PostgreSQL Source Code  git master
index.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * index.c
4  * code to create and destroy POSTGRES index relations
5  *
6  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/catalog/index.c
12  *
13  *
14  * INTERFACE ROUTINES
15  * index_create() - Create a cataloged index relation
16  * index_drop() - Removes index relation from catalogs
17  * BuildIndexInfo() - Prepare to insert index tuples
18  * FormIndexDatum() - Construct datum vector for one index tuple
19  *
20  *-------------------------------------------------------------------------
21  */
22 #include "postgres.h"
23 
24 #include <unistd.h>
25 
26 #include "access/amapi.h"
27 #include "access/heapam.h"
28 #include "access/multixact.h"
29 #include "access/reloptions.h"
30 #include "access/relscan.h"
31 #include "access/sysattr.h"
32 #include "access/tableam.h"
33 #include "access/transam.h"
34 #include "access/visibilitymap.h"
35 #include "access/xact.h"
36 #include "bootstrap/bootstrap.h"
37 #include "catalog/binary_upgrade.h"
38 #include "catalog/catalog.h"
39 #include "catalog/dependency.h"
40 #include "catalog/heap.h"
41 #include "catalog/index.h"
42 #include "catalog/objectaccess.h"
43 #include "catalog/partition.h"
44 #include "catalog/pg_am.h"
45 #include "catalog/pg_collation.h"
46 #include "catalog/pg_constraint.h"
47 #include "catalog/pg_depend.h"
48 #include "catalog/pg_description.h"
49 #include "catalog/pg_inherits.h"
50 #include "catalog/pg_opclass.h"
51 #include "catalog/pg_operator.h"
52 #include "catalog/pg_tablespace.h"
53 #include "catalog/pg_trigger.h"
54 #include "catalog/pg_type.h"
55 #include "catalog/storage.h"
56 #include "commands/event_trigger.h"
57 #include "commands/progress.h"
58 #include "commands/tablecmds.h"
59 #include "commands/trigger.h"
60 #include "executor/executor.h"
61 #include "miscadmin.h"
62 #include "nodes/makefuncs.h"
63 #include "nodes/nodeFuncs.h"
64 #include "optimizer/optimizer.h"
65 #include "parser/parser.h"
66 #include "pgstat.h"
67 #include "rewrite/rewriteManip.h"
68 #include "storage/bufmgr.h"
69 #include "storage/lmgr.h"
70 #include "storage/predicate.h"
71 #include "storage/procarray.h"
72 #include "storage/smgr.h"
73 #include "utils/builtins.h"
74 #include "utils/fmgroids.h"
75 #include "utils/guc.h"
76 #include "utils/inval.h"
77 #include "utils/lsyscache.h"
78 #include "utils/memutils.h"
79 #include "utils/pg_rusage.h"
80 #include "utils/rel.h"
81 #include "utils/snapmgr.h"
82 #include "utils/syscache.h"
83 #include "utils/tuplesort.h"
84 
85 /* Potentially set by pg_upgrade_support functions */
87 
88 /*
89  * Pointer-free representation of variables used when reindexing system
90  * catalogs; we use this to propagate those values to parallel workers.
91  */
92 typedef struct
93 {
99 
100 /* non-export function prototypes */
101 static bool relationHasPrimaryKey(Relation rel);
102 static TupleDesc ConstructTupleDescriptor(Relation heapRelation,
103  IndexInfo *indexInfo,
104  List *indexColNames,
105  Oid accessMethodObjectId,
106  Oid *collationObjectId,
107  Oid *classObjectId);
108 static void InitializeAttributeOids(Relation indexRelation,
109  int numatts, Oid indexoid);
110 static void AppendAttributeTuples(Relation indexRelation, Datum *attopts);
111 static void UpdateIndexRelation(Oid indexoid, Oid heapoid,
112  Oid parentIndexId,
113  IndexInfo *indexInfo,
114  Oid *collationOids,
115  Oid *classOids,
116  int16 *coloptions,
117  bool primary,
118  bool isexclusion,
119  bool immediate,
120  bool isvalid,
121  bool isready);
122 static void index_update_stats(Relation rel,
123  bool hasindex,
124  double reltuples);
125 static void IndexCheckExclusion(Relation heapRelation,
126  Relation indexRelation,
127  IndexInfo *indexInfo);
128 static bool validate_index_callback(ItemPointer itemptr, void *opaque);
129 static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid);
130 static void SetReindexProcessing(Oid heapOid, Oid indexOid);
131 static void ResetReindexProcessing(void);
132 static void SetReindexPending(List *indexes);
133 static void RemoveReindexPending(Oid indexOid);
134 
135 
136 /*
137  * relationHasPrimaryKey
138  * See whether an existing relation has a primary key.
139  *
140  * Caller must have suitable lock on the relation.
141  *
142  * Note: we intentionally do not check indisvalid here; that's because this
143  * is used to enforce the rule that there can be only one indisprimary index,
144  * and we want that to be true even if said index is invalid.
145  */
146 static bool
148 {
149  bool result = false;
150  List *indexoidlist;
151  ListCell *indexoidscan;
152 
153  /*
154  * Get the list of index OIDs for the table from the relcache, and look up
155  * each one in the pg_index syscache until we find one marked primary key
156  * (hopefully there isn't more than one such).
157  */
158  indexoidlist = RelationGetIndexList(rel);
159 
160  foreach(indexoidscan, indexoidlist)
161  {
162  Oid indexoid = lfirst_oid(indexoidscan);
163  HeapTuple indexTuple;
164 
165  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid));
166  if (!HeapTupleIsValid(indexTuple)) /* should not happen */
167  elog(ERROR, "cache lookup failed for index %u", indexoid);
168  result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary;
169  ReleaseSysCache(indexTuple);
170  if (result)
171  break;
172  }
173 
174  list_free(indexoidlist);
175 
176  return result;
177 }
178 
179 /*
180  * index_check_primary_key
181  * Apply special checks needed before creating a PRIMARY KEY index
182  *
183  * This processing used to be in DefineIndex(), but has been split out
184  * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX.
185  *
186  * We check for a pre-existing primary key, and that all columns of the index
187  * are simple column references (not expressions), and that all those
188  * columns are marked NOT NULL. If not, fail.
189  *
190  * We used to automatically change unmarked columns to NOT NULL here by doing
191  * our own local ALTER TABLE command. But that doesn't work well if we're
192  * executing one subcommand of an ALTER TABLE: the operations may not get
193  * performed in the right order overall. Now we expect that the parser
194  * inserted any required ALTER TABLE SET NOT NULL operations before trying
195  * to create a primary-key index.
196  *
197  * Caller had better have at least ShareLock on the table, else the not-null
198  * checking isn't trustworthy.
199  */
200 void
202  IndexInfo *indexInfo,
203  bool is_alter_table,
204  IndexStmt *stmt)
205 {
206  int i;
207 
208  /*
209  * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't
210  * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we
211  * have faith that the parser rejected multiple pkey clauses; and CREATE
212  * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either.
213  */
214  if ((is_alter_table || heapRel->rd_rel->relispartition) &&
215  relationHasPrimaryKey(heapRel))
216  {
217  ereport(ERROR,
218  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
219  errmsg("multiple primary keys for table \"%s\" are not allowed",
220  RelationGetRelationName(heapRel))));
221  }
222 
223  /*
224  * Check that all of the attributes in a primary key are marked as not
225  * null. (We don't really expect to see that; it'd mean the parser messed
226  * up. But it seems wise to check anyway.)
227  */
228  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
229  {
230  AttrNumber attnum = indexInfo->ii_IndexAttrNumbers[i];
231  HeapTuple atttuple;
232  Form_pg_attribute attform;
233 
234  if (attnum == 0)
235  ereport(ERROR,
236  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
237  errmsg("primary keys cannot be expressions")));
238 
239  /* System attributes are never null, so no need to check */
240  if (attnum < 0)
241  continue;
242 
243  atttuple = SearchSysCache2(ATTNUM,
245  Int16GetDatum(attnum));
246  if (!HeapTupleIsValid(atttuple))
247  elog(ERROR, "cache lookup failed for attribute %d of relation %u",
248  attnum, RelationGetRelid(heapRel));
249  attform = (Form_pg_attribute) GETSTRUCT(atttuple);
250 
251  if (!attform->attnotnull)
252  ereport(ERROR,
253  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
254  errmsg("primary key column \"%s\" is not marked NOT NULL",
255  NameStr(attform->attname))));
256 
257  ReleaseSysCache(atttuple);
258  }
259 }
260 
261 /*
262  * ConstructTupleDescriptor
263  *
264  * Build an index tuple descriptor for a new index
265  */
266 static TupleDesc
268  IndexInfo *indexInfo,
269  List *indexColNames,
270  Oid accessMethodObjectId,
271  Oid *collationObjectId,
272  Oid *classObjectId)
273 {
274  int numatts = indexInfo->ii_NumIndexAttrs;
275  int numkeyatts = indexInfo->ii_NumIndexKeyAttrs;
276  ListCell *colnames_item = list_head(indexColNames);
277  ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
278  IndexAmRoutine *amroutine;
279  TupleDesc heapTupDesc;
280  TupleDesc indexTupDesc;
281  int natts; /* #atts in heap rel --- for error checks */
282  int i;
283 
284  /* We need access to the index AM's API struct */
285  amroutine = GetIndexAmRoutineByAmId(accessMethodObjectId, false);
286 
287  /* ... and to the table's tuple descriptor */
288  heapTupDesc = RelationGetDescr(heapRelation);
289  natts = RelationGetForm(heapRelation)->relnatts;
290 
291  /*
292  * allocate the new tuple descriptor
293  */
294  indexTupDesc = CreateTemplateTupleDesc(numatts);
295 
296  /*
297  * Fill in the pg_attribute row.
298  */
299  for (i = 0; i < numatts; i++)
300  {
301  AttrNumber atnum = indexInfo->ii_IndexAttrNumbers[i];
302  Form_pg_attribute to = TupleDescAttr(indexTupDesc, i);
303  HeapTuple tuple;
304  Form_pg_type typeTup;
305  Form_pg_opclass opclassTup;
306  Oid keyType;
307 
309  to->attnum = i + 1;
310  to->attstattarget = -1;
311  to->attcacheoff = -1;
312  to->attislocal = true;
313  to->attcollation = (i < numkeyatts) ?
314  collationObjectId[i] : InvalidOid;
315 
316  /*
317  * Set the attribute name as specified by caller.
318  */
319  if (colnames_item == NULL) /* shouldn't happen */
320  elog(ERROR, "too few entries in colnames list");
321  namestrcpy(&to->attname, (const char *) lfirst(colnames_item));
322  colnames_item = lnext(indexColNames, colnames_item);
323 
324  /*
325  * For simple index columns, we copy some pg_attribute fields from the
326  * parent relation. For expressions we have to look at the expression
327  * result.
328  */
329  if (atnum != 0)
330  {
331  /* Simple index column */
332  const FormData_pg_attribute *from;
333 
334  Assert(atnum > 0); /* should've been caught above */
335 
336  if (atnum > natts) /* safety check */
337  elog(ERROR, "invalid column number %d", atnum);
338  from = TupleDescAttr(heapTupDesc,
339  AttrNumberGetAttrOffset(atnum));
340 
341  to->atttypid = from->atttypid;
342  to->attlen = from->attlen;
343  to->attndims = from->attndims;
344  to->atttypmod = from->atttypmod;
345  to->attbyval = from->attbyval;
346  to->attstorage = from->attstorage;
347  to->attalign = from->attalign;
348  }
349  else
350  {
351  /* Expressional index */
352  Node *indexkey;
353 
354  if (indexpr_item == NULL) /* shouldn't happen */
355  elog(ERROR, "too few entries in indexprs list");
356  indexkey = (Node *) lfirst(indexpr_item);
357  indexpr_item = lnext(indexInfo->ii_Expressions, indexpr_item);
358 
359  /*
360  * Lookup the expression type in pg_type for the type length etc.
361  */
362  keyType = exprType(indexkey);
363  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
364  if (!HeapTupleIsValid(tuple))
365  elog(ERROR, "cache lookup failed for type %u", keyType);
366  typeTup = (Form_pg_type) GETSTRUCT(tuple);
367 
368  /*
369  * Assign some of the attributes values. Leave the rest.
370  */
371  to->atttypid = keyType;
372  to->attlen = typeTup->typlen;
373  to->attbyval = typeTup->typbyval;
374  to->attstorage = typeTup->typstorage;
375  to->attalign = typeTup->typalign;
376  to->atttypmod = exprTypmod(indexkey);
377 
378  ReleaseSysCache(tuple);
379 
380  /*
381  * Make sure the expression yields a type that's safe to store in
382  * an index. We need this defense because we have index opclasses
383  * for pseudo-types such as "record", and the actually stored type
384  * had better be safe; eg, a named composite type is okay, an
385  * anonymous record type is not. The test is the same as for
386  * whether a table column is of a safe type (which is why we
387  * needn't check for the non-expression case).
388  */
389  CheckAttributeType(NameStr(to->attname),
390  to->atttypid, to->attcollation,
391  NIL, 0);
392  }
393 
394  /*
395  * We do not yet have the correct relation OID for the index, so just
396  * set it invalid for now. InitializeAttributeOids() will fix it
397  * later.
398  */
399  to->attrelid = InvalidOid;
400 
401  /*
402  * Check the opclass and index AM to see if either provides a keytype
403  * (overriding the attribute type). Opclass (if exists) takes
404  * precedence.
405  */
406  keyType = amroutine->amkeytype;
407 
408  if (i < indexInfo->ii_NumIndexKeyAttrs)
409  {
410  tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(classObjectId[i]));
411  if (!HeapTupleIsValid(tuple))
412  elog(ERROR, "cache lookup failed for opclass %u",
413  classObjectId[i]);
414  opclassTup = (Form_pg_opclass) GETSTRUCT(tuple);
415  if (OidIsValid(opclassTup->opckeytype))
416  keyType = opclassTup->opckeytype;
417 
418  /*
419  * If keytype is specified as ANYELEMENT, and opcintype is
420  * ANYARRAY, then the attribute type must be an array (else it'd
421  * not have matched this opclass); use its element type.
422  *
423  * We could also allow ANYCOMPATIBLE/ANYCOMPATIBLEARRAY here, but
424  * there seems no need to do so; there's no reason to declare an
425  * opclass as taking ANYCOMPATIBLEARRAY rather than ANYARRAY.
426  */
427  if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID)
428  {
429  keyType = get_base_element_type(to->atttypid);
430  if (!OidIsValid(keyType))
431  elog(ERROR, "could not get element type of array type %u",
432  to->atttypid);
433  }
434 
435  ReleaseSysCache(tuple);
436  }
437 
438  /*
439  * If a key type different from the heap value is specified, update
440  * the type-related fields in the index tupdesc.
441  */
442  if (OidIsValid(keyType) && keyType != to->atttypid)
443  {
444  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
445  if (!HeapTupleIsValid(tuple))
446  elog(ERROR, "cache lookup failed for type %u", keyType);
447  typeTup = (Form_pg_type) GETSTRUCT(tuple);
448 
449  to->atttypid = keyType;
450  to->atttypmod = -1;
451  to->attlen = typeTup->typlen;
452  to->attbyval = typeTup->typbyval;
453  to->attalign = typeTup->typalign;
454  to->attstorage = typeTup->typstorage;
455 
456  ReleaseSysCache(tuple);
457  }
458  }
459 
460  pfree(amroutine);
461 
462  return indexTupDesc;
463 }
464 
465 /* ----------------------------------------------------------------
466  * InitializeAttributeOids
467  * ----------------------------------------------------------------
468  */
469 static void
471  int numatts,
472  Oid indexoid)
473 {
474  TupleDesc tupleDescriptor;
475  int i;
476 
477  tupleDescriptor = RelationGetDescr(indexRelation);
478 
479  for (i = 0; i < numatts; i += 1)
480  TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid;
481 }
482 
483 /* ----------------------------------------------------------------
484  * AppendAttributeTuples
485  * ----------------------------------------------------------------
486  */
487 static void
488 AppendAttributeTuples(Relation indexRelation, Datum *attopts)
489 {
490  Relation pg_attribute;
491  CatalogIndexState indstate;
492  TupleDesc indexTupDesc;
493 
494  /*
495  * open the attribute relation and its indexes
496  */
497  pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
498 
499  indstate = CatalogOpenIndexes(pg_attribute);
500 
501  /*
502  * insert data from new index's tupdesc into pg_attribute
503  */
504  indexTupDesc = RelationGetDescr(indexRelation);
505 
506  InsertPgAttributeTuples(pg_attribute, indexTupDesc, InvalidOid, attopts, indstate);
507 
508  CatalogCloseIndexes(indstate);
509 
510  table_close(pg_attribute, RowExclusiveLock);
511 }
512 
513 /* ----------------------------------------------------------------
514  * UpdateIndexRelation
515  *
516  * Construct and insert a new entry in the pg_index catalog
517  * ----------------------------------------------------------------
518  */
519 static void
521  Oid heapoid,
522  Oid parentIndexId,
523  IndexInfo *indexInfo,
524  Oid *collationOids,
525  Oid *classOids,
526  int16 *coloptions,
527  bool primary,
528  bool isexclusion,
529  bool immediate,
530  bool isvalid,
531  bool isready)
532 {
533  int2vector *indkey;
534  oidvector *indcollation;
535  oidvector *indclass;
536  int2vector *indoption;
537  Datum exprsDatum;
538  Datum predDatum;
539  Datum values[Natts_pg_index];
540  bool nulls[Natts_pg_index];
541  Relation pg_index;
542  HeapTuple tuple;
543  int i;
544 
545  /*
546  * Copy the index key, opclass, and indoption info into arrays (should we
547  * make the caller pass them like this to start with?)
548  */
549  indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs);
550  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
551  indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i];
552  indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs);
553  indclass = buildoidvector(classOids, indexInfo->ii_NumIndexKeyAttrs);
554  indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs);
555 
556  /*
557  * Convert the index expressions (if any) to a text datum
558  */
559  if (indexInfo->ii_Expressions != NIL)
560  {
561  char *exprsString;
562 
563  exprsString = nodeToString(indexInfo->ii_Expressions);
564  exprsDatum = CStringGetTextDatum(exprsString);
565  pfree(exprsString);
566  }
567  else
568  exprsDatum = (Datum) 0;
569 
570  /*
571  * Convert the index predicate (if any) to a text datum. Note we convert
572  * implicit-AND format to normal explicit-AND for storage.
573  */
574  if (indexInfo->ii_Predicate != NIL)
575  {
576  char *predString;
577 
578  predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate));
579  predDatum = CStringGetTextDatum(predString);
580  pfree(predString);
581  }
582  else
583  predDatum = (Datum) 0;
584 
585 
586  /*
587  * open the system catalog index relation
588  */
589  pg_index = table_open(IndexRelationId, RowExclusiveLock);
590 
591  /*
592  * Build a pg_index tuple
593  */
594  MemSet(nulls, false, sizeof(nulls));
595 
596  values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid);
597  values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid);
598  values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs);
599  values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs);
600  values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique);
601  values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary);
602  values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion);
603  values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate);
604  values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false);
605  values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid);
606  values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false);
607  values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready);
608  values[Anum_pg_index_indislive - 1] = BoolGetDatum(true);
609  values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false);
610  values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey);
611  values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation);
612  values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass);
613  values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption);
614  values[Anum_pg_index_indexprs - 1] = exprsDatum;
615  if (exprsDatum == (Datum) 0)
616  nulls[Anum_pg_index_indexprs - 1] = true;
617  values[Anum_pg_index_indpred - 1] = predDatum;
618  if (predDatum == (Datum) 0)
619  nulls[Anum_pg_index_indpred - 1] = true;
620 
621  tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls);
622 
623  /*
624  * insert the tuple into the pg_index catalog
625  */
626  CatalogTupleInsert(pg_index, tuple);
627 
628  /*
629  * close the relation and free the tuple
630  */
631  table_close(pg_index, RowExclusiveLock);
632  heap_freetuple(tuple);
633 }
634 
635 
636 /*
637  * index_create
638  *
639  * heapRelation: table to build index on (suitably locked by caller)
640  * indexRelationName: what it say
641  * indexRelationId: normally, pass InvalidOid to let this routine
642  * generate an OID for the index. During bootstrap this may be
643  * nonzero to specify a preselected OID.
644  * parentIndexRelid: if creating an index partition, the OID of the
645  * parent index; otherwise InvalidOid.
646  * parentConstraintId: if creating a constraint on a partition, the OID
647  * of the constraint in the parent; otherwise InvalidOid.
648  * relFileNode: normally, pass InvalidOid to get new storage. May be
649  * nonzero to attach an existing valid build.
650  * indexInfo: same info executor uses to insert into the index
651  * indexColNames: column names to use for index (List of char *)
652  * accessMethodObjectId: OID of index AM to use
653  * tableSpaceId: OID of tablespace to use
654  * collationObjectId: array of collation OIDs, one per index column
655  * classObjectId: array of index opclass OIDs, one per index column
656  * coloptions: array of per-index-column indoption settings
657  * reloptions: AM-specific options
658  * flags: bitmask that can include any combination of these bits:
659  * INDEX_CREATE_IS_PRIMARY
660  * the index is a primary key
661  * INDEX_CREATE_ADD_CONSTRAINT:
662  * invoke index_constraint_create also
663  * INDEX_CREATE_SKIP_BUILD:
664  * skip the index_build() step for the moment; caller must do it
665  * later (typically via reindex_index())
666  * INDEX_CREATE_CONCURRENT:
667  * do not lock the table against writers. The index will be
668  * marked "invalid" and the caller must take additional steps
669  * to fix it up.
670  * INDEX_CREATE_IF_NOT_EXISTS:
671  * do not throw an error if a relation with the same name
672  * already exists.
673  * INDEX_CREATE_PARTITIONED:
674  * create a partitioned index (table must be partitioned)
675  * constr_flags: flags passed to index_constraint_create
676  * (only if INDEX_CREATE_ADD_CONSTRAINT is set)
677  * allow_system_table_mods: allow table to be a system catalog
678  * is_internal: if true, post creation hook for new index
679  * constraintId: if not NULL, receives OID of created constraint
680  *
681  * Returns the OID of the created index.
682  */
683 Oid
684 index_create(Relation heapRelation,
685  const char *indexRelationName,
686  Oid indexRelationId,
687  Oid parentIndexRelid,
688  Oid parentConstraintId,
689  Oid relFileNode,
690  IndexInfo *indexInfo,
691  List *indexColNames,
692  Oid accessMethodObjectId,
693  Oid tableSpaceId,
694  Oid *collationObjectId,
695  Oid *classObjectId,
696  int16 *coloptions,
697  Datum reloptions,
698  bits16 flags,
699  bits16 constr_flags,
700  bool allow_system_table_mods,
701  bool is_internal,
702  Oid *constraintId)
703 {
704  Oid heapRelationId = RelationGetRelid(heapRelation);
705  Relation pg_class;
706  Relation indexRelation;
707  TupleDesc indexTupDesc;
708  bool shared_relation;
709  bool mapped_relation;
710  bool is_exclusion;
711  Oid namespaceId;
712  int i;
713  char relpersistence;
714  bool isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0;
715  bool invalid = (flags & INDEX_CREATE_INVALID) != 0;
716  bool concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0;
717  bool partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0;
718  char relkind;
719  TransactionId relfrozenxid;
720  MultiXactId relminmxid;
721 
722  /* constraint flags can only be set when a constraint is requested */
723  Assert((constr_flags == 0) ||
724  ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0));
725  /* partitioned indexes must never be "built" by themselves */
726  Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD));
727 
728  relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX;
729  is_exclusion = (indexInfo->ii_ExclusionOps != NULL);
730 
731  pg_class = table_open(RelationRelationId, RowExclusiveLock);
732 
733  /*
734  * The index will be in the same namespace as its parent table, and is
735  * shared across databases if and only if the parent is. Likewise, it
736  * will use the relfilenode map if and only if the parent does; and it
737  * inherits the parent's relpersistence.
738  */
739  namespaceId = RelationGetNamespace(heapRelation);
740  shared_relation = heapRelation->rd_rel->relisshared;
741  mapped_relation = RelationIsMapped(heapRelation);
742  relpersistence = heapRelation->rd_rel->relpersistence;
743 
744  /*
745  * check parameters
746  */
747  if (indexInfo->ii_NumIndexAttrs < 1)
748  elog(ERROR, "must index at least one column");
749 
750  if (!allow_system_table_mods &&
751  IsSystemRelation(heapRelation) &&
753  ereport(ERROR,
754  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
755  errmsg("user-defined indexes on system catalog tables are not supported")));
756 
757  /*
758  * Btree text_pattern_ops uses text_eq as the equality operator, which is
759  * fine as long as the collation is deterministic; text_eq then reduces to
760  * bitwise equality and so it is semantically compatible with the other
761  * operators and functions in that opclass. But with a nondeterministic
762  * collation, text_eq could yield results that are incompatible with the
763  * actual behavior of the index (which is determined by the opclass's
764  * comparison function). We prevent such problems by refusing creation of
765  * an index with that opclass and a nondeterministic collation.
766  *
767  * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we
768  * find more cases, we might decide to create a real mechanism for marking
769  * opclasses as incompatible with nondeterminism; but for now, this small
770  * hack suffices.
771  *
772  * Another solution is to use a special operator, not text_eq, as the
773  * equality opclass member; but that is undesirable because it would
774  * prevent index usage in many queries that work fine today.
775  */
776  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
777  {
778  Oid collation = collationObjectId[i];
779  Oid opclass = classObjectId[i];
780 
781  if (collation)
782  {
783  if ((opclass == TEXT_BTREE_PATTERN_OPS_OID ||
784  opclass == VARCHAR_BTREE_PATTERN_OPS_OID ||
785  opclass == BPCHAR_BTREE_PATTERN_OPS_OID) &&
786  !get_collation_isdeterministic(collation))
787  {
788  HeapTuple classtup;
789 
790  classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass));
791  if (!HeapTupleIsValid(classtup))
792  elog(ERROR, "cache lookup failed for operator class %u", opclass);
793  ereport(ERROR,
794  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
795  errmsg("nondeterministic collations are not supported for operator class \"%s\"",
796  NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname))));
797  ReleaseSysCache(classtup);
798  }
799  }
800  }
801 
802  /*
803  * Concurrent index build on a system catalog is unsafe because we tend to
804  * release locks before committing in catalogs.
805  */
806  if (concurrent &&
807  IsCatalogRelation(heapRelation))
808  ereport(ERROR,
809  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
810  errmsg("concurrent index creation on system catalog tables is not supported")));
811 
812  /*
813  * This case is currently not supported. There's no way to ask for it in
814  * the grammar with CREATE INDEX, but it can happen with REINDEX.
815  */
816  if (concurrent && is_exclusion)
817  ereport(ERROR,
818  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
819  errmsg("concurrent index creation for exclusion constraints is not supported")));
820 
821  /*
822  * We cannot allow indexing a shared relation after initdb (because
823  * there's no way to make the entry in other databases' pg_class).
824  */
825  if (shared_relation && !IsBootstrapProcessingMode())
826  ereport(ERROR,
827  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
828  errmsg("shared indexes cannot be created after initdb")));
829 
830  /*
831  * Shared relations must be in pg_global, too (last-ditch check)
832  */
833  if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID)
834  elog(ERROR, "shared relations must be placed in pg_global tablespace");
835 
836  /*
837  * Check for duplicate name (both as to the index, and as to the
838  * associated constraint if any). Such cases would fail on the relevant
839  * catalogs' unique indexes anyway, but we prefer to give a friendlier
840  * error message.
841  */
842  if (get_relname_relid(indexRelationName, namespaceId))
843  {
844  if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0)
845  {
846  ereport(NOTICE,
847  (errcode(ERRCODE_DUPLICATE_TABLE),
848  errmsg("relation \"%s\" already exists, skipping",
849  indexRelationName)));
850  table_close(pg_class, RowExclusiveLock);
851  return InvalidOid;
852  }
853 
854  ereport(ERROR,
855  (errcode(ERRCODE_DUPLICATE_TABLE),
856  errmsg("relation \"%s\" already exists",
857  indexRelationName)));
858  }
859 
860  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 &&
862  indexRelationName))
863  {
864  /*
865  * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the
866  * conflicting constraint is not an index.
867  */
868  ereport(ERROR,
870  errmsg("constraint \"%s\" for relation \"%s\" already exists",
871  indexRelationName, RelationGetRelationName(heapRelation))));
872  }
873 
874  /*
875  * construct tuple descriptor for index tuples
876  */
877  indexTupDesc = ConstructTupleDescriptor(heapRelation,
878  indexInfo,
879  indexColNames,
880  accessMethodObjectId,
881  collationObjectId,
882  classObjectId);
883 
884  /*
885  * Allocate an OID for the index, unless we were told what to use.
886  *
887  * The OID will be the relfilenode as well, so make sure it doesn't
888  * collide with either pg_class OIDs or existing physical files.
889  */
890  if (!OidIsValid(indexRelationId))
891  {
892  /* Use binary-upgrade override for pg_class.oid/relfilenode? */
893  if (IsBinaryUpgrade)
894  {
896  ereport(ERROR,
897  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
898  errmsg("pg_class index OID value not set when in binary upgrade mode")));
899 
900  indexRelationId = binary_upgrade_next_index_pg_class_oid;
902  }
903  else
904  {
905  indexRelationId =
906  GetNewRelFileNode(tableSpaceId, pg_class, relpersistence);
907  }
908  }
909 
910  /*
911  * create the index relation's relcache entry and, if necessary, the
912  * physical disk file. (If we fail further down, it's the smgr's
913  * responsibility to remove the disk file again, if any.)
914  */
915  indexRelation = heap_create(indexRelationName,
916  namespaceId,
917  tableSpaceId,
918  indexRelationId,
919  relFileNode,
920  accessMethodObjectId,
921  indexTupDesc,
922  relkind,
923  relpersistence,
924  shared_relation,
925  mapped_relation,
926  allow_system_table_mods,
927  &relfrozenxid,
928  &relminmxid);
929 
930  Assert(relfrozenxid == InvalidTransactionId);
931  Assert(relminmxid == InvalidMultiXactId);
932  Assert(indexRelationId == RelationGetRelid(indexRelation));
933 
934  /*
935  * Obtain exclusive lock on it. Although no other transactions can see it
936  * until we commit, this prevents deadlock-risk complaints from lock
937  * manager in cases such as CLUSTER.
938  */
939  LockRelation(indexRelation, AccessExclusiveLock);
940 
941  /*
942  * Fill in fields of the index's pg_class entry that are not set correctly
943  * by heap_create.
944  *
945  * XXX should have a cleaner way to create cataloged indexes
946  */
947  indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner;
948  indexRelation->rd_rel->relam = accessMethodObjectId;
949  indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid);
950 
951  /*
952  * store index's pg_class entry
953  */
954  InsertPgClassTuple(pg_class, indexRelation,
955  RelationGetRelid(indexRelation),
956  (Datum) 0,
957  reloptions);
958 
959  /* done with pg_class */
960  table_close(pg_class, RowExclusiveLock);
961 
962  /*
963  * now update the object id's of all the attribute tuple forms in the
964  * index relation's tuple descriptor
965  */
966  InitializeAttributeOids(indexRelation,
967  indexInfo->ii_NumIndexAttrs,
968  indexRelationId);
969 
970  /*
971  * append ATTRIBUTE tuples for the index
972  */
973  AppendAttributeTuples(indexRelation, indexInfo->ii_OpclassOptions);
974 
975  /* ----------------
976  * update pg_index
977  * (append INDEX tuple)
978  *
979  * Note that this stows away a representation of "predicate".
980  * (Or, could define a rule to maintain the predicate) --Nels, Feb '92
981  * ----------------
982  */
983  UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid,
984  indexInfo,
985  collationObjectId, classObjectId, coloptions,
986  isprimary, is_exclusion,
987  (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0,
988  !concurrent && !invalid,
989  !concurrent);
990 
991  /*
992  * Register relcache invalidation on the indexes' heap relation, to
993  * maintain consistency of its index list
994  */
995  CacheInvalidateRelcache(heapRelation);
996 
997  /* update pg_inherits and the parent's relhassubclass, if needed */
998  if (OidIsValid(parentIndexRelid))
999  {
1000  StoreSingleInheritance(indexRelationId, parentIndexRelid, 1);
1001  SetRelationHasSubclass(parentIndexRelid, true);
1002  }
1003 
1004  /*
1005  * Register constraint and dependencies for the index.
1006  *
1007  * If the index is from a CONSTRAINT clause, construct a pg_constraint
1008  * entry. The index will be linked to the constraint, which in turn is
1009  * linked to the table. If it's not a CONSTRAINT, we need to make a
1010  * dependency directly on the table.
1011  *
1012  * We don't need a dependency on the namespace, because there'll be an
1013  * indirect dependency via our parent table.
1014  *
1015  * During bootstrap we can't register any dependencies, and we don't try
1016  * to make a constraint either.
1017  */
1019  {
1020  ObjectAddress myself,
1021  referenced;
1022  ObjectAddresses *addrs;
1023 
1024  ObjectAddressSet(myself, RelationRelationId, indexRelationId);
1025 
1026  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)
1027  {
1028  char constraintType;
1029  ObjectAddress localaddr;
1030 
1031  if (isprimary)
1032  constraintType = CONSTRAINT_PRIMARY;
1033  else if (indexInfo->ii_Unique)
1034  constraintType = CONSTRAINT_UNIQUE;
1035  else if (is_exclusion)
1036  constraintType = CONSTRAINT_EXCLUSION;
1037  else
1038  {
1039  elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
1040  constraintType = 0; /* keep compiler quiet */
1041  }
1042 
1043  localaddr = index_constraint_create(heapRelation,
1044  indexRelationId,
1045  parentConstraintId,
1046  indexInfo,
1047  indexRelationName,
1048  constraintType,
1049  constr_flags,
1050  allow_system_table_mods,
1051  is_internal);
1052  if (constraintId)
1053  *constraintId = localaddr.objectId;
1054  }
1055  else
1056  {
1057  bool have_simple_col = false;
1058 
1059  addrs = new_object_addresses();
1060 
1061  /* Create auto dependencies on simply-referenced columns */
1062  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
1063  {
1064  if (indexInfo->ii_IndexAttrNumbers[i] != 0)
1065  {
1066  ObjectAddressSubSet(referenced, RelationRelationId,
1067  heapRelationId,
1068  indexInfo->ii_IndexAttrNumbers[i]);
1069  add_exact_object_address(&referenced, addrs);
1070  have_simple_col = true;
1071  }
1072  }
1073 
1074  /*
1075  * If there are no simply-referenced columns, give the index an
1076  * auto dependency on the whole table. In most cases, this will
1077  * be redundant, but it might not be if the index expressions and
1078  * predicate contain no Vars or only whole-row Vars.
1079  */
1080  if (!have_simple_col)
1081  {
1082  ObjectAddressSet(referenced, RelationRelationId,
1083  heapRelationId);
1084  add_exact_object_address(&referenced, addrs);
1085  }
1086 
1088  free_object_addresses(addrs);
1089  }
1090 
1091  /*
1092  * If this is an index partition, create partition dependencies on
1093  * both the parent index and the table. (Note: these must be *in
1094  * addition to*, not instead of, all other dependencies. Otherwise
1095  * we'll be short some dependencies after DETACH PARTITION.)
1096  */
1097  if (OidIsValid(parentIndexRelid))
1098  {
1099  ObjectAddressSet(referenced, RelationRelationId, parentIndexRelid);
1100  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1101 
1102  ObjectAddressSet(referenced, RelationRelationId, heapRelationId);
1103  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1104  }
1105 
1106  /* placeholder for normal dependencies */
1107  addrs = new_object_addresses();
1108 
1109  /* Store dependency on collations */
1110 
1111  /* The default collation is pinned, so don't bother recording it */
1112  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1113  {
1114  if (OidIsValid(collationObjectId[i]) &&
1115  collationObjectId[i] != DEFAULT_COLLATION_OID)
1116  {
1117  ObjectAddressSet(referenced, CollationRelationId,
1118  collationObjectId[i]);
1119  add_exact_object_address(&referenced, addrs);
1120  }
1121  }
1122 
1123  /* Store dependency on operator classes */
1124  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1125  {
1126  ObjectAddressSet(referenced, OperatorClassRelationId, classObjectId[i]);
1127  add_exact_object_address(&referenced, addrs);
1128  }
1129 
1131  free_object_addresses(addrs);
1132 
1133  /* Store dependencies on anything mentioned in index expressions */
1134  if (indexInfo->ii_Expressions)
1135  {
1137  (Node *) indexInfo->ii_Expressions,
1138  heapRelationId,
1140  DEPENDENCY_AUTO, false);
1141  }
1142 
1143  /* Store dependencies on anything mentioned in predicate */
1144  if (indexInfo->ii_Predicate)
1145  {
1147  (Node *) indexInfo->ii_Predicate,
1148  heapRelationId,
1150  DEPENDENCY_AUTO, false);
1151  }
1152  }
1153  else
1154  {
1155  /* Bootstrap mode - assert we weren't asked for constraint support */
1156  Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0);
1157  }
1158 
1159  /* Post creation hook for new index */
1160  InvokeObjectPostCreateHookArg(RelationRelationId,
1161  indexRelationId, 0, is_internal);
1162 
1163  /*
1164  * Advance the command counter so that we can see the newly-entered
1165  * catalog tuples for the index.
1166  */
1168 
1169  /*
1170  * In bootstrap mode, we have to fill in the index strategy structure with
1171  * information from the catalogs. If we aren't bootstrapping, then the
1172  * relcache entry has already been rebuilt thanks to sinval update during
1173  * CommandCounterIncrement.
1174  */
1176  RelationInitIndexAccessInfo(indexRelation);
1177  else
1178  Assert(indexRelation->rd_indexcxt != NULL);
1179 
1180  indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs;
1181 
1182  /* Validate opclass-specific options */
1183  if (indexInfo->ii_OpclassOptions)
1184  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1185  (void) index_opclass_options(indexRelation, i + 1,
1186  indexInfo->ii_OpclassOptions[i],
1187  true);
1188 
1189  /*
1190  * If this is bootstrap (initdb) time, then we don't actually fill in the
1191  * index yet. We'll be creating more indexes and classes later, so we
1192  * delay filling them in until just before we're done with bootstrapping.
1193  * Similarly, if the caller specified to skip the build then filling the
1194  * index is delayed till later (ALTER TABLE can save work in some cases
1195  * with this). Otherwise, we call the AM routine that constructs the
1196  * index.
1197  */
1199  {
1200  index_register(heapRelationId, indexRelationId, indexInfo);
1201  }
1202  else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0)
1203  {
1204  /*
1205  * Caller is responsible for filling the index later on. However,
1206  * we'd better make sure that the heap relation is correctly marked as
1207  * having an index.
1208  */
1209  index_update_stats(heapRelation,
1210  true,
1211  -1.0);
1212  /* Make the above update visible */
1214  }
1215  else
1216  {
1217  index_build(heapRelation, indexRelation, indexInfo, false, true);
1218  }
1219 
1220  /*
1221  * Close the index; but we keep the lock that we acquired above until end
1222  * of transaction. Closing the heap is caller's responsibility.
1223  */
1224  index_close(indexRelation, NoLock);
1225 
1226  return indexRelationId;
1227 }
1228 
1229 /*
1230  * index_concurrently_create_copy
1231  *
1232  * Create concurrently an index based on the definition of the one provided by
1233  * caller. The index is inserted into catalogs and needs to be built later
1234  * on. This is called during concurrent reindex processing.
1235  */
1236 Oid
1237 index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, const char *newName)
1238 {
1239  Relation indexRelation;
1240  IndexInfo *oldInfo,
1241  *newInfo;
1242  Oid newIndexId = InvalidOid;
1243  HeapTuple indexTuple,
1244  classTuple;
1245  Datum indclassDatum,
1246  colOptionDatum,
1247  optionDatum;
1248  oidvector *indclass;
1249  int2vector *indcoloptions;
1250  bool isnull;
1251  List *indexColNames = NIL;
1252  List *indexExprs = NIL;
1253  List *indexPreds = NIL;
1254 
1255  indexRelation = index_open(oldIndexId, RowExclusiveLock);
1256 
1257  /* The new index needs some information from the old index */
1258  oldInfo = BuildIndexInfo(indexRelation);
1259 
1260  /*
1261  * Concurrent build of an index with exclusion constraints is not
1262  * supported.
1263  */
1264  if (oldInfo->ii_ExclusionOps != NULL)
1265  ereport(ERROR,
1266  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1267  errmsg("concurrent index creation for exclusion constraints is not supported")));
1268 
1269  /* Get the array of class and column options IDs from index info */
1270  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId));
1271  if (!HeapTupleIsValid(indexTuple))
1272  elog(ERROR, "cache lookup failed for index %u", oldIndexId);
1273  indclassDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1274  Anum_pg_index_indclass, &isnull);
1275  Assert(!isnull);
1276  indclass = (oidvector *) DatumGetPointer(indclassDatum);
1277 
1278  colOptionDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1279  Anum_pg_index_indoption, &isnull);
1280  Assert(!isnull);
1281  indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum);
1282 
1283  /* Fetch options of index if any */
1284  classTuple = SearchSysCache1(RELOID, oldIndexId);
1285  if (!HeapTupleIsValid(classTuple))
1286  elog(ERROR, "cache lookup failed for relation %u", oldIndexId);
1287  optionDatum = SysCacheGetAttr(RELOID, classTuple,
1288  Anum_pg_class_reloptions, &isnull);
1289 
1290  /*
1291  * Fetch the list of expressions and predicates directly from the
1292  * catalogs. This cannot rely on the information from IndexInfo of the
1293  * old index as these have been flattened for the planner.
1294  */
1295  if (oldInfo->ii_Expressions != NIL)
1296  {
1297  Datum exprDatum;
1298  char *exprString;
1299 
1300  exprDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1301  Anum_pg_index_indexprs, &isnull);
1302  Assert(!isnull);
1303  exprString = TextDatumGetCString(exprDatum);
1304  indexExprs = (List *) stringToNode(exprString);
1305  pfree(exprString);
1306  }
1307  if (oldInfo->ii_Predicate != NIL)
1308  {
1309  Datum predDatum;
1310  char *predString;
1311 
1312  predDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1313  Anum_pg_index_indpred, &isnull);
1314  Assert(!isnull);
1315  predString = TextDatumGetCString(predDatum);
1316  indexPreds = (List *) stringToNode(predString);
1317 
1318  /* Also convert to implicit-AND format */
1319  indexPreds = make_ands_implicit((Expr *) indexPreds);
1320  pfree(predString);
1321  }
1322 
1323  /*
1324  * Build the index information for the new index. Note that rebuild of
1325  * indexes with exclusion constraints is not supported, hence there is no
1326  * need to fill all the ii_Exclusion* fields.
1327  */
1328  newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs,
1329  oldInfo->ii_NumIndexKeyAttrs,
1330  oldInfo->ii_Am,
1331  indexExprs,
1332  indexPreds,
1333  oldInfo->ii_Unique,
1334  false, /* not ready for inserts */
1335  true);
1336 
1337  /*
1338  * Extract the list of column names and the column numbers for the new
1339  * index information. All this information will be used for the index
1340  * creation.
1341  */
1342  for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++)
1343  {
1344  TupleDesc indexTupDesc = RelationGetDescr(indexRelation);
1345  Form_pg_attribute att = TupleDescAttr(indexTupDesc, i);
1346 
1347  indexColNames = lappend(indexColNames, NameStr(att->attname));
1348  newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i];
1349  }
1350 
1351  /*
1352  * Now create the new index.
1353  *
1354  * For a partition index, we adjust the partition dependency later, to
1355  * ensure a consistent state at all times. That is why parentIndexRelid
1356  * is not set here.
1357  */
1358  newIndexId = index_create(heapRelation,
1359  newName,
1360  InvalidOid, /* indexRelationId */
1361  InvalidOid, /* parentIndexRelid */
1362  InvalidOid, /* parentConstraintId */
1363  InvalidOid, /* relFileNode */
1364  newInfo,
1365  indexColNames,
1366  indexRelation->rd_rel->relam,
1367  indexRelation->rd_rel->reltablespace,
1368  indexRelation->rd_indcollation,
1369  indclass->values,
1370  indcoloptions->values,
1371  optionDatum,
1373  0,
1374  true, /* allow table to be a system catalog? */
1375  false, /* is_internal? */
1376  NULL);
1377 
1378  /* Close the relations used and clean up */
1379  index_close(indexRelation, NoLock);
1380  ReleaseSysCache(indexTuple);
1381  ReleaseSysCache(classTuple);
1382 
1383  return newIndexId;
1384 }
1385 
1386 /*
1387  * index_concurrently_build
1388  *
1389  * Build index for a concurrent operation. Low-level locks are taken when
1390  * this operation is performed to prevent only schema changes, but they need
1391  * to be kept until the end of the transaction performing this operation.
1392  * 'indexOid' refers to an index relation OID already created as part of
1393  * previous processing, and 'heapOid' refers to its parent heap relation.
1394  */
1395 void
1397  Oid indexRelationId)
1398 {
1399  Relation heapRel;
1400  Relation indexRelation;
1401  IndexInfo *indexInfo;
1402 
1403  /* This had better make sure that a snapshot is active */
1405 
1406  /* Open and lock the parent heap relation */
1407  heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock);
1408 
1409  /* And the target index relation */
1410  indexRelation = index_open(indexRelationId, RowExclusiveLock);
1411 
1412  /*
1413  * We have to re-build the IndexInfo struct, since it was lost in the
1414  * commit of the transaction where this concurrent index was created at
1415  * the catalog level.
1416  */
1417  indexInfo = BuildIndexInfo(indexRelation);
1418  Assert(!indexInfo->ii_ReadyForInserts);
1419  indexInfo->ii_Concurrent = true;
1420  indexInfo->ii_BrokenHotChain = false;
1421 
1422  /* Now build the index */
1423  index_build(heapRel, indexRelation, indexInfo, false, true);
1424 
1425  /* Close both the relations, but keep the locks */
1426  table_close(heapRel, NoLock);
1427  index_close(indexRelation, NoLock);
1428 
1429  /*
1430  * Update the pg_index row to mark the index as ready for inserts. Once we
1431  * commit this transaction, any new transactions that open the table must
1432  * insert new entries into the index for insertions and non-HOT updates.
1433  */
1435 }
1436 
1437 /*
1438  * index_concurrently_swap
1439  *
1440  * Swap name, dependencies, and constraints of the old index over to the new
1441  * index, while marking the old index as invalid and the new as valid.
1442  */
1443 void
1444 index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
1445 {
1446  Relation pg_class,
1447  pg_index,
1448  pg_constraint,
1449  pg_trigger;
1450  Relation oldClassRel,
1451  newClassRel;
1452  HeapTuple oldClassTuple,
1453  newClassTuple;
1454  Form_pg_class oldClassForm,
1455  newClassForm;
1456  HeapTuple oldIndexTuple,
1457  newIndexTuple;
1458  Form_pg_index oldIndexForm,
1459  newIndexForm;
1460  bool isPartition;
1461  Oid indexConstraintOid;
1462  List *constraintOids = NIL;
1463  ListCell *lc;
1464 
1465  /*
1466  * Take a necessary lock on the old and new index before swapping them.
1467  */
1468  oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock);
1469  newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock);
1470 
1471  /* Now swap names and dependencies of those indexes */
1472  pg_class = table_open(RelationRelationId, RowExclusiveLock);
1473 
1474  oldClassTuple = SearchSysCacheCopy1(RELOID,
1475  ObjectIdGetDatum(oldIndexId));
1476  if (!HeapTupleIsValid(oldClassTuple))
1477  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1478  newClassTuple = SearchSysCacheCopy1(RELOID,
1479  ObjectIdGetDatum(newIndexId));
1480  if (!HeapTupleIsValid(newClassTuple))
1481  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1482 
1483  oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple);
1484  newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple);
1485 
1486  /* Swap the names */
1487  namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname));
1488  namestrcpy(&oldClassForm->relname, oldName);
1489 
1490  /* Swap the partition flags to track inheritance properly */
1491  isPartition = newClassForm->relispartition;
1492  newClassForm->relispartition = oldClassForm->relispartition;
1493  oldClassForm->relispartition = isPartition;
1494 
1495  CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple);
1496  CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple);
1497 
1498  heap_freetuple(oldClassTuple);
1499  heap_freetuple(newClassTuple);
1500 
1501  /* Now swap index info */
1502  pg_index = table_open(IndexRelationId, RowExclusiveLock);
1503 
1504  oldIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1505  ObjectIdGetDatum(oldIndexId));
1506  if (!HeapTupleIsValid(oldIndexTuple))
1507  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1508  newIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1509  ObjectIdGetDatum(newIndexId));
1510  if (!HeapTupleIsValid(newIndexTuple))
1511  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1512 
1513  oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple);
1514  newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple);
1515 
1516  /*
1517  * Copy constraint flags from the old index. This is safe because the old
1518  * index guaranteed uniqueness.
1519  */
1520  newIndexForm->indisprimary = oldIndexForm->indisprimary;
1521  oldIndexForm->indisprimary = false;
1522  newIndexForm->indisexclusion = oldIndexForm->indisexclusion;
1523  oldIndexForm->indisexclusion = false;
1524  newIndexForm->indimmediate = oldIndexForm->indimmediate;
1525  oldIndexForm->indimmediate = true;
1526 
1527  /* Preserve indisreplident in the new index */
1528  newIndexForm->indisreplident = oldIndexForm->indisreplident;
1529 
1530  /* Preserve indisclustered in the new index */
1531  newIndexForm->indisclustered = oldIndexForm->indisclustered;
1532 
1533  /*
1534  * Mark the new index as valid, and the old index as invalid similarly to
1535  * what index_set_state_flags() does.
1536  */
1537  newIndexForm->indisvalid = true;
1538  oldIndexForm->indisvalid = false;
1539  oldIndexForm->indisclustered = false;
1540  oldIndexForm->indisreplident = false;
1541 
1542  CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple);
1543  CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple);
1544 
1545  heap_freetuple(oldIndexTuple);
1546  heap_freetuple(newIndexTuple);
1547 
1548  /*
1549  * Move constraints and triggers over to the new index
1550  */
1551 
1552  constraintOids = get_index_ref_constraints(oldIndexId);
1553 
1554  indexConstraintOid = get_index_constraint(oldIndexId);
1555 
1556  if (OidIsValid(indexConstraintOid))
1557  constraintOids = lappend_oid(constraintOids, indexConstraintOid);
1558 
1559  pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock);
1560  pg_trigger = table_open(TriggerRelationId, RowExclusiveLock);
1561 
1562  foreach(lc, constraintOids)
1563  {
1564  HeapTuple constraintTuple,
1565  triggerTuple;
1566  Form_pg_constraint conForm;
1567  ScanKeyData key[1];
1568  SysScanDesc scan;
1569  Oid constraintOid = lfirst_oid(lc);
1570 
1571  /* Move the constraint from the old to the new index */
1572  constraintTuple = SearchSysCacheCopy1(CONSTROID,
1573  ObjectIdGetDatum(constraintOid));
1574  if (!HeapTupleIsValid(constraintTuple))
1575  elog(ERROR, "could not find tuple for constraint %u", constraintOid);
1576 
1577  conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple));
1578 
1579  if (conForm->conindid == oldIndexId)
1580  {
1581  conForm->conindid = newIndexId;
1582 
1583  CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple);
1584  }
1585 
1586  heap_freetuple(constraintTuple);
1587 
1588  /* Search for trigger records */
1589  ScanKeyInit(&key[0],
1590  Anum_pg_trigger_tgconstraint,
1591  BTEqualStrategyNumber, F_OIDEQ,
1592  ObjectIdGetDatum(constraintOid));
1593 
1594  scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true,
1595  NULL, 1, key);
1596 
1597  while (HeapTupleIsValid((triggerTuple = systable_getnext(scan))))
1598  {
1599  Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1600 
1601  if (tgForm->tgconstrindid != oldIndexId)
1602  continue;
1603 
1604  /* Make a modifiable copy */
1605  triggerTuple = heap_copytuple(triggerTuple);
1606  tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1607 
1608  tgForm->tgconstrindid = newIndexId;
1609 
1610  CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple);
1611 
1612  heap_freetuple(triggerTuple);
1613  }
1614 
1615  systable_endscan(scan);
1616  }
1617 
1618  /*
1619  * Move comment if any
1620  */
1621  {
1622  Relation description;
1623  ScanKeyData skey[3];
1624  SysScanDesc sd;
1625  HeapTuple tuple;
1626  Datum values[Natts_pg_description] = {0};
1627  bool nulls[Natts_pg_description] = {0};
1628  bool replaces[Natts_pg_description] = {0};
1629 
1630  values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId);
1631  replaces[Anum_pg_description_objoid - 1] = true;
1632 
1633  ScanKeyInit(&skey[0],
1634  Anum_pg_description_objoid,
1635  BTEqualStrategyNumber, F_OIDEQ,
1636  ObjectIdGetDatum(oldIndexId));
1637  ScanKeyInit(&skey[1],
1638  Anum_pg_description_classoid,
1639  BTEqualStrategyNumber, F_OIDEQ,
1640  ObjectIdGetDatum(RelationRelationId));
1641  ScanKeyInit(&skey[2],
1642  Anum_pg_description_objsubid,
1643  BTEqualStrategyNumber, F_INT4EQ,
1644  Int32GetDatum(0));
1645 
1646  description = table_open(DescriptionRelationId, RowExclusiveLock);
1647 
1648  sd = systable_beginscan(description, DescriptionObjIndexId, true,
1649  NULL, 3, skey);
1650 
1651  while ((tuple = systable_getnext(sd)) != NULL)
1652  {
1653  tuple = heap_modify_tuple(tuple, RelationGetDescr(description),
1654  values, nulls, replaces);
1655  CatalogTupleUpdate(description, &tuple->t_self, tuple);
1656 
1657  break; /* Assume there can be only one match */
1658  }
1659 
1660  systable_endscan(sd);
1661  table_close(description, NoLock);
1662  }
1663 
1664  /*
1665  * Swap inheritance relationship with parent index
1666  */
1667  if (get_rel_relispartition(oldIndexId))
1668  {
1669  List *ancestors = get_partition_ancestors(oldIndexId);
1670  Oid parentIndexRelid = linitial_oid(ancestors);
1671 
1672  DeleteInheritsTuple(oldIndexId, parentIndexRelid);
1673  StoreSingleInheritance(newIndexId, parentIndexRelid, 1);
1674 
1675  list_free(ancestors);
1676  }
1677 
1678  /*
1679  * Swap all dependencies of and on the old index to the new one, and
1680  * vice-versa. Note that a call to CommandCounterIncrement() would cause
1681  * duplicate entries in pg_depend, so this should not be done.
1682  */
1683  changeDependenciesOf(RelationRelationId, newIndexId, oldIndexId);
1684  changeDependenciesOn(RelationRelationId, newIndexId, oldIndexId);
1685 
1686  changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId);
1687  changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId);
1688 
1689  /*
1690  * Copy over statistics from old to new index
1691  */
1692  {
1693  PgStat_StatTabEntry *tabentry;
1694 
1695  tabentry = pgstat_fetch_stat_tabentry(oldIndexId);
1696  if (tabentry)
1697  {
1698  if (newClassRel->pgstat_info)
1699  {
1700  newClassRel->pgstat_info->t_counts.t_numscans = tabentry->numscans;
1701  newClassRel->pgstat_info->t_counts.t_tuples_returned = tabentry->tuples_returned;
1702  newClassRel->pgstat_info->t_counts.t_tuples_fetched = tabentry->tuples_fetched;
1703  newClassRel->pgstat_info->t_counts.t_blocks_fetched = tabentry->blocks_fetched;
1704  newClassRel->pgstat_info->t_counts.t_blocks_hit = tabentry->blocks_hit;
1705 
1706  /*
1707  * The data will be sent by the next pgstat_report_stat()
1708  * call.
1709  */
1710  }
1711  }
1712  }
1713 
1714  /* Close relations */
1715  table_close(pg_class, RowExclusiveLock);
1716  table_close(pg_index, RowExclusiveLock);
1717  table_close(pg_constraint, RowExclusiveLock);
1718  table_close(pg_trigger, RowExclusiveLock);
1719 
1720  /* The lock taken previously is not released until the end of transaction */
1721  relation_close(oldClassRel, NoLock);
1722  relation_close(newClassRel, NoLock);
1723 }
1724 
1725 /*
1726  * index_concurrently_set_dead
1727  *
1728  * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX
1729  * CONCURRENTLY before actually dropping the index. After calling this
1730  * function, the index is seen by all the backends as dead. Low-level locks
1731  * taken here are kept until the end of the transaction calling this function.
1732  */
1733 void
1735 {
1736  Relation userHeapRelation;
1737  Relation userIndexRelation;
1738 
1739  /*
1740  * No more predicate locks will be acquired on this index, and we're about
1741  * to stop doing inserts into the index which could show conflicts with
1742  * existing predicate locks, so now is the time to move them to the heap
1743  * relation.
1744  */
1745  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
1746  userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock);
1747  TransferPredicateLocksToHeapRelation(userIndexRelation);
1748 
1749  /*
1750  * Now we are sure that nobody uses the index for queries; they just might
1751  * have it open for updating it. So now we can unset indisready and
1752  * indislive, then wait till nobody could be using it at all anymore.
1753  */
1755 
1756  /*
1757  * Invalidate the relcache for the table, so that after this commit all
1758  * sessions will refresh the table's index list. Forgetting just the
1759  * index's relcache entry is not enough.
1760  */
1761  CacheInvalidateRelcache(userHeapRelation);
1762 
1763  /*
1764  * Close the relations again, though still holding session lock.
1765  */
1766  table_close(userHeapRelation, NoLock);
1767  index_close(userIndexRelation, NoLock);
1768 }
1769 
1770 /*
1771  * index_constraint_create
1772  *
1773  * Set up a constraint associated with an index. Return the new constraint's
1774  * address.
1775  *
1776  * heapRelation: table owning the index (must be suitably locked by caller)
1777  * indexRelationId: OID of the index
1778  * parentConstraintId: if constraint is on a partition, the OID of the
1779  * constraint in the parent.
1780  * indexInfo: same info executor uses to insert into the index
1781  * constraintName: what it say (generally, should match name of index)
1782  * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or
1783  * CONSTRAINT_EXCLUSION
1784  * flags: bitmask that can include any combination of these bits:
1785  * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY
1786  * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE
1787  * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED
1788  * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row
1789  * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies
1790  * of index on table's columns
1791  * allow_system_table_mods: allow table to be a system catalog
1792  * is_internal: index is constructed due to internal process
1793  */
1796  Oid indexRelationId,
1797  Oid parentConstraintId,
1798  IndexInfo *indexInfo,
1799  const char *constraintName,
1800  char constraintType,
1801  bits16 constr_flags,
1802  bool allow_system_table_mods,
1803  bool is_internal)
1804 {
1805  Oid namespaceId = RelationGetNamespace(heapRelation);
1806  ObjectAddress myself,
1807  idxaddr;
1808  Oid conOid;
1809  bool deferrable;
1810  bool initdeferred;
1811  bool mark_as_primary;
1812  bool islocal;
1813  bool noinherit;
1814  int inhcount;
1815 
1816  deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0;
1817  initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0;
1818  mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0;
1819 
1820  /* constraint creation support doesn't work while bootstrapping */
1822 
1823  /* enforce system-table restriction */
1824  if (!allow_system_table_mods &&
1825  IsSystemRelation(heapRelation) &&
1827  ereport(ERROR,
1828  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1829  errmsg("user-defined indexes on system catalog tables are not supported")));
1830 
1831  /* primary/unique constraints shouldn't have any expressions */
1832  if (indexInfo->ii_Expressions &&
1833  constraintType != CONSTRAINT_EXCLUSION)
1834  elog(ERROR, "constraints cannot have index expressions");
1835 
1836  /*
1837  * If we're manufacturing a constraint for a pre-existing index, we need
1838  * to get rid of the existing auto dependencies for the index (the ones
1839  * that index_create() would have made instead of calling this function).
1840  *
1841  * Note: this code would not necessarily do the right thing if the index
1842  * has any expressions or predicate, but we'd never be turning such an
1843  * index into a UNIQUE or PRIMARY KEY constraint.
1844  */
1845  if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS)
1846  deleteDependencyRecordsForClass(RelationRelationId, indexRelationId,
1847  RelationRelationId, DEPENDENCY_AUTO);
1848 
1849  if (OidIsValid(parentConstraintId))
1850  {
1851  islocal = false;
1852  inhcount = 1;
1853  noinherit = false;
1854  }
1855  else
1856  {
1857  islocal = true;
1858  inhcount = 0;
1859  noinherit = true;
1860  }
1861 
1862  /*
1863  * Construct a pg_constraint entry.
1864  */
1865  conOid = CreateConstraintEntry(constraintName,
1866  namespaceId,
1867  constraintType,
1868  deferrable,
1869  initdeferred,
1870  true,
1871  parentConstraintId,
1872  RelationGetRelid(heapRelation),
1873  indexInfo->ii_IndexAttrNumbers,
1874  indexInfo->ii_NumIndexKeyAttrs,
1875  indexInfo->ii_NumIndexAttrs,
1876  InvalidOid, /* no domain */
1877  indexRelationId, /* index OID */
1878  InvalidOid, /* no foreign key */
1879  NULL,
1880  NULL,
1881  NULL,
1882  NULL,
1883  0,
1884  ' ',
1885  ' ',
1886  ' ',
1887  indexInfo->ii_ExclusionOps,
1888  NULL, /* no check constraint */
1889  NULL,
1890  islocal,
1891  inhcount,
1892  noinherit,
1893  is_internal);
1894 
1895  /*
1896  * Register the index as internally dependent on the constraint.
1897  *
1898  * Note that the constraint has a dependency on the table, so we don't
1899  * need (or want) any direct dependency from the index to the table.
1900  */
1901  ObjectAddressSet(myself, ConstraintRelationId, conOid);
1902  ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId);
1903  recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL);
1904 
1905  /*
1906  * Also, if this is a constraint on a partition, give it partition-type
1907  * dependencies on the parent constraint as well as the table.
1908  */
1909  if (OidIsValid(parentConstraintId))
1910  {
1911  ObjectAddress referenced;
1912 
1913  ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId);
1914  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1915  ObjectAddressSet(referenced, RelationRelationId,
1916  RelationGetRelid(heapRelation));
1917  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1918  }
1919 
1920  /*
1921  * If the constraint is deferrable, create the deferred uniqueness
1922  * checking trigger. (The trigger will be given an internal dependency on
1923  * the constraint by CreateTrigger.)
1924  */
1925  if (deferrable)
1926  {
1927  CreateTrigStmt *trigger;
1928 
1929  trigger = makeNode(CreateTrigStmt);
1930  trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ?
1931  "PK_ConstraintTrigger" :
1932  "Unique_ConstraintTrigger";
1933  trigger->relation = NULL;
1934  trigger->funcname = SystemFuncName("unique_key_recheck");
1935  trigger->args = NIL;
1936  trigger->row = true;
1937  trigger->timing = TRIGGER_TYPE_AFTER;
1938  trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE;
1939  trigger->columns = NIL;
1940  trigger->whenClause = NULL;
1941  trigger->isconstraint = true;
1942  trigger->deferrable = true;
1943  trigger->initdeferred = initdeferred;
1944  trigger->constrrel = NULL;
1945 
1946  (void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation),
1947  InvalidOid, conOid, indexRelationId, InvalidOid,
1948  InvalidOid, NULL, true, false);
1949  }
1950 
1951  /*
1952  * If needed, mark the index as primary and/or deferred in pg_index.
1953  *
1954  * Note: When making an existing index into a constraint, caller must have
1955  * a table lock that prevents concurrent table updates; otherwise, there
1956  * is a risk that concurrent readers of the table will miss seeing this
1957  * index at all.
1958  */
1959  if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) &&
1960  (mark_as_primary || deferrable))
1961  {
1962  Relation pg_index;
1963  HeapTuple indexTuple;
1964  Form_pg_index indexForm;
1965  bool dirty = false;
1966 
1967  pg_index = table_open(IndexRelationId, RowExclusiveLock);
1968 
1969  indexTuple = SearchSysCacheCopy1(INDEXRELID,
1970  ObjectIdGetDatum(indexRelationId));
1971  if (!HeapTupleIsValid(indexTuple))
1972  elog(ERROR, "cache lookup failed for index %u", indexRelationId);
1973  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
1974 
1975  if (mark_as_primary && !indexForm->indisprimary)
1976  {
1977  indexForm->indisprimary = true;
1978  dirty = true;
1979  }
1980 
1981  if (deferrable && indexForm->indimmediate)
1982  {
1983  indexForm->indimmediate = false;
1984  dirty = true;
1985  }
1986 
1987  if (dirty)
1988  {
1989  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
1990 
1991  InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0,
1992  InvalidOid, is_internal);
1993  }
1994 
1995  heap_freetuple(indexTuple);
1996  table_close(pg_index, RowExclusiveLock);
1997  }
1998 
1999  return myself;
2000 }
2001 
2002 /*
2003  * index_drop
2004  *
2005  * NOTE: this routine should now only be called through performDeletion(),
2006  * else associated dependencies won't be cleaned up.
2007  *
2008  * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is
2009  * false but concurrent_lock_mode is true, then do a normal DROP INDEX but
2010  * take a lock for CONCURRENTLY processing. That is used as part of REINDEX
2011  * CONCURRENTLY.
2012  */
2013 void
2014 index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
2015 {
2016  Oid heapId;
2017  Relation userHeapRelation;
2018  Relation userIndexRelation;
2019  Relation indexRelation;
2020  HeapTuple tuple;
2021  bool hasexprs;
2022  LockRelId heaprelid,
2023  indexrelid;
2024  LOCKTAG heaplocktag;
2025  LOCKMODE lockmode;
2026 
2027  /*
2028  * A temporary relation uses a non-concurrent DROP. Other backends can't
2029  * access a temporary relation, so there's no harm in grabbing a stronger
2030  * lock (see comments in RemoveRelations), and a non-concurrent DROP is
2031  * more efficient.
2032  */
2033  Assert(get_rel_persistence(indexId) != RELPERSISTENCE_TEMP ||
2034  (!concurrent && !concurrent_lock_mode));
2035 
2036  /*
2037  * To drop an index safely, we must grab exclusive lock on its parent
2038  * table. Exclusive lock on the index alone is insufficient because
2039  * another backend might be about to execute a query on the parent table.
2040  * If it relies on a previously cached list of index OIDs, then it could
2041  * attempt to access the just-dropped index. We must therefore take a
2042  * table lock strong enough to prevent all queries on the table from
2043  * proceeding until we commit and send out a shared-cache-inval notice
2044  * that will make them update their index lists.
2045  *
2046  * In the concurrent case we avoid this requirement by disabling index use
2047  * in multiple steps and waiting out any transactions that might be using
2048  * the index, so we don't need exclusive lock on the parent table. Instead
2049  * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't
2050  * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get
2051  * AccessExclusiveLock on the index below, once we're sure nobody else is
2052  * using it.)
2053  */
2054  heapId = IndexGetRelation(indexId, false);
2055  lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock;
2056  userHeapRelation = table_open(heapId, lockmode);
2057  userIndexRelation = index_open(indexId, lockmode);
2058 
2059  /*
2060  * We might still have open queries using it in our own session, which the
2061  * above locking won't prevent, so test explicitly.
2062  */
2063  CheckTableNotInUse(userIndexRelation, "DROP INDEX");
2064 
2065  /*
2066  * Drop Index Concurrently is more or less the reverse process of Create
2067  * Index Concurrently.
2068  *
2069  * First we unset indisvalid so queries starting afterwards don't use the
2070  * index to answer queries anymore. We have to keep indisready = true so
2071  * transactions that are still scanning the index can continue to see
2072  * valid index contents. For instance, if they are using READ COMMITTED
2073  * mode, and another transaction makes changes and commits, they need to
2074  * see those new tuples in the index.
2075  *
2076  * After all transactions that could possibly have used the index for
2077  * queries end, we can unset indisready and indislive, then wait till
2078  * nobody could be touching it anymore. (Note: we need indislive because
2079  * this state must be distinct from the initial state during CREATE INDEX
2080  * CONCURRENTLY, which has indislive true while indisready and indisvalid
2081  * are false. That's because in that state, transactions must examine the
2082  * index for HOT-safety decisions, while in this state we don't want them
2083  * to open it at all.)
2084  *
2085  * Since all predicate locks on the index are about to be made invalid, we
2086  * must promote them to predicate locks on the heap. In the
2087  * non-concurrent case we can just do that now. In the concurrent case
2088  * it's a bit trickier. The predicate locks must be moved when there are
2089  * no index scans in progress on the index and no more can subsequently
2090  * start, so that no new predicate locks can be made on the index. Also,
2091  * they must be moved before heap inserts stop maintaining the index, else
2092  * the conflict with the predicate lock on the index gap could be missed
2093  * before the lock on the heap relation is in place to detect a conflict
2094  * based on the heap tuple insert.
2095  */
2096  if (concurrent)
2097  {
2098  /*
2099  * We must commit our transaction in order to make the first pg_index
2100  * state update visible to other sessions. If the DROP machinery has
2101  * already performed any other actions (removal of other objects,
2102  * pg_depend entries, etc), the commit would make those actions
2103  * permanent, which would leave us with inconsistent catalog state if
2104  * we fail partway through the following sequence. Since DROP INDEX
2105  * CONCURRENTLY is restricted to dropping just one index that has no
2106  * dependencies, we should get here before anything's been done ---
2107  * but let's check that to be sure. We can verify that the current
2108  * transaction has not executed any transactional updates by checking
2109  * that no XID has been assigned.
2110  */
2112  ereport(ERROR,
2113  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2114  errmsg("DROP INDEX CONCURRENTLY must be first action in transaction")));
2115 
2116  /*
2117  * Mark index invalid by updating its pg_index entry
2118  */
2120 
2121  /*
2122  * Invalidate the relcache for the table, so that after this commit
2123  * all sessions will refresh any cached plans that might reference the
2124  * index.
2125  */
2126  CacheInvalidateRelcache(userHeapRelation);
2127 
2128  /* save lockrelid and locktag for below, then close but keep locks */
2129  heaprelid = userHeapRelation->rd_lockInfo.lockRelId;
2130  SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
2131  indexrelid = userIndexRelation->rd_lockInfo.lockRelId;
2132 
2133  table_close(userHeapRelation, NoLock);
2134  index_close(userIndexRelation, NoLock);
2135 
2136  /*
2137  * We must commit our current transaction so that the indisvalid
2138  * update becomes visible to other transactions; then start another.
2139  * Note that any previously-built data structures are lost in the
2140  * commit. The only data we keep past here are the relation IDs.
2141  *
2142  * Before committing, get a session-level lock on the table, to ensure
2143  * that neither it nor the index can be dropped before we finish. This
2144  * cannot block, even if someone else is waiting for access, because
2145  * we already have the same lock within our transaction.
2146  */
2149 
2153 
2154  /*
2155  * Now we must wait until no running transaction could be using the
2156  * index for a query. Use AccessExclusiveLock here to check for
2157  * running transactions that hold locks of any kind on the table. Note
2158  * we do not need to worry about xacts that open the table for reading
2159  * after this point; they will see the index as invalid when they open
2160  * the relation.
2161  *
2162  * Note: the reason we use actual lock acquisition here, rather than
2163  * just checking the ProcArray and sleeping, is that deadlock is
2164  * possible if one of the transactions in question is blocked trying
2165  * to acquire an exclusive lock on our table. The lock code will
2166  * detect deadlock and error out properly.
2167  *
2168  * Note: we report progress through WaitForLockers() unconditionally
2169  * here, even though it will only be used when we're called by REINDEX
2170  * CONCURRENTLY and not when called by DROP INDEX CONCURRENTLY.
2171  */
2172  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2173 
2174  /* Finish invalidation of index and mark it as dead */
2175  index_concurrently_set_dead(heapId, indexId);
2176 
2177  /*
2178  * Again, commit the transaction to make the pg_index update visible
2179  * to other sessions.
2180  */
2183 
2184  /*
2185  * Wait till every transaction that saw the old index state has
2186  * finished. See above about progress reporting.
2187  */
2188  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2189 
2190  /*
2191  * Re-open relations to allow us to complete our actions.
2192  *
2193  * At this point, nothing should be accessing the index, but lets
2194  * leave nothing to chance and grab AccessExclusiveLock on the index
2195  * before the physical deletion.
2196  */
2197  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
2198  userIndexRelation = index_open(indexId, AccessExclusiveLock);
2199  }
2200  else
2201  {
2202  /* Not concurrent, so just transfer predicate locks and we're good */
2203  TransferPredicateLocksToHeapRelation(userIndexRelation);
2204  }
2205 
2206  /*
2207  * Schedule physical removal of the files (if any)
2208  */
2209  if (userIndexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
2210  RelationDropStorage(userIndexRelation);
2211 
2212  /*
2213  * Close and flush the index's relcache entry, to ensure relcache doesn't
2214  * try to rebuild it while we're deleting catalog entries. We keep the
2215  * lock though.
2216  */
2217  index_close(userIndexRelation, NoLock);
2218 
2219  RelationForgetRelation(indexId);
2220 
2221  /*
2222  * fix INDEX relation, and check for expressional index
2223  */
2224  indexRelation = table_open(IndexRelationId, RowExclusiveLock);
2225 
2226  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
2227  if (!HeapTupleIsValid(tuple))
2228  elog(ERROR, "cache lookup failed for index %u", indexId);
2229 
2230  hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs,
2231  RelationGetDescr(indexRelation));
2232 
2233  CatalogTupleDelete(indexRelation, &tuple->t_self);
2234 
2235  ReleaseSysCache(tuple);
2236  table_close(indexRelation, RowExclusiveLock);
2237 
2238  /*
2239  * if it has any expression columns, we might have stored statistics about
2240  * them.
2241  */
2242  if (hasexprs)
2243  RemoveStatistics(indexId, 0);
2244 
2245  /*
2246  * fix ATTRIBUTE relation
2247  */
2248  DeleteAttributeTuples(indexId);
2249 
2250  /*
2251  * fix RELATION relation
2252  */
2253  DeleteRelationTuple(indexId);
2254 
2255  /*
2256  * fix INHERITS relation
2257  */
2258  DeleteInheritsTuple(indexId, InvalidOid);
2259 
2260  /*
2261  * We are presently too lazy to attempt to compute the new correct value
2262  * of relhasindex (the next VACUUM will fix it if necessary). So there is
2263  * no need to update the pg_class tuple for the owning relation. But we
2264  * must send out a shared-cache-inval notice on the owning relation to
2265  * ensure other backends update their relcache lists of indexes. (In the
2266  * concurrent case, this is redundant but harmless.)
2267  */
2268  CacheInvalidateRelcache(userHeapRelation);
2269 
2270  /*
2271  * Close owning rel, but keep lock
2272  */
2273  table_close(userHeapRelation, NoLock);
2274 
2275  /*
2276  * Release the session locks before we go.
2277  */
2278  if (concurrent)
2279  {
2282  }
2283 }
2284 
2285 /* ----------------------------------------------------------------
2286  * index_build support
2287  * ----------------------------------------------------------------
2288  */
2289 
2290 /* ----------------
2291  * BuildIndexInfo
2292  * Construct an IndexInfo record for an open index
2293  *
2294  * IndexInfo stores the information about the index that's needed by
2295  * FormIndexDatum, which is used for both index_build() and later insertion
2296  * of individual index tuples. Normally we build an IndexInfo for an index
2297  * just once per command, and then use it for (potentially) many tuples.
2298  * ----------------
2299  */
2300 IndexInfo *
2302 {
2303  IndexInfo *ii;
2304  Form_pg_index indexStruct = index->rd_index;
2305  int i;
2306  int numAtts;
2307 
2308  /* check the number of keys, and copy attr numbers into the IndexInfo */
2309  numAtts = indexStruct->indnatts;
2310  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2311  elog(ERROR, "invalid indnatts %d for index %u",
2312  numAtts, RelationGetRelid(index));
2313 
2314  /*
2315  * Create the node, fetching any expressions needed for expressional
2316  * indexes and index predicate if any.
2317  */
2318  ii = makeIndexInfo(indexStruct->indnatts,
2319  indexStruct->indnkeyatts,
2320  index->rd_rel->relam,
2323  indexStruct->indisunique,
2324  indexStruct->indisready,
2325  false);
2326 
2327  /* fill in attribute numbers */
2328  for (i = 0; i < numAtts; i++)
2329  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2330 
2331  /* fetch exclusion constraint info if any */
2332  if (indexStruct->indisexclusion)
2333  {
2335  &ii->ii_ExclusionOps,
2336  &ii->ii_ExclusionProcs,
2337  &ii->ii_ExclusionStrats);
2338  }
2339 
2341 
2342  return ii;
2343 }
2344 
2345 /* ----------------
2346  * BuildDummyIndexInfo
2347  * Construct a dummy IndexInfo record for an open index
2348  *
2349  * This differs from the real BuildIndexInfo in that it will never run any
2350  * user-defined code that might exist in index expressions or predicates.
2351  * Instead of the real index expressions, we return null constants that have
2352  * the right types/typmods/collations. Predicates and exclusion clauses are
2353  * just ignored. This is sufficient for the purpose of truncating an index,
2354  * since we will not need to actually evaluate the expressions or predicates;
2355  * the only thing that's likely to be done with the data is construction of
2356  * a tupdesc describing the index's rowtype.
2357  * ----------------
2358  */
2359 IndexInfo *
2361 {
2362  IndexInfo *ii;
2363  Form_pg_index indexStruct = index->rd_index;
2364  int i;
2365  int numAtts;
2366 
2367  /* check the number of keys, and copy attr numbers into the IndexInfo */
2368  numAtts = indexStruct->indnatts;
2369  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2370  elog(ERROR, "invalid indnatts %d for index %u",
2371  numAtts, RelationGetRelid(index));
2372 
2373  /*
2374  * Create the node, using dummy index expressions, and pretending there is
2375  * no predicate.
2376  */
2377  ii = makeIndexInfo(indexStruct->indnatts,
2378  indexStruct->indnkeyatts,
2379  index->rd_rel->relam,
2381  NIL,
2382  indexStruct->indisunique,
2383  indexStruct->indisready,
2384  false);
2385 
2386  /* fill in attribute numbers */
2387  for (i = 0; i < numAtts; i++)
2388  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2389 
2390  /* We ignore the exclusion constraint if any */
2391 
2392  return ii;
2393 }
2394 
2395 /*
2396  * CompareIndexInfo
2397  * Return whether the properties of two indexes (in different tables)
2398  * indicate that they have the "same" definitions.
2399  *
2400  * Note: passing collations and opfamilies separately is a kludge. Adding
2401  * them to IndexInfo may result in better coding here and elsewhere.
2402  *
2403  * Use build_attrmap_by_name(index2, index1) to build the attmap.
2404  */
2405 bool
2407  Oid *collations1, Oid *collations2,
2408  Oid *opfamilies1, Oid *opfamilies2,
2409  AttrMap *attmap)
2410 {
2411  int i;
2412 
2413  if (info1->ii_Unique != info2->ii_Unique)
2414  return false;
2415 
2416  /* indexes are only equivalent if they have the same access method */
2417  if (info1->ii_Am != info2->ii_Am)
2418  return false;
2419 
2420  /* and same number of attributes */
2421  if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs)
2422  return false;
2423 
2424  /* and same number of key attributes */
2425  if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs)
2426  return false;
2427 
2428  /*
2429  * and columns match through the attribute map (actual attribute numbers
2430  * might differ!) Note that this implies that index columns that are
2431  * expressions appear in the same positions. We will next compare the
2432  * expressions themselves.
2433  */
2434  for (i = 0; i < info1->ii_NumIndexAttrs; i++)
2435  {
2436  if (attmap->maplen < info2->ii_IndexAttrNumbers[i])
2437  elog(ERROR, "incorrect attribute map");
2438 
2439  /* ignore expressions at this stage */
2440  if ((info1->ii_IndexAttrNumbers[i] != InvalidAttrNumber) &&
2441  (attmap->attnums[info2->ii_IndexAttrNumbers[i] - 1] !=
2442  info1->ii_IndexAttrNumbers[i]))
2443  return false;
2444 
2445  /* collation and opfamily is not valid for including columns */
2446  if (i >= info1->ii_NumIndexKeyAttrs)
2447  continue;
2448 
2449  if (collations1[i] != collations2[i])
2450  return false;
2451  if (opfamilies1[i] != opfamilies2[i])
2452  return false;
2453  }
2454 
2455  /*
2456  * For expression indexes: either both are expression indexes, or neither
2457  * is; if they are, make sure the expressions match.
2458  */
2459  if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL))
2460  return false;
2461  if (info1->ii_Expressions != NIL)
2462  {
2463  bool found_whole_row;
2464  Node *mapped;
2465 
2466  mapped = map_variable_attnos((Node *) info2->ii_Expressions,
2467  1, 0, attmap,
2468  InvalidOid, &found_whole_row);
2469  if (found_whole_row)
2470  {
2471  /*
2472  * we could throw an error here, but seems out of scope for this
2473  * routine.
2474  */
2475  return false;
2476  }
2477 
2478  if (!equal(info1->ii_Expressions, mapped))
2479  return false;
2480  }
2481 
2482  /* Partial index predicates must be identical, if they exist */
2483  if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL))
2484  return false;
2485  if (info1->ii_Predicate != NULL)
2486  {
2487  bool found_whole_row;
2488  Node *mapped;
2489 
2490  mapped = map_variable_attnos((Node *) info2->ii_Predicate,
2491  1, 0, attmap,
2492  InvalidOid, &found_whole_row);
2493  if (found_whole_row)
2494  {
2495  /*
2496  * we could throw an error here, but seems out of scope for this
2497  * routine.
2498  */
2499  return false;
2500  }
2501  if (!equal(info1->ii_Predicate, mapped))
2502  return false;
2503  }
2504 
2505  /* No support currently for comparing exclusion indexes. */
2506  if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL)
2507  return false;
2508 
2509  return true;
2510 }
2511 
2512 /* ----------------
2513  * BuildSpeculativeIndexInfo
2514  * Add extra state to IndexInfo record
2515  *
2516  * For unique indexes, we usually don't want to add info to the IndexInfo for
2517  * checking uniqueness, since the B-Tree AM handles that directly. However,
2518  * in the case of speculative insertion, additional support is required.
2519  *
2520  * Do this processing here rather than in BuildIndexInfo() to not incur the
2521  * overhead in the common non-speculative cases.
2522  * ----------------
2523  */
2524 void
2526 {
2527  int indnkeyatts;
2528  int i;
2529 
2530  indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index);
2531 
2532  /*
2533  * fetch info for checking unique indexes
2534  */
2535  Assert(ii->ii_Unique);
2536 
2537  if (index->rd_rel->relam != BTREE_AM_OID)
2538  elog(ERROR, "unexpected non-btree speculative unique index");
2539 
2540  ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2541  ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2542  ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts);
2543 
2544  /*
2545  * We have to look up the operator's strategy number. This provides a
2546  * cross-check that the operator does match the index.
2547  */
2548  /* We need the func OIDs and strategy numbers too */
2549  for (i = 0; i < indnkeyatts; i++)
2550  {
2552  ii->ii_UniqueOps[i] =
2553  get_opfamily_member(index->rd_opfamily[i],
2554  index->rd_opcintype[i],
2555  index->rd_opcintype[i],
2556  ii->ii_UniqueStrats[i]);
2557  if (!OidIsValid(ii->ii_UniqueOps[i]))
2558  elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2559  ii->ii_UniqueStrats[i], index->rd_opcintype[i],
2560  index->rd_opcintype[i], index->rd_opfamily[i]);
2561  ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]);
2562  }
2563 }
2564 
2565 /* ----------------
2566  * FormIndexDatum
2567  * Construct values[] and isnull[] arrays for a new index tuple.
2568  *
2569  * indexInfo Info about the index
2570  * slot Heap tuple for which we must prepare an index entry
2571  * estate executor state for evaluating any index expressions
2572  * values Array of index Datums (output area)
2573  * isnull Array of is-null indicators (output area)
2574  *
2575  * When there are no index expressions, estate may be NULL. Otherwise it
2576  * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
2577  * context must point to the heap tuple passed in.
2578  *
2579  * Notice we don't actually call index_form_tuple() here; we just prepare
2580  * its input arrays values[] and isnull[]. This is because the index AM
2581  * may wish to alter the data before storage.
2582  * ----------------
2583  */
2584 void
2586  TupleTableSlot *slot,
2587  EState *estate,
2588  Datum *values,
2589  bool *isnull)
2590 {
2591  ListCell *indexpr_item;
2592  int i;
2593 
2594  if (indexInfo->ii_Expressions != NIL &&
2595  indexInfo->ii_ExpressionsState == NIL)
2596  {
2597  /* First time through, set up expression evaluation state */
2598  indexInfo->ii_ExpressionsState =
2599  ExecPrepareExprList(indexInfo->ii_Expressions, estate);
2600  /* Check caller has set up context correctly */
2601  Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
2602  }
2603  indexpr_item = list_head(indexInfo->ii_ExpressionsState);
2604 
2605  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
2606  {
2607  int keycol = indexInfo->ii_IndexAttrNumbers[i];
2608  Datum iDatum;
2609  bool isNull;
2610 
2611  if (keycol < 0)
2612  iDatum = slot_getsysattr(slot, keycol, &isNull);
2613  else if (keycol != 0)
2614  {
2615  /*
2616  * Plain index column; get the value we need directly from the
2617  * heap tuple.
2618  */
2619  iDatum = slot_getattr(slot, keycol, &isNull);
2620  }
2621  else
2622  {
2623  /*
2624  * Index expression --- need to evaluate it.
2625  */
2626  if (indexpr_item == NULL)
2627  elog(ERROR, "wrong number of index expressions");
2628  iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item),
2629  GetPerTupleExprContext(estate),
2630  &isNull);
2631  indexpr_item = lnext(indexInfo->ii_ExpressionsState, indexpr_item);
2632  }
2633  values[i] = iDatum;
2634  isnull[i] = isNull;
2635  }
2636 
2637  if (indexpr_item != NULL)
2638  elog(ERROR, "wrong number of index expressions");
2639 }
2640 
2641 
2642 /*
2643  * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
2644  *
2645  * This routine updates the pg_class row of either an index or its parent
2646  * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed
2647  * to ensure we can do all the necessary work in just one update.
2648  *
2649  * hasindex: set relhasindex to this value
2650  * reltuples: if >= 0, set reltuples to this value; else no change
2651  *
2652  * If reltuples >= 0, relpages and relallvisible are also updated (using
2653  * RelationGetNumberOfBlocks() and visibilitymap_count()).
2654  *
2655  * NOTE: an important side-effect of this operation is that an SI invalidation
2656  * message is sent out to all backends --- including me --- causing relcache
2657  * entries to be flushed or updated with the new data. This must happen even
2658  * if we find that no change is needed in the pg_class row. When updating
2659  * a heap entry, this ensures that other backends find out about the new
2660  * index. When updating an index, it's important because some index AMs
2661  * expect a relcache flush to occur after REINDEX.
2662  */
2663 static void
2665  bool hasindex,
2666  double reltuples)
2667 {
2668  Oid relid = RelationGetRelid(rel);
2669  Relation pg_class;
2670  HeapTuple tuple;
2671  Form_pg_class rd_rel;
2672  bool dirty;
2673 
2674  /*
2675  * We always update the pg_class row using a non-transactional,
2676  * overwrite-in-place update. There are several reasons for this:
2677  *
2678  * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
2679  *
2680  * 2. We could be reindexing pg_class itself, in which case we can't move
2681  * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might
2682  * not know about all the indexes yet (see reindex_relation).
2683  *
2684  * 3. Because we execute CREATE INDEX with just share lock on the parent
2685  * rel (to allow concurrent index creations), an ordinary update could
2686  * suffer a tuple-concurrently-updated failure against another CREATE
2687  * INDEX committing at about the same time. We can avoid that by having
2688  * them both do nontransactional updates (we assume they will both be
2689  * trying to change the pg_class row to the same thing, so it doesn't
2690  * matter which goes first).
2691  *
2692  * It is safe to use a non-transactional update even though our
2693  * transaction could still fail before committing. Setting relhasindex
2694  * true is safe even if there are no indexes (VACUUM will eventually fix
2695  * it). And of course the new relpages and reltuples counts are correct
2696  * regardless. However, we don't want to change relpages (or
2697  * relallvisible) if the caller isn't providing an updated reltuples
2698  * count, because that would bollix the reltuples/relpages ratio which is
2699  * what's really important.
2700  */
2701 
2702  pg_class = table_open(RelationRelationId, RowExclusiveLock);
2703 
2704  /*
2705  * Make a copy of the tuple to update. Normally we use the syscache, but
2706  * we can't rely on that during bootstrap or while reindexing pg_class
2707  * itself.
2708  */
2709  if (IsBootstrapProcessingMode() ||
2710  ReindexIsProcessingHeap(RelationRelationId))
2711  {
2712  /* don't assume syscache will work */
2713  TableScanDesc pg_class_scan;
2714  ScanKeyData key[1];
2715 
2716  ScanKeyInit(&key[0],
2717  Anum_pg_class_oid,
2718  BTEqualStrategyNumber, F_OIDEQ,
2719  ObjectIdGetDatum(relid));
2720 
2721  pg_class_scan = table_beginscan_catalog(pg_class, 1, key);
2722  tuple = heap_getnext(pg_class_scan, ForwardScanDirection);
2723  tuple = heap_copytuple(tuple);
2724  table_endscan(pg_class_scan);
2725  }
2726  else
2727  {
2728  /* normal case, use syscache */
2729  tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid));
2730  }
2731 
2732  if (!HeapTupleIsValid(tuple))
2733  elog(ERROR, "could not find tuple for relation %u", relid);
2734  rd_rel = (Form_pg_class) GETSTRUCT(tuple);
2735 
2736  /* Should this be a more comprehensive test? */
2737  Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX);
2738 
2739  /*
2740  * As a special hack, if we are dealing with an empty table and the
2741  * existing reltuples is -1, we leave that alone. This ensures that
2742  * creating an index as part of CREATE TABLE doesn't cause the table to
2743  * prematurely look like it's been vacuumed.
2744  */
2745  if (reltuples == 0 && rd_rel->reltuples < 0)
2746  reltuples = -1;
2747 
2748  /* Apply required updates, if any, to copied tuple */
2749 
2750  dirty = false;
2751  if (rd_rel->relhasindex != hasindex)
2752  {
2753  rd_rel->relhasindex = hasindex;
2754  dirty = true;
2755  }
2756 
2757  if (reltuples >= 0)
2758  {
2759  BlockNumber relpages = RelationGetNumberOfBlocks(rel);
2760  BlockNumber relallvisible;
2761 
2762  if (rd_rel->relkind != RELKIND_INDEX)
2763  visibilitymap_count(rel, &relallvisible, NULL);
2764  else /* don't bother for indexes */
2765  relallvisible = 0;
2766 
2767  if (rd_rel->relpages != (int32) relpages)
2768  {
2769  rd_rel->relpages = (int32) relpages;
2770  dirty = true;
2771  }
2772  if (rd_rel->reltuples != (float4) reltuples)
2773  {
2774  rd_rel->reltuples = (float4) reltuples;
2775  dirty = true;
2776  }
2777  if (rd_rel->relallvisible != (int32) relallvisible)
2778  {
2779  rd_rel->relallvisible = (int32) relallvisible;
2780  dirty = true;
2781  }
2782  }
2783 
2784  /*
2785  * If anything changed, write out the tuple
2786  */
2787  if (dirty)
2788  {
2789  heap_inplace_update(pg_class, tuple);
2790  /* the above sends a cache inval message */
2791  }
2792  else
2793  {
2794  /* no need to change tuple, but force relcache inval anyway */
2796  }
2797 
2798  heap_freetuple(tuple);
2799 
2800  table_close(pg_class, RowExclusiveLock);
2801 }
2802 
2803 
2804 /*
2805  * index_build - invoke access-method-specific index build procedure
2806  *
2807  * On entry, the index's catalog entries are valid, and its physical disk
2808  * file has been created but is empty. We call the AM-specific build
2809  * procedure to fill in the index contents. We then update the pg_class
2810  * entries of the index and heap relation as needed, using statistics
2811  * returned by ambuild as well as data passed by the caller.
2812  *
2813  * isreindex indicates we are recreating a previously-existing index.
2814  * parallel indicates if parallelism may be useful.
2815  *
2816  * Note: before Postgres 8.2, the passed-in heap and index Relations
2817  * were automatically closed by this routine. This is no longer the case.
2818  * The caller opened 'em, and the caller should close 'em.
2819  */
2820 void
2821 index_build(Relation heapRelation,
2822  Relation indexRelation,
2823  IndexInfo *indexInfo,
2824  bool isreindex,
2825  bool parallel)
2826 {
2827  IndexBuildResult *stats;
2828  Oid save_userid;
2829  int save_sec_context;
2830  int save_nestlevel;
2831 
2832  /*
2833  * sanity checks
2834  */
2835  Assert(RelationIsValid(indexRelation));
2836  Assert(PointerIsValid(indexRelation->rd_indam));
2837  Assert(PointerIsValid(indexRelation->rd_indam->ambuild));
2838  Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty));
2839 
2840  /*
2841  * Determine worker process details for parallel CREATE INDEX. Currently,
2842  * only btree has support for parallel builds.
2843  *
2844  * Note that planner considers parallel safety for us.
2845  */
2846  if (parallel && IsNormalProcessingMode() &&
2847  indexRelation->rd_rel->relam == BTREE_AM_OID)
2848  indexInfo->ii_ParallelWorkers =
2850  RelationGetRelid(indexRelation));
2851 
2852  if (indexInfo->ii_ParallelWorkers == 0)
2853  ereport(DEBUG1,
2854  (errmsg("building index \"%s\" on table \"%s\" serially",
2855  RelationGetRelationName(indexRelation),
2856  RelationGetRelationName(heapRelation))));
2857  else
2858  ereport(DEBUG1,
2859  (errmsg_plural("building index \"%s\" on table \"%s\" with request for %d parallel worker",
2860  "building index \"%s\" on table \"%s\" with request for %d parallel workers",
2861  indexInfo->ii_ParallelWorkers,
2862  RelationGetRelationName(indexRelation),
2863  RelationGetRelationName(heapRelation),
2864  indexInfo->ii_ParallelWorkers)));
2865 
2866  /*
2867  * Switch to the table owner's userid, so that any index functions are run
2868  * as that user. Also lock down security-restricted operations and
2869  * arrange to make GUC variable changes local to this command.
2870  */
2871  GetUserIdAndSecContext(&save_userid, &save_sec_context);
2872  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
2873  save_sec_context | SECURITY_RESTRICTED_OPERATION);
2874  save_nestlevel = NewGUCNestLevel();
2875 
2876  /* Set up initial progress report status */
2877  {
2878  const int index[] = {
2885  };
2886  const int64 val[] = {
2889  0, 0, 0, 0
2890  };
2891 
2892  pgstat_progress_update_multi_param(6, index, val);
2893  }
2894 
2895  /*
2896  * Call the access method's build procedure
2897  */
2898  stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation,
2899  indexInfo);
2900  Assert(PointerIsValid(stats));
2901 
2902  /*
2903  * If this is an unlogged index, we may need to write out an init fork for
2904  * it -- but we must first check whether one already exists. If, for
2905  * example, an unlogged relation is truncated in the transaction that
2906  * created it, or truncated twice in a subsequent transaction, the
2907  * relfilenode won't change, and nothing needs to be done here.
2908  */
2909  if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED &&
2910  !smgrexists(indexRelation->rd_smgr, INIT_FORKNUM))
2911  {
2912  RelationOpenSmgr(indexRelation);
2913  smgrcreate(indexRelation->rd_smgr, INIT_FORKNUM, false);
2914  indexRelation->rd_indam->ambuildempty(indexRelation);
2915  }
2916 
2917  /*
2918  * If we found any potentially broken HOT chains, mark the index as not
2919  * being usable until the current transaction is below the event horizon.
2920  * See src/backend/access/heap/README.HOT for discussion. Also set this
2921  * if early pruning/vacuuming is enabled for the heap relation. While it
2922  * might become safe to use the index earlier based on actual cleanup
2923  * activity and other active transactions, the test for that would be much
2924  * more complex and would require some form of blocking, so keep it simple
2925  * and fast by just using the current transaction.
2926  *
2927  * However, when reindexing an existing index, we should do nothing here.
2928  * Any HOT chains that are broken with respect to the index must predate
2929  * the index's original creation, so there is no need to change the
2930  * index's usability horizon. Moreover, we *must not* try to change the
2931  * index's pg_index entry while reindexing pg_index itself, and this
2932  * optimization nicely prevents that. The more complex rules needed for a
2933  * reindex are handled separately after this function returns.
2934  *
2935  * We also need not set indcheckxmin during a concurrent index build,
2936  * because we won't set indisvalid true until all transactions that care
2937  * about the broken HOT chains or early pruning/vacuuming are gone.
2938  *
2939  * Therefore, this code path can only be taken during non-concurrent
2940  * CREATE INDEX. Thus the fact that heap_update will set the pg_index
2941  * tuple's xmin doesn't matter, because that tuple was created in the
2942  * current transaction anyway. That also means we don't need to worry
2943  * about any concurrent readers of the tuple; no other transaction can see
2944  * it yet.
2945  */
2946  if ((indexInfo->ii_BrokenHotChain || EarlyPruningEnabled(heapRelation)) &&
2947  !isreindex &&
2948  !indexInfo->ii_Concurrent)
2949  {
2950  Oid indexId = RelationGetRelid(indexRelation);
2951  Relation pg_index;
2952  HeapTuple indexTuple;
2953  Form_pg_index indexForm;
2954 
2955  pg_index = table_open(IndexRelationId, RowExclusiveLock);
2956 
2957  indexTuple = SearchSysCacheCopy1(INDEXRELID,
2958  ObjectIdGetDatum(indexId));
2959  if (!HeapTupleIsValid(indexTuple))
2960  elog(ERROR, "cache lookup failed for index %u", indexId);
2961  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
2962 
2963  /* If it's a new index, indcheckxmin shouldn't be set ... */
2964  Assert(!indexForm->indcheckxmin);
2965 
2966  indexForm->indcheckxmin = true;
2967  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
2968 
2969  heap_freetuple(indexTuple);
2970  table_close(pg_index, RowExclusiveLock);
2971  }
2972 
2973  /*
2974  * Update heap and index pg_class rows
2975  */
2976  index_update_stats(heapRelation,
2977  true,
2978  stats->heap_tuples);
2979 
2980  index_update_stats(indexRelation,
2981  false,
2982  stats->index_tuples);
2983 
2984  /* Make the updated catalog row versions visible */
2986 
2987  /*
2988  * If it's for an exclusion constraint, make a second pass over the heap
2989  * to verify that the constraint is satisfied. We must not do this until
2990  * the index is fully valid. (Broken HOT chains shouldn't matter, though;
2991  * see comments for IndexCheckExclusion.)
2992  */
2993  if (indexInfo->ii_ExclusionOps != NULL)
2994  IndexCheckExclusion(heapRelation, indexRelation, indexInfo);
2995 
2996  /* Roll back any GUC changes executed by index functions */
2997  AtEOXact_GUC(false, save_nestlevel);
2998 
2999  /* Restore userid and security context */
3000  SetUserIdAndSecContext(save_userid, save_sec_context);
3001 }
3002 
3003 /*
3004  * IndexCheckExclusion - verify that a new exclusion constraint is satisfied
3005  *
3006  * When creating an exclusion constraint, we first build the index normally
3007  * and then rescan the heap to check for conflicts. We assume that we only
3008  * need to validate tuples that are live according to an up-to-date snapshot,
3009  * and that these were correctly indexed even in the presence of broken HOT
3010  * chains. This should be OK since we are holding at least ShareLock on the
3011  * table, meaning there can be no uncommitted updates from other transactions.
3012  * (Note: that wouldn't necessarily work for system catalogs, since many
3013  * operations release write lock early on the system catalogs.)
3014  */
3015 static void
3017  Relation indexRelation,
3018  IndexInfo *indexInfo)
3019 {
3020  TableScanDesc scan;
3022  bool isnull[INDEX_MAX_KEYS];
3023  ExprState *predicate;
3024  TupleTableSlot *slot;
3025  EState *estate;
3026  ExprContext *econtext;
3027  Snapshot snapshot;
3028 
3029  /*
3030  * If we are reindexing the target index, mark it as no longer being
3031  * reindexed, to forestall an Assert in index_beginscan when we try to use
3032  * the index for probes. This is OK because the index is now fully valid.
3033  */
3036 
3037  /*
3038  * Need an EState for evaluation of index expressions and partial-index
3039  * predicates. Also a slot to hold the current tuple.
3040  */
3041  estate = CreateExecutorState();
3042  econtext = GetPerTupleExprContext(estate);
3043  slot = table_slot_create(heapRelation, NULL);
3044 
3045  /* Arrange for econtext's scan tuple to be the tuple under test */
3046  econtext->ecxt_scantuple = slot;
3047 
3048  /* Set up execution state for predicate, if any. */
3049  predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
3050 
3051  /*
3052  * Scan all live tuples in the base relation.
3053  */
3054  snapshot = RegisterSnapshot(GetLatestSnapshot());
3055  scan = table_beginscan_strat(heapRelation, /* relation */
3056  snapshot, /* snapshot */
3057  0, /* number of keys */
3058  NULL, /* scan key */
3059  true, /* buffer access strategy OK */
3060  true); /* syncscan OK */
3061 
3062  while (table_scan_getnextslot(scan, ForwardScanDirection, slot))
3063  {
3065 
3066  /*
3067  * In a partial index, ignore tuples that don't satisfy the predicate.
3068  */
3069  if (predicate != NULL)
3070  {
3071  if (!ExecQual(predicate, econtext))
3072  continue;
3073  }
3074 
3075  /*
3076  * Extract index column values, including computing expressions.
3077  */
3078  FormIndexDatum(indexInfo,
3079  slot,
3080  estate,
3081  values,
3082  isnull);
3083 
3084  /*
3085  * Check that this tuple has no conflicts.
3086  */
3087  check_exclusion_constraint(heapRelation,
3088  indexRelation, indexInfo,
3089  &(slot->tts_tid), values, isnull,
3090  estate, true);
3091 
3093  }
3094 
3095  table_endscan(scan);
3096  UnregisterSnapshot(snapshot);
3097 
3099 
3100  FreeExecutorState(estate);
3101 
3102  /* These may have been pointing to the now-gone estate */
3103  indexInfo->ii_ExpressionsState = NIL;
3104  indexInfo->ii_PredicateState = NULL;
3105 }
3106 
3107 
3108 /*
3109  * validate_index - support code for concurrent index builds
3110  *
3111  * We do a concurrent index build by first inserting the catalog entry for the
3112  * index via index_create(), marking it not indisready and not indisvalid.
3113  * Then we commit our transaction and start a new one, then we wait for all
3114  * transactions that could have been modifying the table to terminate. Now
3115  * we know that any subsequently-started transactions will see the index and
3116  * honor its constraints on HOT updates; so while existing HOT-chains might
3117  * be broken with respect to the index, no currently live tuple will have an
3118  * incompatible HOT update done to it. We now build the index normally via
3119  * index_build(), while holding a weak lock that allows concurrent
3120  * insert/update/delete. Also, we index only tuples that are valid
3121  * as of the start of the scan (see table_index_build_scan), whereas a normal
3122  * build takes care to include recently-dead tuples. This is OK because
3123  * we won't mark the index valid until all transactions that might be able
3124  * to see those tuples are gone. The reason for doing that is to avoid
3125  * bogus unique-index failures due to concurrent UPDATEs (we might see
3126  * different versions of the same row as being valid when we pass over them,
3127  * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that
3128  * does not contain any tuples added to the table while we built the index.
3129  *
3130  * Next, we mark the index "indisready" (but still not "indisvalid") and
3131  * commit the second transaction and start a third. Again we wait for all
3132  * transactions that could have been modifying the table to terminate. Now
3133  * we know that any subsequently-started transactions will see the index and
3134  * insert their new tuples into it. We then take a new reference snapshot
3135  * which is passed to validate_index(). Any tuples that are valid according
3136  * to this snap, but are not in the index, must be added to the index.
3137  * (Any tuples committed live after the snap will be inserted into the
3138  * index by their originating transaction. Any tuples committed dead before
3139  * the snap need not be indexed, because we will wait out all transactions
3140  * that might care about them before we mark the index valid.)
3141  *
3142  * validate_index() works by first gathering all the TIDs currently in the
3143  * index, using a bulkdelete callback that just stores the TIDs and doesn't
3144  * ever say "delete it". (This should be faster than a plain indexscan;
3145  * also, not all index AMs support full-index indexscan.) Then we sort the
3146  * TIDs, and finally scan the table doing a "merge join" against the TID list
3147  * to see which tuples are missing from the index. Thus we will ensure that
3148  * all tuples valid according to the reference snapshot are in the index.
3149  *
3150  * Building a unique index this way is tricky: we might try to insert a
3151  * tuple that is already dead or is in process of being deleted, and we
3152  * mustn't have a uniqueness failure against an updated version of the same
3153  * row. We could try to check the tuple to see if it's already dead and tell
3154  * index_insert() not to do the uniqueness check, but that still leaves us
3155  * with a race condition against an in-progress update. To handle that,
3156  * we expect the index AM to recheck liveness of the to-be-inserted tuple
3157  * before it declares a uniqueness error.
3158  *
3159  * After completing validate_index(), we wait until all transactions that
3160  * were alive at the time of the reference snapshot are gone; this is
3161  * necessary to be sure there are none left with a transaction snapshot
3162  * older than the reference (and hence possibly able to see tuples we did
3163  * not index). Then we mark the index "indisvalid" and commit. Subsequent
3164  * transactions will be able to use it for queries.
3165  *
3166  * Doing two full table scans is a brute-force strategy. We could try to be
3167  * cleverer, eg storing new tuples in a special area of the table (perhaps
3168  * making the table append-only by setting use_fsm). However that would
3169  * add yet more locking issues.
3170  */
3171 void
3172 validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
3173 {
3174  Relation heapRelation,
3175  indexRelation;
3176  IndexInfo *indexInfo;
3177  IndexVacuumInfo ivinfo;
3179  Oid save_userid;
3180  int save_sec_context;
3181  int save_nestlevel;
3182 
3183  {
3184  const int index[] = {
3190  };
3191  const int64 val[] = {
3193  0, 0, 0, 0
3194  };
3195 
3196  pgstat_progress_update_multi_param(5, index, val);
3197  }
3198 
3199  /* Open and lock the parent heap relation */
3200  heapRelation = table_open(heapId, ShareUpdateExclusiveLock);
3201  /* And the target index relation */
3202  indexRelation = index_open(indexId, RowExclusiveLock);
3203 
3204  /*
3205  * Fetch info needed for index_insert. (You might think this should be
3206  * passed in from DefineIndex, but its copy is long gone due to having
3207  * been built in a previous transaction.)
3208  */
3209  indexInfo = BuildIndexInfo(indexRelation);
3210 
3211  /* mark build is concurrent just for consistency */
3212  indexInfo->ii_Concurrent = true;
3213 
3214  /*
3215  * Switch to the table owner's userid, so that any index functions are run
3216  * as that user. Also lock down security-restricted operations and
3217  * arrange to make GUC variable changes local to this command.
3218  */
3219  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3220  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3221  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3222  save_nestlevel = NewGUCNestLevel();
3223 
3224  /*
3225  * Scan the index and gather up all the TIDs into a tuplesort object.
3226  */
3227  ivinfo.index = indexRelation;
3228  ivinfo.analyze_only = false;
3229  ivinfo.report_progress = true;
3230  ivinfo.estimated_count = true;
3231  ivinfo.message_level = DEBUG2;
3232  ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples;
3233  ivinfo.strategy = NULL;
3234 
3235  /*
3236  * Encode TIDs as int8 values for the sort, rather than directly sorting
3237  * item pointers. This can be significantly faster, primarily because TID
3238  * is a pass-by-reference type on all platforms, whereas int8 is
3239  * pass-by-value on most platforms.
3240  */
3241  state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator,
3242  InvalidOid, false,
3244  NULL, false);
3245  state.htups = state.itups = state.tups_inserted = 0;
3246 
3247  /* ambulkdelete updates progress metrics */
3248  (void) index_bulk_delete(&ivinfo, NULL,
3249  validate_index_callback, (void *) &state);
3250 
3251  /* Execute the sort */
3252  {
3253  const int index[] = {
3257  };
3258  const int64 val[] = {
3260  0, 0
3261  };
3262 
3263  pgstat_progress_update_multi_param(3, index, val);
3264  }
3266 
3267  /*
3268  * Now scan the heap and "merge" it with the index
3269  */
3272  table_index_validate_scan(heapRelation,
3273  indexRelation,
3274  indexInfo,
3275  snapshot,
3276  &state);
3277 
3278  /* Done with tuplesort object */
3279  tuplesort_end(state.tuplesort);
3280 
3281  elog(DEBUG2,
3282  "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
3283  state.htups, state.itups, state.tups_inserted);
3284 
3285  /* Roll back any GUC changes executed by index functions */
3286  AtEOXact_GUC(false, save_nestlevel);
3287 
3288  /* Restore userid and security context */
3289  SetUserIdAndSecContext(save_userid, save_sec_context);
3290 
3291  /* Close rels, but keep locks */
3292  index_close(indexRelation, NoLock);
3293  table_close(heapRelation, NoLock);
3294 }
3295 
3296 /*
3297  * validate_index_callback - bulkdelete callback to collect the index TIDs
3298  */
3299 static bool
3300 validate_index_callback(ItemPointer itemptr, void *opaque)
3301 {
3303  int64 encoded = itemptr_encode(itemptr);
3304 
3305  tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false);
3306  state->itups += 1;
3307  return false; /* never actually delete anything */
3308 }
3309 
3310 /*
3311  * index_set_state_flags - adjust pg_index state flags
3312  *
3313  * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index
3314  * flags that denote the index's state.
3315  *
3316  * Note that CatalogTupleUpdate() sends a cache invalidation message for the
3317  * tuple, so other sessions will hear about the update as soon as we commit.
3318  */
3319 void
3321 {
3322  Relation pg_index;
3323  HeapTuple indexTuple;
3324  Form_pg_index indexForm;
3325 
3326  /* Open pg_index and fetch a writable copy of the index's tuple */
3327  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3328 
3329  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3330  ObjectIdGetDatum(indexId));
3331  if (!HeapTupleIsValid(indexTuple))
3332  elog(ERROR, "cache lookup failed for index %u", indexId);
3333  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3334 
3335  /* Perform the requested state change on the copy */
3336  switch (action)
3337  {
3339  /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */
3340  Assert(indexForm->indislive);
3341  Assert(!indexForm->indisready);
3342  Assert(!indexForm->indisvalid);
3343  indexForm->indisready = true;
3344  break;
3346  /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */
3347  Assert(indexForm->indislive);
3348  Assert(indexForm->indisready);
3349  Assert(!indexForm->indisvalid);
3350  indexForm->indisvalid = true;
3351  break;
3353 
3354  /*
3355  * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence
3356  *
3357  * If indisready == true we leave it set so the index still gets
3358  * maintained by active transactions. We only need to ensure that
3359  * indisvalid is false. (We don't assert that either is initially
3360  * true, though, since we want to be able to retry a DROP INDEX
3361  * CONCURRENTLY that failed partway through.)
3362  *
3363  * Note: the CLUSTER logic assumes that indisclustered cannot be
3364  * set on any invalid index, so clear that flag too. Similarly,
3365  * ALTER TABLE assumes that indisreplident cannot be set for
3366  * invalid indexes.
3367  */
3368  indexForm->indisvalid = false;
3369  indexForm->indisclustered = false;
3370  indexForm->indisreplident = false;
3371  break;
3372  case INDEX_DROP_SET_DEAD:
3373 
3374  /*
3375  * Clear indisready/indislive during DROP INDEX CONCURRENTLY
3376  *
3377  * We clear both indisready and indislive, because we not only
3378  * want to stop updates, we want to prevent sessions from touching
3379  * the index at all.
3380  */
3381  Assert(!indexForm->indisvalid);
3382  Assert(!indexForm->indisclustered);
3383  Assert(!indexForm->indisreplident);
3384  indexForm->indisready = false;
3385  indexForm->indislive = false;
3386  break;
3387  }
3388 
3389  /* ... and update it */
3390  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3391 
3392  table_close(pg_index, RowExclusiveLock);
3393 }
3394 
3395 
3396 /*
3397  * IndexGetRelation: given an index's relation OID, get the OID of the
3398  * relation it is an index on. Uses the system cache.
3399  */
3400 Oid
3401 IndexGetRelation(Oid indexId, bool missing_ok)
3402 {
3403  HeapTuple tuple;
3405  Oid result;
3406 
3407  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
3408  if (!HeapTupleIsValid(tuple))
3409  {
3410  if (missing_ok)
3411  return InvalidOid;
3412  elog(ERROR, "cache lookup failed for index %u", indexId);
3413  }
3414  index = (Form_pg_index) GETSTRUCT(tuple);
3415  Assert(index->indexrelid == indexId);
3416 
3417  result = index->indrelid;
3418  ReleaseSysCache(tuple);
3419  return result;
3420 }
3421 
3422 /*
3423  * reindex_index - This routine is used to recreate a single index
3424  */
3425 void
3426 reindex_index(Oid indexId, bool skip_constraint_checks, char persistence,
3427  int options)
3428 {
3429  Relation iRel,
3430  heapRelation;
3431  Oid heapId;
3432  IndexInfo *indexInfo;
3433  volatile bool skipped_constraint = false;
3434  PGRUsage ru0;
3435  bool progress = (options & REINDEXOPT_REPORT_PROGRESS) != 0;
3436 
3437  pg_rusage_init(&ru0);
3438 
3439  /*
3440  * Open and lock the parent heap relation. ShareLock is sufficient since
3441  * we only need to be sure no schema or data changes are going on.
3442  */
3443  heapId = IndexGetRelation(indexId,
3444  (options & REINDEXOPT_MISSING_OK) != 0);
3445  /* if relation is missing, leave */
3446  if (!OidIsValid(heapId))
3447  return;
3448 
3449  if ((options & REINDEXOPT_MISSING_OK) != 0)
3450  heapRelation = try_table_open(heapId, ShareLock);
3451  else
3452  heapRelation = table_open(heapId, ShareLock);
3453 
3454  /* if relation is gone, leave */
3455  if (!heapRelation)
3456  return;
3457 
3458  if (progress)
3459  {
3461  heapId);
3465  indexId);
3466  }
3467 
3468  /*
3469  * Open the target index relation and get an exclusive lock on it, to
3470  * ensure that no one else is touching this particular index.
3471  */
3472  iRel = index_open(indexId, AccessExclusiveLock);
3473 
3474  if (progress)
3476  iRel->rd_rel->relam);
3477 
3478  /*
3479  * Partitioned indexes should never get processed here, as they have no
3480  * physical storage.
3481  */
3482  if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
3483  elog(ERROR, "cannot reindex partitioned index \"%s.%s\"",
3485  RelationGetRelationName(iRel));
3486 
3487  /*
3488  * Don't allow reindex on temp tables of other backends ... their local
3489  * buffer manager is not going to cope.
3490  */
3491  if (RELATION_IS_OTHER_TEMP(iRel))
3492  ereport(ERROR,
3493  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3494  errmsg("cannot reindex temporary tables of other sessions")));
3495 
3496  /*
3497  * Don't allow reindex of an invalid index on TOAST table. This is a
3498  * leftover from a failed REINDEX CONCURRENTLY, and if rebuilt it would
3499  * not be possible to drop it anymore.
3500  */
3502  !get_index_isvalid(indexId))
3503  ereport(ERROR,
3504  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3505  errmsg("cannot reindex invalid index on TOAST table")));
3506 
3507  /*
3508  * Also check for active uses of the index in the current transaction; we
3509  * don't want to reindex underneath an open indexscan.
3510  */
3511  CheckTableNotInUse(iRel, "REINDEX INDEX");
3512 
3513  /*
3514  * All predicate locks on the index are about to be made invalid. Promote
3515  * them to relation locks on the heap.
3516  */
3518 
3519  /* Fetch info needed for index_build */
3520  indexInfo = BuildIndexInfo(iRel);
3521 
3522  /* If requested, skip checking uniqueness/exclusion constraints */
3523  if (skip_constraint_checks)
3524  {
3525  if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL)
3526  skipped_constraint = true;
3527  indexInfo->ii_Unique = false;
3528  indexInfo->ii_ExclusionOps = NULL;
3529  indexInfo->ii_ExclusionProcs = NULL;
3530  indexInfo->ii_ExclusionStrats = NULL;
3531  }
3532 
3533  /* Suppress use of the target index while rebuilding it */
3534  SetReindexProcessing(heapId, indexId);
3535 
3536  /* Create a new physical relation for the index */
3537  RelationSetNewRelfilenode(iRel, persistence);
3538 
3539  /* Initialize the index and rebuild */
3540  /* Note: we do not need to re-establish pkey setting */
3541  index_build(heapRelation, iRel, indexInfo, true, true);
3542 
3543  /* Re-allow use of target index */
3545 
3546  /*
3547  * If the index is marked invalid/not-ready/dead (ie, it's from a failed
3548  * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway),
3549  * and we didn't skip a uniqueness check, we can now mark it valid. This
3550  * allows REINDEX to be used to clean up in such cases.
3551  *
3552  * We can also reset indcheckxmin, because we have now done a
3553  * non-concurrent index build, *except* in the case where index_build
3554  * found some still-broken HOT chains. If it did, and we don't have to
3555  * change any of the other flags, we just leave indcheckxmin alone (note
3556  * that index_build won't have changed it, because this is a reindex).
3557  * This is okay and desirable because not updating the tuple leaves the
3558  * index's usability horizon (recorded as the tuple's xmin value) the same
3559  * as it was.
3560  *
3561  * But, if the index was invalid/not-ready/dead and there were broken HOT
3562  * chains, we had better force indcheckxmin true, because the normal
3563  * argument that the HOT chains couldn't conflict with the index is
3564  * suspect for an invalid index. (A conflict is definitely possible if
3565  * the index was dead. It probably shouldn't happen otherwise, but let's
3566  * be conservative.) In this case advancing the usability horizon is
3567  * appropriate.
3568  *
3569  * Another reason for avoiding unnecessary updates here is that while
3570  * reindexing pg_index itself, we must not try to update tuples in it.
3571  * pg_index's indexes should always have these flags in their clean state,
3572  * so that won't happen.
3573  *
3574  * If early pruning/vacuuming is enabled for the heap relation, the
3575  * usability horizon must be advanced to the current transaction on every
3576  * build or rebuild. pg_index is OK in this regard because catalog tables
3577  * are not subject to early cleanup.
3578  */
3579  if (!skipped_constraint)
3580  {
3581  Relation pg_index;
3582  HeapTuple indexTuple;
3583  Form_pg_index indexForm;
3584  bool index_bad;
3585  bool early_pruning_enabled = EarlyPruningEnabled(heapRelation);
3586 
3587  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3588 
3589  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3590  ObjectIdGetDatum(indexId));
3591  if (!HeapTupleIsValid(indexTuple))
3592  elog(ERROR, "cache lookup failed for index %u", indexId);
3593  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3594 
3595  index_bad = (!indexForm->indisvalid ||
3596  !indexForm->indisready ||
3597  !indexForm->indislive);
3598  if (index_bad ||
3599  (indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain) ||
3600  early_pruning_enabled)
3601  {
3602  if (!indexInfo->ii_BrokenHotChain && !early_pruning_enabled)
3603  indexForm->indcheckxmin = false;
3604  else if (index_bad || early_pruning_enabled)
3605  indexForm->indcheckxmin = true;
3606  indexForm->indisvalid = true;
3607  indexForm->indisready = true;
3608  indexForm->indislive = true;
3609  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3610 
3611  /*
3612  * Invalidate the relcache for the table, so that after we commit
3613  * all sessions will refresh the table's index list. This ensures
3614  * that if anyone misses seeing the pg_index row during this
3615  * update, they'll refresh their list before attempting any update
3616  * on the table.
3617  */
3618  CacheInvalidateRelcache(heapRelation);
3619  }
3620 
3621  table_close(pg_index, RowExclusiveLock);
3622  }
3623 
3624  /* Log what we did */
3625  if (options & REINDEXOPT_VERBOSE)
3626  ereport(INFO,
3627  (errmsg("index \"%s\" was reindexed",
3628  get_rel_name(indexId)),
3629  errdetail_internal("%s",
3630  pg_rusage_show(&ru0))));
3631 
3632  if (progress)
3634 
3635  /* Close rels, but keep locks */
3636  index_close(iRel, NoLock);
3637  table_close(heapRelation, NoLock);
3638 }
3639 
3640 /*
3641  * reindex_relation - This routine is used to recreate all indexes
3642  * of a relation (and optionally its toast relation too, if any).
3643  *
3644  * "flags" is a bitmask that can include any combination of these bits:
3645  *
3646  * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any).
3647  *
3648  * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely
3649  * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its
3650  * indexes are inconsistent with it. This makes things tricky if the relation
3651  * is a system catalog that we might consult during the reindexing. To deal
3652  * with that case, we mark all of the indexes as pending rebuild so that they
3653  * won't be trusted until rebuilt. The caller is required to call us *without*
3654  * having made the rebuilt table visible by doing CommandCounterIncrement;
3655  * we'll do CCI after having collected the index list. (This way we can still
3656  * use catalog indexes while collecting the list.)
3657  *
3658  * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion
3659  * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or
3660  * CLUSTER on a system catalog must omit this flag. REINDEX should be used to
3661  * rebuild an index if constraint inconsistency is suspected. For optimal
3662  * performance, other callers should include the flag only after transforming
3663  * the data in a manner that risks a change in constraint validity.
3664  *
3665  * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the
3666  * rebuilt indexes to unlogged.
3667  *
3668  * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the
3669  * rebuilt indexes to permanent.
3670  *
3671  * Returns true if any indexes were rebuilt (including toast table's index
3672  * when relevant). Note that a CommandCounterIncrement will occur after each
3673  * index rebuild.
3674  */
3675 bool
3677 {
3678  Relation rel;
3679  Oid toast_relid;
3680  List *indexIds;
3681  char persistence;
3682  bool result;
3683  ListCell *indexId;
3684  int i;
3685 
3686  /*
3687  * Open and lock the relation. ShareLock is sufficient since we only need
3688  * to prevent schema and data changes in it. The lock level used here
3689  * should match ReindexTable().
3690  */
3691  if ((options & REINDEXOPT_MISSING_OK) != 0)
3692  rel = try_table_open(relid, ShareLock);
3693  else
3694  rel = table_open(relid, ShareLock);
3695 
3696  /* if relation is gone, leave */
3697  if (!rel)
3698  return false;
3699 
3700  /*
3701  * Partitioned tables should never get processed here, as they have no
3702  * physical storage.
3703  */
3704  if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
3705  elog(ERROR, "cannot reindex partitioned table \"%s.%s\"",
3708 
3709  toast_relid = rel->rd_rel->reltoastrelid;
3710 
3711  /*
3712  * Get the list of index OIDs for this relation. (We trust to the
3713  * relcache to get this with a sequential scan if ignoring system
3714  * indexes.)
3715  */
3716  indexIds = RelationGetIndexList(rel);
3717 
3718  if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
3719  {
3720  /* Suppress use of all the indexes until they are rebuilt */
3721  SetReindexPending(indexIds);
3722 
3723  /*
3724  * Make the new heap contents visible --- now things might be
3725  * inconsistent!
3726  */
3728  }
3729 
3730  /*
3731  * Compute persistence of indexes: same as that of owning rel, unless
3732  * caller specified otherwise.
3733  */
3735  persistence = RELPERSISTENCE_UNLOGGED;
3736  else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT)
3737  persistence = RELPERSISTENCE_PERMANENT;
3738  else
3739  persistence = rel->rd_rel->relpersistence;
3740 
3741  /* Reindex all the indexes. */
3742  i = 1;
3743  foreach(indexId, indexIds)
3744  {
3745  Oid indexOid = lfirst_oid(indexId);
3746  Oid indexNamespaceId = get_rel_namespace(indexOid);
3747 
3748  /*
3749  * Skip any invalid indexes on a TOAST table. These can only be
3750  * duplicate leftovers from a failed REINDEX CONCURRENTLY, and if
3751  * rebuilt it would not be possible to drop them anymore.
3752  */
3753  if (IsToastNamespace(indexNamespaceId) &&
3754  !get_index_isvalid(indexOid))
3755  {
3756  ereport(WARNING,
3757  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3758  errmsg("cannot reindex invalid index \"%s.%s\" on TOAST table, skipping",
3759  get_namespace_name(indexNamespaceId),
3760  get_rel_name(indexOid))));
3761  continue;
3762  }
3763 
3764  reindex_index(indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS),
3765  persistence, options);
3766 
3768 
3769  /* Index should no longer be in the pending list */
3770  Assert(!ReindexIsProcessingIndex(indexOid));
3771 
3772  /* Set index rebuild count */
3774  i);
3775  i++;
3776  }
3777 
3778  /*
3779  * Close rel, but continue to hold the lock.
3780  */
3781  table_close(rel, NoLock);
3782 
3783  result = (indexIds != NIL);
3784 
3785  /*
3786  * If the relation has a secondary toast rel, reindex that too while we
3787  * still hold the lock on the main table.
3788  */
3789  if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid))
3790  {
3791  /*
3792  * Note that this should fail if the toast relation is missing, so
3793  * reset REINDEXOPT_MISSING_OK.
3794  */
3795  result |= reindex_relation(toast_relid, flags,
3796  options & ~(REINDEXOPT_MISSING_OK));
3797  }
3798 
3799  return result;
3800 }
3801 
3802 
3803 /* ----------------------------------------------------------------
3804  * System index reindexing support
3805  *
3806  * When we are busy reindexing a system index, this code provides support
3807  * for preventing catalog lookups from using that index. We also make use
3808  * of this to catch attempted uses of user indexes during reindexing of
3809  * those indexes. This information is propagated to parallel workers;
3810  * attempting to change it during a parallel operation is not permitted.
3811  * ----------------------------------------------------------------
3812  */
3813 
3817 static int reindexingNestLevel = 0;
3818 
3819 /*
3820  * ReindexIsProcessingHeap
3821  * True if heap specified by OID is currently being reindexed.
3822  */
3823 bool
3825 {
3826  return heapOid == currentlyReindexedHeap;
3827 }
3828 
3829 /*
3830  * ReindexIsCurrentlyProcessingIndex
3831  * True if index specified by OID is currently being reindexed.
3832  */
3833 static bool
3835 {
3836  return indexOid == currentlyReindexedIndex;
3837 }
3838 
3839 /*
3840  * ReindexIsProcessingIndex
3841  * True if index specified by OID is currently being reindexed,
3842  * or should be treated as invalid because it is awaiting reindex.
3843  */
3844 bool
3846 {
3847  return indexOid == currentlyReindexedIndex ||
3848  list_member_oid(pendingReindexedIndexes, indexOid);
3849 }
3850 
3851 /*
3852  * SetReindexProcessing
3853  * Set flag that specified heap/index are being reindexed.
3854  */
3855 static void
3856 SetReindexProcessing(Oid heapOid, Oid indexOid)
3857 {
3858  Assert(OidIsValid(heapOid) && OidIsValid(indexOid));
3859  /* Reindexing is not re-entrant. */
3861  elog(ERROR, "cannot reindex while reindexing");
3862  currentlyReindexedHeap = heapOid;
3863  currentlyReindexedIndex = indexOid;
3864  /* Index is no longer "pending" reindex. */
3865  RemoveReindexPending(indexOid);
3866  /* This may have been set already, but in case it isn't, do so now. */
3868 }
3869 
3870 /*
3871  * ResetReindexProcessing
3872  * Unset reindexing status.
3873  */
3874 static void
3876 {
3879  /* reindexingNestLevel remains set till end of (sub)transaction */
3880 }
3881 
3882 /*
3883  * SetReindexPending
3884  * Mark the given indexes as pending reindex.
3885  *
3886  * NB: we assume that the current memory context stays valid throughout.
3887  */
3888 static void
3890 {
3891  /* Reindexing is not re-entrant. */
3892  if (pendingReindexedIndexes)
3893  elog(ERROR, "cannot reindex while reindexing");
3894  if (IsInParallelMode())
3895  elog(ERROR, "cannot modify reindex state during a parallel operation");
3896  pendingReindexedIndexes = list_copy(indexes);
3898 }
3899 
3900 /*
3901  * RemoveReindexPending
3902  * Remove the given index from the pending list.
3903  */
3904 static void
3906 {
3907  if (IsInParallelMode())
3908  elog(ERROR, "cannot modify reindex state during a parallel operation");
3909  pendingReindexedIndexes = list_delete_oid(pendingReindexedIndexes,
3910  indexOid);
3911 }
3912 
3913 /*
3914  * ResetReindexState
3915  * Clear all reindexing state during (sub)transaction abort.
3916  */
3917 void
3918 ResetReindexState(int nestLevel)
3919 {
3920  /*
3921  * Because reindexing is not re-entrant, we don't need to cope with nested
3922  * reindexing states. We just need to avoid messing up the outer-level
3923  * state in case a subtransaction fails within a REINDEX. So checking the
3924  * current nest level against that of the reindex operation is sufficient.
3925  */
3926  if (reindexingNestLevel >= nestLevel)
3927  {
3930 
3931  /*
3932  * We needn't try to release the contents of pendingReindexedIndexes;
3933  * that list should be in a transaction-lifespan context, so it will
3934  * go away automatically.
3935  */
3936  pendingReindexedIndexes = NIL;
3937 
3938  reindexingNestLevel = 0;
3939  }
3940 }
3941 
3942 /*
3943  * EstimateReindexStateSpace
3944  * Estimate space needed to pass reindex state to parallel workers.
3945  */
3946 Size
3948 {
3949  return offsetof(SerializedReindexState, pendingReindexedIndexes)
3950  + mul_size(sizeof(Oid), list_length(pendingReindexedIndexes));
3951 }
3952 
3953 /*
3954  * SerializeReindexState
3955  * Serialize reindex state for parallel workers.
3956  */
3957 void
3958 SerializeReindexState(Size maxsize, char *start_address)
3959 {
3960  SerializedReindexState *sistate = (SerializedReindexState *) start_address;
3961  int c = 0;
3962  ListCell *lc;
3963 
3966  sistate->numPendingReindexedIndexes = list_length(pendingReindexedIndexes);
3967  foreach(lc, pendingReindexedIndexes)
3968  sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc);
3969 }
3970 
3971 /*
3972  * RestoreReindexState
3973  * Restore reindex state in a parallel worker.
3974  */
3975 void
3976 RestoreReindexState(void *reindexstate)
3977 {
3978  SerializedReindexState *sistate = (SerializedReindexState *) reindexstate;
3979  int c = 0;
3980  MemoryContext oldcontext;
3981 
3984 
3985  Assert(pendingReindexedIndexes == NIL);
3987  for (c = 0; c < sistate->numPendingReindexedIndexes; ++c)
3988  pendingReindexedIndexes =
3989  lappend_oid(pendingReindexedIndexes,
3990  sistate->pendingReindexedIndexes[c]);
3991  MemoryContextSwitchTo(oldcontext);
3992 
3993  /* Note the worker has its own transaction nesting level */
3995 }
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:91
signed short int16
Definition: c.h:361
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2585
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:680
void WaitForLockers(LOCKTAG heaplocktag, LOCKMODE lockmode, bool progress)
Definition: lmgr.c:957
#define NIL
Definition: pg_list.h:65
Definition: c.h:601
struct IndexAmRoutine * rd_indam
Definition: rel.h:188
Oid IndexGetRelation(Oid indexId, bool missing_ok)
Definition: index.c:3401
void RelationGetExclusionInfo(Relation indexRelation, Oid **operators, Oid **procs, uint16 **strategies)
Definition: relcache.c:5182
void ResetReindexState(int nestLevel)
Definition: index.c:3918
uint16 * ii_UniqueStrats
Definition: execnodes.h:170
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:98
List * SystemFuncName(char *name)
LockRelId lockRelId
Definition: rel.h:44
static Oid currentlyReindexedHeap
Definition: index.c:3814
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT
Definition: progress.h:95
bool CompareIndexInfo(IndexInfo *info1, IndexInfo *info2, Oid *collations1, Oid *collations2, Oid *opfamilies1, Oid *opfamilies2, AttrMap *attmap)
Definition: index.c:2406
static void index_update_stats(Relation rel, bool hasindex, double reltuples)
Definition: index.c:2664
bool ConstraintNameIsUsed(ConstraintCategory conCat, Oid objId, const char *conname)
void tuplesort_performsort(Tuplesortstate *state)
Definition: tuplesort.c:2021
static Datum ExecEvalExprSwitchContext(ExprState *state, ExprContext *econtext, bool *isNull)
Definition: executor.h:305
#define DEBUG1
Definition: elog.h:25
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:167
void smgrcreate(SMgrRelation reln, ForkNumber forknum, bool isRedo)
Definition: smgr.c:334
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:569
#define GETSTRUCT(TUP)
Definition: htup_details.h:655
void index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
Definition: index.c:2014
static void UpdateIndexRelation(Oid indexoid, Oid heapoid, Oid parentIndexId, IndexInfo *indexInfo, Oid *collationOids, Oid *classOids, int16 *coloptions, bool primary, bool isexclusion, bool immediate, bool isvalid, bool isready)
Definition: index.c:520
void tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull)
Definition: tuplesort.c:1786
Oid currentlyReindexedIndex
Definition: index.c:95
List * ii_Predicate
Definition: execnodes.h:163
Tuplesortstate * tuplesort_begin_datum(Oid datumType, Oid sortOperator, Oid sortCollation, bool nullsFirstFlag, int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:1228
static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid)
Definition: index.c:3834
PgStat_Counter tuples_returned
Definition: pgstat.h:671
bool IsSystemRelation(Relation relation)
Definition: catalog.c:68
uint32 TransactionId
Definition: c.h:520
#define INDEX_CREATE_IF_NOT_EXISTS
Definition: index.h:51
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:299
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:810
TableScanDesc table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
Definition: tableam.c:112
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:310
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:44
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:588
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:3032
#define RelationGetDescr(relation)
Definition: rel.h:482
#define INDEX_CREATE_INVALID
Definition: index.h:53
int LOCKMODE
Definition: lockdefs.h:26
PgStat_Counter t_tuples_fetched
Definition: pgstat.h:105
void pgstat_progress_start_command(ProgressCommandType cmdtype, Oid relid)
Definition: pgstat.c:3210
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:934
void index_set_state_flags(Oid indexId, IndexStateFlagsAction action)
Definition: index.c:3320
void namestrcpy(Name name, const char *str)
Definition: name.c:233
uint16 bits16
Definition: c.h:382
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:275
static void SetReindexProcessing(Oid heapOid, Oid indexOid)
Definition: index.c:3856
static void SetReindexPending(List *indexes)
Definition: index.c:3889
#define PointerGetDatum(X)
Definition: postgres.h:556
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
Node * whenClause
Definition: parsenodes.h:2442
struct SMgrRelationData * rd_smgr
Definition: rel.h:57
Oid CreateConstraintEntry(const char *constraintName, Oid constraintNamespace, char constraintType, bool isDeferrable, bool isDeferred, bool isValidated, Oid parentConstrId, Oid relId, const int16 *constraintKey, int constraintNKeys, int constraintNTotalKeys, Oid domainId, Oid indexRelId, Oid foreignRelId, const int16 *foreignKey, const Oid *pfEqOp, const Oid *ppEqOp, const Oid *ffEqOp, int foreignNKeys, char foreignUpdateType, char foreignDeleteType, char foreignMatchType, const Oid *exclOp, Node *conExpr, const char *conBin, bool conIsLocal, int conInhCount, bool conNoInherit, bool is_internal)
Definition: pg_constraint.c:50
void SerializeReindexState(Size maxsize, char *start_address)
Definition: index.c:3958
void pgstat_progress_update_param(int index, int64 val)
Definition: pgstat.c:3231
ExprState * ii_PredicateState
Definition: execnodes.h:164
#define RelationGetForm(relation)
Definition: rel.h:450
void CommitTransactionCommand(void)
Definition: xact.c:2947
MemoryContext ecxt_per_tuple_memory
Definition: execnodes.h:234
void record_object_address_dependencies(const ObjectAddress *depender, ObjectAddresses *referenced, DependencyType behavior)
Definition: dependency.c:2676
List * RelationGetDummyIndexExpressions(Relation relation)
Definition: relcache.c:4807
bool analyze_only
Definition: genam.h:47
int2vector * buildint2vector(const int16 *int2s, int n)
Definition: int.c:114
Oid dbId
Definition: rel.h:39
bool report_progress
Definition: genam.h:48
Oid get_rel_namespace(Oid relid)
Definition: lsyscache.c:1864
BufferAccessStrategy strategy
Definition: genam.h:52
static void InitializeAttributeOids(Relation indexRelation, int numatts, Oid indexoid)
Definition: index.c:470
Oid binary_upgrade_next_index_pg_class_oid
Definition: index.c:86
int maplen
Definition: attmap.h:37
#define REINDEXOPT_REPORT_PROGRESS
Definition: parsenodes.h:3355
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
#define Int16GetDatum(X)
Definition: postgres.h:451
Definition: lock.h:164
bool DeleteInheritsTuple(Oid inhrelid, Oid inhparent)
Definition: pg_inherits.c:454
static List * pendingReindexedIndexes
Definition: index.c:3816
List * list_copy(const List *oldlist)
Definition: list.c:1403
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:283
Definition: nodes.h:528
Oid * ii_ExclusionProcs
Definition: execnodes.h:166
bool get_collation_isdeterministic(Oid colloid)
Definition: lsyscache.c:1052
int errcode(int sqlerrcode)
Definition: elog.c:610
void * stringToNode(const char *str)
Definition: read.c:89
Relation index
Definition: genam.h:46
#define MemSet(start, val, len)
Definition: c.h:949
#define INFO
Definition: elog.h:33
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition: heaptuple.c:359
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:137
#define PROGRESS_CREATEIDX_TUPLES_TOTAL
Definition: progress.h:84
uint32 BlockNumber
Definition: block.h:31
void RelationForgetRelation(Oid rid)
Definition: relcache.c:2744
void PopActiveSnapshot(void)
Definition: snapmgr.c:759
void CatalogTupleDelete(Relation heapRel, ItemPointer tid)
Definition: indexing.c:350
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition: pg_depend.c:43
void add_exact_object_address(const ObjectAddress *object, ObjectAddresses *addrs)
Definition: dependency.c:2467
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2301
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:248
PgStat_Counter numscans
Definition: pgstat.h:669
#define INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS
Definition: index.h:79
void visibilitymap_count(Relation rel, BlockNumber *all_visible, BlockNumber *all_frozen)
void index_check_primary_key(Relation heapRel, IndexInfo *indexInfo, bool is_alter_table, IndexStmt *stmt)
Definition: index.c:201
PgStat_TableCounts t_counts
Definition: pgstat.h:161
ObjectAddresses * new_object_addresses(void)
Definition: dependency.c:2412
void index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
Definition: index.c:1444
Node * map_variable_attnos(Node *node, int target_varno, int sublevels_up, const AttrMap *attno_map, Oid to_rowtype, bool *found_whole_row)
#define REINDEX_REL_SUPPRESS_INDEX_USE
Definition: index.h:141
static bool table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:904
void free_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2707
bool IsToastNamespace(Oid namespaceId)
Definition: catalog.c:195
Form_pg_class rd_rel
Definition: rel.h:109
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1338
unsigned int Oid
Definition: postgres_ext.h:31
static bool ExecQual(ExprState *state, ExprContext *econtext)
Definition: executor.h:370
Relation try_table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:69
Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER]
Definition: index.c:97
Oid amkeytype
Definition: amapi.h:249
Oid index_create(Relation heapRelation, const char *indexRelationName, Oid indexRelationId, Oid parentIndexRelid, Oid parentConstraintId, Oid relFileNode, IndexInfo *indexInfo, List *indexColNames, Oid accessMethodObjectId, Oid tableSpaceId, Oid *collationObjectId, Oid *classObjectId, int16 *coloptions, Datum reloptions, bits16 flags, bits16 constr_flags, bool allow_system_table_mods, bool is_internal, Oid *constraintId)
Definition: index.c:684
List * lappend_oid(List *list, Oid datum)
Definition: list.c:357
#define OidIsValid(objectId)
Definition: c.h:651
#define InvokeObjectPostAlterHookArg(classId, objectId, subId, auxiliaryId, is_internal)
Definition: objectaccess.h:178
PgStat_Counter t_tuples_returned
Definition: pgstat.h:104
Oid * ii_UniqueOps
Definition: execnodes.h:168
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:357
bool IsBinaryUpgrade
Definition: globals.c:110
double itups
Definition: index.h:37
static TableScanDesc table_beginscan_strat(Relation rel, Snapshot snapshot, int nkeys, struct ScanKeyData *key, bool allow_strat, bool allow_sync)
Definition: tableam.h:779
#define REINDEXOPT_VERBOSE
Definition: parsenodes.h:3354
signed int int32
Definition: c.h:362
Definition: attmap.h:34
int errdetail_internal(const char *fmt,...)
Definition: elog.c:984
static void ResetReindexProcessing(void)
Definition: index.c:3875
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:4861
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
Definition: type.h:89
#define INDEX_CONSTR_CREATE_INIT_DEFERRED
Definition: index.h:77
static void AppendAttributeTuples(Relation indexRelation, Datum *attopts)
Definition: index.c:488
void RelationSetNewRelfilenode(Relation relation, char persistence)
Definition: relcache.c:3587
void SetRelationHasSubclass(Oid relationId, bool relhassubclass)
Definition: tablecmds.c:3005
void InsertPgClassTuple(Relation pg_class_desc, Relation new_rel_desc, Oid new_rel_oid, Datum relacl, Datum reloptions)
Definition: heap.c:911
#define RelationOpenSmgr(relation)
Definition: rel.h:513
RangeVar * constrrel
Definition: parsenodes.h:2449
void FreeExecutorState(EState *estate)
Definition: execUtils.c:191
#define GetPerTupleExprContext(estate)
Definition: executor.h:507
List * ii_ExpressionsState
Definition: execnodes.h:162
Form_pg_index rd_index
Definition: rel.h:174
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:476
unsigned short uint16
Definition: c.h:373
void pfree(void *pointer)
Definition: mcxt.c:1057
bool IsInParallelMode(void)
Definition: xact.c:1012
Oid * rd_indcollation
Definition: rel.h:199
#define EarlyPruningEnabled(rel)
Definition: snapmgr.h:45
void UnlockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:382
#define ObjectIdGetDatum(X)
Definition: postgres.h:507
#define ERROR
Definition: elog.h:43
int ii_NumIndexKeyAttrs
Definition: execnodes.h:159
Definition: rel.h:36
ambuild_function ambuild
Definition: amapi.h:258
void LockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:369
IndexAmRoutine * GetIndexAmRoutineByAmId(Oid amoid, bool noerror)
Definition: amapi.c:56
#define RelationIsValid(relation)
Definition: rel.h:429
bool ReindexIsProcessingHeap(Oid heapOid)
Definition: index.c:3824
Relation relation_open(Oid relationId, LOCKMODE lockmode)
Definition: relation.c:48
ItemPointerData t_self
Definition: htup.h:65
Oid get_relname_relid(const char *relname, Oid relnamespace)
Definition: lsyscache.c:1797
#define DEBUG2
Definition: elog.h:24
Tuplesortstate * tuplesort
Definition: index.h:35
#define AttrNumberGetAttrOffset(attNum)
Definition: attnum.h:51
PgStat_StatTabEntry * pgstat_fetch_stat_tabentry(Oid relid)
Definition: pgstat.c:2508
#define SET_LOCKTAG_RELATION(locktag, dboid, reloid)
Definition: lock.h:181
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3191
char * c
#define NoLock
Definition: lockdefs.h:34
LockInfoData rd_lockInfo
Definition: rel.h:112
#define IsNormalProcessingMode()
Definition: miscadmin.h:395
HeapTuple heap_getnext(TableScanDesc sscan, ScanDirection direction)
Definition: heapam.c:1286
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1224
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:4748
Oid * ii_UniqueProcs
Definition: execnodes.h:169
Oid values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:609
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:581
#define RowExclusiveLock
Definition: lockdefs.h:38
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:5956
#define PROGRESS_CREATEIDX_INDEX_OID
Definition: progress.h:80
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:164
IndexStateFlagsAction
Definition: index.h:24
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define InvalidTransactionId
Definition: transam.h:31
#define RelationGetRelationName(relation)
Definition: rel.h:490
ExprState * ExecPrepareQual(List *qual, EState *estate)
Definition: execExpr.c:520
static ListCell * list_head(const List *l)
Definition: pg_list.h:125
List * list_delete_oid(List *list, Oid datum)
Definition: list.c:834
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:193
PgStat_Counter tuples_fetched
Definition: pgstat.h:672
bool ii_BrokenHotChain
Definition: execnodes.h:175
bool ActiveSnapshotSet(void)
Definition: snapmgr.c:798
Oid * rd_opfamily
Definition: rel.h:189
Oid get_index_constraint(Oid indexId)
Definition: pg_depend.c:1007
#define TriggerConstraintIndexId
Definition: indexing.h:262
static int64 itemptr_encode(ItemPointer itemptr)
Definition: index.h:170
static TupleDesc ConstructTupleDescriptor(Relation heapRelation, IndexInfo *indexInfo, List *indexColNames, Oid accessMethodObjectId, Oid *collationObjectId, Oid *classObjectId)
Definition: index.c:267
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:475
void InsertPgAttributeTuples(Relation pg_attribute_rel, TupleDesc tupdesc, Oid new_rel_oid, Datum *attoptions, CatalogIndexState indstate)
Definition: heap.c:730
TransactionId GetTopTransactionIdIfAny(void)
Definition: xact.c:425
Oid index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, const char *newName)
Definition: index.c:1237
IndexInfo * makeIndexInfo(int numattrs, int numkeyattrs, Oid amoid, List *expressions, List *predicates, bool unique, bool isready, bool concurrent)
Definition: makefuncs.c:742
void CheckTableNotInUse(Relation rel, const char *stmt)
Definition: tablecmds.c:3589
void StoreSingleInheritance(Oid relationId, Oid parentOid, int32 seqNumber)
Definition: pg_inherits.c:417
Datum Int64GetDatum(int64 X)
Definition: fmgr.c:1701
static void IndexCheckExclusion(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo)
Definition: index.c:3016
#define ATTRIBUTE_FIXED_PART_SIZE
Definition: pg_attribute.h:185
Size EstimateReindexStateSpace(void)
Definition: index.c:3947
void index_register(Oid heap, Oid ind, IndexInfo *indexInfo)
Definition: bootstrap.c:1063
bool ii_ReadyForInserts
Definition: execnodes.h:173
PgStat_Counter t_blocks_hit
Definition: pgstat.h:118
MemoryContext TopMemoryContext
Definition: mcxt.c:44
int numPendingReindexedIndexes
Definition: index.c:96
bytea * index_opclass_options(Relation indrel, AttrNumber attnum, Datum attoptions, bool validate)
Definition: indexam.c:937
EState * CreateExecutorState(void)
Definition: execUtils.c:89
void TransferPredicateLocksToHeapRelation(Relation relation)
Definition: predicate.c:3075
bool get_rel_relispartition(Oid relid)
Definition: lsyscache.c:1939
List * ExecPrepareExprList(List *nodes, EState *estate)
Definition: execExpr.c:566
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:852
List * lappend(List *list, void *datum)
Definition: list.c:321
static Oid currentlyReindexedIndex
Definition: index.c:3815
#define PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE
Definition: progress.h:104
Datum * RelationGetIndexRawAttOptions(Relation indexrel)
Definition: relcache.c:5390
#define WARNING
Definition: elog.h:40
void validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
Definition: index.c:3172
#define RelationIsMapped(relation)
Definition: rel.h:505
FormData_pg_index * Form_pg_index
Definition: pg_index.h:68
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:1116
float float4
Definition: c.h:497
int progress
Definition: pgbench.c:235
#define PROGRESS_CREATEIDX_PHASE
Definition: progress.h:82
Definition: c.h:590
Size mul_size(Size s1, Size s2)
Definition: shmem.c:515
#define TextDatumGetCString(d)
Definition: builtins.h:87
#define PROGRESS_SCAN_BLOCKS_DONE
Definition: progress.h:120
void pgstat_progress_end_command(void)
Definition: pgstat.c:3282
void RelationDropStorage(Relation rel)
Definition: storage.c:195
IndexBulkDeleteResult * index_bulk_delete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback, void *callback_state)
Definition: indexam.c:689
uintptr_t Datum
Definition: postgres.h:367
void CommandCounterIncrement(void)
Definition: xact.c:1021
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:1164
Expr * make_ands_explicit(List *andclauses)
Definition: makefuncs.c:707
int ii_NumIndexAttrs
Definition: execnodes.h:158
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:718
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:1377
static bool relationHasPrimaryKey(Relation rel)
Definition: index.c:147
#define PROGRESS_CREATEIDX_COMMAND_REINDEX
Definition: progress.h:110
PgStat_Counter blocks_hit
Definition: pgstat.h:685
#define InvalidMultiXactId
Definition: multixact.h:24
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:211
#define InvokeObjectPostCreateHookArg(classId, objectId, subId, is_internal)
Definition: objectaccess.h:153
long deleteDependencyRecordsForClass(Oid classId, Oid objectId, Oid refclassId, char deptype)
Definition: pg_depend.c:282
PgStat_Counter t_numscans
Definition: pgstat.h:102
#define INDEX_CREATE_IS_PRIMARY
Definition: index.h:47
#define BoolGetDatum(X)
Definition: postgres.h:402
static void RemoveReindexPending(Oid indexOid)
Definition: index.c:3905
long changeDependenciesOf(Oid classId, Oid oldObjectId, Oid newObjectId)
Definition: pg_depend.c:498
#define InvalidOid
Definition: postgres_ext.h:36
static Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:381
FormData_pg_attribute
Definition: pg_attribute.h:177
#define INDEX_CREATE_CONCURRENT
Definition: index.h:50
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1202
int16 attnum
Definition: pg_attribute.h:79
#define ereport(elevel,...)
Definition: elog.h:144
void DeleteRelationTuple(Oid relid)
Definition: heap.c:1541
int maintenance_work_mem
Definition: globals.c:123
#define NOTICE
Definition: elog.h:37
int GetCurrentTransactionNestLevel(void)
Definition: xact.c:857
int message_level
Definition: genam.h:50
TransactionId MultiXactId
Definition: c.h:530
double num_heap_tuples
Definition: genam.h:51
bool ii_Unique
Definition: execnodes.h:172
#define makeNode(_type_)
Definition: nodes.h:576
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
FormData_pg_constraint * Form_pg_constraint
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:674
void index_build(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo, bool isreindex, bool parallel)
Definition: index.c:2821
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define REINDEX_REL_FORCE_INDEXES_UNLOGGED
Definition: index.h:143
List * ii_Expressions
Definition: execnodes.h:161
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:206
#define Assert(condition)
Definition: c.h:745
oidvector * buildoidvector(const Oid *oids, int n)
Definition: oid.c:167
#define lfirst(lc)
Definition: pg_list.h:169
Definition: regguts.h:298
double tups_inserted
Definition: index.h:37
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:593
#define PROGRESS_CREATEIDX_PHASE_BUILD
Definition: progress.h:92
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN
Definition: progress.h:96
void StartTransactionCommand(void)
Definition: xact.c:2846
AttrNumber * attnums
Definition: attmap.h:36
void recordDependencyOnSingleRelExpr(const ObjectAddress *depender, Node *expr, Oid relId, DependencyType behavior, DependencyType self_behavior, bool reverse_self)
Definition: dependency.c:1627
CatalogIndexState CatalogOpenIndexes(Relation heapRel)
Definition: indexing.c:43
Relation heap_create(const char *relname, Oid relnamespace, Oid reltablespace, Oid relid, Oid relfilenode, Oid accessmtd, TupleDesc tupDesc, char relkind, char relpersistence, bool shared_relation, bool mapped_relation, bool allow_system_table_mods, TransactionId *relfrozenxid, MultiXactId *relminmxid)
Definition: heap.c:294
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
Definition: pgstat.c:3253
#define linitial_oid(l)
Definition: pg_list.h:176
#define INDEX_MAX_KEYS
int ii_ParallelWorkers
Definition: execnodes.h:176
size_t Size
Definition: c.h:473
void CatalogTupleUpdate(Relation heapRel, ItemPointer otid, HeapTuple tup)
Definition: indexing.c:301
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
struct PgStat_TableStatus * pgstat_info
Definition: rel.h:236
int plan_create_index_workers(Oid tableOid, Oid indexOid)
Definition: planner.c:6375
bool get_index_isvalid(Oid index_oid)
Definition: lsyscache.c:3357
FormData_pg_type * Form_pg_type
Definition: pg_type.h:255
static int list_length(const List *l)
Definition: pg_list.h:149
#define REINDEX_REL_CHECK_CONSTRAINTS
Definition: index.h:142
FormData_pg_trigger * Form_pg_trigger
Definition: pg_trigger.h:73
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:1127
Oid GetNewRelFileNode(Oid reltablespace, Relation pg_class, char relpersistence)
Definition: catalog.c:380
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:226
#define PROGRESS_SCAN_BLOCKS_TOTAL
Definition: progress.h:119
List * get_index_ref_constraints(Oid indexId)
Definition: pg_depend.c:1063
void DeleteAttributeTuples(Oid relid)
Definition: heap.c:1570
#define REINDEXOPT_MISSING_OK
Definition: parsenodes.h:3356
#define ObjectAddressSubSet(addr, class_id, object_id, object_sub_id)
Definition: objectaddress.h:33
int16 values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:598
static int reindexingNestLevel
Definition: index.c:3817
#define INDEX_CONSTR_CREATE_UPDATE_INDEX
Definition: index.h:78
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4514
Snapshot GetLatestSnapshot(void)
Definition: snapmgr.c:325
void reindex_index(Oid indexId, bool skip_constraint_checks, char persistence, int options)
Definition: index.c:3426
bool ii_Concurrent
Definition: execnodes.h:174
#define InvalidAttrNumber
Definition: attnum.h:23
#define ObjectAddressSet(addr, class_id, object_id)
Definition: objectaddress.h:40
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:158
#define DatumGetPointer(X)
Definition: postgres.h:549
void CacheInvalidateRelcache(Relation relation)
Definition: inval.c:1278
double htups
Definition: index.h:37
void RemoveStatistics(Oid relid, AttrNumber attnum)
Definition: heap.c:3153
char get_rel_persistence(Oid relid)
Definition: lsyscache.c:1990
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:863
static Datum values[MAXATTR]
Definition: bootstrap.c:165
void RelationInitIndexAccessInfo(Relation relation)
Definition: relcache.c:1372
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:393
FormData_pg_class * Form_pg_class
Definition: pg_class.h:153
#define INDEX_CREATE_SKIP_BUILD
Definition: index.h:49
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2709
#define SearchSysCacheCopy1(cacheId, key1)
Definition: syscache.h:174
#define AccessExclusiveLock
Definition: lockdefs.h:45
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN
Definition: progress.h:94
#define INDEX_CREATE_PARTITIONED
Definition: index.h:52
#define Int32GetDatum(X)
Definition: postgres.h:479
int NewGUCNestLevel(void)
Definition: guc.c:5942
Oid * ii_ExclusionOps
Definition: execnodes.h:165
void RestoreReindexState(void *reindexstate)
Definition: index.c:3976
void * palloc(Size size)
Definition: mcxt.c:950
int errmsg(const char *fmt,...)
Definition: elog.c:824
void heap_inplace_update(Relation relation, HeapTuple tuple)
Definition: heapam.c:5715
IndexInfo * BuildDummyIndexInfo(Relation index)
Definition: index.c:2360
static void table_index_validate_scan(Relation table_rel, Relation index_rel, struct IndexInfo *index_info, Snapshot snapshot, struct ValidateIndexState *state)
Definition: tableam.h:1616
#define PROGRESS_CREATEIDX_TUPLES_DONE
Definition: progress.h:85
void list_free(List *list)
Definition: list.c:1376
#define elog(elevel,...)
Definition: elog.h:214
ambuildempty_function ambuildempty
Definition: amapi.h:259
MemoryContext rd_indexcxt
Definition: rel.h:186
#define ShareLock
Definition: lockdefs.h:41
int i
void LockRelation(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:216
RangeVar * relation
Definition: parsenodes.h:2433
Oid currentlyReindexedHeap
Definition: index.c:94
#define PROGRESS_CLUSTER_INDEX_REBUILD_COUNT
Definition: progress.h:62
#define NameStr(name)
Definition: c.h:622
ObjectAddress CreateTrigger(CreateTrigStmt *stmt, const char *queryString, Oid relOid, Oid refRelOid, Oid constraintOid, Oid indexOid, Oid funcoid, Oid parentTriggerOid, Node *whenClause, bool isInternal, bool in_partition)
Definition: trigger.c:157
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
#define CStringGetTextDatum(s)
Definition: builtins.h:86
char * nodeToString(const void *obj)
Definition: outfuncs.c:4361
#define REINDEX_REL_FORCE_INDEXES_PERMANENT
Definition: index.h:144
void CatalogCloseIndexes(CatalogIndexState indstate)
Definition: indexing.c:61
#define REINDEX_REL_PROCESS_TOAST
Definition: index.h:140
void BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii)
Definition: index.c:2525
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:99
#define PROGRESS_CREATEIDX_SUBPHASE
Definition: progress.h:83
void CacheInvalidateRelcacheByTuple(HeapTuple classTuple)
Definition: inval.c:1314
void check_exclusion_constraint(Relation heap, Relation index, IndexInfo *indexInfo, ItemPointer tupleid, Datum *values, bool *isnull, EState *estate, bool newIndex)
Definition: execIndexing.c:866
Oid * rd_opcintype
Definition: rel.h:190
static Datum slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:402
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:160
uint16 * ii_ExclusionStrats
Definition: execnodes.h:167
void CheckAttributeType(const char *attname, Oid atttypid, Oid attcollation, List *containing_rowtypes, int flags)
Definition: heap.c:581
void tuplesort_end(Tuplesortstate *state)
Definition: tuplesort.c:1445
#define INDEX_CREATE_ADD_CONSTRAINT
Definition: index.h:48
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:39
HeapTuple heap_modify_tuple(HeapTuple tuple, TupleDesc tupleDesc, Datum *replValues, bool *replIsnull, bool *doReplace)
Definition: heaptuple.c:1113
void index_concurrently_set_dead(Oid heapId, Oid indexId)
Definition: index.c:1734
bool ReindexIsProcessingIndex(Oid indexOid)
Definition: index.c:3845
void index_concurrently_build(Oid heapRelationId, Oid indexRelationId)
Definition: index.c:1396
FormData_pg_opclass * Form_pg_opclass
Definition: pg_opclass.h:83
#define ERRCODE_DUPLICATE_OBJECT
Definition: streamutil.c:32
static bool validate_index_callback(ItemPointer itemptr, void *opaque)
Definition: index.c:3300
PgStat_Counter blocks_fetched
Definition: pgstat.h:684
bool reindex_relation(Oid relid, int flags, int options)
Definition: index.c:3676
Definition: pg_list.h:50
long changeDependenciesOn(Oid refClassId, Oid oldRefObjectId, Oid newRefObjectId)
Definition: pg_depend.c:554
char * get_rel_name(Oid relid)
Definition: lsyscache.c:1840
#define PointerIsValid(pointer)
Definition: c.h:639
ItemPointerData tts_tid
Definition: tuptable.h:130
List * get_partition_ancestors(Oid relid)
Definition: partition.c:115
int16 AttrNumber
Definition: attnum.h:21
#define RelationGetRelid(relation)
Definition: rel.h:456
#define INDEX_CONSTR_CREATE_DEFERRABLE
Definition: index.h:76
long val
Definition: informix.c:664
#define PROGRESS_CREATEIDX_COMMAND
Definition: progress.h:79
void CatalogTupleInsert(Relation heapRel, HeapTuple tup)
Definition: indexing.c:221
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:132
Datum * ii_OpclassOptions
Definition: execnodes.h:171
#define BTEqualStrategyNumber
Definition: stratnum.h:31
#define offsetof(type, field)
Definition: c.h:668
PgStat_Counter t_blocks_fetched
Definition: pgstat.h:117
#define lfirst_oid(lc)
Definition: pg_list.h:171
double index_tuples
Definition: genam.h:33
#define INDEX_CONSTR_CREATE_MARK_AS_PRIMARY
Definition: index.h:75
double heap_tuples
Definition: genam.h:32
#define PROGRESS_CREATEIDX_ACCESS_METHOD_OID
Definition: progress.h:81
Oid relId
Definition: rel.h:38
bool estimated_count
Definition: genam.h:49
ObjectAddress index_constraint_create(Relation heapRelation, Oid indexRelationId, Oid parentConstraintId, IndexInfo *indexInfo, const char *constraintName, char constraintType, bits16 constr_flags, bool allow_system_table_mods, bool is_internal)
Definition: index.c:1795
#define DescriptionObjIndexId
Definition: indexing.h:165
Oid ii_Am
Definition: execnodes.h:177
#define RelationGetNamespace(relation)
Definition: rel.h:497