PostgreSQL Source Code git master
parse_agg.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * parse_agg.c
4 * handle aggregates and window functions in parser
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/parser/parse_agg.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include "access/htup_details.h"
20#include "catalog/pg_type.h"
21#include "common/int.h"
22#include "nodes/makefuncs.h"
23#include "nodes/nodeFuncs.h"
24#include "optimizer/optimizer.h"
25#include "parser/parse_agg.h"
26#include "parser/parse_clause.h"
27#include "parser/parse_coerce.h"
28#include "parser/parse_expr.h"
30#include "parser/parsetree.h"
32#include "utils/builtins.h"
33#include "utils/lsyscache.h"
34#include "utils/syscache.h"
35
36typedef struct
37{
43
44typedef struct
45{
57
58static int check_agg_arguments(ParseState *pstate,
59 List *directargs,
60 List *args,
61 Expr *filter);
62static bool check_agg_arguments_walker(Node *node,
64static Node *substitute_grouped_columns(Node *node, ParseState *pstate, Query *qry,
65 List *groupClauses, List *groupClauseCommonVars,
66 List *gset_common,
67 bool have_non_var_grouping,
68 List **func_grouped_rels);
71static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
72 List *groupClauses, bool hasJoinRTEs,
73 bool have_non_var_grouping);
74static bool finalize_grouping_exprs_walker(Node *node,
76static Var *buildGroupedVar(int attnum, Index ressortgroupref,
78static void check_agglevels_and_constraints(ParseState *pstate, Node *expr);
80static Node *make_agg_arg(Oid argtype, Oid argcollation);
81
82
83/*
84 * transformAggregateCall -
85 * Finish initial transformation of an aggregate call
86 *
87 * parse_func.c has recognized the function as an aggregate, and has set up
88 * all the fields of the Aggref except aggargtypes, aggdirectargs, args,
89 * aggorder, aggdistinct and agglevelsup. The passed-in args list has been
90 * through standard expression transformation and type coercion to match the
91 * agg's declared arg types, while the passed-in aggorder list hasn't been
92 * transformed at all.
93 *
94 * Here we separate the args list into direct and aggregated args, storing the
95 * former in agg->aggdirectargs and the latter in agg->args. The regular
96 * args, but not the direct args, are converted into a targetlist by inserting
97 * TargetEntry nodes. We then transform the aggorder and agg_distinct
98 * specifications to produce lists of SortGroupClause nodes for agg->aggorder
99 * and agg->aggdistinct. (For a regular aggregate, this might result in
100 * adding resjunk expressions to the targetlist; but for ordered-set
101 * aggregates the aggorder list will always be one-to-one with the aggregated
102 * args.)
103 *
104 * We must also determine which query level the aggregate actually belongs to,
105 * set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
106 * pstate level.
107 */
108void
110 List *args, List *aggorder, bool agg_distinct)
111{
112 List *argtypes = NIL;
113 List *tlist = NIL;
114 List *torder = NIL;
115 List *tdistinct = NIL;
116 AttrNumber attno = 1;
117 int save_next_resno;
118 ListCell *lc;
119
120 if (AGGKIND_IS_ORDERED_SET(agg->aggkind))
121 {
122 /*
123 * For an ordered-set agg, the args list includes direct args and
124 * aggregated args; we must split them apart.
125 */
126 int numDirectArgs = list_length(args) - list_length(aggorder);
127 List *aargs;
128 ListCell *lc2;
129
130 Assert(numDirectArgs >= 0);
131
132 aargs = list_copy_tail(args, numDirectArgs);
133 agg->aggdirectargs = list_truncate(args, numDirectArgs);
134
135 /*
136 * Build a tlist from the aggregated args, and make a sortlist entry
137 * for each one. Note that the expressions in the SortBy nodes are
138 * ignored (they are the raw versions of the transformed args); we are
139 * just looking at the sort information in the SortBy nodes.
140 */
141 forboth(lc, aargs, lc2, aggorder)
142 {
143 Expr *arg = (Expr *) lfirst(lc);
144 SortBy *sortby = (SortBy *) lfirst(lc2);
145 TargetEntry *tle;
146
147 /* We don't bother to assign column names to the entries */
148 tle = makeTargetEntry(arg, attno++, NULL, false);
149 tlist = lappend(tlist, tle);
150
151 torder = addTargetToSortList(pstate, tle,
152 torder, tlist, sortby);
153 }
154
155 /* Never any DISTINCT in an ordered-set agg */
156 Assert(!agg_distinct);
157 }
158 else
159 {
160 /* Regular aggregate, so it has no direct args */
161 agg->aggdirectargs = NIL;
162
163 /*
164 * Transform the plain list of Exprs into a targetlist.
165 */
166 foreach(lc, args)
167 {
168 Expr *arg = (Expr *) lfirst(lc);
169 TargetEntry *tle;
170
171 /* We don't bother to assign column names to the entries */
172 tle = makeTargetEntry(arg, attno++, NULL, false);
173 tlist = lappend(tlist, tle);
174 }
175
176 /*
177 * If we have an ORDER BY, transform it. This will add columns to the
178 * tlist if they appear in ORDER BY but weren't already in the arg
179 * list. They will be marked resjunk = true so we can tell them apart
180 * from regular aggregate arguments later.
181 *
182 * We need to mess with p_next_resno since it will be used to number
183 * any new targetlist entries.
184 */
185 save_next_resno = pstate->p_next_resno;
186 pstate->p_next_resno = attno;
187
188 torder = transformSortClause(pstate,
189 aggorder,
190 &tlist,
192 true /* force SQL99 rules */ );
193
194 /*
195 * If we have DISTINCT, transform that to produce a distinctList.
196 */
197 if (agg_distinct)
198 {
199 tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
200
201 /*
202 * Remove this check if executor support for hashed distinct for
203 * aggregates is ever added.
204 */
205 foreach(lc, tdistinct)
206 {
207 SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
208
209 if (!OidIsValid(sortcl->sortop))
210 {
211 Node *expr = get_sortgroupclause_expr(sortcl, tlist);
212
214 (errcode(ERRCODE_UNDEFINED_FUNCTION),
215 errmsg("could not identify an ordering operator for type %s",
216 format_type_be(exprType(expr))),
217 errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
218 parser_errposition(pstate, exprLocation(expr))));
219 }
220 }
221 }
222
223 pstate->p_next_resno = save_next_resno;
224 }
225
226 /* Update the Aggref with the transformation results */
227 agg->args = tlist;
228 agg->aggorder = torder;
229 agg->aggdistinct = tdistinct;
230
231 /*
232 * Now build the aggargtypes list with the type OIDs of the direct and
233 * aggregated args, ignoring any resjunk entries that might have been
234 * added by ORDER BY/DISTINCT processing. We can't do this earlier
235 * because said processing can modify some args' data types, in particular
236 * by resolving previously-unresolved "unknown" literals.
237 */
238 foreach(lc, agg->aggdirectargs)
239 {
240 Expr *arg = (Expr *) lfirst(lc);
241
242 argtypes = lappend_oid(argtypes, exprType((Node *) arg));
243 }
244 foreach(lc, tlist)
245 {
246 TargetEntry *tle = (TargetEntry *) lfirst(lc);
247
248 if (tle->resjunk)
249 continue; /* ignore junk */
250 argtypes = lappend_oid(argtypes, exprType((Node *) tle->expr));
251 }
252 agg->aggargtypes = argtypes;
253
254 check_agglevels_and_constraints(pstate, (Node *) agg);
255}
256
257/*
258 * transformGroupingFunc
259 * Transform a GROUPING expression
260 *
261 * GROUPING() behaves very like an aggregate. Processing of levels and nesting
262 * is done as for aggregates. We set p_hasAggs for these expressions too.
263 */
264Node *
266{
267 ListCell *lc;
268 List *args = p->args;
269 List *result_list = NIL;
271
272 if (list_length(args) > 31)
274 (errcode(ERRCODE_TOO_MANY_ARGUMENTS),
275 errmsg("GROUPING must have fewer than 32 arguments"),
276 parser_errposition(pstate, p->location)));
277
278 foreach(lc, args)
279 {
280 Node *current_result;
281
282 current_result = transformExpr(pstate, (Node *) lfirst(lc), pstate->p_expr_kind);
283
284 /* acceptability of expressions is checked later */
285
286 result_list = lappend(result_list, current_result);
287 }
288
289 result->args = result_list;
290 result->location = p->location;
291
292 check_agglevels_and_constraints(pstate, (Node *) result);
293
294 return (Node *) result;
295}
296
297/*
298 * Aggregate functions and grouping operations (which are combined in the spec
299 * as <set function specification>) are very similar with regard to level and
300 * nesting restrictions (though we allow a lot more things than the spec does).
301 * Centralise those restrictions here.
302 */
303static void
305{
306 List *directargs = NIL;
307 List *args = NIL;
308 Expr *filter = NULL;
309 int min_varlevel;
310 int location = -1;
311 Index *p_levelsup;
312 const char *err;
313 bool errkind;
314 bool isAgg = IsA(expr, Aggref);
315
316 if (isAgg)
317 {
318 Aggref *agg = (Aggref *) expr;
319
320 directargs = agg->aggdirectargs;
321 args = agg->args;
322 filter = agg->aggfilter;
323 location = agg->location;
324 p_levelsup = &agg->agglevelsup;
325 }
326 else
327 {
328 GroupingFunc *grp = (GroupingFunc *) expr;
329
330 args = grp->args;
331 location = grp->location;
332 p_levelsup = &grp->agglevelsup;
333 }
334
335 /*
336 * Check the arguments to compute the aggregate's level and detect
337 * improper nesting.
338 */
339 min_varlevel = check_agg_arguments(pstate,
340 directargs,
341 args,
342 filter);
343
344 *p_levelsup = min_varlevel;
345
346 /* Mark the correct pstate level as having aggregates */
347 while (min_varlevel-- > 0)
348 pstate = pstate->parentParseState;
349 pstate->p_hasAggs = true;
350
351 /*
352 * Check to see if the aggregate function is in an invalid place within
353 * its aggregation query.
354 *
355 * For brevity we support two schemes for reporting an error here: set
356 * "err" to a custom message, or set "errkind" true if the error context
357 * is sufficiently identified by what ParseExprKindName will return, *and*
358 * what it will return is just a SQL keyword. (Otherwise, use a custom
359 * message to avoid creating translation problems.)
360 */
361 err = NULL;
362 errkind = false;
363 switch (pstate->p_expr_kind)
364 {
365 case EXPR_KIND_NONE:
366 Assert(false); /* can't happen */
367 break;
368 case EXPR_KIND_OTHER:
369
370 /*
371 * Accept aggregate/grouping here; caller must throw error if
372 * wanted
373 */
374 break;
377 if (isAgg)
378 err = _("aggregate functions are not allowed in JOIN conditions");
379 else
380 err = _("grouping operations are not allowed in JOIN conditions");
381
382 break;
384
385 /*
386 * Aggregate/grouping scope rules make it worth being explicit
387 * here
388 */
389 if (isAgg)
390 err = _("aggregate functions are not allowed in FROM clause of their own query level");
391 else
392 err = _("grouping operations are not allowed in FROM clause of their own query level");
393
394 break;
396 if (isAgg)
397 err = _("aggregate functions are not allowed in functions in FROM");
398 else
399 err = _("grouping operations are not allowed in functions in FROM");
400
401 break;
402 case EXPR_KIND_WHERE:
403 errkind = true;
404 break;
405 case EXPR_KIND_POLICY:
406 if (isAgg)
407 err = _("aggregate functions are not allowed in policy expressions");
408 else
409 err = _("grouping operations are not allowed in policy expressions");
410
411 break;
412 case EXPR_KIND_HAVING:
413 /* okay */
414 break;
415 case EXPR_KIND_FILTER:
416 errkind = true;
417 break;
419 /* okay */
420 break;
422 /* okay */
423 break;
425 if (isAgg)
426 err = _("aggregate functions are not allowed in window RANGE");
427 else
428 err = _("grouping operations are not allowed in window RANGE");
429
430 break;
432 if (isAgg)
433 err = _("aggregate functions are not allowed in window ROWS");
434 else
435 err = _("grouping operations are not allowed in window ROWS");
436
437 break;
439 if (isAgg)
440 err = _("aggregate functions are not allowed in window GROUPS");
441 else
442 err = _("grouping operations are not allowed in window GROUPS");
443
444 break;
446 /* okay */
447 break;
451 errkind = true;
452 break;
454 if (isAgg)
455 err = _("aggregate functions are not allowed in MERGE WHEN conditions");
456 else
457 err = _("grouping operations are not allowed in MERGE WHEN conditions");
458
459 break;
461 errkind = true;
462 break;
464 /* okay */
465 break;
467 /* okay */
468 break;
469 case EXPR_KIND_LIMIT:
470 case EXPR_KIND_OFFSET:
471 errkind = true;
472 break;
475 errkind = true;
476 break;
477 case EXPR_KIND_VALUES:
479 errkind = true;
480 break;
483 if (isAgg)
484 err = _("aggregate functions are not allowed in check constraints");
485 else
486 err = _("grouping operations are not allowed in check constraints");
487
488 break;
491
492 if (isAgg)
493 err = _("aggregate functions are not allowed in DEFAULT expressions");
494 else
495 err = _("grouping operations are not allowed in DEFAULT expressions");
496
497 break;
499 if (isAgg)
500 err = _("aggregate functions are not allowed in index expressions");
501 else
502 err = _("grouping operations are not allowed in index expressions");
503
504 break;
506 if (isAgg)
507 err = _("aggregate functions are not allowed in index predicates");
508 else
509 err = _("grouping operations are not allowed in index predicates");
510
511 break;
513 if (isAgg)
514 err = _("aggregate functions are not allowed in statistics expressions");
515 else
516 err = _("grouping operations are not allowed in statistics expressions");
517
518 break;
520 if (isAgg)
521 err = _("aggregate functions are not allowed in transform expressions");
522 else
523 err = _("grouping operations are not allowed in transform expressions");
524
525 break;
527 if (isAgg)
528 err = _("aggregate functions are not allowed in EXECUTE parameters");
529 else
530 err = _("grouping operations are not allowed in EXECUTE parameters");
531
532 break;
534 if (isAgg)
535 err = _("aggregate functions are not allowed in trigger WHEN conditions");
536 else
537 err = _("grouping operations are not allowed in trigger WHEN conditions");
538
539 break;
541 if (isAgg)
542 err = _("aggregate functions are not allowed in partition bound");
543 else
544 err = _("grouping operations are not allowed in partition bound");
545
546 break;
548 if (isAgg)
549 err = _("aggregate functions are not allowed in partition key expressions");
550 else
551 err = _("grouping operations are not allowed in partition key expressions");
552
553 break;
555
556 if (isAgg)
557 err = _("aggregate functions are not allowed in column generation expressions");
558 else
559 err = _("grouping operations are not allowed in column generation expressions");
560
561 break;
562
564 if (isAgg)
565 err = _("aggregate functions are not allowed in CALL arguments");
566 else
567 err = _("grouping operations are not allowed in CALL arguments");
568
569 break;
570
572 if (isAgg)
573 err = _("aggregate functions are not allowed in COPY FROM WHERE conditions");
574 else
575 err = _("grouping operations are not allowed in COPY FROM WHERE conditions");
576
577 break;
578
580 errkind = true;
581 break;
582
583 /*
584 * There is intentionally no default: case here, so that the
585 * compiler will warn if we add a new ParseExprKind without
586 * extending this switch. If we do see an unrecognized value at
587 * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
588 * which is sane anyway.
589 */
590 }
591
592 if (err)
594 (errcode(ERRCODE_GROUPING_ERROR),
595 errmsg_internal("%s", err),
596 parser_errposition(pstate, location)));
597
598 if (errkind)
599 {
600 if (isAgg)
601 /* translator: %s is name of a SQL construct, eg GROUP BY */
602 err = _("aggregate functions are not allowed in %s");
603 else
604 /* translator: %s is name of a SQL construct, eg GROUP BY */
605 err = _("grouping operations are not allowed in %s");
606
608 (errcode(ERRCODE_GROUPING_ERROR),
611 parser_errposition(pstate, location)));
612 }
613}
614
615/*
616 * check_agg_arguments
617 * Scan the arguments of an aggregate function to determine the
618 * aggregate's semantic level (zero is the current select's level,
619 * one is its parent, etc).
620 *
621 * The aggregate's level is the same as the level of the lowest-level variable
622 * or aggregate in its aggregated arguments (including any ORDER BY columns)
623 * or filter expression; or if it contains no variables at all, we presume it
624 * to be local.
625 *
626 * Vars/Aggs in direct arguments are *not* counted towards determining the
627 * agg's level, as those arguments aren't evaluated per-row but only
628 * per-group, and so in some sense aren't really agg arguments. However,
629 * this can mean that we decide an agg is upper-level even when its direct
630 * args contain lower-level Vars/Aggs, and that case has to be disallowed.
631 * (This is a little strange, but the SQL standard seems pretty definite that
632 * direct args are not to be considered when setting the agg's level.)
633 *
634 * We also take this opportunity to detect any aggregates or window functions
635 * nested within the arguments. We can throw error immediately if we find
636 * a window function. Aggregates are a bit trickier because it's only an
637 * error if the inner aggregate is of the same semantic level as the outer,
638 * which we can't know until we finish scanning the arguments.
639 */
640static int
642 List *directargs,
643 List *args,
644 Expr *filter)
645{
646 int agglevel;
648
649 context.pstate = pstate;
650 context.min_varlevel = -1; /* signifies nothing found yet */
651 context.min_agglevel = -1;
652 context.sublevels_up = 0;
653
654 (void) check_agg_arguments_walker((Node *) args, &context);
655 (void) check_agg_arguments_walker((Node *) filter, &context);
656
657 /*
658 * If we found no vars nor aggs at all, it's a level-zero aggregate;
659 * otherwise, its level is the minimum of vars or aggs.
660 */
661 if (context.min_varlevel < 0)
662 {
663 if (context.min_agglevel < 0)
664 agglevel = 0;
665 else
666 agglevel = context.min_agglevel;
667 }
668 else if (context.min_agglevel < 0)
669 agglevel = context.min_varlevel;
670 else
671 agglevel = Min(context.min_varlevel, context.min_agglevel);
672
673 /*
674 * If there's a nested aggregate of the same semantic level, complain.
675 */
676 if (agglevel == context.min_agglevel)
677 {
678 int aggloc;
679
680 aggloc = locate_agg_of_level((Node *) args, agglevel);
681 if (aggloc < 0)
682 aggloc = locate_agg_of_level((Node *) filter, agglevel);
684 (errcode(ERRCODE_GROUPING_ERROR),
685 errmsg("aggregate function calls cannot be nested"),
686 parser_errposition(pstate, aggloc)));
687 }
688
689 /*
690 * Now check for vars/aggs in the direct arguments, and throw error if
691 * needed. Note that we allow a Var of the agg's semantic level, but not
692 * an Agg of that level. In principle such Aggs could probably be
693 * supported, but it would create an ordering dependency among the
694 * aggregates at execution time. Since the case appears neither to be
695 * required by spec nor particularly useful, we just treat it as a
696 * nested-aggregate situation.
697 */
698 if (directargs)
699 {
700 context.min_varlevel = -1;
701 context.min_agglevel = -1;
702 (void) check_agg_arguments_walker((Node *) directargs, &context);
703 if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
705 (errcode(ERRCODE_GROUPING_ERROR),
706 errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
707 parser_errposition(pstate,
708 locate_var_of_level((Node *) directargs,
709 context.min_varlevel))));
710 if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
712 (errcode(ERRCODE_GROUPING_ERROR),
713 errmsg("aggregate function calls cannot be nested"),
714 parser_errposition(pstate,
715 locate_agg_of_level((Node *) directargs,
716 context.min_agglevel))));
717 }
718 return agglevel;
719}
720
721static bool
724{
725 if (node == NULL)
726 return false;
727 if (IsA(node, Var))
728 {
729 int varlevelsup = ((Var *) node)->varlevelsup;
730
731 /* convert levelsup to frame of reference of original query */
732 varlevelsup -= context->sublevels_up;
733 /* ignore local vars of subqueries */
734 if (varlevelsup >= 0)
735 {
736 if (context->min_varlevel < 0 ||
737 context->min_varlevel > varlevelsup)
738 context->min_varlevel = varlevelsup;
739 }
740 return false;
741 }
742 if (IsA(node, Aggref))
743 {
744 int agglevelsup = ((Aggref *) node)->agglevelsup;
745
746 /* convert levelsup to frame of reference of original query */
747 agglevelsup -= context->sublevels_up;
748 /* ignore local aggs of subqueries */
749 if (agglevelsup >= 0)
750 {
751 if (context->min_agglevel < 0 ||
752 context->min_agglevel > agglevelsup)
753 context->min_agglevel = agglevelsup;
754 }
755 /* Continue and descend into subtree */
756 }
757 if (IsA(node, GroupingFunc))
758 {
759 int agglevelsup = ((GroupingFunc *) node)->agglevelsup;
760
761 /* convert levelsup to frame of reference of original query */
762 agglevelsup -= context->sublevels_up;
763 /* ignore local aggs of subqueries */
764 if (agglevelsup >= 0)
765 {
766 if (context->min_agglevel < 0 ||
767 context->min_agglevel > agglevelsup)
768 context->min_agglevel = agglevelsup;
769 }
770 /* Continue and descend into subtree */
771 }
772
773 /*
774 * SRFs and window functions can be rejected immediately, unless we are
775 * within a sub-select within the aggregate's arguments; in that case
776 * they're OK.
777 */
778 if (context->sublevels_up == 0)
779 {
780 if ((IsA(node, FuncExpr) && ((FuncExpr *) node)->funcretset) ||
781 (IsA(node, OpExpr) && ((OpExpr *) node)->opretset))
783 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
784 errmsg("aggregate function calls cannot contain set-returning function calls"),
785 errhint("You might be able to move the set-returning function into a LATERAL FROM item."),
786 parser_errposition(context->pstate, exprLocation(node))));
787 if (IsA(node, WindowFunc))
789 (errcode(ERRCODE_GROUPING_ERROR),
790 errmsg("aggregate function calls cannot contain window function calls"),
791 parser_errposition(context->pstate,
792 ((WindowFunc *) node)->location)));
793 }
794 if (IsA(node, Query))
795 {
796 /* Recurse into subselects */
797 bool result;
798
799 context->sublevels_up++;
800 result = query_tree_walker((Query *) node,
802 context,
803 0);
804 context->sublevels_up--;
805 return result;
806 }
807
808 return expression_tree_walker(node,
810 context);
811}
812
813/*
814 * transformWindowFuncCall -
815 * Finish initial transformation of a window function call
816 *
817 * parse_func.c has recognized the function as a window function, and has set
818 * up all the fields of the WindowFunc except winref. Here we must (1) add
819 * the WindowDef to the pstate (if not a duplicate of one already present) and
820 * set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
821 * Unlike aggregates, only the most closely nested pstate level need be
822 * considered --- there are no "outer window functions" per SQL spec.
823 */
824void
826 WindowDef *windef)
827{
828 const char *err;
829 bool errkind;
830
831 /*
832 * A window function call can't contain another one (but aggs are OK). XXX
833 * is this required by spec, or just an unimplemented feature?
834 *
835 * Note: we don't need to check the filter expression here, because the
836 * context checks done below and in transformAggregateCall would have
837 * already rejected any window funcs or aggs within the filter.
838 */
839 if (pstate->p_hasWindowFuncs &&
840 contain_windowfuncs((Node *) wfunc->args))
842 (errcode(ERRCODE_WINDOWING_ERROR),
843 errmsg("window function calls cannot be nested"),
844 parser_errposition(pstate,
845 locate_windowfunc((Node *) wfunc->args))));
846
847 /*
848 * Check to see if the window function is in an invalid place within the
849 * query.
850 *
851 * For brevity we support two schemes for reporting an error here: set
852 * "err" to a custom message, or set "errkind" true if the error context
853 * is sufficiently identified by what ParseExprKindName will return, *and*
854 * what it will return is just a SQL keyword. (Otherwise, use a custom
855 * message to avoid creating translation problems.)
856 */
857 err = NULL;
858 errkind = false;
859 switch (pstate->p_expr_kind)
860 {
861 case EXPR_KIND_NONE:
862 Assert(false); /* can't happen */
863 break;
864 case EXPR_KIND_OTHER:
865 /* Accept window func here; caller must throw error if wanted */
866 break;
869 err = _("window functions are not allowed in JOIN conditions");
870 break;
872 /* can't get here, but just in case, throw an error */
873 errkind = true;
874 break;
876 err = _("window functions are not allowed in functions in FROM");
877 break;
878 case EXPR_KIND_WHERE:
879 errkind = true;
880 break;
881 case EXPR_KIND_POLICY:
882 err = _("window functions are not allowed in policy expressions");
883 break;
884 case EXPR_KIND_HAVING:
885 errkind = true;
886 break;
887 case EXPR_KIND_FILTER:
888 errkind = true;
889 break;
895 err = _("window functions are not allowed in window definitions");
896 break;
898 /* okay */
899 break;
903 errkind = true;
904 break;
906 err = _("window functions are not allowed in MERGE WHEN conditions");
907 break;
909 errkind = true;
910 break;
912 /* okay */
913 break;
915 /* okay */
916 break;
917 case EXPR_KIND_LIMIT:
918 case EXPR_KIND_OFFSET:
919 errkind = true;
920 break;
923 errkind = true;
924 break;
925 case EXPR_KIND_VALUES:
927 errkind = true;
928 break;
931 err = _("window functions are not allowed in check constraints");
932 break;
935 err = _("window functions are not allowed in DEFAULT expressions");
936 break;
938 err = _("window functions are not allowed in index expressions");
939 break;
941 err = _("window functions are not allowed in statistics expressions");
942 break;
944 err = _("window functions are not allowed in index predicates");
945 break;
947 err = _("window functions are not allowed in transform expressions");
948 break;
950 err = _("window functions are not allowed in EXECUTE parameters");
951 break;
953 err = _("window functions are not allowed in trigger WHEN conditions");
954 break;
956 err = _("window functions are not allowed in partition bound");
957 break;
959 err = _("window functions are not allowed in partition key expressions");
960 break;
962 err = _("window functions are not allowed in CALL arguments");
963 break;
965 err = _("window functions are not allowed in COPY FROM WHERE conditions");
966 break;
968 err = _("window functions are not allowed in column generation expressions");
969 break;
971 errkind = true;
972 break;
973
974 /*
975 * There is intentionally no default: case here, so that the
976 * compiler will warn if we add a new ParseExprKind without
977 * extending this switch. If we do see an unrecognized value at
978 * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
979 * which is sane anyway.
980 */
981 }
982 if (err)
984 (errcode(ERRCODE_WINDOWING_ERROR),
985 errmsg_internal("%s", err),
986 parser_errposition(pstate, wfunc->location)));
987 if (errkind)
989 (errcode(ERRCODE_WINDOWING_ERROR),
990 /* translator: %s is name of a SQL construct, eg GROUP BY */
991 errmsg("window functions are not allowed in %s",
993 parser_errposition(pstate, wfunc->location)));
994
995 /*
996 * If the OVER clause just specifies a window name, find that WINDOW
997 * clause (which had better be present). Otherwise, try to match all the
998 * properties of the OVER clause, and make a new entry in the p_windowdefs
999 * list if no luck.
1000 */
1001 if (windef->name)
1002 {
1003 Index winref = 0;
1004 ListCell *lc;
1005
1006 Assert(windef->refname == NULL &&
1007 windef->partitionClause == NIL &&
1008 windef->orderClause == NIL &&
1010
1011 foreach(lc, pstate->p_windowdefs)
1012 {
1013 WindowDef *refwin = (WindowDef *) lfirst(lc);
1014
1015 winref++;
1016 if (refwin->name && strcmp(refwin->name, windef->name) == 0)
1017 {
1018 wfunc->winref = winref;
1019 break;
1020 }
1021 }
1022 if (lc == NULL) /* didn't find it? */
1023 ereport(ERROR,
1024 (errcode(ERRCODE_UNDEFINED_OBJECT),
1025 errmsg("window \"%s\" does not exist", windef->name),
1026 parser_errposition(pstate, windef->location)));
1027 }
1028 else
1029 {
1030 Index winref = 0;
1031 ListCell *lc;
1032
1033 foreach(lc, pstate->p_windowdefs)
1034 {
1035 WindowDef *refwin = (WindowDef *) lfirst(lc);
1036
1037 winref++;
1038 if (refwin->refname && windef->refname &&
1039 strcmp(refwin->refname, windef->refname) == 0)
1040 /* matched on refname */ ;
1041 else if (!refwin->refname && !windef->refname)
1042 /* matched, no refname */ ;
1043 else
1044 continue;
1045
1046 /*
1047 * Also see similar de-duplication code in optimize_window_clauses
1048 */
1049 if (equal(refwin->partitionClause, windef->partitionClause) &&
1050 equal(refwin->orderClause, windef->orderClause) &&
1051 refwin->frameOptions == windef->frameOptions &&
1052 equal(refwin->startOffset, windef->startOffset) &&
1053 equal(refwin->endOffset, windef->endOffset))
1054 {
1055 /* found a duplicate window specification */
1056 wfunc->winref = winref;
1057 break;
1058 }
1059 }
1060 if (lc == NULL) /* didn't find it? */
1061 {
1062 pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
1063 wfunc->winref = list_length(pstate->p_windowdefs);
1064 }
1065 }
1066
1067 pstate->p_hasWindowFuncs = true;
1068}
1069
1070/*
1071 * parseCheckAggregates
1072 * Check for aggregates where they shouldn't be and improper grouping, and
1073 * replace grouped variables in the targetlist and HAVING clause with Vars
1074 * that reference the RTE_GROUP RTE.
1075 * This function should be called after the target list and qualifications
1076 * are finalized.
1077 *
1078 * Misplaced aggregates are now mostly detected in transformAggregateCall,
1079 * but it seems more robust to check for aggregates in recursive queries
1080 * only after everything is finalized. In any case it's hard to detect
1081 * improper grouping on-the-fly, so we have to make another pass over the
1082 * query for that.
1083 */
1084void
1086{
1087 List *gset_common = NIL;
1088 List *groupClauses = NIL;
1089 List *groupClauseCommonVars = NIL;
1090 bool have_non_var_grouping;
1091 List *func_grouped_rels = NIL;
1092 ListCell *l;
1093 bool hasJoinRTEs;
1094 bool hasSelfRefRTEs;
1095 Node *clause;
1096
1097 /* This should only be called if we found aggregates or grouping */
1098 Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual || qry->groupingSets);
1099
1100 /*
1101 * If we have grouping sets, expand them and find the intersection of all
1102 * sets.
1103 */
1104 if (qry->groupingSets)
1105 {
1106 /*
1107 * The limit of 4096 is arbitrary and exists simply to avoid resource
1108 * issues from pathological constructs.
1109 */
1110 List *gsets = expand_grouping_sets(qry->groupingSets, qry->groupDistinct, 4096);
1111
1112 if (!gsets)
1113 ereport(ERROR,
1114 (errcode(ERRCODE_STATEMENT_TOO_COMPLEX),
1115 errmsg("too many grouping sets present (maximum 4096)"),
1116 parser_errposition(pstate,
1117 qry->groupClause
1118 ? exprLocation((Node *) qry->groupClause)
1119 : exprLocation((Node *) qry->groupingSets))));
1120
1121 /*
1122 * The intersection will often be empty, so help things along by
1123 * seeding the intersect with the smallest set.
1124 */
1125 gset_common = linitial(gsets);
1126
1127 if (gset_common)
1128 {
1129 for_each_from(l, gsets, 1)
1130 {
1131 gset_common = list_intersection_int(gset_common, lfirst(l));
1132 if (!gset_common)
1133 break;
1134 }
1135 }
1136
1137 /*
1138 * If there was only one grouping set in the expansion, AND if the
1139 * groupClause is non-empty (meaning that the grouping set is not
1140 * empty either), then we can ditch the grouping set and pretend we
1141 * just had a normal GROUP BY.
1142 */
1143 if (list_length(gsets) == 1 && qry->groupClause)
1144 qry->groupingSets = NIL;
1145 }
1146
1147 /*
1148 * Scan the range table to see if there are JOIN or self-reference CTE
1149 * entries. We'll need this info below.
1150 */
1151 hasJoinRTEs = hasSelfRefRTEs = false;
1152 foreach(l, pstate->p_rtable)
1153 {
1154 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
1155
1156 if (rte->rtekind == RTE_JOIN)
1157 hasJoinRTEs = true;
1158 else if (rte->rtekind == RTE_CTE && rte->self_reference)
1159 hasSelfRefRTEs = true;
1160 }
1161
1162 /*
1163 * Build a list of the acceptable GROUP BY expressions for use by
1164 * substitute_grouped_columns().
1165 *
1166 * We get the TLE, not just the expr, because GROUPING wants to know the
1167 * sortgroupref.
1168 */
1169 foreach(l, qry->groupClause)
1170 {
1171 SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
1172 TargetEntry *expr;
1173
1174 expr = get_sortgroupclause_tle(grpcl, qry->targetList);
1175 if (expr == NULL)
1176 continue; /* probably cannot happen */
1177
1178 groupClauses = lappend(groupClauses, expr);
1179 }
1180
1181 /*
1182 * If there are join alias vars involved, we have to flatten them to the
1183 * underlying vars, so that aliased and unaliased vars will be correctly
1184 * taken as equal. We can skip the expense of doing this if no rangetable
1185 * entries are RTE_JOIN kind.
1186 */
1187 if (hasJoinRTEs)
1188 groupClauses = (List *) flatten_join_alias_vars(NULL, qry,
1189 (Node *) groupClauses);
1190
1191 /*
1192 * Detect whether any of the grouping expressions aren't simple Vars; if
1193 * they're all Vars then we don't have to work so hard in the recursive
1194 * scans. (Note we have to flatten aliases before this.)
1195 *
1196 * Track Vars that are included in all grouping sets separately in
1197 * groupClauseCommonVars, since these are the only ones we can use to
1198 * check for functional dependencies.
1199 */
1200 have_non_var_grouping = false;
1201 foreach(l, groupClauses)
1202 {
1203 TargetEntry *tle = lfirst(l);
1204
1205 if (!IsA(tle->expr, Var))
1206 {
1207 have_non_var_grouping = true;
1208 }
1209 else if (!qry->groupingSets ||
1210 list_member_int(gset_common, tle->ressortgroupref))
1211 {
1212 groupClauseCommonVars = lappend(groupClauseCommonVars, tle->expr);
1213 }
1214 }
1215
1216 /*
1217 * If there are any acceptable GROUP BY expressions, build an RTE and
1218 * nsitem for the result of the grouping step.
1219 */
1220 if (groupClauses)
1221 {
1222 pstate->p_grouping_nsitem =
1223 addRangeTableEntryForGroup(pstate, groupClauses);
1224
1225 /* Set qry->rtable again in case it was previously NIL */
1226 qry->rtable = pstate->p_rtable;
1227 /* Mark the Query as having RTE_GROUP RTE */
1228 qry->hasGroupRTE = true;
1229 }
1230
1231 /*
1232 * Replace grouped variables in the targetlist and HAVING clause with Vars
1233 * that reference the RTE_GROUP RTE. Emit an error message if we find any
1234 * ungrouped variables.
1235 *
1236 * Note: because we check resjunk tlist elements as well as regular ones,
1237 * this will also find ungrouped variables that came from ORDER BY and
1238 * WINDOW clauses. For that matter, it's also going to examine the
1239 * grouping expressions themselves --- but they'll all pass the test ...
1240 *
1241 * We also finalize GROUPING expressions, but for that we need to traverse
1242 * the original (unflattened) clause in order to modify nodes.
1243 */
1244 clause = (Node *) qry->targetList;
1245 finalize_grouping_exprs(clause, pstate, qry,
1246 groupClauses, hasJoinRTEs,
1247 have_non_var_grouping);
1248 if (hasJoinRTEs)
1249 clause = flatten_join_alias_vars(NULL, qry, clause);
1250 qry->targetList = (List *)
1251 substitute_grouped_columns(clause, pstate, qry,
1252 groupClauses, groupClauseCommonVars,
1253 gset_common,
1254 have_non_var_grouping,
1255 &func_grouped_rels);
1256
1257 clause = (Node *) qry->havingQual;
1258 finalize_grouping_exprs(clause, pstate, qry,
1259 groupClauses, hasJoinRTEs,
1260 have_non_var_grouping);
1261 if (hasJoinRTEs)
1262 clause = flatten_join_alias_vars(NULL, qry, clause);
1263 qry->havingQual =
1264 substitute_grouped_columns(clause, pstate, qry,
1265 groupClauses, groupClauseCommonVars,
1266 gset_common,
1267 have_non_var_grouping,
1268 &func_grouped_rels);
1269
1270 /*
1271 * Per spec, aggregates can't appear in a recursive term.
1272 */
1273 if (pstate->p_hasAggs && hasSelfRefRTEs)
1274 ereport(ERROR,
1275 (errcode(ERRCODE_INVALID_RECURSION),
1276 errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
1277 parser_errposition(pstate,
1278 locate_agg_of_level((Node *) qry, 0))));
1279}
1280
1281/*
1282 * substitute_grouped_columns -
1283 * Scan the given expression tree for grouped variables (variables that
1284 * are listed in the groupClauses list) and replace them with Vars that
1285 * reference the RTE_GROUP RTE. Emit a suitable error message if any
1286 * ungrouped variables (variables that are not listed in the groupClauses
1287 * list and are not within the arguments of aggregate functions) are
1288 * found.
1289 *
1290 * NOTE: we assume that the given clause has been transformed suitably for
1291 * parser output. This means we can use expression_tree_mutator.
1292 *
1293 * NOTE: we recognize grouping expressions in the main query, but only
1294 * grouping Vars in subqueries. For example, this will be rejected,
1295 * although it could be allowed:
1296 * SELECT
1297 * (SELECT x FROM bar where y = (foo.a + foo.b))
1298 * FROM foo
1299 * GROUP BY a + b;
1300 * The difficulty is the need to account for different sublevels_up.
1301 * This appears to require a whole custom version of equal(), which is
1302 * way more pain than the feature seems worth.
1303 */
1304static Node *
1306 List *groupClauses, List *groupClauseCommonVars,
1307 List *gset_common,
1308 bool have_non_var_grouping,
1309 List **func_grouped_rels)
1310{
1312
1313 context.pstate = pstate;
1314 context.qry = qry;
1315 context.hasJoinRTEs = false; /* assume caller flattened join Vars */
1316 context.groupClauses = groupClauses;
1317 context.groupClauseCommonVars = groupClauseCommonVars;
1318 context.gset_common = gset_common;
1319 context.have_non_var_grouping = have_non_var_grouping;
1320 context.func_grouped_rels = func_grouped_rels;
1321 context.sublevels_up = 0;
1322 context.in_agg_direct_args = false;
1323 return substitute_grouped_columns_mutator(node, &context);
1324}
1325
1326static Node *
1329{
1330 ListCell *gl;
1331
1332 if (node == NULL)
1333 return NULL;
1334
1335 if (IsA(node, Aggref))
1336 {
1337 Aggref *agg = (Aggref *) node;
1338
1339 if ((int) agg->agglevelsup == context->sublevels_up)
1340 {
1341 /*
1342 * If we find an aggregate call of the original level, do not
1343 * recurse into its normal arguments, ORDER BY arguments, or
1344 * filter; grouped vars there do not need to be replaced and
1345 * ungrouped vars there are not an error. But we should check
1346 * direct arguments as though they weren't in an aggregate. We
1347 * set a special flag in the context to help produce a useful
1348 * error message for ungrouped vars in direct arguments.
1349 */
1350 agg = copyObject(agg);
1351
1352 Assert(!context->in_agg_direct_args);
1353 context->in_agg_direct_args = true;
1354 agg->aggdirectargs = (List *)
1356 context);
1357 context->in_agg_direct_args = false;
1358 return (Node *) agg;
1359 }
1360
1361 /*
1362 * We can skip recursing into aggregates of higher levels altogether,
1363 * since they could not possibly contain Vars of concern to us (see
1364 * transformAggregateCall). We do need to look at aggregates of lower
1365 * levels, however.
1366 */
1367 if ((int) agg->agglevelsup > context->sublevels_up)
1368 return node;
1369 }
1370
1371 if (IsA(node, GroupingFunc))
1372 {
1373 GroupingFunc *grp = (GroupingFunc *) node;
1374
1375 /* handled GroupingFunc separately, no need to recheck at this level */
1376
1377 if ((int) grp->agglevelsup >= context->sublevels_up)
1378 return node;
1379 }
1380
1381 /*
1382 * If we have any GROUP BY items that are not simple Vars, check to see if
1383 * subexpression as a whole matches any GROUP BY item. We need to do this
1384 * at every recursion level so that we recognize GROUPed-BY expressions
1385 * before reaching variables within them. But this only works at the outer
1386 * query level, as noted above.
1387 */
1388 if (context->have_non_var_grouping && context->sublevels_up == 0)
1389 {
1390 int attnum = 0;
1391
1392 foreach(gl, context->groupClauses)
1393 {
1394 TargetEntry *tle = (TargetEntry *) lfirst(gl);
1395
1396 attnum++;
1397 if (equal(node, tle->expr))
1398 {
1399 /* acceptable, replace it with a GROUP Var */
1400 return (Node *) buildGroupedVar(attnum,
1401 tle->ressortgroupref,
1402 context);
1403 }
1404 }
1405 }
1406
1407 /*
1408 * Constants are always acceptable. We have to do this after we checked
1409 * the subexpression as a whole for a match, because it is possible that
1410 * we have GROUP BY items that are constants, and the constants would
1411 * become not so constant after the grouping step.
1412 */
1413 if (IsA(node, Const) ||
1414 IsA(node, Param))
1415 return node;
1416
1417 /*
1418 * If we have an ungrouped Var of the original query level, we have a
1419 * failure. Vars below the original query level are not a problem, and
1420 * neither are Vars from above it. (If such Vars are ungrouped as far as
1421 * their own query level is concerned, that's someone else's problem...)
1422 */
1423 if (IsA(node, Var))
1424 {
1425 Var *var = (Var *) node;
1426 RangeTblEntry *rte;
1427 char *attname;
1428
1429 if (var->varlevelsup != context->sublevels_up)
1430 return node; /* it's not local to my query, ignore */
1431
1432 /*
1433 * Check for a match, if we didn't do it above.
1434 */
1435 if (!context->have_non_var_grouping || context->sublevels_up != 0)
1436 {
1437 int attnum = 0;
1438
1439 foreach(gl, context->groupClauses)
1440 {
1441 TargetEntry *tle = (TargetEntry *) lfirst(gl);
1442 Var *gvar = (Var *) tle->expr;
1443
1444 attnum++;
1445 if (IsA(gvar, Var) &&
1446 gvar->varno == var->varno &&
1447 gvar->varattno == var->varattno &&
1448 gvar->varlevelsup == 0)
1449 {
1450 /* acceptable, replace it with a GROUP Var */
1451 return (Node *) buildGroupedVar(attnum,
1452 tle->ressortgroupref,
1453 context);
1454 }
1455 }
1456 }
1457
1458 /*
1459 * Check whether the Var is known functionally dependent on the GROUP
1460 * BY columns. If so, we can allow the Var to be used, because the
1461 * grouping is really a no-op for this table. However, this deduction
1462 * depends on one or more constraints of the table, so we have to add
1463 * those constraints to the query's constraintDeps list, because it's
1464 * not semantically valid anymore if the constraint(s) get dropped.
1465 * (Therefore, this check must be the last-ditch effort before raising
1466 * error: we don't want to add dependencies unnecessarily.)
1467 *
1468 * Because this is a pretty expensive check, and will have the same
1469 * outcome for all columns of a table, we remember which RTEs we've
1470 * already proven functional dependency for in the func_grouped_rels
1471 * list. This test also prevents us from adding duplicate entries to
1472 * the constraintDeps list.
1473 */
1474 if (list_member_int(*context->func_grouped_rels, var->varno))
1475 return node; /* previously proven acceptable */
1476
1477 Assert(var->varno > 0 &&
1478 (int) var->varno <= list_length(context->pstate->p_rtable));
1479 rte = rt_fetch(var->varno, context->pstate->p_rtable);
1480 if (rte->rtekind == RTE_RELATION)
1481 {
1483 var->varno,
1484 0,
1485 context->groupClauseCommonVars,
1486 &context->qry->constraintDeps))
1487 {
1488 *context->func_grouped_rels =
1489 lappend_int(*context->func_grouped_rels, var->varno);
1490 return node; /* acceptable */
1491 }
1492 }
1493
1494 /* Found an ungrouped local variable; generate error message */
1496 if (context->sublevels_up == 0)
1497 ereport(ERROR,
1498 (errcode(ERRCODE_GROUPING_ERROR),
1499 errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
1500 rte->eref->aliasname, attname),
1501 context->in_agg_direct_args ?
1502 errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
1503 parser_errposition(context->pstate, var->location)));
1504 else
1505 ereport(ERROR,
1506 (errcode(ERRCODE_GROUPING_ERROR),
1507 errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
1508 rte->eref->aliasname, attname),
1509 parser_errposition(context->pstate, var->location)));
1510 }
1511
1512 if (IsA(node, Query))
1513 {
1514 /* Recurse into subselects */
1515 Query *newnode;
1516
1517 context->sublevels_up++;
1518 newnode = query_tree_mutator((Query *) node,
1520 context,
1521 0);
1522 context->sublevels_up--;
1523 return (Node *) newnode;
1524 }
1526 context);
1527}
1528
1529/*
1530 * finalize_grouping_exprs -
1531 * Scan the given expression tree for GROUPING() and related calls,
1532 * and validate and process their arguments.
1533 *
1534 * This is split out from substitute_grouped_columns above because it needs
1535 * to modify the nodes (which it does in-place, not via a mutator) while
1536 * substitute_grouped_columns may see only a copy of the original thanks to
1537 * flattening of join alias vars. So here, we flatten each individual
1538 * GROUPING argument as we see it before comparing it.
1539 */
1540static void
1542 List *groupClauses, bool hasJoinRTEs,
1543 bool have_non_var_grouping)
1544{
1546
1547 context.pstate = pstate;
1548 context.qry = qry;
1549 context.hasJoinRTEs = hasJoinRTEs;
1550 context.groupClauses = groupClauses;
1551 context.groupClauseCommonVars = NIL;
1552 context.gset_common = NIL;
1553 context.have_non_var_grouping = have_non_var_grouping;
1554 context.func_grouped_rels = NULL;
1555 context.sublevels_up = 0;
1556 context.in_agg_direct_args = false;
1557 finalize_grouping_exprs_walker(node, &context);
1558}
1559
1560static bool
1563{
1564 ListCell *gl;
1565
1566 if (node == NULL)
1567 return false;
1568 if (IsA(node, Const) ||
1569 IsA(node, Param))
1570 return false; /* constants are always acceptable */
1571
1572 if (IsA(node, Aggref))
1573 {
1574 Aggref *agg = (Aggref *) node;
1575
1576 if ((int) agg->agglevelsup == context->sublevels_up)
1577 {
1578 /*
1579 * If we find an aggregate call of the original level, do not
1580 * recurse into its normal arguments, ORDER BY arguments, or
1581 * filter; GROUPING exprs of this level are not allowed there. But
1582 * check direct arguments as though they weren't in an aggregate.
1583 */
1584 bool result;
1585
1586 Assert(!context->in_agg_direct_args);
1587 context->in_agg_direct_args = true;
1589 context);
1590 context->in_agg_direct_args = false;
1591 return result;
1592 }
1593
1594 /*
1595 * We can skip recursing into aggregates of higher levels altogether,
1596 * since they could not possibly contain exprs of concern to us (see
1597 * transformAggregateCall). We do need to look at aggregates of lower
1598 * levels, however.
1599 */
1600 if ((int) agg->agglevelsup > context->sublevels_up)
1601 return false;
1602 }
1603
1604 if (IsA(node, GroupingFunc))
1605 {
1606 GroupingFunc *grp = (GroupingFunc *) node;
1607
1608 /*
1609 * We only need to check GroupingFunc nodes at the exact level to
1610 * which they belong, since they cannot mix levels in arguments.
1611 */
1612
1613 if ((int) grp->agglevelsup == context->sublevels_up)
1614 {
1615 ListCell *lc;
1616 List *ref_list = NIL;
1617
1618 foreach(lc, grp->args)
1619 {
1620 Node *expr = lfirst(lc);
1621 Index ref = 0;
1622
1623 if (context->hasJoinRTEs)
1624 expr = flatten_join_alias_vars(NULL, context->qry, expr);
1625
1626 /*
1627 * Each expression must match a grouping entry at the current
1628 * query level. Unlike the general expression case, we don't
1629 * allow functional dependencies or outer references.
1630 */
1631
1632 if (IsA(expr, Var))
1633 {
1634 Var *var = (Var *) expr;
1635
1636 if (var->varlevelsup == context->sublevels_up)
1637 {
1638 foreach(gl, context->groupClauses)
1639 {
1640 TargetEntry *tle = lfirst(gl);
1641 Var *gvar = (Var *) tle->expr;
1642
1643 if (IsA(gvar, Var) &&
1644 gvar->varno == var->varno &&
1645 gvar->varattno == var->varattno &&
1646 gvar->varlevelsup == 0)
1647 {
1648 ref = tle->ressortgroupref;
1649 break;
1650 }
1651 }
1652 }
1653 }
1654 else if (context->have_non_var_grouping &&
1655 context->sublevels_up == 0)
1656 {
1657 foreach(gl, context->groupClauses)
1658 {
1659 TargetEntry *tle = lfirst(gl);
1660
1661 if (equal(expr, tle->expr))
1662 {
1663 ref = tle->ressortgroupref;
1664 break;
1665 }
1666 }
1667 }
1668
1669 if (ref == 0)
1670 ereport(ERROR,
1671 (errcode(ERRCODE_GROUPING_ERROR),
1672 errmsg("arguments to GROUPING must be grouping expressions of the associated query level"),
1673 parser_errposition(context->pstate,
1674 exprLocation(expr))));
1675
1676 ref_list = lappend_int(ref_list, ref);
1677 }
1678
1679 grp->refs = ref_list;
1680 }
1681
1682 if ((int) grp->agglevelsup > context->sublevels_up)
1683 return false;
1684 }
1685
1686 if (IsA(node, Query))
1687 {
1688 /* Recurse into subselects */
1689 bool result;
1690
1691 context->sublevels_up++;
1692 result = query_tree_walker((Query *) node,
1694 context,
1695 0);
1696 context->sublevels_up--;
1697 return result;
1698 }
1700 context);
1701}
1702
1703/*
1704 * buildGroupedVar -
1705 * build a Var node that references the RTE_GROUP RTE
1706 */
1707static Var *
1708buildGroupedVar(int attnum, Index ressortgroupref,
1710{
1711 Var *var;
1712 ParseNamespaceItem *grouping_nsitem = context->pstate->p_grouping_nsitem;
1713 ParseNamespaceColumn *nscol = grouping_nsitem->p_nscolumns + attnum - 1;
1714
1715 Assert(nscol->p_varno == grouping_nsitem->p_rtindex);
1716 Assert(nscol->p_varattno == attnum);
1717 var = makeVar(nscol->p_varno,
1718 nscol->p_varattno,
1719 nscol->p_vartype,
1720 nscol->p_vartypmod,
1721 nscol->p_varcollid,
1722 context->sublevels_up);
1723 /* makeVar doesn't offer parameters for these, so set by hand: */
1724 var->varnosyn = nscol->p_varnosyn;
1725 var->varattnosyn = nscol->p_varattnosyn;
1726
1727 if (context->qry->groupingSets &&
1728 !list_member_int(context->gset_common, ressortgroupref))
1729 var->varnullingrels =
1730 bms_add_member(var->varnullingrels, grouping_nsitem->p_rtindex);
1731
1732 return var;
1733}
1734
1735
1736/*
1737 * Given a GroupingSet node, expand it and return a list of lists.
1738 *
1739 * For EMPTY nodes, return a list of one empty list.
1740 *
1741 * For SIMPLE nodes, return a list of one list, which is the node content.
1742 *
1743 * For CUBE and ROLLUP nodes, return a list of the expansions.
1744 *
1745 * For SET nodes, recursively expand contained CUBE and ROLLUP.
1746 */
1747static List *
1749{
1750 List *result = NIL;
1751
1752 switch (gs->kind)
1753 {
1754 case GROUPING_SET_EMPTY:
1755 result = list_make1(NIL);
1756 break;
1757
1759 result = list_make1(gs->content);
1760 break;
1761
1763 {
1764 List *rollup_val = gs->content;
1765 ListCell *lc;
1766 int curgroup_size = list_length(gs->content);
1767
1768 while (curgroup_size > 0)
1769 {
1770 List *current_result = NIL;
1771 int i = curgroup_size;
1772
1773 foreach(lc, rollup_val)
1774 {
1775 GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1776
1777 Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1778
1779 current_result = list_concat(current_result,
1780 gs_current->content);
1781
1782 /* If we are done with making the current group, break */
1783 if (--i == 0)
1784 break;
1785 }
1786
1787 result = lappend(result, current_result);
1788 --curgroup_size;
1789 }
1790
1791 result = lappend(result, NIL);
1792 }
1793 break;
1794
1795 case GROUPING_SET_CUBE:
1796 {
1797 List *cube_list = gs->content;
1798 int number_bits = list_length(cube_list);
1799 uint32 num_sets;
1800 uint32 i;
1801
1802 /* parser should cap this much lower */
1803 Assert(number_bits < 31);
1804
1805 num_sets = (1U << number_bits);
1806
1807 for (i = 0; i < num_sets; i++)
1808 {
1809 List *current_result = NIL;
1810 ListCell *lc;
1811 uint32 mask = 1U;
1812
1813 foreach(lc, cube_list)
1814 {
1815 GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1816
1817 Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1818
1819 if (mask & i)
1820 current_result = list_concat(current_result,
1821 gs_current->content);
1822
1823 mask <<= 1;
1824 }
1825
1826 result = lappend(result, current_result);
1827 }
1828 }
1829 break;
1830
1831 case GROUPING_SET_SETS:
1832 {
1833 ListCell *lc;
1834
1835 foreach(lc, gs->content)
1836 {
1837 List *current_result = expand_groupingset_node(lfirst(lc));
1838
1839 result = list_concat(result, current_result);
1840 }
1841 }
1842 break;
1843 }
1844
1845 return result;
1846}
1847
1848/* list_sort comparator to sort sub-lists by length */
1849static int
1851{
1852 int la = list_length((const List *) lfirst(a));
1853 int lb = list_length((const List *) lfirst(b));
1854
1855 return pg_cmp_s32(la, lb);
1856}
1857
1858/* list_sort comparator to sort sub-lists by length and contents */
1859static int
1861{
1862 int res = cmp_list_len_asc(a, b);
1863
1864 if (res == 0)
1865 {
1866 List *la = (List *) lfirst(a);
1867 List *lb = (List *) lfirst(b);
1868 ListCell *lca;
1869 ListCell *lcb;
1870
1871 forboth(lca, la, lcb, lb)
1872 {
1873 int va = lfirst_int(lca);
1874 int vb = lfirst_int(lcb);
1875
1876 if (va > vb)
1877 return 1;
1878 if (va < vb)
1879 return -1;
1880 }
1881 }
1882
1883 return res;
1884}
1885
1886/*
1887 * Expand a groupingSets clause to a flat list of grouping sets.
1888 * The returned list is sorted by length, shortest sets first.
1889 *
1890 * This is mainly for the planner, but we use it here too to do
1891 * some consistency checks.
1892 */
1893List *
1894expand_grouping_sets(List *groupingSets, bool groupDistinct, int limit)
1895{
1896 List *expanded_groups = NIL;
1897 List *result = NIL;
1898 double numsets = 1;
1899 ListCell *lc;
1900
1901 if (groupingSets == NIL)
1902 return NIL;
1903
1904 foreach(lc, groupingSets)
1905 {
1906 List *current_result = NIL;
1907 GroupingSet *gs = lfirst(lc);
1908
1909 current_result = expand_groupingset_node(gs);
1910
1911 Assert(current_result != NIL);
1912
1913 numsets *= list_length(current_result);
1914
1915 if (limit >= 0 && numsets > limit)
1916 return NIL;
1917
1918 expanded_groups = lappend(expanded_groups, current_result);
1919 }
1920
1921 /*
1922 * Do cartesian product between sublists of expanded_groups. While at it,
1923 * remove any duplicate elements from individual grouping sets (we must
1924 * NOT change the number of sets though)
1925 */
1926
1927 foreach(lc, (List *) linitial(expanded_groups))
1928 {
1929 result = lappend(result, list_union_int(NIL, (List *) lfirst(lc)));
1930 }
1931
1932 for_each_from(lc, expanded_groups, 1)
1933 {
1934 List *p = lfirst(lc);
1935 List *new_result = NIL;
1936 ListCell *lc2;
1937
1938 foreach(lc2, result)
1939 {
1940 List *q = lfirst(lc2);
1941 ListCell *lc3;
1942
1943 foreach(lc3, p)
1944 {
1945 new_result = lappend(new_result,
1946 list_union_int(q, (List *) lfirst(lc3)));
1947 }
1948 }
1949 result = new_result;
1950 }
1951
1952 /* Now sort the lists by length and deduplicate if necessary */
1953 if (!groupDistinct || list_length(result) < 2)
1954 list_sort(result, cmp_list_len_asc);
1955 else
1956 {
1957 ListCell *cell;
1958 List *prev;
1959
1960 /* Sort each groupset individually */
1961 foreach(cell, result)
1963
1964 /* Now sort the list of groupsets by length and contents */
1966
1967 /* Finally, remove duplicates */
1968 prev = linitial(result);
1969 for_each_from(cell, result, 1)
1970 {
1971 if (equal(lfirst(cell), prev))
1972 result = foreach_delete_current(result, cell);
1973 else
1974 prev = lfirst(cell);
1975 }
1976 }
1977
1978 return result;
1979}
1980
1981/*
1982 * get_aggregate_argtypes
1983 * Identify the specific datatypes passed to an aggregate call.
1984 *
1985 * Given an Aggref, extract the actual datatypes of the input arguments.
1986 * The input datatypes are reported in a way that matches up with the
1987 * aggregate's declaration, ie, any ORDER BY columns attached to a plain
1988 * aggregate are ignored, but we report both direct and aggregated args of
1989 * an ordered-set aggregate.
1990 *
1991 * Datatypes are returned into inputTypes[], which must reference an array
1992 * of length FUNC_MAX_ARGS.
1993 *
1994 * The function result is the number of actual arguments.
1995 */
1996int
1997get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
1998{
1999 int numArguments = 0;
2000 ListCell *lc;
2001
2002 Assert(list_length(aggref->aggargtypes) <= FUNC_MAX_ARGS);
2003
2004 foreach(lc, aggref->aggargtypes)
2005 {
2006 inputTypes[numArguments++] = lfirst_oid(lc);
2007 }
2008
2009 return numArguments;
2010}
2011
2012/*
2013 * resolve_aggregate_transtype
2014 * Identify the transition state value's datatype for an aggregate call.
2015 *
2016 * This function resolves a polymorphic aggregate's state datatype.
2017 * It must be passed the aggtranstype from the aggregate's catalog entry,
2018 * as well as the actual argument types extracted by get_aggregate_argtypes.
2019 * (We could fetch pg_aggregate.aggtranstype internally, but all existing
2020 * callers already have the value at hand, so we make them pass it.)
2021 */
2022Oid
2024 Oid aggtranstype,
2025 Oid *inputTypes,
2026 int numArguments)
2027{
2028 /* resolve actual type of transition state, if polymorphic */
2029 if (IsPolymorphicType(aggtranstype))
2030 {
2031 /* have to fetch the agg's declared input types... */
2032 Oid *declaredArgTypes;
2033 int agg_nargs;
2034
2035 (void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);
2036
2037 /*
2038 * VARIADIC ANY aggs could have more actual than declared args, but
2039 * such extra args can't affect polymorphic type resolution.
2040 */
2041 Assert(agg_nargs <= numArguments);
2042
2043 aggtranstype = enforce_generic_type_consistency(inputTypes,
2044 declaredArgTypes,
2045 agg_nargs,
2046 aggtranstype,
2047 false);
2048 pfree(declaredArgTypes);
2049 }
2050 return aggtranstype;
2051}
2052
2053/*
2054 * agg_args_support_sendreceive
2055 * Returns true if all non-byval of aggref's arg types have send and
2056 * receive functions.
2057 */
2058bool
2060{
2061 ListCell *lc;
2062
2063 foreach(lc, aggref->args)
2064 {
2065 HeapTuple typeTuple;
2066 Form_pg_type pt;
2067 TargetEntry *tle = (TargetEntry *) lfirst(lc);
2068 Oid type = exprType((Node *) tle->expr);
2069
2070 typeTuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(type));
2071 if (!HeapTupleIsValid(typeTuple))
2072 elog(ERROR, "cache lookup failed for type %u", type);
2073
2074 pt = (Form_pg_type) GETSTRUCT(typeTuple);
2075
2076 if (!pt->typbyval &&
2077 (!OidIsValid(pt->typsend) || !OidIsValid(pt->typreceive)))
2078 {
2079 ReleaseSysCache(typeTuple);
2080 return false;
2081 }
2082 ReleaseSysCache(typeTuple);
2083 }
2084 return true;
2085}
2086
2087/*
2088 * Create an expression tree for the transition function of an aggregate.
2089 * This is needed so that polymorphic functions can be used within an
2090 * aggregate --- without the expression tree, such functions would not know
2091 * the datatypes they are supposed to use. (The trees will never actually
2092 * be executed, however, so we can skimp a bit on correctness.)
2093 *
2094 * agg_input_types and agg_state_type identifies the input types of the
2095 * aggregate. These should be resolved to actual types (ie, none should
2096 * ever be ANYELEMENT etc).
2097 * agg_input_collation is the aggregate function's input collation.
2098 *
2099 * For an ordered-set aggregate, remember that agg_input_types describes
2100 * the direct arguments followed by the aggregated arguments.
2101 *
2102 * transfn_oid and invtransfn_oid identify the funcs to be called; the
2103 * latter may be InvalidOid, however if invtransfn_oid is set then
2104 * transfn_oid must also be set.
2105 *
2106 * transfn_oid may also be passed as the aggcombinefn when the *transfnexpr is
2107 * to be used for a combine aggregate phase. We expect invtransfn_oid to be
2108 * InvalidOid in this case since there is no such thing as an inverse
2109 * combinefn.
2110 *
2111 * Pointers to the constructed trees are returned into *transfnexpr,
2112 * *invtransfnexpr. If there is no invtransfn, the respective pointer is set
2113 * to NULL. Since use of the invtransfn is optional, NULL may be passed for
2114 * invtransfnexpr.
2115 */
2116void
2118 int agg_num_inputs,
2119 int agg_num_direct_inputs,
2120 bool agg_variadic,
2121 Oid agg_state_type,
2122 Oid agg_input_collation,
2123 Oid transfn_oid,
2124 Oid invtransfn_oid,
2125 Expr **transfnexpr,
2126 Expr **invtransfnexpr)
2127{
2128 List *args;
2129 FuncExpr *fexpr;
2130 int i;
2131
2132 /*
2133 * Build arg list to use in the transfn FuncExpr node.
2134 */
2135 args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
2136
2137 for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
2138 {
2139 args = lappend(args,
2140 make_agg_arg(agg_input_types[i], agg_input_collation));
2141 }
2142
2143 fexpr = makeFuncExpr(transfn_oid,
2144 agg_state_type,
2145 args,
2146 InvalidOid,
2147 agg_input_collation,
2149 fexpr->funcvariadic = agg_variadic;
2150 *transfnexpr = (Expr *) fexpr;
2151
2152 /*
2153 * Build invtransfn expression if requested, with same args as transfn
2154 */
2155 if (invtransfnexpr != NULL)
2156 {
2157 if (OidIsValid(invtransfn_oid))
2158 {
2159 fexpr = makeFuncExpr(invtransfn_oid,
2160 agg_state_type,
2161 args,
2162 InvalidOid,
2163 agg_input_collation,
2165 fexpr->funcvariadic = agg_variadic;
2166 *invtransfnexpr = (Expr *) fexpr;
2167 }
2168 else
2169 *invtransfnexpr = NULL;
2170 }
2171}
2172
2173/*
2174 * Like build_aggregate_transfn_expr, but creates an expression tree for the
2175 * serialization function of an aggregate.
2176 */
2177void
2179 Expr **serialfnexpr)
2180{
2181 List *args;
2182 FuncExpr *fexpr;
2183
2184 /* serialfn always takes INTERNAL and returns BYTEA */
2185 args = list_make1(make_agg_arg(INTERNALOID, InvalidOid));
2186
2187 fexpr = makeFuncExpr(serialfn_oid,
2188 BYTEAOID,
2189 args,
2190 InvalidOid,
2191 InvalidOid,
2193 *serialfnexpr = (Expr *) fexpr;
2194}
2195
2196/*
2197 * Like build_aggregate_transfn_expr, but creates an expression tree for the
2198 * deserialization function of an aggregate.
2199 */
2200void
2202 Expr **deserialfnexpr)
2203{
2204 List *args;
2205 FuncExpr *fexpr;
2206
2207 /* deserialfn always takes BYTEA, INTERNAL and returns INTERNAL */
2209 make_agg_arg(INTERNALOID, InvalidOid));
2210
2211 fexpr = makeFuncExpr(deserialfn_oid,
2212 INTERNALOID,
2213 args,
2214 InvalidOid,
2215 InvalidOid,
2217 *deserialfnexpr = (Expr *) fexpr;
2218}
2219
2220/*
2221 * Like build_aggregate_transfn_expr, but creates an expression tree for the
2222 * final function of an aggregate, rather than the transition function.
2223 */
2224void
2226 int num_finalfn_inputs,
2227 Oid agg_state_type,
2228 Oid agg_result_type,
2229 Oid agg_input_collation,
2230 Oid finalfn_oid,
2231 Expr **finalfnexpr)
2232{
2233 List *args;
2234 int i;
2235
2236 /*
2237 * Build expr tree for final function
2238 */
2239 args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
2240
2241 /* finalfn may take additional args, which match agg's input types */
2242 for (i = 0; i < num_finalfn_inputs - 1; i++)
2243 {
2244 args = lappend(args,
2245 make_agg_arg(agg_input_types[i], agg_input_collation));
2246 }
2247
2248 *finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
2249 agg_result_type,
2250 args,
2251 InvalidOid,
2252 agg_input_collation,
2254 /* finalfn is currently never treated as variadic */
2255}
2256
2257/*
2258 * Convenience function to build dummy argument expressions for aggregates.
2259 *
2260 * We really only care that an aggregate support function can discover its
2261 * actual argument types at runtime using get_fn_expr_argtype(), so it's okay
2262 * to use Param nodes that don't correspond to any real Param.
2263 */
2264static Node *
2265make_agg_arg(Oid argtype, Oid argcollation)
2266{
2267 Param *argp = makeNode(Param);
2268
2269 argp->paramkind = PARAM_EXEC;
2270 argp->paramid = -1;
2271 argp->paramtype = argtype;
2272 argp->paramtypmod = -1;
2273 argp->paramcollid = argcollation;
2274 argp->location = -1;
2275 return (Node *) argp;
2276}
int16 AttrNumber
Definition: attnum.h:21
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
#define Min(x, y)
Definition: c.h:961
#define Assert(condition)
Definition: c.h:815
uint32_t uint32
Definition: c.h:488
unsigned int Index
Definition: c.h:571
#define OidIsValid(objectId)
Definition: c.h:732
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1157
int errdetail(const char *fmt,...)
Definition: elog.c:1203
int errhint(const char *fmt,...)
Definition: elog.c:1317
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define _(x)
Definition: elog.c:90
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
void err(int eval, const char *fmt,...)
Definition: err.c:43
char * format_type_be(Oid type_oid)
Definition: format_type.c:343
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
static int pg_cmp_s32(int32 a, int32 b)
Definition: int.h:646
int b
Definition: isn.c:69
int a
Definition: isn.c:68
int i
Definition: isn.c:72
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:76
List * lappend(List *list, void *datum)
Definition: list.c:339
void list_sort(List *list, list_sort_comparator cmp)
Definition: list.c:1674
List * list_copy_tail(const List *oldlist, int nskip)
Definition: list.c:1613
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * lappend_int(List *list, int datum)
Definition: list.c:357
List * list_intersection_int(const List *list1, const List *list2)
Definition: list.c:1200
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
bool list_member_int(const List *list, int datum)
Definition: list.c:702
int list_int_cmp(const ListCell *p1, const ListCell *p2)
Definition: list.c:1691
List * list_truncate(List *list, int new_size)
Definition: list.c:631
List * list_union_int(const List *list1, const List *list2)
Definition: list.c:1113
Oid get_func_signature(Oid funcid, Oid **argtypes, int *nargs)
Definition: lsyscache.c:1696
Datum lca(PG_FUNCTION_ARGS)
Definition: ltree_op.c:568
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:242
FuncExpr * makeFuncExpr(Oid funcid, Oid rettype, List *args, Oid funccollid, Oid inputcollid, CoercionForm fformat)
Definition: makefuncs.c:547
void pfree(void *pointer)
Definition: mcxt.c:1521
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int exprLocation(const Node *expr)
Definition: nodeFuncs.c:1388
#define expression_tree_mutator(n, m, c)
Definition: nodeFuncs.h:155
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
#define query_tree_mutator(q, m, c, f)
Definition: nodeFuncs.h:160
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define copyObject(obj)
Definition: nodes.h:224
#define makeNode(_type_)
Definition: nodes.h:155
static int check_agg_arguments(ParseState *pstate, List *directargs, List *args, Expr *filter)
Definition: parse_agg.c:641
static void check_agglevels_and_constraints(ParseState *pstate, Node *expr)
Definition: parse_agg.c:304
static Var * buildGroupedVar(int attnum, Index ressortgroupref, substitute_grouped_columns_context *context)
Definition: parse_agg.c:1708
Node * transformGroupingFunc(ParseState *pstate, GroupingFunc *p)
Definition: parse_agg.c:265
void build_aggregate_finalfn_expr(Oid *agg_input_types, int num_finalfn_inputs, Oid agg_state_type, Oid agg_result_type, Oid agg_input_collation, Oid finalfn_oid, Expr **finalfnexpr)
Definition: parse_agg.c:2225
static Node * make_agg_arg(Oid argtype, Oid argcollation)
Definition: parse_agg.c:2265
static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry, List *groupClauses, bool hasJoinRTEs, bool have_non_var_grouping)
Definition: parse_agg.c:1541
Oid resolve_aggregate_transtype(Oid aggfuncid, Oid aggtranstype, Oid *inputTypes, int numArguments)
Definition: parse_agg.c:2023
void build_aggregate_deserialfn_expr(Oid deserialfn_oid, Expr **deserialfnexpr)
Definition: parse_agg.c:2201
void transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc, WindowDef *windef)
Definition: parse_agg.c:825
static bool check_agg_arguments_walker(Node *node, check_agg_arguments_context *context)
Definition: parse_agg.c:722
static Node * substitute_grouped_columns_mutator(Node *node, substitute_grouped_columns_context *context)
Definition: parse_agg.c:1327
void parseCheckAggregates(ParseState *pstate, Query *qry)
Definition: parse_agg.c:1085
static int cmp_list_len_asc(const ListCell *a, const ListCell *b)
Definition: parse_agg.c:1850
void build_aggregate_transfn_expr(Oid *agg_input_types, int agg_num_inputs, int agg_num_direct_inputs, bool agg_variadic, Oid agg_state_type, Oid agg_input_collation, Oid transfn_oid, Oid invtransfn_oid, Expr **transfnexpr, Expr **invtransfnexpr)
Definition: parse_agg.c:2117
static bool finalize_grouping_exprs_walker(Node *node, substitute_grouped_columns_context *context)
Definition: parse_agg.c:1561
void transformAggregateCall(ParseState *pstate, Aggref *agg, List *args, List *aggorder, bool agg_distinct)
Definition: parse_agg.c:109
List * expand_grouping_sets(List *groupingSets, bool groupDistinct, int limit)
Definition: parse_agg.c:1894
static int cmp_list_len_contents_asc(const ListCell *a, const ListCell *b)
Definition: parse_agg.c:1860
static List * expand_groupingset_node(GroupingSet *gs)
Definition: parse_agg.c:1748
static Node * substitute_grouped_columns(Node *node, ParseState *pstate, Query *qry, List *groupClauses, List *groupClauseCommonVars, List *gset_common, bool have_non_var_grouping, List **func_grouped_rels)
Definition: parse_agg.c:1305
bool agg_args_support_sendreceive(Aggref *aggref)
Definition: parse_agg.c:2059
int get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
Definition: parse_agg.c:1997
void build_aggregate_serialfn_expr(Oid serialfn_oid, Expr **serialfnexpr)
Definition: parse_agg.c:2178
List * transformSortClause(ParseState *pstate, List *orderlist, List **targetlist, ParseExprKind exprKind, bool useSQL99)
List * transformDistinctClause(ParseState *pstate, List **targetlist, List *sortClause, bool is_agg)
List * addTargetToSortList(ParseState *pstate, TargetEntry *tle, List *sortlist, List *targetlist, SortBy *sortby)
Oid enforce_generic_type_consistency(const Oid *actual_arg_types, Oid *declared_arg_types, int nargs, Oid rettype, bool allow_poly)
Node * transformExpr(ParseState *pstate, Node *expr, ParseExprKind exprKind)
Definition: parse_expr.c:118
const char * ParseExprKindName(ParseExprKind exprKind)
Definition: parse_expr.c:3121
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:106
@ EXPR_KIND_EXECUTE_PARAMETER
Definition: parse_node.h:76
@ EXPR_KIND_DOMAIN_CHECK
Definition: parse_node.h:69
@ EXPR_KIND_COPY_WHERE
Definition: parse_node.h:82
@ EXPR_KIND_COLUMN_DEFAULT
Definition: parse_node.h:70
@ EXPR_KIND_DISTINCT_ON
Definition: parse_node.h:61
@ EXPR_KIND_MERGE_WHEN
Definition: parse_node.h:58
@ EXPR_KIND_STATS_EXPRESSION
Definition: parse_node.h:74
@ EXPR_KIND_INDEX_EXPRESSION
Definition: parse_node.h:72
@ EXPR_KIND_MERGE_RETURNING
Definition: parse_node.h:65
@ EXPR_KIND_PARTITION_BOUND
Definition: parse_node.h:79
@ EXPR_KIND_FUNCTION_DEFAULT
Definition: parse_node.h:71
@ EXPR_KIND_WINDOW_FRAME_RANGE
Definition: parse_node.h:51
@ EXPR_KIND_VALUES
Definition: parse_node.h:66
@ EXPR_KIND_FROM_SUBSELECT
Definition: parse_node.h:44
@ EXPR_KIND_POLICY
Definition: parse_node.h:78
@ EXPR_KIND_WINDOW_FRAME_GROUPS
Definition: parse_node.h:53
@ EXPR_KIND_PARTITION_EXPRESSION
Definition: parse_node.h:80
@ EXPR_KIND_JOIN_USING
Definition: parse_node.h:43
@ EXPR_KIND_INDEX_PREDICATE
Definition: parse_node.h:73
@ EXPR_KIND_ORDER_BY
Definition: parse_node.h:60
@ EXPR_KIND_OFFSET
Definition: parse_node.h:63
@ EXPR_KIND_JOIN_ON
Definition: parse_node.h:42
@ EXPR_KIND_HAVING
Definition: parse_node.h:47
@ EXPR_KIND_INSERT_TARGET
Definition: parse_node.h:55
@ EXPR_KIND_ALTER_COL_TRANSFORM
Definition: parse_node.h:75
@ EXPR_KIND_LIMIT
Definition: parse_node.h:62
@ EXPR_KIND_WHERE
Definition: parse_node.h:46
@ EXPR_KIND_UPDATE_TARGET
Definition: parse_node.h:57
@ EXPR_KIND_SELECT_TARGET
Definition: parse_node.h:54
@ EXPR_KIND_RETURNING
Definition: parse_node.h:64
@ EXPR_KIND_GENERATED_COLUMN
Definition: parse_node.h:83
@ EXPR_KIND_NONE
Definition: parse_node.h:40
@ EXPR_KIND_CALL_ARGUMENT
Definition: parse_node.h:81
@ EXPR_KIND_GROUP_BY
Definition: parse_node.h:59
@ EXPR_KIND_OTHER
Definition: parse_node.h:41
@ EXPR_KIND_FROM_FUNCTION
Definition: parse_node.h:45
@ EXPR_KIND_TRIGGER_WHEN
Definition: parse_node.h:77
@ EXPR_KIND_FILTER
Definition: parse_node.h:48
@ EXPR_KIND_UPDATE_SOURCE
Definition: parse_node.h:56
@ EXPR_KIND_CHECK_CONSTRAINT
Definition: parse_node.h:68
@ EXPR_KIND_WINDOW_PARTITION
Definition: parse_node.h:49
@ EXPR_KIND_CYCLE_MARK
Definition: parse_node.h:84
@ EXPR_KIND_WINDOW_FRAME_ROWS
Definition: parse_node.h:52
@ EXPR_KIND_WINDOW_ORDER
Definition: parse_node.h:50
@ EXPR_KIND_VALUES_SINGLE
Definition: parse_node.h:67
char * get_rte_attribute_name(RangeTblEntry *rte, AttrNumber attnum)
ParseNamespaceItem * addRangeTableEntryForGroup(ParseState *pstate, List *groupClauses)
@ GROUPING_SET_CUBE
Definition: parsenodes.h:1511
@ GROUPING_SET_SIMPLE
Definition: parsenodes.h:1509
@ GROUPING_SET_ROLLUP
Definition: parsenodes.h:1510
@ GROUPING_SET_SETS
Definition: parsenodes.h:1512
@ GROUPING_SET_EMPTY
Definition: parsenodes.h:1508
@ RTE_JOIN
Definition: parsenodes.h:1028
@ RTE_CTE
Definition: parsenodes.h:1032
@ RTE_RELATION
Definition: parsenodes.h:1026
#define FRAMEOPTION_DEFAULTS
Definition: parsenodes.h:619
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
NameData attname
Definition: pg_attribute.h:41
int16 attnum
Definition: pg_attribute.h:74
void * arg
#define FUNC_MAX_ARGS
bool check_functional_grouping(Oid relid, Index varno, Index varlevelsup, List *grouping_columns, List **constraintDeps)
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
#define lfirst_int(lc)
Definition: pg_list.h:173
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
#define list_make1(x1)
Definition: pg_list.h:212
#define for_each_from(cell, lst, N)
Definition: pg_list.h:414
#define linitial(l)
Definition: pg_list.h:178
#define lfirst_oid(lc)
Definition: pg_list.h:174
#define list_make2(x1, x2)
Definition: pg_list.h:214
FormData_pg_type * Form_pg_type
Definition: pg_type.h:261
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:257
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
@ PARAM_EXEC
Definition: primnodes.h:384
@ COERCE_EXPLICIT_CALL
Definition: primnodes.h:750
bool contain_windowfuncs(Node *node)
Definition: rewriteManip.c:214
int locate_agg_of_level(Node *node, int levelsup)
Definition: rewriteManip.c:149
int locate_windowfunc(Node *node)
Definition: rewriteManip.c:251
List * aggdistinct
Definition: primnodes.h:490
List * aggdirectargs
Definition: primnodes.h:481
List * args
Definition: primnodes.h:484
Expr * aggfilter
Definition: primnodes.h:493
ParseLoc location
Definition: primnodes.h:523
List * aggorder
Definition: primnodes.h:487
Index agglevelsup
Definition: primnodes.h:567
ParseLoc location
Definition: primnodes.h:570
List * content
Definition: parsenodes.h:1519
Definition: pg_list.h:54
Definition: nodes.h:129
ParseLoc location
Definition: primnodes.h:400
int paramid
Definition: primnodes.h:393
Oid paramtype
Definition: primnodes.h:394
ParamKind paramkind
Definition: primnodes.h:392
AttrNumber p_varattno
Definition: parse_node.h:347
AttrNumber p_varattnosyn
Definition: parse_node.h:353
ParseNamespaceColumn * p_nscolumns
Definition: parse_node.h:315
ParseState * parentParseState
Definition: parse_node.h:208
bool p_hasWindowFuncs
Definition: parse_node.h:243
ParseNamespaceItem * p_grouping_nsitem
Definition: parse_node.h:227
ParseExprKind p_expr_kind
Definition: parse_node.h:230
List * p_windowdefs
Definition: parse_node.h:229
int p_next_resno
Definition: parse_node.h:231
List * p_rtable
Definition: parse_node.h:212
bool p_hasAggs
Definition: parse_node.h:242
bool groupDistinct
Definition: parsenodes.h:212
List * groupClause
Definition: parsenodes.h:211
Node * havingQual
Definition: parsenodes.h:216
List * rtable
Definition: parsenodes.h:170
List * targetList
Definition: parsenodes.h:193
List * groupingSets
Definition: parsenodes.h:214
RTEKind rtekind
Definition: parsenodes.h:1056
Expr * expr
Definition: primnodes.h:2245
Index ressortgroupref
Definition: primnodes.h:2251
Definition: primnodes.h:261
ParseLoc location
Definition: primnodes.h:309
AttrNumber varattno
Definition: primnodes.h:273
int varno
Definition: primnodes.h:268
Index varlevelsup
Definition: primnodes.h:293
List * orderClause
Definition: parsenodes.h:578
ParseLoc location
Definition: parsenodes.h:582
List * partitionClause
Definition: parsenodes.h:577
Node * startOffset
Definition: parsenodes.h:580
char * refname
Definition: parsenodes.h:576
Node * endOffset
Definition: parsenodes.h:581
int frameOptions
Definition: parsenodes.h:579
char * name
Definition: parsenodes.h:575
List * args
Definition: primnodes.h:591
Index winref
Definition: primnodes.h:597
ParseLoc location
Definition: primnodes.h:603
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:269
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:221
TargetEntry * get_sortgroupclause_tle(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:367
Node * get_sortgroupclause_expr(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:379
Node * flatten_join_alias_vars(PlannerInfo *root, Query *query, Node *node)
Definition: var.c:789
int locate_var_of_level(Node *node, int levelsup)
Definition: var.c:555
const char * type