PostgreSQL Source Code  git master
index.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * index.c
4  * code to create and destroy POSTGRES index relations
5  *
6  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/catalog/index.c
12  *
13  *
14  * INTERFACE ROUTINES
15  * index_create() - Create a cataloged index relation
16  * index_drop() - Removes index relation from catalogs
17  * BuildIndexInfo() - Prepare to insert index tuples
18  * FormIndexDatum() - Construct datum vector for one index tuple
19  *
20  *-------------------------------------------------------------------------
21  */
22 #include "postgres.h"
23 
24 #include <unistd.h>
25 
26 #include "access/amapi.h"
27 #include "access/heapam.h"
28 #include "access/multixact.h"
29 #include "access/reloptions.h"
30 #include "access/relscan.h"
31 #include "access/sysattr.h"
32 #include "access/tableam.h"
33 #include "access/transam.h"
34 #include "access/visibilitymap.h"
35 #include "access/xact.h"
36 #include "bootstrap/bootstrap.h"
37 #include "catalog/binary_upgrade.h"
38 #include "catalog/catalog.h"
39 #include "catalog/dependency.h"
40 #include "catalog/heap.h"
41 #include "catalog/index.h"
42 #include "catalog/objectaccess.h"
43 #include "catalog/partition.h"
44 #include "catalog/pg_am.h"
45 #include "catalog/pg_collation.h"
46 #include "catalog/pg_constraint.h"
47 #include "catalog/pg_depend.h"
48 #include "catalog/pg_description.h"
49 #include "catalog/pg_inherits.h"
50 #include "catalog/pg_opclass.h"
51 #include "catalog/pg_operator.h"
52 #include "catalog/pg_tablespace.h"
53 #include "catalog/pg_trigger.h"
54 #include "catalog/pg_type.h"
55 #include "catalog/storage.h"
56 #include "commands/event_trigger.h"
57 #include "commands/progress.h"
58 #include "commands/tablecmds.h"
59 #include "commands/trigger.h"
60 #include "executor/executor.h"
61 #include "miscadmin.h"
62 #include "nodes/makefuncs.h"
63 #include "nodes/nodeFuncs.h"
64 #include "optimizer/optimizer.h"
65 #include "parser/parser.h"
66 #include "pgstat.h"
67 #include "rewrite/rewriteManip.h"
68 #include "storage/bufmgr.h"
69 #include "storage/lmgr.h"
70 #include "storage/predicate.h"
71 #include "storage/procarray.h"
72 #include "storage/smgr.h"
73 #include "utils/builtins.h"
74 #include "utils/fmgroids.h"
75 #include "utils/guc.h"
76 #include "utils/inval.h"
77 #include "utils/lsyscache.h"
78 #include "utils/memutils.h"
79 #include "utils/pg_rusage.h"
80 #include "utils/snapmgr.h"
81 #include "utils/syscache.h"
82 #include "utils/tuplesort.h"
83 
84 /* Potentially set by pg_upgrade_support functions */
86 
87 /*
88  * Pointer-free representation of variables used when reindexing system
89  * catalogs; we use this to propagate those values to parallel workers.
90  */
91 typedef struct
92 {
98 
99 /* non-export function prototypes */
100 static bool relationHasPrimaryKey(Relation rel);
101 static TupleDesc ConstructTupleDescriptor(Relation heapRelation,
102  IndexInfo *indexInfo,
103  List *indexColNames,
104  Oid accessMethodObjectId,
105  Oid *collationObjectId,
106  Oid *classObjectId);
107 static void InitializeAttributeOids(Relation indexRelation,
108  int numatts, Oid indexoid);
109 static void AppendAttributeTuples(Relation indexRelation, int numatts,
110  Datum *attopts);
111 static void UpdateIndexRelation(Oid indexoid, Oid heapoid,
112  Oid parentIndexId,
113  IndexInfo *indexInfo,
114  Oid *collationOids,
115  Oid *classOids,
116  int16 *coloptions,
117  bool primary,
118  bool isexclusion,
119  bool immediate,
120  bool isvalid,
121  bool isready);
122 static void index_update_stats(Relation rel,
123  bool hasindex,
124  double reltuples);
125 static void IndexCheckExclusion(Relation heapRelation,
126  Relation indexRelation,
127  IndexInfo *indexInfo);
128 static bool validate_index_callback(ItemPointer itemptr, void *opaque);
129 static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid);
130 static void SetReindexProcessing(Oid heapOid, Oid indexOid);
131 static void ResetReindexProcessing(void);
132 static void SetReindexPending(List *indexes);
133 static void RemoveReindexPending(Oid indexOid);
134 
135 
136 /*
137  * relationHasPrimaryKey
138  * See whether an existing relation has a primary key.
139  *
140  * Caller must have suitable lock on the relation.
141  *
142  * Note: we intentionally do not check indisvalid here; that's because this
143  * is used to enforce the rule that there can be only one indisprimary index,
144  * and we want that to be true even if said index is invalid.
145  */
146 static bool
148 {
149  bool result = false;
150  List *indexoidlist;
151  ListCell *indexoidscan;
152 
153  /*
154  * Get the list of index OIDs for the table from the relcache, and look up
155  * each one in the pg_index syscache until we find one marked primary key
156  * (hopefully there isn't more than one such).
157  */
158  indexoidlist = RelationGetIndexList(rel);
159 
160  foreach(indexoidscan, indexoidlist)
161  {
162  Oid indexoid = lfirst_oid(indexoidscan);
163  HeapTuple indexTuple;
164 
165  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid));
166  if (!HeapTupleIsValid(indexTuple)) /* should not happen */
167  elog(ERROR, "cache lookup failed for index %u", indexoid);
168  result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary;
169  ReleaseSysCache(indexTuple);
170  if (result)
171  break;
172  }
173 
174  list_free(indexoidlist);
175 
176  return result;
177 }
178 
179 /*
180  * index_check_primary_key
181  * Apply special checks needed before creating a PRIMARY KEY index
182  *
183  * This processing used to be in DefineIndex(), but has been split out
184  * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX.
185  *
186  * We check for a pre-existing primary key, and that all columns of the index
187  * are simple column references (not expressions), and that all those
188  * columns are marked NOT NULL. If not, fail.
189  *
190  * We used to automatically change unmarked columns to NOT NULL here by doing
191  * our own local ALTER TABLE command. But that doesn't work well if we're
192  * executing one subcommand of an ALTER TABLE: the operations may not get
193  * performed in the right order overall. Now we expect that the parser
194  * inserted any required ALTER TABLE SET NOT NULL operations before trying
195  * to create a primary-key index.
196  *
197  * Caller had better have at least ShareLock on the table, else the not-null
198  * checking isn't trustworthy.
199  */
200 void
202  IndexInfo *indexInfo,
203  bool is_alter_table,
204  IndexStmt *stmt)
205 {
206  int i;
207 
208  /*
209  * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't
210  * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we
211  * have faith that the parser rejected multiple pkey clauses; and CREATE
212  * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either.
213  */
214  if ((is_alter_table || heapRel->rd_rel->relispartition) &&
215  relationHasPrimaryKey(heapRel))
216  {
217  ereport(ERROR,
218  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
219  errmsg("multiple primary keys for table \"%s\" are not allowed",
220  RelationGetRelationName(heapRel))));
221  }
222 
223  /*
224  * Check that all of the attributes in a primary key are marked as not
225  * null. (We don't really expect to see that; it'd mean the parser messed
226  * up. But it seems wise to check anyway.)
227  */
228  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
229  {
230  AttrNumber attnum = indexInfo->ii_IndexAttrNumbers[i];
231  HeapTuple atttuple;
232  Form_pg_attribute attform;
233 
234  if (attnum == 0)
235  ereport(ERROR,
236  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
237  errmsg("primary keys cannot be expressions")));
238 
239  /* System attributes are never null, so no need to check */
240  if (attnum < 0)
241  continue;
242 
243  atttuple = SearchSysCache2(ATTNUM,
245  Int16GetDatum(attnum));
246  if (!HeapTupleIsValid(atttuple))
247  elog(ERROR, "cache lookup failed for attribute %d of relation %u",
248  attnum, RelationGetRelid(heapRel));
249  attform = (Form_pg_attribute) GETSTRUCT(atttuple);
250 
251  if (!attform->attnotnull)
252  ereport(ERROR,
253  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
254  errmsg("primary key column \"%s\" is not marked NOT NULL",
255  NameStr(attform->attname))));
256 
257  ReleaseSysCache(atttuple);
258  }
259 }
260 
261 /*
262  * ConstructTupleDescriptor
263  *
264  * Build an index tuple descriptor for a new index
265  */
266 static TupleDesc
268  IndexInfo *indexInfo,
269  List *indexColNames,
270  Oid accessMethodObjectId,
271  Oid *collationObjectId,
272  Oid *classObjectId)
273 {
274  int numatts = indexInfo->ii_NumIndexAttrs;
275  int numkeyatts = indexInfo->ii_NumIndexKeyAttrs;
276  ListCell *colnames_item = list_head(indexColNames);
277  ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
278  IndexAmRoutine *amroutine;
279  TupleDesc heapTupDesc;
280  TupleDesc indexTupDesc;
281  int natts; /* #atts in heap rel --- for error checks */
282  int i;
283 
284  /* We need access to the index AM's API struct */
285  amroutine = GetIndexAmRoutineByAmId(accessMethodObjectId, false);
286 
287  /* ... and to the table's tuple descriptor */
288  heapTupDesc = RelationGetDescr(heapRelation);
289  natts = RelationGetForm(heapRelation)->relnatts;
290 
291  /*
292  * allocate the new tuple descriptor
293  */
294  indexTupDesc = CreateTemplateTupleDesc(numatts);
295 
296  /*
297  * Fill in the pg_attribute row.
298  */
299  for (i = 0; i < numatts; i++)
300  {
301  AttrNumber atnum = indexInfo->ii_IndexAttrNumbers[i];
302  Form_pg_attribute to = TupleDescAttr(indexTupDesc, i);
303  HeapTuple tuple;
304  Form_pg_type typeTup;
305  Form_pg_opclass opclassTup;
306  Oid keyType;
307 
309  to->attnum = i + 1;
310  to->attstattarget = -1;
311  to->attcacheoff = -1;
312  to->attislocal = true;
313  to->attcollation = (i < numkeyatts) ?
314  collationObjectId[i] : InvalidOid;
315 
316  /*
317  * Set the attribute name as specified by caller.
318  */
319  if (colnames_item == NULL) /* shouldn't happen */
320  elog(ERROR, "too few entries in colnames list");
321  namestrcpy(&to->attname, (const char *) lfirst(colnames_item));
322  colnames_item = lnext(indexColNames, colnames_item);
323 
324  /*
325  * For simple index columns, we copy some pg_attribute fields from the
326  * parent relation. For expressions we have to look at the expression
327  * result.
328  */
329  if (atnum != 0)
330  {
331  /* Simple index column */
332  const FormData_pg_attribute *from;
333 
334  Assert(atnum > 0); /* should've been caught above */
335 
336  if (atnum > natts) /* safety check */
337  elog(ERROR, "invalid column number %d", atnum);
338  from = TupleDescAttr(heapTupDesc,
339  AttrNumberGetAttrOffset(atnum));
340 
341  to->atttypid = from->atttypid;
342  to->attlen = from->attlen;
343  to->attndims = from->attndims;
344  to->atttypmod = from->atttypmod;
345  to->attbyval = from->attbyval;
346  to->attstorage = from->attstorage;
347  to->attalign = from->attalign;
348  }
349  else
350  {
351  /* Expressional index */
352  Node *indexkey;
353 
354  if (indexpr_item == NULL) /* shouldn't happen */
355  elog(ERROR, "too few entries in indexprs list");
356  indexkey = (Node *) lfirst(indexpr_item);
357  indexpr_item = lnext(indexInfo->ii_Expressions, indexpr_item);
358 
359  /*
360  * Lookup the expression type in pg_type for the type length etc.
361  */
362  keyType = exprType(indexkey);
363  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
364  if (!HeapTupleIsValid(tuple))
365  elog(ERROR, "cache lookup failed for type %u", keyType);
366  typeTup = (Form_pg_type) GETSTRUCT(tuple);
367 
368  /*
369  * Assign some of the attributes values. Leave the rest.
370  */
371  to->atttypid = keyType;
372  to->attlen = typeTup->typlen;
373  to->attbyval = typeTup->typbyval;
374  to->attstorage = typeTup->typstorage;
375  to->attalign = typeTup->typalign;
376  to->atttypmod = exprTypmod(indexkey);
377 
378  ReleaseSysCache(tuple);
379 
380  /*
381  * Make sure the expression yields a type that's safe to store in
382  * an index. We need this defense because we have index opclasses
383  * for pseudo-types such as "record", and the actually stored type
384  * had better be safe; eg, a named composite type is okay, an
385  * anonymous record type is not. The test is the same as for
386  * whether a table column is of a safe type (which is why we
387  * needn't check for the non-expression case).
388  */
389  CheckAttributeType(NameStr(to->attname),
390  to->atttypid, to->attcollation,
391  NIL, 0);
392  }
393 
394  /*
395  * We do not yet have the correct relation OID for the index, so just
396  * set it invalid for now. InitializeAttributeOids() will fix it
397  * later.
398  */
399  to->attrelid = InvalidOid;
400 
401  /*
402  * Check the opclass and index AM to see if either provides a keytype
403  * (overriding the attribute type). Opclass (if exists) takes
404  * precedence.
405  */
406  keyType = amroutine->amkeytype;
407 
408  if (i < indexInfo->ii_NumIndexKeyAttrs)
409  {
410  tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(classObjectId[i]));
411  if (!HeapTupleIsValid(tuple))
412  elog(ERROR, "cache lookup failed for opclass %u",
413  classObjectId[i]);
414  opclassTup = (Form_pg_opclass) GETSTRUCT(tuple);
415  if (OidIsValid(opclassTup->opckeytype))
416  keyType = opclassTup->opckeytype;
417 
418  /*
419  * If keytype is specified as ANYELEMENT, and opcintype is
420  * ANYARRAY, then the attribute type must be an array (else it'd
421  * not have matched this opclass); use its element type.
422  *
423  * We could also allow ANYCOMPATIBLE/ANYCOMPATIBLEARRAY here, but
424  * there seems no need to do so; there's no reason to declare an
425  * opclass as taking ANYCOMPATIBLEARRAY rather than ANYARRAY.
426  */
427  if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID)
428  {
429  keyType = get_base_element_type(to->atttypid);
430  if (!OidIsValid(keyType))
431  elog(ERROR, "could not get element type of array type %u",
432  to->atttypid);
433  }
434 
435  ReleaseSysCache(tuple);
436  }
437 
438  /*
439  * If a key type different from the heap value is specified, update
440  * the type-related fields in the index tupdesc.
441  */
442  if (OidIsValid(keyType) && keyType != to->atttypid)
443  {
444  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
445  if (!HeapTupleIsValid(tuple))
446  elog(ERROR, "cache lookup failed for type %u", keyType);
447  typeTup = (Form_pg_type) GETSTRUCT(tuple);
448 
449  to->atttypid = keyType;
450  to->atttypmod = -1;
451  to->attlen = typeTup->typlen;
452  to->attbyval = typeTup->typbyval;
453  to->attalign = typeTup->typalign;
454  to->attstorage = typeTup->typstorage;
455 
456  ReleaseSysCache(tuple);
457  }
458  }
459 
460  pfree(amroutine);
461 
462  return indexTupDesc;
463 }
464 
465 /* ----------------------------------------------------------------
466  * InitializeAttributeOids
467  * ----------------------------------------------------------------
468  */
469 static void
471  int numatts,
472  Oid indexoid)
473 {
474  TupleDesc tupleDescriptor;
475  int i;
476 
477  tupleDescriptor = RelationGetDescr(indexRelation);
478 
479  for (i = 0; i < numatts; i += 1)
480  TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid;
481 }
482 
483 /* ----------------------------------------------------------------
484  * AppendAttributeTuples
485  * ----------------------------------------------------------------
486  */
487 static void
488 AppendAttributeTuples(Relation indexRelation, int numatts, Datum *attopts)
489 {
490  Relation pg_attribute;
491  CatalogIndexState indstate;
492  TupleDesc indexTupDesc;
493  int i;
494 
495  /*
496  * open the attribute relation and its indexes
497  */
498  pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
499 
500  indstate = CatalogOpenIndexes(pg_attribute);
501 
502  /*
503  * insert data from new index's tupdesc into pg_attribute
504  */
505  indexTupDesc = RelationGetDescr(indexRelation);
506 
507  for (i = 0; i < numatts; i++)
508  {
509  Form_pg_attribute attr = TupleDescAttr(indexTupDesc, i);
510  Datum attoptions = attopts ? attopts[i] : (Datum) 0;
511 
512  Assert(attr->attnum == i + 1);
513 
514  InsertPgAttributeTuple(pg_attribute, attr, attoptions, indstate);
515  }
516 
517  CatalogCloseIndexes(indstate);
518 
519  table_close(pg_attribute, RowExclusiveLock);
520 }
521 
522 /* ----------------------------------------------------------------
523  * UpdateIndexRelation
524  *
525  * Construct and insert a new entry in the pg_index catalog
526  * ----------------------------------------------------------------
527  */
528 static void
530  Oid heapoid,
531  Oid parentIndexId,
532  IndexInfo *indexInfo,
533  Oid *collationOids,
534  Oid *classOids,
535  int16 *coloptions,
536  bool primary,
537  bool isexclusion,
538  bool immediate,
539  bool isvalid,
540  bool isready)
541 {
542  int2vector *indkey;
543  oidvector *indcollation;
544  oidvector *indclass;
545  int2vector *indoption;
546  Datum exprsDatum;
547  Datum predDatum;
548  Datum values[Natts_pg_index];
549  bool nulls[Natts_pg_index];
550  Relation pg_index;
551  HeapTuple tuple;
552  int i;
553 
554  /*
555  * Copy the index key, opclass, and indoption info into arrays (should we
556  * make the caller pass them like this to start with?)
557  */
558  indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs);
559  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
560  indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i];
561  indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs);
562  indclass = buildoidvector(classOids, indexInfo->ii_NumIndexKeyAttrs);
563  indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs);
564 
565  /*
566  * Convert the index expressions (if any) to a text datum
567  */
568  if (indexInfo->ii_Expressions != NIL)
569  {
570  char *exprsString;
571 
572  exprsString = nodeToString(indexInfo->ii_Expressions);
573  exprsDatum = CStringGetTextDatum(exprsString);
574  pfree(exprsString);
575  }
576  else
577  exprsDatum = (Datum) 0;
578 
579  /*
580  * Convert the index predicate (if any) to a text datum. Note we convert
581  * implicit-AND format to normal explicit-AND for storage.
582  */
583  if (indexInfo->ii_Predicate != NIL)
584  {
585  char *predString;
586 
587  predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate));
588  predDatum = CStringGetTextDatum(predString);
589  pfree(predString);
590  }
591  else
592  predDatum = (Datum) 0;
593 
594 
595  /*
596  * open the system catalog index relation
597  */
598  pg_index = table_open(IndexRelationId, RowExclusiveLock);
599 
600  /*
601  * Build a pg_index tuple
602  */
603  MemSet(nulls, false, sizeof(nulls));
604 
605  values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid);
606  values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid);
607  values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs);
608  values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs);
609  values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique);
610  values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary);
611  values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion);
612  values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate);
613  values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false);
614  values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid);
615  values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false);
616  values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready);
617  values[Anum_pg_index_indislive - 1] = BoolGetDatum(true);
618  values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false);
619  values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey);
620  values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation);
621  values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass);
622  values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption);
623  values[Anum_pg_index_indexprs - 1] = exprsDatum;
624  if (exprsDatum == (Datum) 0)
625  nulls[Anum_pg_index_indexprs - 1] = true;
626  values[Anum_pg_index_indpred - 1] = predDatum;
627  if (predDatum == (Datum) 0)
628  nulls[Anum_pg_index_indpred - 1] = true;
629 
630  tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls);
631 
632  /*
633  * insert the tuple into the pg_index catalog
634  */
635  CatalogTupleInsert(pg_index, tuple);
636 
637  /*
638  * close the relation and free the tuple
639  */
640  table_close(pg_index, RowExclusiveLock);
641  heap_freetuple(tuple);
642 }
643 
644 
645 /*
646  * index_create
647  *
648  * heapRelation: table to build index on (suitably locked by caller)
649  * indexRelationName: what it say
650  * indexRelationId: normally, pass InvalidOid to let this routine
651  * generate an OID for the index. During bootstrap this may be
652  * nonzero to specify a preselected OID.
653  * parentIndexRelid: if creating an index partition, the OID of the
654  * parent index; otherwise InvalidOid.
655  * parentConstraintId: if creating a constraint on a partition, the OID
656  * of the constraint in the parent; otherwise InvalidOid.
657  * relFileNode: normally, pass InvalidOid to get new storage. May be
658  * nonzero to attach an existing valid build.
659  * indexInfo: same info executor uses to insert into the index
660  * indexColNames: column names to use for index (List of char *)
661  * accessMethodObjectId: OID of index AM to use
662  * tableSpaceId: OID of tablespace to use
663  * collationObjectId: array of collation OIDs, one per index column
664  * classObjectId: array of index opclass OIDs, one per index column
665  * coloptions: array of per-index-column indoption settings
666  * reloptions: AM-specific options
667  * flags: bitmask that can include any combination of these bits:
668  * INDEX_CREATE_IS_PRIMARY
669  * the index is a primary key
670  * INDEX_CREATE_ADD_CONSTRAINT:
671  * invoke index_constraint_create also
672  * INDEX_CREATE_SKIP_BUILD:
673  * skip the index_build() step for the moment; caller must do it
674  * later (typically via reindex_index())
675  * INDEX_CREATE_CONCURRENT:
676  * do not lock the table against writers. The index will be
677  * marked "invalid" and the caller must take additional steps
678  * to fix it up.
679  * INDEX_CREATE_IF_NOT_EXISTS:
680  * do not throw an error if a relation with the same name
681  * already exists.
682  * INDEX_CREATE_PARTITIONED:
683  * create a partitioned index (table must be partitioned)
684  * constr_flags: flags passed to index_constraint_create
685  * (only if INDEX_CREATE_ADD_CONSTRAINT is set)
686  * allow_system_table_mods: allow table to be a system catalog
687  * is_internal: if true, post creation hook for new index
688  * constraintId: if not NULL, receives OID of created constraint
689  *
690  * Returns the OID of the created index.
691  */
692 Oid
693 index_create(Relation heapRelation,
694  const char *indexRelationName,
695  Oid indexRelationId,
696  Oid parentIndexRelid,
697  Oid parentConstraintId,
698  Oid relFileNode,
699  IndexInfo *indexInfo,
700  List *indexColNames,
701  Oid accessMethodObjectId,
702  Oid tableSpaceId,
703  Oid *collationObjectId,
704  Oid *classObjectId,
705  int16 *coloptions,
706  Datum reloptions,
707  bits16 flags,
708  bits16 constr_flags,
709  bool allow_system_table_mods,
710  bool is_internal,
711  Oid *constraintId)
712 {
713  Oid heapRelationId = RelationGetRelid(heapRelation);
714  Relation pg_class;
715  Relation indexRelation;
716  TupleDesc indexTupDesc;
717  bool shared_relation;
718  bool mapped_relation;
719  bool is_exclusion;
720  Oid namespaceId;
721  int i;
722  char relpersistence;
723  bool isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0;
724  bool invalid = (flags & INDEX_CREATE_INVALID) != 0;
725  bool concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0;
726  bool partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0;
727  char relkind;
728  TransactionId relfrozenxid;
729  MultiXactId relminmxid;
730 
731  /* constraint flags can only be set when a constraint is requested */
732  Assert((constr_flags == 0) ||
733  ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0));
734  /* partitioned indexes must never be "built" by themselves */
735  Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD));
736 
737  relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX;
738  is_exclusion = (indexInfo->ii_ExclusionOps != NULL);
739 
740  pg_class = table_open(RelationRelationId, RowExclusiveLock);
741 
742  /*
743  * The index will be in the same namespace as its parent table, and is
744  * shared across databases if and only if the parent is. Likewise, it
745  * will use the relfilenode map if and only if the parent does; and it
746  * inherits the parent's relpersistence.
747  */
748  namespaceId = RelationGetNamespace(heapRelation);
749  shared_relation = heapRelation->rd_rel->relisshared;
750  mapped_relation = RelationIsMapped(heapRelation);
751  relpersistence = heapRelation->rd_rel->relpersistence;
752 
753  /*
754  * check parameters
755  */
756  if (indexInfo->ii_NumIndexAttrs < 1)
757  elog(ERROR, "must index at least one column");
758 
759  if (!allow_system_table_mods &&
760  IsSystemRelation(heapRelation) &&
762  ereport(ERROR,
763  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
764  errmsg("user-defined indexes on system catalog tables are not supported")));
765 
766  /*
767  * Btree text_pattern_ops uses text_eq as the equality operator, which is
768  * fine as long as the collation is deterministic; text_eq then reduces to
769  * bitwise equality and so it is semantically compatible with the other
770  * operators and functions in that opclass. But with a nondeterministic
771  * collation, text_eq could yield results that are incompatible with the
772  * actual behavior of the index (which is determined by the opclass's
773  * comparison function). We prevent such problems by refusing creation of
774  * an index with that opclass and a nondeterministic collation.
775  *
776  * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we
777  * find more cases, we might decide to create a real mechanism for marking
778  * opclasses as incompatible with nondeterminism; but for now, this small
779  * hack suffices.
780  *
781  * Another solution is to use a special operator, not text_eq, as the
782  * equality opclass member; but that is undesirable because it would
783  * prevent index usage in many queries that work fine today.
784  */
785  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
786  {
787  Oid collation = collationObjectId[i];
788  Oid opclass = classObjectId[i];
789 
790  if (collation)
791  {
792  if ((opclass == TEXT_BTREE_PATTERN_OPS_OID ||
793  opclass == VARCHAR_BTREE_PATTERN_OPS_OID ||
794  opclass == BPCHAR_BTREE_PATTERN_OPS_OID) &&
795  !get_collation_isdeterministic(collation))
796  {
797  HeapTuple classtup;
798 
799  classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass));
800  if (!HeapTupleIsValid(classtup))
801  elog(ERROR, "cache lookup failed for operator class %u", opclass);
802  ereport(ERROR,
803  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
804  errmsg("nondeterministic collations are not supported for operator class \"%s\"",
805  NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname))));
806  ReleaseSysCache(classtup);
807  }
808  }
809  }
810 
811  /*
812  * Concurrent index build on a system catalog is unsafe because we tend to
813  * release locks before committing in catalogs.
814  */
815  if (concurrent &&
816  IsCatalogRelation(heapRelation))
817  ereport(ERROR,
818  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
819  errmsg("concurrent index creation on system catalog tables is not supported")));
820 
821  /*
822  * This case is currently not supported. There's no way to ask for it in
823  * the grammar with CREATE INDEX, but it can happen with REINDEX.
824  */
825  if (concurrent && is_exclusion)
826  ereport(ERROR,
827  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
828  errmsg("concurrent index creation for exclusion constraints is not supported")));
829 
830  /*
831  * We cannot allow indexing a shared relation after initdb (because
832  * there's no way to make the entry in other databases' pg_class).
833  */
834  if (shared_relation && !IsBootstrapProcessingMode())
835  ereport(ERROR,
836  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
837  errmsg("shared indexes cannot be created after initdb")));
838 
839  /*
840  * Shared relations must be in pg_global, too (last-ditch check)
841  */
842  if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID)
843  elog(ERROR, "shared relations must be placed in pg_global tablespace");
844 
845  /*
846  * Check for duplicate name (both as to the index, and as to the
847  * associated constraint if any). Such cases would fail on the relevant
848  * catalogs' unique indexes anyway, but we prefer to give a friendlier
849  * error message.
850  */
851  if (get_relname_relid(indexRelationName, namespaceId))
852  {
853  if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0)
854  {
855  ereport(NOTICE,
856  (errcode(ERRCODE_DUPLICATE_TABLE),
857  errmsg("relation \"%s\" already exists, skipping",
858  indexRelationName)));
859  table_close(pg_class, RowExclusiveLock);
860  return InvalidOid;
861  }
862 
863  ereport(ERROR,
864  (errcode(ERRCODE_DUPLICATE_TABLE),
865  errmsg("relation \"%s\" already exists",
866  indexRelationName)));
867  }
868 
869  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 &&
871  indexRelationName))
872  {
873  /*
874  * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the
875  * conflicting constraint is not an index.
876  */
877  ereport(ERROR,
879  errmsg("constraint \"%s\" for relation \"%s\" already exists",
880  indexRelationName, RelationGetRelationName(heapRelation))));
881  }
882 
883  /*
884  * construct tuple descriptor for index tuples
885  */
886  indexTupDesc = ConstructTupleDescriptor(heapRelation,
887  indexInfo,
888  indexColNames,
889  accessMethodObjectId,
890  collationObjectId,
891  classObjectId);
892 
893  /*
894  * Allocate an OID for the index, unless we were told what to use.
895  *
896  * The OID will be the relfilenode as well, so make sure it doesn't
897  * collide with either pg_class OIDs or existing physical files.
898  */
899  if (!OidIsValid(indexRelationId))
900  {
901  /* Use binary-upgrade override for pg_class.oid/relfilenode? */
902  if (IsBinaryUpgrade)
903  {
905  ereport(ERROR,
906  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
907  errmsg("pg_class index OID value not set when in binary upgrade mode")));
908 
909  indexRelationId = binary_upgrade_next_index_pg_class_oid;
911  }
912  else
913  {
914  indexRelationId =
915  GetNewRelFileNode(tableSpaceId, pg_class, relpersistence);
916  }
917  }
918 
919  /*
920  * create the index relation's relcache entry and, if necessary, the
921  * physical disk file. (If we fail further down, it's the smgr's
922  * responsibility to remove the disk file again, if any.)
923  */
924  indexRelation = heap_create(indexRelationName,
925  namespaceId,
926  tableSpaceId,
927  indexRelationId,
928  relFileNode,
929  accessMethodObjectId,
930  indexTupDesc,
931  relkind,
932  relpersistence,
933  shared_relation,
934  mapped_relation,
935  allow_system_table_mods,
936  &relfrozenxid,
937  &relminmxid);
938 
939  Assert(relfrozenxid == InvalidTransactionId);
940  Assert(relminmxid == InvalidMultiXactId);
941  Assert(indexRelationId == RelationGetRelid(indexRelation));
942 
943  /*
944  * Obtain exclusive lock on it. Although no other transactions can see it
945  * until we commit, this prevents deadlock-risk complaints from lock
946  * manager in cases such as CLUSTER.
947  */
948  LockRelation(indexRelation, AccessExclusiveLock);
949 
950  /*
951  * Fill in fields of the index's pg_class entry that are not set correctly
952  * by heap_create.
953  *
954  * XXX should have a cleaner way to create cataloged indexes
955  */
956  indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner;
957  indexRelation->rd_rel->relam = accessMethodObjectId;
958  indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid);
959 
960  /*
961  * store index's pg_class entry
962  */
963  InsertPgClassTuple(pg_class, indexRelation,
964  RelationGetRelid(indexRelation),
965  (Datum) 0,
966  reloptions);
967 
968  /* done with pg_class */
969  table_close(pg_class, RowExclusiveLock);
970 
971  /*
972  * now update the object id's of all the attribute tuple forms in the
973  * index relation's tuple descriptor
974  */
975  InitializeAttributeOids(indexRelation,
976  indexInfo->ii_NumIndexAttrs,
977  indexRelationId);
978 
979  /*
980  * append ATTRIBUTE tuples for the index
981  */
982  AppendAttributeTuples(indexRelation, indexInfo->ii_NumIndexAttrs,
983  indexInfo->ii_OpclassOptions);
984 
985  /* ----------------
986  * update pg_index
987  * (append INDEX tuple)
988  *
989  * Note that this stows away a representation of "predicate".
990  * (Or, could define a rule to maintain the predicate) --Nels, Feb '92
991  * ----------------
992  */
993  UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid,
994  indexInfo,
995  collationObjectId, classObjectId, coloptions,
996  isprimary, is_exclusion,
997  (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0,
998  !concurrent && !invalid,
999  !concurrent);
1000 
1001  /*
1002  * Register relcache invalidation on the indexes' heap relation, to
1003  * maintain consistency of its index list
1004  */
1005  CacheInvalidateRelcache(heapRelation);
1006 
1007  /* update pg_inherits and the parent's relhassubclass, if needed */
1008  if (OidIsValid(parentIndexRelid))
1009  {
1010  StoreSingleInheritance(indexRelationId, parentIndexRelid, 1);
1011  SetRelationHasSubclass(parentIndexRelid, true);
1012  }
1013 
1014  /*
1015  * Register constraint and dependencies for the index.
1016  *
1017  * If the index is from a CONSTRAINT clause, construct a pg_constraint
1018  * entry. The index will be linked to the constraint, which in turn is
1019  * linked to the table. If it's not a CONSTRAINT, we need to make a
1020  * dependency directly on the table.
1021  *
1022  * We don't need a dependency on the namespace, because there'll be an
1023  * indirect dependency via our parent table.
1024  *
1025  * During bootstrap we can't register any dependencies, and we don't try
1026  * to make a constraint either.
1027  */
1029  {
1030  ObjectAddress myself,
1031  referenced;
1032 
1033  ObjectAddressSet(myself, RelationRelationId, indexRelationId);
1034 
1035  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)
1036  {
1037  char constraintType;
1038  ObjectAddress localaddr;
1039 
1040  if (isprimary)
1041  constraintType = CONSTRAINT_PRIMARY;
1042  else if (indexInfo->ii_Unique)
1043  constraintType = CONSTRAINT_UNIQUE;
1044  else if (is_exclusion)
1045  constraintType = CONSTRAINT_EXCLUSION;
1046  else
1047  {
1048  elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
1049  constraintType = 0; /* keep compiler quiet */
1050  }
1051 
1052  localaddr = index_constraint_create(heapRelation,
1053  indexRelationId,
1054  parentConstraintId,
1055  indexInfo,
1056  indexRelationName,
1057  constraintType,
1058  constr_flags,
1059  allow_system_table_mods,
1060  is_internal);
1061  if (constraintId)
1062  *constraintId = localaddr.objectId;
1063  }
1064  else
1065  {
1066  bool have_simple_col = false;
1067 
1068  /* Create auto dependencies on simply-referenced columns */
1069  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
1070  {
1071  if (indexInfo->ii_IndexAttrNumbers[i] != 0)
1072  {
1073  ObjectAddressSubSet(referenced, RelationRelationId,
1074  heapRelationId,
1075  indexInfo->ii_IndexAttrNumbers[i]);
1076  recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO);
1077  have_simple_col = true;
1078  }
1079  }
1080 
1081  /*
1082  * If there are no simply-referenced columns, give the index an
1083  * auto dependency on the whole table. In most cases, this will
1084  * be redundant, but it might not be if the index expressions and
1085  * predicate contain no Vars or only whole-row Vars.
1086  */
1087  if (!have_simple_col)
1088  {
1089  ObjectAddressSet(referenced, RelationRelationId,
1090  heapRelationId);
1091  recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO);
1092  }
1093  }
1094 
1095  /*
1096  * If this is an index partition, create partition dependencies on
1097  * both the parent index and the table. (Note: these must be *in
1098  * addition to*, not instead of, all other dependencies. Otherwise
1099  * we'll be short some dependencies after DETACH PARTITION.)
1100  */
1101  if (OidIsValid(parentIndexRelid))
1102  {
1103  ObjectAddressSet(referenced, RelationRelationId, parentIndexRelid);
1104  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1105 
1106  ObjectAddressSet(referenced, RelationRelationId, heapRelationId);
1107  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1108  }
1109 
1110  /* Store dependency on collations */
1111  /* The default collation is pinned, so don't bother recording it */
1112  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1113  {
1114  if (OidIsValid(collationObjectId[i]) &&
1115  collationObjectId[i] != DEFAULT_COLLATION_OID)
1116  {
1117  ObjectAddressSet(referenced, CollationRelationId,
1118  collationObjectId[i]);
1119  recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL);
1120  }
1121  }
1122 
1123  /* Store dependency on operator classes */
1124  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1125  {
1126  ObjectAddressSet(referenced, OperatorClassRelationId, classObjectId[i]);
1127  recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL);
1128  }
1129 
1130  /* Store dependencies on anything mentioned in index expressions */
1131  if (indexInfo->ii_Expressions)
1132  {
1134  (Node *) indexInfo->ii_Expressions,
1135  heapRelationId,
1137  DEPENDENCY_AUTO, false);
1138  }
1139 
1140  /* Store dependencies on anything mentioned in predicate */
1141  if (indexInfo->ii_Predicate)
1142  {
1144  (Node *) indexInfo->ii_Predicate,
1145  heapRelationId,
1147  DEPENDENCY_AUTO, false);
1148  }
1149  }
1150  else
1151  {
1152  /* Bootstrap mode - assert we weren't asked for constraint support */
1153  Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0);
1154  }
1155 
1156  /* Post creation hook for new index */
1157  InvokeObjectPostCreateHookArg(RelationRelationId,
1158  indexRelationId, 0, is_internal);
1159 
1160  /*
1161  * Advance the command counter so that we can see the newly-entered
1162  * catalog tuples for the index.
1163  */
1165 
1166  /*
1167  * In bootstrap mode, we have to fill in the index strategy structure with
1168  * information from the catalogs. If we aren't bootstrapping, then the
1169  * relcache entry has already been rebuilt thanks to sinval update during
1170  * CommandCounterIncrement.
1171  */
1173  RelationInitIndexAccessInfo(indexRelation);
1174  else
1175  Assert(indexRelation->rd_indexcxt != NULL);
1176 
1177  indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs;
1178 
1179  /* Validate opclass-specific options */
1180  if (indexInfo->ii_OpclassOptions)
1181  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1182  (void) index_opclass_options(indexRelation, i + 1,
1183  indexInfo->ii_OpclassOptions[i],
1184  true);
1185 
1186  /*
1187  * If this is bootstrap (initdb) time, then we don't actually fill in the
1188  * index yet. We'll be creating more indexes and classes later, so we
1189  * delay filling them in until just before we're done with bootstrapping.
1190  * Similarly, if the caller specified to skip the build then filling the
1191  * index is delayed till later (ALTER TABLE can save work in some cases
1192  * with this). Otherwise, we call the AM routine that constructs the
1193  * index.
1194  */
1196  {
1197  index_register(heapRelationId, indexRelationId, indexInfo);
1198  }
1199  else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0)
1200  {
1201  /*
1202  * Caller is responsible for filling the index later on. However,
1203  * we'd better make sure that the heap relation is correctly marked as
1204  * having an index.
1205  */
1206  index_update_stats(heapRelation,
1207  true,
1208  -1.0);
1209  /* Make the above update visible */
1211  }
1212  else
1213  {
1214  index_build(heapRelation, indexRelation, indexInfo, false, true);
1215  }
1216 
1217  /*
1218  * Close the index; but we keep the lock that we acquired above until end
1219  * of transaction. Closing the heap is caller's responsibility.
1220  */
1221  index_close(indexRelation, NoLock);
1222 
1223  return indexRelationId;
1224 }
1225 
1226 /*
1227  * index_concurrently_create_copy
1228  *
1229  * Create concurrently an index based on the definition of the one provided by
1230  * caller. The index is inserted into catalogs and needs to be built later
1231  * on. This is called during concurrent reindex processing.
1232  */
1233 Oid
1234 index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, const char *newName)
1235 {
1236  Relation indexRelation;
1237  IndexInfo *oldInfo,
1238  *newInfo;
1239  Oid newIndexId = InvalidOid;
1240  HeapTuple indexTuple,
1241  classTuple;
1242  Datum indclassDatum,
1243  colOptionDatum,
1244  optionDatum;
1245  oidvector *indclass;
1246  int2vector *indcoloptions;
1247  bool isnull;
1248  List *indexColNames = NIL;
1249  List *indexExprs = NIL;
1250  List *indexPreds = NIL;
1251 
1252  indexRelation = index_open(oldIndexId, RowExclusiveLock);
1253 
1254  /* The new index needs some information from the old index */
1255  oldInfo = BuildIndexInfo(indexRelation);
1256 
1257  /*
1258  * Concurrent build of an index with exclusion constraints is not
1259  * supported.
1260  */
1261  if (oldInfo->ii_ExclusionOps != NULL)
1262  ereport(ERROR,
1263  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1264  errmsg("concurrent index creation for exclusion constraints is not supported")));
1265 
1266  /* Get the array of class and column options IDs from index info */
1267  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId));
1268  if (!HeapTupleIsValid(indexTuple))
1269  elog(ERROR, "cache lookup failed for index %u", oldIndexId);
1270  indclassDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1271  Anum_pg_index_indclass, &isnull);
1272  Assert(!isnull);
1273  indclass = (oidvector *) DatumGetPointer(indclassDatum);
1274 
1275  colOptionDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1276  Anum_pg_index_indoption, &isnull);
1277  Assert(!isnull);
1278  indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum);
1279 
1280  /* Fetch options of index if any */
1281  classTuple = SearchSysCache1(RELOID, oldIndexId);
1282  if (!HeapTupleIsValid(classTuple))
1283  elog(ERROR, "cache lookup failed for relation %u", oldIndexId);
1284  optionDatum = SysCacheGetAttr(RELOID, classTuple,
1285  Anum_pg_class_reloptions, &isnull);
1286 
1287  /*
1288  * Fetch the list of expressions and predicates directly from the
1289  * catalogs. This cannot rely on the information from IndexInfo of the
1290  * old index as these have been flattened for the planner.
1291  */
1292  if (oldInfo->ii_Expressions != NIL)
1293  {
1294  Datum exprDatum;
1295  char *exprString;
1296 
1297  exprDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1298  Anum_pg_index_indexprs, &isnull);
1299  Assert(!isnull);
1300  exprString = TextDatumGetCString(exprDatum);
1301  indexExprs = (List *) stringToNode(exprString);
1302  pfree(exprString);
1303  }
1304  if (oldInfo->ii_Predicate != NIL)
1305  {
1306  Datum predDatum;
1307  char *predString;
1308 
1309  predDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1310  Anum_pg_index_indpred, &isnull);
1311  Assert(!isnull);
1312  predString = TextDatumGetCString(predDatum);
1313  indexPreds = (List *) stringToNode(predString);
1314 
1315  /* Also convert to implicit-AND format */
1316  indexPreds = make_ands_implicit((Expr *) indexPreds);
1317  pfree(predString);
1318  }
1319 
1320  /*
1321  * Build the index information for the new index. Note that rebuild of
1322  * indexes with exclusion constraints is not supported, hence there is no
1323  * need to fill all the ii_Exclusion* fields.
1324  */
1325  newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs,
1326  oldInfo->ii_NumIndexKeyAttrs,
1327  oldInfo->ii_Am,
1328  indexExprs,
1329  indexPreds,
1330  oldInfo->ii_Unique,
1331  false, /* not ready for inserts */
1332  true);
1333 
1334  /*
1335  * Extract the list of column names and the column numbers for the new
1336  * index information. All this information will be used for the index
1337  * creation.
1338  */
1339  for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++)
1340  {
1341  TupleDesc indexTupDesc = RelationGetDescr(indexRelation);
1342  Form_pg_attribute att = TupleDescAttr(indexTupDesc, i);
1343 
1344  indexColNames = lappend(indexColNames, NameStr(att->attname));
1345  newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i];
1346  }
1347 
1348  /*
1349  * Now create the new index.
1350  *
1351  * For a partition index, we adjust the partition dependency later, to
1352  * ensure a consistent state at all times. That is why parentIndexRelid
1353  * is not set here.
1354  */
1355  newIndexId = index_create(heapRelation,
1356  newName,
1357  InvalidOid, /* indexRelationId */
1358  InvalidOid, /* parentIndexRelid */
1359  InvalidOid, /* parentConstraintId */
1360  InvalidOid, /* relFileNode */
1361  newInfo,
1362  indexColNames,
1363  indexRelation->rd_rel->relam,
1364  indexRelation->rd_rel->reltablespace,
1365  indexRelation->rd_indcollation,
1366  indclass->values,
1367  indcoloptions->values,
1368  optionDatum,
1370  0,
1371  true, /* allow table to be a system catalog? */
1372  false, /* is_internal? */
1373  NULL);
1374 
1375  /* Close the relations used and clean up */
1376  index_close(indexRelation, NoLock);
1377  ReleaseSysCache(indexTuple);
1378  ReleaseSysCache(classTuple);
1379 
1380  return newIndexId;
1381 }
1382 
1383 /*
1384  * index_concurrently_build
1385  *
1386  * Build index for a concurrent operation. Low-level locks are taken when
1387  * this operation is performed to prevent only schema changes, but they need
1388  * to be kept until the end of the transaction performing this operation.
1389  * 'indexOid' refers to an index relation OID already created as part of
1390  * previous processing, and 'heapOid' refers to its parent heap relation.
1391  */
1392 void
1394  Oid indexRelationId)
1395 {
1396  Relation heapRel;
1397  Relation indexRelation;
1398  IndexInfo *indexInfo;
1399 
1400  /* This had better make sure that a snapshot is active */
1402 
1403  /* Open and lock the parent heap relation */
1404  heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock);
1405 
1406  /* And the target index relation */
1407  indexRelation = index_open(indexRelationId, RowExclusiveLock);
1408 
1409  /*
1410  * We have to re-build the IndexInfo struct, since it was lost in the
1411  * commit of the transaction where this concurrent index was created at
1412  * the catalog level.
1413  */
1414  indexInfo = BuildIndexInfo(indexRelation);
1415  Assert(!indexInfo->ii_ReadyForInserts);
1416  indexInfo->ii_Concurrent = true;
1417  indexInfo->ii_BrokenHotChain = false;
1418 
1419  /* Now build the index */
1420  index_build(heapRel, indexRelation, indexInfo, false, true);
1421 
1422  /* Close both the relations, but keep the locks */
1423  table_close(heapRel, NoLock);
1424  index_close(indexRelation, NoLock);
1425 
1426  /*
1427  * Update the pg_index row to mark the index as ready for inserts. Once we
1428  * commit this transaction, any new transactions that open the table must
1429  * insert new entries into the index for insertions and non-HOT updates.
1430  */
1432 }
1433 
1434 /*
1435  * index_concurrently_swap
1436  *
1437  * Swap name, dependencies, and constraints of the old index over to the new
1438  * index, while marking the old index as invalid and the new as valid.
1439  */
1440 void
1441 index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
1442 {
1443  Relation pg_class,
1444  pg_index,
1445  pg_constraint,
1446  pg_trigger;
1447  Relation oldClassRel,
1448  newClassRel;
1449  HeapTuple oldClassTuple,
1450  newClassTuple;
1451  Form_pg_class oldClassForm,
1452  newClassForm;
1453  HeapTuple oldIndexTuple,
1454  newIndexTuple;
1455  Form_pg_index oldIndexForm,
1456  newIndexForm;
1457  bool isPartition;
1458  Oid indexConstraintOid;
1459  List *constraintOids = NIL;
1460  ListCell *lc;
1461 
1462  /*
1463  * Take a necessary lock on the old and new index before swapping them.
1464  */
1465  oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock);
1466  newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock);
1467 
1468  /* Now swap names and dependencies of those indexes */
1469  pg_class = table_open(RelationRelationId, RowExclusiveLock);
1470 
1471  oldClassTuple = SearchSysCacheCopy1(RELOID,
1472  ObjectIdGetDatum(oldIndexId));
1473  if (!HeapTupleIsValid(oldClassTuple))
1474  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1475  newClassTuple = SearchSysCacheCopy1(RELOID,
1476  ObjectIdGetDatum(newIndexId));
1477  if (!HeapTupleIsValid(newClassTuple))
1478  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1479 
1480  oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple);
1481  newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple);
1482 
1483  /* Swap the names */
1484  namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname));
1485  namestrcpy(&oldClassForm->relname, oldName);
1486 
1487  /* Swap the partition flags to track inheritance properly */
1488  isPartition = newClassForm->relispartition;
1489  newClassForm->relispartition = oldClassForm->relispartition;
1490  oldClassForm->relispartition = isPartition;
1491 
1492  CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple);
1493  CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple);
1494 
1495  heap_freetuple(oldClassTuple);
1496  heap_freetuple(newClassTuple);
1497 
1498  /* Now swap index info */
1499  pg_index = table_open(IndexRelationId, RowExclusiveLock);
1500 
1501  oldIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1502  ObjectIdGetDatum(oldIndexId));
1503  if (!HeapTupleIsValid(oldIndexTuple))
1504  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1505  newIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1506  ObjectIdGetDatum(newIndexId));
1507  if (!HeapTupleIsValid(newIndexTuple))
1508  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1509 
1510  oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple);
1511  newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple);
1512 
1513  /*
1514  * Copy constraint flags from the old index. This is safe because the old
1515  * index guaranteed uniqueness.
1516  */
1517  newIndexForm->indisprimary = oldIndexForm->indisprimary;
1518  oldIndexForm->indisprimary = false;
1519  newIndexForm->indisexclusion = oldIndexForm->indisexclusion;
1520  oldIndexForm->indisexclusion = false;
1521  newIndexForm->indimmediate = oldIndexForm->indimmediate;
1522  oldIndexForm->indimmediate = true;
1523 
1524  /* Preserve indisreplident in the new index */
1525  newIndexForm->indisreplident = oldIndexForm->indisreplident;
1526  oldIndexForm->indisreplident = false;
1527 
1528  /* Preserve indisclustered in the new index */
1529  newIndexForm->indisclustered = oldIndexForm->indisclustered;
1530 
1531  /*
1532  * Mark the new index as valid, and the old index as invalid similarly to
1533  * what index_set_state_flags() does.
1534  */
1535  newIndexForm->indisvalid = true;
1536  oldIndexForm->indisvalid = false;
1537  oldIndexForm->indisclustered = false;
1538 
1539  CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple);
1540  CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple);
1541 
1542  heap_freetuple(oldIndexTuple);
1543  heap_freetuple(newIndexTuple);
1544 
1545  /*
1546  * Move constraints and triggers over to the new index
1547  */
1548 
1549  constraintOids = get_index_ref_constraints(oldIndexId);
1550 
1551  indexConstraintOid = get_index_constraint(oldIndexId);
1552 
1553  if (OidIsValid(indexConstraintOid))
1554  constraintOids = lappend_oid(constraintOids, indexConstraintOid);
1555 
1556  pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock);
1557  pg_trigger = table_open(TriggerRelationId, RowExclusiveLock);
1558 
1559  foreach(lc, constraintOids)
1560  {
1561  HeapTuple constraintTuple,
1562  triggerTuple;
1563  Form_pg_constraint conForm;
1564  ScanKeyData key[1];
1565  SysScanDesc scan;
1566  Oid constraintOid = lfirst_oid(lc);
1567 
1568  /* Move the constraint from the old to the new index */
1569  constraintTuple = SearchSysCacheCopy1(CONSTROID,
1570  ObjectIdGetDatum(constraintOid));
1571  if (!HeapTupleIsValid(constraintTuple))
1572  elog(ERROR, "could not find tuple for constraint %u", constraintOid);
1573 
1574  conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple));
1575 
1576  if (conForm->conindid == oldIndexId)
1577  {
1578  conForm->conindid = newIndexId;
1579 
1580  CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple);
1581  }
1582 
1583  heap_freetuple(constraintTuple);
1584 
1585  /* Search for trigger records */
1586  ScanKeyInit(&key[0],
1587  Anum_pg_trigger_tgconstraint,
1588  BTEqualStrategyNumber, F_OIDEQ,
1589  ObjectIdGetDatum(constraintOid));
1590 
1591  scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true,
1592  NULL, 1, key);
1593 
1594  while (HeapTupleIsValid((triggerTuple = systable_getnext(scan))))
1595  {
1596  Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1597 
1598  if (tgForm->tgconstrindid != oldIndexId)
1599  continue;
1600 
1601  /* Make a modifiable copy */
1602  triggerTuple = heap_copytuple(triggerTuple);
1603  tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1604 
1605  tgForm->tgconstrindid = newIndexId;
1606 
1607  CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple);
1608 
1609  heap_freetuple(triggerTuple);
1610  }
1611 
1612  systable_endscan(scan);
1613  }
1614 
1615  /*
1616  * Move comment if any
1617  */
1618  {
1619  Relation description;
1620  ScanKeyData skey[3];
1621  SysScanDesc sd;
1622  HeapTuple tuple;
1623  Datum values[Natts_pg_description] = {0};
1624  bool nulls[Natts_pg_description] = {0};
1625  bool replaces[Natts_pg_description] = {0};
1626 
1627  values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId);
1628  replaces[Anum_pg_description_objoid - 1] = true;
1629 
1630  ScanKeyInit(&skey[0],
1631  Anum_pg_description_objoid,
1632  BTEqualStrategyNumber, F_OIDEQ,
1633  ObjectIdGetDatum(oldIndexId));
1634  ScanKeyInit(&skey[1],
1635  Anum_pg_description_classoid,
1636  BTEqualStrategyNumber, F_OIDEQ,
1637  ObjectIdGetDatum(RelationRelationId));
1638  ScanKeyInit(&skey[2],
1639  Anum_pg_description_objsubid,
1640  BTEqualStrategyNumber, F_INT4EQ,
1641  Int32GetDatum(0));
1642 
1643  description = table_open(DescriptionRelationId, RowExclusiveLock);
1644 
1645  sd = systable_beginscan(description, DescriptionObjIndexId, true,
1646  NULL, 3, skey);
1647 
1648  while ((tuple = systable_getnext(sd)) != NULL)
1649  {
1650  tuple = heap_modify_tuple(tuple, RelationGetDescr(description),
1651  values, nulls, replaces);
1652  CatalogTupleUpdate(description, &tuple->t_self, tuple);
1653 
1654  break; /* Assume there can be only one match */
1655  }
1656 
1657  systable_endscan(sd);
1658  table_close(description, NoLock);
1659  }
1660 
1661  /*
1662  * Swap inheritance relationship with parent index
1663  */
1664  if (get_rel_relispartition(oldIndexId))
1665  {
1666  List *ancestors = get_partition_ancestors(oldIndexId);
1667  Oid parentIndexRelid = linitial_oid(ancestors);
1668 
1669  DeleteInheritsTuple(oldIndexId, parentIndexRelid);
1670  StoreSingleInheritance(newIndexId, parentIndexRelid, 1);
1671 
1672  list_free(ancestors);
1673  }
1674 
1675  /*
1676  * Swap all dependencies of and on the old index to the new one, and
1677  * vice-versa. Note that a call to CommandCounterIncrement() would cause
1678  * duplicate entries in pg_depend, so this should not be done.
1679  */
1680  changeDependenciesOf(RelationRelationId, newIndexId, oldIndexId);
1681  changeDependenciesOn(RelationRelationId, newIndexId, oldIndexId);
1682 
1683  changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId);
1684  changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId);
1685 
1686  /*
1687  * Copy over statistics from old to new index
1688  */
1689  {
1690  PgStat_StatTabEntry *tabentry;
1691 
1692  tabentry = pgstat_fetch_stat_tabentry(oldIndexId);
1693  if (tabentry)
1694  {
1695  if (newClassRel->pgstat_info)
1696  {
1697  newClassRel->pgstat_info->t_counts.t_numscans = tabentry->numscans;
1698  newClassRel->pgstat_info->t_counts.t_tuples_returned = tabentry->tuples_returned;
1699  newClassRel->pgstat_info->t_counts.t_tuples_fetched = tabentry->tuples_fetched;
1700  newClassRel->pgstat_info->t_counts.t_blocks_fetched = tabentry->blocks_fetched;
1701  newClassRel->pgstat_info->t_counts.t_blocks_hit = tabentry->blocks_hit;
1702 
1703  /*
1704  * The data will be sent by the next pgstat_report_stat()
1705  * call.
1706  */
1707  }
1708  }
1709  }
1710 
1711  /* Close relations */
1712  table_close(pg_class, RowExclusiveLock);
1713  table_close(pg_index, RowExclusiveLock);
1714  table_close(pg_constraint, RowExclusiveLock);
1715  table_close(pg_trigger, RowExclusiveLock);
1716 
1717  /* The lock taken previously is not released until the end of transaction */
1718  relation_close(oldClassRel, NoLock);
1719  relation_close(newClassRel, NoLock);
1720 }
1721 
1722 /*
1723  * index_concurrently_set_dead
1724  *
1725  * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX
1726  * CONCURRENTLY before actually dropping the index. After calling this
1727  * function, the index is seen by all the backends as dead. Low-level locks
1728  * taken here are kept until the end of the transaction calling this function.
1729  */
1730 void
1732 {
1733  Relation userHeapRelation;
1734  Relation userIndexRelation;
1735 
1736  /*
1737  * No more predicate locks will be acquired on this index, and we're about
1738  * to stop doing inserts into the index which could show conflicts with
1739  * existing predicate locks, so now is the time to move them to the heap
1740  * relation.
1741  */
1742  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
1743  userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock);
1744  TransferPredicateLocksToHeapRelation(userIndexRelation);
1745 
1746  /*
1747  * Now we are sure that nobody uses the index for queries; they just might
1748  * have it open for updating it. So now we can unset indisready and
1749  * indislive, then wait till nobody could be using it at all anymore.
1750  */
1752 
1753  /*
1754  * Invalidate the relcache for the table, so that after this commit all
1755  * sessions will refresh the table's index list. Forgetting just the
1756  * index's relcache entry is not enough.
1757  */
1758  CacheInvalidateRelcache(userHeapRelation);
1759 
1760  /*
1761  * Close the relations again, though still holding session lock.
1762  */
1763  table_close(userHeapRelation, NoLock);
1764  index_close(userIndexRelation, NoLock);
1765 }
1766 
1767 /*
1768  * index_constraint_create
1769  *
1770  * Set up a constraint associated with an index. Return the new constraint's
1771  * address.
1772  *
1773  * heapRelation: table owning the index (must be suitably locked by caller)
1774  * indexRelationId: OID of the index
1775  * parentConstraintId: if constraint is on a partition, the OID of the
1776  * constraint in the parent.
1777  * indexInfo: same info executor uses to insert into the index
1778  * constraintName: what it say (generally, should match name of index)
1779  * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or
1780  * CONSTRAINT_EXCLUSION
1781  * flags: bitmask that can include any combination of these bits:
1782  * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY
1783  * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE
1784  * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED
1785  * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row
1786  * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies
1787  * of index on table's columns
1788  * allow_system_table_mods: allow table to be a system catalog
1789  * is_internal: index is constructed due to internal process
1790  */
1793  Oid indexRelationId,
1794  Oid parentConstraintId,
1795  IndexInfo *indexInfo,
1796  const char *constraintName,
1797  char constraintType,
1798  bits16 constr_flags,
1799  bool allow_system_table_mods,
1800  bool is_internal)
1801 {
1802  Oid namespaceId = RelationGetNamespace(heapRelation);
1803  ObjectAddress myself,
1804  idxaddr;
1805  Oid conOid;
1806  bool deferrable;
1807  bool initdeferred;
1808  bool mark_as_primary;
1809  bool islocal;
1810  bool noinherit;
1811  int inhcount;
1812 
1813  deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0;
1814  initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0;
1815  mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0;
1816 
1817  /* constraint creation support doesn't work while bootstrapping */
1819 
1820  /* enforce system-table restriction */
1821  if (!allow_system_table_mods &&
1822  IsSystemRelation(heapRelation) &&
1824  ereport(ERROR,
1825  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1826  errmsg("user-defined indexes on system catalog tables are not supported")));
1827 
1828  /* primary/unique constraints shouldn't have any expressions */
1829  if (indexInfo->ii_Expressions &&
1830  constraintType != CONSTRAINT_EXCLUSION)
1831  elog(ERROR, "constraints cannot have index expressions");
1832 
1833  /*
1834  * If we're manufacturing a constraint for a pre-existing index, we need
1835  * to get rid of the existing auto dependencies for the index (the ones
1836  * that index_create() would have made instead of calling this function).
1837  *
1838  * Note: this code would not necessarily do the right thing if the index
1839  * has any expressions or predicate, but we'd never be turning such an
1840  * index into a UNIQUE or PRIMARY KEY constraint.
1841  */
1842  if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS)
1843  deleteDependencyRecordsForClass(RelationRelationId, indexRelationId,
1844  RelationRelationId, DEPENDENCY_AUTO);
1845 
1846  if (OidIsValid(parentConstraintId))
1847  {
1848  islocal = false;
1849  inhcount = 1;
1850  noinherit = false;
1851  }
1852  else
1853  {
1854  islocal = true;
1855  inhcount = 0;
1856  noinherit = true;
1857  }
1858 
1859  /*
1860  * Construct a pg_constraint entry.
1861  */
1862  conOid = CreateConstraintEntry(constraintName,
1863  namespaceId,
1864  constraintType,
1865  deferrable,
1866  initdeferred,
1867  true,
1868  parentConstraintId,
1869  RelationGetRelid(heapRelation),
1870  indexInfo->ii_IndexAttrNumbers,
1871  indexInfo->ii_NumIndexKeyAttrs,
1872  indexInfo->ii_NumIndexAttrs,
1873  InvalidOid, /* no domain */
1874  indexRelationId, /* index OID */
1875  InvalidOid, /* no foreign key */
1876  NULL,
1877  NULL,
1878  NULL,
1879  NULL,
1880  0,
1881  ' ',
1882  ' ',
1883  ' ',
1884  indexInfo->ii_ExclusionOps,
1885  NULL, /* no check constraint */
1886  NULL,
1887  islocal,
1888  inhcount,
1889  noinherit,
1890  is_internal);
1891 
1892  /*
1893  * Register the index as internally dependent on the constraint.
1894  *
1895  * Note that the constraint has a dependency on the table, so we don't
1896  * need (or want) any direct dependency from the index to the table.
1897  */
1898  ObjectAddressSet(myself, ConstraintRelationId, conOid);
1899  ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId);
1900  recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL);
1901 
1902  /*
1903  * Also, if this is a constraint on a partition, give it partition-type
1904  * dependencies on the parent constraint as well as the table.
1905  */
1906  if (OidIsValid(parentConstraintId))
1907  {
1908  ObjectAddress referenced;
1909 
1910  ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId);
1911  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1912  ObjectAddressSet(referenced, RelationRelationId,
1913  RelationGetRelid(heapRelation));
1914  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1915  }
1916 
1917  /*
1918  * If the constraint is deferrable, create the deferred uniqueness
1919  * checking trigger. (The trigger will be given an internal dependency on
1920  * the constraint by CreateTrigger.)
1921  */
1922  if (deferrable)
1923  {
1924  CreateTrigStmt *trigger;
1925 
1926  trigger = makeNode(CreateTrigStmt);
1927  trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ?
1928  "PK_ConstraintTrigger" :
1929  "Unique_ConstraintTrigger";
1930  trigger->relation = NULL;
1931  trigger->funcname = SystemFuncName("unique_key_recheck");
1932  trigger->args = NIL;
1933  trigger->row = true;
1934  trigger->timing = TRIGGER_TYPE_AFTER;
1935  trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE;
1936  trigger->columns = NIL;
1937  trigger->whenClause = NULL;
1938  trigger->isconstraint = true;
1939  trigger->deferrable = true;
1940  trigger->initdeferred = initdeferred;
1941  trigger->constrrel = NULL;
1942 
1943  (void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation),
1944  InvalidOid, conOid, indexRelationId, InvalidOid,
1945  InvalidOid, NULL, true, false);
1946  }
1947 
1948  /*
1949  * If needed, mark the index as primary and/or deferred in pg_index.
1950  *
1951  * Note: When making an existing index into a constraint, caller must have
1952  * a table lock that prevents concurrent table updates; otherwise, there
1953  * is a risk that concurrent readers of the table will miss seeing this
1954  * index at all.
1955  */
1956  if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) &&
1957  (mark_as_primary || deferrable))
1958  {
1959  Relation pg_index;
1960  HeapTuple indexTuple;
1961  Form_pg_index indexForm;
1962  bool dirty = false;
1963 
1964  pg_index = table_open(IndexRelationId, RowExclusiveLock);
1965 
1966  indexTuple = SearchSysCacheCopy1(INDEXRELID,
1967  ObjectIdGetDatum(indexRelationId));
1968  if (!HeapTupleIsValid(indexTuple))
1969  elog(ERROR, "cache lookup failed for index %u", indexRelationId);
1970  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
1971 
1972  if (mark_as_primary && !indexForm->indisprimary)
1973  {
1974  indexForm->indisprimary = true;
1975  dirty = true;
1976  }
1977 
1978  if (deferrable && indexForm->indimmediate)
1979  {
1980  indexForm->indimmediate = false;
1981  dirty = true;
1982  }
1983 
1984  if (dirty)
1985  {
1986  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
1987 
1988  InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0,
1989  InvalidOid, is_internal);
1990  }
1991 
1992  heap_freetuple(indexTuple);
1993  table_close(pg_index, RowExclusiveLock);
1994  }
1995 
1996  return myself;
1997 }
1998 
1999 /*
2000  * index_drop
2001  *
2002  * NOTE: this routine should now only be called through performDeletion(),
2003  * else associated dependencies won't be cleaned up.
2004  *
2005  * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is
2006  * false but concurrent_lock_mode is true, then do a normal DROP INDEX but
2007  * take a lock for CONCURRENTLY processing. That is used as part of REINDEX
2008  * CONCURRENTLY.
2009  */
2010 void
2011 index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
2012 {
2013  Oid heapId;
2014  Relation userHeapRelation;
2015  Relation userIndexRelation;
2016  Relation indexRelation;
2017  HeapTuple tuple;
2018  bool hasexprs;
2019  LockRelId heaprelid,
2020  indexrelid;
2021  LOCKTAG heaplocktag;
2022  LOCKMODE lockmode;
2023 
2024  /*
2025  * A temporary relation uses a non-concurrent DROP. Other backends can't
2026  * access a temporary relation, so there's no harm in grabbing a stronger
2027  * lock (see comments in RemoveRelations), and a non-concurrent DROP is
2028  * more efficient.
2029  */
2030  Assert(get_rel_persistence(indexId) != RELPERSISTENCE_TEMP ||
2031  (!concurrent && !concurrent_lock_mode));
2032 
2033  /*
2034  * To drop an index safely, we must grab exclusive lock on its parent
2035  * table. Exclusive lock on the index alone is insufficient because
2036  * another backend might be about to execute a query on the parent table.
2037  * If it relies on a previously cached list of index OIDs, then it could
2038  * attempt to access the just-dropped index. We must therefore take a
2039  * table lock strong enough to prevent all queries on the table from
2040  * proceeding until we commit and send out a shared-cache-inval notice
2041  * that will make them update their index lists.
2042  *
2043  * In the concurrent case we avoid this requirement by disabling index use
2044  * in multiple steps and waiting out any transactions that might be using
2045  * the index, so we don't need exclusive lock on the parent table. Instead
2046  * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't
2047  * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get
2048  * AccessExclusiveLock on the index below, once we're sure nobody else is
2049  * using it.)
2050  */
2051  heapId = IndexGetRelation(indexId, false);
2052  lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock;
2053  userHeapRelation = table_open(heapId, lockmode);
2054  userIndexRelation = index_open(indexId, lockmode);
2055 
2056  /*
2057  * We might still have open queries using it in our own session, which the
2058  * above locking won't prevent, so test explicitly.
2059  */
2060  CheckTableNotInUse(userIndexRelation, "DROP INDEX");
2061 
2062  /*
2063  * Drop Index Concurrently is more or less the reverse process of Create
2064  * Index Concurrently.
2065  *
2066  * First we unset indisvalid so queries starting afterwards don't use the
2067  * index to answer queries anymore. We have to keep indisready = true so
2068  * transactions that are still scanning the index can continue to see
2069  * valid index contents. For instance, if they are using READ COMMITTED
2070  * mode, and another transaction makes changes and commits, they need to
2071  * see those new tuples in the index.
2072  *
2073  * After all transactions that could possibly have used the index for
2074  * queries end, we can unset indisready and indislive, then wait till
2075  * nobody could be touching it anymore. (Note: we need indislive because
2076  * this state must be distinct from the initial state during CREATE INDEX
2077  * CONCURRENTLY, which has indislive true while indisready and indisvalid
2078  * are false. That's because in that state, transactions must examine the
2079  * index for HOT-safety decisions, while in this state we don't want them
2080  * to open it at all.)
2081  *
2082  * Since all predicate locks on the index are about to be made invalid, we
2083  * must promote them to predicate locks on the heap. In the
2084  * non-concurrent case we can just do that now. In the concurrent case
2085  * it's a bit trickier. The predicate locks must be moved when there are
2086  * no index scans in progress on the index and no more can subsequently
2087  * start, so that no new predicate locks can be made on the index. Also,
2088  * they must be moved before heap inserts stop maintaining the index, else
2089  * the conflict with the predicate lock on the index gap could be missed
2090  * before the lock on the heap relation is in place to detect a conflict
2091  * based on the heap tuple insert.
2092  */
2093  if (concurrent)
2094  {
2095  /*
2096  * We must commit our transaction in order to make the first pg_index
2097  * state update visible to other sessions. If the DROP machinery has
2098  * already performed any other actions (removal of other objects,
2099  * pg_depend entries, etc), the commit would make those actions
2100  * permanent, which would leave us with inconsistent catalog state if
2101  * we fail partway through the following sequence. Since DROP INDEX
2102  * CONCURRENTLY is restricted to dropping just one index that has no
2103  * dependencies, we should get here before anything's been done ---
2104  * but let's check that to be sure. We can verify that the current
2105  * transaction has not executed any transactional updates by checking
2106  * that no XID has been assigned.
2107  */
2109  ereport(ERROR,
2110  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2111  errmsg("DROP INDEX CONCURRENTLY must be first action in transaction")));
2112 
2113  /*
2114  * Mark index invalid by updating its pg_index entry
2115  */
2117 
2118  /*
2119  * Invalidate the relcache for the table, so that after this commit
2120  * all sessions will refresh any cached plans that might reference the
2121  * index.
2122  */
2123  CacheInvalidateRelcache(userHeapRelation);
2124 
2125  /* save lockrelid and locktag for below, then close but keep locks */
2126  heaprelid = userHeapRelation->rd_lockInfo.lockRelId;
2127  SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
2128  indexrelid = userIndexRelation->rd_lockInfo.lockRelId;
2129 
2130  table_close(userHeapRelation, NoLock);
2131  index_close(userIndexRelation, NoLock);
2132 
2133  /*
2134  * We must commit our current transaction so that the indisvalid
2135  * update becomes visible to other transactions; then start another.
2136  * Note that any previously-built data structures are lost in the
2137  * commit. The only data we keep past here are the relation IDs.
2138  *
2139  * Before committing, get a session-level lock on the table, to ensure
2140  * that neither it nor the index can be dropped before we finish. This
2141  * cannot block, even if someone else is waiting for access, because
2142  * we already have the same lock within our transaction.
2143  */
2146 
2150 
2151  /*
2152  * Now we must wait until no running transaction could be using the
2153  * index for a query. Use AccessExclusiveLock here to check for
2154  * running transactions that hold locks of any kind on the table. Note
2155  * we do not need to worry about xacts that open the table for reading
2156  * after this point; they will see the index as invalid when they open
2157  * the relation.
2158  *
2159  * Note: the reason we use actual lock acquisition here, rather than
2160  * just checking the ProcArray and sleeping, is that deadlock is
2161  * possible if one of the transactions in question is blocked trying
2162  * to acquire an exclusive lock on our table. The lock code will
2163  * detect deadlock and error out properly.
2164  *
2165  * Note: we report progress through WaitForLockers() unconditionally
2166  * here, even though it will only be used when we're called by REINDEX
2167  * CONCURRENTLY and not when called by DROP INDEX CONCURRENTLY.
2168  */
2169  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2170 
2171  /* Finish invalidation of index and mark it as dead */
2172  index_concurrently_set_dead(heapId, indexId);
2173 
2174  /*
2175  * Again, commit the transaction to make the pg_index update visible
2176  * to other sessions.
2177  */
2180 
2181  /*
2182  * Wait till every transaction that saw the old index state has
2183  * finished. See above about progress reporting.
2184  */
2185  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2186 
2187  /*
2188  * Re-open relations to allow us to complete our actions.
2189  *
2190  * At this point, nothing should be accessing the index, but lets
2191  * leave nothing to chance and grab AccessExclusiveLock on the index
2192  * before the physical deletion.
2193  */
2194  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
2195  userIndexRelation = index_open(indexId, AccessExclusiveLock);
2196  }
2197  else
2198  {
2199  /* Not concurrent, so just transfer predicate locks and we're good */
2200  TransferPredicateLocksToHeapRelation(userIndexRelation);
2201  }
2202 
2203  /*
2204  * Schedule physical removal of the files (if any)
2205  */
2206  if (userIndexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
2207  RelationDropStorage(userIndexRelation);
2208 
2209  /*
2210  * Close and flush the index's relcache entry, to ensure relcache doesn't
2211  * try to rebuild it while we're deleting catalog entries. We keep the
2212  * lock though.
2213  */
2214  index_close(userIndexRelation, NoLock);
2215 
2216  RelationForgetRelation(indexId);
2217 
2218  /*
2219  * fix INDEX relation, and check for expressional index
2220  */
2221  indexRelation = table_open(IndexRelationId, RowExclusiveLock);
2222 
2223  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
2224  if (!HeapTupleIsValid(tuple))
2225  elog(ERROR, "cache lookup failed for index %u", indexId);
2226 
2227  hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs,
2228  RelationGetDescr(indexRelation));
2229 
2230  CatalogTupleDelete(indexRelation, &tuple->t_self);
2231 
2232  ReleaseSysCache(tuple);
2233  table_close(indexRelation, RowExclusiveLock);
2234 
2235  /*
2236  * if it has any expression columns, we might have stored statistics about
2237  * them.
2238  */
2239  if (hasexprs)
2240  RemoveStatistics(indexId, 0);
2241 
2242  /*
2243  * fix ATTRIBUTE relation
2244  */
2245  DeleteAttributeTuples(indexId);
2246 
2247  /*
2248  * fix RELATION relation
2249  */
2250  DeleteRelationTuple(indexId);
2251 
2252  /*
2253  * fix INHERITS relation
2254  */
2255  DeleteInheritsTuple(indexId, InvalidOid);
2256 
2257  /*
2258  * We are presently too lazy to attempt to compute the new correct value
2259  * of relhasindex (the next VACUUM will fix it if necessary). So there is
2260  * no need to update the pg_class tuple for the owning relation. But we
2261  * must send out a shared-cache-inval notice on the owning relation to
2262  * ensure other backends update their relcache lists of indexes. (In the
2263  * concurrent case, this is redundant but harmless.)
2264  */
2265  CacheInvalidateRelcache(userHeapRelation);
2266 
2267  /*
2268  * Close owning rel, but keep lock
2269  */
2270  table_close(userHeapRelation, NoLock);
2271 
2272  /*
2273  * Release the session locks before we go.
2274  */
2275  if (concurrent)
2276  {
2279  }
2280 }
2281 
2282 /* ----------------------------------------------------------------
2283  * index_build support
2284  * ----------------------------------------------------------------
2285  */
2286 
2287 /* ----------------
2288  * BuildIndexInfo
2289  * Construct an IndexInfo record for an open index
2290  *
2291  * IndexInfo stores the information about the index that's needed by
2292  * FormIndexDatum, which is used for both index_build() and later insertion
2293  * of individual index tuples. Normally we build an IndexInfo for an index
2294  * just once per command, and then use it for (potentially) many tuples.
2295  * ----------------
2296  */
2297 IndexInfo *
2299 {
2300  IndexInfo *ii;
2301  Form_pg_index indexStruct = index->rd_index;
2302  int i;
2303  int numAtts;
2304 
2305  /* check the number of keys, and copy attr numbers into the IndexInfo */
2306  numAtts = indexStruct->indnatts;
2307  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2308  elog(ERROR, "invalid indnatts %d for index %u",
2309  numAtts, RelationGetRelid(index));
2310 
2311  /*
2312  * Create the node, fetching any expressions needed for expressional
2313  * indexes and index predicate if any.
2314  */
2315  ii = makeIndexInfo(indexStruct->indnatts,
2316  indexStruct->indnkeyatts,
2317  index->rd_rel->relam,
2320  indexStruct->indisunique,
2321  indexStruct->indisready,
2322  false);
2323 
2324  /* fill in attribute numbers */
2325  for (i = 0; i < numAtts; i++)
2326  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2327 
2328  /* fetch exclusion constraint info if any */
2329  if (indexStruct->indisexclusion)
2330  {
2332  &ii->ii_ExclusionOps,
2333  &ii->ii_ExclusionProcs,
2334  &ii->ii_ExclusionStrats);
2335  }
2336 
2338 
2339  return ii;
2340 }
2341 
2342 /* ----------------
2343  * BuildDummyIndexInfo
2344  * Construct a dummy IndexInfo record for an open index
2345  *
2346  * This differs from the real BuildIndexInfo in that it will never run any
2347  * user-defined code that might exist in index expressions or predicates.
2348  * Instead of the real index expressions, we return null constants that have
2349  * the right types/typmods/collations. Predicates and exclusion clauses are
2350  * just ignored. This is sufficient for the purpose of truncating an index,
2351  * since we will not need to actually evaluate the expressions or predicates;
2352  * the only thing that's likely to be done with the data is construction of
2353  * a tupdesc describing the index's rowtype.
2354  * ----------------
2355  */
2356 IndexInfo *
2358 {
2359  IndexInfo *ii;
2360  Form_pg_index indexStruct = index->rd_index;
2361  int i;
2362  int numAtts;
2363 
2364  /* check the number of keys, and copy attr numbers into the IndexInfo */
2365  numAtts = indexStruct->indnatts;
2366  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2367  elog(ERROR, "invalid indnatts %d for index %u",
2368  numAtts, RelationGetRelid(index));
2369 
2370  /*
2371  * Create the node, using dummy index expressions, and pretending there is
2372  * no predicate.
2373  */
2374  ii = makeIndexInfo(indexStruct->indnatts,
2375  indexStruct->indnkeyatts,
2376  index->rd_rel->relam,
2378  NIL,
2379  indexStruct->indisunique,
2380  indexStruct->indisready,
2381  false);
2382 
2383  /* fill in attribute numbers */
2384  for (i = 0; i < numAtts; i++)
2385  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2386 
2387  /* We ignore the exclusion constraint if any */
2388 
2389  return ii;
2390 }
2391 
2392 /*
2393  * CompareIndexInfo
2394  * Return whether the properties of two indexes (in different tables)
2395  * indicate that they have the "same" definitions.
2396  *
2397  * Note: passing collations and opfamilies separately is a kludge. Adding
2398  * them to IndexInfo may result in better coding here and elsewhere.
2399  *
2400  * Use build_attrmap_by_name(index2, index1) to build the attmap.
2401  */
2402 bool
2404  Oid *collations1, Oid *collations2,
2405  Oid *opfamilies1, Oid *opfamilies2,
2406  AttrMap *attmap)
2407 {
2408  int i;
2409 
2410  if (info1->ii_Unique != info2->ii_Unique)
2411  return false;
2412 
2413  /* indexes are only equivalent if they have the same access method */
2414  if (info1->ii_Am != info2->ii_Am)
2415  return false;
2416 
2417  /* and same number of attributes */
2418  if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs)
2419  return false;
2420 
2421  /* and same number of key attributes */
2422  if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs)
2423  return false;
2424 
2425  /*
2426  * and columns match through the attribute map (actual attribute numbers
2427  * might differ!) Note that this implies that index columns that are
2428  * expressions appear in the same positions. We will next compare the
2429  * expressions themselves.
2430  */
2431  for (i = 0; i < info1->ii_NumIndexAttrs; i++)
2432  {
2433  if (attmap->maplen < info2->ii_IndexAttrNumbers[i])
2434  elog(ERROR, "incorrect attribute map");
2435 
2436  /* ignore expressions at this stage */
2437  if ((info1->ii_IndexAttrNumbers[i] != InvalidAttrNumber) &&
2438  (attmap->attnums[info2->ii_IndexAttrNumbers[i] - 1] !=
2439  info1->ii_IndexAttrNumbers[i]))
2440  return false;
2441 
2442  /* collation and opfamily is not valid for including columns */
2443  if (i >= info1->ii_NumIndexKeyAttrs)
2444  continue;
2445 
2446  if (collations1[i] != collations2[i])
2447  return false;
2448  if (opfamilies1[i] != opfamilies2[i])
2449  return false;
2450  }
2451 
2452  /*
2453  * For expression indexes: either both are expression indexes, or neither
2454  * is; if they are, make sure the expressions match.
2455  */
2456  if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL))
2457  return false;
2458  if (info1->ii_Expressions != NIL)
2459  {
2460  bool found_whole_row;
2461  Node *mapped;
2462 
2463  mapped = map_variable_attnos((Node *) info2->ii_Expressions,
2464  1, 0, attmap,
2465  InvalidOid, &found_whole_row);
2466  if (found_whole_row)
2467  {
2468  /*
2469  * we could throw an error here, but seems out of scope for this
2470  * routine.
2471  */
2472  return false;
2473  }
2474 
2475  if (!equal(info1->ii_Expressions, mapped))
2476  return false;
2477  }
2478 
2479  /* Partial index predicates must be identical, if they exist */
2480  if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL))
2481  return false;
2482  if (info1->ii_Predicate != NULL)
2483  {
2484  bool found_whole_row;
2485  Node *mapped;
2486 
2487  mapped = map_variable_attnos((Node *) info2->ii_Predicate,
2488  1, 0, attmap,
2489  InvalidOid, &found_whole_row);
2490  if (found_whole_row)
2491  {
2492  /*
2493  * we could throw an error here, but seems out of scope for this
2494  * routine.
2495  */
2496  return false;
2497  }
2498  if (!equal(info1->ii_Predicate, mapped))
2499  return false;
2500  }
2501 
2502  /* No support currently for comparing exclusion indexes. */
2503  if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL)
2504  return false;
2505 
2506  return true;
2507 }
2508 
2509 /* ----------------
2510  * BuildSpeculativeIndexInfo
2511  * Add extra state to IndexInfo record
2512  *
2513  * For unique indexes, we usually don't want to add info to the IndexInfo for
2514  * checking uniqueness, since the B-Tree AM handles that directly. However,
2515  * in the case of speculative insertion, additional support is required.
2516  *
2517  * Do this processing here rather than in BuildIndexInfo() to not incur the
2518  * overhead in the common non-speculative cases.
2519  * ----------------
2520  */
2521 void
2523 {
2524  int indnkeyatts;
2525  int i;
2526 
2527  indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index);
2528 
2529  /*
2530  * fetch info for checking unique indexes
2531  */
2532  Assert(ii->ii_Unique);
2533 
2534  if (index->rd_rel->relam != BTREE_AM_OID)
2535  elog(ERROR, "unexpected non-btree speculative unique index");
2536 
2537  ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2538  ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2539  ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts);
2540 
2541  /*
2542  * We have to look up the operator's strategy number. This provides a
2543  * cross-check that the operator does match the index.
2544  */
2545  /* We need the func OIDs and strategy numbers too */
2546  for (i = 0; i < indnkeyatts; i++)
2547  {
2549  ii->ii_UniqueOps[i] =
2550  get_opfamily_member(index->rd_opfamily[i],
2551  index->rd_opcintype[i],
2552  index->rd_opcintype[i],
2553  ii->ii_UniqueStrats[i]);
2554  if (!OidIsValid(ii->ii_UniqueOps[i]))
2555  elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2556  ii->ii_UniqueStrats[i], index->rd_opcintype[i],
2557  index->rd_opcintype[i], index->rd_opfamily[i]);
2558  ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]);
2559  }
2560 }
2561 
2562 /* ----------------
2563  * FormIndexDatum
2564  * Construct values[] and isnull[] arrays for a new index tuple.
2565  *
2566  * indexInfo Info about the index
2567  * slot Heap tuple for which we must prepare an index entry
2568  * estate executor state for evaluating any index expressions
2569  * values Array of index Datums (output area)
2570  * isnull Array of is-null indicators (output area)
2571  *
2572  * When there are no index expressions, estate may be NULL. Otherwise it
2573  * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
2574  * context must point to the heap tuple passed in.
2575  *
2576  * Notice we don't actually call index_form_tuple() here; we just prepare
2577  * its input arrays values[] and isnull[]. This is because the index AM
2578  * may wish to alter the data before storage.
2579  * ----------------
2580  */
2581 void
2583  TupleTableSlot *slot,
2584  EState *estate,
2585  Datum *values,
2586  bool *isnull)
2587 {
2588  ListCell *indexpr_item;
2589  int i;
2590 
2591  if (indexInfo->ii_Expressions != NIL &&
2592  indexInfo->ii_ExpressionsState == NIL)
2593  {
2594  /* First time through, set up expression evaluation state */
2595  indexInfo->ii_ExpressionsState =
2596  ExecPrepareExprList(indexInfo->ii_Expressions, estate);
2597  /* Check caller has set up context correctly */
2598  Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
2599  }
2600  indexpr_item = list_head(indexInfo->ii_ExpressionsState);
2601 
2602  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
2603  {
2604  int keycol = indexInfo->ii_IndexAttrNumbers[i];
2605  Datum iDatum;
2606  bool isNull;
2607 
2608  if (keycol < 0)
2609  iDatum = slot_getsysattr(slot, keycol, &isNull);
2610  else if (keycol != 0)
2611  {
2612  /*
2613  * Plain index column; get the value we need directly from the
2614  * heap tuple.
2615  */
2616  iDatum = slot_getattr(slot, keycol, &isNull);
2617  }
2618  else
2619  {
2620  /*
2621  * Index expression --- need to evaluate it.
2622  */
2623  if (indexpr_item == NULL)
2624  elog(ERROR, "wrong number of index expressions");
2625  iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item),
2626  GetPerTupleExprContext(estate),
2627  &isNull);
2628  indexpr_item = lnext(indexInfo->ii_ExpressionsState, indexpr_item);
2629  }
2630  values[i] = iDatum;
2631  isnull[i] = isNull;
2632  }
2633 
2634  if (indexpr_item != NULL)
2635  elog(ERROR, "wrong number of index expressions");
2636 }
2637 
2638 
2639 /*
2640  * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
2641  *
2642  * This routine updates the pg_class row of either an index or its parent
2643  * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed
2644  * to ensure we can do all the necessary work in just one update.
2645  *
2646  * hasindex: set relhasindex to this value
2647  * reltuples: if >= 0, set reltuples to this value; else no change
2648  *
2649  * If reltuples >= 0, relpages and relallvisible are also updated (using
2650  * RelationGetNumberOfBlocks() and visibilitymap_count()).
2651  *
2652  * NOTE: an important side-effect of this operation is that an SI invalidation
2653  * message is sent out to all backends --- including me --- causing relcache
2654  * entries to be flushed or updated with the new data. This must happen even
2655  * if we find that no change is needed in the pg_class row. When updating
2656  * a heap entry, this ensures that other backends find out about the new
2657  * index. When updating an index, it's important because some index AMs
2658  * expect a relcache flush to occur after REINDEX.
2659  */
2660 static void
2662  bool hasindex,
2663  double reltuples)
2664 {
2665  Oid relid = RelationGetRelid(rel);
2666  Relation pg_class;
2667  HeapTuple tuple;
2668  Form_pg_class rd_rel;
2669  bool dirty;
2670 
2671  /*
2672  * We always update the pg_class row using a non-transactional,
2673  * overwrite-in-place update. There are several reasons for this:
2674  *
2675  * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
2676  *
2677  * 2. We could be reindexing pg_class itself, in which case we can't move
2678  * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might
2679  * not know about all the indexes yet (see reindex_relation).
2680  *
2681  * 3. Because we execute CREATE INDEX with just share lock on the parent
2682  * rel (to allow concurrent index creations), an ordinary update could
2683  * suffer a tuple-concurrently-updated failure against another CREATE
2684  * INDEX committing at about the same time. We can avoid that by having
2685  * them both do nontransactional updates (we assume they will both be
2686  * trying to change the pg_class row to the same thing, so it doesn't
2687  * matter which goes first).
2688  *
2689  * It is safe to use a non-transactional update even though our
2690  * transaction could still fail before committing. Setting relhasindex
2691  * true is safe even if there are no indexes (VACUUM will eventually fix
2692  * it). And of course the new relpages and reltuples counts are correct
2693  * regardless. However, we don't want to change relpages (or
2694  * relallvisible) if the caller isn't providing an updated reltuples
2695  * count, because that would bollix the reltuples/relpages ratio which is
2696  * what's really important.
2697  */
2698 
2699  pg_class = table_open(RelationRelationId, RowExclusiveLock);
2700 
2701  /*
2702  * Make a copy of the tuple to update. Normally we use the syscache, but
2703  * we can't rely on that during bootstrap or while reindexing pg_class
2704  * itself.
2705  */
2706  if (IsBootstrapProcessingMode() ||
2707  ReindexIsProcessingHeap(RelationRelationId))
2708  {
2709  /* don't assume syscache will work */
2710  TableScanDesc pg_class_scan;
2711  ScanKeyData key[1];
2712 
2713  ScanKeyInit(&key[0],
2714  Anum_pg_class_oid,
2715  BTEqualStrategyNumber, F_OIDEQ,
2716  ObjectIdGetDatum(relid));
2717 
2718  pg_class_scan = table_beginscan_catalog(pg_class, 1, key);
2719  tuple = heap_getnext(pg_class_scan, ForwardScanDirection);
2720  tuple = heap_copytuple(tuple);
2721  table_endscan(pg_class_scan);
2722  }
2723  else
2724  {
2725  /* normal case, use syscache */
2726  tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid));
2727  }
2728 
2729  if (!HeapTupleIsValid(tuple))
2730  elog(ERROR, "could not find tuple for relation %u", relid);
2731  rd_rel = (Form_pg_class) GETSTRUCT(tuple);
2732 
2733  /* Should this be a more comprehensive test? */
2734  Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX);
2735 
2736  /* Apply required updates, if any, to copied tuple */
2737 
2738  dirty = false;
2739  if (rd_rel->relhasindex != hasindex)
2740  {
2741  rd_rel->relhasindex = hasindex;
2742  dirty = true;
2743  }
2744 
2745  if (reltuples >= 0)
2746  {
2747  BlockNumber relpages = RelationGetNumberOfBlocks(rel);
2748  BlockNumber relallvisible;
2749 
2750  if (rd_rel->relkind != RELKIND_INDEX)
2751  visibilitymap_count(rel, &relallvisible, NULL);
2752  else /* don't bother for indexes */
2753  relallvisible = 0;
2754 
2755  if (rd_rel->relpages != (int32) relpages)
2756  {
2757  rd_rel->relpages = (int32) relpages;
2758  dirty = true;
2759  }
2760  if (rd_rel->reltuples != (float4) reltuples)
2761  {
2762  rd_rel->reltuples = (float4) reltuples;
2763  dirty = true;
2764  }
2765  if (rd_rel->relallvisible != (int32) relallvisible)
2766  {
2767  rd_rel->relallvisible = (int32) relallvisible;
2768  dirty = true;
2769  }
2770  }
2771 
2772  /*
2773  * If anything changed, write out the tuple
2774  */
2775  if (dirty)
2776  {
2777  heap_inplace_update(pg_class, tuple);
2778  /* the above sends a cache inval message */
2779  }
2780  else
2781  {
2782  /* no need to change tuple, but force relcache inval anyway */
2784  }
2785 
2786  heap_freetuple(tuple);
2787 
2788  table_close(pg_class, RowExclusiveLock);
2789 }
2790 
2791 
2792 /*
2793  * index_build - invoke access-method-specific index build procedure
2794  *
2795  * On entry, the index's catalog entries are valid, and its physical disk
2796  * file has been created but is empty. We call the AM-specific build
2797  * procedure to fill in the index contents. We then update the pg_class
2798  * entries of the index and heap relation as needed, using statistics
2799  * returned by ambuild as well as data passed by the caller.
2800  *
2801  * isreindex indicates we are recreating a previously-existing index.
2802  * parallel indicates if parallelism may be useful.
2803  *
2804  * Note: before Postgres 8.2, the passed-in heap and index Relations
2805  * were automatically closed by this routine. This is no longer the case.
2806  * The caller opened 'em, and the caller should close 'em.
2807  */
2808 void
2809 index_build(Relation heapRelation,
2810  Relation indexRelation,
2811  IndexInfo *indexInfo,
2812  bool isreindex,
2813  bool parallel)
2814 {
2815  IndexBuildResult *stats;
2816  Oid save_userid;
2817  int save_sec_context;
2818  int save_nestlevel;
2819 
2820  /*
2821  * sanity checks
2822  */
2823  Assert(RelationIsValid(indexRelation));
2824  Assert(PointerIsValid(indexRelation->rd_indam));
2825  Assert(PointerIsValid(indexRelation->rd_indam->ambuild));
2826  Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty));
2827 
2828  /*
2829  * Determine worker process details for parallel CREATE INDEX. Currently,
2830  * only btree has support for parallel builds.
2831  *
2832  * Note that planner considers parallel safety for us.
2833  */
2834  if (parallel && IsNormalProcessingMode() &&
2835  indexRelation->rd_rel->relam == BTREE_AM_OID)
2836  indexInfo->ii_ParallelWorkers =
2838  RelationGetRelid(indexRelation));
2839 
2840  if (indexInfo->ii_ParallelWorkers == 0)
2841  ereport(DEBUG1,
2842  (errmsg("building index \"%s\" on table \"%s\" serially",
2843  RelationGetRelationName(indexRelation),
2844  RelationGetRelationName(heapRelation))));
2845  else
2846  ereport(DEBUG1,
2847  (errmsg_plural("building index \"%s\" on table \"%s\" with request for %d parallel worker",
2848  "building index \"%s\" on table \"%s\" with request for %d parallel workers",
2849  indexInfo->ii_ParallelWorkers,
2850  RelationGetRelationName(indexRelation),
2851  RelationGetRelationName(heapRelation),
2852  indexInfo->ii_ParallelWorkers)));
2853 
2854  /*
2855  * Switch to the table owner's userid, so that any index functions are run
2856  * as that user. Also lock down security-restricted operations and
2857  * arrange to make GUC variable changes local to this command.
2858  */
2859  GetUserIdAndSecContext(&save_userid, &save_sec_context);
2860  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
2861  save_sec_context | SECURITY_RESTRICTED_OPERATION);
2862  save_nestlevel = NewGUCNestLevel();
2863 
2864  /* Set up initial progress report status */
2865  {
2866  const int index[] = {
2873  };
2874  const int64 val[] = {
2877  0, 0, 0, 0
2878  };
2879 
2880  pgstat_progress_update_multi_param(6, index, val);
2881  }
2882 
2883  /*
2884  * Call the access method's build procedure
2885  */
2886  stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation,
2887  indexInfo);
2888  Assert(PointerIsValid(stats));
2889 
2890  /*
2891  * If this is an unlogged index, we may need to write out an init fork for
2892  * it -- but we must first check whether one already exists. If, for
2893  * example, an unlogged relation is truncated in the transaction that
2894  * created it, or truncated twice in a subsequent transaction, the
2895  * relfilenode won't change, and nothing needs to be done here.
2896  */
2897  if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED &&
2898  !smgrexists(indexRelation->rd_smgr, INIT_FORKNUM))
2899  {
2900  RelationOpenSmgr(indexRelation);
2901  smgrcreate(indexRelation->rd_smgr, INIT_FORKNUM, false);
2902  indexRelation->rd_indam->ambuildempty(indexRelation);
2903  }
2904 
2905  /*
2906  * If we found any potentially broken HOT chains, mark the index as not
2907  * being usable until the current transaction is below the event horizon.
2908  * See src/backend/access/heap/README.HOT for discussion. Also set this
2909  * if early pruning/vacuuming is enabled for the heap relation. While it
2910  * might become safe to use the index earlier based on actual cleanup
2911  * activity and other active transactions, the test for that would be much
2912  * more complex and would require some form of blocking, so keep it simple
2913  * and fast by just using the current transaction.
2914  *
2915  * However, when reindexing an existing index, we should do nothing here.
2916  * Any HOT chains that are broken with respect to the index must predate
2917  * the index's original creation, so there is no need to change the
2918  * index's usability horizon. Moreover, we *must not* try to change the
2919  * index's pg_index entry while reindexing pg_index itself, and this
2920  * optimization nicely prevents that. The more complex rules needed for a
2921  * reindex are handled separately after this function returns.
2922  *
2923  * We also need not set indcheckxmin during a concurrent index build,
2924  * because we won't set indisvalid true until all transactions that care
2925  * about the broken HOT chains or early pruning/vacuuming are gone.
2926  *
2927  * Therefore, this code path can only be taken during non-concurrent
2928  * CREATE INDEX. Thus the fact that heap_update will set the pg_index
2929  * tuple's xmin doesn't matter, because that tuple was created in the
2930  * current transaction anyway. That also means we don't need to worry
2931  * about any concurrent readers of the tuple; no other transaction can see
2932  * it yet.
2933  */
2934  if ((indexInfo->ii_BrokenHotChain || EarlyPruningEnabled(heapRelation)) &&
2935  !isreindex &&
2936  !indexInfo->ii_Concurrent)
2937  {
2938  Oid indexId = RelationGetRelid(indexRelation);
2939  Relation pg_index;
2940  HeapTuple indexTuple;
2941  Form_pg_index indexForm;
2942 
2943  pg_index = table_open(IndexRelationId, RowExclusiveLock);
2944 
2945  indexTuple = SearchSysCacheCopy1(INDEXRELID,
2946  ObjectIdGetDatum(indexId));
2947  if (!HeapTupleIsValid(indexTuple))
2948  elog(ERROR, "cache lookup failed for index %u", indexId);
2949  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
2950 
2951  /* If it's a new index, indcheckxmin shouldn't be set ... */
2952  Assert(!indexForm->indcheckxmin);
2953 
2954  indexForm->indcheckxmin = true;
2955  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
2956 
2957  heap_freetuple(indexTuple);
2958  table_close(pg_index, RowExclusiveLock);
2959  }
2960 
2961  /*
2962  * Update heap and index pg_class rows
2963  */
2964  index_update_stats(heapRelation,
2965  true,
2966  stats->heap_tuples);
2967 
2968  index_update_stats(indexRelation,
2969  false,
2970  stats->index_tuples);
2971 
2972  /* Make the updated catalog row versions visible */
2974 
2975  /*
2976  * If it's for an exclusion constraint, make a second pass over the heap
2977  * to verify that the constraint is satisfied. We must not do this until
2978  * the index is fully valid. (Broken HOT chains shouldn't matter, though;
2979  * see comments for IndexCheckExclusion.)
2980  */
2981  if (indexInfo->ii_ExclusionOps != NULL)
2982  IndexCheckExclusion(heapRelation, indexRelation, indexInfo);
2983 
2984  /* Roll back any GUC changes executed by index functions */
2985  AtEOXact_GUC(false, save_nestlevel);
2986 
2987  /* Restore userid and security context */
2988  SetUserIdAndSecContext(save_userid, save_sec_context);
2989 }
2990 
2991 /*
2992  * IndexCheckExclusion - verify that a new exclusion constraint is satisfied
2993  *
2994  * When creating an exclusion constraint, we first build the index normally
2995  * and then rescan the heap to check for conflicts. We assume that we only
2996  * need to validate tuples that are live according to an up-to-date snapshot,
2997  * and that these were correctly indexed even in the presence of broken HOT
2998  * chains. This should be OK since we are holding at least ShareLock on the
2999  * table, meaning there can be no uncommitted updates from other transactions.
3000  * (Note: that wouldn't necessarily work for system catalogs, since many
3001  * operations release write lock early on the system catalogs.)
3002  */
3003 static void
3005  Relation indexRelation,
3006  IndexInfo *indexInfo)
3007 {
3008  TableScanDesc scan;
3010  bool isnull[INDEX_MAX_KEYS];
3011  ExprState *predicate;
3012  TupleTableSlot *slot;
3013  EState *estate;
3014  ExprContext *econtext;
3015  Snapshot snapshot;
3016 
3017  /*
3018  * If we are reindexing the target index, mark it as no longer being
3019  * reindexed, to forestall an Assert in index_beginscan when we try to use
3020  * the index for probes. This is OK because the index is now fully valid.
3021  */
3024 
3025  /*
3026  * Need an EState for evaluation of index expressions and partial-index
3027  * predicates. Also a slot to hold the current tuple.
3028  */
3029  estate = CreateExecutorState();
3030  econtext = GetPerTupleExprContext(estate);
3031  slot = table_slot_create(heapRelation, NULL);
3032 
3033  /* Arrange for econtext's scan tuple to be the tuple under test */
3034  econtext->ecxt_scantuple = slot;
3035 
3036  /* Set up execution state for predicate, if any. */
3037  predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
3038 
3039  /*
3040  * Scan all live tuples in the base relation.
3041  */
3042  snapshot = RegisterSnapshot(GetLatestSnapshot());
3043  scan = table_beginscan_strat(heapRelation, /* relation */
3044  snapshot, /* snapshot */
3045  0, /* number of keys */
3046  NULL, /* scan key */
3047  true, /* buffer access strategy OK */
3048  true); /* syncscan OK */
3049 
3050  while (table_scan_getnextslot(scan, ForwardScanDirection, slot))
3051  {
3053 
3054  /*
3055  * In a partial index, ignore tuples that don't satisfy the predicate.
3056  */
3057  if (predicate != NULL)
3058  {
3059  if (!ExecQual(predicate, econtext))
3060  continue;
3061  }
3062 
3063  /*
3064  * Extract index column values, including computing expressions.
3065  */
3066  FormIndexDatum(indexInfo,
3067  slot,
3068  estate,
3069  values,
3070  isnull);
3071 
3072  /*
3073  * Check that this tuple has no conflicts.
3074  */
3075  check_exclusion_constraint(heapRelation,
3076  indexRelation, indexInfo,
3077  &(slot->tts_tid), values, isnull,
3078  estate, true);
3079 
3081  }
3082 
3083  table_endscan(scan);
3084  UnregisterSnapshot(snapshot);
3085 
3087 
3088  FreeExecutorState(estate);
3089 
3090  /* These may have been pointing to the now-gone estate */
3091  indexInfo->ii_ExpressionsState = NIL;
3092  indexInfo->ii_PredicateState = NULL;
3093 }
3094 
3095 
3096 /*
3097  * validate_index - support code for concurrent index builds
3098  *
3099  * We do a concurrent index build by first inserting the catalog entry for the
3100  * index via index_create(), marking it not indisready and not indisvalid.
3101  * Then we commit our transaction and start a new one, then we wait for all
3102  * transactions that could have been modifying the table to terminate. Now
3103  * we know that any subsequently-started transactions will see the index and
3104  * honor its constraints on HOT updates; so while existing HOT-chains might
3105  * be broken with respect to the index, no currently live tuple will have an
3106  * incompatible HOT update done to it. We now build the index normally via
3107  * index_build(), while holding a weak lock that allows concurrent
3108  * insert/update/delete. Also, we index only tuples that are valid
3109  * as of the start of the scan (see table_index_build_scan), whereas a normal
3110  * build takes care to include recently-dead tuples. This is OK because
3111  * we won't mark the index valid until all transactions that might be able
3112  * to see those tuples are gone. The reason for doing that is to avoid
3113  * bogus unique-index failures due to concurrent UPDATEs (we might see
3114  * different versions of the same row as being valid when we pass over them,
3115  * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that
3116  * does not contain any tuples added to the table while we built the index.
3117  *
3118  * Next, we mark the index "indisready" (but still not "indisvalid") and
3119  * commit the second transaction and start a third. Again we wait for all
3120  * transactions that could have been modifying the table to terminate. Now
3121  * we know that any subsequently-started transactions will see the index and
3122  * insert their new tuples into it. We then take a new reference snapshot
3123  * which is passed to validate_index(). Any tuples that are valid according
3124  * to this snap, but are not in the index, must be added to the index.
3125  * (Any tuples committed live after the snap will be inserted into the
3126  * index by their originating transaction. Any tuples committed dead before
3127  * the snap need not be indexed, because we will wait out all transactions
3128  * that might care about them before we mark the index valid.)
3129  *
3130  * validate_index() works by first gathering all the TIDs currently in the
3131  * index, using a bulkdelete callback that just stores the TIDs and doesn't
3132  * ever say "delete it". (This should be faster than a plain indexscan;
3133  * also, not all index AMs support full-index indexscan.) Then we sort the
3134  * TIDs, and finally scan the table doing a "merge join" against the TID list
3135  * to see which tuples are missing from the index. Thus we will ensure that
3136  * all tuples valid according to the reference snapshot are in the index.
3137  *
3138  * Building a unique index this way is tricky: we might try to insert a
3139  * tuple that is already dead or is in process of being deleted, and we
3140  * mustn't have a uniqueness failure against an updated version of the same
3141  * row. We could try to check the tuple to see if it's already dead and tell
3142  * index_insert() not to do the uniqueness check, but that still leaves us
3143  * with a race condition against an in-progress update. To handle that,
3144  * we expect the index AM to recheck liveness of the to-be-inserted tuple
3145  * before it declares a uniqueness error.
3146  *
3147  * After completing validate_index(), we wait until all transactions that
3148  * were alive at the time of the reference snapshot are gone; this is
3149  * necessary to be sure there are none left with a transaction snapshot
3150  * older than the reference (and hence possibly able to see tuples we did
3151  * not index). Then we mark the index "indisvalid" and commit. Subsequent
3152  * transactions will be able to use it for queries.
3153  *
3154  * Doing two full table scans is a brute-force strategy. We could try to be
3155  * cleverer, eg storing new tuples in a special area of the table (perhaps
3156  * making the table append-only by setting use_fsm). However that would
3157  * add yet more locking issues.
3158  */
3159 void
3160 validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
3161 {
3162  Relation heapRelation,
3163  indexRelation;
3164  IndexInfo *indexInfo;
3165  IndexVacuumInfo ivinfo;
3167  Oid save_userid;
3168  int save_sec_context;
3169  int save_nestlevel;
3170 
3171  {
3172  const int index[] = {
3178  };
3179  const int64 val[] = {
3181  0, 0, 0, 0
3182  };
3183 
3184  pgstat_progress_update_multi_param(5, index, val);
3185  }
3186 
3187  /* Open and lock the parent heap relation */
3188  heapRelation = table_open(heapId, ShareUpdateExclusiveLock);
3189  /* And the target index relation */
3190  indexRelation = index_open(indexId, RowExclusiveLock);
3191 
3192  /*
3193  * Fetch info needed for index_insert. (You might think this should be
3194  * passed in from DefineIndex, but its copy is long gone due to having
3195  * been built in a previous transaction.)
3196  */
3197  indexInfo = BuildIndexInfo(indexRelation);
3198 
3199  /* mark build is concurrent just for consistency */
3200  indexInfo->ii_Concurrent = true;
3201 
3202  /*
3203  * Switch to the table owner's userid, so that any index functions are run
3204  * as that user. Also lock down security-restricted operations and
3205  * arrange to make GUC variable changes local to this command.
3206  */
3207  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3208  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3209  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3210  save_nestlevel = NewGUCNestLevel();
3211 
3212  /*
3213  * Scan the index and gather up all the TIDs into a tuplesort object.
3214  */
3215  ivinfo.index = indexRelation;
3216  ivinfo.analyze_only = false;
3217  ivinfo.report_progress = true;
3218  ivinfo.estimated_count = true;
3219  ivinfo.message_level = DEBUG2;
3220  ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples;
3221  ivinfo.strategy = NULL;
3222 
3223  /*
3224  * Encode TIDs as int8 values for the sort, rather than directly sorting
3225  * item pointers. This can be significantly faster, primarily because TID
3226  * is a pass-by-reference type on all platforms, whereas int8 is
3227  * pass-by-value on most platforms.
3228  */
3229  state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator,
3230  InvalidOid, false,
3232  NULL, false);
3233  state.htups = state.itups = state.tups_inserted = 0;
3234 
3235  /* ambulkdelete updates progress metrics */
3236  (void) index_bulk_delete(&ivinfo, NULL,
3237  validate_index_callback, (void *) &state);
3238 
3239  /* Execute the sort */
3240  {
3241  const int index[] = {
3245  };
3246  const int64 val[] = {
3248  0, 0
3249  };
3250 
3251  pgstat_progress_update_multi_param(3, index, val);
3252  }
3254 
3255  /*
3256  * Now scan the heap and "merge" it with the index
3257  */
3260  table_index_validate_scan(heapRelation,
3261  indexRelation,
3262  indexInfo,
3263  snapshot,
3264  &state);
3265 
3266  /* Done with tuplesort object */
3267  tuplesort_end(state.tuplesort);
3268 
3269  elog(DEBUG2,
3270  "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
3271  state.htups, state.itups, state.tups_inserted);
3272 
3273  /* Roll back any GUC changes executed by index functions */
3274  AtEOXact_GUC(false, save_nestlevel);
3275 
3276  /* Restore userid and security context */
3277  SetUserIdAndSecContext(save_userid, save_sec_context);
3278 
3279  /* Close rels, but keep locks */
3280  index_close(indexRelation, NoLock);
3281  table_close(heapRelation, NoLock);
3282 }
3283 
3284 /*
3285  * validate_index_callback - bulkdelete callback to collect the index TIDs
3286  */
3287 static bool
3288 validate_index_callback(ItemPointer itemptr, void *opaque)
3289 {
3291  int64 encoded = itemptr_encode(itemptr);
3292 
3293  tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false);
3294  state->itups += 1;
3295  return false; /* never actually delete anything */
3296 }
3297 
3298 /*
3299  * index_set_state_flags - adjust pg_index state flags
3300  *
3301  * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index
3302  * flags that denote the index's state. Because the update is not
3303  * transactional and will not roll back on error, this must only be used as
3304  * the last step in a transaction that has not made any transactional catalog
3305  * updates!
3306  *
3307  * Note that heap_inplace_update does send a cache inval message for the
3308  * tuple, so other sessions will hear about the update as soon as we commit.
3309  *
3310  * NB: In releases prior to PostgreSQL 9.4, the use of a non-transactional
3311  * update here would have been unsafe; now that MVCC rules apply even for
3312  * system catalog scans, we could potentially use a transactional update here
3313  * instead.
3314  */
3315 void
3317 {
3318  Relation pg_index;
3319  HeapTuple indexTuple;
3320  Form_pg_index indexForm;
3321 
3322  /* Assert that current xact hasn't done any transactional updates */
3324 
3325  /* Open pg_index and fetch a writable copy of the index's tuple */
3326  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3327 
3328  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3329  ObjectIdGetDatum(indexId));
3330  if (!HeapTupleIsValid(indexTuple))
3331  elog(ERROR, "cache lookup failed for index %u", indexId);
3332  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3333 
3334  /* Perform the requested state change on the copy */
3335  switch (action)
3336  {
3338  /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */
3339  Assert(indexForm->indislive);
3340  Assert(!indexForm->indisready);
3341  Assert(!indexForm->indisvalid);
3342  indexForm->indisready = true;
3343  break;
3345  /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */
3346  Assert(indexForm->indislive);
3347  Assert(indexForm->indisready);
3348  Assert(!indexForm->indisvalid);
3349  indexForm->indisvalid = true;
3350  break;
3352 
3353  /*
3354  * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence
3355  *
3356  * If indisready == true we leave it set so the index still gets
3357  * maintained by active transactions. We only need to ensure that
3358  * indisvalid is false. (We don't assert that either is initially
3359  * true, though, since we want to be able to retry a DROP INDEX
3360  * CONCURRENTLY that failed partway through.)
3361  *
3362  * Note: the CLUSTER logic assumes that indisclustered cannot be
3363  * set on any invalid index, so clear that flag too.
3364  */
3365  indexForm->indisvalid = false;
3366  indexForm->indisclustered = false;
3367  break;
3368  case INDEX_DROP_SET_DEAD:
3369 
3370  /*
3371  * Clear indisready/indislive during DROP INDEX CONCURRENTLY
3372  *
3373  * We clear both indisready and indislive, because we not only
3374  * want to stop updates, we want to prevent sessions from touching
3375  * the index at all.
3376  */
3377  Assert(!indexForm->indisvalid);
3378  indexForm->indisready = false;
3379  indexForm->indislive = false;
3380  break;
3381  }
3382 
3383  /* ... and write it back in-place */
3384  heap_inplace_update(pg_index, indexTuple);
3385 
3386  table_close(pg_index, RowExclusiveLock);
3387 }
3388 
3389 
3390 /*
3391  * IndexGetRelation: given an index's relation OID, get the OID of the
3392  * relation it is an index on. Uses the system cache.
3393  */
3394 Oid
3395 IndexGetRelation(Oid indexId, bool missing_ok)
3396 {
3397  HeapTuple tuple;
3399  Oid result;
3400 
3401  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
3402  if (!HeapTupleIsValid(tuple))
3403  {
3404  if (missing_ok)
3405  return InvalidOid;
3406  elog(ERROR, "cache lookup failed for index %u", indexId);
3407  }
3408  index = (Form_pg_index) GETSTRUCT(tuple);
3409  Assert(index->indexrelid == indexId);
3410 
3411  result = index->indrelid;
3412  ReleaseSysCache(tuple);
3413  return result;
3414 }
3415 
3416 /*
3417  * reindex_index - This routine is used to recreate a single index
3418  */
3419 void
3420 reindex_index(Oid indexId, bool skip_constraint_checks, char persistence,
3421  int options)
3422 {
3423  Relation iRel,
3424  heapRelation;
3425  Oid heapId;
3426  IndexInfo *indexInfo;
3427  volatile bool skipped_constraint = false;
3428  PGRUsage ru0;
3429  bool progress = (options & REINDEXOPT_REPORT_PROGRESS) != 0;
3430 
3431  pg_rusage_init(&ru0);
3432 
3433  /*
3434  * Open and lock the parent heap relation. ShareLock is sufficient since
3435  * we only need to be sure no schema or data changes are going on.
3436  */
3437  heapId = IndexGetRelation(indexId, false);
3438  heapRelation = table_open(heapId, ShareLock);
3439 
3440  if (progress)
3441  {
3443  heapId);
3447  indexId);
3448  }
3449 
3450  /*
3451  * Open the target index relation and get an exclusive lock on it, to
3452  * ensure that no one else is touching this particular index.
3453  */
3454  iRel = index_open(indexId, AccessExclusiveLock);
3455 
3456  if (progress)
3458  iRel->rd_rel->relam);
3459 
3460  /*
3461  * The case of reindexing partitioned tables and indexes is handled
3462  * differently by upper layers, so this case shouldn't arise.
3463  */
3464  if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
3465  elog(ERROR, "unsupported relation kind for index \"%s\"",
3466  RelationGetRelationName(iRel));
3467 
3468  /*
3469  * Don't allow reindex on temp tables of other backends ... their local
3470  * buffer manager is not going to cope.
3471  */
3472  if (RELATION_IS_OTHER_TEMP(iRel))
3473  ereport(ERROR,
3474  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3475  errmsg("cannot reindex temporary tables of other sessions")));
3476 
3477  /*
3478  * Don't allow reindex of an invalid index on TOAST table. This is a
3479  * leftover from a failed REINDEX CONCURRENTLY, and if rebuilt it would
3480  * not be possible to drop it anymore.
3481  */
3483  !get_index_isvalid(indexId))
3484  ereport(ERROR,
3485  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3486  errmsg("cannot reindex invalid index on TOAST table")));
3487 
3488  /*
3489  * Also check for active uses of the index in the current transaction; we
3490  * don't want to reindex underneath an open indexscan.
3491  */
3492  CheckTableNotInUse(iRel, "REINDEX INDEX");
3493 
3494  /*
3495  * All predicate locks on the index are about to be made invalid. Promote
3496  * them to relation locks on the heap.
3497  */
3499 
3500  /* Fetch info needed for index_build */
3501  indexInfo = BuildIndexInfo(iRel);
3502 
3503  /* If requested, skip checking uniqueness/exclusion constraints */
3504  if (skip_constraint_checks)
3505  {
3506  if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL)
3507  skipped_constraint = true;
3508  indexInfo->ii_Unique = false;
3509  indexInfo->ii_ExclusionOps = NULL;
3510  indexInfo->ii_ExclusionProcs = NULL;
3511  indexInfo->ii_ExclusionStrats = NULL;
3512  }
3513 
3514  /* Suppress use of the target index while rebuilding it */
3515  SetReindexProcessing(heapId, indexId);
3516 
3517  /* Create a new physical relation for the index */
3518  RelationSetNewRelfilenode(iRel, persistence);
3519 
3520  /* Initialize the index and rebuild */
3521  /* Note: we do not need to re-establish pkey setting */
3522  index_build(heapRelation, iRel, indexInfo, true, true);
3523 
3524  /* Re-allow use of target index */
3526 
3527  /*
3528  * If the index is marked invalid/not-ready/dead (ie, it's from a failed
3529  * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway),
3530  * and we didn't skip a uniqueness check, we can now mark it valid. This
3531  * allows REINDEX to be used to clean up in such cases.
3532  *
3533  * We can also reset indcheckxmin, because we have now done a
3534  * non-concurrent index build, *except* in the case where index_build
3535  * found some still-broken HOT chains. If it did, and we don't have to
3536  * change any of the other flags, we just leave indcheckxmin alone (note
3537  * that index_build won't have changed it, because this is a reindex).
3538  * This is okay and desirable because not updating the tuple leaves the
3539  * index's usability horizon (recorded as the tuple's xmin value) the same
3540  * as it was.
3541  *
3542  * But, if the index was invalid/not-ready/dead and there were broken HOT
3543  * chains, we had better force indcheckxmin true, because the normal
3544  * argument that the HOT chains couldn't conflict with the index is
3545  * suspect for an invalid index. (A conflict is definitely possible if
3546  * the index was dead. It probably shouldn't happen otherwise, but let's
3547  * be conservative.) In this case advancing the usability horizon is
3548  * appropriate.
3549  *
3550  * Another reason for avoiding unnecessary updates here is that while
3551  * reindexing pg_index itself, we must not try to update tuples in it.
3552  * pg_index's indexes should always have these flags in their clean state,
3553  * so that won't happen.
3554  *
3555  * If early pruning/vacuuming is enabled for the heap relation, the
3556  * usability horizon must be advanced to the current transaction on every
3557  * build or rebuild. pg_index is OK in this regard because catalog tables
3558  * are not subject to early cleanup.
3559  */
3560  if (!skipped_constraint)
3561  {
3562  Relation pg_index;
3563  HeapTuple indexTuple;
3564  Form_pg_index indexForm;
3565  bool index_bad;
3566  bool early_pruning_enabled = EarlyPruningEnabled(heapRelation);
3567 
3568  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3569 
3570  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3571  ObjectIdGetDatum(indexId));
3572  if (!HeapTupleIsValid(indexTuple))
3573  elog(ERROR, "cache lookup failed for index %u", indexId);
3574  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3575 
3576  index_bad = (!indexForm->indisvalid ||
3577  !indexForm->indisready ||
3578  !indexForm->indislive);
3579  if (index_bad ||
3580  (indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain) ||
3581  early_pruning_enabled)
3582  {
3583  if (!indexInfo->ii_BrokenHotChain && !early_pruning_enabled)
3584  indexForm->indcheckxmin = false;
3585  else if (index_bad || early_pruning_enabled)
3586  indexForm->indcheckxmin = true;
3587  indexForm->indisvalid = true;
3588  indexForm->indisready = true;
3589  indexForm->indislive = true;
3590  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3591 
3592  /*
3593  * Invalidate the relcache for the table, so that after we commit
3594  * all sessions will refresh the table's index list. This ensures
3595  * that if anyone misses seeing the pg_index row during this
3596  * update, they'll refresh their list before attempting any update
3597  * on the table.
3598  */
3599  CacheInvalidateRelcache(heapRelation);
3600  }
3601 
3602  table_close(pg_index, RowExclusiveLock);
3603  }
3604 
3605  /* Log what we did */
3606  if (options & REINDEXOPT_VERBOSE)
3607  ereport(INFO,
3608  (errmsg("index \"%s\" was reindexed",
3609  get_rel_name(indexId)),
3610  errdetail_internal("%s",
3611  pg_rusage_show(&ru0))));
3612 
3613  if (progress)
3615 
3616  /* Close rels, but keep locks */
3617  index_close(iRel, NoLock);
3618  table_close(heapRelation, NoLock);
3619 }
3620 
3621 /*
3622  * reindex_relation - This routine is used to recreate all indexes
3623  * of a relation (and optionally its toast relation too, if any).
3624  *
3625  * "flags" is a bitmask that can include any combination of these bits:
3626  *
3627  * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any).
3628  *
3629  * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely
3630  * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its
3631  * indexes are inconsistent with it. This makes things tricky if the relation
3632  * is a system catalog that we might consult during the reindexing. To deal
3633  * with that case, we mark all of the indexes as pending rebuild so that they
3634  * won't be trusted until rebuilt. The caller is required to call us *without*
3635  * having made the rebuilt table visible by doing CommandCounterIncrement;
3636  * we'll do CCI after having collected the index list. (This way we can still
3637  * use catalog indexes while collecting the list.)
3638  *
3639  * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion
3640  * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or
3641  * CLUSTER on a system catalog must omit this flag. REINDEX should be used to
3642  * rebuild an index if constraint inconsistency is suspected. For optimal
3643  * performance, other callers should include the flag only after transforming
3644  * the data in a manner that risks a change in constraint validity.
3645  *
3646  * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the
3647  * rebuilt indexes to unlogged.
3648  *
3649  * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the
3650  * rebuilt indexes to permanent.
3651  *
3652  * Returns true if any indexes were rebuilt (including toast table's index
3653  * when relevant). Note that a CommandCounterIncrement will occur after each
3654  * index rebuild.
3655  */
3656 bool
3658 {
3659  Relation rel;
3660  Oid toast_relid;
3661  List *indexIds;
3662  char persistence;
3663  bool result;
3664  ListCell *indexId;
3665  int i;
3666 
3667  /*
3668  * Open and lock the relation. ShareLock is sufficient since we only need
3669  * to prevent schema and data changes in it. The lock level used here
3670  * should match ReindexTable().
3671  */
3672  rel = table_open(relid, ShareLock);
3673 
3674  /*
3675  * This may be useful when implemented someday; but that day is not today.
3676  * For now, avoid erroring out when called in a multi-table context
3677  * (REINDEX SCHEMA) and happen to come across a partitioned table. The
3678  * partitions may be reindexed on their own anyway.
3679  */
3680  if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
3681  {
3682  ereport(WARNING,
3683  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3684  errmsg("REINDEX of partitioned tables is not yet implemented, skipping \"%s\"",
3685  RelationGetRelationName(rel))));
3686  table_close(rel, ShareLock);
3687  return false;
3688  }
3689 
3690  toast_relid = rel->rd_rel->reltoastrelid;
3691 
3692  /*
3693  * Get the list of index OIDs for this relation. (We trust to the
3694  * relcache to get this with a sequential scan if ignoring system
3695  * indexes.)
3696  */
3697  indexIds = RelationGetIndexList(rel);
3698 
3699  if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
3700  {
3701  /* Suppress use of all the indexes until they are rebuilt */
3702  SetReindexPending(indexIds);
3703 
3704  /*
3705  * Make the new heap contents visible --- now things might be
3706  * inconsistent!
3707  */
3709  }
3710 
3711  /*
3712  * Compute persistence of indexes: same as that of owning rel, unless
3713  * caller specified otherwise.
3714  */
3716  persistence = RELPERSISTENCE_UNLOGGED;
3717  else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT)
3718  persistence = RELPERSISTENCE_PERMANENT;
3719  else
3720  persistence = rel->rd_rel->relpersistence;
3721 
3722  /* Reindex all the indexes. */
3723  i = 1;
3724  foreach(indexId, indexIds)
3725  {
3726  Oid indexOid = lfirst_oid(indexId);
3727  Oid indexNamespaceId = get_rel_namespace(indexOid);
3728 
3729  /*
3730  * Skip any invalid indexes on a TOAST table. These can only be
3731  * duplicate leftovers from a failed REINDEX CONCURRENTLY, and if
3732  * rebuilt it would not be possible to drop them anymore.
3733  */
3734  if (IsToastNamespace(indexNamespaceId) &&
3735  !get_index_isvalid(indexOid))
3736  {
3737  ereport(WARNING,
3738  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3739  errmsg("cannot reindex invalid index \"%s.%s\" on TOAST table, skipping",
3740  get_namespace_name(indexNamespaceId),
3741  get_rel_name(indexOid))));
3742  continue;
3743  }
3744 
3745  reindex_index(indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS),
3746  persistence, options);
3747 
3749 
3750  /* Index should no longer be in the pending list */
3751  Assert(!ReindexIsProcessingIndex(indexOid));
3752 
3753  /* Set index rebuild count */
3755  i);
3756  i++;
3757  }
3758 
3759  /*
3760  * Close rel, but continue to hold the lock.
3761  */
3762  table_close(rel, NoLock);
3763 
3764  result = (indexIds != NIL);
3765 
3766  /*
3767  * If the relation has a secondary toast rel, reindex that too while we
3768  * still hold the lock on the main table.
3769  */
3770  if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid))
3771  result |= reindex_relation(toast_relid, flags, options);
3772 
3773  return result;
3774 }
3775 
3776 
3777 /* ----------------------------------------------------------------
3778  * System index reindexing support
3779  *
3780  * When we are busy reindexing a system index, this code provides support
3781  * for preventing catalog lookups from using that index. We also make use
3782  * of this to catch attempted uses of user indexes during reindexing of
3783  * those indexes. This information is propagated to parallel workers;
3784  * attempting to change it during a parallel operation is not permitted.
3785  * ----------------------------------------------------------------
3786  */
3787 
3791 static int reindexingNestLevel = 0;
3792 
3793 /*
3794  * ReindexIsProcessingHeap
3795  * True if heap specified by OID is currently being reindexed.
3796  */
3797 bool
3799 {
3800  return heapOid == currentlyReindexedHeap;
3801 }
3802 
3803 /*
3804  * ReindexIsCurrentlyProcessingIndex
3805  * True if index specified by OID is currently being reindexed.
3806  */
3807 static bool
3809 {
3810  return indexOid == currentlyReindexedIndex;
3811 }
3812 
3813 /*
3814  * ReindexIsProcessingIndex
3815  * True if index specified by OID is currently being reindexed,
3816  * or should be treated as invalid because it is awaiting reindex.
3817  */
3818 bool
3820 {
3821  return indexOid == currentlyReindexedIndex ||
3822  list_member_oid(pendingReindexedIndexes, indexOid);
3823 }
3824 
3825 /*
3826  * SetReindexProcessing
3827  * Set flag that specified heap/index are being reindexed.
3828  */
3829 static void
3830 SetReindexProcessing(Oid heapOid, Oid indexOid)
3831 {
3832  Assert(OidIsValid(heapOid) && OidIsValid(indexOid));
3833  /* Reindexing is not re-entrant. */
3835  elog(ERROR, "cannot reindex while reindexing");
3836  currentlyReindexedHeap = heapOid;
3837  currentlyReindexedIndex = indexOid;
3838  /* Index is no longer "pending" reindex. */
3839  RemoveReindexPending(indexOid);
3840  /* This may have been set already, but in case it isn't, do so now. */
3842 }
3843 
3844 /*
3845  * ResetReindexProcessing
3846  * Unset reindexing status.
3847  */
3848 static void
3850 {
3853  /* reindexingNestLevel remains set till end of (sub)transaction */
3854 }
3855 
3856 /*
3857  * SetReindexPending
3858  * Mark the given indexes as pending reindex.
3859  *
3860  * NB: we assume that the current memory context stays valid throughout.
3861  */
3862 static void
3864 {
3865  /* Reindexing is not re-entrant. */
3866  if (pendingReindexedIndexes)
3867  elog(ERROR, "cannot reindex while reindexing");
3868  if (IsInParallelMode())
3869  elog(ERROR, "cannot modify reindex state during a parallel operation");
3870  pendingReindexedIndexes = list_copy(indexes);
3872 }
3873 
3874 /*
3875  * RemoveReindexPending
3876  * Remove the given index from the pending list.
3877  */
3878 static void
3880 {
3881  if (IsInParallelMode())
3882  elog(ERROR, "cannot modify reindex state during a parallel operation");
3883  pendingReindexedIndexes = list_delete_oid(pendingReindexedIndexes,
3884  indexOid);
3885 }
3886 
3887 /*
3888  * ResetReindexState
3889  * Clear all reindexing state during (sub)transaction abort.
3890  */
3891 void
3892 ResetReindexState(int nestLevel)
3893 {
3894  /*
3895  * Because reindexing is not re-entrant, we don't need to cope with nested
3896  * reindexing states. We just need to avoid messing up the outer-level
3897  * state in case a subtransaction fails within a REINDEX. So checking the
3898  * current nest level against that of the reindex operation is sufficient.
3899  */
3900  if (reindexingNestLevel >= nestLevel)
3901  {
3904 
3905  /*
3906  * We needn't try to release the contents of pendingReindexedIndexes;
3907  * that list should be in a transaction-lifespan context, so it will
3908  * go away automatically.
3909  */
3910  pendingReindexedIndexes = NIL;
3911 
3912  reindexingNestLevel = 0;
3913  }
3914 }
3915 
3916 /*
3917  * EstimateReindexStateSpace
3918  * Estimate space needed to pass reindex state to parallel workers.
3919  */
3920 Size
3922 {
3923  return offsetof(SerializedReindexState, pendingReindexedIndexes)
3924  + mul_size(sizeof(Oid), list_length(pendingReindexedIndexes));
3925 }
3926 
3927 /*
3928  * SerializeReindexState
3929  * Serialize reindex state for parallel workers.
3930  */
3931 void
3932 SerializeReindexState(Size maxsize, char *start_address)
3933 {
3934  SerializedReindexState *sistate = (SerializedReindexState *) start_address;
3935  int c = 0;
3936  ListCell *lc;
3937 
3940  sistate->numPendingReindexedIndexes = list_length(pendingReindexedIndexes);
3941  foreach(lc, pendingReindexedIndexes)
3942  sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc);
3943 }
3944 
3945 /*
3946  * RestoreReindexState
3947  * Restore reindex state in a parallel worker.
3948  */
3949 void
3950 RestoreReindexState(void *reindexstate)
3951 {
3952  SerializedReindexState *sistate = (SerializedReindexState *) reindexstate;
3953  int c = 0;
3954  MemoryContext oldcontext;
3955 
3958 
3959  Assert(pendingReindexedIndexes == NIL);
3961  for (c = 0; c < sistate->numPendingReindexedIndexes; ++c)
3962  pendingReindexedIndexes =
3963  lappend_oid(pendingReindexedIndexes,
3964  sistate->pendingReindexedIndexes[c]);
3965  MemoryContextSwitchTo(oldcontext);
3966 
3967  /* Note the worker has its own transaction nesting level */
3969 }
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:77
signed short int16
Definition: c.h:354
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2582
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:680
void WaitForLockers(LOCKTAG heaplocktag, LOCKMODE lockmode, bool progress)
Definition: lmgr.c:942
#define NIL
Definition: pg_list.h:65
Definition: c.h:594
struct IndexAmRoutine * rd_indam
Definition: rel.h:188
Oid IndexGetRelation(Oid indexId, bool missing_ok)
Definition: index.c:3395
void RelationGetExclusionInfo(Relation indexRelation, Oid **operators, Oid **procs, uint16 **strategies)
Definition: relcache.c:5175
void ResetReindexState(int nestLevel)
Definition: index.c:3892
uint16 * ii_UniqueStrats
Definition: execnodes.h:170
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:98
List * SystemFuncName(char *name)
LockRelId lockRelId
Definition: rel.h:44
static Oid currentlyReindexedHeap
Definition: index.c:3788
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT
Definition: progress.h:95
bool CompareIndexInfo(IndexInfo *info1, IndexInfo *info2, Oid *collations1, Oid *collations2, Oid *opfamilies1, Oid *opfamilies2, AttrMap *attmap)
Definition: index.c:2403
static void index_update_stats(Relation rel, bool hasindex, double reltuples)
Definition: index.c:2661
bool ConstraintNameIsUsed(ConstraintCategory conCat, Oid objId, const char *conname)
void tuplesort_performsort(Tuplesortstate *state)
Definition: tuplesort.c:1964
static Datum ExecEvalExprSwitchContext(ExprState *state, ExprContext *econtext, bool *isNull)
Definition: executor.h:305
#define DEBUG1
Definition: elog.h:25
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:133
void smgrcreate(SMgrRelation reln, ForkNumber forknum, bool isRedo)
Definition: smgr.c:333
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:529
#define GETSTRUCT(TUP)
Definition: htup_details.h:655
void index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
Definition: index.c:2011
static void UpdateIndexRelation(Oid indexoid, Oid heapoid, Oid parentIndexId, IndexInfo *indexInfo, Oid *collationOids, Oid *classOids, int16 *coloptions, bool primary, bool isexclusion, bool immediate, bool isvalid, bool isready)
Definition: index.c:529
void tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull)
Definition: tuplesort.c:1729
Oid currentlyReindexedIndex
Definition: index.c:94
List * ii_Predicate
Definition: execnodes.h:163
Tuplesortstate * tuplesort_begin_datum(Oid datumType, Oid sortOperator, Oid sortCollation, bool nullsFirstFlag, int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:1171
static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid)
Definition: index.c:3808
PgStat_Counter tuples_returned
Definition: pgstat.h:671
bool IsSystemRelation(Relation relation)
Definition: catalog.c:68
uint32 TransactionId
Definition: c.h:513
#define INDEX_CREATE_IF_NOT_EXISTS
Definition: index.h:51
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:298
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:865
TableScanDesc table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
Definition: tableam.c:98
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:321
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:44
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:560
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:3033
#define RelationGetDescr(relation)
Definition: rel.h:482
#define INDEX_CREATE_INVALID
Definition: index.h:53
int LOCKMODE
Definition: lockdefs.h:26
PgStat_Counter t_tuples_fetched
Definition: pgstat.h:105
void pgstat_progress_start_command(ProgressCommandType cmdtype, Oid relid)
Definition: pgstat.c:3210
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:934
void index_set_state_flags(Oid indexId, IndexStateFlagsAction action)
Definition: index.c:3316
uint16 bits16
Definition: c.h:375
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:275
static void SetReindexProcessing(Oid heapOid, Oid indexOid)
Definition: index.c:3830
static void SetReindexPending(List *indexes)
Definition: index.c:3863
#define PointerGetDatum(X)
Definition: postgres.h:556
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
Node * whenClause
Definition: parsenodes.h:2440
struct SMgrRelationData * rd_smgr
Definition: rel.h:57
Oid CreateConstraintEntry(const char *constraintName, Oid constraintNamespace, char constraintType, bool isDeferrable, bool isDeferred, bool isValidated, Oid parentConstrId, Oid relId, const int16 *constraintKey, int constraintNKeys, int constraintNTotalKeys, Oid domainId, Oid indexRelId, Oid foreignRelId, const int16 *foreignKey, const Oid *pfEqOp, const Oid *ppEqOp, const Oid *ffEqOp, int foreignNKeys, char foreignUpdateType, char foreignDeleteType, char foreignMatchType, const Oid *exclOp, Node *conExpr, const char *conBin, bool conIsLocal, int conInhCount, bool conNoInherit, bool is_internal)
Definition: pg_constraint.c:50
void SerializeReindexState(Size maxsize, char *start_address)
Definition: index.c:3932
void pgstat_progress_update_param(int index, int64 val)
Definition: pgstat.c:3231
ExprState * ii_PredicateState
Definition: execnodes.h:164
#define RelationGetForm(relation)
Definition: rel.h:450
void CommitTransactionCommand(void)
Definition: xact.c:2919
MemoryContext ecxt_per_tuple_memory
Definition: execnodes.h:234
List * RelationGetDummyIndexExpressions(Relation relation)
Definition: relcache.c:4800
bool analyze_only
Definition: genam.h:47
int2vector * buildint2vector(const int16 *int2s, int n)
Definition: int.c:114
Oid dbId
Definition: rel.h:39
bool report_progress
Definition: genam.h:48
Oid get_rel_namespace(Oid relid)
Definition: lsyscache.c:1864
BufferAccessStrategy strategy
Definition: genam.h:52
static void InitializeAttributeOids(Relation indexRelation, int numatts, Oid indexoid)
Definition: index.c:470
Oid binary_upgrade_next_index_pg_class_oid
Definition: index.c:85
int maplen
Definition: attmap.h:37
#define REINDEXOPT_REPORT_PROGRESS
Definition: parsenodes.h:3353
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
#define Int16GetDatum(X)
Definition: postgres.h:451
Definition: lock.h:163
bool DeleteInheritsTuple(Oid inhrelid, Oid inhparent)
Definition: pg_inherits.c:454
static List * pendingReindexedIndexes
Definition: index.c:3790
List * list_copy(const List *oldlist)
Definition: list.c:1403
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:276
Definition: nodes.h:529
Oid * ii_ExclusionProcs
Definition: execnodes.h:166
bool get_collation_isdeterministic(Oid colloid)
Definition: lsyscache.c:1052
int errcode(int sqlerrcode)
Definition: elog.c:610
void * stringToNode(const char *str)
Definition: read.c:89
Relation index
Definition: genam.h:46
#define MemSet(start, val, len)
Definition: c.h:971
#define INFO
Definition: elog.h:33
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition: heaptuple.c:359
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:136
#define PROGRESS_CREATEIDX_TUPLES_TOTAL
Definition: progress.h:84
uint32 BlockNumber
Definition: block.h:31
void RelationForgetRelation(Oid rid)
Definition: relcache.c:2737
void PopActiveSnapshot(void)
Definition: snapmgr.c:814
void CatalogTupleDelete(Relation heapRel, ItemPointer tid)
Definition: indexing.c:269
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition: pg_depend.c:43
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2298
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:247
PgStat_Counter numscans
Definition: pgstat.h:669
#define INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS
Definition: index.h:79
void visibilitymap_count(Relation rel, BlockNumber *all_visible, BlockNumber *all_frozen)
void index_check_primary_key(Relation heapRel, IndexInfo *indexInfo, bool is_alter_table, IndexStmt *stmt)
Definition: index.c:201
PgStat_TableCounts t_counts
Definition: pgstat.h:161
void index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
Definition: index.c:1441
Node * map_variable_attnos(Node *node, int target_varno, int sublevels_up, const AttrMap *attno_map, Oid to_rowtype, bool *found_whole_row)
#define REINDEX_REL_SUPPRESS_INDEX_USE
Definition: index.h:141
static bool table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:903
bool IsToastNamespace(Oid namespaceId)
Definition: catalog.c:195
Form_pg_class rd_rel
Definition: rel.h:109
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1338
unsigned int Oid
Definition: postgres_ext.h:31
static bool ExecQual(ExprState *state, ExprContext *econtext)
Definition: executor.h:370
Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER]
Definition: index.c:96
int namestrcpy(Name name, const char *str)
Definition: name.c:250
Oid amkeytype
Definition: amapi.h:207
Oid index_create(Relation heapRelation, const char *indexRelationName, Oid indexRelationId, Oid parentIndexRelid, Oid parentConstraintId, Oid relFileNode, IndexInfo *indexInfo, List *indexColNames, Oid accessMethodObjectId, Oid tableSpaceId, Oid *collationObjectId, Oid *classObjectId, int16 *coloptions, Datum reloptions, bits16 flags, bits16 constr_flags, bool allow_system_table_mods, bool is_internal, Oid *constraintId)
Definition: index.c:693
List * lappend_oid(List *list, Oid datum)
Definition: list.c:357
#define OidIsValid(objectId)
Definition: c.h:644
#define InvokeObjectPostAlterHookArg(classId, objectId, subId, auxiliaryId, is_internal)
Definition: objectaccess.h:178
PgStat_Counter t_tuples_returned
Definition: pgstat.h:104
Oid * ii_UniqueOps
Definition: execnodes.h:168
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:356
bool IsBinaryUpgrade
Definition: globals.c:110
double itups
Definition: index.h:37
static TableScanDesc table_beginscan_strat(Relation rel, Snapshot snapshot, int nkeys, struct ScanKeyData *key, bool allow_strat, bool allow_sync)
Definition: tableam.h:778
#define REINDEXOPT_VERBOSE
Definition: parsenodes.h:3352
signed int int32
Definition: c.h:355
Definition: attmap.h:34
int errdetail_internal(const char *fmt,...)
Definition: elog.c:984
static void ResetReindexProcessing(void)
Definition: index.c:3849
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:4854
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
Definition: type.h:89
#define INDEX_CONSTR_CREATE_INIT_DEFERRED
Definition: index.h:77
void RelationSetNewRelfilenode(Relation relation, char persistence)
Definition: relcache.c:3580
void SetRelationHasSubclass(Oid relationId, bool relhassubclass)
Definition: tablecmds.c:2949
void InsertPgClassTuple(Relation pg_class_desc, Relation new_rel_desc, Oid new_rel_oid, Datum relacl, Datum reloptions)
Definition: heap.c:876
#define RelationOpenSmgr(relation)
Definition: rel.h:513
RangeVar * constrrel
Definition: parsenodes.h:2447
void FreeExecutorState(EState *estate)
Definition: execUtils.c:191
#define GetPerTupleExprContext(estate)
Definition: executor.h:507
List * ii_ExpressionsState
Definition: execnodes.h:162
Form_pg_index rd_index
Definition: rel.h:174
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:448
unsigned short uint16
Definition: c.h:366
void pfree(void *pointer)
Definition: mcxt.c:1056
bool IsInParallelMode(void)
Definition: xact.c:997
Oid * rd_indcollation
Definition: rel.h:199
#define EarlyPruningEnabled(rel)
Definition: snapmgr.h:45
void UnlockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:382
#define ObjectIdGetDatum(X)
Definition: postgres.h:507
#define ERROR
Definition: elog.h:43
int ii_NumIndexKeyAttrs
Definition: execnodes.h:159
Definition: rel.h:36
ambuild_function ambuild
Definition: amapi.h:216
void LockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:369
IndexAmRoutine * GetIndexAmRoutineByAmId(Oid amoid, bool noerror)
Definition: amapi.c:56
#define RelationIsValid(relation)
Definition: rel.h:429
bool ReindexIsProcessingHeap(Oid heapOid)
Definition: index.c:3798
Relation relation_open(Oid relationId, LOCKMODE lockmode)
Definition: relation.c:48
ItemPointerData t_self
Definition: htup.h:65
Oid get_relname_relid(const char *relname, Oid relnamespace)
Definition: lsyscache.c:1797
#define DEBUG2
Definition: elog.h:24
Tuplesortstate * tuplesort
Definition: index.h:35
#define AttrNumberGetAttrOffset(attNum)
Definition: attnum.h:51
PgStat_StatTabEntry * pgstat_fetch_stat_tabentry(Oid relid)
Definition: pgstat.c:2508
#define SET_LOCKTAG_RELATION(locktag, dboid, reloid)
Definition: lock.h:180
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3191
char * c
#define NoLock
Definition: lockdefs.h:34
LockInfoData rd_lockInfo
Definition: rel.h:112
#define IsNormalProcessingMode()
Definition: miscadmin.h:394
HeapTuple heap_getnext(TableScanDesc sscan, ScanDirection direction)
Definition: heapam.c:1275
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1224
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:4741
Oid * ii_UniqueProcs
Definition: execnodes.h:169
Oid values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:602
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:553
#define RowExclusiveLock
Definition: lockdefs.h:38
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:5927
#define PROGRESS_CREATEIDX_INDEX_OID
Definition: progress.h:80
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:164
IndexStateFlagsAction
Definition: index.h:24
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define InvalidTransactionId
Definition: transam.h:31
#define RelationGetRelationName(relation)
Definition: rel.h:490
ExprState * ExecPrepareQual(List *qual, EState *estate)
Definition: execExpr.c:520
static ListCell * list_head(const List *l)
Definition: pg_list.h:125
List * list_delete_oid(List *list, Oid datum)
Definition: list.c:834
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:193
PgStat_Counter tuples_fetched
Definition: pgstat.h:672
bool ii_BrokenHotChain
Definition: execnodes.h:175
bool ActiveSnapshotSet(void)
Definition: snapmgr.c:853
Oid * rd_opfamily
Definition: rel.h:189
Oid get_index_constraint(Oid indexId)
Definition: pg_depend.c:965
#define TriggerConstraintIndexId
Definition: indexing.h:251
static int64 itemptr_encode(ItemPointer itemptr)
Definition: index.h:170
static TupleDesc ConstructTupleDescriptor(Relation heapRelation, IndexInfo *indexInfo, List *indexColNames, Oid accessMethodObjectId, Oid *collationObjectId, Oid *classObjectId)
Definition: index.c:267
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:475
TransactionId GetTopTransactionIdIfAny(void)
Definition: xact.c:410
Oid index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, const char *newName)
Definition: index.c:1234
IndexInfo * makeIndexInfo(int numattrs, int numkeyattrs, Oid amoid, List *expressions, List *predicates, bool unique, bool isready, bool concurrent)
Definition: makefuncs.c:742
void CheckTableNotInUse(Relation rel, const char *stmt)
Definition: tablecmds.c:3533
void StoreSingleInheritance(Oid relationId, Oid parentOid, int32 seqNumber)
Definition: pg_inherits.c:417
Datum Int64GetDatum(int64 X)
Definition: fmgr.c:1701
static void IndexCheckExclusion(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo)
Definition: index.c:3004
#define ATTRIBUTE_FIXED_PART_SIZE
Definition: pg_attribute.h:185
Size EstimateReindexStateSpace(void)
Definition: index.c:3921
void index_register(Oid heap, Oid ind, IndexInfo *indexInfo)
Definition: bootstrap.c:1069
bool ii_ReadyForInserts
Definition: execnodes.h:173
PgStat_Counter t_blocks_hit
Definition: pgstat.h:118
MemoryContext TopMemoryContext
Definition: mcxt.c:44
int numPendingReindexedIndexes
Definition: index.c:95
bytea * index_opclass_options(Relation indrel, AttrNumber attnum, Datum attoptions, bool validate)
Definition: indexam.c:936
EState * CreateExecutorState(void)
Definition: execUtils.c:89
void TransferPredicateLocksToHeapRelation(Relation relation)
Definition: predicate.c:3077
bool get_rel_relispartition(Oid relid)
Definition: lsyscache.c:1939
List * ExecPrepareExprList(List *nodes, EState *estate)
Definition: execExpr.c:566
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:907
List * lappend(List *list, void *datum)
Definition: list.c:321
static Oid currentlyReindexedIndex
Definition: index.c:3789
#define PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE
Definition: progress.h:104
Datum * RelationGetIndexRawAttOptions(Relation indexrel)
Definition: relcache.c:5383
#define WARNING
Definition: elog.h:40
void validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
Definition: index.c:3160
#define RelationIsMapped(relation)
Definition: rel.h:505
FormData_pg_index * Form_pg_index
Definition: pg_index.h:66
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:1116
float float4
Definition: c.h:490
int progress
Definition: pgbench.c:234
#define PROGRESS_CREATEIDX_PHASE
Definition: progress.h:82
Definition: c.h:583
Size mul_size(Size s1, Size s2)
Definition: shmem.c:515
#define TextDatumGetCString(d)
Definition: builtins.h:88
#define PROGRESS_SCAN_BLOCKS_DONE
Definition: progress.h:120
void pgstat_progress_end_command(void)
Definition: pgstat.c:3282
void RelationDropStorage(Relation rel)
Definition: storage.c:195
IndexBulkDeleteResult * index_bulk_delete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback, void *callback_state)
Definition: indexam.c:688
uintptr_t Datum
Definition: postgres.h:367
void CommandCounterIncrement(void)
Definition: xact.c:1006
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:1164
Expr * make_ands_explicit(List *andclauses)
Definition: makefuncs.c:707
int ii_NumIndexAttrs
Definition: execnodes.h:158
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:718
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:1377
static bool relationHasPrimaryKey(Relation rel)
Definition: index.c:147
#define PROGRESS_CREATEIDX_COMMAND_REINDEX
Definition: progress.h:110
PgStat_Counter blocks_hit
Definition: pgstat.h:685
#define InvalidMultiXactId
Definition: multixact.h:23
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:211
#define InvokeObjectPostCreateHookArg(classId, objectId, subId, is_internal)
Definition: objectaccess.h:153
long deleteDependencyRecordsForClass(Oid classId, Oid objectId, Oid refclassId, char deptype)
Definition: pg_depend.c:240
PgStat_Counter t_numscans
Definition: pgstat.h:102
#define INDEX_CREATE_IS_PRIMARY
Definition: index.h:47
#define BoolGetDatum(X)
Definition: postgres.h:402
static void RemoveReindexPending(Oid indexOid)
Definition: index.c:3879
long changeDependenciesOf(Oid classId, Oid oldObjectId, Oid newObjectId)
Definition: pg_depend.c:456
#define InvalidOid
Definition: postgres_ext.h:36
static Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:381
FormData_pg_attribute
Definition: pg_attribute.h:177
#define INDEX_CREATE_CONCURRENT
Definition: index.h:50
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1202
int16 attnum
Definition: pg_attribute.h:79
#define ereport(elevel,...)
Definition: elog.h:144
void DeleteRelationTuple(Oid relid)
Definition: heap.c:1508
int maintenance_work_mem
Definition: globals.c:122
#define NOTICE
Definition: elog.h:37
int GetCurrentTransactionNestLevel(void)
Definition: xact.c:842
int message_level
Definition: genam.h:50
TransactionId MultiXactId
Definition: c.h:523
double num_heap_tuples
Definition: genam.h:51
bool ii_Unique
Definition: execnodes.h:172
#define makeNode(_type_)
Definition: nodes.h:577
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
FormData_pg_constraint * Form_pg_constraint
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:674
void index_build(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo, bool isreindex, bool parallel)
Definition: index.c:2809
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define REINDEX_REL_FORCE_INDEXES_UNLOGGED
Definition: index.h:143
List * ii_Expressions
Definition: execnodes.h:161
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:206
#define Assert(condition)
Definition: c.h:738
oidvector * buildoidvector(const Oid *oids, int n)
Definition: oid.c:167
#define lfirst(lc)
Definition: pg_list.h:190
Definition: regguts.h:298
double tups_inserted
Definition: index.h:37
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:593
#define PROGRESS_CREATEIDX_PHASE_BUILD
Definition: progress.h:92
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN
Definition: progress.h:96
void StartTransactionCommand(void)
Definition: xact.c:2818
AttrNumber * attnums
Definition: attmap.h:36
void recordDependencyOnSingleRelExpr(const ObjectAddress *depender, Node *expr, Oid relId, DependencyType behavior, DependencyType self_behavior, bool reverse_self)
Definition: dependency.c:1625
CatalogIndexState CatalogOpenIndexes(Relation heapRel)
Definition: indexing.c:42
Relation heap_create(const char *relname, Oid relnamespace, Oid reltablespace, Oid relid, Oid relfilenode, Oid accessmtd, TupleDesc tupDesc, char relkind, char relpersistence, bool shared_relation, bool mapped_relation, bool allow_system_table_mods, TransactionId *relfrozenxid, MultiXactId *relminmxid)
Definition: heap.c:294
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
Definition: pgstat.c:3253
#define linitial_oid(l)
Definition: pg_list.h:197
#define INDEX_MAX_KEYS
int ii_ParallelWorkers
Definition: execnodes.h:176
size_t Size
Definition: c.h:466
void CatalogTupleUpdate(Relation heapRel, ItemPointer otid, HeapTuple tup)
Definition: indexing.c:224
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
struct PgStat_TableStatus * pgstat_info
Definition: rel.h:236
int plan_create_index_workers(Oid tableOid, Oid indexOid)
Definition: planner.c:6354
bool get_index_isvalid(Oid index_oid)
Definition: lsyscache.c:3357
FormData_pg_type * Form_pg_type
Definition: pg_type.h:255
static int list_length(const List *l)
Definition: pg_list.h:169
#define REINDEX_REL_CHECK_CONSTRAINTS
Definition: index.h:142
void InsertPgAttributeTuple(Relation pg_attribute_rel, Form_pg_attribute new_attribute, Datum attoptions, CatalogIndexState indstate)
Definition: heap.c:726
FormData_pg_trigger * Form_pg_trigger
Definition: pg_trigger.h:72
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:1127
Oid GetNewRelFileNode(Oid reltablespace, Relation pg_class, char relpersistence)
Definition: catalog.c:380
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:226
#define PROGRESS_SCAN_BLOCKS_TOTAL
Definition: progress.h:119
List * get_index_ref_constraints(Oid indexId)
Definition: pg_depend.c:1021
void DeleteAttributeTuples(Oid relid)
Definition: heap.c:1537
#define ObjectAddressSubSet(addr, class_id, object_id, object_sub_id)
Definition: objectaddress.h:33
int16 values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:591
static int reindexingNestLevel
Definition: index.c:3791
#define INDEX_CONSTR_CREATE_UPDATE_INDEX
Definition: index.h:78
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4507
Snapshot GetLatestSnapshot(void)
Definition: snapmgr.c:381
void reindex_index(Oid indexId, bool skip_constraint_checks, char persistence, int options)
Definition: index.c:3420
bool ii_Concurrent
Definition: execnodes.h:174
#define InvalidAttrNumber
Definition: attnum.h:23
#define ObjectAddressSet(addr, class_id, object_id)
Definition: objectaddress.h:40
static void AppendAttributeTuples(Relation indexRelation, int numatts, Datum *attopts)
Definition: index.c:488
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:158
#define DatumGetPointer(X)
Definition: postgres.h:549
void CacheInvalidateRelcache(Relation relation)
Definition: inval.c:1270
double htups
Definition: index.h:37
void RemoveStatistics(Oid relid, AttrNumber attnum)
Definition: heap.c:3120
char get_rel_persistence(Oid relid)
Definition: lsyscache.c:1990
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:862
static Datum values[MAXATTR]
Definition: bootstrap.c:167
void RelationInitIndexAccessInfo(Relation relation)
Definition: relcache.c:1365
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:392
FormData_pg_class * Form_pg_class
Definition: pg_class.h:153
#define INDEX_CREATE_SKIP_BUILD
Definition: index.h:49
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2709
#define SearchSysCacheCopy1(cacheId, key1)
Definition: syscache.h:174
#define AccessExclusiveLock
Definition: lockdefs.h:45
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN
Definition: progress.h:94
#define INDEX_CREATE_PARTITIONED
Definition: index.h:52
#define Int32GetDatum(X)
Definition: postgres.h:479
int NewGUCNestLevel(void)
Definition: guc.c:5913
Oid * ii_ExclusionOps
Definition: execnodes.h:165
void RestoreReindexState(void *reindexstate)
Definition: index.c:3950
void * palloc(Size size)
Definition: mcxt.c:949
int errmsg(const char *fmt,...)
Definition: elog.c:824
void heap_inplace_update(Relation relation, HeapTuple tuple)
Definition: heapam.c:5686
IndexInfo * BuildDummyIndexInfo(Relation index)
Definition: index.c:2357
static void table_index_validate_scan(Relation table_rel, Relation index_rel, struct IndexInfo *index_info, Snapshot snapshot, struct ValidateIndexState *state)
Definition: tableam.h:1590
#define PROGRESS_CREATEIDX_TUPLES_DONE
Definition: progress.h:85
void list_free(List *list)
Definition: list.c:1376
#define elog(elevel,...)
Definition: elog.h:214
ambuildempty_function ambuildempty
Definition: amapi.h:217
MemoryContext rd_indexcxt
Definition: rel.h:186
#define ShareLock
Definition: lockdefs.h:41
int i
void LockRelation(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:216
RangeVar * relation
Definition: parsenodes.h:2431
Oid currentlyReindexedHeap
Definition: index.c:93
#define PROGRESS_CLUSTER_INDEX_REBUILD_COUNT
Definition: progress.h:62
#define NameStr(name)
Definition: c.h:615
ObjectAddress CreateTrigger(CreateTrigStmt *stmt, const char *queryString, Oid relOid, Oid refRelOid, Oid constraintOid, Oid indexOid, Oid funcoid, Oid parentTriggerOid, Node *whenClause, bool isInternal, bool in_partition)
Definition: trigger.c:157
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
#define CStringGetTextDatum(s)
Definition: builtins.h:87
char * nodeToString(const void *obj)
Definition: outfuncs.c:4360
#define REINDEX_REL_FORCE_INDEXES_PERMANENT
Definition: index.h:144
void CatalogCloseIndexes(CatalogIndexState indstate)
Definition: indexing.c:60
#define REINDEX_REL_PROCESS_TOAST
Definition: index.h:140
void BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii)
Definition: index.c:2522
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:99
#define PROGRESS_CREATEIDX_SUBPHASE
Definition: progress.h:83
void CacheInvalidateRelcacheByTuple(HeapTuple classTuple)
Definition: inval.c:1306
void check_exclusion_constraint(Relation heap, Relation index, IndexInfo *indexInfo, ItemPointer tupleid, Datum *values, bool *isnull, EState *estate, bool newIndex)
Definition: execIndexing.c:866
Oid * rd_opcintype
Definition: rel.h:190
static Datum slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:402
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:160
uint16 * ii_ExclusionStrats
Definition: execnodes.h:167
void CheckAttributeType(const char *attname, Oid atttypid, Oid attcollation, List *containing_rowtypes, int flags)
Definition: heap.c:581
void tuplesort_end(Tuplesortstate *state)
Definition: tuplesort.c:1388
#define INDEX_CREATE_ADD_CONSTRAINT
Definition: index.h:48
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:39
HeapTuple heap_modify_tuple(HeapTuple tuple, TupleDesc tupleDesc, Datum *replValues, bool *replIsnull, bool *doReplace)
Definition: heaptuple.c:1113
void index_concurrently_set_dead(Oid heapId, Oid indexId)
Definition: index.c:1731
bool ReindexIsProcessingIndex(Oid indexOid)
Definition: index.c:3819
void index_concurrently_build(Oid heapRelationId, Oid indexRelationId)
Definition: index.c:1393
FormData_pg_opclass * Form_pg_opclass
Definition: pg_opclass.h:83
#define ERRCODE_DUPLICATE_OBJECT
Definition: streamutil.c:31
static bool validate_index_callback(ItemPointer itemptr, void *opaque)
Definition: index.c:3288
PgStat_Counter blocks_fetched
Definition: pgstat.h:684
bool reindex_relation(Oid relid, int flags, int options)
Definition: index.c:3657
Definition: pg_list.h:50
long changeDependenciesOn(Oid refClassId, Oid oldRefObjectId, Oid newRefObjectId)
Definition: pg_depend.c:512
char * get_rel_name(Oid relid)
Definition: lsyscache.c:1840
#define PointerIsValid(pointer)
Definition: c.h:632
ItemPointerData tts_tid
Definition: tuptable.h:130
List * get_partition_ancestors(Oid relid)
Definition: partition.c:115
int16 AttrNumber
Definition: attnum.h:21
#define RelationGetRelid(relation)
Definition: rel.h:456
#define INDEX_CONSTR_CREATE_DEFERRABLE
Definition: index.h:76
long val
Definition: informix.c:664
#define PROGRESS_CREATEIDX_COMMAND
Definition: progress.h:79
void CatalogTupleInsert(Relation heapRel, HeapTuple tup)
Definition: indexing.c:183
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:132
Datum * ii_OpclassOptions
Definition: execnodes.h:171
#define BTEqualStrategyNumber
Definition: stratnum.h:31
#define offsetof(type, field)
Definition: c.h:661
PgStat_Counter t_blocks_fetched
Definition: pgstat.h:117
#define lfirst_oid(lc)
Definition: pg_list.h:192
double index_tuples
Definition: genam.h:33
#define INDEX_CONSTR_CREATE_MARK_AS_PRIMARY
Definition: index.h:75
double heap_tuples
Definition: genam.h:32
#define PROGRESS_CREATEIDX_ACCESS_METHOD_OID
Definition: progress.h:81
Oid relId
Definition: rel.h:38
bool estimated_count
Definition: genam.h:49
ObjectAddress index_constraint_create(Relation heapRelation, Oid indexRelationId, Oid parentConstraintId, IndexInfo *indexInfo, const char *constraintName, char constraintType, bits16 constr_flags, bool allow_system_table_mods, bool is_internal)
Definition: index.c:1792
#define DescriptionObjIndexId
Definition: indexing.h:154
Oid ii_Am
Definition: execnodes.h:177
#define RelationGetNamespace(relation)
Definition: rel.h:497