PostgreSQL Source Code  git master
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros
parse_agg.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * parse_agg.c
4  * handle aggregates and window functions in parser
5  *
6  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/parser/parse_agg.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include "catalog/pg_aggregate.h"
19 #include "catalog/pg_type.h"
20 #include "nodes/makefuncs.h"
21 #include "nodes/nodeFuncs.h"
22 #include "optimizer/tlist.h"
23 #include "optimizer/var.h"
24 #include "parser/parse_agg.h"
25 #include "parser/parse_clause.h"
26 #include "parser/parse_coerce.h"
27 #include "parser/parse_expr.h"
28 #include "parser/parsetree.h"
29 #include "rewrite/rewriteManip.h"
30 #include "utils/builtins.h"
31 #include "utils/lsyscache.h"
32 
33 
34 typedef struct
35 {
41 
42 typedef struct
43 {
54 
55 static int check_agg_arguments(ParseState *pstate,
56  List *directargs,
57  List *args,
58  Expr *filter);
59 static bool check_agg_arguments_walker(Node *node,
61 static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
62  List *groupClauses, List *groupClauseVars,
63  bool have_non_var_grouping,
64  List **func_grouped_rels);
65 static bool check_ungrouped_columns_walker(Node *node,
67 static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
68  List *groupClauses, PlannerInfo *root,
69  bool have_non_var_grouping);
70 static bool finalize_grouping_exprs_walker(Node *node,
72 static void check_agglevels_and_constraints(ParseState *pstate, Node *expr);
74 static Node *make_agg_arg(Oid argtype, Oid argcollation);
75 
76 
77 /*
78  * transformAggregateCall -
79  * Finish initial transformation of an aggregate call
80  *
81  * parse_func.c has recognized the function as an aggregate, and has set up
82  * all the fields of the Aggref except aggargtypes, aggdirectargs, args,
83  * aggorder, aggdistinct and agglevelsup. The passed-in args list has been
84  * through standard expression transformation and type coercion to match the
85  * agg's declared arg types, while the passed-in aggorder list hasn't been
86  * transformed at all.
87  *
88  * Here we separate the args list into direct and aggregated args, storing the
89  * former in agg->aggdirectargs and the latter in agg->args. The regular
90  * args, but not the direct args, are converted into a targetlist by inserting
91  * TargetEntry nodes. We then transform the aggorder and agg_distinct
92  * specifications to produce lists of SortGroupClause nodes for agg->aggorder
93  * and agg->aggdistinct. (For a regular aggregate, this might result in
94  * adding resjunk expressions to the targetlist; but for ordered-set
95  * aggregates the aggorder list will always be one-to-one with the aggregated
96  * args.)
97  *
98  * We must also determine which query level the aggregate actually belongs to,
99  * set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
100  * pstate level.
101  */
102 void
104  List *args, List *aggorder, bool agg_distinct)
105 {
106  List *argtypes = NIL;
107  List *tlist = NIL;
108  List *torder = NIL;
109  List *tdistinct = NIL;
110  AttrNumber attno = 1;
111  int save_next_resno;
112  ListCell *lc;
113 
114  /*
115  * Before separating the args into direct and aggregated args, make a list
116  * of their data type OIDs for use later.
117  */
118  foreach(lc, args)
119  {
120  Expr *arg = (Expr *) lfirst(lc);
121 
122  argtypes = lappend_oid(argtypes, exprType((Node *) arg));
123  }
124  agg->aggargtypes = argtypes;
125 
127  {
128  /*
129  * For an ordered-set agg, the args list includes direct args and
130  * aggregated args; we must split them apart.
131  */
132  int numDirectArgs = list_length(args) - list_length(aggorder);
133  List *aargs;
134  ListCell *lc2;
135 
136  Assert(numDirectArgs >= 0);
137 
138  aargs = list_copy_tail(args, numDirectArgs);
139  agg->aggdirectargs = list_truncate(args, numDirectArgs);
140 
141  /*
142  * Build a tlist from the aggregated args, and make a sortlist entry
143  * for each one. Note that the expressions in the SortBy nodes are
144  * ignored (they are the raw versions of the transformed args); we are
145  * just looking at the sort information in the SortBy nodes.
146  */
147  forboth(lc, aargs, lc2, aggorder)
148  {
149  Expr *arg = (Expr *) lfirst(lc);
150  SortBy *sortby = (SortBy *) lfirst(lc2);
151  TargetEntry *tle;
152 
153  /* We don't bother to assign column names to the entries */
154  tle = makeTargetEntry(arg, attno++, NULL, false);
155  tlist = lappend(tlist, tle);
156 
157  torder = addTargetToSortList(pstate, tle,
158  torder, tlist, sortby);
159  }
160 
161  /* Never any DISTINCT in an ordered-set agg */
162  Assert(!agg_distinct);
163  }
164  else
165  {
166  /* Regular aggregate, so it has no direct args */
167  agg->aggdirectargs = NIL;
168 
169  /*
170  * Transform the plain list of Exprs into a targetlist.
171  */
172  foreach(lc, args)
173  {
174  Expr *arg = (Expr *) lfirst(lc);
175  TargetEntry *tle;
176 
177  /* We don't bother to assign column names to the entries */
178  tle = makeTargetEntry(arg, attno++, NULL, false);
179  tlist = lappend(tlist, tle);
180  }
181 
182  /*
183  * If we have an ORDER BY, transform it. This will add columns to the
184  * tlist if they appear in ORDER BY but weren't already in the arg
185  * list. They will be marked resjunk = true so we can tell them apart
186  * from regular aggregate arguments later.
187  *
188  * We need to mess with p_next_resno since it will be used to number
189  * any new targetlist entries.
190  */
191  save_next_resno = pstate->p_next_resno;
192  pstate->p_next_resno = attno;
193 
194  torder = transformSortClause(pstate,
195  aggorder,
196  &tlist,
198  true /* force SQL99 rules */ );
199 
200  /*
201  * If we have DISTINCT, transform that to produce a distinctList.
202  */
203  if (agg_distinct)
204  {
205  tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
206 
207  /*
208  * Remove this check if executor support for hashed distinct for
209  * aggregates is ever added.
210  */
211  foreach(lc, tdistinct)
212  {
213  SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
214 
215  if (!OidIsValid(sortcl->sortop))
216  {
217  Node *expr = get_sortgroupclause_expr(sortcl, tlist);
218 
219  ereport(ERROR,
220  (errcode(ERRCODE_UNDEFINED_FUNCTION),
221  errmsg("could not identify an ordering operator for type %s",
222  format_type_be(exprType(expr))),
223  errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
224  parser_errposition(pstate, exprLocation(expr))));
225  }
226  }
227  }
228 
229  pstate->p_next_resno = save_next_resno;
230  }
231 
232  /* Update the Aggref with the transformation results */
233  agg->args = tlist;
234  agg->aggorder = torder;
235  agg->aggdistinct = tdistinct;
236 
237  check_agglevels_and_constraints(pstate, (Node *) agg);
238 }
239 
240 /*
241  * transformGroupingFunc
242  * Transform a GROUPING expression
243  *
244  * GROUPING() behaves very like an aggregate. Processing of levels and nesting
245  * is done as for aggregates. We set p_hasAggs for these expressions too.
246  */
247 Node *
249 {
250  ListCell *lc;
251  List *args = p->args;
252  List *result_list = NIL;
254 
255  if (list_length(args) > 31)
256  ereport(ERROR,
257  (errcode(ERRCODE_TOO_MANY_ARGUMENTS),
258  errmsg("GROUPING must have fewer than 32 arguments"),
259  parser_errposition(pstate, p->location)));
260 
261  foreach(lc, args)
262  {
263  Node *current_result;
264 
265  current_result = transformExpr(pstate, (Node *) lfirst(lc), pstate->p_expr_kind);
266 
267  /* acceptability of expressions is checked later */
268 
269  result_list = lappend(result_list, current_result);
270  }
271 
272  result->args = result_list;
273  result->location = p->location;
274 
275  check_agglevels_and_constraints(pstate, (Node *) result);
276 
277  return (Node *) result;
278 }
279 
280 /*
281  * Aggregate functions and grouping operations (which are combined in the spec
282  * as <set function specification>) are very similar with regard to level and
283  * nesting restrictions (though we allow a lot more things than the spec does).
284  * Centralise those restrictions here.
285  */
286 static void
288 {
289  List *directargs = NIL;
290  List *args = NIL;
291  Expr *filter = NULL;
292  int min_varlevel;
293  int location = -1;
294  Index *p_levelsup;
295  const char *err;
296  bool errkind;
297  bool isAgg = IsA(expr, Aggref);
298 
299  if (isAgg)
300  {
301  Aggref *agg = (Aggref *) expr;
302 
303  directargs = agg->aggdirectargs;
304  args = agg->args;
305  filter = agg->aggfilter;
306  location = agg->location;
307  p_levelsup = &agg->agglevelsup;
308  }
309  else
310  {
311  GroupingFunc *grp = (GroupingFunc *) expr;
312 
313  args = grp->args;
314  location = grp->location;
315  p_levelsup = &grp->agglevelsup;
316  }
317 
318  /*
319  * Check the arguments to compute the aggregate's level and detect
320  * improper nesting.
321  */
322  min_varlevel = check_agg_arguments(pstate,
323  directargs,
324  args,
325  filter);
326 
327  *p_levelsup = min_varlevel;
328 
329  /* Mark the correct pstate level as having aggregates */
330  while (min_varlevel-- > 0)
331  pstate = pstate->parentParseState;
332  pstate->p_hasAggs = true;
333 
334  /*
335  * Check to see if the aggregate function is in an invalid place within
336  * its aggregation query.
337  *
338  * For brevity we support two schemes for reporting an error here: set
339  * "err" to a custom message, or set "errkind" true if the error context
340  * is sufficiently identified by what ParseExprKindName will return, *and*
341  * what it will return is just a SQL keyword. (Otherwise, use a custom
342  * message to avoid creating translation problems.)
343  */
344  err = NULL;
345  errkind = false;
346  switch (pstate->p_expr_kind)
347  {
348  case EXPR_KIND_NONE:
349  Assert(false); /* can't happen */
350  break;
351  case EXPR_KIND_OTHER:
352 
353  /*
354  * Accept aggregate/grouping here; caller must throw error if
355  * wanted
356  */
357  break;
358  case EXPR_KIND_JOIN_ON:
360  if (isAgg)
361  err = _("aggregate functions are not allowed in JOIN conditions");
362  else
363  err = _("grouping operations are not allowed in JOIN conditions");
364 
365  break;
367  /* Should only be possible in a LATERAL subquery */
368  Assert(pstate->p_lateral_active);
369 
370  /*
371  * Aggregate/grouping scope rules make it worth being explicit
372  * here
373  */
374  if (isAgg)
375  err = _("aggregate functions are not allowed in FROM clause of their own query level");
376  else
377  err = _("grouping operations are not allowed in FROM clause of their own query level");
378 
379  break;
381  if (isAgg)
382  err = _("aggregate functions are not allowed in functions in FROM");
383  else
384  err = _("grouping operations are not allowed in functions in FROM");
385 
386  break;
387  case EXPR_KIND_WHERE:
388  errkind = true;
389  break;
390  case EXPR_KIND_POLICY:
391  if (isAgg)
392  err = _("aggregate functions are not allowed in policy expressions");
393  else
394  err = _("grouping operations are not allowed in policy expressions");
395 
396  break;
397  case EXPR_KIND_HAVING:
398  /* okay */
399  break;
400  case EXPR_KIND_FILTER:
401  errkind = true;
402  break;
404  /* okay */
405  break;
407  /* okay */
408  break;
410  if (isAgg)
411  err = _("aggregate functions are not allowed in window RANGE");
412  else
413  err = _("grouping operations are not allowed in window RANGE");
414 
415  break;
417  if (isAgg)
418  err = _("aggregate functions are not allowed in window ROWS");
419  else
420  err = _("grouping operations are not allowed in window ROWS");
421 
422  break;
424  /* okay */
425  break;
429  errkind = true;
430  break;
431  case EXPR_KIND_GROUP_BY:
432  errkind = true;
433  break;
434  case EXPR_KIND_ORDER_BY:
435  /* okay */
436  break;
438  /* okay */
439  break;
440  case EXPR_KIND_LIMIT:
441  case EXPR_KIND_OFFSET:
442  errkind = true;
443  break;
444  case EXPR_KIND_RETURNING:
445  errkind = true;
446  break;
447  case EXPR_KIND_VALUES:
449  errkind = true;
450  break;
453  if (isAgg)
454  err = _("aggregate functions are not allowed in check constraints");
455  else
456  err = _("grouping operations are not allowed in check constraints");
457 
458  break;
461 
462  if (isAgg)
463  err = _("aggregate functions are not allowed in DEFAULT expressions");
464  else
465  err = _("grouping operations are not allowed in DEFAULT expressions");
466 
467  break;
469  if (isAgg)
470  err = _("aggregate functions are not allowed in index expressions");
471  else
472  err = _("grouping operations are not allowed in index expressions");
473 
474  break;
476  if (isAgg)
477  err = _("aggregate functions are not allowed in index predicates");
478  else
479  err = _("grouping operations are not allowed in index predicates");
480 
481  break;
483  if (isAgg)
484  err = _("aggregate functions are not allowed in transform expressions");
485  else
486  err = _("grouping operations are not allowed in transform expressions");
487 
488  break;
490  if (isAgg)
491  err = _("aggregate functions are not allowed in EXECUTE parameters");
492  else
493  err = _("grouping operations are not allowed in EXECUTE parameters");
494 
495  break;
497  if (isAgg)
498  err = _("aggregate functions are not allowed in trigger WHEN conditions");
499  else
500  err = _("grouping operations are not allowed in trigger WHEN conditions");
501 
502  break;
504  if (isAgg)
505  err = _("aggregate functions are not allowed in partition key expression");
506  else
507  err = _("grouping operations are not allowed in partition key expression");
508 
509  break;
510 
511  /*
512  * There is intentionally no default: case here, so that the
513  * compiler will warn if we add a new ParseExprKind without
514  * extending this switch. If we do see an unrecognized value at
515  * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
516  * which is sane anyway.
517  */
518  }
519 
520  if (err)
521  ereport(ERROR,
522  (errcode(ERRCODE_GROUPING_ERROR),
523  errmsg_internal("%s", err),
524  parser_errposition(pstate, location)));
525 
526  if (errkind)
527  {
528  if (isAgg)
529  /* translator: %s is name of a SQL construct, eg GROUP BY */
530  err = _("aggregate functions are not allowed in %s");
531  else
532  /* translator: %s is name of a SQL construct, eg GROUP BY */
533  err = _("grouping operations are not allowed in %s");
534 
535  ereport(ERROR,
536  (errcode(ERRCODE_GROUPING_ERROR),
537  errmsg_internal(err,
538  ParseExprKindName(pstate->p_expr_kind)),
539  parser_errposition(pstate, location)));
540  }
541 }
542 
543 /*
544  * check_agg_arguments
545  * Scan the arguments of an aggregate function to determine the
546  * aggregate's semantic level (zero is the current select's level,
547  * one is its parent, etc).
548  *
549  * The aggregate's level is the same as the level of the lowest-level variable
550  * or aggregate in its aggregated arguments (including any ORDER BY columns)
551  * or filter expression; or if it contains no variables at all, we presume it
552  * to be local.
553  *
554  * Vars/Aggs in direct arguments are *not* counted towards determining the
555  * agg's level, as those arguments aren't evaluated per-row but only
556  * per-group, and so in some sense aren't really agg arguments. However,
557  * this can mean that we decide an agg is upper-level even when its direct
558  * args contain lower-level Vars/Aggs, and that case has to be disallowed.
559  * (This is a little strange, but the SQL standard seems pretty definite that
560  * direct args are not to be considered when setting the agg's level.)
561  *
562  * We also take this opportunity to detect any aggregates or window functions
563  * nested within the arguments. We can throw error immediately if we find
564  * a window function. Aggregates are a bit trickier because it's only an
565  * error if the inner aggregate is of the same semantic level as the outer,
566  * which we can't know until we finish scanning the arguments.
567  */
568 static int
570  List *directargs,
571  List *args,
572  Expr *filter)
573 {
574  int agglevel;
576 
577  context.pstate = pstate;
578  context.min_varlevel = -1; /* signifies nothing found yet */
579  context.min_agglevel = -1;
580  context.sublevels_up = 0;
581 
582  (void) expression_tree_walker((Node *) args,
584  (void *) &context);
585 
586  (void) expression_tree_walker((Node *) filter,
588  (void *) &context);
589 
590  /*
591  * If we found no vars nor aggs at all, it's a level-zero aggregate;
592  * otherwise, its level is the minimum of vars or aggs.
593  */
594  if (context.min_varlevel < 0)
595  {
596  if (context.min_agglevel < 0)
597  agglevel = 0;
598  else
599  agglevel = context.min_agglevel;
600  }
601  else if (context.min_agglevel < 0)
602  agglevel = context.min_varlevel;
603  else
604  agglevel = Min(context.min_varlevel, context.min_agglevel);
605 
606  /*
607  * If there's a nested aggregate of the same semantic level, complain.
608  */
609  if (agglevel == context.min_agglevel)
610  {
611  int aggloc;
612 
613  aggloc = locate_agg_of_level((Node *) args, agglevel);
614  if (aggloc < 0)
615  aggloc = locate_agg_of_level((Node *) filter, agglevel);
616  ereport(ERROR,
617  (errcode(ERRCODE_GROUPING_ERROR),
618  errmsg("aggregate function calls cannot be nested"),
619  parser_errposition(pstate, aggloc)));
620  }
621 
622  /*
623  * Now check for vars/aggs in the direct arguments, and throw error if
624  * needed. Note that we allow a Var of the agg's semantic level, but not
625  * an Agg of that level. In principle such Aggs could probably be
626  * supported, but it would create an ordering dependency among the
627  * aggregates at execution time. Since the case appears neither to be
628  * required by spec nor particularly useful, we just treat it as a
629  * nested-aggregate situation.
630  */
631  if (directargs)
632  {
633  context.min_varlevel = -1;
634  context.min_agglevel = -1;
635  (void) expression_tree_walker((Node *) directargs,
637  (void *) &context);
638  if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
639  ereport(ERROR,
640  (errcode(ERRCODE_GROUPING_ERROR),
641  errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
642  parser_errposition(pstate,
643  locate_var_of_level((Node *) directargs,
644  context.min_varlevel))));
645  if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
646  ereport(ERROR,
647  (errcode(ERRCODE_GROUPING_ERROR),
648  errmsg("aggregate function calls cannot be nested"),
649  parser_errposition(pstate,
650  locate_agg_of_level((Node *) directargs,
651  context.min_agglevel))));
652  }
653  return agglevel;
654 }
655 
656 static bool
659 {
660  if (node == NULL)
661  return false;
662  if (IsA(node, Var))
663  {
664  int varlevelsup = ((Var *) node)->varlevelsup;
665 
666  /* convert levelsup to frame of reference of original query */
667  varlevelsup -= context->sublevels_up;
668  /* ignore local vars of subqueries */
669  if (varlevelsup >= 0)
670  {
671  if (context->min_varlevel < 0 ||
672  context->min_varlevel > varlevelsup)
673  context->min_varlevel = varlevelsup;
674  }
675  return false;
676  }
677  if (IsA(node, Aggref))
678  {
679  int agglevelsup = ((Aggref *) node)->agglevelsup;
680 
681  /* convert levelsup to frame of reference of original query */
682  agglevelsup -= context->sublevels_up;
683  /* ignore local aggs of subqueries */
684  if (agglevelsup >= 0)
685  {
686  if (context->min_agglevel < 0 ||
687  context->min_agglevel > agglevelsup)
688  context->min_agglevel = agglevelsup;
689  }
690  /* no need to examine args of the inner aggregate */
691  return false;
692  }
693  if (IsA(node, GroupingFunc))
694  {
695  int agglevelsup = ((GroupingFunc *) node)->agglevelsup;
696 
697  /* convert levelsup to frame of reference of original query */
698  agglevelsup -= context->sublevels_up;
699  /* ignore local aggs of subqueries */
700  if (agglevelsup >= 0)
701  {
702  if (context->min_agglevel < 0 ||
703  context->min_agglevel > agglevelsup)
704  context->min_agglevel = agglevelsup;
705  }
706  /* Continue and descend into subtree */
707  }
708  /* We can throw error on sight for a set-returning function */
709  if ((IsA(node, FuncExpr) &&((FuncExpr *) node)->funcretset) ||
710  (IsA(node, OpExpr) &&((OpExpr *) node)->opretset))
711  ereport(ERROR,
712  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
713  errmsg("aggregate function calls cannot contain set-returning function calls"),
714  errhint("You might be able to move the set-returning function into a LATERAL FROM item."),
715  parser_errposition(context->pstate, exprLocation(node))));
716  /* We can throw error on sight for a window function */
717  if (IsA(node, WindowFunc))
718  ereport(ERROR,
719  (errcode(ERRCODE_GROUPING_ERROR),
720  errmsg("aggregate function calls cannot contain window function calls"),
721  parser_errposition(context->pstate,
722  ((WindowFunc *) node)->location)));
723  if (IsA(node, Query))
724  {
725  /* Recurse into subselects */
726  bool result;
727 
728  context->sublevels_up++;
729  result = query_tree_walker((Query *) node,
731  (void *) context,
732  0);
733  context->sublevels_up--;
734  return result;
735  }
736 
737  return expression_tree_walker(node,
739  (void *) context);
740 }
741 
742 /*
743  * transformWindowFuncCall -
744  * Finish initial transformation of a window function call
745  *
746  * parse_func.c has recognized the function as a window function, and has set
747  * up all the fields of the WindowFunc except winref. Here we must (1) add
748  * the WindowDef to the pstate (if not a duplicate of one already present) and
749  * set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
750  * Unlike aggregates, only the most closely nested pstate level need be
751  * considered --- there are no "outer window functions" per SQL spec.
752  */
753 void
755  WindowDef *windef)
756 {
757  const char *err;
758  bool errkind;
759 
760  /*
761  * A window function call can't contain another one (but aggs are OK). XXX
762  * is this required by spec, or just an unimplemented feature?
763  *
764  * Note: we don't need to check the filter expression here, because the
765  * context checks done below and in transformAggregateCall would have
766  * already rejected any window funcs or aggs within the filter.
767  */
768  if (pstate->p_hasWindowFuncs &&
769  contain_windowfuncs((Node *) wfunc->args))
770  ereport(ERROR,
771  (errcode(ERRCODE_WINDOWING_ERROR),
772  errmsg("window function calls cannot be nested"),
773  parser_errposition(pstate,
774  locate_windowfunc((Node *) wfunc->args))));
775 
776  /*
777  * Check to see if the window function is in an invalid place within the
778  * query.
779  *
780  * For brevity we support two schemes for reporting an error here: set
781  * "err" to a custom message, or set "errkind" true if the error context
782  * is sufficiently identified by what ParseExprKindName will return, *and*
783  * what it will return is just a SQL keyword. (Otherwise, use a custom
784  * message to avoid creating translation problems.)
785  */
786  err = NULL;
787  errkind = false;
788  switch (pstate->p_expr_kind)
789  {
790  case EXPR_KIND_NONE:
791  Assert(false); /* can't happen */
792  break;
793  case EXPR_KIND_OTHER:
794  /* Accept window func here; caller must throw error if wanted */
795  break;
796  case EXPR_KIND_JOIN_ON:
798  err = _("window functions are not allowed in JOIN conditions");
799  break;
801  /* can't get here, but just in case, throw an error */
802  errkind = true;
803  break;
805  err = _("window functions are not allowed in functions in FROM");
806  break;
807  case EXPR_KIND_WHERE:
808  errkind = true;
809  break;
810  case EXPR_KIND_POLICY:
811  err = _("window functions are not allowed in policy expressions");
812  break;
813  case EXPR_KIND_HAVING:
814  errkind = true;
815  break;
816  case EXPR_KIND_FILTER:
817  errkind = true;
818  break;
823  err = _("window functions are not allowed in window definitions");
824  break;
826  /* okay */
827  break;
831  errkind = true;
832  break;
833  case EXPR_KIND_GROUP_BY:
834  errkind = true;
835  break;
836  case EXPR_KIND_ORDER_BY:
837  /* okay */
838  break;
840  /* okay */
841  break;
842  case EXPR_KIND_LIMIT:
843  case EXPR_KIND_OFFSET:
844  errkind = true;
845  break;
846  case EXPR_KIND_RETURNING:
847  errkind = true;
848  break;
849  case EXPR_KIND_VALUES:
851  errkind = true;
852  break;
855  err = _("window functions are not allowed in check constraints");
856  break;
859  err = _("window functions are not allowed in DEFAULT expressions");
860  break;
862  err = _("window functions are not allowed in index expressions");
863  break;
865  err = _("window functions are not allowed in index predicates");
866  break;
868  err = _("window functions are not allowed in transform expressions");
869  break;
871  err = _("window functions are not allowed in EXECUTE parameters");
872  break;
874  err = _("window functions are not allowed in trigger WHEN conditions");
875  break;
877  err = _("window functions are not allowed in partition key expression");
878  break;
879 
880  /*
881  * There is intentionally no default: case here, so that the
882  * compiler will warn if we add a new ParseExprKind without
883  * extending this switch. If we do see an unrecognized value at
884  * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
885  * which is sane anyway.
886  */
887  }
888  if (err)
889  ereport(ERROR,
890  (errcode(ERRCODE_WINDOWING_ERROR),
891  errmsg_internal("%s", err),
892  parser_errposition(pstate, wfunc->location)));
893  if (errkind)
894  ereport(ERROR,
895  (errcode(ERRCODE_WINDOWING_ERROR),
896  /* translator: %s is name of a SQL construct, eg GROUP BY */
897  errmsg("window functions are not allowed in %s",
898  ParseExprKindName(pstate->p_expr_kind)),
899  parser_errposition(pstate, wfunc->location)));
900 
901  /*
902  * If the OVER clause just specifies a window name, find that WINDOW
903  * clause (which had better be present). Otherwise, try to match all the
904  * properties of the OVER clause, and make a new entry in the p_windowdefs
905  * list if no luck.
906  */
907  if (windef->name)
908  {
909  Index winref = 0;
910  ListCell *lc;
911 
912  Assert(windef->refname == NULL &&
913  windef->partitionClause == NIL &&
914  windef->orderClause == NIL &&
916 
917  foreach(lc, pstate->p_windowdefs)
918  {
919  WindowDef *refwin = (WindowDef *) lfirst(lc);
920 
921  winref++;
922  if (refwin->name && strcmp(refwin->name, windef->name) == 0)
923  {
924  wfunc->winref = winref;
925  break;
926  }
927  }
928  if (lc == NULL) /* didn't find it? */
929  ereport(ERROR,
930  (errcode(ERRCODE_UNDEFINED_OBJECT),
931  errmsg("window \"%s\" does not exist", windef->name),
932  parser_errposition(pstate, windef->location)));
933  }
934  else
935  {
936  Index winref = 0;
937  ListCell *lc;
938 
939  foreach(lc, pstate->p_windowdefs)
940  {
941  WindowDef *refwin = (WindowDef *) lfirst(lc);
942 
943  winref++;
944  if (refwin->refname && windef->refname &&
945  strcmp(refwin->refname, windef->refname) == 0)
946  /* matched on refname */ ;
947  else if (!refwin->refname && !windef->refname)
948  /* matched, no refname */ ;
949  else
950  continue;
951  if (equal(refwin->partitionClause, windef->partitionClause) &&
952  equal(refwin->orderClause, windef->orderClause) &&
953  refwin->frameOptions == windef->frameOptions &&
954  equal(refwin->startOffset, windef->startOffset) &&
955  equal(refwin->endOffset, windef->endOffset))
956  {
957  /* found a duplicate window specification */
958  wfunc->winref = winref;
959  break;
960  }
961  }
962  if (lc == NULL) /* didn't find it? */
963  {
964  pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
965  wfunc->winref = list_length(pstate->p_windowdefs);
966  }
967  }
968 
969  pstate->p_hasWindowFuncs = true;
970 }
971 
972 /*
973  * parseCheckAggregates
974  * Check for aggregates where they shouldn't be and improper grouping.
975  * This function should be called after the target list and qualifications
976  * are finalized.
977  *
978  * Misplaced aggregates are now mostly detected in transformAggregateCall,
979  * but it seems more robust to check for aggregates in recursive queries
980  * only after everything is finalized. In any case it's hard to detect
981  * improper grouping on-the-fly, so we have to make another pass over the
982  * query for that.
983  */
984 void
986 {
987  List *gset_common = NIL;
988  List *groupClauses = NIL;
989  List *groupClauseCommonVars = NIL;
990  bool have_non_var_grouping;
991  List *func_grouped_rels = NIL;
992  ListCell *l;
993  bool hasJoinRTEs;
994  bool hasSelfRefRTEs;
995  PlannerInfo *root = NULL;
996  Node *clause;
997 
998  /* This should only be called if we found aggregates or grouping */
999  Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual || qry->groupingSets);
1000 
1001  /*
1002  * If we have grouping sets, expand them and find the intersection of all
1003  * sets.
1004  */
1005  if (qry->groupingSets)
1006  {
1007  /*
1008  * The limit of 4096 is arbitrary and exists simply to avoid resource
1009  * issues from pathological constructs.
1010  */
1011  List *gsets = expand_grouping_sets(qry->groupingSets, 4096);
1012 
1013  if (!gsets)
1014  ereport(ERROR,
1015  (errcode(ERRCODE_STATEMENT_TOO_COMPLEX),
1016  errmsg("too many grouping sets present (maximum 4096)"),
1017  parser_errposition(pstate,
1018  qry->groupClause
1019  ? exprLocation((Node *) qry->groupClause)
1020  : exprLocation((Node *) qry->groupingSets))));
1021 
1022  /*
1023  * The intersection will often be empty, so help things along by
1024  * seeding the intersect with the smallest set.
1025  */
1026  gset_common = linitial(gsets);
1027 
1028  if (gset_common)
1029  {
1030  for_each_cell(l, lnext(list_head(gsets)))
1031  {
1032  gset_common = list_intersection_int(gset_common, lfirst(l));
1033  if (!gset_common)
1034  break;
1035  }
1036  }
1037 
1038  /*
1039  * If there was only one grouping set in the expansion, AND if the
1040  * groupClause is non-empty (meaning that the grouping set is not
1041  * empty either), then we can ditch the grouping set and pretend we
1042  * just had a normal GROUP BY.
1043  */
1044  if (list_length(gsets) == 1 && qry->groupClause)
1045  qry->groupingSets = NIL;
1046  }
1047 
1048  /*
1049  * Scan the range table to see if there are JOIN or self-reference CTE
1050  * entries. We'll need this info below.
1051  */
1052  hasJoinRTEs = hasSelfRefRTEs = false;
1053  foreach(l, pstate->p_rtable)
1054  {
1055  RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
1056 
1057  if (rte->rtekind == RTE_JOIN)
1058  hasJoinRTEs = true;
1059  else if (rte->rtekind == RTE_CTE && rte->self_reference)
1060  hasSelfRefRTEs = true;
1061  }
1062 
1063  /*
1064  * Build a list of the acceptable GROUP BY expressions for use by
1065  * check_ungrouped_columns().
1066  *
1067  * We get the TLE, not just the expr, because GROUPING wants to know the
1068  * sortgroupref.
1069  */
1070  foreach(l, qry->groupClause)
1071  {
1072  SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
1073  TargetEntry *expr;
1074 
1075  expr = get_sortgroupclause_tle(grpcl, qry->targetList);
1076  if (expr == NULL)
1077  continue; /* probably cannot happen */
1078 
1079  groupClauses = lcons(expr, groupClauses);
1080  }
1081 
1082  /*
1083  * If there are join alias vars involved, we have to flatten them to the
1084  * underlying vars, so that aliased and unaliased vars will be correctly
1085  * taken as equal. We can skip the expense of doing this if no rangetable
1086  * entries are RTE_JOIN kind. We use the planner's flatten_join_alias_vars
1087  * routine to do the flattening; it wants a PlannerInfo root node, which
1088  * fortunately can be mostly dummy.
1089  */
1090  if (hasJoinRTEs)
1091  {
1092  root = makeNode(PlannerInfo);
1093  root->parse = qry;
1095  root->hasJoinRTEs = true;
1096 
1097  groupClauses = (List *) flatten_join_alias_vars(root,
1098  (Node *) groupClauses);
1099  }
1100 
1101  /*
1102  * Detect whether any of the grouping expressions aren't simple Vars; if
1103  * they're all Vars then we don't have to work so hard in the recursive
1104  * scans. (Note we have to flatten aliases before this.)
1105  *
1106  * Track Vars that are included in all grouping sets separately in
1107  * groupClauseCommonVars, since these are the only ones we can use to
1108  * check for functional dependencies.
1109  */
1110  have_non_var_grouping = false;
1111  foreach(l, groupClauses)
1112  {
1113  TargetEntry *tle = lfirst(l);
1114 
1115  if (!IsA(tle->expr, Var))
1116  {
1117  have_non_var_grouping = true;
1118  }
1119  else if (!qry->groupingSets ||
1120  list_member_int(gset_common, tle->ressortgroupref))
1121  {
1122  groupClauseCommonVars = lappend(groupClauseCommonVars, tle->expr);
1123  }
1124  }
1125 
1126  /*
1127  * Check the targetlist and HAVING clause for ungrouped variables.
1128  *
1129  * Note: because we check resjunk tlist elements as well as regular ones,
1130  * this will also find ungrouped variables that came from ORDER BY and
1131  * WINDOW clauses. For that matter, it's also going to examine the
1132  * grouping expressions themselves --- but they'll all pass the test ...
1133  *
1134  * We also finalize GROUPING expressions, but for that we need to traverse
1135  * the original (unflattened) clause in order to modify nodes.
1136  */
1137  clause = (Node *) qry->targetList;
1138  finalize_grouping_exprs(clause, pstate, qry,
1139  groupClauses, root,
1140  have_non_var_grouping);
1141  if (hasJoinRTEs)
1142  clause = flatten_join_alias_vars(root, clause);
1143  check_ungrouped_columns(clause, pstate, qry,
1144  groupClauses, groupClauseCommonVars,
1145  have_non_var_grouping,
1146  &func_grouped_rels);
1147 
1148  clause = (Node *) qry->havingQual;
1149  finalize_grouping_exprs(clause, pstate, qry,
1150  groupClauses, root,
1151  have_non_var_grouping);
1152  if (hasJoinRTEs)
1153  clause = flatten_join_alias_vars(root, clause);
1154  check_ungrouped_columns(clause, pstate, qry,
1155  groupClauses, groupClauseCommonVars,
1156  have_non_var_grouping,
1157  &func_grouped_rels);
1158 
1159  /*
1160  * Per spec, aggregates can't appear in a recursive term.
1161  */
1162  if (pstate->p_hasAggs && hasSelfRefRTEs)
1163  ereport(ERROR,
1164  (errcode(ERRCODE_INVALID_RECURSION),
1165  errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
1166  parser_errposition(pstate,
1167  locate_agg_of_level((Node *) qry, 0))));
1168 }
1169 
1170 /*
1171  * check_ungrouped_columns -
1172  * Scan the given expression tree for ungrouped variables (variables
1173  * that are not listed in the groupClauses list and are not within
1174  * the arguments of aggregate functions). Emit a suitable error message
1175  * if any are found.
1176  *
1177  * NOTE: we assume that the given clause has been transformed suitably for
1178  * parser output. This means we can use expression_tree_walker.
1179  *
1180  * NOTE: we recognize grouping expressions in the main query, but only
1181  * grouping Vars in subqueries. For example, this will be rejected,
1182  * although it could be allowed:
1183  * SELECT
1184  * (SELECT x FROM bar where y = (foo.a + foo.b))
1185  * FROM foo
1186  * GROUP BY a + b;
1187  * The difficulty is the need to account for different sublevels_up.
1188  * This appears to require a whole custom version of equal(), which is
1189  * way more pain than the feature seems worth.
1190  */
1191 static void
1193  List *groupClauses, List *groupClauseCommonVars,
1194  bool have_non_var_grouping,
1195  List **func_grouped_rels)
1196 {
1198 
1199  context.pstate = pstate;
1200  context.qry = qry;
1201  context.root = NULL;
1202  context.groupClauses = groupClauses;
1203  context.groupClauseCommonVars = groupClauseCommonVars;
1204  context.have_non_var_grouping = have_non_var_grouping;
1205  context.func_grouped_rels = func_grouped_rels;
1206  context.sublevels_up = 0;
1207  context.in_agg_direct_args = false;
1208  check_ungrouped_columns_walker(node, &context);
1209 }
1210 
1211 static bool
1214 {
1215  ListCell *gl;
1216 
1217  if (node == NULL)
1218  return false;
1219  if (IsA(node, Const) ||
1220  IsA(node, Param))
1221  return false; /* constants are always acceptable */
1222 
1223  if (IsA(node, Aggref))
1224  {
1225  Aggref *agg = (Aggref *) node;
1226 
1227  if ((int) agg->agglevelsup == context->sublevels_up)
1228  {
1229  /*
1230  * If we find an aggregate call of the original level, do not
1231  * recurse into its normal arguments, ORDER BY arguments, or
1232  * filter; ungrouped vars there are not an error. But we should
1233  * check direct arguments as though they weren't in an aggregate.
1234  * We set a special flag in the context to help produce a useful
1235  * error message for ungrouped vars in direct arguments.
1236  */
1237  bool result;
1238 
1239  Assert(!context->in_agg_direct_args);
1240  context->in_agg_direct_args = true;
1242  context);
1243  context->in_agg_direct_args = false;
1244  return result;
1245  }
1246 
1247  /*
1248  * We can skip recursing into aggregates of higher levels altogether,
1249  * since they could not possibly contain Vars of concern to us (see
1250  * transformAggregateCall). We do need to look at aggregates of lower
1251  * levels, however.
1252  */
1253  if ((int) agg->agglevelsup > context->sublevels_up)
1254  return false;
1255  }
1256 
1257  if (IsA(node, GroupingFunc))
1258  {
1259  GroupingFunc *grp = (GroupingFunc *) node;
1260 
1261  /* handled GroupingFunc separately, no need to recheck at this level */
1262 
1263  if ((int) grp->agglevelsup >= context->sublevels_up)
1264  return false;
1265  }
1266 
1267  /*
1268  * If we have any GROUP BY items that are not simple Vars, check to see if
1269  * subexpression as a whole matches any GROUP BY item. We need to do this
1270  * at every recursion level so that we recognize GROUPed-BY expressions
1271  * before reaching variables within them. But this only works at the outer
1272  * query level, as noted above.
1273  */
1274  if (context->have_non_var_grouping && context->sublevels_up == 0)
1275  {
1276  foreach(gl, context->groupClauses)
1277  {
1278  TargetEntry *tle = lfirst(gl);
1279 
1280  if (equal(node, tle->expr))
1281  return false; /* acceptable, do not descend more */
1282  }
1283  }
1284 
1285  /*
1286  * If we have an ungrouped Var of the original query level, we have a
1287  * failure. Vars below the original query level are not a problem, and
1288  * neither are Vars from above it. (If such Vars are ungrouped as far as
1289  * their own query level is concerned, that's someone else's problem...)
1290  */
1291  if (IsA(node, Var))
1292  {
1293  Var *var = (Var *) node;
1294  RangeTblEntry *rte;
1295  char *attname;
1296 
1297  if (var->varlevelsup != context->sublevels_up)
1298  return false; /* it's not local to my query, ignore */
1299 
1300  /*
1301  * Check for a match, if we didn't do it above.
1302  */
1303  if (!context->have_non_var_grouping || context->sublevels_up != 0)
1304  {
1305  foreach(gl, context->groupClauses)
1306  {
1307  Var *gvar = (Var *) ((TargetEntry *) lfirst(gl))->expr;
1308 
1309  if (IsA(gvar, Var) &&
1310  gvar->varno == var->varno &&
1311  gvar->varattno == var->varattno &&
1312  gvar->varlevelsup == 0)
1313  return false; /* acceptable, we're okay */
1314  }
1315  }
1316 
1317  /*
1318  * Check whether the Var is known functionally dependent on the GROUP
1319  * BY columns. If so, we can allow the Var to be used, because the
1320  * grouping is really a no-op for this table. However, this deduction
1321  * depends on one or more constraints of the table, so we have to add
1322  * those constraints to the query's constraintDeps list, because it's
1323  * not semantically valid anymore if the constraint(s) get dropped.
1324  * (Therefore, this check must be the last-ditch effort before raising
1325  * error: we don't want to add dependencies unnecessarily.)
1326  *
1327  * Because this is a pretty expensive check, and will have the same
1328  * outcome for all columns of a table, we remember which RTEs we've
1329  * already proven functional dependency for in the func_grouped_rels
1330  * list. This test also prevents us from adding duplicate entries to
1331  * the constraintDeps list.
1332  */
1333  if (list_member_int(*context->func_grouped_rels, var->varno))
1334  return false; /* previously proven acceptable */
1335 
1336  Assert(var->varno > 0 &&
1337  (int) var->varno <= list_length(context->pstate->p_rtable));
1338  rte = rt_fetch(var->varno, context->pstate->p_rtable);
1339  if (rte->rtekind == RTE_RELATION)
1340  {
1342  var->varno,
1343  0,
1344  context->groupClauseCommonVars,
1345  &context->qry->constraintDeps))
1346  {
1347  *context->func_grouped_rels =
1348  lappend_int(*context->func_grouped_rels, var->varno);
1349  return false; /* acceptable */
1350  }
1351  }
1352 
1353  /* Found an ungrouped local variable; generate error message */
1354  attname = get_rte_attribute_name(rte, var->varattno);
1355  if (context->sublevels_up == 0)
1356  ereport(ERROR,
1357  (errcode(ERRCODE_GROUPING_ERROR),
1358  errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
1359  rte->eref->aliasname, attname),
1360  context->in_agg_direct_args ?
1361  errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
1362  parser_errposition(context->pstate, var->location)));
1363  else
1364  ereport(ERROR,
1365  (errcode(ERRCODE_GROUPING_ERROR),
1366  errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
1367  rte->eref->aliasname, attname),
1368  parser_errposition(context->pstate, var->location)));
1369  }
1370 
1371  if (IsA(node, Query))
1372  {
1373  /* Recurse into subselects */
1374  bool result;
1375 
1376  context->sublevels_up++;
1377  result = query_tree_walker((Query *) node,
1379  (void *) context,
1380  0);
1381  context->sublevels_up--;
1382  return result;
1383  }
1385  (void *) context);
1386 }
1387 
1388 /*
1389  * finalize_grouping_exprs -
1390  * Scan the given expression tree for GROUPING() and related calls,
1391  * and validate and process their arguments.
1392  *
1393  * This is split out from check_ungrouped_columns above because it needs
1394  * to modify the nodes (which it does in-place, not via a mutator) while
1395  * check_ungrouped_columns may see only a copy of the original thanks to
1396  * flattening of join alias vars. So here, we flatten each individual
1397  * GROUPING argument as we see it before comparing it.
1398  */
1399 static void
1401  List *groupClauses, PlannerInfo *root,
1402  bool have_non_var_grouping)
1403 {
1405 
1406  context.pstate = pstate;
1407  context.qry = qry;
1408  context.root = root;
1409  context.groupClauses = groupClauses;
1410  context.groupClauseCommonVars = NIL;
1411  context.have_non_var_grouping = have_non_var_grouping;
1412  context.func_grouped_rels = NULL;
1413  context.sublevels_up = 0;
1414  context.in_agg_direct_args = false;
1415  finalize_grouping_exprs_walker(node, &context);
1416 }
1417 
1418 static bool
1421 {
1422  ListCell *gl;
1423 
1424  if (node == NULL)
1425  return false;
1426  if (IsA(node, Const) ||
1427  IsA(node, Param))
1428  return false; /* constants are always acceptable */
1429 
1430  if (IsA(node, Aggref))
1431  {
1432  Aggref *agg = (Aggref *) node;
1433 
1434  if ((int) agg->agglevelsup == context->sublevels_up)
1435  {
1436  /*
1437  * If we find an aggregate call of the original level, do not
1438  * recurse into its normal arguments, ORDER BY arguments, or
1439  * filter; GROUPING exprs of this level are not allowed there. But
1440  * check direct arguments as though they weren't in an aggregate.
1441  */
1442  bool result;
1443 
1444  Assert(!context->in_agg_direct_args);
1445  context->in_agg_direct_args = true;
1447  context);
1448  context->in_agg_direct_args = false;
1449  return result;
1450  }
1451 
1452  /*
1453  * We can skip recursing into aggregates of higher levels altogether,
1454  * since they could not possibly contain exprs of concern to us (see
1455  * transformAggregateCall). We do need to look at aggregates of lower
1456  * levels, however.
1457  */
1458  if ((int) agg->agglevelsup > context->sublevels_up)
1459  return false;
1460  }
1461 
1462  if (IsA(node, GroupingFunc))
1463  {
1464  GroupingFunc *grp = (GroupingFunc *) node;
1465 
1466  /*
1467  * We only need to check GroupingFunc nodes at the exact level to
1468  * which they belong, since they cannot mix levels in arguments.
1469  */
1470 
1471  if ((int) grp->agglevelsup == context->sublevels_up)
1472  {
1473  ListCell *lc;
1474  List *ref_list = NIL;
1475 
1476  foreach(lc, grp->args)
1477  {
1478  Node *expr = lfirst(lc);
1479  Index ref = 0;
1480 
1481  if (context->root)
1482  expr = flatten_join_alias_vars(context->root, expr);
1483 
1484  /*
1485  * Each expression must match a grouping entry at the current
1486  * query level. Unlike the general expression case, we don't
1487  * allow functional dependencies or outer references.
1488  */
1489 
1490  if (IsA(expr, Var))
1491  {
1492  Var *var = (Var *) expr;
1493 
1494  if (var->varlevelsup == context->sublevels_up)
1495  {
1496  foreach(gl, context->groupClauses)
1497  {
1498  TargetEntry *tle = lfirst(gl);
1499  Var *gvar = (Var *) tle->expr;
1500 
1501  if (IsA(gvar, Var) &&
1502  gvar->varno == var->varno &&
1503  gvar->varattno == var->varattno &&
1504  gvar->varlevelsup == 0)
1505  {
1506  ref = tle->ressortgroupref;
1507  break;
1508  }
1509  }
1510  }
1511  }
1512  else if (context->have_non_var_grouping &&
1513  context->sublevels_up == 0)
1514  {
1515  foreach(gl, context->groupClauses)
1516  {
1517  TargetEntry *tle = lfirst(gl);
1518 
1519  if (equal(expr, tle->expr))
1520  {
1521  ref = tle->ressortgroupref;
1522  break;
1523  }
1524  }
1525  }
1526 
1527  if (ref == 0)
1528  ereport(ERROR,
1529  (errcode(ERRCODE_GROUPING_ERROR),
1530  errmsg("arguments to GROUPING must be grouping expressions of the associated query level"),
1531  parser_errposition(context->pstate,
1532  exprLocation(expr))));
1533 
1534  ref_list = lappend_int(ref_list, ref);
1535  }
1536 
1537  grp->refs = ref_list;
1538  }
1539 
1540  if ((int) grp->agglevelsup > context->sublevels_up)
1541  return false;
1542  }
1543 
1544  if (IsA(node, Query))
1545  {
1546  /* Recurse into subselects */
1547  bool result;
1548 
1549  context->sublevels_up++;
1550  result = query_tree_walker((Query *) node,
1552  (void *) context,
1553  0);
1554  context->sublevels_up--;
1555  return result;
1556  }
1558  (void *) context);
1559 }
1560 
1561 
1562 /*
1563  * Given a GroupingSet node, expand it and return a list of lists.
1564  *
1565  * For EMPTY nodes, return a list of one empty list.
1566  *
1567  * For SIMPLE nodes, return a list of one list, which is the node content.
1568  *
1569  * For CUBE and ROLLUP nodes, return a list of the expansions.
1570  *
1571  * For SET nodes, recursively expand contained CUBE and ROLLUP.
1572  */
1573 static List *
1575 {
1576  List *result = NIL;
1577 
1578  switch (gs->kind)
1579  {
1580  case GROUPING_SET_EMPTY:
1581  result = list_make1(NIL);
1582  break;
1583 
1584  case GROUPING_SET_SIMPLE:
1585  result = list_make1(gs->content);
1586  break;
1587 
1588  case GROUPING_SET_ROLLUP:
1589  {
1590  List *rollup_val = gs->content;
1591  ListCell *lc;
1592  int curgroup_size = list_length(gs->content);
1593 
1594  while (curgroup_size > 0)
1595  {
1596  List *current_result = NIL;
1597  int i = curgroup_size;
1598 
1599  foreach(lc, rollup_val)
1600  {
1601  GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1602 
1603  Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1604 
1605  current_result
1606  = list_concat(current_result,
1607  list_copy(gs_current->content));
1608 
1609  /* If we are done with making the current group, break */
1610  if (--i == 0)
1611  break;
1612  }
1613 
1614  result = lappend(result, current_result);
1615  --curgroup_size;
1616  }
1617 
1618  result = lappend(result, NIL);
1619  }
1620  break;
1621 
1622  case GROUPING_SET_CUBE:
1623  {
1624  List *cube_list = gs->content;
1625  int number_bits = list_length(cube_list);
1626  uint32 num_sets;
1627  uint32 i;
1628 
1629  /* parser should cap this much lower */
1630  Assert(number_bits < 31);
1631 
1632  num_sets = (1U << number_bits);
1633 
1634  for (i = 0; i < num_sets; i++)
1635  {
1636  List *current_result = NIL;
1637  ListCell *lc;
1638  uint32 mask = 1U;
1639 
1640  foreach(lc, cube_list)
1641  {
1642  GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1643 
1644  Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1645 
1646  if (mask & i)
1647  {
1648  current_result
1649  = list_concat(current_result,
1650  list_copy(gs_current->content));
1651  }
1652 
1653  mask <<= 1;
1654  }
1655 
1656  result = lappend(result, current_result);
1657  }
1658  }
1659  break;
1660 
1661  case GROUPING_SET_SETS:
1662  {
1663  ListCell *lc;
1664 
1665  foreach(lc, gs->content)
1666  {
1667  List *current_result = expand_groupingset_node(lfirst(lc));
1668 
1669  result = list_concat(result, current_result);
1670  }
1671  }
1672  break;
1673  }
1674 
1675  return result;
1676 }
1677 
1678 static int
1679 cmp_list_len_asc(const void *a, const void *b)
1680 {
1681  int la = list_length(*(List *const *) a);
1682  int lb = list_length(*(List *const *) b);
1683 
1684  return (la > lb) ? 1 : (la == lb) ? 0 : -1;
1685 }
1686 
1687 /*
1688  * Expand a groupingSets clause to a flat list of grouping sets.
1689  * The returned list is sorted by length, shortest sets first.
1690  *
1691  * This is mainly for the planner, but we use it here too to do
1692  * some consistency checks.
1693  */
1694 List *
1695 expand_grouping_sets(List *groupingSets, int limit)
1696 {
1697  List *expanded_groups = NIL;
1698  List *result = NIL;
1699  double numsets = 1;
1700  ListCell *lc;
1701 
1702  if (groupingSets == NIL)
1703  return NIL;
1704 
1705  foreach(lc, groupingSets)
1706  {
1707  List *current_result = NIL;
1708  GroupingSet *gs = lfirst(lc);
1709 
1710  current_result = expand_groupingset_node(gs);
1711 
1712  Assert(current_result != NIL);
1713 
1714  numsets *= list_length(current_result);
1715 
1716  if (limit >= 0 && numsets > limit)
1717  return NIL;
1718 
1719  expanded_groups = lappend(expanded_groups, current_result);
1720  }
1721 
1722  /*
1723  * Do cartesian product between sublists of expanded_groups. While at it,
1724  * remove any duplicate elements from individual grouping sets (we must
1725  * NOT change the number of sets though)
1726  */
1727 
1728  foreach(lc, (List *) linitial(expanded_groups))
1729  {
1730  result = lappend(result, list_union_int(NIL, (List *) lfirst(lc)));
1731  }
1732 
1733  for_each_cell(lc, lnext(list_head(expanded_groups)))
1734  {
1735  List *p = lfirst(lc);
1736  List *new_result = NIL;
1737  ListCell *lc2;
1738 
1739  foreach(lc2, result)
1740  {
1741  List *q = lfirst(lc2);
1742  ListCell *lc3;
1743 
1744  foreach(lc3, p)
1745  {
1746  new_result = lappend(new_result,
1747  list_union_int(q, (List *) lfirst(lc3)));
1748  }
1749  }
1750  result = new_result;
1751  }
1752 
1753  if (list_length(result) > 1)
1754  {
1755  int result_len = list_length(result);
1756  List **buf = palloc(sizeof(List *) * result_len);
1757  List **ptr = buf;
1758 
1759  foreach(lc, result)
1760  {
1761  *ptr++ = lfirst(lc);
1762  }
1763 
1764  qsort(buf, result_len, sizeof(List *), cmp_list_len_asc);
1765 
1766  result = NIL;
1767  ptr = buf;
1768 
1769  while (result_len-- > 0)
1770  result = lappend(result, *ptr++);
1771 
1772  pfree(buf);
1773  }
1774 
1775  return result;
1776 }
1777 
1778 /*
1779  * get_aggregate_argtypes
1780  * Identify the specific datatypes passed to an aggregate call.
1781  *
1782  * Given an Aggref, extract the actual datatypes of the input arguments.
1783  * The input datatypes are reported in a way that matches up with the
1784  * aggregate's declaration, ie, any ORDER BY columns attached to a plain
1785  * aggregate are ignored, but we report both direct and aggregated args of
1786  * an ordered-set aggregate.
1787  *
1788  * Datatypes are returned into inputTypes[], which must reference an array
1789  * of length FUNC_MAX_ARGS.
1790  *
1791  * The function result is the number of actual arguments.
1792  */
1793 int
1794 get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
1795 {
1796  int numArguments = 0;
1797  ListCell *lc;
1798 
1800 
1801  foreach(lc, aggref->aggargtypes)
1802  {
1803  inputTypes[numArguments++] = lfirst_oid(lc);
1804  }
1805 
1806  return numArguments;
1807 }
1808 
1809 /*
1810  * resolve_aggregate_transtype
1811  * Identify the transition state value's datatype for an aggregate call.
1812  *
1813  * This function resolves a polymorphic aggregate's state datatype.
1814  * It must be passed the aggtranstype from the aggregate's catalog entry,
1815  * as well as the actual argument types extracted by get_aggregate_argtypes.
1816  * (We could fetch pg_aggregate.aggtranstype internally, but all existing
1817  * callers already have the value at hand, so we make them pass it.)
1818  */
1819 Oid
1821  Oid aggtranstype,
1822  Oid *inputTypes,
1823  int numArguments)
1824 {
1825  /* resolve actual type of transition state, if polymorphic */
1826  if (IsPolymorphicType(aggtranstype))
1827  {
1828  /* have to fetch the agg's declared input types... */
1829  Oid *declaredArgTypes;
1830  int agg_nargs;
1831 
1832  (void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);
1833 
1834  /*
1835  * VARIADIC ANY aggs could have more actual than declared args, but
1836  * such extra args can't affect polymorphic type resolution.
1837  */
1838  Assert(agg_nargs <= numArguments);
1839 
1840  aggtranstype = enforce_generic_type_consistency(inputTypes,
1841  declaredArgTypes,
1842  agg_nargs,
1843  aggtranstype,
1844  false);
1845  pfree(declaredArgTypes);
1846  }
1847  return aggtranstype;
1848 }
1849 
1850 /*
1851  * Create an expression tree for the transition function of an aggregate.
1852  * This is needed so that polymorphic functions can be used within an
1853  * aggregate --- without the expression tree, such functions would not know
1854  * the datatypes they are supposed to use. (The trees will never actually
1855  * be executed, however, so we can skimp a bit on correctness.)
1856  *
1857  * agg_input_types and agg_state_type identifies the input types of the
1858  * aggregate. These should be resolved to actual types (ie, none should
1859  * ever be ANYELEMENT etc).
1860  * agg_input_collation is the aggregate function's input collation.
1861  *
1862  * For an ordered-set aggregate, remember that agg_input_types describes
1863  * the direct arguments followed by the aggregated arguments.
1864  *
1865  * transfn_oid and invtransfn_oid identify the funcs to be called; the
1866  * latter may be InvalidOid, however if invtransfn_oid is set then
1867  * transfn_oid must also be set.
1868  *
1869  * Pointers to the constructed trees are returned into *transfnexpr,
1870  * *invtransfnexpr. If there is no invtransfn, the respective pointer is set
1871  * to NULL. Since use of the invtransfn is optional, NULL may be passed for
1872  * invtransfnexpr.
1873  */
1874 void
1876  int agg_num_inputs,
1877  int agg_num_direct_inputs,
1878  bool agg_variadic,
1879  Oid agg_state_type,
1880  Oid agg_input_collation,
1881  Oid transfn_oid,
1882  Oid invtransfn_oid,
1883  Expr **transfnexpr,
1884  Expr **invtransfnexpr)
1885 {
1886  List *args;
1887  FuncExpr *fexpr;
1888  int i;
1889 
1890  /*
1891  * Build arg list to use in the transfn FuncExpr node.
1892  */
1893  args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
1894 
1895  for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
1896  {
1897  args = lappend(args,
1898  make_agg_arg(agg_input_types[i], agg_input_collation));
1899  }
1900 
1901  fexpr = makeFuncExpr(transfn_oid,
1902  agg_state_type,
1903  args,
1904  InvalidOid,
1905  agg_input_collation,
1907  fexpr->funcvariadic = agg_variadic;
1908  *transfnexpr = (Expr *) fexpr;
1909 
1910  /*
1911  * Build invtransfn expression if requested, with same args as transfn
1912  */
1913  if (invtransfnexpr != NULL)
1914  {
1915  if (OidIsValid(invtransfn_oid))
1916  {
1917  fexpr = makeFuncExpr(invtransfn_oid,
1918  agg_state_type,
1919  args,
1920  InvalidOid,
1921  agg_input_collation,
1923  fexpr->funcvariadic = agg_variadic;
1924  *invtransfnexpr = (Expr *) fexpr;
1925  }
1926  else
1927  *invtransfnexpr = NULL;
1928  }
1929 }
1930 
1931 /*
1932  * Like build_aggregate_transfn_expr, but creates an expression tree for the
1933  * combine function of an aggregate, rather than the transition function.
1934  */
1935 void
1937  Oid agg_input_collation,
1938  Oid combinefn_oid,
1939  Expr **combinefnexpr)
1940 {
1941  Node *argp;
1942  List *args;
1943  FuncExpr *fexpr;
1944 
1945  /* combinefn takes two arguments of the aggregate state type */
1946  argp = make_agg_arg(agg_state_type, agg_input_collation);
1947 
1948  args = list_make2(argp, argp);
1949 
1950  fexpr = makeFuncExpr(combinefn_oid,
1951  agg_state_type,
1952  args,
1953  InvalidOid,
1954  agg_input_collation,
1956  /* combinefn is currently never treated as variadic */
1957  *combinefnexpr = (Expr *) fexpr;
1958 }
1959 
1960 /*
1961  * Like build_aggregate_transfn_expr, but creates an expression tree for the
1962  * serialization function of an aggregate.
1963  */
1964 void
1966  Expr **serialfnexpr)
1967 {
1968  List *args;
1969  FuncExpr *fexpr;
1970 
1971  /* serialfn always takes INTERNAL and returns BYTEA */
1973 
1974  fexpr = makeFuncExpr(serialfn_oid,
1975  BYTEAOID,
1976  args,
1977  InvalidOid,
1978  InvalidOid,
1980  *serialfnexpr = (Expr *) fexpr;
1981 }
1982 
1983 /*
1984  * Like build_aggregate_transfn_expr, but creates an expression tree for the
1985  * deserialization function of an aggregate.
1986  */
1987 void
1989  Expr **deserialfnexpr)
1990 {
1991  List *args;
1992  FuncExpr *fexpr;
1993 
1994  /* deserialfn always takes BYTEA, INTERNAL and returns INTERNAL */
1997 
1998  fexpr = makeFuncExpr(deserialfn_oid,
1999  INTERNALOID,
2000  args,
2001  InvalidOid,
2002  InvalidOid,
2004  *deserialfnexpr = (Expr *) fexpr;
2005 }
2006 
2007 /*
2008  * Like build_aggregate_transfn_expr, but creates an expression tree for the
2009  * final function of an aggregate, rather than the transition function.
2010  */
2011 void
2013  int num_finalfn_inputs,
2014  Oid agg_state_type,
2015  Oid agg_result_type,
2016  Oid agg_input_collation,
2017  Oid finalfn_oid,
2018  Expr **finalfnexpr)
2019 {
2020  List *args;
2021  int i;
2022 
2023  /*
2024  * Build expr tree for final function
2025  */
2026  args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
2027 
2028  /* finalfn may take additional args, which match agg's input types */
2029  for (i = 0; i < num_finalfn_inputs - 1; i++)
2030  {
2031  args = lappend(args,
2032  make_agg_arg(agg_input_types[i], agg_input_collation));
2033  }
2034 
2035  *finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
2036  agg_result_type,
2037  args,
2038  InvalidOid,
2039  agg_input_collation,
2041  /* finalfn is currently never treated as variadic */
2042 }
2043 
2044 /*
2045  * Convenience function to build dummy argument expressions for aggregates.
2046  *
2047  * We really only care that an aggregate support function can discover its
2048  * actual argument types at runtime using get_fn_expr_argtype(), so it's okay
2049  * to use Param nodes that don't correspond to any real Param.
2050  */
2051 static Node *
2052 make_agg_arg(Oid argtype, Oid argcollation)
2053 {
2054  Param *argp = makeNode(Param);
2055 
2056  argp->paramkind = PARAM_EXEC;
2057  argp->paramid = -1;
2058  argp->paramtype = argtype;
2059  argp->paramtypmod = -1;
2060  argp->paramcollid = argcollation;
2061  argp->location = -1;
2062  return (Node *) argp;
2063 }
#define list_make2(x1, x2)
Definition: pg_list.h:140
List * aggdistinct
Definition: primnodes.h:303
bool check_functional_grouping(Oid relid, Index varno, Index varlevelsup, List *grouping_columns, List **constraintDeps)
List * partitionClause
Definition: parsenodes.h:488
static int cmp_list_len_asc(const void *a, const void *b)
Definition: parse_agg.c:1679
#define NIL
Definition: pg_list.h:69
static Node * make_agg_arg(Oid argtype, Oid argcollation)
Definition: parse_agg.c:2052
bool query_tree_walker(Query *query, bool(*walker)(), void *context, int flags)
Definition: nodeFuncs.c:2246
#define IsA(nodeptr, _type_)
Definition: nodes.h:560
Query * parse
Definition: relation.h:155
static bool check_ungrouped_columns_walker(Node *node, check_ungrouped_columns_context *context)
Definition: parse_agg.c:1212
Index varlevelsup
Definition: primnodes.h:173
TargetEntry * get_sortgroupclause_tle(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:370
int errhint(const char *fmt,...)
Definition: elog.c:987
#define FRAMEOPTION_DEFAULTS
Definition: parsenodes.h:524
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:180
bool hasJoinRTEs
Definition: relation.h:299
List * args
Definition: primnodes.h:341
List * content
Definition: parsenodes.h:1246
List * refs
Definition: primnodes.h:343
int exprLocation(const Node *expr)
Definition: nodeFuncs.c:1186
List * args
Definition: primnodes.h:359
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:2962
List * list_intersection_int(const List *list1, const List *list2)
Definition: list.c:826
int frameOptions
Definition: parsenodes.h:490
List * addTargetToSortList(ParseState *pstate, TargetEntry *tle, List *sortlist, List *targetlist, SortBy *sortby)
List * transformSortClause(ParseState *pstate, List *orderlist, List **targetlist, ParseExprKind exprKind, bool useSQL99)
List * constraintDeps
Definition: parsenodes.h:166
char * name
Definition: parsenodes.h:486
#define Min(x, y)
Definition: c.h:806
Node * transformExpr(ParseState *pstate, Node *expr, ParseExprKind exprKind)
Definition: parse_expr.c:146
List * list_truncate(List *list, int new_size)
Definition: list.c:350
Oid get_func_signature(Oid funcid, Oid **argtypes, int *nargs)
Definition: lsyscache.c:1500
List * groupingSets
Definition: parsenodes.h:148
ParamKind paramkind
Definition: primnodes.h:244
Node * get_sortgroupclause_expr(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:382
List * list_copy(const List *oldlist)
Definition: list.c:1160
Definition: nodes.h:509
int errcode(int sqlerrcode)
Definition: elog.c:575
List * args
Definition: primnodes.h:301
AttrNumber varattno
Definition: primnodes.h:168
bool p_hasAggs
Definition: parse_node.h:198
char * format_type_be(Oid type_oid)
Definition: format_type.c:94
List * list_concat(List *list1, List *list2)
Definition: list.c:321
return result
Definition: formatting.c:1633
int locate_windowfunc(Node *node)
Definition: rewriteManip.c:235
void build_aggregate_deserialfn_expr(Oid deserialfn_oid, Expr **deserialfnexpr)
Definition: parse_agg.c:1988
static void check_agglevels_and_constraints(ParseState *pstate, Node *expr)
Definition: parse_agg.c:287
void build_aggregate_finalfn_expr(Oid *agg_input_types, int num_finalfn_inputs, Oid agg_state_type, Oid agg_result_type, Oid agg_input_collation, Oid finalfn_oid, Expr **finalfnexpr)
Definition: parse_agg.c:2012
List * list_copy_tail(const List *oldlist, int nskip)
Definition: list.c:1203
unsigned int Oid
Definition: postgres_ext.h:31
Index winref
Definition: primnodes.h:361
Definition: primnodes.h:163
List * lappend_oid(List *list, Oid datum)
Definition: list.c:164
#define OidIsValid(objectId)
Definition: c.h:538
void parseCheckAggregates(ParseState *pstate, Query *qry)
Definition: parse_agg.c:985
const char * ParseExprKindName(ParseExprKind exprKind)
Definition: parse_expr.c:3393
List * targetList
Definition: parsenodes.h:138
bool p_hasWindowFuncs
Definition: parse_node.h:199
GroupingSetKind kind
Definition: parsenodes.h:1245
#define FUNC_MAX_ARGS
#define list_make1(x1)
Definition: pg_list.h:139
#define AGGKIND_IS_ORDERED_SET(kind)
Definition: pg_aggregate.h:129
List * aggargtypes
Definition: primnodes.h:299
int locate_var_of_level(Node *node, int levelsup)
Definition: var.c:437
Node * startOffset
Definition: parsenodes.h:491
void pfree(void *pointer)
Definition: mcxt.c:950
static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry, List *groupClauses, List *groupClauseVars, bool have_non_var_grouping, List **func_grouped_rels)
Definition: parse_agg.c:1192
#define linitial(l)
Definition: pg_list.h:111
static List * expand_groupingset_node(GroupingSet *gs)
Definition: parse_agg.c:1574
#define ERROR
Definition: elog.h:43
static bool finalize_grouping_exprs_walker(Node *node, check_ungrouped_columns_context *context)
Definition: parse_agg.c:1419
#define IsPolymorphicType(typid)
Definition: pg_type.h:745
Oid paramcollid
Definition: primnodes.h:248
int location
Definition: primnodes.h:249
int location
Definition: parsenodes.h:493
List * p_windowdefs
Definition: parse_node.h:185
Oid enforce_generic_type_consistency(Oid *actual_arg_types, Oid *declared_arg_types, int nargs, Oid rettype, bool allow_poly)
Node * endOffset
Definition: parsenodes.h:492
int location
Definition: primnodes.h:311
static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry, List *groupClauses, PlannerInfo *root, bool have_non_var_grouping)
Definition: parse_agg.c:1400
bool list_member_int(const List *list, int datum)
Definition: list.c:485
int location
Definition: primnodes.h:178
static char * buf
Definition: pg_test_fsync.c:66
List * aggorder
Definition: primnodes.h:302
int errdetail(const char *fmt,...)
Definition: elog.c:873
Index agglevelsup
Definition: primnodes.h:309
int p_next_resno
Definition: parse_node.h:187
List * list_union_int(const List *list1, const List *list2)
Definition: list.c:744
static ListCell * list_head(const List *l)
Definition: pg_list.h:77
unsigned int uint32
Definition: c.h:268
List * aggdirectargs
Definition: primnodes.h:300
MemoryContext CurrentMemoryContext
Definition: mcxt.c:37
#define lnext(lc)
Definition: pg_list.h:105
#define ereport(elevel, rest)
Definition: elog.h:122
void build_aggregate_combinefn_expr(Oid agg_state_type, Oid agg_input_collation, Oid combinefn_oid, Expr **combinefnexpr)
Definition: parse_agg.c:1936
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:235
List * lappend_int(List *list, int datum)
Definition: list.c:146
List * lappend(List *list, void *datum)
Definition: list.c:128
int locate_agg_of_level(Node *node, int levelsup)
Definition: rewriteManip.c:131
Index varno
Definition: primnodes.h:166
void transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc, WindowDef *windef)
Definition: parse_agg.c:754
struct ParseState * parentParseState
Definition: parse_node.h:170
List * orderClause
Definition: parsenodes.h:489
Node * flatten_join_alias_vars(PlannerInfo *root, Node *node)
Definition: var.c:670
Index agglevelsup
Definition: primnodes.h:345
bool self_reference
Definition: parsenodes.h:1008
Node * transformGroupingFunc(ParseState *pstate, GroupingFunc *p)
Definition: parse_agg.c:248
unsigned int Index
Definition: c.h:365
ParseExprKind p_expr_kind
Definition: parse_node.h:186
#define InvalidOid
Definition: postgres_ext.h:36
#define INTERNALOID
Definition: pg_type.h:698
bool p_lateral_active
Definition: parse_node.h:178
char * get_rte_attribute_name(RangeTblEntry *rte, AttrNumber attnum)
int32 paramtypmod
Definition: primnodes.h:247
List * lcons(void *datum, List *list)
Definition: list.c:259
int errmsg_internal(const char *fmt,...)
Definition: elog.c:827
#define makeNode(_type_)
Definition: nodes.h:557
int location
Definition: primnodes.h:364
#define NULL
Definition: c.h:229
#define Assert(condition)
Definition: c.h:675
#define lfirst(lc)
Definition: pg_list.h:106
char * aliasname
Definition: primnodes.h:42
void build_aggregate_serialfn_expr(Oid serialfn_oid, Expr **serialfnexpr)
Definition: parse_agg.c:1965
Expr * expr
Definition: primnodes.h:1368
int paramid
Definition: primnodes.h:245
void build_aggregate_transfn_expr(Oid *agg_input_types, int agg_num_inputs, int agg_num_direct_inputs, bool agg_variadic, Oid agg_state_type, Oid agg_input_collation, Oid transfn_oid, Oid invtransfn_oid, Expr **transfnexpr, Expr **invtransfnexpr)
Definition: parse_agg.c:1875
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
bool expression_tree_walker(Node *node, bool(*walker)(), void *context)
Definition: nodeFuncs.c:1843
static int list_length(const List *l)
Definition: pg_list.h:89
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:111
Expr * aggfilter
Definition: primnodes.h:304
#define for_each_cell(cell, initcell)
Definition: pg_list.h:169
#define BYTEAOID
Definition: pg_type.h:292
List * expand_grouping_sets(List *groupingSets, int limit)
Definition: parse_agg.c:1695
RTEKind rtekind
Definition: parsenodes.h:936
List * groupClause
Definition: parsenodes.h:146
void * palloc(Size size)
Definition: mcxt.c:849
int errmsg(const char *fmt,...)
Definition: elog.c:797
int i
Index ressortgroupref
Definition: primnodes.h:1371
void * arg
char aggkind
Definition: primnodes.h:308
MemoryContext planner_cxt
Definition: relation.h:287
Alias * eref
Definition: parsenodes.h:1035
#define qsort(a, b, c, d)
Definition: port.h:440
static int check_agg_arguments(ParseState *pstate, List *directargs, List *args, Expr *filter)
Definition: parse_agg.c:569
char * refname
Definition: parsenodes.h:487
List * transformDistinctClause(ParseState *pstate, List **targetlist, List *sortClause, bool is_agg)
Node * havingQual
Definition: parsenodes.h:150
int get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
Definition: parse_agg.c:1794
Definition: pg_list.h:45
int16 AttrNumber
Definition: attnum.h:21
#define _(x)
Definition: elog.c:84
static bool check_agg_arguments_walker(Node *node, check_agg_arguments_context *context)
Definition: parse_agg.c:657
Oid paramtype
Definition: primnodes.h:246
bool contain_windowfuncs(Node *node)
Definition: rewriteManip.c:197
bool funcvariadic
Definition: primnodes.h:452
#define lfirst_oid(lc)
Definition: pg_list.h:108
Oid resolve_aggregate_transtype(Oid aggfuncid, Oid aggtranstype, Oid *inputTypes, int numArguments)
Definition: parse_agg.c:1820
FuncExpr * makeFuncExpr(Oid funcid, Oid rettype, List *args, Oid funccollid, Oid inputcollid, CoercionForm fformat)
Definition: makefuncs.c:517
void transformAggregateCall(ParseState *pstate, Aggref *agg, List *args, List *aggorder, bool agg_distinct)
Definition: parse_agg.c:103
List * p_rtable
Definition: parse_node.h:172