression_tree_mutator(node,
2596  (void *) context);
2597 }
2598 
2599 /*
2600  * set_returning_clause_references
2601  * Perform setrefs.c's work on a RETURNING targetlist
2602  *
2603  * If the query involves more than just the result table, we have to
2604  * adjust any Vars that refer to other tables to reference junk tlist
2605  * entries in the top subplan's targetlist. Vars referencing the result
2606  * table should be left alone, however (the executor will evaluate them
2607  * using the actual heap tuple, after firing triggers if any). In the
2608  * adjusted RETURNING list, result-table Vars will have their original
2609  * varno (plus rtoffset), but Vars for other rels will have varno OUTER_VAR.
2610  *
2611  * We also must perform opcode lookup and add regclass OIDs to
2612  * root->glob->relationOids.
2613  *
2614  * 'rlist': the RETURNING targetlist to be fixed
2615  * 'topplan': the top subplan node that will be just below the ModifyTable
2616  * node (note it's not yet passed through set_plan_refs)
2617  * 'resultRelation': RT index of the associated result relation
2618  * 'rtoffset': how much to increment varnos by
2619  *
2620  * Note: the given 'root' is for the parent query level, not the 'topplan'.
2621  * This does not matter currently since we only access the dependency-item
2622  * lists in root->glob, but it would need some hacking if we wanted a root
2623  * that actually matches the subplan.
2624  *
2625  * Note: resultRelation is not yet adjusted by rtoffset.
2626  */
2627 static List *
2629  List *rlist,
2630  Plan *topplan,
2631  Index resultRelation,
2632  int rtoffset)
2633 {
2634  indexed_tlist *itlist;
2635 
2636  /*
2637  * We can perform the desired Var fixup by abusing the fix_join_expr
2638  * machinery that formerly handled inner indexscan fixup. We search the
2639  * top plan's targetlist for Vars of non-result relations, and use
2640  * fix_join_expr to convert RETURNING Vars into references to those tlist
2641  * entries, while leaving result-rel Vars as-is.
2642  *
2643  * PlaceHolderVars will also be sought in the targetlist, but no
2644  * more-complex expressions will be. Note that it is not possible for a
2645  * PlaceHolderVar to refer to the result relation, since the result is
2646  * never below an outer join. If that case could happen, we'd have to be
2647  * prepared to pick apart the PlaceHolderVar and evaluate its contained
2648  * expression instead.
2649  */
2650  itlist = build_tlist_index_other_vars(topplan->targetlist, resultRelation);
2651 
2652  rlist = fix_join_expr(root,
2653  rlist,
2654  itlist,
2655  NULL,
2656  resultRelation,
2657  rtoffset);
2658 
2659  pfree(itlist);
2660 
2661  return rlist;
2662 }
2663 
2664 
2665 /*****************************************************************************
2666  * QUERY DEPENDENCY MANAGEMENT
2667  *****************************************************************************/
2668 
2669 /*
2670  * record_plan_function_dependency
2671  * Mark the current plan as depending on a particular function.
2672  *
2673  * This is exported so that the function-inlining code can record a
2674  * dependency on a function that it's removed from the plan tree.
2675  */
2676 void
2678 {
2679  /*
2680  * For performance reasons, we don't bother to track built-in functions;
2681  * we just assume they'll never change (or at least not in ways that'd
2682  * invalidate plans using them). For this purpose we can consider a
2683  * built-in function to be one with OID less than FirstBootstrapObjectId.
2684  * Note that the OID generator guarantees never to generate such an OID
2685  * after startup, even at OID wraparound.
2686  */
2687  if (funcid >= (Oid) FirstBootstrapObjectId)
2688  {
2689  PlanInvalItem *inval_item = makeNode(PlanInvalItem);
2690 
2691  /*
2692  * It would work to use any syscache on pg_proc, but the easiest is
2693  * PROCOID since we already have the function's OID at hand. Note
2694  * that plancache.c knows we use PROCOID.
2695  */
2696  inval_item->cacheId = PROCOID;
2697  inval_item->hashValue = GetSysCacheHashValue1(PROCOID,
2698  ObjectIdGetDatum(funcid));
2699 
2700  root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
2701  }
2702 }
2703 
2704 /*
2705  * record_plan_type_dependency
2706  * Mark the current plan as depending on a particular type.
2707  *
2708  * This is exported so that eval_const_expressions can record a
2709  * dependency on a domain that it's removed a CoerceToDomain node for.
2710  *
2711  * We don't currently need to record dependencies on domains that the
2712  * plan contains CoerceToDomain nodes for, though that might change in
2713  * future. Hence, this isn't actually called in this module, though
2714  * someday fix_expr_common might call it.
2715  */
2716 void
2718 {
2719  /*
2720  * As in record_plan_function_dependency, ignore the possibility that
2721  * someone would change a built-in domain.
2722  */
2723  if (typid >= (Oid) FirstBootstrapObjectId)
2724  {
2725  PlanInvalItem *inval_item = makeNode(PlanInvalItem);
2726 
2727  /*
2728  * It would work to use any syscache on pg_type, but the easiest is
2729  * TYPEOID since we already have the type's OID at hand. Note that
2730  * plancache.c knows we use TYPEOID.
2731  */
2732  inval_item->cacheId = TYPEOID;
2733  inval_item->hashValue = GetSysCacheHashValue1(TYPEOID,
2734  ObjectIdGetDatum(typid));
2735 
2736  root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
2737  }
2738 }
2739 
2740 /*
2741  * extract_query_dependencies
2742  * Given a rewritten, but not yet planned, query or queries
2743  * (i.e. a Query node or list of Query nodes), extract dependencies
2744  * just as set_plan_references would do. Also detect whether any
2745  * rewrite steps were affected by RLS.
2746  *
2747  * This is needed by plancache.c to handle invalidation of cached unplanned
2748  * queries.
2749  *
2750  * Note: this does not go through eval_const_expressions, and hence doesn't
2751  * reflect its additions of inlined functions and elided CoerceToDomain nodes
2752  * to the invalItems list. This is obviously OK for functions, since we'll
2753  * see them in the original query tree anyway. For domains, it's OK because
2754  * we don't care about domains unless they get elided. That is, a plan might
2755  * have domain dependencies that the query tree doesn't.
2756  */
2757 void
2759  List **relationOids,
2760  List **invalItems,
2761  bool *hasRowSecurity)
2762 {
2763  PlannerGlobal glob;
2764  PlannerInfo root;
2765 
2766  /* Make up dummy planner state so we can use this module's machinery */
2767  MemSet(&glob, 0, sizeof(glob));
2768  glob.type = T_PlannerGlobal;
2769  glob.relationOids = NIL;
2770  glob.invalItems = NIL;
2771  /* Hack: we use glob.dependsOnRole to collect hasRowSecurity flags */
2772  glob.dependsOnRole = false;
2773 
2774  MemSet(&root, 0, sizeof(root));
2775  root.type = T_PlannerInfo;
2776  root.glob = &glob;
2777 
2778  (void) extract_query_dependencies_walker(query, &root);
2779 
2780  *relationOids = glob.relationOids;
2781  *invalItems = glob.invalItems;
2782  *hasRowSecurity = glob.dependsOnRole;
2783 }
2784 
2785 /*
2786  * Tree walker for extract_query_dependencies.
2787  *
2788  * This is exported so that expression_planner_with_deps can call it on
2789  * simple expressions (post-planning, not before planning, in that case).
2790  * In that usage, glob.dependsOnRole isn't meaningful, but the relationOids
2791  * and invalItems lists are added to as needed.
2792  */
2793 bool
2795 {
2796  if (node == NULL)
2797  return false;
2798  Assert(!IsA(node, PlaceHolderVar));
2799  if (IsA(node, Query))
2800  {
2801  Query *query = (Query *) node;
2802  ListCell *lc;
2803 
2804  if (query->commandType == CMD_UTILITY)
2805  {
2806  /*
2807  * Ignore utility statements, except those (such as EXPLAIN) that
2808  * contain a parsed-but-not-planned query.
2809  */
2810  query = UtilityContainsQuery(query->utilityStmt);
2811  if (query == NULL)
2812  return false;
2813  }
2814 
2815  /* Remember if any Query has RLS quals applied by rewriter */
2816  if (query->hasRowSecurity)
2817  context->glob->dependsOnRole = true;
2818 
2819  /* Collect relation OIDs in this Query's rtable */
2820  foreach(lc, query->rtable)
2821  {
2822  RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
2823 
2824  if (rte->rtekind == RTE_RELATION)
2825  context->glob->relationOids =
2826  lappend_oid(context->glob->relationOids, rte->relid);
2827  else if (rte->rtekind == RTE_NAMEDTUPLESTORE &&
2828  OidIsValid(rte->relid))
2829  context->glob->relationOids =
2830  lappend_oid(context->glob->relationOids,
2831  rte->relid);
2832  }
2833 
2834  /* And recurse into the query's subexpressions */
2836  (void *) context, 0);
2837  }
2838  /* Extract function dependencies and check for regclass Consts */
2839  fix_expr_common(context, node);
2841  (void *) context);
2842 }
Datum constvalue
Definition: primnodes.h:200
List * aggdistinct
Definition: primnodes.h:307
List * bitmapplans
Definition: plannodes.h:315
#define NIL
Definition: pg_list.h:65
List * rowMarks
Definition: pathnodes.h:290
Plan plan
Definition: plannodes.h:186
void apply_tlist_labeling(List *dest_tlist, List *src_tlist)
Definition: tlist.c:340
bool query_tree_walker(Query *query, bool(*walker)(), void *context, int flags)
Definition: nodeFuncs.c:2274
List * qual
Definition: plannodes.h:141
Index varno
Definition: setrefs.c:34
#define ISREGCLASSCONST(con)
Definition: setrefs.c:78
Definition: nodes.h:78
Plan plan
Definition: plannodes.h:340
#define IsA(nodeptr, _type_)
Definition: nodes.h:576
Query * parse
Definition: pathnodes.h:177
indexed_tlist * inner_itlist
Definition: setrefs.c:58
List * joinaliasvars
Definition: parsenodes.h:1030
Index varlevelsup
Definition: primnodes.h:177
Node * expression_tree_mutator(Node *node, Node *(*mutator)(), void *context)
Definition: nodeFuncs.c:2502
Plan plan
Definition: plannodes.h:967
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:419
Index nominalRelation
Definition: plannodes.h:221
static Node * fix_param_node(PlannerInfo *root, Param *p)
Definition: setrefs.c:1575
Definition: nodes.h:80
Index scanrelid
Definition: plannodes.h:341
tlist_vinfo vars[FLEXIBLE_ARRAY_MEMBER]
Definition: setrefs.c:45
List * refs
Definition: primnodes.h:347
List * nestParams
Definition: plannodes.h:699
Plan plan
Definition: plannodes.h:953
List * hashkeys
Definition: plannodes.h:747
static void flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte)
Definition: setrefs.c:349
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:3008
AttrNumber resno
Definition: setrefs.c:36
PlannerInfo * parent_root
Definition: pathnodes.h:183
List * withCheckOptionLists
Definition: plannodes.h:228
#define QTW_EXAMINE_RTES_BEFORE
Definition: nodeFuncs.h:25
List * functions
Definition: plannodes.h:521
static void set_join_references(PlannerInfo *root, Join *join, int rtoffset)
Definition: setrefs.c:1725
int resultRelIndex
Definition: plannodes.h:225
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:276
#define forthree(cell1, list1, cell2, list2, cell3, list3)
Definition: pg_list.h:464
List * hashclauses
Definition: plannodes.h:739
List * securityQuals
Definition: parsenodes.h:1102
#define DatumGetObjectId(X)
Definition: postgres.h:500
int lastPlanNodeId
Definition: pathnodes.h:135
List * indexqual
Definition: plannodes.h:459
List * fdw_exprs
Definition: plannodes.h:613
List * coltypmods
Definition: parsenodes.h:1079
Param * param
Definition: pathnodes.h:2282
List * tidquals
Definition: plannodes.h:489
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1043
TableFunc * tablefunc
Definition: plannodes.h:542
void mark_partial_aggref(Aggref *agg, AggSplit aggsplit)
Definition: planner.c:5287
int plan_node_id
Definition: plannodes.h:139
List * resultRelations
Definition: pathnodes.h:121
List * indexqualorig
Definition: plannodes.h:403
Var * makeVarFromTargetEntry(Index varno, TargetEntry *tle)
Definition: makefuncs.c:103
struct TableSampleClause * tablesample
Definition: plannodes.h:358
PlannerInfo * root
Definition: setrefs.c:50
ParamKind paramkind
Definition: primnodes.h:248
Definition: nodes.h:525
List * custom_exprs
Definition: plannodes.h:642
List * list_concat(List *list1, const List *list2)
Definition: list.c:516
Definition: nodes.h:49
int errcode(int sqlerrcode)
Definition: elog.c:570
List * args
Definition: primnodes.h:305
Index prti
Definition: plannodes.h:1058
#define MemSet(start, val, len)
Definition: c.h:955
AttrNumber varattno
Definition: primnodes.h:172
List * values_lists
Definition: plannodes.h:532
static void set_param_references(PlannerInfo *root, Plan *plan)
Definition: setrefs.c:1929
List * minmax_aggs
Definition: pathnodes.h:327
#define GetSysCacheHashValue1(cacheId, key1)
Definition: syscache.h:201
List * fdw_scan_tlist
Definition: plannodes.h:615
Definition: nodes.h:76
unsigned int Oid
Definition: postgres_ext.h:31
Node * utilityStmt
Definition: parsenodes.h:120
Definition: primnodes.h:167
AttrNumber * grouping_map
Definition: pathnodes.h:326
Scan scan
Definition: plannodes.h:531
List * custom_plans
Definition: plannodes.h:641
Node * limitOffset
Definition: plannodes.h:968
List * lappend_oid(List *list, Oid datum)
Definition: list.c:358
#define OidIsValid(objectId)
Definition: c.h:638
#define DO_AGGSPLIT_COMBINE(as)
Definition: nodes.h:787
List * colcollations
Definition: parsenodes.h:1080
static Plan * set_append_references(PlannerInfo *root, Append *aplan, int rtoffset)
Definition: setrefs.c:1310
List * values_lists
Definition: parsenodes.h:1051
List * plans
Definition: plannodes.h:227
static bool trivial_subqueryscan(SubqueryScan *plan)
Definition: setrefs.c:1078
static Plan * set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
Definition: setrefs.c:446
static Node * fix_join_expr_mutator(Node *node, fix_join_expr_context *context)
Definition: setrefs.c:2382
static void add_rte_to_flat_rtable(PlannerGlobal *glob, RangeTblEntry *rte)
Definition: setrefs.c:395
List * onConflictSet
Definition: plannodes.h:236
int rootResultRelIndex
Definition: plannodes.h:226
Index rootRelation
Definition: plannodes.h:222
List * resultRelations
Definition: plannodes.h:224
List * mergeclauses
Definition: plannodes.h:724
struct RelOptInfo ** simple_rel_array
Definition: pathnodes.h:201
static void set_foreignscan_references(PlannerInfo *root, ForeignScan *fscan, int rtoffset)
Definition: setrefs.c:1157
static List * fix_join_expr(PlannerInfo *root, List *clauses, indexed_tlist *outer_itlist, indexed_tlist *inner_itlist, Index acceptable_rel, int rtoffset)
Definition: setrefs.c:2364
List * rootResultRelations
Definition: pathnodes.h:123
List * multiexpr_params
Definition: pathnodes.h:261
Query * UtilityContainsQuery(Node *parsetree)
Definition: utility.c:1918
List * appendplans
Definition: plannodes.h:252
#define list_make1(x1)
Definition: pg_list.h:227
#define linitial_int(l)
Definition: pg_list.h:196
PlannerInfo * subroot
Definition: pathnodes.h:685
AttrNumber varattno
Definition: setrefs.c:35
Node * startOffset
Definition: plannodes.h:835
JoinType jointype
Definition: plannodes.h:680
bool dependsOnRole
Definition: pathnodes.h:139
Node * resconstantqual
Definition: plannodes.h:187
Index varnoold
Definition: primnodes.h:180
List * rowMarks
Definition: plannodes.h:232
struct Plan * righttree
Definition: plannodes.h:143
void pfree(void *pointer)
Definition: mcxt.c:1056
#define IS_SPECIAL_VARNO(varno)
Definition: primnodes.h:161
Var * paramval
Definition: plannodes.h:706
bool has_ph_vars
Definition: setrefs.c:43
bool resjunk
Definition: primnodes.h:1400
#define linitial(l)
Definition: pg_list.h:195
Definition: nodes.h:46
List * rtable
Definition: parsenodes.h:137
#define ObjectIdGetDatum(X)
Definition: postgres.h:507
#define ERROR
Definition: elog.h:43
List * indexorderbyorig
Definition: plannodes.h:405
TableFunc * tablefunc
Definition: parsenodes.h:1046
#define lfirst_int(lc)
Definition: pg_list.h:191
static void * list_nth(const List *list, int n)
Definition: pg_list.h:277
Scan scan
Definition: plannodes.h:356
Scan scan
Definition: plannodes.h:551
Node * limitCount
Definition: plannodes.h:969
Scan scan
Definition: plannodes.h:400
#define IS_DUMMY_REL(r)
Definition: pathnodes.h:1388
int num_vars
Definition: setrefs.c:42
static Node * fix_upper_expr_mutator(Node *node, fix_upper_expr_context *context)
Definition: setrefs.c:2525
Definition: nodes.h:77
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1164
#define lfirst_node(type, lc)
Definition: pg_list.h:193
static bool flatten_rtes_walker(Node *node, PlannerGlobal *glob)
Definition: setrefs.c:359
static Var * copyVar(Var *var)
Definition: setrefs.c:1465
PlannerGlobal * glob
Definition: pathnodes.h:179
Node * endOffset
Definition: plannodes.h:836
List * aggorder
Definition: primnodes.h:306
AttrNumber resno
Definition: primnodes.h:1394
#define FirstBootstrapObjectId
Definition: transam.h:140
List * fdw_recheck_quals
Definition: plannodes.h:616
TargetEntry * flatCopyTargetEntry(TargetEntry *src_tle)
Definition: makefuncs.c:269
static SPIPlanPtr splan
Definition: regress.c:259
static void set_customscan_references(PlannerInfo *root, CustomScan *cscan, int rtoffset)
Definition: setrefs.c:1235
static Plan * set_subqueryscan_references(PlannerInfo *root, SubqueryScan *plan, int rtoffset)
Definition: setrefs.c:1029
List * indexqual
Definition: plannodes.h:402
static Node * fix_upper_expr(PlannerInfo *root, Node *node, indexed_tlist *subplan_itlist, Index newvarno, int rtoffset)
Definition: setrefs.c:2509
List * bitmapqualorig
Definition: plannodes.h:475
#define ereport(elevel, rest)
Definition: elog.h:141
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:236
Var * makeVar(Index varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
PlannerInfo * root
Definition: setrefs.c:56
List * lappend_int(List *list, int datum)
Definition: list.c:340
Index relid
Definition: pathnodes.h:669
List * cols
Definition: primnodes.h:348
List * lappend(List *list, void *datum)
Definition: list.c:322
Plan plan
Definition: plannodes.h:328
Index varno
Definition: primnodes.h:170
Scan scan
Definition: plannodes.h:638
static bool fix_scan_expr_walker(Node *node, fix_scan_expr_context *context)
Definition: setrefs.c:1706
List * invalItems
Definition: pathnodes.h:127
static Node * fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context)
Definition: setrefs.c:1637
static Plan * set_indexonlyscan_references(PlannerInfo *root, IndexOnlyScan *plan, int rtoffset)
Definition: setrefs.c:988
List * bitmapplans
Definition: plannodes.h:330
NodeTag type
Definition: pathnodes.h:175
Index lastPHId
Definition: pathnodes.h:131
static void set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset)
Definition: setrefs.c:1869
static Plan * clean_up_removed_plan_level(Plan *parent, Plan *child)
Definition: setrefs.c:1136
Bitmapset * bms_intersect(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:259
List * hashkeys
Definition: plannodes.h:915
bool has_non_vars
Definition: setrefs.c:44
void record_plan_function_dependency(PlannerInfo *root, Oid funcid)
Definition: setrefs.c:2677
unsigned int Index
Definition: c.h:475
TargetEntry * tlist_member(Expr *node, List *targetlist)
Definition: tlist.c:73
List * init_plans
Definition: pathnodes.h:257
Definition: nodes.h:83
uint32 hashValue
Definition: plannodes.h:1228
static Var * search_indexed_tlist_for_non_var(Expr *node, indexed_tlist *itlist, Index newvarno)
Definition: setrefs.c:2260
static Node * convert_combining_aggrefs(Node *node, void *context)
Definition: setrefs.c:1984
Oid aggfnoid
Definition: primnodes.h:298
bool extract_query_dependencies_walker(Node *node, PlannerInfo *context)
Definition: setrefs.c:2794
static void fix_expr_common(PlannerInfo *root, Node *node)
Definition: setrefs.c:1487
#define INNER_VAR
Definition: primnodes.h:157
List * indextlist
Definition: plannodes.h:433
CmdType commandType
Definition: parsenodes.h:112
List * indexorderby
Definition: plannodes.h:432
#define makeNode(_type_)
Definition: nodes.h:573
List * indexorderby
Definition: plannodes.h:404
#define Assert(condition)
Definition: c.h:732
#define lfirst(lc)
Definition: pg_list.h:190
Expr * target
Definition: pathnodes.h:2278
static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing)
Definition: setrefs.c:263
void extract_query_dependencies(Node *query, List **relationOids, List **invalItems, bool *hasRowSecurity)
Definition: setrefs.c:2758
AggSplit aggsplit
Definition: plannodes.h:806
List * functions
Definition: parsenodes.h:1040
NodeTag type
Definition: pathnodes.h:107
List * custom_scan_tlist
Definition: plannodes.h:644
List * setParam
Definition: primnodes.h:713
static Var * search_indexed_tlist_for_var(Var *var, indexed_tlist *itlist, Index newvarno, int rtoffset)
Definition: setrefs.c:2220
Expr * expr
Definition: primnodes.h:1393
List * rowMarks
Definition: plannodes.h:954
static indexed_tlist * build_tlist_index(List *tlist)
Definition: setrefs.c:2119
int paramid
Definition: primnodes.h:249
Scan scan
Definition: plannodes.h:488
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
bool expression_tree_walker(Node *node, bool(*walker)(), void *context)
Definition: nodeFuncs.c:1840
static int list_length(const List *l)
Definition: pg_list.h:169
List * relationOids
Definition: pathnodes.h:125
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:720
List * indexqual
Definition: plannodes.h:431
Expr * aggfilter
Definition: primnodes.h:308
Bitmapset * extParam
Definition: plannodes.h:158
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:736
struct Plan * lefttree
Definition: plannodes.h:142
Bitmapset * custom_relids
Definition: plannodes.h:645
static indexed_tlist * build_tlist_index_other_vars(List *tlist, Index ignore_rel)
Definition: setrefs.c:2169
List * indexqualorig
Definition: plannodes.h:460
#define nodeTag(nodeptr)
Definition: nodes.h:530
List * targetlist
Definition: plannodes.h:140
AttrNumber varoattno
Definition: primnodes.h:181
RTEKind rtekind
Definition: parsenodes.h:974
Definition: nodes.h:84
static List * set_returning_clause_references(PlannerInfo *root, List *rlist, Plan *topplan, Index resultRelation, int rtoffset)
Definition: setrefs.c:2628
List * mergeplans
Definition: plannodes.h:272
List * finalrtable
Definition: pathnodes.h:117
Query * subquery
Definition: parsenodes.h:1009
void * palloc(Size size)
Definition: mcxt.c:949
int errmsg(const char *fmt,...)
Definition: elog.c:784
void set_opfuncid(OpExpr *opexpr)
Definition: nodeFuncs.c:1619
List * initPlan
Definition: plannodes.h:144
Definition: nodes.h:81
#define elog(elevel,...)
Definition: elog.h:226
int i
static Node * fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset)
Definition: setrefs.c:1605
Index ressortgroupref
Definition: primnodes.h:1396
indexed_tlist * outer_itlist
Definition: setrefs.c:57
List * returningLists
Definition: plannodes.h:229
PlannerInfo * root
Definition: setrefs.c:65
Plan plan
Definition: plannodes.h:314
Definition: plannodes.h:802
Plan * set_plan_references(PlannerInfo *root, Plan *plan)
Definition: setrefs.c:221
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:363
#define copyObject(obj)
Definition: nodes.h:641
static Var * search_indexed_tlist_for_sortgroupref(Expr *node, Index sortgroupref, indexed_tlist *itlist, Index newvarno)
Definition: setrefs.c:2300
Index exclRelRTI
Definition: plannodes.h:238
List * coltypes
Definition: parsenodes.h:1078
#define INDEX_VAR
Definition: primnodes.h:159
static Plan * set_mergeappend_references(PlannerInfo *root, MergeAppend *mplan, int rtoffset)
Definition: setrefs.c:1372
Definition: regcomp.c:224
List * finalrowmarks
Definition: pathnodes.h:119
Definition: pg_list.h:50
#define fix_scan_list(root, lst, rtoffset)
Definition: setrefs.c:82
struct TableSampleClause * tablesample
Definition: parsenodes.h:1004
int16 AttrNumber
Definition: attnum.h:21
#define OUTER_VAR
Definition: primnodes.h:158
void set_sa_opfuncid(ScalarArrayOpExpr *opexpr)
Definition: nodeFuncs.c:1630
indexed_tlist * subplan_itlist
Definition: setrefs.c:66
List * joinqual
Definition: plannodes.h:682
static void set_dummy_tlist_references(Plan *plan, int rtoffset)
Definition: setrefs.c:2053
List * exclRelTlist
Definition: plannodes.h:239
#define offsetof(type, field)
Definition: c.h:655
static void set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset)
Definition: setrefs.c:1431
Plan * subplan
Definition: plannodes.h:511
bool hasRowSecurity
Definition: parsenodes.h:133
Plan plan
Definition: plannodes.h:251
Node * onConflictWhere
Definition: plannodes.h:237
void record_plan_type_dependency(PlannerInfo *root, Oid typid)
Definition: setrefs.c:2717
Bitmapset * fs_relids
Definition: plannodes.h:617
Definition: nodes.h:86
Plan plan
Definition: plannodes.h:679
List * tlist
Definition: setrefs.c:41