PostgreSQL Source Code  git master
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros
parse_agg.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * parse_agg.c
4  * handle aggregates and window functions in parser
5  *
6  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/parser/parse_agg.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include "catalog/pg_aggregate.h"
19 #include "catalog/pg_type.h"
20 #include "nodes/makefuncs.h"
21 #include "nodes/nodeFuncs.h"
22 #include "optimizer/tlist.h"
23 #include "optimizer/var.h"
24 #include "parser/parse_agg.h"
25 #include "parser/parse_clause.h"
26 #include "parser/parse_coerce.h"
27 #include "parser/parse_expr.h"
28 #include "parser/parsetree.h"
29 #include "rewrite/rewriteManip.h"
30 #include "utils/builtins.h"
31 #include "utils/lsyscache.h"
32 
33 
34 typedef struct
35 {
41 
42 typedef struct
43 {
54 
55 static int check_agg_arguments(ParseState *pstate,
56  List *directargs,
57  List *args,
58  Expr *filter);
59 static bool check_agg_arguments_walker(Node *node,
61 static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
62  List *groupClauses, List *groupClauseVars,
63  bool have_non_var_grouping,
64  List **func_grouped_rels);
65 static bool check_ungrouped_columns_walker(Node *node,
67 static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
68  List *groupClauses, PlannerInfo *root,
69  bool have_non_var_grouping);
70 static bool finalize_grouping_exprs_walker(Node *node,
72 static void check_agglevels_and_constraints(ParseState *pstate, Node *expr);
74 static Node *make_agg_arg(Oid argtype, Oid argcollation);
75 
76 
77 /*
78  * transformAggregateCall -
79  * Finish initial transformation of an aggregate call
80  *
81  * parse_func.c has recognized the function as an aggregate, and has set up
82  * all the fields of the Aggref except aggargtypes, aggdirectargs, args,
83  * aggorder, aggdistinct and agglevelsup. The passed-in args list has been
84  * through standard expression transformation and type coercion to match the
85  * agg's declared arg types, while the passed-in aggorder list hasn't been
86  * transformed at all.
87  *
88  * Here we separate the args list into direct and aggregated args, storing the
89  * former in agg->aggdirectargs and the latter in agg->args. The regular
90  * args, but not the direct args, are converted into a targetlist by inserting
91  * TargetEntry nodes. We then transform the aggorder and agg_distinct
92  * specifications to produce lists of SortGroupClause nodes for agg->aggorder
93  * and agg->aggdistinct. (For a regular aggregate, this might result in
94  * adding resjunk expressions to the targetlist; but for ordered-set
95  * aggregates the aggorder list will always be one-to-one with the aggregated
96  * args.)
97  *
98  * We must also determine which query level the aggregate actually belongs to,
99  * set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
100  * pstate level.
101  */
102 void
104  List *args, List *aggorder, bool agg_distinct)
105 {
106  List *argtypes = NIL;
107  List *tlist = NIL;
108  List *torder = NIL;
109  List *tdistinct = NIL;
110  AttrNumber attno = 1;
111  int save_next_resno;
112  ListCell *lc;
113 
114  /*
115  * Before separating the args into direct and aggregated args, make a list
116  * of their data type OIDs for use later.
117  */
118  foreach(lc, args)
119  {
120  Expr *arg = (Expr *) lfirst(lc);
121 
122  argtypes = lappend_oid(argtypes, exprType((Node *) arg));
123  }
124  agg->aggargtypes = argtypes;
125 
127  {
128  /*
129  * For an ordered-set agg, the args list includes direct args and
130  * aggregated args; we must split them apart.
131  */
132  int numDirectArgs = list_length(args) - list_length(aggorder);
133  List *aargs;
134  ListCell *lc2;
135 
136  Assert(numDirectArgs >= 0);
137 
138  aargs = list_copy_tail(args, numDirectArgs);
139  agg->aggdirectargs = list_truncate(args, numDirectArgs);
140 
141  /*
142  * Build a tlist from the aggregated args, and make a sortlist entry
143  * for each one. Note that the expressions in the SortBy nodes are
144  * ignored (they are the raw versions of the transformed args); we are
145  * just looking at the sort information in the SortBy nodes.
146  */
147  forboth(lc, aargs, lc2, aggorder)
148  {
149  Expr *arg = (Expr *) lfirst(lc);
150  SortBy *sortby = (SortBy *) lfirst(lc2);
151  TargetEntry *tle;
152 
153  /* We don't bother to assign column names to the entries */
154  tle = makeTargetEntry(arg, attno++, NULL, false);
155  tlist = lappend(tlist, tle);
156 
157  torder = addTargetToSortList(pstate, tle,
158  torder, tlist, sortby);
159  }
160 
161  /* Never any DISTINCT in an ordered-set agg */
162  Assert(!agg_distinct);
163  }
164  else
165  {
166  /* Regular aggregate, so it has no direct args */
167  agg->aggdirectargs = NIL;
168 
169  /*
170  * Transform the plain list of Exprs into a targetlist.
171  */
172  foreach(lc, args)
173  {
174  Expr *arg = (Expr *) lfirst(lc);
175  TargetEntry *tle;
176 
177  /* We don't bother to assign column names to the entries */
178  tle = makeTargetEntry(arg, attno++, NULL, false);
179  tlist = lappend(tlist, tle);
180  }
181 
182  /*
183  * If we have an ORDER BY, transform it. This will add columns to the
184  * tlist if they appear in ORDER BY but weren't already in the arg
185  * list. They will be marked resjunk = true so we can tell them apart
186  * from regular aggregate arguments later.
187  *
188  * We need to mess with p_next_resno since it will be used to number
189  * any new targetlist entries.
190  */
191  save_next_resno = pstate->p_next_resno;
192  pstate->p_next_resno = attno;
193 
194  torder = transformSortClause(pstate,
195  aggorder,
196  &tlist,
198  true /* force SQL99 rules */ );
199 
200  /*
201  * If we have DISTINCT, transform that to produce a distinctList.
202  */
203  if (agg_distinct)
204  {
205  tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
206 
207  /*
208  * Remove this check if executor support for hashed distinct for
209  * aggregates is ever added.
210  */
211  foreach(lc, tdistinct)
212  {
213  SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
214 
215  if (!OidIsValid(sortcl->sortop))
216  {
217  Node *expr = get_sortgroupclause_expr(sortcl, tlist);
218 
219  ereport(ERROR,
220  (errcode(ERRCODE_UNDEFINED_FUNCTION),
221  errmsg("could not identify an ordering operator for type %s",
222  format_type_be(exprType(expr))),
223  errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
224  parser_errposition(pstate, exprLocation(expr))));
225  }
226  }
227  }
228 
229  pstate->p_next_resno = save_next_resno;
230  }
231 
232  /* Update the Aggref with the transformation results */
233  agg->args = tlist;
234  agg->aggorder = torder;
235  agg->aggdistinct = tdistinct;
236 
237  check_agglevels_and_constraints(pstate, (Node *) agg);
238 }
239 
240 /*
241  * transformGroupingFunc
242  * Transform a GROUPING expression
243  *
244  * GROUPING() behaves very like an aggregate. Processing of levels and nesting
245  * is done as for aggregates. We set p_hasAggs for these expressions too.
246  */
247 Node *
249 {
250  ListCell *lc;
251  List *args = p->args;
252  List *result_list = NIL;
254 
255  if (list_length(args) > 31)
256  ereport(ERROR,
257  (errcode(ERRCODE_TOO_MANY_ARGUMENTS),
258  errmsg("GROUPING must have fewer than 32 arguments"),
259  parser_errposition(pstate, p->location)));
260 
261  foreach(lc, args)
262  {
263  Node *current_result;
264 
265  current_result = transformExpr(pstate, (Node *) lfirst(lc), pstate->p_expr_kind);
266 
267  /* acceptability of expressions is checked later */
268 
269  result_list = lappend(result_list, current_result);
270  }
271 
272  result->args = result_list;
273  result->location = p->location;
274 
275  check_agglevels_and_constraints(pstate, (Node *) result);
276 
277  return (Node *) result;
278 }
279 
280 /*
281  * Aggregate functions and grouping operations (which are combined in the spec
282  * as <set function specification>) are very similar with regard to level and
283  * nesting restrictions (though we allow a lot more things than the spec does).
284  * Centralise those restrictions here.
285  */
286 static void
288 {
289  List *directargs = NIL;
290  List *args = NIL;
291  Expr *filter = NULL;
292  int min_varlevel;
293  int location = -1;
294  Index *p_levelsup;
295  const char *err;
296  bool errkind;
297  bool isAgg = IsA(expr, Aggref);
298 
299  if (isAgg)
300  {
301  Aggref *agg = (Aggref *) expr;
302 
303  directargs = agg->aggdirectargs;
304  args = agg->args;
305  filter = agg->aggfilter;
306  location = agg->location;
307  p_levelsup = &agg->agglevelsup;
308  }
309  else
310  {
311  GroupingFunc *grp = (GroupingFunc *) expr;
312 
313  args = grp->args;
314  location = grp->location;
315  p_levelsup = &grp->agglevelsup;
316  }
317 
318  /*
319  * Check the arguments to compute the aggregate's level and detect
320  * improper nesting.
321  */
322  min_varlevel = check_agg_arguments(pstate,
323  directargs,
324  args,
325  filter);
326 
327  *p_levelsup = min_varlevel;
328 
329  /* Mark the correct pstate level as having aggregates */
330  while (min_varlevel-- > 0)
331  pstate = pstate->parentParseState;
332  pstate->p_hasAggs = true;
333 
334  /*
335  * Check to see if the aggregate function is in an invalid place within
336  * its aggregation query.
337  *
338  * For brevity we support two schemes for reporting an error here: set
339  * "err" to a custom message, or set "errkind" true if the error context
340  * is sufficiently identified by what ParseExprKindName will return, *and*
341  * what it will return is just a SQL keyword. (Otherwise, use a custom
342  * message to avoid creating translation problems.)
343  */
344  err = NULL;
345  errkind = false;
346  switch (pstate->p_expr_kind)
347  {
348  case EXPR_KIND_NONE:
349  Assert(false); /* can't happen */
350  break;
351  case EXPR_KIND_OTHER:
352 
353  /*
354  * Accept aggregate/grouping here; caller must throw error if
355  * wanted
356  */
357  break;
358  case EXPR_KIND_JOIN_ON:
360  if (isAgg)
361  err = _("aggregate functions are not allowed in JOIN conditions");
362  else
363  err = _("grouping operations are not allowed in JOIN conditions");
364 
365  break;
367  /* Should only be possible in a LATERAL subquery */
368  Assert(pstate->p_lateral_active);
369 
370  /*
371  * Aggregate/grouping scope rules make it worth being explicit
372  * here
373  */
374  if (isAgg)
375  err = _("aggregate functions are not allowed in FROM clause of their own query level");
376  else
377  err = _("grouping operations are not allowed in FROM clause of their own query level");
378 
379  break;
381  if (isAgg)
382  err = _("aggregate functions are not allowed in functions in FROM");
383  else
384  err = _("grouping operations are not allowed in functions in FROM");
385 
386  break;
387  case EXPR_KIND_WHERE:
388  errkind = true;
389  break;
390  case EXPR_KIND_POLICY:
391  if (isAgg)
392  err = _("aggregate functions are not allowed in policy expressions");
393  else
394  err = _("grouping operations are not allowed in policy expressions");
395 
396  break;
397  case EXPR_KIND_HAVING:
398  /* okay */
399  break;
400  case EXPR_KIND_FILTER:
401  errkind = true;
402  break;
404  /* okay */
405  break;
407  /* okay */
408  break;
410  if (isAgg)
411  err = _("aggregate functions are not allowed in window RANGE");
412  else
413  err = _("grouping operations are not allowed in window RANGE");
414 
415  break;
417  if (isAgg)
418  err = _("aggregate functions are not allowed in window ROWS");
419  else
420  err = _("grouping operations are not allowed in window ROWS");
421 
422  break;
424  /* okay */
425  break;
429  errkind = true;
430  break;
431  case EXPR_KIND_GROUP_BY:
432  errkind = true;
433  break;
434  case EXPR_KIND_ORDER_BY:
435  /* okay */
436  break;
438  /* okay */
439  break;
440  case EXPR_KIND_LIMIT:
441  case EXPR_KIND_OFFSET:
442  errkind = true;
443  break;
444  case EXPR_KIND_RETURNING:
445  errkind = true;
446  break;
447  case EXPR_KIND_VALUES:
449  errkind = true;
450  break;
453  if (isAgg)
454  err = _("aggregate functions are not allowed in check constraints");
455  else
456  err = _("grouping operations are not allowed in check constraints");
457 
458  break;
461 
462  if (isAgg)
463  err = _("aggregate functions are not allowed in DEFAULT expressions");
464  else
465  err = _("grouping operations are not allowed in DEFAULT expressions");
466 
467  break;
469  if (isAgg)
470  err = _("aggregate functions are not allowed in index expressions");
471  else
472  err = _("grouping operations are not allowed in index expressions");
473 
474  break;
476  if (isAgg)
477  err = _("aggregate functions are not allowed in index predicates");
478  else
479  err = _("grouping operations are not allowed in index predicates");
480 
481  break;
483  if (isAgg)
484  err = _("aggregate functions are not allowed in transform expressions");
485  else
486  err = _("grouping operations are not allowed in transform expressions");
487 
488  break;
490  if (isAgg)
491  err = _("aggregate functions are not allowed in EXECUTE parameters");
492  else
493  err = _("grouping operations are not allowed in EXECUTE parameters");
494 
495  break;
497  if (isAgg)
498  err = _("aggregate functions are not allowed in trigger WHEN conditions");
499  else
500  err = _("grouping operations are not allowed in trigger WHEN conditions");
501 
502  break;
504  if (isAgg)
505  err = _("aggregate functions are not allowed in partition key expression");
506  else
507  err = _("grouping operations are not allowed in partition key expression");
508 
509  break;
510 
511  /*
512  * There is intentionally no default: case here, so that the
513  * compiler will warn if we add a new ParseExprKind without
514  * extending this switch. If we do see an unrecognized value at
515  * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
516  * which is sane anyway.
517  */
518  }
519 
520  if (err)
521  ereport(ERROR,
522  (errcode(ERRCODE_GROUPING_ERROR),
523  errmsg_internal("%s", err),
524  parser_errposition(pstate, location)));
525 
526  if (errkind)
527  {
528  if (isAgg)
529  /* translator: %s is name of a SQL construct, eg GROUP BY */
530  err = _("aggregate functions are not allowed in %s");
531  else
532  /* translator: %s is name of a SQL construct, eg GROUP BY */
533  err = _("grouping operations are not allowed in %s");
534 
535  ereport(ERROR,
536  (errcode(ERRCODE_GROUPING_ERROR),
537  errmsg_internal(err,
538  ParseExprKindName(pstate->p_expr_kind)),
539  parser_errposition(pstate, location)));
540  }
541 }
542 
543 /*
544  * check_agg_arguments
545  * Scan the arguments of an aggregate function to determine the
546  * aggregate's semantic level (zero is the current select's level,
547  * one is its parent, etc).
548  *
549  * The aggregate's level is the same as the level of the lowest-level variable
550  * or aggregate in its aggregated arguments (including any ORDER BY columns)
551  * or filter expression; or if it contains no variables at all, we presume it
552  * to be local.
553  *
554  * Vars/Aggs in direct arguments are *not* counted towards determining the
555  * agg's level, as those arguments aren't evaluated per-row but only
556  * per-group, and so in some sense aren't really agg arguments. However,
557  * this can mean that we decide an agg is upper-level even when its direct
558  * args contain lower-level Vars/Aggs, and that case has to be disallowed.
559  * (This is a little strange, but the SQL standard seems pretty definite that
560  * direct args are not to be considered when setting the agg's level.)
561  *
562  * We also take this opportunity to detect any aggregates or window functions
563  * nested within the arguments. We can throw error immediately if we find
564  * a window function. Aggregates are a bit trickier because it's only an
565  * error if the inner aggregate is of the same semantic level as the outer,
566  * which we can't know until we finish scanning the arguments.
567  */
568 static int
570  List *directargs,
571  List *args,
572  Expr *filter)
573 {
574  int agglevel;
576 
577  context.pstate = pstate;
578  context.min_varlevel = -1; /* signifies nothing found yet */
579  context.min_agglevel = -1;
580  context.sublevels_up = 0;
581 
582  (void) expression_tree_walker((Node *) args,
584  (void *) &context);
585 
586  (void) expression_tree_walker((Node *) filter,
588  (void *) &context);
589 
590  /*
591  * If we found no vars nor aggs at all, it's a level-zero aggregate;
592  * otherwise, its level is the minimum of vars or aggs.
593  */
594  if (context.min_varlevel < 0)
595  {
596  if (context.min_agglevel < 0)
597  agglevel = 0;
598  else
599  agglevel = context.min_agglevel;
600  }
601  else if (context.min_agglevel < 0)
602  agglevel = context.min_varlevel;
603  else
604  agglevel = Min(context.min_varlevel, context.min_agglevel);
605 
606  /*
607  * If there's a nested aggregate of the same semantic level, complain.
608  */
609  if (agglevel == context.min_agglevel)
610  {
611  int aggloc;
612 
613  aggloc = locate_agg_of_level((Node *) args, agglevel);
614  if (aggloc < 0)
615  aggloc = locate_agg_of_level((Node *) filter, agglevel);
616  ereport(ERROR,
617  (errcode(ERRCODE_GROUPING_ERROR),
618  errmsg("aggregate function calls cannot be nested"),
619  parser_errposition(pstate, aggloc)));
620  }
621 
622  /*
623  * Now check for vars/aggs in the direct arguments, and throw error if
624  * needed. Note that we allow a Var of the agg's semantic level, but not
625  * an Agg of that level. In principle such Aggs could probably be
626  * supported, but it would create an ordering dependency among the
627  * aggregates at execution time. Since the case appears neither to be
628  * required by spec nor particularly useful, we just treat it as a
629  * nested-aggregate situation.
630  */
631  if (directargs)
632  {
633  context.min_varlevel = -1;
634  context.min_agglevel = -1;
635  (void) expression_tree_walker((Node *) directargs,
637  (void *) &context);
638  if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
639  ereport(ERROR,
640  (errcode(ERRCODE_GROUPING_ERROR),
641  errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
642  parser_errposition(pstate,
643  locate_var_of_level((Node *) directargs,
644  context.min_varlevel))));
645  if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
646  ereport(ERROR,
647  (errcode(ERRCODE_GROUPING_ERROR),
648  errmsg("aggregate function calls cannot be nested"),
649  parser_errposition(pstate,
650  locate_agg_of_level((Node *) directargs,
651  context.min_agglevel))));
652  }
653  return agglevel;
654 }
655 
656 static bool
659 {
660  if (node == NULL)
661  return false;
662  if (IsA(node, Var))
663  {
664  int varlevelsup = ((Var *) node)->varlevelsup;
665 
666  /* convert levelsup to frame of reference of original query */
667  varlevelsup -= context->sublevels_up;
668  /* ignore local vars of subqueries */
669  if (varlevelsup >= 0)
670  {
671  if (context->min_varlevel < 0 ||
672  context->min_varlevel > varlevelsup)
673  context->min_varlevel = varlevelsup;
674  }
675  return false;
676  }
677  if (IsA(node, Aggref))
678  {
679  int agglevelsup = ((Aggref *) node)->agglevelsup;
680 
681  /* convert levelsup to frame of reference of original query */
682  agglevelsup -= context->sublevels_up;
683  /* ignore local aggs of subqueries */
684  if (agglevelsup >= 0)
685  {
686  if (context->min_agglevel < 0 ||
687  context->min_agglevel > agglevelsup)
688  context->min_agglevel = agglevelsup;
689  }
690  /* no need to examine args of the inner aggregate */
691  return false;
692  }
693  if (IsA(node, GroupingFunc))
694  {
695  int agglevelsup = ((GroupingFunc *) node)->agglevelsup;
696 
697  /* convert levelsup to frame of reference of original query */
698  agglevelsup -= context->sublevels_up;
699  /* ignore local aggs of subqueries */
700  if (agglevelsup >= 0)
701  {
702  if (context->min_agglevel < 0 ||
703  context->min_agglevel > agglevelsup)
704  context->min_agglevel = agglevelsup;
705  }
706  /* Continue and descend into subtree */
707  }
708 
709  /*
710  * SRFs and window functions can be rejected immediately, unless we are
711  * within a sub-select within the aggregate's arguments; in that case
712  * they're OK.
713  */
714  if (context->sublevels_up == 0)
715  {
716  if ((IsA(node, FuncExpr) &&((FuncExpr *) node)->funcretset) ||
717  (IsA(node, OpExpr) &&((OpExpr *) node)->opretset))
718  ereport(ERROR,
719  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
720  errmsg("aggregate function calls cannot contain set-returning function calls"),
721  errhint("You might be able to move the set-returning function into a LATERAL FROM item."),
722  parser_errposition(context->pstate, exprLocation(node))));
723  if (IsA(node, WindowFunc))
724  ereport(ERROR,
725  (errcode(ERRCODE_GROUPING_ERROR),
726  errmsg("aggregate function calls cannot contain window function calls"),
727  parser_errposition(context->pstate,
728  ((WindowFunc *) node)->location)));
729  }
730  if (IsA(node, Query))
731  {
732  /* Recurse into subselects */
733  bool result;
734 
735  context->sublevels_up++;
736  result = query_tree_walker((Query *) node,
738  (void *) context,
739  0);
740  context->sublevels_up--;
741  return result;
742  }
743 
744  return expression_tree_walker(node,
746  (void *) context);
747 }
748 
749 /*
750  * transformWindowFuncCall -
751  * Finish initial transformation of a window function call
752  *
753  * parse_func.c has recognized the function as a window function, and has set
754  * up all the fields of the WindowFunc except winref. Here we must (1) add
755  * the WindowDef to the pstate (if not a duplicate of one already present) and
756  * set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
757  * Unlike aggregates, only the most closely nested pstate level need be
758  * considered --- there are no "outer window functions" per SQL spec.
759  */
760 void
762  WindowDef *windef)
763 {
764  const char *err;
765  bool errkind;
766 
767  /*
768  * A window function call can't contain another one (but aggs are OK). XXX
769  * is this required by spec, or just an unimplemented feature?
770  *
771  * Note: we don't need to check the filter expression here, because the
772  * context checks done below and in transformAggregateCall would have
773  * already rejected any window funcs or aggs within the filter.
774  */
775  if (pstate->p_hasWindowFuncs &&
776  contain_windowfuncs((Node *) wfunc->args))
777  ereport(ERROR,
778  (errcode(ERRCODE_WINDOWING_ERROR),
779  errmsg("window function calls cannot be nested"),
780  parser_errposition(pstate,
781  locate_windowfunc((Node *) wfunc->args))));
782 
783  /*
784  * Check to see if the window function is in an invalid place within the
785  * query.
786  *
787  * For brevity we support two schemes for reporting an error here: set
788  * "err" to a custom message, or set "errkind" true if the error context
789  * is sufficiently identified by what ParseExprKindName will return, *and*
790  * what it will return is just a SQL keyword. (Otherwise, use a custom
791  * message to avoid creating translation problems.)
792  */
793  err = NULL;
794  errkind = false;
795  switch (pstate->p_expr_kind)
796  {
797  case EXPR_KIND_NONE:
798  Assert(false); /* can't happen */
799  break;
800  case EXPR_KIND_OTHER:
801  /* Accept window func here; caller must throw error if wanted */
802  break;
803  case EXPR_KIND_JOIN_ON:
805  err = _("window functions are not allowed in JOIN conditions");
806  break;
808  /* can't get here, but just in case, throw an error */
809  errkind = true;
810  break;
812  err = _("window functions are not allowed in functions in FROM");
813  break;
814  case EXPR_KIND_WHERE:
815  errkind = true;
816  break;
817  case EXPR_KIND_POLICY:
818  err = _("window functions are not allowed in policy expressions");
819  break;
820  case EXPR_KIND_HAVING:
821  errkind = true;
822  break;
823  case EXPR_KIND_FILTER:
824  errkind = true;
825  break;
830  err = _("window functions are not allowed in window definitions");
831  break;
833  /* okay */
834  break;
838  errkind = true;
839  break;
840  case EXPR_KIND_GROUP_BY:
841  errkind = true;
842  break;
843  case EXPR_KIND_ORDER_BY:
844  /* okay */
845  break;
847  /* okay */
848  break;
849  case EXPR_KIND_LIMIT:
850  case EXPR_KIND_OFFSET:
851  errkind = true;
852  break;
853  case EXPR_KIND_RETURNING:
854  errkind = true;
855  break;
856  case EXPR_KIND_VALUES:
858  errkind = true;
859  break;
862  err = _("window functions are not allowed in check constraints");
863  break;
866  err = _("window functions are not allowed in DEFAULT expressions");
867  break;
869  err = _("window functions are not allowed in index expressions");
870  break;
872  err = _("window functions are not allowed in index predicates");
873  break;
875  err = _("window functions are not allowed in transform expressions");
876  break;
878  err = _("window functions are not allowed in EXECUTE parameters");
879  break;
881  err = _("window functions are not allowed in trigger WHEN conditions");
882  break;
884  err = _("window functions are not allowed in partition key expression");
885  break;
886 
887  /*
888  * There is intentionally no default: case here, so that the
889  * compiler will warn if we add a new ParseExprKind without
890  * extending this switch. If we do see an unrecognized value at
891  * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
892  * which is sane anyway.
893  */
894  }
895  if (err)
896  ereport(ERROR,
897  (errcode(ERRCODE_WINDOWING_ERROR),
898  errmsg_internal("%s", err),
899  parser_errposition(pstate, wfunc->location)));
900  if (errkind)
901  ereport(ERROR,
902  (errcode(ERRCODE_WINDOWING_ERROR),
903  /* translator: %s is name of a SQL construct, eg GROUP BY */
904  errmsg("window functions are not allowed in %s",
905  ParseExprKindName(pstate->p_expr_kind)),
906  parser_errposition(pstate, wfunc->location)));
907 
908  /*
909  * If the OVER clause just specifies a window name, find that WINDOW
910  * clause (which had better be present). Otherwise, try to match all the
911  * properties of the OVER clause, and make a new entry in the p_windowdefs
912  * list if no luck.
913  */
914  if (windef->name)
915  {
916  Index winref = 0;
917  ListCell *lc;
918 
919  Assert(windef->refname == NULL &&
920  windef->partitionClause == NIL &&
921  windef->orderClause == NIL &&
923 
924  foreach(lc, pstate->p_windowdefs)
925  {
926  WindowDef *refwin = (WindowDef *) lfirst(lc);
927 
928  winref++;
929  if (refwin->name && strcmp(refwin->name, windef->name) == 0)
930  {
931  wfunc->winref = winref;
932  break;
933  }
934  }
935  if (lc == NULL) /* didn't find it? */
936  ereport(ERROR,
937  (errcode(ERRCODE_UNDEFINED_OBJECT),
938  errmsg("window \"%s\" does not exist", windef->name),
939  parser_errposition(pstate, windef->location)));
940  }
941  else
942  {
943  Index winref = 0;
944  ListCell *lc;
945 
946  foreach(lc, pstate->p_windowdefs)
947  {
948  WindowDef *refwin = (WindowDef *) lfirst(lc);
949 
950  winref++;
951  if (refwin->refname && windef->refname &&
952  strcmp(refwin->refname, windef->refname) == 0)
953  /* matched on refname */ ;
954  else if (!refwin->refname && !windef->refname)
955  /* matched, no refname */ ;
956  else
957  continue;
958  if (equal(refwin->partitionClause, windef->partitionClause) &&
959  equal(refwin->orderClause, windef->orderClause) &&
960  refwin->frameOptions == windef->frameOptions &&
961  equal(refwin->startOffset, windef->startOffset) &&
962  equal(refwin->endOffset, windef->endOffset))
963  {
964  /* found a duplicate window specification */
965  wfunc->winref = winref;
966  break;
967  }
968  }
969  if (lc == NULL) /* didn't find it? */
970  {
971  pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
972  wfunc->winref = list_length(pstate->p_windowdefs);
973  }
974  }
975 
976  pstate->p_hasWindowFuncs = true;
977 }
978 
979 /*
980  * parseCheckAggregates
981  * Check for aggregates where they shouldn't be and improper grouping.
982  * This function should be called after the target list and qualifications
983  * are finalized.
984  *
985  * Misplaced aggregates are now mostly detected in transformAggregateCall,
986  * but it seems more robust to check for aggregates in recursive queries
987  * only after everything is finalized. In any case it's hard to detect
988  * improper grouping on-the-fly, so we have to make another pass over the
989  * query for that.
990  */
991 void
993 {
994  List *gset_common = NIL;
995  List *groupClauses = NIL;
996  List *groupClauseCommonVars = NIL;
997  bool have_non_var_grouping;
998  List *func_grouped_rels = NIL;
999  ListCell *l;
1000  bool hasJoinRTEs;
1001  bool hasSelfRefRTEs;
1002  PlannerInfo *root = NULL;
1003  Node *clause;
1004 
1005  /* This should only be called if we found aggregates or grouping */
1006  Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual || qry->groupingSets);
1007 
1008  /*
1009  * If we have grouping sets, expand them and find the intersection of all
1010  * sets.
1011  */
1012  if (qry->groupingSets)
1013  {
1014  /*
1015  * The limit of 4096 is arbitrary and exists simply to avoid resource
1016  * issues from pathological constructs.
1017  */
1018  List *gsets = expand_grouping_sets(qry->groupingSets, 4096);
1019 
1020  if (!gsets)
1021  ereport(ERROR,
1022  (errcode(ERRCODE_STATEMENT_TOO_COMPLEX),
1023  errmsg("too many grouping sets present (maximum 4096)"),
1024  parser_errposition(pstate,
1025  qry->groupClause
1026  ? exprLocation((Node *) qry->groupClause)
1027  : exprLocation((Node *) qry->groupingSets))));
1028 
1029  /*
1030  * The intersection will often be empty, so help things along by
1031  * seeding the intersect with the smallest set.
1032  */
1033  gset_common = linitial(gsets);
1034 
1035  if (gset_common)
1036  {
1037  for_each_cell(l, lnext(list_head(gsets)))
1038  {
1039  gset_common = list_intersection_int(gset_common, lfirst(l));
1040  if (!gset_common)
1041  break;
1042  }
1043  }
1044 
1045  /*
1046  * If there was only one grouping set in the expansion, AND if the
1047  * groupClause is non-empty (meaning that the grouping set is not
1048  * empty either), then we can ditch the grouping set and pretend we
1049  * just had a normal GROUP BY.
1050  */
1051  if (list_length(gsets) == 1 && qry->groupClause)
1052  qry->groupingSets = NIL;
1053  }
1054 
1055  /*
1056  * Scan the range table to see if there are JOIN or self-reference CTE
1057  * entries. We'll need this info below.
1058  */
1059  hasJoinRTEs = hasSelfRefRTEs = false;
1060  foreach(l, pstate->p_rtable)
1061  {
1062  RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
1063 
1064  if (rte->rtekind == RTE_JOIN)
1065  hasJoinRTEs = true;
1066  else if (rte->rtekind == RTE_CTE && rte->self_reference)
1067  hasSelfRefRTEs = true;
1068  }
1069 
1070  /*
1071  * Build a list of the acceptable GROUP BY expressions for use by
1072  * check_ungrouped_columns().
1073  *
1074  * We get the TLE, not just the expr, because GROUPING wants to know the
1075  * sortgroupref.
1076  */
1077  foreach(l, qry->groupClause)
1078  {
1079  SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
1080  TargetEntry *expr;
1081 
1082  expr = get_sortgroupclause_tle(grpcl, qry->targetList);
1083  if (expr == NULL)
1084  continue; /* probably cannot happen */
1085 
1086  groupClauses = lcons(expr, groupClauses);
1087  }
1088 
1089  /*
1090  * If there are join alias vars involved, we have to flatten them to the
1091  * underlying vars, so that aliased and unaliased vars will be correctly
1092  * taken as equal. We can skip the expense of doing this if no rangetable
1093  * entries are RTE_JOIN kind. We use the planner's flatten_join_alias_vars
1094  * routine to do the flattening; it wants a PlannerInfo root node, which
1095  * fortunately can be mostly dummy.
1096  */
1097  if (hasJoinRTEs)
1098  {
1099  root = makeNode(PlannerInfo);
1100  root->parse = qry;
1102  root->hasJoinRTEs = true;
1103 
1104  groupClauses = (List *) flatten_join_alias_vars(root,
1105  (Node *) groupClauses);
1106  }
1107 
1108  /*
1109  * Detect whether any of the grouping expressions aren't simple Vars; if
1110  * they're all Vars then we don't have to work so hard in the recursive
1111  * scans. (Note we have to flatten aliases before this.)
1112  *
1113  * Track Vars that are included in all grouping sets separately in
1114  * groupClauseCommonVars, since these are the only ones we can use to
1115  * check for functional dependencies.
1116  */
1117  have_non_var_grouping = false;
1118  foreach(l, groupClauses)
1119  {
1120  TargetEntry *tle = lfirst(l);
1121 
1122  if (!IsA(tle->expr, Var))
1123  {
1124  have_non_var_grouping = true;
1125  }
1126  else if (!qry->groupingSets ||
1127  list_member_int(gset_common, tle->ressortgroupref))
1128  {
1129  groupClauseCommonVars = lappend(groupClauseCommonVars, tle->expr);
1130  }
1131  }
1132 
1133  /*
1134  * Check the targetlist and HAVING clause for ungrouped variables.
1135  *
1136  * Note: because we check resjunk tlist elements as well as regular ones,
1137  * this will also find ungrouped variables that came from ORDER BY and
1138  * WINDOW clauses. For that matter, it's also going to examine the
1139  * grouping expressions themselves --- but they'll all pass the test ...
1140  *
1141  * We also finalize GROUPING expressions, but for that we need to traverse
1142  * the original (unflattened) clause in order to modify nodes.
1143  */
1144  clause = (Node *) qry->targetList;
1145  finalize_grouping_exprs(clause, pstate, qry,
1146  groupClauses, root,
1147  have_non_var_grouping);
1148  if (hasJoinRTEs)
1149  clause = flatten_join_alias_vars(root, clause);
1150  check_ungrouped_columns(clause, pstate, qry,
1151  groupClauses, groupClauseCommonVars,
1152  have_non_var_grouping,
1153  &func_grouped_rels);
1154 
1155  clause = (Node *) qry->havingQual;
1156  finalize_grouping_exprs(clause, pstate, qry,
1157  groupClauses, root,
1158  have_non_var_grouping);
1159  if (hasJoinRTEs)
1160  clause = flatten_join_alias_vars(root, clause);
1161  check_ungrouped_columns(clause, pstate, qry,
1162  groupClauses, groupClauseCommonVars,
1163  have_non_var_grouping,
1164  &func_grouped_rels);
1165 
1166  /*
1167  * Per spec, aggregates can't appear in a recursive term.
1168  */
1169  if (pstate->p_hasAggs && hasSelfRefRTEs)
1170  ereport(ERROR,
1171  (errcode(ERRCODE_INVALID_RECURSION),
1172  errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
1173  parser_errposition(pstate,
1174  locate_agg_of_level((Node *) qry, 0))));
1175 }
1176 
1177 /*
1178  * check_ungrouped_columns -
1179  * Scan the given expression tree for ungrouped variables (variables
1180  * that are not listed in the groupClauses list and are not within
1181  * the arguments of aggregate functions). Emit a suitable error message
1182  * if any are found.
1183  *
1184  * NOTE: we assume that the given clause has been transformed suitably for
1185  * parser output. This means we can use expression_tree_walker.
1186  *
1187  * NOTE: we recognize grouping expressions in the main query, but only
1188  * grouping Vars in subqueries. For example, this will be rejected,
1189  * although it could be allowed:
1190  * SELECT
1191  * (SELECT x FROM bar where y = (foo.a + foo.b))
1192  * FROM foo
1193  * GROUP BY a + b;
1194  * The difficulty is the need to account for different sublevels_up.
1195  * This appears to require a whole custom version of equal(), which is
1196  * way more pain than the feature seems worth.
1197  */
1198 static void
1200  List *groupClauses, List *groupClauseCommonVars,
1201  bool have_non_var_grouping,
1202  List **func_grouped_rels)
1203 {
1205 
1206  context.pstate = pstate;
1207  context.qry = qry;
1208  context.root = NULL;
1209  context.groupClauses = groupClauses;
1210  context.groupClauseCommonVars = groupClauseCommonVars;
1211  context.have_non_var_grouping = have_non_var_grouping;
1212  context.func_grouped_rels = func_grouped_rels;
1213  context.sublevels_up = 0;
1214  context.in_agg_direct_args = false;
1215  check_ungrouped_columns_walker(node, &context);
1216 }
1217 
1218 static bool
1221 {
1222  ListCell *gl;
1223 
1224  if (node == NULL)
1225  return false;
1226  if (IsA(node, Const) ||
1227  IsA(node, Param))
1228  return false; /* constants are always acceptable */
1229 
1230  if (IsA(node, Aggref))
1231  {
1232  Aggref *agg = (Aggref *) node;
1233 
1234  if ((int) agg->agglevelsup == context->sublevels_up)
1235  {
1236  /*
1237  * If we find an aggregate call of the original level, do not
1238  * recurse into its normal arguments, ORDER BY arguments, or
1239  * filter; ungrouped vars there are not an error. But we should
1240  * check direct arguments as though they weren't in an aggregate.
1241  * We set a special flag in the context to help produce a useful
1242  * error message for ungrouped vars in direct arguments.
1243  */
1244  bool result;
1245 
1246  Assert(!context->in_agg_direct_args);
1247  context->in_agg_direct_args = true;
1249  context);
1250  context->in_agg_direct_args = false;
1251  return result;
1252  }
1253 
1254  /*
1255  * We can skip recursing into aggregates of higher levels altogether,
1256  * since they could not possibly contain Vars of concern to us (see
1257  * transformAggregateCall). We do need to look at aggregates of lower
1258  * levels, however.
1259  */
1260  if ((int) agg->agglevelsup > context->sublevels_up)
1261  return false;
1262  }
1263 
1264  if (IsA(node, GroupingFunc))
1265  {
1266  GroupingFunc *grp = (GroupingFunc *) node;
1267 
1268  /* handled GroupingFunc separately, no need to recheck at this level */
1269 
1270  if ((int) grp->agglevelsup >= context->sublevels_up)
1271  return false;
1272  }
1273 
1274  /*
1275  * If we have any GROUP BY items that are not simple Vars, check to see if
1276  * subexpression as a whole matches any GROUP BY item. We need to do this
1277  * at every recursion level so that we recognize GROUPed-BY expressions
1278  * before reaching variables within them. But this only works at the outer
1279  * query level, as noted above.
1280  */
1281  if (context->have_non_var_grouping && context->sublevels_up == 0)
1282  {
1283  foreach(gl, context->groupClauses)
1284  {
1285  TargetEntry *tle = lfirst(gl);
1286 
1287  if (equal(node, tle->expr))
1288  return false; /* acceptable, do not descend more */
1289  }
1290  }
1291 
1292  /*
1293  * If we have an ungrouped Var of the original query level, we have a
1294  * failure. Vars below the original query level are not a problem, and
1295  * neither are Vars from above it. (If such Vars are ungrouped as far as
1296  * their own query level is concerned, that's someone else's problem...)
1297  */
1298  if (IsA(node, Var))
1299  {
1300  Var *var = (Var *) node;
1301  RangeTblEntry *rte;
1302  char *attname;
1303 
1304  if (var->varlevelsup != context->sublevels_up)
1305  return false; /* it's not local to my query, ignore */
1306 
1307  /*
1308  * Check for a match, if we didn't do it above.
1309  */
1310  if (!context->have_non_var_grouping || context->sublevels_up != 0)
1311  {
1312  foreach(gl, context->groupClauses)
1313  {
1314  Var *gvar = (Var *) ((TargetEntry *) lfirst(gl))->expr;
1315 
1316  if (IsA(gvar, Var) &&
1317  gvar->varno == var->varno &&
1318  gvar->varattno == var->varattno &&
1319  gvar->varlevelsup == 0)
1320  return false; /* acceptable, we're okay */
1321  }
1322  }
1323 
1324  /*
1325  * Check whether the Var is known functionally dependent on the GROUP
1326  * BY columns. If so, we can allow the Var to be used, because the
1327  * grouping is really a no-op for this table. However, this deduction
1328  * depends on one or more constraints of the table, so we have to add
1329  * those constraints to the query's constraintDeps list, because it's
1330  * not semantically valid anymore if the constraint(s) get dropped.
1331  * (Therefore, this check must be the last-ditch effort before raising
1332  * error: we don't want to add dependencies unnecessarily.)
1333  *
1334  * Because this is a pretty expensive check, and will have the same
1335  * outcome for all columns of a table, we remember which RTEs we've
1336  * already proven functional dependency for in the func_grouped_rels
1337  * list. This test also prevents us from adding duplicate entries to
1338  * the constraintDeps list.
1339  */
1340  if (list_member_int(*context->func_grouped_rels, var->varno))
1341  return false; /* previously proven acceptable */
1342 
1343  Assert(var->varno > 0 &&
1344  (int) var->varno <= list_length(context->pstate->p_rtable));
1345  rte = rt_fetch(var->varno, context->pstate->p_rtable);
1346  if (rte->rtekind == RTE_RELATION)
1347  {
1349  var->varno,
1350  0,
1351  context->groupClauseCommonVars,
1352  &context->qry->constraintDeps))
1353  {
1354  *context->func_grouped_rels =
1355  lappend_int(*context->func_grouped_rels, var->varno);
1356  return false; /* acceptable */
1357  }
1358  }
1359 
1360  /* Found an ungrouped local variable; generate error message */
1361  attname = get_rte_attribute_name(rte, var->varattno);
1362  if (context->sublevels_up == 0)
1363  ereport(ERROR,
1364  (errcode(ERRCODE_GROUPING_ERROR),
1365  errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
1366  rte->eref->aliasname, attname),
1367  context->in_agg_direct_args ?
1368  errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
1369  parser_errposition(context->pstate, var->location)));
1370  else
1371  ereport(ERROR,
1372  (errcode(ERRCODE_GROUPING_ERROR),
1373  errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
1374  rte->eref->aliasname, attname),
1375  parser_errposition(context->pstate, var->location)));
1376  }
1377 
1378  if (IsA(node, Query))
1379  {
1380  /* Recurse into subselects */
1381  bool result;
1382 
1383  context->sublevels_up++;
1384  result = query_tree_walker((Query *) node,
1386  (void *) context,
1387  0);
1388  context->sublevels_up--;
1389  return result;
1390  }
1392  (void *) context);
1393 }
1394 
1395 /*
1396  * finalize_grouping_exprs -
1397  * Scan the given expression tree for GROUPING() and related calls,
1398  * and validate and process their arguments.
1399  *
1400  * This is split out from check_ungrouped_columns above because it needs
1401  * to modify the nodes (which it does in-place, not via a mutator) while
1402  * check_ungrouped_columns may see only a copy of the original thanks to
1403  * flattening of join alias vars. So here, we flatten each individual
1404  * GROUPING argument as we see it before comparing it.
1405  */
1406 static void
1408  List *groupClauses, PlannerInfo *root,
1409  bool have_non_var_grouping)
1410 {
1412 
1413  context.pstate = pstate;
1414  context.qry = qry;
1415  context.root = root;
1416  context.groupClauses = groupClauses;
1417  context.groupClauseCommonVars = NIL;
1418  context.have_non_var_grouping = have_non_var_grouping;
1419  context.func_grouped_rels = NULL;
1420  context.sublevels_up = 0;
1421  context.in_agg_direct_args = false;
1422  finalize_grouping_exprs_walker(node, &context);
1423 }
1424 
1425 static bool
1428 {
1429  ListCell *gl;
1430 
1431  if (node == NULL)
1432  return false;
1433  if (IsA(node, Const) ||
1434  IsA(node, Param))
1435  return false; /* constants are always acceptable */
1436 
1437  if (IsA(node, Aggref))
1438  {
1439  Aggref *agg = (Aggref *) node;
1440 
1441  if ((int) agg->agglevelsup == context->sublevels_up)
1442  {
1443  /*
1444  * If we find an aggregate call of the original level, do not
1445  * recurse into its normal arguments, ORDER BY arguments, or
1446  * filter; GROUPING exprs of this level are not allowed there. But
1447  * check direct arguments as though they weren't in an aggregate.
1448  */
1449  bool result;
1450 
1451  Assert(!context->in_agg_direct_args);
1452  context->in_agg_direct_args = true;
1454  context);
1455  context->in_agg_direct_args = false;
1456  return result;
1457  }
1458 
1459  /*
1460  * We can skip recursing into aggregates of higher levels altogether,
1461  * since they could not possibly contain exprs of concern to us (see
1462  * transformAggregateCall). We do need to look at aggregates of lower
1463  * levels, however.
1464  */
1465  if ((int) agg->agglevelsup > context->sublevels_up)
1466  return false;
1467  }
1468 
1469  if (IsA(node, GroupingFunc))
1470  {
1471  GroupingFunc *grp = (GroupingFunc *) node;
1472 
1473  /*
1474  * We only need to check GroupingFunc nodes at the exact level to
1475  * which they belong, since they cannot mix levels in arguments.
1476  */
1477 
1478  if ((int) grp->agglevelsup == context->sublevels_up)
1479  {
1480  ListCell *lc;
1481  List *ref_list = NIL;
1482 
1483  foreach(lc, grp->args)
1484  {
1485  Node *expr = lfirst(lc);
1486  Index ref = 0;
1487 
1488  if (context->root)
1489  expr = flatten_join_alias_vars(context->root, expr);
1490 
1491  /*
1492  * Each expression must match a grouping entry at the current
1493  * query level. Unlike the general expression case, we don't
1494  * allow functional dependencies or outer references.
1495  */
1496 
1497  if (IsA(expr, Var))
1498  {
1499  Var *var = (Var *) expr;
1500 
1501  if (var->varlevelsup == context->sublevels_up)
1502  {
1503  foreach(gl, context->groupClauses)
1504  {
1505  TargetEntry *tle = lfirst(gl);
1506  Var *gvar = (Var *) tle->expr;
1507 
1508  if (IsA(gvar, Var) &&
1509  gvar->varno == var->varno &&
1510  gvar->varattno == var->varattno &&
1511  gvar->varlevelsup == 0)
1512  {
1513  ref = tle->ressortgroupref;
1514  break;
1515  }
1516  }
1517  }
1518  }
1519  else if (context->have_non_var_grouping &&
1520  context->sublevels_up == 0)
1521  {
1522  foreach(gl, context->groupClauses)
1523  {
1524  TargetEntry *tle = lfirst(gl);
1525 
1526  if (equal(expr, tle->expr))
1527  {
1528  ref = tle->ressortgroupref;
1529  break;
1530  }
1531  }
1532  }
1533 
1534  if (ref == 0)
1535  ereport(ERROR,
1536  (errcode(ERRCODE_GROUPING_ERROR),
1537  errmsg("arguments to GROUPING must be grouping expressions of the associated query level"),
1538  parser_errposition(context->pstate,
1539  exprLocation(expr))));
1540 
1541  ref_list = lappend_int(ref_list, ref);
1542  }
1543 
1544  grp->refs = ref_list;
1545  }
1546 
1547  if ((int) grp->agglevelsup > context->sublevels_up)
1548  return false;
1549  }
1550 
1551  if (IsA(node, Query))
1552  {
1553  /* Recurse into subselects */
1554  bool result;
1555 
1556  context->sublevels_up++;
1557  result = query_tree_walker((Query *) node,
1559  (void *) context,
1560  0);
1561  context->sublevels_up--;
1562  return result;
1563  }
1565  (void *) context);
1566 }
1567 
1568 
1569 /*
1570  * Given a GroupingSet node, expand it and return a list of lists.
1571  *
1572  * For EMPTY nodes, return a list of one empty list.
1573  *
1574  * For SIMPLE nodes, return a list of one list, which is the node content.
1575  *
1576  * For CUBE and ROLLUP nodes, return a list of the expansions.
1577  *
1578  * For SET nodes, recursively expand contained CUBE and ROLLUP.
1579  */
1580 static List *
1582 {
1583  List *result = NIL;
1584 
1585  switch (gs->kind)
1586  {
1587  case GROUPING_SET_EMPTY:
1588  result = list_make1(NIL);
1589  break;
1590 
1591  case GROUPING_SET_SIMPLE:
1592  result = list_make1(gs->content);
1593  break;
1594 
1595  case GROUPING_SET_ROLLUP:
1596  {
1597  List *rollup_val = gs->content;
1598  ListCell *lc;
1599  int curgroup_size = list_length(gs->content);
1600 
1601  while (curgroup_size > 0)
1602  {
1603  List *current_result = NIL;
1604  int i = curgroup_size;
1605 
1606  foreach(lc, rollup_val)
1607  {
1608  GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1609 
1610  Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1611 
1612  current_result
1613  = list_concat(current_result,
1614  list_copy(gs_current->content));
1615 
1616  /* If we are done with making the current group, break */
1617  if (--i == 0)
1618  break;
1619  }
1620 
1621  result = lappend(result, current_result);
1622  --curgroup_size;
1623  }
1624 
1625  result = lappend(result, NIL);
1626  }
1627  break;
1628 
1629  case GROUPING_SET_CUBE:
1630  {
1631  List *cube_list = gs->content;
1632  int number_bits = list_length(cube_list);
1633  uint32 num_sets;
1634  uint32 i;
1635 
1636  /* parser should cap this much lower */
1637  Assert(number_bits < 31);
1638 
1639  num_sets = (1U << number_bits);
1640 
1641  for (i = 0; i < num_sets; i++)
1642  {
1643  List *current_result = NIL;
1644  ListCell *lc;
1645  uint32 mask = 1U;
1646 
1647  foreach(lc, cube_list)
1648  {
1649  GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1650 
1651  Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1652 
1653  if (mask & i)
1654  {
1655  current_result
1656  = list_concat(current_result,
1657  list_copy(gs_current->content));
1658  }
1659 
1660  mask <<= 1;
1661  }
1662 
1663  result = lappend(result, current_result);
1664  }
1665  }
1666  break;
1667 
1668  case GROUPING_SET_SETS:
1669  {
1670  ListCell *lc;
1671 
1672  foreach(lc, gs->content)
1673  {
1674  List *current_result = expand_groupingset_node(lfirst(lc));
1675 
1676  result = list_concat(result, current_result);
1677  }
1678  }
1679  break;
1680  }
1681 
1682  return result;
1683 }
1684 
1685 static int
1686 cmp_list_len_asc(const void *a, const void *b)
1687 {
1688  int la = list_length(*(List *const *) a);
1689  int lb = list_length(*(List *const *) b);
1690 
1691  return (la > lb) ? 1 : (la == lb) ? 0 : -1;
1692 }
1693 
1694 /*
1695  * Expand a groupingSets clause to a flat list of grouping sets.
1696  * The returned list is sorted by length, shortest sets first.
1697  *
1698  * This is mainly for the planner, but we use it here too to do
1699  * some consistency checks.
1700  */
1701 List *
1702 expand_grouping_sets(List *groupingSets, int limit)
1703 {
1704  List *expanded_groups = NIL;
1705  List *result = NIL;
1706  double numsets = 1;
1707  ListCell *lc;
1708 
1709  if (groupingSets == NIL)
1710  return NIL;
1711 
1712  foreach(lc, groupingSets)
1713  {
1714  List *current_result = NIL;
1715  GroupingSet *gs = lfirst(lc);
1716 
1717  current_result = expand_groupingset_node(gs);
1718 
1719  Assert(current_result != NIL);
1720 
1721  numsets *= list_length(current_result);
1722 
1723  if (limit >= 0 && numsets > limit)
1724  return NIL;
1725 
1726  expanded_groups = lappend(expanded_groups, current_result);
1727  }
1728 
1729  /*
1730  * Do cartesian product between sublists of expanded_groups. While at it,
1731  * remove any duplicate elements from individual grouping sets (we must
1732  * NOT change the number of sets though)
1733  */
1734 
1735  foreach(lc, (List *) linitial(expanded_groups))
1736  {
1737  result = lappend(result, list_union_int(NIL, (List *) lfirst(lc)));
1738  }
1739 
1740  for_each_cell(lc, lnext(list_head(expanded_groups)))
1741  {
1742  List *p = lfirst(lc);
1743  List *new_result = NIL;
1744  ListCell *lc2;
1745 
1746  foreach(lc2, result)
1747  {
1748  List *q = lfirst(lc2);
1749  ListCell *lc3;
1750 
1751  foreach(lc3, p)
1752  {
1753  new_result = lappend(new_result,
1754  list_union_int(q, (List *) lfirst(lc3)));
1755  }
1756  }
1757  result = new_result;
1758  }
1759 
1760  if (list_length(result) > 1)
1761  {
1762  int result_len = list_length(result);
1763  List **buf = palloc(sizeof(List *) * result_len);
1764  List **ptr = buf;
1765 
1766  foreach(lc, result)
1767  {
1768  *ptr++ = lfirst(lc);
1769  }
1770 
1771  qsort(buf, result_len, sizeof(List *), cmp_list_len_asc);
1772 
1773  result = NIL;
1774  ptr = buf;
1775 
1776  while (result_len-- > 0)
1777  result = lappend(result, *ptr++);
1778 
1779  pfree(buf);
1780  }
1781 
1782  return result;
1783 }
1784 
1785 /*
1786  * get_aggregate_argtypes
1787  * Identify the specific datatypes passed to an aggregate call.
1788  *
1789  * Given an Aggref, extract the actual datatypes of the input arguments.
1790  * The input datatypes are reported in a way that matches up with the
1791  * aggregate's declaration, ie, any ORDER BY columns attached to a plain
1792  * aggregate are ignored, but we report both direct and aggregated args of
1793  * an ordered-set aggregate.
1794  *
1795  * Datatypes are returned into inputTypes[], which must reference an array
1796  * of length FUNC_MAX_ARGS.
1797  *
1798  * The function result is the number of actual arguments.
1799  */
1800 int
1801 get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
1802 {
1803  int numArguments = 0;
1804  ListCell *lc;
1805 
1807 
1808  foreach(lc, aggref->aggargtypes)
1809  {
1810  inputTypes[numArguments++] = lfirst_oid(lc);
1811  }
1812 
1813  return numArguments;
1814 }
1815 
1816 /*
1817  * resolve_aggregate_transtype
1818  * Identify the transition state value's datatype for an aggregate call.
1819  *
1820  * This function resolves a polymorphic aggregate's state datatype.
1821  * It must be passed the aggtranstype from the aggregate's catalog entry,
1822  * as well as the actual argument types extracted by get_aggregate_argtypes.
1823  * (We could fetch pg_aggregate.aggtranstype internally, but all existing
1824  * callers already have the value at hand, so we make them pass it.)
1825  */
1826 Oid
1828  Oid aggtranstype,
1829  Oid *inputTypes,
1830  int numArguments)
1831 {
1832  /* resolve actual type of transition state, if polymorphic */
1833  if (IsPolymorphicType(aggtranstype))
1834  {
1835  /* have to fetch the agg's declared input types... */
1836  Oid *declaredArgTypes;
1837  int agg_nargs;
1838 
1839  (void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);
1840 
1841  /*
1842  * VARIADIC ANY aggs could have more actual than declared args, but
1843  * such extra args can't affect polymorphic type resolution.
1844  */
1845  Assert(agg_nargs <= numArguments);
1846 
1847  aggtranstype = enforce_generic_type_consistency(inputTypes,
1848  declaredArgTypes,
1849  agg_nargs,
1850  aggtranstype,
1851  false);
1852  pfree(declaredArgTypes);
1853  }
1854  return aggtranstype;
1855 }
1856 
1857 /*
1858  * Create an expression tree for the transition function of an aggregate.
1859  * This is needed so that polymorphic functions can be used within an
1860  * aggregate --- without the expression tree, such functions would not know
1861  * the datatypes they are supposed to use. (The trees will never actually
1862  * be executed, however, so we can skimp a bit on correctness.)
1863  *
1864  * agg_input_types and agg_state_type identifies the input types of the
1865  * aggregate. These should be resolved to actual types (ie, none should
1866  * ever be ANYELEMENT etc).
1867  * agg_input_collation is the aggregate function's input collation.
1868  *
1869  * For an ordered-set aggregate, remember that agg_input_types describes
1870  * the direct arguments followed by the aggregated arguments.
1871  *
1872  * transfn_oid and invtransfn_oid identify the funcs to be called; the
1873  * latter may be InvalidOid, however if invtransfn_oid is set then
1874  * transfn_oid must also be set.
1875  *
1876  * Pointers to the constructed trees are returned into *transfnexpr,
1877  * *invtransfnexpr. If there is no invtransfn, the respective pointer is set
1878  * to NULL. Since use of the invtransfn is optional, NULL may be passed for
1879  * invtransfnexpr.
1880  */
1881 void
1883  int agg_num_inputs,
1884  int agg_num_direct_inputs,
1885  bool agg_variadic,
1886  Oid agg_state_type,
1887  Oid agg_input_collation,
1888  Oid transfn_oid,
1889  Oid invtransfn_oid,
1890  Expr **transfnexpr,
1891  Expr **invtransfnexpr)
1892 {
1893  List *args;
1894  FuncExpr *fexpr;
1895  int i;
1896 
1897  /*
1898  * Build arg list to use in the transfn FuncExpr node.
1899  */
1900  args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
1901 
1902  for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
1903  {
1904  args = lappend(args,
1905  make_agg_arg(agg_input_types[i], agg_input_collation));
1906  }
1907 
1908  fexpr = makeFuncExpr(transfn_oid,
1909  agg_state_type,
1910  args,
1911  InvalidOid,
1912  agg_input_collation,
1914  fexpr->funcvariadic = agg_variadic;
1915  *transfnexpr = (Expr *) fexpr;
1916 
1917  /*
1918  * Build invtransfn expression if requested, with same args as transfn
1919  */
1920  if (invtransfnexpr != NULL)
1921  {
1922  if (OidIsValid(invtransfn_oid))
1923  {
1924  fexpr = makeFuncExpr(invtransfn_oid,
1925  agg_state_type,
1926  args,
1927  InvalidOid,
1928  agg_input_collation,
1930  fexpr->funcvariadic = agg_variadic;
1931  *invtransfnexpr = (Expr *) fexpr;
1932  }
1933  else
1934  *invtransfnexpr = NULL;
1935  }
1936 }
1937 
1938 /*
1939  * Like build_aggregate_transfn_expr, but creates an expression tree for the
1940  * combine function of an aggregate, rather than the transition function.
1941  */
1942 void
1944  Oid agg_input_collation,
1945  Oid combinefn_oid,
1946  Expr **combinefnexpr)
1947 {
1948  Node *argp;
1949  List *args;
1950  FuncExpr *fexpr;
1951 
1952  /* combinefn takes two arguments of the aggregate state type */
1953  argp = make_agg_arg(agg_state_type, agg_input_collation);
1954 
1955  args = list_make2(argp, argp);
1956 
1957  fexpr = makeFuncExpr(combinefn_oid,
1958  agg_state_type,
1959  args,
1960  InvalidOid,
1961  agg_input_collation,
1963  /* combinefn is currently never treated as variadic */
1964  *combinefnexpr = (Expr *) fexpr;
1965 }
1966 
1967 /*
1968  * Like build_aggregate_transfn_expr, but creates an expression tree for the
1969  * serialization function of an aggregate.
1970  */
1971 void
1973  Expr **serialfnexpr)
1974 {
1975  List *args;
1976  FuncExpr *fexpr;
1977 
1978  /* serialfn always takes INTERNAL and returns BYTEA */
1980 
1981  fexpr = makeFuncExpr(serialfn_oid,
1982  BYTEAOID,
1983  args,
1984  InvalidOid,
1985  InvalidOid,
1987  *serialfnexpr = (Expr *) fexpr;
1988 }
1989 
1990 /*
1991  * Like build_aggregate_transfn_expr, but creates an expression tree for the
1992  * deserialization function of an aggregate.
1993  */
1994 void
1996  Expr **deserialfnexpr)
1997 {
1998  List *args;
1999  FuncExpr *fexpr;
2000 
2001  /* deserialfn always takes BYTEA, INTERNAL and returns INTERNAL */
2004 
2005  fexpr = makeFuncExpr(deserialfn_oid,
2006  INTERNALOID,
2007  args,
2008  InvalidOid,
2009  InvalidOid,
2011  *deserialfnexpr = (Expr *) fexpr;
2012 }
2013 
2014 /*
2015  * Like build_aggregate_transfn_expr, but creates an expression tree for the
2016  * final function of an aggregate, rather than the transition function.
2017  */
2018 void
2020  int num_finalfn_inputs,
2021  Oid agg_state_type,
2022  Oid agg_result_type,
2023  Oid agg_input_collation,
2024  Oid finalfn_oid,
2025  Expr **finalfnexpr)
2026 {
2027  List *args;
2028  int i;
2029 
2030  /*
2031  * Build expr tree for final function
2032  */
2033  args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
2034 
2035  /* finalfn may take additional args, which match agg's input types */
2036  for (i = 0; i < num_finalfn_inputs - 1; i++)
2037  {
2038  args = lappend(args,
2039  make_agg_arg(agg_input_types[i], agg_input_collation));
2040  }
2041 
2042  *finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
2043  agg_result_type,
2044  args,
2045  InvalidOid,
2046  agg_input_collation,
2048  /* finalfn is currently never treated as variadic */
2049 }
2050 
2051 /*
2052  * Convenience function to build dummy argument expressions for aggregates.
2053  *
2054  * We really only care that an aggregate support function can discover its
2055  * actual argument types at runtime using get_fn_expr_argtype(), so it's okay
2056  * to use Param nodes that don't correspond to any real Param.
2057  */
2058 static Node *
2059 make_agg_arg(Oid argtype, Oid argcollation)
2060 {
2061  Param *argp = makeNode(Param);
2062 
2063  argp->paramkind = PARAM_EXEC;
2064  argp->paramid = -1;
2065  argp->paramtype = argtype;
2066  argp->paramtypmod = -1;
2067  argp->paramcollid = argcollation;
2068  argp->location = -1;
2069  return (Node *) argp;
2070 }
#define list_make2(x1, x2)
Definition: pg_list.h:140
List * aggdistinct
Definition: primnodes.h:303
bool check_functional_grouping(Oid relid, Index varno, Index varlevelsup, List *grouping_columns, List **constraintDeps)
List * partitionClause
Definition: parsenodes.h:488
static int cmp_list_len_asc(const void *a, const void *b)
Definition: parse_agg.c:1686
#define NIL
Definition: pg_list.h:69
static Node * make_agg_arg(Oid argtype, Oid argcollation)
Definition: parse_agg.c:2059
bool query_tree_walker(Query *query, bool(*walker)(), void *context, int flags)
Definition: nodeFuncs.c:2245
#define IsA(nodeptr, _type_)
Definition: nodes.h:561
Query * parse
Definition: relation.h:155
static bool check_ungrouped_columns_walker(Node *node, check_ungrouped_columns_context *context)
Definition: parse_agg.c:1219
Index varlevelsup
Definition: primnodes.h:173
TargetEntry * get_sortgroupclause_tle(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:370
int errhint(const char *fmt,...)
Definition: elog.c:987
#define FRAMEOPTION_DEFAULTS
Definition: parsenodes.h:524
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:180
bool hasJoinRTEs
Definition: relation.h:302
List * args
Definition: primnodes.h:341
List * content
Definition: parsenodes.h:1260
List * refs
Definition: primnodes.h:343
int exprLocation(const Node *expr)
Definition: nodeFuncs.c:1186
List * args
Definition: primnodes.h:359
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:2972
List * list_intersection_int(const List *list1, const List *list2)
Definition: list.c:826
int frameOptions
Definition: parsenodes.h:490
List * addTargetToSortList(ParseState *pstate, TargetEntry *tle, List *sortlist, List *targetlist, SortBy *sortby)
List * transformSortClause(ParseState *pstate, List *orderlist, List **targetlist, ParseExprKind exprKind, bool useSQL99)
List * constraintDeps
Definition: parsenodes.h:166
char * name
Definition: parsenodes.h:486
#define Min(x, y)
Definition: c.h:812
Node * transformExpr(ParseState *pstate, Node *expr, ParseExprKind exprKind)
Definition: parse_expr.c:146
List * list_truncate(List *list, int new_size)
Definition: list.c:350
Oid get_func_signature(Oid funcid, Oid **argtypes, int *nargs)
Definition: lsyscache.c:1500
List * groupingSets
Definition: parsenodes.h:148
ParamKind paramkind
Definition: primnodes.h:244
Node * get_sortgroupclause_expr(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:382
List * list_copy(const List *oldlist)
Definition: list.c:1160
Definition: nodes.h:510
int errcode(int sqlerrcode)
Definition: elog.c:575
List * args
Definition: primnodes.h:301
AttrNumber varattno
Definition: primnodes.h:168
bool p_hasAggs
Definition: parse_node.h:198
char * format_type_be(Oid type_oid)
Definition: format_type.c:94
List * list_concat(List *list1, List *list2)
Definition: list.c:321
int locate_windowfunc(Node *node)
Definition: rewriteManip.c:235
void build_aggregate_deserialfn_expr(Oid deserialfn_oid, Expr **deserialfnexpr)
Definition: parse_agg.c:1995
static void check_agglevels_and_constraints(ParseState *pstate, Node *expr)
Definition: parse_agg.c:287
void build_aggregate_finalfn_expr(Oid *agg_input_types, int num_finalfn_inputs, Oid agg_state_type, Oid agg_result_type, Oid agg_input_collation, Oid finalfn_oid, Expr **finalfnexpr)
Definition: parse_agg.c:2019
List * list_copy_tail(const List *oldlist, int nskip)
Definition: list.c:1203
unsigned int Oid
Definition: postgres_ext.h:31
Index winref
Definition: primnodes.h:361
Definition: primnodes.h:163
List * lappend_oid(List *list, Oid datum)
Definition: list.c:164
#define OidIsValid(objectId)
Definition: c.h:532
void parseCheckAggregates(ParseState *pstate, Query *qry)
Definition: parse_agg.c:992
const char * ParseExprKindName(ParseExprKind exprKind)
Definition: parse_expr.c:3393
List * targetList
Definition: parsenodes.h:138
bool p_hasWindowFuncs
Definition: parse_node.h:199
GroupingSetKind kind
Definition: parsenodes.h:1259
#define FUNC_MAX_ARGS
#define list_make1(x1)
Definition: pg_list.h:139
#define AGGKIND_IS_ORDERED_SET(kind)
Definition: pg_aggregate.h:133
List * aggargtypes
Definition: primnodes.h:299
int locate_var_of_level(Node *node, int levelsup)
Definition: var.c:437
Node * startOffset
Definition: parsenodes.h:491
void pfree(void *pointer)
Definition: mcxt.c:949
static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry, List *groupClauses, List *groupClauseVars, bool have_non_var_grouping, List **func_grouped_rels)
Definition: parse_agg.c:1199
#define linitial(l)
Definition: pg_list.h:111
static List * expand_groupingset_node(GroupingSet *gs)
Definition: parse_agg.c:1581
#define ERROR
Definition: elog.h:43
static bool finalize_grouping_exprs_walker(Node *node, check_ungrouped_columns_context *context)
Definition: parse_agg.c:1426
#define IsPolymorphicType(typid)
Definition: pg_type.h:745
Oid paramcollid
Definition: primnodes.h:248
int location
Definition: primnodes.h:249
int location
Definition: parsenodes.h:493
List * p_windowdefs
Definition: parse_node.h:185
Oid enforce_generic_type_consistency(Oid *actual_arg_types, Oid *declared_arg_types, int nargs, Oid rettype, bool allow_poly)
Node * endOffset
Definition: parsenodes.h:492
int location
Definition: primnodes.h:311
static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry, List *groupClauses, PlannerInfo *root, bool have_non_var_grouping)
Definition: parse_agg.c:1407
bool list_member_int(const List *list, int datum)
Definition: list.c:485
int location
Definition: primnodes.h:178
static char * buf
Definition: pg_test_fsync.c:67
List * aggorder
Definition: primnodes.h:302
int errdetail(const char *fmt,...)
Definition: elog.c:873
Index agglevelsup
Definition: primnodes.h:309
int p_next_resno
Definition: parse_node.h:187
List * list_union_int(const List *list1, const List *list2)
Definition: list.c:744
static ListCell * list_head(const List *l)
Definition: pg_list.h:77
unsigned int uint32
Definition: c.h:258
List * aggdirectargs
Definition: primnodes.h:300
MemoryContext CurrentMemoryContext
Definition: mcxt.c:37
#define lnext(lc)
Definition: pg_list.h:105
#define ereport(elevel, rest)
Definition: elog.h:122
void build_aggregate_combinefn_expr(Oid agg_state_type, Oid agg_input_collation, Oid combinefn_oid, Expr **combinefnexpr)
Definition: parse_agg.c:1943
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:235
List * lappend_int(List *list, int datum)
Definition: list.c:146
List * lappend(List *list, void *datum)
Definition: list.c:128
int locate_agg_of_level(Node *node, int levelsup)
Definition: rewriteManip.c:131
Index varno
Definition: primnodes.h:166
void transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc, WindowDef *windef)
Definition: parse_agg.c:761
struct ParseState * parentParseState
Definition: parse_node.h:170
List * orderClause
Definition: parsenodes.h:489
Node * flatten_join_alias_vars(PlannerInfo *root, Node *node)
Definition: var.c:670
Index agglevelsup
Definition: primnodes.h:345
bool self_reference
Definition: parsenodes.h:1017
Node * transformGroupingFunc(ParseState *pstate, GroupingFunc *p)
Definition: parse_agg.c:248
unsigned int Index
Definition: c.h:359
ParseExprKind p_expr_kind
Definition: parse_node.h:186
#define InvalidOid
Definition: postgres_ext.h:36
#define INTERNALOID
Definition: pg_type.h:698
bool p_lateral_active
Definition: parse_node.h:178
char * get_rte_attribute_name(RangeTblEntry *rte, AttrNumber attnum)
int32 paramtypmod
Definition: primnodes.h:247
List * lcons(void *datum, List *list)
Definition: list.c:259
int errmsg_internal(const char *fmt,...)
Definition: elog.c:827
#define makeNode(_type_)
Definition: nodes.h:558
int location
Definition: primnodes.h:364
#define Assert(condition)
Definition: c.h:681
#define lfirst(lc)
Definition: pg_list.h:106
char * aliasname
Definition: primnodes.h:42
void build_aggregate_serialfn_expr(Oid serialfn_oid, Expr **serialfnexpr)
Definition: parse_agg.c:1972
Expr * expr
Definition: primnodes.h:1368
int paramid
Definition: primnodes.h:245
void build_aggregate_transfn_expr(Oid *agg_input_types, int agg_num_inputs, int agg_num_direct_inputs, bool agg_variadic, Oid agg_state_type, Oid agg_input_collation, Oid transfn_oid, Oid invtransfn_oid, Expr **transfnexpr, Expr **invtransfnexpr)
Definition: parse_agg.c:1882
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
bool expression_tree_walker(Node *node, bool(*walker)(), void *context)
Definition: nodeFuncs.c:1834
static int list_length(const List *l)
Definition: pg_list.h:89
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:111
Expr * aggfilter
Definition: primnodes.h:304
#define for_each_cell(cell, initcell)
Definition: pg_list.h:169
#define BYTEAOID
Definition: pg_type.h:292
List * expand_grouping_sets(List *groupingSets, int limit)
Definition: parse_agg.c:1702
RTEKind rtekind
Definition: parsenodes.h:945
List * groupClause
Definition: parsenodes.h:146
void * palloc(Size size)
Definition: mcxt.c:848
int errmsg(const char *fmt,...)
Definition: elog.c:797
int i
Index ressortgroupref
Definition: primnodes.h:1371
void * arg
char aggkind
Definition: primnodes.h:308
MemoryContext planner_cxt
Definition: relation.h:290
Alias * eref
Definition: parsenodes.h:1049
#define qsort(a, b, c, d)
Definition: port.h:447
static int check_agg_arguments(ParseState *pstate, List *directargs, List *args, Expr *filter)
Definition: parse_agg.c:569
char * refname
Definition: parsenodes.h:487
List * transformDistinctClause(ParseState *pstate, List **targetlist, List *sortClause, bool is_agg)
Node * havingQual
Definition: parsenodes.h:150
int get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
Definition: parse_agg.c:1801
Definition: pg_list.h:45
int16 AttrNumber
Definition: attnum.h:21
#define _(x)
Definition: elog.c:84
static bool check_agg_arguments_walker(Node *node, check_agg_arguments_context *context)
Definition: parse_agg.c:657
Oid paramtype
Definition: primnodes.h:246
bool contain_windowfuncs(Node *node)
Definition: rewriteManip.c:197
bool funcvariadic
Definition: primnodes.h:452
#define lfirst_oid(lc)
Definition: pg_list.h:108
Oid resolve_aggregate_transtype(Oid aggfuncid, Oid aggtranstype, Oid *inputTypes, int numArguments)
Definition: parse_agg.c:1827
FuncExpr * makeFuncExpr(Oid funcid, Oid rettype, List *args, Oid funccollid, Oid inputcollid, CoercionForm fformat)
Definition: makefuncs.c:517
void transformAggregateCall(ParseState *pstate, Aggref *agg, List *args, List *aggorder, bool agg_distinct)
Definition: parse_agg.c:103
List * p_rtable
Definition: parse_node.h:172