PostgreSQL Source Code  git master
parse_agg.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * parse_agg.c
4  * handle aggregates and window functions in parser
5  *
6  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/parser/parse_agg.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include "catalog/pg_aggregate.h"
18 #include "catalog/pg_constraint.h"
19 #include "catalog/pg_type.h"
20 #include "nodes/makefuncs.h"
21 #include "nodes/nodeFuncs.h"
22 #include "optimizer/optimizer.h"
23 #include "parser/parse_agg.h"
24 #include "parser/parse_clause.h"
25 #include "parser/parse_coerce.h"
26 #include "parser/parse_expr.h"
27 #include "parser/parsetree.h"
28 #include "rewrite/rewriteManip.h"
29 #include "utils/builtins.h"
30 #include "utils/lsyscache.h"
31 
32 
33 typedef struct
34 {
40 
41 typedef struct
42 {
53 
54 static int check_agg_arguments(ParseState *pstate,
55  List *directargs,
56  List *args,
57  Expr *filter);
58 static bool check_agg_arguments_walker(Node *node,
60 static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
61  List *groupClauses, List *groupClauseCommonVars,
62  bool have_non_var_grouping,
63  List **func_grouped_rels);
64 static bool check_ungrouped_columns_walker(Node *node,
66 static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
67  List *groupClauses, bool hasJoinRTEs,
68  bool have_non_var_grouping);
69 static bool finalize_grouping_exprs_walker(Node *node,
71 static void check_agglevels_and_constraints(ParseState *pstate, Node *expr);
73 static Node *make_agg_arg(Oid argtype, Oid argcollation);
74 
75 
76 /*
77  * transformAggregateCall -
78  * Finish initial transformation of an aggregate call
79  *
80  * parse_func.c has recognized the function as an aggregate, and has set up
81  * all the fields of the Aggref except aggargtypes, aggdirectargs, args,
82  * aggorder, aggdistinct and agglevelsup. The passed-in args list has been
83  * through standard expression transformation and type coercion to match the
84  * agg's declared arg types, while the passed-in aggorder list hasn't been
85  * transformed at all.
86  *
87  * Here we separate the args list into direct and aggregated args, storing the
88  * former in agg->aggdirectargs and the latter in agg->args. The regular
89  * args, but not the direct args, are converted into a targetlist by inserting
90  * TargetEntry nodes. We then transform the aggorder and agg_distinct
91  * specifications to produce lists of SortGroupClause nodes for agg->aggorder
92  * and agg->aggdistinct. (For a regular aggregate, this might result in
93  * adding resjunk expressions to the targetlist; but for ordered-set
94  * aggregates the aggorder list will always be one-to-one with the aggregated
95  * args.)
96  *
97  * We must also determine which query level the aggregate actually belongs to,
98  * set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
99  * pstate level.
100  */
101 void
103  List *args, List *aggorder, bool agg_distinct)
104 {
105  List *argtypes = NIL;
106  List *tlist = NIL;
107  List *torder = NIL;
108  List *tdistinct = NIL;
109  AttrNumber attno = 1;
110  int save_next_resno;
111  ListCell *lc;
112 
113  /*
114  * Before separating the args into direct and aggregated args, make a list
115  * of their data type OIDs for use later.
116  */
117  foreach(lc, args)
118  {
119  Expr *arg = (Expr *) lfirst(lc);
120 
121  argtypes = lappend_oid(argtypes, exprType((Node *) arg));
122  }
123  agg->aggargtypes = argtypes;
124 
125  if (AGGKIND_IS_ORDERED_SET(agg->aggkind))
126  {
127  /*
128  * For an ordered-set agg, the args list includes direct args and
129  * aggregated args; we must split them apart.
130  */
131  int numDirectArgs = list_length(args) - list_length(aggorder);
132  List *aargs;
133  ListCell *lc2;
134 
135  Assert(numDirectArgs >= 0);
136 
137  aargs = list_copy_tail(args, numDirectArgs);
138  agg->aggdirectargs = list_truncate(args, numDirectArgs);
139 
140  /*
141  * Build a tlist from the aggregated args, and make a sortlist entry
142  * for each one. Note that the expressions in the SortBy nodes are
143  * ignored (they are the raw versions of the transformed args); we are
144  * just looking at the sort information in the SortBy nodes.
145  */
146  forboth(lc, aargs, lc2, aggorder)
147  {
148  Expr *arg = (Expr *) lfirst(lc);
149  SortBy *sortby = (SortBy *) lfirst(lc2);
150  TargetEntry *tle;
151 
152  /* We don't bother to assign column names to the entries */
153  tle = makeTargetEntry(arg, attno++, NULL, false);
154  tlist = lappend(tlist, tle);
155 
156  torder = addTargetToSortList(pstate, tle,
157  torder, tlist, sortby);
158  }
159 
160  /* Never any DISTINCT in an ordered-set agg */
161  Assert(!agg_distinct);
162  }
163  else
164  {
165  /* Regular aggregate, so it has no direct args */
166  agg->aggdirectargs = NIL;
167 
168  /*
169  * Transform the plain list of Exprs into a targetlist.
170  */
171  foreach(lc, args)
172  {
173  Expr *arg = (Expr *) lfirst(lc);
174  TargetEntry *tle;
175 
176  /* We don't bother to assign column names to the entries */
177  tle = makeTargetEntry(arg, attno++, NULL, false);
178  tlist = lappend(tlist, tle);
179  }
180 
181  /*
182  * If we have an ORDER BY, transform it. This will add columns to the
183  * tlist if they appear in ORDER BY but weren't already in the arg
184  * list. They will be marked resjunk = true so we can tell them apart
185  * from regular aggregate arguments later.
186  *
187  * We need to mess with p_next_resno since it will be used to number
188  * any new targetlist entries.
189  */
190  save_next_resno = pstate->p_next_resno;
191  pstate->p_next_resno = attno;
192 
193  torder = transformSortClause(pstate,
194  aggorder,
195  &tlist,
197  true /* force SQL99 rules */ );
198 
199  /*
200  * If we have DISTINCT, transform that to produce a distinctList.
201  */
202  if (agg_distinct)
203  {
204  tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
205 
206  /*
207  * Remove this check if executor support for hashed distinct for
208  * aggregates is ever added.
209  */
210  foreach(lc, tdistinct)
211  {
212  SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
213 
214  if (!OidIsValid(sortcl->sortop))
215  {
216  Node *expr = get_sortgroupclause_expr(sortcl, tlist);
217 
218  ereport(ERROR,
219  (errcode(ERRCODE_UNDEFINED_FUNCTION),
220  errmsg("could not identify an ordering operator for type %s",
221  format_type_be(exprType(expr))),
222  errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
223  parser_errposition(pstate, exprLocation(expr))));
224  }
225  }
226  }
227 
228  pstate->p_next_resno = save_next_resno;
229  }
230 
231  /* Update the Aggref with the transformation results */
232  agg->args = tlist;
233  agg->aggorder = torder;
234  agg->aggdistinct = tdistinct;
235 
236  check_agglevels_and_constraints(pstate, (Node *) agg);
237 }
238 
239 /*
240  * transformGroupingFunc
241  * Transform a GROUPING expression
242  *
243  * GROUPING() behaves very like an aggregate. Processing of levels and nesting
244  * is done as for aggregates. We set p_hasAggs for these expressions too.
245  */
246 Node *
248 {
249  ListCell *lc;
250  List *args = p->args;
251  List *result_list = NIL;
253 
254  if (list_length(args) > 31)
255  ereport(ERROR,
256  (errcode(ERRCODE_TOO_MANY_ARGUMENTS),
257  errmsg("GROUPING must have fewer than 32 arguments"),
258  parser_errposition(pstate, p->location)));
259 
260  foreach(lc, args)
261  {
262  Node *current_result;
263 
264  current_result = transformExpr(pstate, (Node *) lfirst(lc), pstate->p_expr_kind);
265 
266  /* acceptability of expressions is checked later */
267 
268  result_list = lappend(result_list, current_result);
269  }
270 
271  result->args = result_list;
272  result->location = p->location;
273 
274  check_agglevels_and_constraints(pstate, (Node *) result);
275 
276  return (Node *) result;
277 }
278 
279 /*
280  * Aggregate functions and grouping operations (which are combined in the spec
281  * as <set function specification>) are very similar with regard to level and
282  * nesting restrictions (though we allow a lot more things than the spec does).
283  * Centralise those restrictions here.
284  */
285 static void
287 {
288  List *directargs = NIL;
289  List *args = NIL;
290  Expr *filter = NULL;
291  int min_varlevel;
292  int location = -1;
293  Index *p_levelsup;
294  const char *err;
295  bool errkind;
296  bool isAgg = IsA(expr, Aggref);
297 
298  if (isAgg)
299  {
300  Aggref *agg = (Aggref *) expr;
301 
302  directargs = agg->aggdirectargs;
303  args = agg->args;
304  filter = agg->aggfilter;
305  location = agg->location;
306  p_levelsup = &agg->agglevelsup;
307  }
308  else
309  {
310  GroupingFunc *grp = (GroupingFunc *) expr;
311 
312  args = grp->args;
313  location = grp->location;
314  p_levelsup = &grp->agglevelsup;
315  }
316 
317  /*
318  * Check the arguments to compute the aggregate's level and detect
319  * improper nesting.
320  */
321  min_varlevel = check_agg_arguments(pstate,
322  directargs,
323  args,
324  filter);
325 
326  *p_levelsup = min_varlevel;
327 
328  /* Mark the correct pstate level as having aggregates */
329  while (min_varlevel-- > 0)
330  pstate = pstate->parentParseState;
331  pstate->p_hasAggs = true;
332 
333  /*
334  * Check to see if the aggregate function is in an invalid place within
335  * its aggregation query.
336  *
337  * For brevity we support two schemes for reporting an error here: set
338  * "err" to a custom message, or set "errkind" true if the error context
339  * is sufficiently identified by what ParseExprKindName will return, *and*
340  * what it will return is just a SQL keyword. (Otherwise, use a custom
341  * message to avoid creating translation problems.)
342  */
343  err = NULL;
344  errkind = false;
345  switch (pstate->p_expr_kind)
346  {
347  case EXPR_KIND_NONE:
348  Assert(false); /* can't happen */
349  break;
350  case EXPR_KIND_OTHER:
351 
352  /*
353  * Accept aggregate/grouping here; caller must throw error if
354  * wanted
355  */
356  break;
357  case EXPR_KIND_JOIN_ON:
359  if (isAgg)
360  err = _("aggregate functions are not allowed in JOIN conditions");
361  else
362  err = _("grouping operations are not allowed in JOIN conditions");
363 
364  break;
366  /* Should only be possible in a LATERAL subquery */
367  Assert(pstate->p_lateral_active);
368 
369  /*
370  * Aggregate/grouping scope rules make it worth being explicit
371  * here
372  */
373  if (isAgg)
374  err = _("aggregate functions are not allowed in FROM clause of their own query level");
375  else
376  err = _("grouping operations are not allowed in FROM clause of their own query level");
377 
378  break;
380  if (isAgg)
381  err = _("aggregate functions are not allowed in functions in FROM");
382  else
383  err = _("grouping operations are not allowed in functions in FROM");
384 
385  break;
386  case EXPR_KIND_WHERE:
387  errkind = true;
388  break;
389  case EXPR_KIND_POLICY:
390  if (isAgg)
391  err = _("aggregate functions are not allowed in policy expressions");
392  else
393  err = _("grouping operations are not allowed in policy expressions");
394 
395  break;
396  case EXPR_KIND_HAVING:
397  /* okay */
398  break;
399  case EXPR_KIND_FILTER:
400  errkind = true;
401  break;
403  /* okay */
404  break;
406  /* okay */
407  break;
409  if (isAgg)
410  err = _("aggregate functions are not allowed in window RANGE");
411  else
412  err = _("grouping operations are not allowed in window RANGE");
413 
414  break;
416  if (isAgg)
417  err = _("aggregate functions are not allowed in window ROWS");
418  else
419  err = _("grouping operations are not allowed in window ROWS");
420 
421  break;
423  if (isAgg)
424  err = _("aggregate functions are not allowed in window GROUPS");
425  else
426  err = _("grouping operations are not allowed in window GROUPS");
427 
428  break;
430  /* okay */
431  break;
435  errkind = true;
436  break;
437  case EXPR_KIND_GROUP_BY:
438  errkind = true;
439  break;
440  case EXPR_KIND_ORDER_BY:
441  /* okay */
442  break;
444  /* okay */
445  break;
446  case EXPR_KIND_LIMIT:
447  case EXPR_KIND_OFFSET:
448  errkind = true;
449  break;
450  case EXPR_KIND_RETURNING:
451  errkind = true;
452  break;
453  case EXPR_KIND_VALUES:
455  errkind = true;
456  break;
459  if (isAgg)
460  err = _("aggregate functions are not allowed in check constraints");
461  else
462  err = _("grouping operations are not allowed in check constraints");
463 
464  break;
467 
468  if (isAgg)
469  err = _("aggregate functions are not allowed in DEFAULT expressions");
470  else
471  err = _("grouping operations are not allowed in DEFAULT expressions");
472 
473  break;
475  if (isAgg)
476  err = _("aggregate functions are not allowed in index expressions");
477  else
478  err = _("grouping operations are not allowed in index expressions");
479 
480  break;
482  if (isAgg)
483  err = _("aggregate functions are not allowed in index predicates");
484  else
485  err = _("grouping operations are not allowed in index predicates");
486 
487  break;
489  if (isAgg)
490  err = _("aggregate functions are not allowed in statistics expressions");
491  else
492  err = _("grouping operations are not allowed in statistics expressions");
493 
494  break;
496  if (isAgg)
497  err = _("aggregate functions are not allowed in transform expressions");
498  else
499  err = _("grouping operations are not allowed in transform expressions");
500 
501  break;
503  if (isAgg)
504  err = _("aggregate functions are not allowed in EXECUTE parameters");
505  else
506  err = _("grouping operations are not allowed in EXECUTE parameters");
507 
508  break;
510  if (isAgg)
511  err = _("aggregate functions are not allowed in trigger WHEN conditions");
512  else
513  err = _("grouping operations are not allowed in trigger WHEN conditions");
514 
515  break;
517  if (isAgg)
518  err = _("aggregate functions are not allowed in partition bound");
519  else
520  err = _("grouping operations are not allowed in partition bound");
521 
522  break;
524  if (isAgg)
525  err = _("aggregate functions are not allowed in partition key expressions");
526  else
527  err = _("grouping operations are not allowed in partition key expressions");
528 
529  break;
531 
532  if (isAgg)
533  err = _("aggregate functions are not allowed in column generation expressions");
534  else
535  err = _("grouping operations are not allowed in column generation expressions");
536 
537  break;
538 
540  if (isAgg)
541  err = _("aggregate functions are not allowed in CALL arguments");
542  else
543  err = _("grouping operations are not allowed in CALL arguments");
544 
545  break;
546 
548  if (isAgg)
549  err = _("aggregate functions are not allowed in COPY FROM WHERE conditions");
550  else
551  err = _("grouping operations are not allowed in COPY FROM WHERE conditions");
552 
553  break;
554 
556  errkind = true;
557  break;
558 
559  /*
560  * There is intentionally no default: case here, so that the
561  * compiler will warn if we add a new ParseExprKind without
562  * extending this switch. If we do see an unrecognized value at
563  * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
564  * which is sane anyway.
565  */
566  }
567 
568  if (err)
569  ereport(ERROR,
570  (errcode(ERRCODE_GROUPING_ERROR),
571  errmsg_internal("%s", err),
572  parser_errposition(pstate, location)));
573 
574  if (errkind)
575  {
576  if (isAgg)
577  /* translator: %s is name of a SQL construct, eg GROUP BY */
578  err = _("aggregate functions are not allowed in %s");
579  else
580  /* translator: %s is name of a SQL construct, eg GROUP BY */
581  err = _("grouping operations are not allowed in %s");
582 
583  ereport(ERROR,
584  (errcode(ERRCODE_GROUPING_ERROR),
585  errmsg_internal(err,
586  ParseExprKindName(pstate->p_expr_kind)),
587  parser_errposition(pstate, location)));
588  }
589 }
590 
591 /*
592  * check_agg_arguments
593  * Scan the arguments of an aggregate function to determine the
594  * aggregate's semantic level (zero is the current select's level,
595  * one is its parent, etc).
596  *
597  * The aggregate's level is the same as the level of the lowest-level variable
598  * or aggregate in its aggregated arguments (including any ORDER BY columns)
599  * or filter expression; or if it contains no variables at all, we presume it
600  * to be local.
601  *
602  * Vars/Aggs in direct arguments are *not* counted towards determining the
603  * agg's level, as those arguments aren't evaluated per-row but only
604  * per-group, and so in some sense aren't really agg arguments. However,
605  * this can mean that we decide an agg is upper-level even when its direct
606  * args contain lower-level Vars/Aggs, and that case has to be disallowed.
607  * (This is a little strange, but the SQL standard seems pretty definite that
608  * direct args are not to be considered when setting the agg's level.)
609  *
610  * We also take this opportunity to detect any aggregates or window functions
611  * nested within the arguments. We can throw error immediately if we find
612  * a window function. Aggregates are a bit trickier because it's only an
613  * error if the inner aggregate is of the same semantic level as the outer,
614  * which we can't know until we finish scanning the arguments.
615  */
616 static int
618  List *directargs,
619  List *args,
620  Expr *filter)
621 {
622  int agglevel;
624 
625  context.pstate = pstate;
626  context.min_varlevel = -1; /* signifies nothing found yet */
627  context.min_agglevel = -1;
628  context.sublevels_up = 0;
629 
630  (void) check_agg_arguments_walker((Node *) args, &context);
631  (void) check_agg_arguments_walker((Node *) filter, &context);
632 
633  /*
634  * If we found no vars nor aggs at all, it's a level-zero aggregate;
635  * otherwise, its level is the minimum of vars or aggs.
636  */
637  if (context.min_varlevel < 0)
638  {
639  if (context.min_agglevel < 0)
640  agglevel = 0;
641  else
642  agglevel = context.min_agglevel;
643  }
644  else if (context.min_agglevel < 0)
645  agglevel = context.min_varlevel;
646  else
647  agglevel = Min(context.min_varlevel, context.min_agglevel);
648 
649  /*
650  * If there's a nested aggregate of the same semantic level, complain.
651  */
652  if (agglevel == context.min_agglevel)
653  {
654  int aggloc;
655 
656  aggloc = locate_agg_of_level((Node *) args, agglevel);
657  if (aggloc < 0)
658  aggloc = locate_agg_of_level((Node *) filter, agglevel);
659  ereport(ERROR,
660  (errcode(ERRCODE_GROUPING_ERROR),
661  errmsg("aggregate function calls cannot be nested"),
662  parser_errposition(pstate, aggloc)));
663  }
664 
665  /*
666  * Now check for vars/aggs in the direct arguments, and throw error if
667  * needed. Note that we allow a Var of the agg's semantic level, but not
668  * an Agg of that level. In principle such Aggs could probably be
669  * supported, but it would create an ordering dependency among the
670  * aggregates at execution time. Since the case appears neither to be
671  * required by spec nor particularly useful, we just treat it as a
672  * nested-aggregate situation.
673  */
674  if (directargs)
675  {
676  context.min_varlevel = -1;
677  context.min_agglevel = -1;
678  (void) check_agg_arguments_walker((Node *) directargs, &context);
679  if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
680  ereport(ERROR,
681  (errcode(ERRCODE_GROUPING_ERROR),
682  errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
683  parser_errposition(pstate,
684  locate_var_of_level((Node *) directargs,
685  context.min_varlevel))));
686  if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
687  ereport(ERROR,
688  (errcode(ERRCODE_GROUPING_ERROR),
689  errmsg("aggregate function calls cannot be nested"),
690  parser_errposition(pstate,
691  locate_agg_of_level((Node *) directargs,
692  context.min_agglevel))));
693  }
694  return agglevel;
695 }
696 
697 static bool
700 {
701  if (node == NULL)
702  return false;
703  if (IsA(node, Var))
704  {
705  int varlevelsup = ((Var *) node)->varlevelsup;
706 
707  /* convert levelsup to frame of reference of original query */
708  varlevelsup -= context->sublevels_up;
709  /* ignore local vars of subqueries */
710  if (varlevelsup >= 0)
711  {
712  if (context->min_varlevel < 0 ||
713  context->min_varlevel > varlevelsup)
714  context->min_varlevel = varlevelsup;
715  }
716  return false;
717  }
718  if (IsA(node, Aggref))
719  {
720  int agglevelsup = ((Aggref *) node)->agglevelsup;
721 
722  /* convert levelsup to frame of reference of original query */
723  agglevelsup -= context->sublevels_up;
724  /* ignore local aggs of subqueries */
725  if (agglevelsup >= 0)
726  {
727  if (context->min_agglevel < 0 ||
728  context->min_agglevel > agglevelsup)
729  context->min_agglevel = agglevelsup;
730  }
731  /* no need to examine args of the inner aggregate */
732  return false;
733  }
734  if (IsA(node, GroupingFunc))
735  {
736  int agglevelsup = ((GroupingFunc *) node)->agglevelsup;
737 
738  /* convert levelsup to frame of reference of original query */
739  agglevelsup -= context->sublevels_up;
740  /* ignore local aggs of subqueries */
741  if (agglevelsup >= 0)
742  {
743  if (context->min_agglevel < 0 ||
744  context->min_agglevel > agglevelsup)
745  context->min_agglevel = agglevelsup;
746  }
747  /* Continue and descend into subtree */
748  }
749 
750  /*
751  * SRFs and window functions can be rejected immediately, unless we are
752  * within a sub-select within the aggregate's arguments; in that case
753  * they're OK.
754  */
755  if (context->sublevels_up == 0)
756  {
757  if ((IsA(node, FuncExpr) && ((FuncExpr *) node)->funcretset) ||
758  (IsA(node, OpExpr) && ((OpExpr *) node)->opretset))
759  ereport(ERROR,
760  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
761  errmsg("aggregate function calls cannot contain set-returning function calls"),
762  errhint("You might be able to move the set-returning function into a LATERAL FROM item."),
763  parser_errposition(context->pstate, exprLocation(node))));
764  if (IsA(node, WindowFunc))
765  ereport(ERROR,
766  (errcode(ERRCODE_GROUPING_ERROR),
767  errmsg("aggregate function calls cannot contain window function calls"),
768  parser_errposition(context->pstate,
769  ((WindowFunc *) node)->location)));
770  }
771  if (IsA(node, Query))
772  {
773  /* Recurse into subselects */
774  bool result;
775 
776  context->sublevels_up++;
777  result = query_tree_walker((Query *) node,
779  (void *) context,
780  0);
781  context->sublevels_up--;
782  return result;
783  }
784 
785  return expression_tree_walker(node,
787  (void *) context);
788 }
789 
790 /*
791  * transformWindowFuncCall -
792  * Finish initial transformation of a window function call
793  *
794  * parse_func.c has recognized the function as a window function, and has set
795  * up all the fields of the WindowFunc except winref. Here we must (1) add
796  * the WindowDef to the pstate (if not a duplicate of one already present) and
797  * set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
798  * Unlike aggregates, only the most closely nested pstate level need be
799  * considered --- there are no "outer window functions" per SQL spec.
800  */
801 void
803  WindowDef *windef)
804 {
805  const char *err;
806  bool errkind;
807 
808  /*
809  * A window function call can't contain another one (but aggs are OK). XXX
810  * is this required by spec, or just an unimplemented feature?
811  *
812  * Note: we don't need to check the filter expression here, because the
813  * context checks done below and in transformAggregateCall would have
814  * already rejected any window funcs or aggs within the filter.
815  */
816  if (pstate->p_hasWindowFuncs &&
817  contain_windowfuncs((Node *) wfunc->args))
818  ereport(ERROR,
819  (errcode(ERRCODE_WINDOWING_ERROR),
820  errmsg("window function calls cannot be nested"),
821  parser_errposition(pstate,
822  locate_windowfunc((Node *) wfunc->args))));
823 
824  /*
825  * Check to see if the window function is in an invalid place within the
826  * query.
827  *
828  * For brevity we support two schemes for reporting an error here: set
829  * "err" to a custom message, or set "errkind" true if the error context
830  * is sufficiently identified by what ParseExprKindName will return, *and*
831  * what it will return is just a SQL keyword. (Otherwise, use a custom
832  * message to avoid creating translation problems.)
833  */
834  err = NULL;
835  errkind = false;
836  switch (pstate->p_expr_kind)
837  {
838  case EXPR_KIND_NONE:
839  Assert(false); /* can't happen */
840  break;
841  case EXPR_KIND_OTHER:
842  /* Accept window func here; caller must throw error if wanted */
843  break;
844  case EXPR_KIND_JOIN_ON:
846  err = _("window functions are not allowed in JOIN conditions");
847  break;
849  /* can't get here, but just in case, throw an error */
850  errkind = true;
851  break;
853  err = _("window functions are not allowed in functions in FROM");
854  break;
855  case EXPR_KIND_WHERE:
856  errkind = true;
857  break;
858  case EXPR_KIND_POLICY:
859  err = _("window functions are not allowed in policy expressions");
860  break;
861  case EXPR_KIND_HAVING:
862  errkind = true;
863  break;
864  case EXPR_KIND_FILTER:
865  errkind = true;
866  break;
872  err = _("window functions are not allowed in window definitions");
873  break;
875  /* okay */
876  break;
880  errkind = true;
881  break;
882  case EXPR_KIND_GROUP_BY:
883  errkind = true;
884  break;
885  case EXPR_KIND_ORDER_BY:
886  /* okay */
887  break;
889  /* okay */
890  break;
891  case EXPR_KIND_LIMIT:
892  case EXPR_KIND_OFFSET:
893  errkind = true;
894  break;
895  case EXPR_KIND_RETURNING:
896  errkind = true;
897  break;
898  case EXPR_KIND_VALUES:
900  errkind = true;
901  break;
904  err = _("window functions are not allowed in check constraints");
905  break;
908  err = _("window functions are not allowed in DEFAULT expressions");
909  break;
911  err = _("window functions are not allowed in index expressions");
912  break;
914  err = _("window functions are not allowed in statistics expressions");
915  break;
917  err = _("window functions are not allowed in index predicates");
918  break;
920  err = _("window functions are not allowed in transform expressions");
921  break;
923  err = _("window functions are not allowed in EXECUTE parameters");
924  break;
926  err = _("window functions are not allowed in trigger WHEN conditions");
927  break;
929  err = _("window functions are not allowed in partition bound");
930  break;
932  err = _("window functions are not allowed in partition key expressions");
933  break;
935  err = _("window functions are not allowed in CALL arguments");
936  break;
938  err = _("window functions are not allowed in COPY FROM WHERE conditions");
939  break;
941  err = _("window functions are not allowed in column generation expressions");
942  break;
944  errkind = true;
945  break;
946 
947  /*
948  * There is intentionally no default: case here, so that the
949  * compiler will warn if we add a new ParseExprKind without
950  * extending this switch. If we do see an unrecognized value at
951  * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
952  * which is sane anyway.
953  */
954  }
955  if (err)
956  ereport(ERROR,
957  (errcode(ERRCODE_WINDOWING_ERROR),
958  errmsg_internal("%s", err),
959  parser_errposition(pstate, wfunc->location)));
960  if (errkind)
961  ereport(ERROR,
962  (errcode(ERRCODE_WINDOWING_ERROR),
963  /* translator: %s is name of a SQL construct, eg GROUP BY */
964  errmsg("window functions are not allowed in %s",
965  ParseExprKindName(pstate->p_expr_kind)),
966  parser_errposition(pstate, wfunc->location)));
967 
968  /*
969  * If the OVER clause just specifies a window name, find that WINDOW
970  * clause (which had better be present). Otherwise, try to match all the
971  * properties of the OVER clause, and make a new entry in the p_windowdefs
972  * list if no luck.
973  */
974  if (windef->name)
975  {
976  Index winref = 0;
977  ListCell *lc;
978 
979  Assert(windef->refname == NULL &&
980  windef->partitionClause == NIL &&
981  windef->orderClause == NIL &&
983 
984  foreach(lc, pstate->p_windowdefs)
985  {
986  WindowDef *refwin = (WindowDef *) lfirst(lc);
987 
988  winref++;
989  if (refwin->name && strcmp(refwin->name, windef->name) == 0)
990  {
991  wfunc->winref = winref;
992  break;
993  }
994  }
995  if (lc == NULL) /* didn't find it? */
996  ereport(ERROR,
997  (errcode(ERRCODE_UNDEFINED_OBJECT),
998  errmsg("window \"%s\" does not exist", windef->name),
999  parser_errposition(pstate, windef->location)));
1000  }
1001  else
1002  {
1003  Index winref = 0;
1004  ListCell *lc;
1005 
1006  foreach(lc, pstate->p_windowdefs)
1007  {
1008  WindowDef *refwin = (WindowDef *) lfirst(lc);
1009 
1010  winref++;
1011  if (refwin->refname && windef->refname &&
1012  strcmp(refwin->refname, windef->refname) == 0)
1013  /* matched on refname */ ;
1014  else if (!refwin->refname && !windef->refname)
1015  /* matched, no refname */ ;
1016  else
1017  continue;
1018  if (equal(refwin->partitionClause, windef->partitionClause) &&
1019  equal(refwin->orderClause, windef->orderClause) &&
1020  refwin->frameOptions == windef->frameOptions &&
1021  equal(refwin->startOffset, windef->startOffset) &&
1022  equal(refwin->endOffset, windef->endOffset))
1023  {
1024  /* found a duplicate window specification */
1025  wfunc->winref = winref;
1026  break;
1027  }
1028  }
1029  if (lc == NULL) /* didn't find it? */
1030  {
1031  pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
1032  wfunc->winref = list_length(pstate->p_windowdefs);
1033  }
1034  }
1035 
1036  pstate->p_hasWindowFuncs = true;
1037 }
1038 
1039 /*
1040  * parseCheckAggregates
1041  * Check for aggregates where they shouldn't be and improper grouping.
1042  * This function should be called after the target list and qualifications
1043  * are finalized.
1044  *
1045  * Misplaced aggregates are now mostly detected in transformAggregateCall,
1046  * but it seems more robust to check for aggregates in recursive queries
1047  * only after everything is finalized. In any case it's hard to detect
1048  * improper grouping on-the-fly, so we have to make another pass over the
1049  * query for that.
1050  */
1051 void
1053 {
1054  List *gset_common = NIL;
1055  List *groupClauses = NIL;
1056  List *groupClauseCommonVars = NIL;
1057  bool have_non_var_grouping;
1058  List *func_grouped_rels = NIL;
1059  ListCell *l;
1060  bool hasJoinRTEs;
1061  bool hasSelfRefRTEs;
1062  Node *clause;
1063 
1064  /* This should only be called if we found aggregates or grouping */
1065  Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual || qry->groupingSets);
1066 
1067  /*
1068  * If we have grouping sets, expand them and find the intersection of all
1069  * sets.
1070  */
1071  if (qry->groupingSets)
1072  {
1073  /*
1074  * The limit of 4096 is arbitrary and exists simply to avoid resource
1075  * issues from pathological constructs.
1076  */
1077  List *gsets = expand_grouping_sets(qry->groupingSets, qry->groupDistinct, 4096);
1078 
1079  if (!gsets)
1080  ereport(ERROR,
1081  (errcode(ERRCODE_STATEMENT_TOO_COMPLEX),
1082  errmsg("too many grouping sets present (maximum 4096)"),
1083  parser_errposition(pstate,
1084  qry->groupClause
1085  ? exprLocation((Node *) qry->groupClause)
1086  : exprLocation((Node *) qry->groupingSets))));
1087 
1088  /*
1089  * The intersection will often be empty, so help things along by
1090  * seeding the intersect with the smallest set.
1091  */
1092  gset_common = linitial(gsets);
1093 
1094  if (gset_common)
1095  {
1096  for_each_from(l, gsets, 1)
1097  {
1098  gset_common = list_intersection_int(gset_common, lfirst(l));
1099  if (!gset_common)
1100  break;
1101  }
1102  }
1103 
1104  /*
1105  * If there was only one grouping set in the expansion, AND if the
1106  * groupClause is non-empty (meaning that the grouping set is not
1107  * empty either), then we can ditch the grouping set and pretend we
1108  * just had a normal GROUP BY.
1109  */
1110  if (list_length(gsets) == 1 && qry->groupClause)
1111  qry->groupingSets = NIL;
1112  }
1113 
1114  /*
1115  * Scan the range table to see if there are JOIN or self-reference CTE
1116  * entries. We'll need this info below.
1117  */
1118  hasJoinRTEs = hasSelfRefRTEs = false;
1119  foreach(l, pstate->p_rtable)
1120  {
1121  RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
1122 
1123  if (rte->rtekind == RTE_JOIN)
1124  hasJoinRTEs = true;
1125  else if (rte->rtekind == RTE_CTE && rte->self_reference)
1126  hasSelfRefRTEs = true;
1127  }
1128 
1129  /*
1130  * Build a list of the acceptable GROUP BY expressions for use by
1131  * check_ungrouped_columns().
1132  *
1133  * We get the TLE, not just the expr, because GROUPING wants to know the
1134  * sortgroupref.
1135  */
1136  foreach(l, qry->groupClause)
1137  {
1138  SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
1139  TargetEntry *expr;
1140 
1141  expr = get_sortgroupclause_tle(grpcl, qry->targetList);
1142  if (expr == NULL)
1143  continue; /* probably cannot happen */
1144 
1145  groupClauses = lappend(groupClauses, expr);
1146  }
1147 
1148  /*
1149  * If there are join alias vars involved, we have to flatten them to the
1150  * underlying vars, so that aliased and unaliased vars will be correctly
1151  * taken as equal. We can skip the expense of doing this if no rangetable
1152  * entries are RTE_JOIN kind.
1153  */
1154  if (hasJoinRTEs)
1155  groupClauses = (List *) flatten_join_alias_vars(qry,
1156  (Node *) groupClauses);
1157 
1158  /*
1159  * Detect whether any of the grouping expressions aren't simple Vars; if
1160  * they're all Vars then we don't have to work so hard in the recursive
1161  * scans. (Note we have to flatten aliases before this.)
1162  *
1163  * Track Vars that are included in all grouping sets separately in
1164  * groupClauseCommonVars, since these are the only ones we can use to
1165  * check for functional dependencies.
1166  */
1167  have_non_var_grouping = false;
1168  foreach(l, groupClauses)
1169  {
1170  TargetEntry *tle = lfirst(l);
1171 
1172  if (!IsA(tle->expr, Var))
1173  {
1174  have_non_var_grouping = true;
1175  }
1176  else if (!qry->groupingSets ||
1177  list_member_int(gset_common, tle->ressortgroupref))
1178  {
1179  groupClauseCommonVars = lappend(groupClauseCommonVars, tle->expr);
1180  }
1181  }
1182 
1183  /*
1184  * Check the targetlist and HAVING clause for ungrouped variables.
1185  *
1186  * Note: because we check resjunk tlist elements as well as regular ones,
1187  * this will also find ungrouped variables that came from ORDER BY and
1188  * WINDOW clauses. For that matter, it's also going to examine the
1189  * grouping expressions themselves --- but they'll all pass the test ...
1190  *
1191  * We also finalize GROUPING expressions, but for that we need to traverse
1192  * the original (unflattened) clause in order to modify nodes.
1193  */
1194  clause = (Node *) qry->targetList;
1195  finalize_grouping_exprs(clause, pstate, qry,
1196  groupClauses, hasJoinRTEs,
1197  have_non_var_grouping);
1198  if (hasJoinRTEs)
1199  clause = flatten_join_alias_vars(qry, clause);
1200  check_ungrouped_columns(clause, pstate, qry,
1201  groupClauses, groupClauseCommonVars,
1202  have_non_var_grouping,
1203  &func_grouped_rels);
1204 
1205  clause = (Node *) qry->havingQual;
1206  finalize_grouping_exprs(clause, pstate, qry,
1207  groupClauses, hasJoinRTEs,
1208  have_non_var_grouping);
1209  if (hasJoinRTEs)
1210  clause = flatten_join_alias_vars(qry, clause);
1211  check_ungrouped_columns(clause, pstate, qry,
1212  groupClauses, groupClauseCommonVars,
1213  have_non_var_grouping,
1214  &func_grouped_rels);
1215 
1216  /*
1217  * Per spec, aggregates can't appear in a recursive term.
1218  */
1219  if (pstate->p_hasAggs && hasSelfRefRTEs)
1220  ereport(ERROR,
1221  (errcode(ERRCODE_INVALID_RECURSION),
1222  errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
1223  parser_errposition(pstate,
1224  locate_agg_of_level((Node *) qry, 0))));
1225 }
1226 
1227 /*
1228  * check_ungrouped_columns -
1229  * Scan the given expression tree for ungrouped variables (variables
1230  * that are not listed in the groupClauses list and are not within
1231  * the arguments of aggregate functions). Emit a suitable error message
1232  * if any are found.
1233  *
1234  * NOTE: we assume that the given clause has been transformed suitably for
1235  * parser output. This means we can use expression_tree_walker.
1236  *
1237  * NOTE: we recognize grouping expressions in the main query, but only
1238  * grouping Vars in subqueries. For example, this will be rejected,
1239  * although it could be allowed:
1240  * SELECT
1241  * (SELECT x FROM bar where y = (foo.a + foo.b))
1242  * FROM foo
1243  * GROUP BY a + b;
1244  * The difficulty is the need to account for different sublevels_up.
1245  * This appears to require a whole custom version of equal(), which is
1246  * way more pain than the feature seems worth.
1247  */
1248 static void
1250  List *groupClauses, List *groupClauseCommonVars,
1251  bool have_non_var_grouping,
1252  List **func_grouped_rels)
1253 {
1255 
1256  context.pstate = pstate;
1257  context.qry = qry;
1258  context.hasJoinRTEs = false; /* assume caller flattened join Vars */
1259  context.groupClauses = groupClauses;
1260  context.groupClauseCommonVars = groupClauseCommonVars;
1261  context.have_non_var_grouping = have_non_var_grouping;
1262  context.func_grouped_rels = func_grouped_rels;
1263  context.sublevels_up = 0;
1264  context.in_agg_direct_args = false;
1265  check_ungrouped_columns_walker(node, &context);
1266 }
1267 
1268 static bool
1271 {
1272  ListCell *gl;
1273 
1274  if (node == NULL)
1275  return false;
1276  if (IsA(node, Const) ||
1277  IsA(node, Param))
1278  return false; /* constants are always acceptable */
1279 
1280  if (IsA(node, Aggref))
1281  {
1282  Aggref *agg = (Aggref *) node;
1283 
1284  if ((int) agg->agglevelsup == context->sublevels_up)
1285  {
1286  /*
1287  * If we find an aggregate call of the original level, do not
1288  * recurse into its normal arguments, ORDER BY arguments, or
1289  * filter; ungrouped vars there are not an error. But we should
1290  * check direct arguments as though they weren't in an aggregate.
1291  * We set a special flag in the context to help produce a useful
1292  * error message for ungrouped vars in direct arguments.
1293  */
1294  bool result;
1295 
1296  Assert(!context->in_agg_direct_args);
1297  context->in_agg_direct_args = true;
1299  context);
1300  context->in_agg_direct_args = false;
1301  return result;
1302  }
1303 
1304  /*
1305  * We can skip recursing into aggregates of higher levels altogether,
1306  * since they could not possibly contain Vars of concern to us (see
1307  * transformAggregateCall). We do need to look at aggregates of lower
1308  * levels, however.
1309  */
1310  if ((int) agg->agglevelsup > context->sublevels_up)
1311  return false;
1312  }
1313 
1314  if (IsA(node, GroupingFunc))
1315  {
1316  GroupingFunc *grp = (GroupingFunc *) node;
1317 
1318  /* handled GroupingFunc separately, no need to recheck at this level */
1319 
1320  if ((int) grp->agglevelsup >= context->sublevels_up)
1321  return false;
1322  }
1323 
1324  /*
1325  * If we have any GROUP BY items that are not simple Vars, check to see if
1326  * subexpression as a whole matches any GROUP BY item. We need to do this
1327  * at every recursion level so that we recognize GROUPed-BY expressions
1328  * before reaching variables within them. But this only works at the outer
1329  * query level, as noted above.
1330  */
1331  if (context->have_non_var_grouping && context->sublevels_up == 0)
1332  {
1333  foreach(gl, context->groupClauses)
1334  {
1335  TargetEntry *tle = lfirst(gl);
1336 
1337  if (equal(node, tle->expr))
1338  return false; /* acceptable, do not descend more */
1339  }
1340  }
1341 
1342  /*
1343  * If we have an ungrouped Var of the original query level, we have a
1344  * failure. Vars below the original query level are not a problem, and
1345  * neither are Vars from above it. (If such Vars are ungrouped as far as
1346  * their own query level is concerned, that's someone else's problem...)
1347  */
1348  if (IsA(node, Var))
1349  {
1350  Var *var = (Var *) node;
1351  RangeTblEntry *rte;
1352  char *attname;
1353 
1354  if (var->varlevelsup != context->sublevels_up)
1355  return false; /* it's not local to my query, ignore */
1356 
1357  /*
1358  * Check for a match, if we didn't do it above.
1359  */
1360  if (!context->have_non_var_grouping || context->sublevels_up != 0)
1361  {
1362  foreach(gl, context->groupClauses)
1363  {
1364  Var *gvar = (Var *) ((TargetEntry *) lfirst(gl))->expr;
1365 
1366  if (IsA(gvar, Var) &&
1367  gvar->varno == var->varno &&
1368  gvar->varattno == var->varattno &&
1369  gvar->varlevelsup == 0)
1370  return false; /* acceptable, we're okay */
1371  }
1372  }
1373 
1374  /*
1375  * Check whether the Var is known functionally dependent on the GROUP
1376  * BY columns. If so, we can allow the Var to be used, because the
1377  * grouping is really a no-op for this table. However, this deduction
1378  * depends on one or more constraints of the table, so we have to add
1379  * those constraints to the query's constraintDeps list, because it's
1380  * not semantically valid anymore if the constraint(s) get dropped.
1381  * (Therefore, this check must be the last-ditch effort before raising
1382  * error: we don't want to add dependencies unnecessarily.)
1383  *
1384  * Because this is a pretty expensive check, and will have the same
1385  * outcome for all columns of a table, we remember which RTEs we've
1386  * already proven functional dependency for in the func_grouped_rels
1387  * list. This test also prevents us from adding duplicate entries to
1388  * the constraintDeps list.
1389  */
1390  if (list_member_int(*context->func_grouped_rels, var->varno))
1391  return false; /* previously proven acceptable */
1392 
1393  Assert(var->varno > 0 &&
1394  (int) var->varno <= list_length(context->pstate->p_rtable));
1395  rte = rt_fetch(var->varno, context->pstate->p_rtable);
1396  if (rte->rtekind == RTE_RELATION)
1397  {
1399  var->varno,
1400  0,
1401  context->groupClauseCommonVars,
1402  &context->qry->constraintDeps))
1403  {
1404  *context->func_grouped_rels =
1405  lappend_int(*context->func_grouped_rels, var->varno);
1406  return false; /* acceptable */
1407  }
1408  }
1409 
1410  /* Found an ungrouped local variable; generate error message */
1411  attname = get_rte_attribute_name(rte, var->varattno);
1412  if (context->sublevels_up == 0)
1413  ereport(ERROR,
1414  (errcode(ERRCODE_GROUPING_ERROR),
1415  errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
1416  rte->eref->aliasname, attname),
1417  context->in_agg_direct_args ?
1418  errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
1419  parser_errposition(context->pstate, var->location)));
1420  else
1421  ereport(ERROR,
1422  (errcode(ERRCODE_GROUPING_ERROR),
1423  errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
1424  rte->eref->aliasname, attname),
1425  parser_errposition(context->pstate, var->location)));
1426  }
1427 
1428  if (IsA(node, Query))
1429  {
1430  /* Recurse into subselects */
1431  bool result;
1432 
1433  context->sublevels_up++;
1434  result = query_tree_walker((Query *) node,
1436  (void *) context,
1437  0);
1438  context->sublevels_up--;
1439  return result;
1440  }
1442  (void *) context);
1443 }
1444 
1445 /*
1446  * finalize_grouping_exprs -
1447  * Scan the given expression tree for GROUPING() and related calls,
1448  * and validate and process their arguments.
1449  *
1450  * This is split out from check_ungrouped_columns above because it needs
1451  * to modify the nodes (which it does in-place, not via a mutator) while
1452  * check_ungrouped_columns may see only a copy of the original thanks to
1453  * flattening of join alias vars. So here, we flatten each individual
1454  * GROUPING argument as we see it before comparing it.
1455  */
1456 static void
1458  List *groupClauses, bool hasJoinRTEs,
1459  bool have_non_var_grouping)
1460 {
1462 
1463  context.pstate = pstate;
1464  context.qry = qry;
1465  context.hasJoinRTEs = hasJoinRTEs;
1466  context.groupClauses = groupClauses;
1467  context.groupClauseCommonVars = NIL;
1468  context.have_non_var_grouping = have_non_var_grouping;
1469  context.func_grouped_rels = NULL;
1470  context.sublevels_up = 0;
1471  context.in_agg_direct_args = false;
1472  finalize_grouping_exprs_walker(node, &context);
1473 }
1474 
1475 static bool
1478 {
1479  ListCell *gl;
1480 
1481  if (node == NULL)
1482  return false;
1483  if (IsA(node, Const) ||
1484  IsA(node, Param))
1485  return false; /* constants are always acceptable */
1486 
1487  if (IsA(node, Aggref))
1488  {
1489  Aggref *agg = (Aggref *) node;
1490 
1491  if ((int) agg->agglevelsup == context->sublevels_up)
1492  {
1493  /*
1494  * If we find an aggregate call of the original level, do not
1495  * recurse into its normal arguments, ORDER BY arguments, or
1496  * filter; GROUPING exprs of this level are not allowed there. But
1497  * check direct arguments as though they weren't in an aggregate.
1498  */
1499  bool result;
1500 
1501  Assert(!context->in_agg_direct_args);
1502  context->in_agg_direct_args = true;
1504  context);
1505  context->in_agg_direct_args = false;
1506  return result;
1507  }
1508 
1509  /*
1510  * We can skip recursing into aggregates of higher levels altogether,
1511  * since they could not possibly contain exprs of concern to us (see
1512  * transformAggregateCall). We do need to look at aggregates of lower
1513  * levels, however.
1514  */
1515  if ((int) agg->agglevelsup > context->sublevels_up)
1516  return false;
1517  }
1518 
1519  if (IsA(node, GroupingFunc))
1520  {
1521  GroupingFunc *grp = (GroupingFunc *) node;
1522 
1523  /*
1524  * We only need to check GroupingFunc nodes at the exact level to
1525  * which they belong, since they cannot mix levels in arguments.
1526  */
1527 
1528  if ((int) grp->agglevelsup == context->sublevels_up)
1529  {
1530  ListCell *lc;
1531  List *ref_list = NIL;
1532 
1533  foreach(lc, grp->args)
1534  {
1535  Node *expr = lfirst(lc);
1536  Index ref = 0;
1537 
1538  if (context->hasJoinRTEs)
1539  expr = flatten_join_alias_vars(context->qry, expr);
1540 
1541  /*
1542  * Each expression must match a grouping entry at the current
1543  * query level. Unlike the general expression case, we don't
1544  * allow functional dependencies or outer references.
1545  */
1546 
1547  if (IsA(expr, Var))
1548  {
1549  Var *var = (Var *) expr;
1550 
1551  if (var->varlevelsup == context->sublevels_up)
1552  {
1553  foreach(gl, context->groupClauses)
1554  {
1555  TargetEntry *tle = lfirst(gl);
1556  Var *gvar = (Var *) tle->expr;
1557 
1558  if (IsA(gvar, Var) &&
1559  gvar->varno == var->varno &&
1560  gvar->varattno == var->varattno &&
1561  gvar->varlevelsup == 0)
1562  {
1563  ref = tle->ressortgroupref;
1564  break;
1565  }
1566  }
1567  }
1568  }
1569  else if (context->have_non_var_grouping &&
1570  context->sublevels_up == 0)
1571  {
1572  foreach(gl, context->groupClauses)
1573  {
1574  TargetEntry *tle = lfirst(gl);
1575 
1576  if (equal(expr, tle->expr))
1577  {
1578  ref = tle->ressortgroupref;
1579  break;
1580  }
1581  }
1582  }
1583 
1584  if (ref == 0)
1585  ereport(ERROR,
1586  (errcode(ERRCODE_GROUPING_ERROR),
1587  errmsg("arguments to GROUPING must be grouping expressions of the associated query level"),
1588  parser_errposition(context->pstate,
1589  exprLocation(expr))));
1590 
1591  ref_list = lappend_int(ref_list, ref);
1592  }
1593 
1594  grp->refs = ref_list;
1595  }
1596 
1597  if ((int) grp->agglevelsup > context->sublevels_up)
1598  return false;
1599  }
1600 
1601  if (IsA(node, Query))
1602  {
1603  /* Recurse into subselects */
1604  bool result;
1605 
1606  context->sublevels_up++;
1607  result = query_tree_walker((Query *) node,
1609  (void *) context,
1610  0);
1611  context->sublevels_up--;
1612  return result;
1613  }
1615  (void *) context);
1616 }
1617 
1618 
1619 /*
1620  * Given a GroupingSet node, expand it and return a list of lists.
1621  *
1622  * For EMPTY nodes, return a list of one empty list.
1623  *
1624  * For SIMPLE nodes, return a list of one list, which is the node content.
1625  *
1626  * For CUBE and ROLLUP nodes, return a list of the expansions.
1627  *
1628  * For SET nodes, recursively expand contained CUBE and ROLLUP.
1629  */
1630 static List *
1632 {
1633  List *result = NIL;
1634 
1635  switch (gs->kind)
1636  {
1637  case GROUPING_SET_EMPTY:
1638  result = list_make1(NIL);
1639  break;
1640 
1641  case GROUPING_SET_SIMPLE:
1642  result = list_make1(gs->content);
1643  break;
1644 
1645  case GROUPING_SET_ROLLUP:
1646  {
1647  List *rollup_val = gs->content;
1648  ListCell *lc;
1649  int curgroup_size = list_length(gs->content);
1650 
1651  while (curgroup_size > 0)
1652  {
1653  List *current_result = NIL;
1654  int i = curgroup_size;
1655 
1656  foreach(lc, rollup_val)
1657  {
1658  GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1659 
1660  Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1661 
1662  current_result = list_concat(current_result,
1663  gs_current->content);
1664 
1665  /* If we are done with making the current group, break */
1666  if (--i == 0)
1667  break;
1668  }
1669 
1670  result = lappend(result, current_result);
1671  --curgroup_size;
1672  }
1673 
1674  result = lappend(result, NIL);
1675  }
1676  break;
1677 
1678  case GROUPING_SET_CUBE:
1679  {
1680  List *cube_list = gs->content;
1681  int number_bits = list_length(cube_list);
1682  uint32 num_sets;
1683  uint32 i;
1684 
1685  /* parser should cap this much lower */
1686  Assert(number_bits < 31);
1687 
1688  num_sets = (1U << number_bits);
1689 
1690  for (i = 0; i < num_sets; i++)
1691  {
1692  List *current_result = NIL;
1693  ListCell *lc;
1694  uint32 mask = 1U;
1695 
1696  foreach(lc, cube_list)
1697  {
1698  GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1699 
1700  Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1701 
1702  if (mask & i)
1703  current_result = list_concat(current_result,
1704  gs_current->content);
1705 
1706  mask <<= 1;
1707  }
1708 
1709  result = lappend(result, current_result);
1710  }
1711  }
1712  break;
1713 
1714  case GROUPING_SET_SETS:
1715  {
1716  ListCell *lc;
1717 
1718  foreach(lc, gs->content)
1719  {
1720  List *current_result = expand_groupingset_node(lfirst(lc));
1721 
1722  result = list_concat(result, current_result);
1723  }
1724  }
1725  break;
1726  }
1727 
1728  return result;
1729 }
1730 
1731 /* list_sort comparator to sort sub-lists by length */
1732 static int
1734 {
1735  int la = list_length((const List *) lfirst(a));
1736  int lb = list_length((const List *) lfirst(b));
1737 
1738  return (la > lb) ? 1 : (la == lb) ? 0 : -1;
1739 }
1740 
1741 /* list_sort comparator to sort sub-lists by length and contents */
1742 static int
1744 {
1745  int res = cmp_list_len_asc(a, b);
1746 
1747  if (res == 0)
1748  {
1749  List *la = (List *) lfirst(a);
1750  List *lb = (List *) lfirst(b);
1751  ListCell *lca;
1752  ListCell *lcb;
1753 
1754  forboth(lca, la, lcb, lb)
1755  {
1756  int va = lfirst_int(lca);
1757  int vb = lfirst_int(lcb);
1758 
1759  if (va > vb)
1760  return 1;
1761  if (va < vb)
1762  return -1;
1763  }
1764  }
1765 
1766  return res;
1767 }
1768 
1769 /*
1770  * Expand a groupingSets clause to a flat list of grouping sets.
1771  * The returned list is sorted by length, shortest sets first.
1772  *
1773  * This is mainly for the planner, but we use it here too to do
1774  * some consistency checks.
1775  */
1776 List *
1777 expand_grouping_sets(List *groupingSets, bool groupDistinct, int limit)
1778 {
1779  List *expanded_groups = NIL;
1780  List *result = NIL;
1781  double numsets = 1;
1782  ListCell *lc;
1783 
1784  if (groupingSets == NIL)
1785  return NIL;
1786 
1787  foreach(lc, groupingSets)
1788  {
1789  List *current_result = NIL;
1790  GroupingSet *gs = lfirst(lc);
1791 
1792  current_result = expand_groupingset_node(gs);
1793 
1794  Assert(current_result != NIL);
1795 
1796  numsets *= list_length(current_result);
1797 
1798  if (limit >= 0 && numsets > limit)
1799  return NIL;
1800 
1801  expanded_groups = lappend(expanded_groups, current_result);
1802  }
1803 
1804  /*
1805  * Do cartesian product between sublists of expanded_groups. While at it,
1806  * remove any duplicate elements from individual grouping sets (we must
1807  * NOT change the number of sets though)
1808  */
1809 
1810  foreach(lc, (List *) linitial(expanded_groups))
1811  {
1812  result = lappend(result, list_union_int(NIL, (List *) lfirst(lc)));
1813  }
1814 
1815  for_each_from(lc, expanded_groups, 1)
1816  {
1817  List *p = lfirst(lc);
1818  List *new_result = NIL;
1819  ListCell *lc2;
1820 
1821  foreach(lc2, result)
1822  {
1823  List *q = lfirst(lc2);
1824  ListCell *lc3;
1825 
1826  foreach(lc3, p)
1827  {
1828  new_result = lappend(new_result,
1829  list_union_int(q, (List *) lfirst(lc3)));
1830  }
1831  }
1832  result = new_result;
1833  }
1834 
1835  /* Now sort the lists by length and deduplicate if necessary */
1836  if (!groupDistinct || list_length(result) < 2)
1837  list_sort(result, cmp_list_len_asc);
1838  else
1839  {
1840  ListCell *cell;
1841  List *prev;
1842 
1843  /* Sort each groupset individually */
1844  foreach(cell, result)
1845  list_sort(lfirst(cell), list_int_cmp);
1846 
1847  /* Now sort the list of groupsets by length and contents */
1849 
1850  /* Finally, remove duplicates */
1851  prev = linitial(result);
1852  for_each_from(cell, result, 1)
1853  {
1854  if (equal(lfirst(cell), prev))
1855  result = foreach_delete_current(result, cell);
1856  else
1857  prev = lfirst(cell);
1858  }
1859  }
1860 
1861  return result;
1862 }
1863 
1864 /*
1865  * get_aggregate_argtypes
1866  * Identify the specific datatypes passed to an aggregate call.
1867  *
1868  * Given an Aggref, extract the actual datatypes of the input arguments.
1869  * The input datatypes are reported in a way that matches up with the
1870  * aggregate's declaration, ie, any ORDER BY columns attached to a plain
1871  * aggregate are ignored, but we report both direct and aggregated args of
1872  * an ordered-set aggregate.
1873  *
1874  * Datatypes are returned into inputTypes[], which must reference an array
1875  * of length FUNC_MAX_ARGS.
1876  *
1877  * The function result is the number of actual arguments.
1878  */
1879 int
1880 get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
1881 {
1882  int numArguments = 0;
1883  ListCell *lc;
1884 
1886 
1887  foreach(lc, aggref->aggargtypes)
1888  {
1889  inputTypes[numArguments++] = lfirst_oid(lc);
1890  }
1891 
1892  return numArguments;
1893 }
1894 
1895 /*
1896  * resolve_aggregate_transtype
1897  * Identify the transition state value's datatype for an aggregate call.
1898  *
1899  * This function resolves a polymorphic aggregate's state datatype.
1900  * It must be passed the aggtranstype from the aggregate's catalog entry,
1901  * as well as the actual argument types extracted by get_aggregate_argtypes.
1902  * (We could fetch pg_aggregate.aggtranstype internally, but all existing
1903  * callers already have the value at hand, so we make them pass it.)
1904  */
1905 Oid
1907  Oid aggtranstype,
1908  Oid *inputTypes,
1909  int numArguments)
1910 {
1911  /* resolve actual type of transition state, if polymorphic */
1912  if (IsPolymorphicType(aggtranstype))
1913  {
1914  /* have to fetch the agg's declared input types... */
1915  Oid *declaredArgTypes;
1916  int agg_nargs;
1917 
1918  (void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);
1919 
1920  /*
1921  * VARIADIC ANY aggs could have more actual than declared args, but
1922  * such extra args can't affect polymorphic type resolution.
1923  */
1924  Assert(agg_nargs <= numArguments);
1925 
1926  aggtranstype = enforce_generic_type_consistency(inputTypes,
1927  declaredArgTypes,
1928  agg_nargs,
1929  aggtranstype,
1930  false);
1931  pfree(declaredArgTypes);
1932  }
1933  return aggtranstype;
1934 }
1935 
1936 /*
1937  * Create an expression tree for the transition function of an aggregate.
1938  * This is needed so that polymorphic functions can be used within an
1939  * aggregate --- without the expression tree, such functions would not know
1940  * the datatypes they are supposed to use. (The trees will never actually
1941  * be executed, however, so we can skimp a bit on correctness.)
1942  *
1943  * agg_input_types and agg_state_type identifies the input types of the
1944  * aggregate. These should be resolved to actual types (ie, none should
1945  * ever be ANYELEMENT etc).
1946  * agg_input_collation is the aggregate function's input collation.
1947  *
1948  * For an ordered-set aggregate, remember that agg_input_types describes
1949  * the direct arguments followed by the aggregated arguments.
1950  *
1951  * transfn_oid and invtransfn_oid identify the funcs to be called; the
1952  * latter may be InvalidOid, however if invtransfn_oid is set then
1953  * transfn_oid must also be set.
1954  *
1955  * transfn_oid may also be passed as the aggcombinefn when the *transfnexpr is
1956  * to be used for a combine aggregate phase. We expect invtransfn_oid to be
1957  * InvalidOid in this case since there is no such thing as an inverse
1958  * combinefn.
1959  *
1960  * Pointers to the constructed trees are returned into *transfnexpr,
1961  * *invtransfnexpr. If there is no invtransfn, the respective pointer is set
1962  * to NULL. Since use of the invtransfn is optional, NULL may be passed for
1963  * invtransfnexpr.
1964  */
1965 void
1967  int agg_num_inputs,
1968  int agg_num_direct_inputs,
1969  bool agg_variadic,
1970  Oid agg_state_type,
1971  Oid agg_input_collation,
1972  Oid transfn_oid,
1973  Oid invtransfn_oid,
1974  Expr **transfnexpr,
1975  Expr **invtransfnexpr)
1976 {
1977  List *args;
1978  FuncExpr *fexpr;
1979  int i;
1980 
1981  /*
1982  * Build arg list to use in the transfn FuncExpr node.
1983  */
1984  args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
1985 
1986  for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
1987  {
1988  args = lappend(args,
1989  make_agg_arg(agg_input_types[i], agg_input_collation));
1990  }
1991 
1992  fexpr = makeFuncExpr(transfn_oid,
1993  agg_state_type,
1994  args,
1995  InvalidOid,
1996  agg_input_collation,
1998  fexpr->funcvariadic = agg_variadic;
1999  *transfnexpr = (Expr *) fexpr;
2000 
2001  /*
2002  * Build invtransfn expression if requested, with same args as transfn
2003  */
2004  if (invtransfnexpr != NULL)
2005  {
2006  if (OidIsValid(invtransfn_oid))
2007  {
2008  fexpr = makeFuncExpr(invtransfn_oid,
2009  agg_state_type,
2010  args,
2011  InvalidOid,
2012  agg_input_collation,
2014  fexpr->funcvariadic = agg_variadic;
2015  *invtransfnexpr = (Expr *) fexpr;
2016  }
2017  else
2018  *invtransfnexpr = NULL;
2019  }
2020 }
2021 
2022 /*
2023  * Like build_aggregate_transfn_expr, but creates an expression tree for the
2024  * serialization function of an aggregate.
2025  */
2026 void
2028  Expr **serialfnexpr)
2029 {
2030  List *args;
2031  FuncExpr *fexpr;
2032 
2033  /* serialfn always takes INTERNAL and returns BYTEA */
2034  args = list_make1(make_agg_arg(INTERNALOID, InvalidOid));
2035 
2036  fexpr = makeFuncExpr(serialfn_oid,
2037  BYTEAOID,
2038  args,
2039  InvalidOid,
2040  InvalidOid,
2042  *serialfnexpr = (Expr *) fexpr;
2043 }
2044 
2045 /*
2046  * Like build_aggregate_transfn_expr, but creates an expression tree for the
2047  * deserialization function of an aggregate.
2048  */
2049 void
2051  Expr **deserialfnexpr)
2052 {
2053  List *args;
2054  FuncExpr *fexpr;
2055 
2056  /* deserialfn always takes BYTEA, INTERNAL and returns INTERNAL */
2057  args = list_make2(make_agg_arg(BYTEAOID, InvalidOid),
2058  make_agg_arg(INTERNALOID, InvalidOid));
2059 
2060  fexpr = makeFuncExpr(deserialfn_oid,
2061  INTERNALOID,
2062  args,
2063  InvalidOid,
2064  InvalidOid,
2066  *deserialfnexpr = (Expr *) fexpr;
2067 }
2068 
2069 /*
2070  * Like build_aggregate_transfn_expr, but creates an expression tree for the
2071  * final function of an aggregate, rather than the transition function.
2072  */
2073 void
2075  int num_finalfn_inputs,
2076  Oid agg_state_type,
2077  Oid agg_result_type,
2078  Oid agg_input_collation,
2079  Oid finalfn_oid,
2080  Expr **finalfnexpr)
2081 {
2082  List *args;
2083  int i;
2084 
2085  /*
2086  * Build expr tree for final function
2087  */
2088  args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
2089 
2090  /* finalfn may take additional args, which match agg's input types */
2091  for (i = 0; i < num_finalfn_inputs - 1; i++)
2092  {
2093  args = lappend(args,
2094  make_agg_arg(agg_input_types[i], agg_input_collation));
2095  }
2096 
2097  *finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
2098  agg_result_type,
2099  args,
2100  InvalidOid,
2101  agg_input_collation,
2103  /* finalfn is currently never treated as variadic */
2104 }
2105 
2106 /*
2107  * Convenience function to build dummy argument expressions for aggregates.
2108  *
2109  * We really only care that an aggregate support function can discover its
2110  * actual argument types at runtime using get_fn_expr_argtype(), so it's okay
2111  * to use Param nodes that don't correspond to any real Param.
2112  */
2113 static Node *
2114 make_agg_arg(Oid argtype, Oid argcollation)
2115 {
2116  Param *argp = makeNode(Param);
2117 
2118  argp->paramkind = PARAM_EXEC;
2119  argp->paramid = -1;
2120  argp->paramtype = argtype;
2121  argp->paramtypmod = -1;
2122  argp->paramcollid = argcollation;
2123  argp->location = -1;
2124  return (Node *) argp;
2125 }
#define list_make2(x1, x2)
Definition: pg_list.h:208
List * aggdistinct
Definition: primnodes.h:332
bool check_functional_grouping(Oid relid, Index varno, Index varlevelsup, List *grouping_columns, List **constraintDeps)
List * partitionClause
Definition: parsenodes.h:513
int varno
Definition: primnodes.h:189
#define NIL
Definition: pg_list.h:65
static Node * make_agg_arg(Oid argtype, Oid argcollation)
Definition: parse_agg.c:2114
bool query_tree_walker(Query *query, bool(*walker)(), void *context, int flags)
Definition: nodeFuncs.c:2355
#define IsA(nodeptr, _type_)
Definition: nodes.h:587
static bool check_ungrouped_columns_walker(Node *node, check_ungrouped_columns_context *context)
Definition: parse_agg.c:1269
Oid enforce_generic_type_consistency(const Oid *actual_arg_types, Oid *declared_arg_types, int nargs, Oid rettype, bool allow_poly)
Index varlevelsup
Definition: primnodes.h:196
TargetEntry * get_sortgroupclause_tle(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:356
int errhint(const char *fmt,...)
Definition: elog.c:1156
#define FRAMEOPTION_DEFAULTS
Definition: parsenodes.h:555
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:446
List * args
Definition: primnodes.h:372
List * content
Definition: parsenodes.h:1365
List * refs
Definition: primnodes.h:374
int exprLocation(const Node *expr)
Definition: nodeFuncs.c:1250
List * args
Definition: primnodes.h:390
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:3149
List * list_intersection_int(const List *list1, const List *list2)
Definition: list.c:1059
int frameOptions
Definition: parsenodes.h:515
List * addTargetToSortList(ParseState *pstate, TargetEntry *tle, List *sortlist, List *targetlist, SortBy *sortby)
List * transformSortClause(ParseState *pstate, List *orderlist, List **targetlist, ParseExprKind exprKind, bool useSQL99)
List * constraintDeps
Definition: parsenodes.h:180
char * name
Definition: parsenodes.h:511
ParseState * parentParseState
Definition: parse_node.h:180
#define Min(x, y)
Definition: c.h:986
bool groupDistinct
Definition: parsenodes.h:159
Node * transformExpr(ParseState *pstate, Node *expr, ParseExprKind exprKind)
Definition: parse_expr.c:94
List * list_truncate(List *list, int new_size)
Definition: list.c:600
Oid get_func_signature(Oid funcid, Oid **argtypes, int *nargs)
Definition: lsyscache.c:1667
List * groupingSets
Definition: parsenodes.h:161
ParamKind paramkind
Definition: primnodes.h:267
Node * get_sortgroupclause_expr(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:368
Definition: nodes.h:536
static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry, List *groupClauses, bool hasJoinRTEs, bool have_non_var_grouping)
Definition: parse_agg.c:1457
List * list_concat(List *list1, const List *list2)
Definition: list.c:530
int errcode(int sqlerrcode)
Definition: elog.c:698
List * args
Definition: primnodes.h:330
AttrNumber varattno
Definition: primnodes.h:191
bool p_hasAggs
Definition: parse_node.h:208
char * format_type_be(Oid type_oid)
Definition: format_type.c:339
int locate_windowfunc(Node *node)
Definition: rewriteManip.c:235
void build_aggregate_deserialfn_expr(Oid deserialfn_oid, Expr **deserialfnexpr)
Definition: parse_agg.c:2050
static void check_agglevels_and_constraints(ParseState *pstate, Node *expr)
Definition: parse_agg.c:286
void build_aggregate_finalfn_expr(Oid *agg_input_types, int num_finalfn_inputs, Oid agg_state_type, Oid agg_result_type, Oid agg_input_collation, Oid finalfn_oid, Expr **finalfnexpr)
Definition: parse_agg.c:2074
List * list_copy_tail(const List *oldlist, int nskip)
Definition: list.c:1437
unsigned int Oid
Definition: postgres_ext.h:31
Index winref
Definition: primnodes.h:392
Definition: primnodes.h:186
List * lappend_oid(List *list, Oid datum)
Definition: list.c:372
#define OidIsValid(objectId)
Definition: c.h:710
void parseCheckAggregates(ParseState *pstate, Query *qry)
Definition: parse_agg.c:1052
const char * ParseExprKindName(ParseExprKind exprKind)
Definition: parse_expr.c:3001
List * targetList
Definition: parsenodes.h:150
bool p_hasWindowFuncs
Definition: parse_node.h:209
#define foreach_delete_current(lst, cell)
Definition: pg_list.h:369
GroupingSetKind kind
Definition: parsenodes.h:1364
#define FUNC_MAX_ARGS
#define list_make1(x1)
Definition: pg_list.h:206
List * aggargtypes
Definition: primnodes.h:328
int locate_var_of_level(Node *node, int levelsup)
Definition: var.c:499
Node * startOffset
Definition: parsenodes.h:516
void pfree(void *pointer)
Definition: mcxt.c:1169
#define linitial(l)
Definition: pg_list.h:174
static List * expand_groupingset_node(GroupingSet *gs)
Definition: parse_agg.c:1631
#define ERROR
Definition: elog.h:46
NameData attname
Definition: pg_attribute.h:41
static bool finalize_grouping_exprs_walker(Node *node, check_ungrouped_columns_context *context)
Definition: parse_agg.c:1476
Oid paramcollid
Definition: primnodes.h:271
#define lfirst_int(lc)
Definition: pg_list.h:170
int location
Definition: primnodes.h:272
int location
Definition: parsenodes.h:518
List * p_windowdefs
Definition: parse_node.h:195
Node * endOffset
Definition: parsenodes.h:517
int location
Definition: primnodes.h:342
bool list_member_int(const List *list, int datum)
Definition: list.c:669
int location
Definition: primnodes.h:201
List * aggorder
Definition: primnodes.h:331
int errdetail(const char *fmt,...)
Definition: elog.c:1042
Index agglevelsup
Definition: primnodes.h:338
int p_next_resno
Definition: parse_node.h:197
List * list_union_int(const List *list1, const List *list2)
Definition: list.c:977
unsigned int uint32
Definition: c.h:441
List * aggdirectargs
Definition: primnodes.h:329
static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry, List *groupClauses, List *groupClauseCommonVars, bool have_non_var_grouping, List **func_grouped_rels)
Definition: parse_agg.c:1249
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:238
List * lappend_int(List *list, int datum)
Definition: list.c:354
List * lappend(List *list, void *datum)
Definition: list.c:336
int locate_agg_of_level(Node *node, int levelsup)
Definition: rewriteManip.c:131
void transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc, WindowDef *windef)
Definition: parse_agg.c:802
List * orderClause
Definition: parsenodes.h:514
Index agglevelsup
Definition: primnodes.h:376
bool self_reference
Definition: parsenodes.h:1119
Node * transformGroupingFunc(ParseState *pstate, GroupingFunc *p)
Definition: parse_agg.c:247
unsigned int Index
Definition: c.h:549
ParseExprKind p_expr_kind
Definition: parse_node.h:196
#define InvalidOid
Definition: postgres_ext.h:36
Node * flatten_join_alias_vars(Query *query, Node *node)
Definition: var.c:732
#define ereport(elevel,...)
Definition: elog.h:157
bool p_lateral_active
Definition: parse_node.h:188
List * expand_grouping_sets(List *groupingSets, bool groupDistinct, int limit)
Definition: parse_agg.c:1777
char * get_rte_attribute_name(RangeTblEntry *rte, AttrNumber attnum)
int32 paramtypmod
Definition: primnodes.h:270
int errmsg_internal(const char *fmt,...)
Definition: elog.c:996
#define makeNode(_type_)
Definition: nodes.h:584
int location
Definition: primnodes.h:395
#define Assert(condition)
Definition: c.h:804
#define lfirst(lc)
Definition: pg_list.h:169
char * aliasname
Definition: primnodes.h:42
void build_aggregate_serialfn_expr(Oid serialfn_oid, Expr **serialfnexpr)
Definition: parse_agg.c:2027
Datum lca(PG_FUNCTION_ARGS)
Definition: ltree_op.c:501
Expr * expr
Definition: primnodes.h:1455
int paramid
Definition: primnodes.h:268
void build_aggregate_transfn_expr(Oid *agg_input_types, int agg_num_inputs, int agg_num_direct_inputs, bool agg_variadic, Oid agg_state_type, Oid agg_input_collation, Oid transfn_oid, Oid invtransfn_oid, Expr **transfnexpr, Expr **invtransfnexpr)
Definition: parse_agg.c:1966
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
bool expression_tree_walker(Node *node, bool(*walker)(), void *context)
Definition: nodeFuncs.c:1904
static int list_length(const List *l)
Definition: pg_list.h:149
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:111
#define for_each_from(cell, lst, N)
Definition: pg_list.h:393
Expr * aggfilter
Definition: primnodes.h:333
static int cmp_list_len_contents_asc(const ListCell *a, const ListCell *b)
Definition: parse_agg.c:1743
static int cmp_list_len_asc(const ListCell *a, const ListCell *b)
Definition: parse_agg.c:1733
RTEKind rtekind
Definition: parsenodes.h:1007
List * groupClause
Definition: parsenodes.h:158
void list_sort(List *list, list_sort_comparator cmp)
Definition: list.c:1496
int errmsg(const char *fmt,...)
Definition: elog.c:909
int i
Index ressortgroupref
Definition: primnodes.h:1458
void * arg
int list_int_cmp(const ListCell *p1, const ListCell *p2)
Definition: list.c:1513
char aggkind
Definition: primnodes.h:337
Alias * eref
Definition: parsenodes.h:1153
static int check_agg_arguments(ParseState *pstate, List *directargs, List *args, Expr *filter)
Definition: parse_agg.c:617
char * refname
Definition: parsenodes.h:512
List * transformDistinctClause(ParseState *pstate, List **targetlist, List *sortClause, bool is_agg)
Node * havingQual
Definition: parsenodes.h:163
int get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
Definition: parse_agg.c:1880
Definition: pg_list.h:50
int16 AttrNumber
Definition: attnum.h:21
#define _(x)
Definition: elog.c:89
static bool check_agg_arguments_walker(Node *node, check_agg_arguments_context *context)
Definition: parse_agg.c:698
Oid paramtype
Definition: primnodes.h:269
bool contain_windowfuncs(Node *node)
Definition: rewriteManip.c:197
bool funcvariadic
Definition: primnodes.h:498
#define lfirst_oid(lc)
Definition: pg_list.h:171
Oid resolve_aggregate_transtype(Oid aggfuncid, Oid aggtranstype, Oid *inputTypes, int numArguments)
Definition: parse_agg.c:1906
FuncExpr * makeFuncExpr(Oid funcid, Oid rettype, List *args, Oid funccollid, Oid inputcollid, CoercionForm fformat)
Definition: makefuncs.c:519
void transformAggregateCall(ParseState *pstate, Aggref *agg, List *args, List *aggorder, bool agg_distinct)
Definition: parse_agg.c:102
List * p_rtable
Definition: parse_node.h:182