PostgreSQL Source Code  git master
index.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * index.c
4  * code to create and destroy POSTGRES index relations
5  *
6  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/catalog/index.c
12  *
13  *
14  * INTERFACE ROUTINES
15  * index_create() - Create a cataloged index relation
16  * index_drop() - Removes index relation from catalogs
17  * BuildIndexInfo() - Prepare to insert index tuples
18  * FormIndexDatum() - Construct datum vector for one index tuple
19  *
20  *-------------------------------------------------------------------------
21  */
22 #include "postgres.h"
23 
24 #include <unistd.h>
25 
26 #include "access/amapi.h"
27 #include "access/heapam.h"
28 #include "access/multixact.h"
29 #include "access/reloptions.h"
30 #include "access/relscan.h"
31 #include "access/sysattr.h"
32 #include "access/tableam.h"
34 #include "access/transam.h"
35 #include "access/visibilitymap.h"
36 #include "access/xact.h"
37 #include "bootstrap/bootstrap.h"
38 #include "catalog/binary_upgrade.h"
39 #include "catalog/catalog.h"
40 #include "catalog/dependency.h"
41 #include "catalog/heap.h"
42 #include "catalog/index.h"
43 #include "catalog/objectaccess.h"
44 #include "catalog/partition.h"
45 #include "catalog/pg_am.h"
46 #include "catalog/pg_collation.h"
47 #include "catalog/pg_constraint.h"
48 #include "catalog/pg_depend.h"
49 #include "catalog/pg_description.h"
50 #include "catalog/pg_inherits.h"
51 #include "catalog/pg_opclass.h"
52 #include "catalog/pg_operator.h"
53 #include "catalog/pg_tablespace.h"
54 #include "catalog/pg_trigger.h"
55 #include "catalog/pg_type.h"
56 #include "catalog/storage.h"
57 #include "catalog/storage_xlog.h"
58 #include "commands/event_trigger.h"
59 #include "commands/progress.h"
60 #include "commands/tablecmds.h"
61 #include "commands/tablespace.h"
62 #include "commands/trigger.h"
63 #include "executor/executor.h"
64 #include "miscadmin.h"
65 #include "nodes/makefuncs.h"
66 #include "nodes/nodeFuncs.h"
67 #include "optimizer/optimizer.h"
68 #include "parser/parser.h"
69 #include "pgstat.h"
70 #include "rewrite/rewriteManip.h"
71 #include "storage/bufmgr.h"
72 #include "storage/lmgr.h"
73 #include "storage/predicate.h"
74 #include "storage/procarray.h"
75 #include "storage/smgr.h"
76 #include "utils/builtins.h"
77 #include "utils/fmgroids.h"
78 #include "utils/guc.h"
79 #include "utils/inval.h"
80 #include "utils/lsyscache.h"
81 #include "utils/memutils.h"
82 #include "utils/pg_rusage.h"
83 #include "utils/rel.h"
84 #include "utils/snapmgr.h"
85 #include "utils/syscache.h"
86 #include "utils/tuplesort.h"
87 
88 /* Potentially set by pg_upgrade_support functions */
92 
93 /*
94  * Pointer-free representation of variables used when reindexing system
95  * catalogs; we use this to propagate those values to parallel workers.
96  */
97 typedef struct
98 {
104 
105 /* non-export function prototypes */
106 static bool relationHasPrimaryKey(Relation rel);
107 static TupleDesc ConstructTupleDescriptor(Relation heapRelation,
108  const IndexInfo *indexInfo,
109  const List *indexColNames,
110  Oid accessMethodId,
111  const Oid *collationIds,
112  const Oid *opclassIds);
113 static void InitializeAttributeOids(Relation indexRelation,
114  int numatts, Oid indexoid);
115 static void AppendAttributeTuples(Relation indexRelation, const Datum *attopts);
116 static void UpdateIndexRelation(Oid indexoid, Oid heapoid,
117  Oid parentIndexId,
118  const IndexInfo *indexInfo,
119  const Oid *collationOids,
120  const Oid *opclassOids,
121  const int16 *coloptions,
122  bool primary,
123  bool isexclusion,
124  bool immediate,
125  bool isvalid,
126  bool isready);
127 static void index_update_stats(Relation rel,
128  bool hasindex,
129  double reltuples);
130 static void IndexCheckExclusion(Relation heapRelation,
131  Relation indexRelation,
132  IndexInfo *indexInfo);
133 static bool validate_index_callback(ItemPointer itemptr, void *opaque);
134 static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid);
135 static void SetReindexProcessing(Oid heapOid, Oid indexOid);
136 static void ResetReindexProcessing(void);
137 static void SetReindexPending(List *indexes);
138 static void RemoveReindexPending(Oid indexOid);
139 
140 
141 /*
142  * relationHasPrimaryKey
143  * See whether an existing relation has a primary key.
144  *
145  * Caller must have suitable lock on the relation.
146  *
147  * Note: we intentionally do not check indisvalid here; that's because this
148  * is used to enforce the rule that there can be only one indisprimary index,
149  * and we want that to be true even if said index is invalid.
150  */
151 static bool
153 {
154  bool result = false;
155  List *indexoidlist;
156  ListCell *indexoidscan;
157 
158  /*
159  * Get the list of index OIDs for the table from the relcache, and look up
160  * each one in the pg_index syscache until we find one marked primary key
161  * (hopefully there isn't more than one such).
162  */
163  indexoidlist = RelationGetIndexList(rel);
164 
165  foreach(indexoidscan, indexoidlist)
166  {
167  Oid indexoid = lfirst_oid(indexoidscan);
168  HeapTuple indexTuple;
169 
170  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid));
171  if (!HeapTupleIsValid(indexTuple)) /* should not happen */
172  elog(ERROR, "cache lookup failed for index %u", indexoid);
173  result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary;
174  ReleaseSysCache(indexTuple);
175  if (result)
176  break;
177  }
178 
179  list_free(indexoidlist);
180 
181  return result;
182 }
183 
184 /*
185  * index_check_primary_key
186  * Apply special checks needed before creating a PRIMARY KEY index
187  *
188  * This processing used to be in DefineIndex(), but has been split out
189  * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX.
190  *
191  * We check for a pre-existing primary key, and that all columns of the index
192  * are simple column references (not expressions), and that all those
193  * columns are marked NOT NULL. If not, fail.
194  *
195  * We used to automatically change unmarked columns to NOT NULL here by doing
196  * our own local ALTER TABLE command. But that doesn't work well if we're
197  * executing one subcommand of an ALTER TABLE: the operations may not get
198  * performed in the right order overall. Now we expect that the parser
199  * inserted any required ALTER TABLE SET NOT NULL operations before trying
200  * to create a primary-key index.
201  *
202  * Caller had better have at least ShareLock on the table, else the not-null
203  * checking isn't trustworthy.
204  */
205 void
207  const IndexInfo *indexInfo,
208  bool is_alter_table,
209  const IndexStmt *stmt)
210 {
211  int i;
212 
213  /*
214  * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't
215  * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we
216  * have faith that the parser rejected multiple pkey clauses; and CREATE
217  * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either.
218  */
219  if ((is_alter_table || heapRel->rd_rel->relispartition) &&
220  relationHasPrimaryKey(heapRel))
221  {
222  ereport(ERROR,
223  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
224  errmsg("multiple primary keys for table \"%s\" are not allowed",
225  RelationGetRelationName(heapRel))));
226  }
227 
228  /*
229  * Indexes created with NULLS NOT DISTINCT cannot be used for primary key
230  * constraints. While there is no direct syntax to reach here, it can be
231  * done by creating a separate index and attaching it via ALTER TABLE ..
232  * USING INDEX.
233  */
234  if (indexInfo->ii_NullsNotDistinct)
235  {
236  ereport(ERROR,
237  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
238  errmsg("primary keys cannot use NULLS NOT DISTINCT indexes")));
239  }
240 
241  /*
242  * Check that all of the attributes in a primary key are marked as not
243  * null. (We don't really expect to see that; it'd mean the parser messed
244  * up. But it seems wise to check anyway.)
245  */
246  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
247  {
248  AttrNumber attnum = indexInfo->ii_IndexAttrNumbers[i];
249  HeapTuple atttuple;
250  Form_pg_attribute attform;
251 
252  if (attnum == 0)
253  ereport(ERROR,
254  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
255  errmsg("primary keys cannot be expressions")));
256 
257  /* System attributes are never null, so no need to check */
258  if (attnum < 0)
259  continue;
260 
261  atttuple = SearchSysCache2(ATTNUM,
264  if (!HeapTupleIsValid(atttuple))
265  elog(ERROR, "cache lookup failed for attribute %d of relation %u",
266  attnum, RelationGetRelid(heapRel));
267  attform = (Form_pg_attribute) GETSTRUCT(atttuple);
268 
269  if (!attform->attnotnull)
270  ereport(ERROR,
271  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
272  errmsg("primary key column \"%s\" is not marked NOT NULL",
273  NameStr(attform->attname))));
274 
275  ReleaseSysCache(atttuple);
276  }
277 }
278 
279 /*
280  * ConstructTupleDescriptor
281  *
282  * Build an index tuple descriptor for a new index
283  */
284 static TupleDesc
286  const IndexInfo *indexInfo,
287  const List *indexColNames,
288  Oid accessMethodId,
289  const Oid *collationIds,
290  const Oid *opclassIds)
291 {
292  int numatts = indexInfo->ii_NumIndexAttrs;
293  int numkeyatts = indexInfo->ii_NumIndexKeyAttrs;
294  ListCell *colnames_item = list_head(indexColNames);
295  ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
296  IndexAmRoutine *amroutine;
297  TupleDesc heapTupDesc;
298  TupleDesc indexTupDesc;
299  int natts; /* #atts in heap rel --- for error checks */
300  int i;
301 
302  /* We need access to the index AM's API struct */
303  amroutine = GetIndexAmRoutineByAmId(accessMethodId, false);
304 
305  /* ... and to the table's tuple descriptor */
306  heapTupDesc = RelationGetDescr(heapRelation);
307  natts = RelationGetForm(heapRelation)->relnatts;
308 
309  /*
310  * allocate the new tuple descriptor
311  */
312  indexTupDesc = CreateTemplateTupleDesc(numatts);
313 
314  /*
315  * Fill in the pg_attribute row.
316  */
317  for (i = 0; i < numatts; i++)
318  {
319  AttrNumber atnum = indexInfo->ii_IndexAttrNumbers[i];
320  Form_pg_attribute to = TupleDescAttr(indexTupDesc, i);
321  HeapTuple tuple;
322  Form_pg_type typeTup;
323  Form_pg_opclass opclassTup;
324  Oid keyType;
325 
327  to->attnum = i + 1;
328  to->attstattarget = -1;
329  to->attcacheoff = -1;
330  to->attislocal = true;
331  to->attcollation = (i < numkeyatts) ? collationIds[i] : InvalidOid;
332 
333  /*
334  * Set the attribute name as specified by caller.
335  */
336  if (colnames_item == NULL) /* shouldn't happen */
337  elog(ERROR, "too few entries in colnames list");
338  namestrcpy(&to->attname, (const char *) lfirst(colnames_item));
339  colnames_item = lnext(indexColNames, colnames_item);
340 
341  /*
342  * For simple index columns, we copy some pg_attribute fields from the
343  * parent relation. For expressions we have to look at the expression
344  * result.
345  */
346  if (atnum != 0)
347  {
348  /* Simple index column */
349  const FormData_pg_attribute *from;
350 
351  Assert(atnum > 0); /* should've been caught above */
352 
353  if (atnum > natts) /* safety check */
354  elog(ERROR, "invalid column number %d", atnum);
355  from = TupleDescAttr(heapTupDesc,
356  AttrNumberGetAttrOffset(atnum));
357 
358  to->atttypid = from->atttypid;
359  to->attlen = from->attlen;
360  to->attndims = from->attndims;
361  to->atttypmod = from->atttypmod;
362  to->attbyval = from->attbyval;
363  to->attalign = from->attalign;
364  to->attstorage = from->attstorage;
365  to->attcompression = from->attcompression;
366  }
367  else
368  {
369  /* Expressional index */
370  Node *indexkey;
371 
372  if (indexpr_item == NULL) /* shouldn't happen */
373  elog(ERROR, "too few entries in indexprs list");
374  indexkey = (Node *) lfirst(indexpr_item);
375  indexpr_item = lnext(indexInfo->ii_Expressions, indexpr_item);
376 
377  /*
378  * Lookup the expression type in pg_type for the type length etc.
379  */
380  keyType = exprType(indexkey);
381  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
382  if (!HeapTupleIsValid(tuple))
383  elog(ERROR, "cache lookup failed for type %u", keyType);
384  typeTup = (Form_pg_type) GETSTRUCT(tuple);
385 
386  /*
387  * Assign some of the attributes values. Leave the rest.
388  */
389  to->atttypid = keyType;
390  to->attlen = typeTup->typlen;
391  to->atttypmod = exprTypmod(indexkey);
392  to->attbyval = typeTup->typbyval;
393  to->attalign = typeTup->typalign;
394  to->attstorage = typeTup->typstorage;
395 
396  /*
397  * For expression columns, set attcompression invalid, since
398  * there's no table column from which to copy the value. Whenever
399  * we actually need to compress a value, we'll use whatever the
400  * current value of default_toast_compression is at that point in
401  * time.
402  */
403  to->attcompression = InvalidCompressionMethod;
404 
405  ReleaseSysCache(tuple);
406 
407  /*
408  * Make sure the expression yields a type that's safe to store in
409  * an index. We need this defense because we have index opclasses
410  * for pseudo-types such as "record", and the actually stored type
411  * had better be safe; eg, a named composite type is okay, an
412  * anonymous record type is not. The test is the same as for
413  * whether a table column is of a safe type (which is why we
414  * needn't check for the non-expression case).
415  */
416  CheckAttributeType(NameStr(to->attname),
417  to->atttypid, to->attcollation,
418  NIL, 0);
419  }
420 
421  /*
422  * We do not yet have the correct relation OID for the index, so just
423  * set it invalid for now. InitializeAttributeOids() will fix it
424  * later.
425  */
426  to->attrelid = InvalidOid;
427 
428  /*
429  * Check the opclass and index AM to see if either provides a keytype
430  * (overriding the attribute type). Opclass (if exists) takes
431  * precedence.
432  */
433  keyType = amroutine->amkeytype;
434 
435  if (i < indexInfo->ii_NumIndexKeyAttrs)
436  {
437  tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclassIds[i]));
438  if (!HeapTupleIsValid(tuple))
439  elog(ERROR, "cache lookup failed for opclass %u", opclassIds[i]);
440  opclassTup = (Form_pg_opclass) GETSTRUCT(tuple);
441  if (OidIsValid(opclassTup->opckeytype))
442  keyType = opclassTup->opckeytype;
443 
444  /*
445  * If keytype is specified as ANYELEMENT, and opcintype is
446  * ANYARRAY, then the attribute type must be an array (else it'd
447  * not have matched this opclass); use its element type.
448  *
449  * We could also allow ANYCOMPATIBLE/ANYCOMPATIBLEARRAY here, but
450  * there seems no need to do so; there's no reason to declare an
451  * opclass as taking ANYCOMPATIBLEARRAY rather than ANYARRAY.
452  */
453  if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID)
454  {
455  keyType = get_base_element_type(to->atttypid);
456  if (!OidIsValid(keyType))
457  elog(ERROR, "could not get element type of array type %u",
458  to->atttypid);
459  }
460 
461  ReleaseSysCache(tuple);
462  }
463 
464  /*
465  * If a key type different from the heap value is specified, update
466  * the type-related fields in the index tupdesc.
467  */
468  if (OidIsValid(keyType) && keyType != to->atttypid)
469  {
470  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
471  if (!HeapTupleIsValid(tuple))
472  elog(ERROR, "cache lookup failed for type %u", keyType);
473  typeTup = (Form_pg_type) GETSTRUCT(tuple);
474 
475  to->atttypid = keyType;
476  to->atttypmod = -1;
477  to->attlen = typeTup->typlen;
478  to->attbyval = typeTup->typbyval;
479  to->attalign = typeTup->typalign;
480  to->attstorage = typeTup->typstorage;
481  /* As above, use the default compression method in this case */
482  to->attcompression = InvalidCompressionMethod;
483 
484  ReleaseSysCache(tuple);
485  }
486  }
487 
488  pfree(amroutine);
489 
490  return indexTupDesc;
491 }
492 
493 /* ----------------------------------------------------------------
494  * InitializeAttributeOids
495  * ----------------------------------------------------------------
496  */
497 static void
499  int numatts,
500  Oid indexoid)
501 {
502  TupleDesc tupleDescriptor;
503  int i;
504 
505  tupleDescriptor = RelationGetDescr(indexRelation);
506 
507  for (i = 0; i < numatts; i += 1)
508  TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid;
509 }
510 
511 /* ----------------------------------------------------------------
512  * AppendAttributeTuples
513  * ----------------------------------------------------------------
514  */
515 static void
516 AppendAttributeTuples(Relation indexRelation, const Datum *attopts)
517 {
518  Relation pg_attribute;
519  CatalogIndexState indstate;
520  TupleDesc indexTupDesc;
521 
522  /*
523  * open the attribute relation and its indexes
524  */
525  pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
526 
527  indstate = CatalogOpenIndexes(pg_attribute);
528 
529  /*
530  * insert data from new index's tupdesc into pg_attribute
531  */
532  indexTupDesc = RelationGetDescr(indexRelation);
533 
534  InsertPgAttributeTuples(pg_attribute, indexTupDesc, InvalidOid, attopts, indstate);
535 
536  CatalogCloseIndexes(indstate);
537 
538  table_close(pg_attribute, RowExclusiveLock);
539 }
540 
541 /* ----------------------------------------------------------------
542  * UpdateIndexRelation
543  *
544  * Construct and insert a new entry in the pg_index catalog
545  * ----------------------------------------------------------------
546  */
547 static void
549  Oid heapoid,
550  Oid parentIndexId,
551  const IndexInfo *indexInfo,
552  const Oid *collationOids,
553  const Oid *opclassOids,
554  const int16 *coloptions,
555  bool primary,
556  bool isexclusion,
557  bool immediate,
558  bool isvalid,
559  bool isready)
560 {
561  int2vector *indkey;
562  oidvector *indcollation;
563  oidvector *indclass;
564  int2vector *indoption;
565  Datum exprsDatum;
566  Datum predDatum;
567  Datum values[Natts_pg_index];
568  bool nulls[Natts_pg_index] = {0};
569  Relation pg_index;
570  HeapTuple tuple;
571  int i;
572 
573  /*
574  * Copy the index key, opclass, and indoption info into arrays (should we
575  * make the caller pass them like this to start with?)
576  */
577  indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs);
578  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
579  indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i];
580  indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs);
581  indclass = buildoidvector(opclassOids, indexInfo->ii_NumIndexKeyAttrs);
582  indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs);
583 
584  /*
585  * Convert the index expressions (if any) to a text datum
586  */
587  if (indexInfo->ii_Expressions != NIL)
588  {
589  char *exprsString;
590 
591  exprsString = nodeToString(indexInfo->ii_Expressions);
592  exprsDatum = CStringGetTextDatum(exprsString);
593  pfree(exprsString);
594  }
595  else
596  exprsDatum = (Datum) 0;
597 
598  /*
599  * Convert the index predicate (if any) to a text datum. Note we convert
600  * implicit-AND format to normal explicit-AND for storage.
601  */
602  if (indexInfo->ii_Predicate != NIL)
603  {
604  char *predString;
605 
606  predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate));
607  predDatum = CStringGetTextDatum(predString);
608  pfree(predString);
609  }
610  else
611  predDatum = (Datum) 0;
612 
613 
614  /*
615  * open the system catalog index relation
616  */
617  pg_index = table_open(IndexRelationId, RowExclusiveLock);
618 
619  /*
620  * Build a pg_index tuple
621  */
622  values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid);
623  values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid);
624  values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs);
625  values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs);
626  values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique);
627  values[Anum_pg_index_indnullsnotdistinct - 1] = BoolGetDatum(indexInfo->ii_NullsNotDistinct);
628  values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary);
629  values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion);
630  values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate);
631  values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false);
632  values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid);
633  values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false);
634  values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready);
635  values[Anum_pg_index_indislive - 1] = BoolGetDatum(true);
636  values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false);
637  values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey);
638  values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation);
639  values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass);
640  values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption);
641  values[Anum_pg_index_indexprs - 1] = exprsDatum;
642  if (exprsDatum == (Datum) 0)
643  nulls[Anum_pg_index_indexprs - 1] = true;
644  values[Anum_pg_index_indpred - 1] = predDatum;
645  if (predDatum == (Datum) 0)
646  nulls[Anum_pg_index_indpred - 1] = true;
647 
648  tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls);
649 
650  /*
651  * insert the tuple into the pg_index catalog
652  */
653  CatalogTupleInsert(pg_index, tuple);
654 
655  /*
656  * close the relation and free the tuple
657  */
658  table_close(pg_index, RowExclusiveLock);
659  heap_freetuple(tuple);
660 }
661 
662 
663 /*
664  * index_create
665  *
666  * heapRelation: table to build index on (suitably locked by caller)
667  * indexRelationName: what it say
668  * indexRelationId: normally, pass InvalidOid to let this routine
669  * generate an OID for the index. During bootstrap this may be
670  * nonzero to specify a preselected OID.
671  * parentIndexRelid: if creating an index partition, the OID of the
672  * parent index; otherwise InvalidOid.
673  * parentConstraintId: if creating a constraint on a partition, the OID
674  * of the constraint in the parent; otherwise InvalidOid.
675  * relFileNumber: normally, pass InvalidRelFileNumber to get new storage.
676  * May be nonzero to attach an existing valid build.
677  * indexInfo: same info executor uses to insert into the index
678  * indexColNames: column names to use for index (List of char *)
679  * accessMethodId: OID of index AM to use
680  * tableSpaceId: OID of tablespace to use
681  * collationIds: array of collation OIDs, one per index column
682  * opclassIds: array of index opclass OIDs, one per index column
683  * coloptions: array of per-index-column indoption settings
684  * reloptions: AM-specific options
685  * flags: bitmask that can include any combination of these bits:
686  * INDEX_CREATE_IS_PRIMARY
687  * the index is a primary key
688  * INDEX_CREATE_ADD_CONSTRAINT:
689  * invoke index_constraint_create also
690  * INDEX_CREATE_SKIP_BUILD:
691  * skip the index_build() step for the moment; caller must do it
692  * later (typically via reindex_index())
693  * INDEX_CREATE_CONCURRENT:
694  * do not lock the table against writers. The index will be
695  * marked "invalid" and the caller must take additional steps
696  * to fix it up.
697  * INDEX_CREATE_IF_NOT_EXISTS:
698  * do not throw an error if a relation with the same name
699  * already exists.
700  * INDEX_CREATE_PARTITIONED:
701  * create a partitioned index (table must be partitioned)
702  * constr_flags: flags passed to index_constraint_create
703  * (only if INDEX_CREATE_ADD_CONSTRAINT is set)
704  * allow_system_table_mods: allow table to be a system catalog
705  * is_internal: if true, post creation hook for new index
706  * constraintId: if not NULL, receives OID of created constraint
707  *
708  * Returns the OID of the created index.
709  */
710 Oid
711 index_create(Relation heapRelation,
712  const char *indexRelationName,
713  Oid indexRelationId,
714  Oid parentIndexRelid,
715  Oid parentConstraintId,
716  RelFileNumber relFileNumber,
717  IndexInfo *indexInfo,
718  const List *indexColNames,
719  Oid accessMethodId,
720  Oid tableSpaceId,
721  const Oid *collationIds,
722  const Oid *opclassIds,
723  const Datum *opclassOptions,
724  const int16 *coloptions,
725  Datum reloptions,
726  bits16 flags,
727  bits16 constr_flags,
728  bool allow_system_table_mods,
729  bool is_internal,
730  Oid *constraintId)
731 {
732  Oid heapRelationId = RelationGetRelid(heapRelation);
733  Relation pg_class;
734  Relation indexRelation;
735  TupleDesc indexTupDesc;
736  bool shared_relation;
737  bool mapped_relation;
738  bool is_exclusion;
739  Oid namespaceId;
740  int i;
741  char relpersistence;
742  bool isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0;
743  bool invalid = (flags & INDEX_CREATE_INVALID) != 0;
744  bool concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0;
745  bool partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0;
746  char relkind;
747  TransactionId relfrozenxid;
748  MultiXactId relminmxid;
749  bool create_storage = !RelFileNumberIsValid(relFileNumber);
750 
751  /* constraint flags can only be set when a constraint is requested */
752  Assert((constr_flags == 0) ||
753  ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0));
754  /* partitioned indexes must never be "built" by themselves */
755  Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD));
756 
757  relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX;
758  is_exclusion = (indexInfo->ii_ExclusionOps != NULL);
759 
760  pg_class = table_open(RelationRelationId, RowExclusiveLock);
761 
762  /*
763  * The index will be in the same namespace as its parent table, and is
764  * shared across databases if and only if the parent is. Likewise, it
765  * will use the relfilenumber map if and only if the parent does; and it
766  * inherits the parent's relpersistence.
767  */
768  namespaceId = RelationGetNamespace(heapRelation);
769  shared_relation = heapRelation->rd_rel->relisshared;
770  mapped_relation = RelationIsMapped(heapRelation);
771  relpersistence = heapRelation->rd_rel->relpersistence;
772 
773  /*
774  * check parameters
775  */
776  if (indexInfo->ii_NumIndexAttrs < 1)
777  elog(ERROR, "must index at least one column");
778 
779  if (!allow_system_table_mods &&
780  IsSystemRelation(heapRelation) &&
782  ereport(ERROR,
783  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
784  errmsg("user-defined indexes on system catalog tables are not supported")));
785 
786  /*
787  * Btree text_pattern_ops uses text_eq as the equality operator, which is
788  * fine as long as the collation is deterministic; text_eq then reduces to
789  * bitwise equality and so it is semantically compatible with the other
790  * operators and functions in that opclass. But with a nondeterministic
791  * collation, text_eq could yield results that are incompatible with the
792  * actual behavior of the index (which is determined by the opclass's
793  * comparison function). We prevent such problems by refusing creation of
794  * an index with that opclass and a nondeterministic collation.
795  *
796  * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we
797  * find more cases, we might decide to create a real mechanism for marking
798  * opclasses as incompatible with nondeterminism; but for now, this small
799  * hack suffices.
800  *
801  * Another solution is to use a special operator, not text_eq, as the
802  * equality opclass member; but that is undesirable because it would
803  * prevent index usage in many queries that work fine today.
804  */
805  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
806  {
807  Oid collation = collationIds[i];
808  Oid opclass = opclassIds[i];
809 
810  if (collation)
811  {
812  if ((opclass == TEXT_BTREE_PATTERN_OPS_OID ||
813  opclass == VARCHAR_BTREE_PATTERN_OPS_OID ||
814  opclass == BPCHAR_BTREE_PATTERN_OPS_OID) &&
815  !get_collation_isdeterministic(collation))
816  {
817  HeapTuple classtup;
818 
819  classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass));
820  if (!HeapTupleIsValid(classtup))
821  elog(ERROR, "cache lookup failed for operator class %u", opclass);
822  ereport(ERROR,
823  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
824  errmsg("nondeterministic collations are not supported for operator class \"%s\"",
825  NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname))));
826  ReleaseSysCache(classtup);
827  }
828  }
829  }
830 
831  /*
832  * Concurrent index build on a system catalog is unsafe because we tend to
833  * release locks before committing in catalogs.
834  */
835  if (concurrent &&
836  IsCatalogRelation(heapRelation))
837  ereport(ERROR,
838  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
839  errmsg("concurrent index creation on system catalog tables is not supported")));
840 
841  /*
842  * This case is currently not supported. There's no way to ask for it in
843  * the grammar with CREATE INDEX, but it can happen with REINDEX.
844  */
845  if (concurrent && is_exclusion)
846  ereport(ERROR,
847  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
848  errmsg("concurrent index creation for exclusion constraints is not supported")));
849 
850  /*
851  * We cannot allow indexing a shared relation after initdb (because
852  * there's no way to make the entry in other databases' pg_class).
853  */
854  if (shared_relation && !IsBootstrapProcessingMode())
855  ereport(ERROR,
856  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
857  errmsg("shared indexes cannot be created after initdb")));
858 
859  /*
860  * Shared relations must be in pg_global, too (last-ditch check)
861  */
862  if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID)
863  elog(ERROR, "shared relations must be placed in pg_global tablespace");
864 
865  /*
866  * Check for duplicate name (both as to the index, and as to the
867  * associated constraint if any). Such cases would fail on the relevant
868  * catalogs' unique indexes anyway, but we prefer to give a friendlier
869  * error message.
870  */
871  if (get_relname_relid(indexRelationName, namespaceId))
872  {
873  if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0)
874  {
875  ereport(NOTICE,
876  (errcode(ERRCODE_DUPLICATE_TABLE),
877  errmsg("relation \"%s\" already exists, skipping",
878  indexRelationName)));
879  table_close(pg_class, RowExclusiveLock);
880  return InvalidOid;
881  }
882 
883  ereport(ERROR,
884  (errcode(ERRCODE_DUPLICATE_TABLE),
885  errmsg("relation \"%s\" already exists",
886  indexRelationName)));
887  }
888 
889  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 &&
891  indexRelationName))
892  {
893  /*
894  * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the
895  * conflicting constraint is not an index.
896  */
897  ereport(ERROR,
899  errmsg("constraint \"%s\" for relation \"%s\" already exists",
900  indexRelationName, RelationGetRelationName(heapRelation))));
901  }
902 
903  /*
904  * construct tuple descriptor for index tuples
905  */
906  indexTupDesc = ConstructTupleDescriptor(heapRelation,
907  indexInfo,
908  indexColNames,
909  accessMethodId,
910  collationIds,
911  opclassIds);
912 
913  /*
914  * Allocate an OID for the index, unless we were told what to use.
915  *
916  * The OID will be the relfilenumber as well, so make sure it doesn't
917  * collide with either pg_class OIDs or existing physical files.
918  */
919  if (!OidIsValid(indexRelationId))
920  {
921  /* Use binary-upgrade override for pg_class.oid and relfilenumber */
922  if (IsBinaryUpgrade)
923  {
925  ereport(ERROR,
926  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
927  errmsg("pg_class index OID value not set when in binary upgrade mode")));
928 
929  indexRelationId = binary_upgrade_next_index_pg_class_oid;
931 
932  /* Override the index relfilenumber */
933  if ((relkind == RELKIND_INDEX) &&
935  ereport(ERROR,
936  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
937  errmsg("index relfilenumber value not set when in binary upgrade mode")));
940 
941  /*
942  * Note that we want create_storage = true for binary upgrade. The
943  * storage we create here will be replaced later, but we need to
944  * have something on disk in the meanwhile.
945  */
946  Assert(create_storage);
947  }
948  else
949  {
950  indexRelationId =
951  GetNewRelFileNumber(tableSpaceId, pg_class, relpersistence);
952  }
953  }
954 
955  /*
956  * create the index relation's relcache entry and, if necessary, the
957  * physical disk file. (If we fail further down, it's the smgr's
958  * responsibility to remove the disk file again, if any.)
959  */
960  indexRelation = heap_create(indexRelationName,
961  namespaceId,
962  tableSpaceId,
963  indexRelationId,
964  relFileNumber,
965  accessMethodId,
966  indexTupDesc,
967  relkind,
968  relpersistence,
969  shared_relation,
970  mapped_relation,
971  allow_system_table_mods,
972  &relfrozenxid,
973  &relminmxid,
974  create_storage);
975 
976  Assert(relfrozenxid == InvalidTransactionId);
977  Assert(relminmxid == InvalidMultiXactId);
978  Assert(indexRelationId == RelationGetRelid(indexRelation));
979 
980  /*
981  * Obtain exclusive lock on it. Although no other transactions can see it
982  * until we commit, this prevents deadlock-risk complaints from lock
983  * manager in cases such as CLUSTER.
984  */
985  LockRelation(indexRelation, AccessExclusiveLock);
986 
987  /*
988  * Fill in fields of the index's pg_class entry that are not set correctly
989  * by heap_create.
990  *
991  * XXX should have a cleaner way to create cataloged indexes
992  */
993  indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner;
994  indexRelation->rd_rel->relam = accessMethodId;
995  indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid);
996 
997  /*
998  * store index's pg_class entry
999  */
1000  InsertPgClassTuple(pg_class, indexRelation,
1001  RelationGetRelid(indexRelation),
1002  (Datum) 0,
1003  reloptions);
1004 
1005  /* done with pg_class */
1006  table_close(pg_class, RowExclusiveLock);
1007 
1008  /*
1009  * now update the object id's of all the attribute tuple forms in the
1010  * index relation's tuple descriptor
1011  */
1012  InitializeAttributeOids(indexRelation,
1013  indexInfo->ii_NumIndexAttrs,
1014  indexRelationId);
1015 
1016  /*
1017  * append ATTRIBUTE tuples for the index
1018  */
1019  AppendAttributeTuples(indexRelation, opclassOptions);
1020 
1021  /* ----------------
1022  * update pg_index
1023  * (append INDEX tuple)
1024  *
1025  * Note that this stows away a representation of "predicate".
1026  * (Or, could define a rule to maintain the predicate) --Nels, Feb '92
1027  * ----------------
1028  */
1029  UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid,
1030  indexInfo,
1031  collationIds, opclassIds, coloptions,
1032  isprimary, is_exclusion,
1033  (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0,
1034  !concurrent && !invalid,
1035  !concurrent);
1036 
1037  /*
1038  * Register relcache invalidation on the indexes' heap relation, to
1039  * maintain consistency of its index list
1040  */
1041  CacheInvalidateRelcache(heapRelation);
1042 
1043  /* update pg_inherits and the parent's relhassubclass, if needed */
1044  if (OidIsValid(parentIndexRelid))
1045  {
1046  StoreSingleInheritance(indexRelationId, parentIndexRelid, 1);
1047  SetRelationHasSubclass(parentIndexRelid, true);
1048  }
1049 
1050  /*
1051  * Register constraint and dependencies for the index.
1052  *
1053  * If the index is from a CONSTRAINT clause, construct a pg_constraint
1054  * entry. The index will be linked to the constraint, which in turn is
1055  * linked to the table. If it's not a CONSTRAINT, we need to make a
1056  * dependency directly on the table.
1057  *
1058  * We don't need a dependency on the namespace, because there'll be an
1059  * indirect dependency via our parent table.
1060  *
1061  * During bootstrap we can't register any dependencies, and we don't try
1062  * to make a constraint either.
1063  */
1065  {
1066  ObjectAddress myself,
1067  referenced;
1068  ObjectAddresses *addrs;
1069 
1070  ObjectAddressSet(myself, RelationRelationId, indexRelationId);
1071 
1072  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)
1073  {
1074  char constraintType;
1075  ObjectAddress localaddr;
1076 
1077  if (isprimary)
1078  constraintType = CONSTRAINT_PRIMARY;
1079  else if (indexInfo->ii_Unique)
1080  constraintType = CONSTRAINT_UNIQUE;
1081  else if (is_exclusion)
1082  constraintType = CONSTRAINT_EXCLUSION;
1083  else
1084  {
1085  elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
1086  constraintType = 0; /* keep compiler quiet */
1087  }
1088 
1089  localaddr = index_constraint_create(heapRelation,
1090  indexRelationId,
1091  parentConstraintId,
1092  indexInfo,
1093  indexRelationName,
1094  constraintType,
1095  constr_flags,
1096  allow_system_table_mods,
1097  is_internal);
1098  if (constraintId)
1099  *constraintId = localaddr.objectId;
1100  }
1101  else
1102  {
1103  bool have_simple_col = false;
1104 
1105  addrs = new_object_addresses();
1106 
1107  /* Create auto dependencies on simply-referenced columns */
1108  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
1109  {
1110  if (indexInfo->ii_IndexAttrNumbers[i] != 0)
1111  {
1112  ObjectAddressSubSet(referenced, RelationRelationId,
1113  heapRelationId,
1114  indexInfo->ii_IndexAttrNumbers[i]);
1115  add_exact_object_address(&referenced, addrs);
1116  have_simple_col = true;
1117  }
1118  }
1119 
1120  /*
1121  * If there are no simply-referenced columns, give the index an
1122  * auto dependency on the whole table. In most cases, this will
1123  * be redundant, but it might not be if the index expressions and
1124  * predicate contain no Vars or only whole-row Vars.
1125  */
1126  if (!have_simple_col)
1127  {
1128  ObjectAddressSet(referenced, RelationRelationId,
1129  heapRelationId);
1130  add_exact_object_address(&referenced, addrs);
1131  }
1132 
1134  free_object_addresses(addrs);
1135  }
1136 
1137  /*
1138  * If this is an index partition, create partition dependencies on
1139  * both the parent index and the table. (Note: these must be *in
1140  * addition to*, not instead of, all other dependencies. Otherwise
1141  * we'll be short some dependencies after DETACH PARTITION.)
1142  */
1143  if (OidIsValid(parentIndexRelid))
1144  {
1145  ObjectAddressSet(referenced, RelationRelationId, parentIndexRelid);
1146  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1147 
1148  ObjectAddressSet(referenced, RelationRelationId, heapRelationId);
1149  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1150  }
1151 
1152  /* placeholder for normal dependencies */
1153  addrs = new_object_addresses();
1154 
1155  /* Store dependency on collations */
1156 
1157  /* The default collation is pinned, so don't bother recording it */
1158  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1159  {
1160  if (OidIsValid(collationIds[i]) && collationIds[i] != DEFAULT_COLLATION_OID)
1161  {
1162  ObjectAddressSet(referenced, CollationRelationId, collationIds[i]);
1163  add_exact_object_address(&referenced, addrs);
1164  }
1165  }
1166 
1167  /* Store dependency on operator classes */
1168  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1169  {
1170  ObjectAddressSet(referenced, OperatorClassRelationId, opclassIds[i]);
1171  add_exact_object_address(&referenced, addrs);
1172  }
1173 
1175  free_object_addresses(addrs);
1176 
1177  /* Store dependencies on anything mentioned in index expressions */
1178  if (indexInfo->ii_Expressions)
1179  {
1181  (Node *) indexInfo->ii_Expressions,
1182  heapRelationId,
1184  DEPENDENCY_AUTO, false);
1185  }
1186 
1187  /* Store dependencies on anything mentioned in predicate */
1188  if (indexInfo->ii_Predicate)
1189  {
1191  (Node *) indexInfo->ii_Predicate,
1192  heapRelationId,
1194  DEPENDENCY_AUTO, false);
1195  }
1196  }
1197  else
1198  {
1199  /* Bootstrap mode - assert we weren't asked for constraint support */
1200  Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0);
1201  }
1202 
1203  /* Post creation hook for new index */
1204  InvokeObjectPostCreateHookArg(RelationRelationId,
1205  indexRelationId, 0, is_internal);
1206 
1207  /*
1208  * Advance the command counter so that we can see the newly-entered
1209  * catalog tuples for the index.
1210  */
1212 
1213  /*
1214  * In bootstrap mode, we have to fill in the index strategy structure with
1215  * information from the catalogs. If we aren't bootstrapping, then the
1216  * relcache entry has already been rebuilt thanks to sinval update during
1217  * CommandCounterIncrement.
1218  */
1220  RelationInitIndexAccessInfo(indexRelation);
1221  else
1222  Assert(indexRelation->rd_indexcxt != NULL);
1223 
1224  indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs;
1225 
1226  /* Validate opclass-specific options */
1227  if (opclassOptions)
1228  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1229  (void) index_opclass_options(indexRelation, i + 1,
1230  opclassOptions[i],
1231  true);
1232 
1233  /*
1234  * If this is bootstrap (initdb) time, then we don't actually fill in the
1235  * index yet. We'll be creating more indexes and classes later, so we
1236  * delay filling them in until just before we're done with bootstrapping.
1237  * Similarly, if the caller specified to skip the build then filling the
1238  * index is delayed till later (ALTER TABLE can save work in some cases
1239  * with this). Otherwise, we call the AM routine that constructs the
1240  * index.
1241  */
1243  {
1244  index_register(heapRelationId, indexRelationId, indexInfo);
1245  }
1246  else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0)
1247  {
1248  /*
1249  * Caller is responsible for filling the index later on. However,
1250  * we'd better make sure that the heap relation is correctly marked as
1251  * having an index.
1252  */
1253  index_update_stats(heapRelation,
1254  true,
1255  -1.0);
1256  /* Make the above update visible */
1258  }
1259  else
1260  {
1261  index_build(heapRelation, indexRelation, indexInfo, false, true);
1262  }
1263 
1264  /*
1265  * Close the index; but we keep the lock that we acquired above until end
1266  * of transaction. Closing the heap is caller's responsibility.
1267  */
1268  index_close(indexRelation, NoLock);
1269 
1270  return indexRelationId;
1271 }
1272 
1273 /*
1274  * index_concurrently_create_copy
1275  *
1276  * Create concurrently an index based on the definition of the one provided by
1277  * caller. The index is inserted into catalogs and needs to be built later
1278  * on. This is called during concurrent reindex processing.
1279  *
1280  * "tablespaceOid" is the tablespace to use for this index.
1281  */
1282 Oid
1284  Oid tablespaceOid, const char *newName)
1285 {
1286  Relation indexRelation;
1287  IndexInfo *oldInfo,
1288  *newInfo;
1289  Oid newIndexId = InvalidOid;
1290  HeapTuple indexTuple,
1291  classTuple;
1292  Datum indclassDatum,
1293  colOptionDatum,
1294  reloptionsDatum;
1295  Datum *opclassOptions;
1296  oidvector *indclass;
1297  int2vector *indcoloptions;
1298  bool isnull;
1299  List *indexColNames = NIL;
1300  List *indexExprs = NIL;
1301  List *indexPreds = NIL;
1302 
1303  indexRelation = index_open(oldIndexId, RowExclusiveLock);
1304 
1305  /* The new index needs some information from the old index */
1306  oldInfo = BuildIndexInfo(indexRelation);
1307 
1308  /*
1309  * Concurrent build of an index with exclusion constraints is not
1310  * supported.
1311  */
1312  if (oldInfo->ii_ExclusionOps != NULL)
1313  ereport(ERROR,
1314  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1315  errmsg("concurrent index creation for exclusion constraints is not supported")));
1316 
1317  /* Get the array of class and column options IDs from index info */
1318  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId));
1319  if (!HeapTupleIsValid(indexTuple))
1320  elog(ERROR, "cache lookup failed for index %u", oldIndexId);
1321  indclassDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1322  Anum_pg_index_indclass);
1323  indclass = (oidvector *) DatumGetPointer(indclassDatum);
1324 
1325  colOptionDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1326  Anum_pg_index_indoption);
1327  indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum);
1328 
1329  /* Fetch reloptions of index if any */
1330  classTuple = SearchSysCache1(RELOID, ObjectIdGetDatum(oldIndexId));
1331  if (!HeapTupleIsValid(classTuple))
1332  elog(ERROR, "cache lookup failed for relation %u", oldIndexId);
1333  reloptionsDatum = SysCacheGetAttr(RELOID, classTuple,
1334  Anum_pg_class_reloptions, &isnull);
1335 
1336  /*
1337  * Fetch the list of expressions and predicates directly from the
1338  * catalogs. This cannot rely on the information from IndexInfo of the
1339  * old index as these have been flattened for the planner.
1340  */
1341  if (oldInfo->ii_Expressions != NIL)
1342  {
1343  Datum exprDatum;
1344  char *exprString;
1345 
1346  exprDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1347  Anum_pg_index_indexprs);
1348  exprString = TextDatumGetCString(exprDatum);
1349  indexExprs = (List *) stringToNode(exprString);
1350  pfree(exprString);
1351  }
1352  if (oldInfo->ii_Predicate != NIL)
1353  {
1354  Datum predDatum;
1355  char *predString;
1356 
1357  predDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1358  Anum_pg_index_indpred);
1359  predString = TextDatumGetCString(predDatum);
1360  indexPreds = (List *) stringToNode(predString);
1361 
1362  /* Also convert to implicit-AND format */
1363  indexPreds = make_ands_implicit((Expr *) indexPreds);
1364  pfree(predString);
1365  }
1366 
1367  /*
1368  * Build the index information for the new index. Note that rebuild of
1369  * indexes with exclusion constraints is not supported, hence there is no
1370  * need to fill all the ii_Exclusion* fields.
1371  */
1372  newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs,
1373  oldInfo->ii_NumIndexKeyAttrs,
1374  oldInfo->ii_Am,
1375  indexExprs,
1376  indexPreds,
1377  oldInfo->ii_Unique,
1378  oldInfo->ii_NullsNotDistinct,
1379  false, /* not ready for inserts */
1380  true,
1381  indexRelation->rd_indam->amsummarizing);
1382 
1383  /*
1384  * Extract the list of column names and the column numbers for the new
1385  * index information. All this information will be used for the index
1386  * creation.
1387  */
1388  for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++)
1389  {
1390  TupleDesc indexTupDesc = RelationGetDescr(indexRelation);
1391  Form_pg_attribute att = TupleDescAttr(indexTupDesc, i);
1392 
1393  indexColNames = lappend(indexColNames, NameStr(att->attname));
1394  newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i];
1395  }
1396 
1397  /* Extract opclass options for each attribute */
1398  opclassOptions = palloc0(sizeof(Datum) * newInfo->ii_NumIndexAttrs);
1399  for (int i = 0; i < newInfo->ii_NumIndexAttrs; i++)
1400  opclassOptions[i] = get_attoptions(oldIndexId, i + 1);
1401 
1402  /*
1403  * Now create the new index.
1404  *
1405  * For a partition index, we adjust the partition dependency later, to
1406  * ensure a consistent state at all times. That is why parentIndexRelid
1407  * is not set here.
1408  */
1409  newIndexId = index_create(heapRelation,
1410  newName,
1411  InvalidOid, /* indexRelationId */
1412  InvalidOid, /* parentIndexRelid */
1413  InvalidOid, /* parentConstraintId */
1414  InvalidRelFileNumber, /* relFileNumber */
1415  newInfo,
1416  indexColNames,
1417  indexRelation->rd_rel->relam,
1418  tablespaceOid,
1419  indexRelation->rd_indcollation,
1420  indclass->values,
1421  opclassOptions,
1422  indcoloptions->values,
1423  reloptionsDatum,
1425  0,
1426  true, /* allow table to be a system catalog? */
1427  false, /* is_internal? */
1428  NULL);
1429 
1430  /* Close the relations used and clean up */
1431  index_close(indexRelation, NoLock);
1432  ReleaseSysCache(indexTuple);
1433  ReleaseSysCache(classTuple);
1434 
1435  return newIndexId;
1436 }
1437 
1438 /*
1439  * index_concurrently_build
1440  *
1441  * Build index for a concurrent operation. Low-level locks are taken when
1442  * this operation is performed to prevent only schema changes, but they need
1443  * to be kept until the end of the transaction performing this operation.
1444  * 'indexOid' refers to an index relation OID already created as part of
1445  * previous processing, and 'heapOid' refers to its parent heap relation.
1446  */
1447 void
1449  Oid indexRelationId)
1450 {
1451  Relation heapRel;
1452  Oid save_userid;
1453  int save_sec_context;
1454  int save_nestlevel;
1455  Relation indexRelation;
1456  IndexInfo *indexInfo;
1457 
1458  /* This had better make sure that a snapshot is active */
1460 
1461  /* Open and lock the parent heap relation */
1462  heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock);
1463 
1464  /*
1465  * Switch to the table owner's userid, so that any index functions are run
1466  * as that user. Also lock down security-restricted operations and
1467  * arrange to make GUC variable changes local to this command.
1468  */
1469  GetUserIdAndSecContext(&save_userid, &save_sec_context);
1470  SetUserIdAndSecContext(heapRel->rd_rel->relowner,
1471  save_sec_context | SECURITY_RESTRICTED_OPERATION);
1472  save_nestlevel = NewGUCNestLevel();
1473 
1474  indexRelation = index_open(indexRelationId, RowExclusiveLock);
1475 
1476  /*
1477  * We have to re-build the IndexInfo struct, since it was lost in the
1478  * commit of the transaction where this concurrent index was created at
1479  * the catalog level.
1480  */
1481  indexInfo = BuildIndexInfo(indexRelation);
1482  Assert(!indexInfo->ii_ReadyForInserts);
1483  indexInfo->ii_Concurrent = true;
1484  indexInfo->ii_BrokenHotChain = false;
1485 
1486  /* Now build the index */
1487  index_build(heapRel, indexRelation, indexInfo, false, true);
1488 
1489  /* Roll back any GUC changes executed by index functions */
1490  AtEOXact_GUC(false, save_nestlevel);
1491 
1492  /* Restore userid and security context */
1493  SetUserIdAndSecContext(save_userid, save_sec_context);
1494 
1495  /* Close both the relations, but keep the locks */
1496  table_close(heapRel, NoLock);
1497  index_close(indexRelation, NoLock);
1498 
1499  /*
1500  * Update the pg_index row to mark the index as ready for inserts. Once we
1501  * commit this transaction, any new transactions that open the table must
1502  * insert new entries into the index for insertions and non-HOT updates.
1503  */
1505 }
1506 
1507 /*
1508  * index_concurrently_swap
1509  *
1510  * Swap name, dependencies, and constraints of the old index over to the new
1511  * index, while marking the old index as invalid and the new as valid.
1512  */
1513 void
1514 index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
1515 {
1516  Relation pg_class,
1517  pg_index,
1518  pg_constraint,
1519  pg_trigger;
1520  Relation oldClassRel,
1521  newClassRel;
1522  HeapTuple oldClassTuple,
1523  newClassTuple;
1524  Form_pg_class oldClassForm,
1525  newClassForm;
1526  HeapTuple oldIndexTuple,
1527  newIndexTuple;
1528  Form_pg_index oldIndexForm,
1529  newIndexForm;
1530  bool isPartition;
1531  Oid indexConstraintOid;
1532  List *constraintOids = NIL;
1533  ListCell *lc;
1534 
1535  /*
1536  * Take a necessary lock on the old and new index before swapping them.
1537  */
1538  oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock);
1539  newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock);
1540 
1541  /* Now swap names and dependencies of those indexes */
1542  pg_class = table_open(RelationRelationId, RowExclusiveLock);
1543 
1544  oldClassTuple = SearchSysCacheCopy1(RELOID,
1545  ObjectIdGetDatum(oldIndexId));
1546  if (!HeapTupleIsValid(oldClassTuple))
1547  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1548  newClassTuple = SearchSysCacheCopy1(RELOID,
1549  ObjectIdGetDatum(newIndexId));
1550  if (!HeapTupleIsValid(newClassTuple))
1551  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1552 
1553  oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple);
1554  newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple);
1555 
1556  /* Swap the names */
1557  namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname));
1558  namestrcpy(&oldClassForm->relname, oldName);
1559 
1560  /* Swap the partition flags to track inheritance properly */
1561  isPartition = newClassForm->relispartition;
1562  newClassForm->relispartition = oldClassForm->relispartition;
1563  oldClassForm->relispartition = isPartition;
1564 
1565  CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple);
1566  CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple);
1567 
1568  heap_freetuple(oldClassTuple);
1569  heap_freetuple(newClassTuple);
1570 
1571  /* Now swap index info */
1572  pg_index = table_open(IndexRelationId, RowExclusiveLock);
1573 
1574  oldIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1575  ObjectIdGetDatum(oldIndexId));
1576  if (!HeapTupleIsValid(oldIndexTuple))
1577  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1578  newIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1579  ObjectIdGetDatum(newIndexId));
1580  if (!HeapTupleIsValid(newIndexTuple))
1581  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1582 
1583  oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple);
1584  newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple);
1585 
1586  /*
1587  * Copy constraint flags from the old index. This is safe because the old
1588  * index guaranteed uniqueness.
1589  */
1590  newIndexForm->indisprimary = oldIndexForm->indisprimary;
1591  oldIndexForm->indisprimary = false;
1592  newIndexForm->indisexclusion = oldIndexForm->indisexclusion;
1593  oldIndexForm->indisexclusion = false;
1594  newIndexForm->indimmediate = oldIndexForm->indimmediate;
1595  oldIndexForm->indimmediate = true;
1596 
1597  /* Preserve indisreplident in the new index */
1598  newIndexForm->indisreplident = oldIndexForm->indisreplident;
1599 
1600  /* Preserve indisclustered in the new index */
1601  newIndexForm->indisclustered = oldIndexForm->indisclustered;
1602 
1603  /*
1604  * Mark the new index as valid, and the old index as invalid similarly to
1605  * what index_set_state_flags() does.
1606  */
1607  newIndexForm->indisvalid = true;
1608  oldIndexForm->indisvalid = false;
1609  oldIndexForm->indisclustered = false;
1610  oldIndexForm->indisreplident = false;
1611 
1612  CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple);
1613  CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple);
1614 
1615  heap_freetuple(oldIndexTuple);
1616  heap_freetuple(newIndexTuple);
1617 
1618  /*
1619  * Move constraints and triggers over to the new index
1620  */
1621 
1622  constraintOids = get_index_ref_constraints(oldIndexId);
1623 
1624  indexConstraintOid = get_index_constraint(oldIndexId);
1625 
1626  if (OidIsValid(indexConstraintOid))
1627  constraintOids = lappend_oid(constraintOids, indexConstraintOid);
1628 
1629  pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock);
1630  pg_trigger = table_open(TriggerRelationId, RowExclusiveLock);
1631 
1632  foreach(lc, constraintOids)
1633  {
1634  HeapTuple constraintTuple,
1635  triggerTuple;
1636  Form_pg_constraint conForm;
1637  ScanKeyData key[1];
1638  SysScanDesc scan;
1639  Oid constraintOid = lfirst_oid(lc);
1640 
1641  /* Move the constraint from the old to the new index */
1642  constraintTuple = SearchSysCacheCopy1(CONSTROID,
1643  ObjectIdGetDatum(constraintOid));
1644  if (!HeapTupleIsValid(constraintTuple))
1645  elog(ERROR, "could not find tuple for constraint %u", constraintOid);
1646 
1647  conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple));
1648 
1649  if (conForm->conindid == oldIndexId)
1650  {
1651  conForm->conindid = newIndexId;
1652 
1653  CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple);
1654  }
1655 
1656  heap_freetuple(constraintTuple);
1657 
1658  /* Search for trigger records */
1659  ScanKeyInit(&key[0],
1660  Anum_pg_trigger_tgconstraint,
1661  BTEqualStrategyNumber, F_OIDEQ,
1662  ObjectIdGetDatum(constraintOid));
1663 
1664  scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true,
1665  NULL, 1, key);
1666 
1667  while (HeapTupleIsValid((triggerTuple = systable_getnext(scan))))
1668  {
1669  Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1670 
1671  if (tgForm->tgconstrindid != oldIndexId)
1672  continue;
1673 
1674  /* Make a modifiable copy */
1675  triggerTuple = heap_copytuple(triggerTuple);
1676  tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1677 
1678  tgForm->tgconstrindid = newIndexId;
1679 
1680  CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple);
1681 
1682  heap_freetuple(triggerTuple);
1683  }
1684 
1685  systable_endscan(scan);
1686  }
1687 
1688  /*
1689  * Move comment if any
1690  */
1691  {
1693  ScanKeyData skey[3];
1694  SysScanDesc sd;
1695  HeapTuple tuple;
1696  Datum values[Natts_pg_description] = {0};
1697  bool nulls[Natts_pg_description] = {0};
1698  bool replaces[Natts_pg_description] = {0};
1699 
1700  values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId);
1701  replaces[Anum_pg_description_objoid - 1] = true;
1702 
1703  ScanKeyInit(&skey[0],
1704  Anum_pg_description_objoid,
1705  BTEqualStrategyNumber, F_OIDEQ,
1706  ObjectIdGetDatum(oldIndexId));
1707  ScanKeyInit(&skey[1],
1708  Anum_pg_description_classoid,
1709  BTEqualStrategyNumber, F_OIDEQ,
1710  ObjectIdGetDatum(RelationRelationId));
1711  ScanKeyInit(&skey[2],
1712  Anum_pg_description_objsubid,
1713  BTEqualStrategyNumber, F_INT4EQ,
1714  Int32GetDatum(0));
1715 
1716  description = table_open(DescriptionRelationId, RowExclusiveLock);
1717 
1718  sd = systable_beginscan(description, DescriptionObjIndexId, true,
1719  NULL, 3, skey);
1720 
1721  while ((tuple = systable_getnext(sd)) != NULL)
1722  {
1724  values, nulls, replaces);
1725  CatalogTupleUpdate(description, &tuple->t_self, tuple);
1726 
1727  break; /* Assume there can be only one match */
1728  }
1729 
1730  systable_endscan(sd);
1732  }
1733 
1734  /*
1735  * Swap inheritance relationship with parent index
1736  */
1737  if (get_rel_relispartition(oldIndexId))
1738  {
1739  List *ancestors = get_partition_ancestors(oldIndexId);
1740  Oid parentIndexRelid = linitial_oid(ancestors);
1741 
1742  DeleteInheritsTuple(oldIndexId, parentIndexRelid, false, NULL);
1743  StoreSingleInheritance(newIndexId, parentIndexRelid, 1);
1744 
1745  list_free(ancestors);
1746  }
1747 
1748  /*
1749  * Swap all dependencies of and on the old index to the new one, and
1750  * vice-versa. Note that a call to CommandCounterIncrement() would cause
1751  * duplicate entries in pg_depend, so this should not be done.
1752  */
1753  changeDependenciesOf(RelationRelationId, newIndexId, oldIndexId);
1754  changeDependenciesOn(RelationRelationId, newIndexId, oldIndexId);
1755 
1756  changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId);
1757  changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId);
1758 
1759  /* copy over statistics from old to new index */
1760  pgstat_copy_relation_stats(newClassRel, oldClassRel);
1761 
1762  /* Copy data of pg_statistic from the old index to the new one */
1763  CopyStatistics(oldIndexId, newIndexId);
1764 
1765  /* Copy pg_attribute.attstattarget for each index attribute */
1766  {
1767  HeapTuple attrTuple;
1768  Relation pg_attribute;
1769  SysScanDesc scan;
1770  ScanKeyData key[1];
1771 
1772  pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
1773  ScanKeyInit(&key[0],
1774  Anum_pg_attribute_attrelid,
1775  BTEqualStrategyNumber, F_OIDEQ,
1776  ObjectIdGetDatum(newIndexId));
1777  scan = systable_beginscan(pg_attribute, AttributeRelidNumIndexId,
1778  true, NULL, 1, key);
1779 
1780  while (HeapTupleIsValid((attrTuple = systable_getnext(scan))))
1781  {
1782  Form_pg_attribute att = (Form_pg_attribute) GETSTRUCT(attrTuple);
1783  Datum repl_val[Natts_pg_attribute];
1784  bool repl_null[Natts_pg_attribute];
1785  bool repl_repl[Natts_pg_attribute];
1786  int attstattarget;
1787  HeapTuple newTuple;
1788 
1789  /* Ignore dropped columns */
1790  if (att->attisdropped)
1791  continue;
1792 
1793  /*
1794  * Get attstattarget from the old index and refresh the new value.
1795  */
1796  attstattarget = get_attstattarget(oldIndexId, att->attnum);
1797 
1798  /* no need for a refresh if both match */
1799  if (attstattarget == att->attstattarget)
1800  continue;
1801 
1802  memset(repl_val, 0, sizeof(repl_val));
1803  memset(repl_null, false, sizeof(repl_null));
1804  memset(repl_repl, false, sizeof(repl_repl));
1805 
1806  repl_repl[Anum_pg_attribute_attstattarget - 1] = true;
1807  repl_val[Anum_pg_attribute_attstattarget - 1] = Int16GetDatum(attstattarget);
1808 
1809  newTuple = heap_modify_tuple(attrTuple,
1810  RelationGetDescr(pg_attribute),
1811  repl_val, repl_null, repl_repl);
1812  CatalogTupleUpdate(pg_attribute, &newTuple->t_self, newTuple);
1813 
1814  heap_freetuple(newTuple);
1815  }
1816 
1817  systable_endscan(scan);
1818  table_close(pg_attribute, RowExclusiveLock);
1819  }
1820 
1821  /* Close relations */
1822  table_close(pg_class, RowExclusiveLock);
1823  table_close(pg_index, RowExclusiveLock);
1824  table_close(pg_constraint, RowExclusiveLock);
1825  table_close(pg_trigger, RowExclusiveLock);
1826 
1827  /* The lock taken previously is not released until the end of transaction */
1828  relation_close(oldClassRel, NoLock);
1829  relation_close(newClassRel, NoLock);
1830 }
1831 
1832 /*
1833  * index_concurrently_set_dead
1834  *
1835  * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX
1836  * CONCURRENTLY before actually dropping the index. After calling this
1837  * function, the index is seen by all the backends as dead. Low-level locks
1838  * taken here are kept until the end of the transaction calling this function.
1839  */
1840 void
1842 {
1843  Relation userHeapRelation;
1844  Relation userIndexRelation;
1845 
1846  /*
1847  * No more predicate locks will be acquired on this index, and we're about
1848  * to stop doing inserts into the index which could show conflicts with
1849  * existing predicate locks, so now is the time to move them to the heap
1850  * relation.
1851  */
1852  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
1853  userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock);
1854  TransferPredicateLocksToHeapRelation(userIndexRelation);
1855 
1856  /*
1857  * Now we are sure that nobody uses the index for queries; they just might
1858  * have it open for updating it. So now we can unset indisready and
1859  * indislive, then wait till nobody could be using it at all anymore.
1860  */
1862 
1863  /*
1864  * Invalidate the relcache for the table, so that after this commit all
1865  * sessions will refresh the table's index list. Forgetting just the
1866  * index's relcache entry is not enough.
1867  */
1868  CacheInvalidateRelcache(userHeapRelation);
1869 
1870  /*
1871  * Close the relations again, though still holding session lock.
1872  */
1873  table_close(userHeapRelation, NoLock);
1874  index_close(userIndexRelation, NoLock);
1875 }
1876 
1877 /*
1878  * index_constraint_create
1879  *
1880  * Set up a constraint associated with an index. Return the new constraint's
1881  * address.
1882  *
1883  * heapRelation: table owning the index (must be suitably locked by caller)
1884  * indexRelationId: OID of the index
1885  * parentConstraintId: if constraint is on a partition, the OID of the
1886  * constraint in the parent.
1887  * indexInfo: same info executor uses to insert into the index
1888  * constraintName: what it say (generally, should match name of index)
1889  * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or
1890  * CONSTRAINT_EXCLUSION
1891  * flags: bitmask that can include any combination of these bits:
1892  * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY
1893  * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE
1894  * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED
1895  * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row
1896  * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies
1897  * of index on table's columns
1898  * allow_system_table_mods: allow table to be a system catalog
1899  * is_internal: index is constructed due to internal process
1900  */
1903  Oid indexRelationId,
1904  Oid parentConstraintId,
1905  const IndexInfo *indexInfo,
1906  const char *constraintName,
1907  char constraintType,
1908  bits16 constr_flags,
1909  bool allow_system_table_mods,
1910  bool is_internal)
1911 {
1912  Oid namespaceId = RelationGetNamespace(heapRelation);
1913  ObjectAddress myself,
1914  idxaddr;
1915  Oid conOid;
1916  bool deferrable;
1917  bool initdeferred;
1918  bool mark_as_primary;
1919  bool islocal;
1920  bool noinherit;
1921  int inhcount;
1922 
1923  deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0;
1924  initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0;
1925  mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0;
1926 
1927  /* constraint creation support doesn't work while bootstrapping */
1929 
1930  /* enforce system-table restriction */
1931  if (!allow_system_table_mods &&
1932  IsSystemRelation(heapRelation) &&
1934  ereport(ERROR,
1935  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1936  errmsg("user-defined indexes on system catalog tables are not supported")));
1937 
1938  /* primary/unique constraints shouldn't have any expressions */
1939  if (indexInfo->ii_Expressions &&
1940  constraintType != CONSTRAINT_EXCLUSION)
1941  elog(ERROR, "constraints cannot have index expressions");
1942 
1943  /*
1944  * If we're manufacturing a constraint for a pre-existing index, we need
1945  * to get rid of the existing auto dependencies for the index (the ones
1946  * that index_create() would have made instead of calling this function).
1947  *
1948  * Note: this code would not necessarily do the right thing if the index
1949  * has any expressions or predicate, but we'd never be turning such an
1950  * index into a UNIQUE or PRIMARY KEY constraint.
1951  */
1952  if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS)
1953  deleteDependencyRecordsForClass(RelationRelationId, indexRelationId,
1954  RelationRelationId, DEPENDENCY_AUTO);
1955 
1956  if (OidIsValid(parentConstraintId))
1957  {
1958  islocal = false;
1959  inhcount = 1;
1960  noinherit = false;
1961  }
1962  else
1963  {
1964  islocal = true;
1965  inhcount = 0;
1966  noinherit = true;
1967  }
1968 
1969  /*
1970  * Construct a pg_constraint entry.
1971  */
1972  conOid = CreateConstraintEntry(constraintName,
1973  namespaceId,
1974  constraintType,
1975  deferrable,
1976  initdeferred,
1977  true,
1978  parentConstraintId,
1979  RelationGetRelid(heapRelation),
1980  indexInfo->ii_IndexAttrNumbers,
1981  indexInfo->ii_NumIndexKeyAttrs,
1982  indexInfo->ii_NumIndexAttrs,
1983  InvalidOid, /* no domain */
1984  indexRelationId, /* index OID */
1985  InvalidOid, /* no foreign key */
1986  NULL,
1987  NULL,
1988  NULL,
1989  NULL,
1990  0,
1991  ' ',
1992  ' ',
1993  NULL,
1994  0,
1995  ' ',
1996  indexInfo->ii_ExclusionOps,
1997  NULL, /* no check constraint */
1998  NULL,
1999  islocal,
2000  inhcount,
2001  noinherit,
2002  is_internal);
2003 
2004  /*
2005  * Register the index as internally dependent on the constraint.
2006  *
2007  * Note that the constraint has a dependency on the table, so we don't
2008  * need (or want) any direct dependency from the index to the table.
2009  */
2010  ObjectAddressSet(myself, ConstraintRelationId, conOid);
2011  ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId);
2012  recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL);
2013 
2014  /*
2015  * Also, if this is a constraint on a partition, give it partition-type
2016  * dependencies on the parent constraint as well as the table.
2017  */
2018  if (OidIsValid(parentConstraintId))
2019  {
2020  ObjectAddress referenced;
2021 
2022  ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId);
2023  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
2024  ObjectAddressSet(referenced, RelationRelationId,
2025  RelationGetRelid(heapRelation));
2026  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
2027  }
2028 
2029  /*
2030  * If the constraint is deferrable, create the deferred uniqueness
2031  * checking trigger. (The trigger will be given an internal dependency on
2032  * the constraint by CreateTrigger.)
2033  */
2034  if (deferrable)
2035  {
2037 
2038  trigger->replace = false;
2039  trigger->isconstraint = true;
2040  trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ?
2041  "PK_ConstraintTrigger" :
2042  "Unique_ConstraintTrigger";
2043  trigger->relation = NULL;
2044  trigger->funcname = SystemFuncName("unique_key_recheck");
2045  trigger->args = NIL;
2046  trigger->row = true;
2047  trigger->timing = TRIGGER_TYPE_AFTER;
2048  trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE;
2049  trigger->columns = NIL;
2050  trigger->whenClause = NULL;
2051  trigger->transitionRels = NIL;
2052  trigger->deferrable = true;
2053  trigger->initdeferred = initdeferred;
2054  trigger->constrrel = NULL;
2055 
2056  (void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation),
2057  InvalidOid, conOid, indexRelationId, InvalidOid,
2058  InvalidOid, NULL, true, false);
2059  }
2060 
2061  /*
2062  * If needed, mark the index as primary and/or deferred in pg_index.
2063  *
2064  * Note: When making an existing index into a constraint, caller must have
2065  * a table lock that prevents concurrent table updates; otherwise, there
2066  * is a risk that concurrent readers of the table will miss seeing this
2067  * index at all.
2068  */
2069  if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) &&
2070  (mark_as_primary || deferrable))
2071  {
2072  Relation pg_index;
2073  HeapTuple indexTuple;
2074  Form_pg_index indexForm;
2075  bool dirty = false;
2076  bool marked_as_primary = false;
2077 
2078  pg_index = table_open(IndexRelationId, RowExclusiveLock);
2079 
2080  indexTuple = SearchSysCacheCopy1(INDEXRELID,
2081  ObjectIdGetDatum(indexRelationId));
2082  if (!HeapTupleIsValid(indexTuple))
2083  elog(ERROR, "cache lookup failed for index %u", indexRelationId);
2084  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
2085 
2086  if (mark_as_primary && !indexForm->indisprimary)
2087  {
2088  indexForm->indisprimary = true;
2089  dirty = true;
2090  marked_as_primary = true;
2091  }
2092 
2093  if (deferrable && indexForm->indimmediate)
2094  {
2095  indexForm->indimmediate = false;
2096  dirty = true;
2097  }
2098 
2099  if (dirty)
2100  {
2101  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
2102 
2103  /*
2104  * When we mark an existing index as primary, force a relcache
2105  * flush on its parent table, so that all sessions will become
2106  * aware that the table now has a primary key. This is important
2107  * because it affects some replication behaviors.
2108  */
2109  if (marked_as_primary)
2110  CacheInvalidateRelcache(heapRelation);
2111 
2112  InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0,
2113  InvalidOid, is_internal);
2114  }
2115 
2116  heap_freetuple(indexTuple);
2117  table_close(pg_index, RowExclusiveLock);
2118  }
2119 
2120  return myself;
2121 }
2122 
2123 /*
2124  * index_drop
2125  *
2126  * NOTE: this routine should now only be called through performDeletion(),
2127  * else associated dependencies won't be cleaned up.
2128  *
2129  * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is
2130  * false but concurrent_lock_mode is true, then do a normal DROP INDEX but
2131  * take a lock for CONCURRENTLY processing. That is used as part of REINDEX
2132  * CONCURRENTLY.
2133  */
2134 void
2135 index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
2136 {
2137  Oid heapId;
2138  Relation userHeapRelation;
2139  Relation userIndexRelation;
2140  Relation indexRelation;
2141  HeapTuple tuple;
2142  bool hasexprs;
2143  LockRelId heaprelid,
2144  indexrelid;
2145  LOCKTAG heaplocktag;
2146  LOCKMODE lockmode;
2147 
2148  /*
2149  * A temporary relation uses a non-concurrent DROP. Other backends can't
2150  * access a temporary relation, so there's no harm in grabbing a stronger
2151  * lock (see comments in RemoveRelations), and a non-concurrent DROP is
2152  * more efficient.
2153  */
2154  Assert(get_rel_persistence(indexId) != RELPERSISTENCE_TEMP ||
2155  (!concurrent && !concurrent_lock_mode));
2156 
2157  /*
2158  * To drop an index safely, we must grab exclusive lock on its parent
2159  * table. Exclusive lock on the index alone is insufficient because
2160  * another backend might be about to execute a query on the parent table.
2161  * If it relies on a previously cached list of index OIDs, then it could
2162  * attempt to access the just-dropped index. We must therefore take a
2163  * table lock strong enough to prevent all queries on the table from
2164  * proceeding until we commit and send out a shared-cache-inval notice
2165  * that will make them update their index lists.
2166  *
2167  * In the concurrent case we avoid this requirement by disabling index use
2168  * in multiple steps and waiting out any transactions that might be using
2169  * the index, so we don't need exclusive lock on the parent table. Instead
2170  * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't
2171  * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get
2172  * AccessExclusiveLock on the index below, once we're sure nobody else is
2173  * using it.)
2174  */
2175  heapId = IndexGetRelation(indexId, false);
2176  lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock;
2177  userHeapRelation = table_open(heapId, lockmode);
2178  userIndexRelation = index_open(indexId, lockmode);
2179 
2180  /*
2181  * We might still have open queries using it in our own session, which the
2182  * above locking won't prevent, so test explicitly.
2183  */
2184  CheckTableNotInUse(userIndexRelation, "DROP INDEX");
2185 
2186  /*
2187  * Drop Index Concurrently is more or less the reverse process of Create
2188  * Index Concurrently.
2189  *
2190  * First we unset indisvalid so queries starting afterwards don't use the
2191  * index to answer queries anymore. We have to keep indisready = true so
2192  * transactions that are still scanning the index can continue to see
2193  * valid index contents. For instance, if they are using READ COMMITTED
2194  * mode, and another transaction makes changes and commits, they need to
2195  * see those new tuples in the index.
2196  *
2197  * After all transactions that could possibly have used the index for
2198  * queries end, we can unset indisready and indislive, then wait till
2199  * nobody could be touching it anymore. (Note: we need indislive because
2200  * this state must be distinct from the initial state during CREATE INDEX
2201  * CONCURRENTLY, which has indislive true while indisready and indisvalid
2202  * are false. That's because in that state, transactions must examine the
2203  * index for HOT-safety decisions, while in this state we don't want them
2204  * to open it at all.)
2205  *
2206  * Since all predicate locks on the index are about to be made invalid, we
2207  * must promote them to predicate locks on the heap. In the
2208  * non-concurrent case we can just do that now. In the concurrent case
2209  * it's a bit trickier. The predicate locks must be moved when there are
2210  * no index scans in progress on the index and no more can subsequently
2211  * start, so that no new predicate locks can be made on the index. Also,
2212  * they must be moved before heap inserts stop maintaining the index, else
2213  * the conflict with the predicate lock on the index gap could be missed
2214  * before the lock on the heap relation is in place to detect a conflict
2215  * based on the heap tuple insert.
2216  */
2217  if (concurrent)
2218  {
2219  /*
2220  * We must commit our transaction in order to make the first pg_index
2221  * state update visible to other sessions. If the DROP machinery has
2222  * already performed any other actions (removal of other objects,
2223  * pg_depend entries, etc), the commit would make those actions
2224  * permanent, which would leave us with inconsistent catalog state if
2225  * we fail partway through the following sequence. Since DROP INDEX
2226  * CONCURRENTLY is restricted to dropping just one index that has no
2227  * dependencies, we should get here before anything's been done ---
2228  * but let's check that to be sure. We can verify that the current
2229  * transaction has not executed any transactional updates by checking
2230  * that no XID has been assigned.
2231  */
2233  ereport(ERROR,
2234  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2235  errmsg("DROP INDEX CONCURRENTLY must be first action in transaction")));
2236 
2237  /*
2238  * Mark index invalid by updating its pg_index entry
2239  */
2241 
2242  /*
2243  * Invalidate the relcache for the table, so that after this commit
2244  * all sessions will refresh any cached plans that might reference the
2245  * index.
2246  */
2247  CacheInvalidateRelcache(userHeapRelation);
2248 
2249  /* save lockrelid and locktag for below, then close but keep locks */
2250  heaprelid = userHeapRelation->rd_lockInfo.lockRelId;
2251  SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
2252  indexrelid = userIndexRelation->rd_lockInfo.lockRelId;
2253 
2254  table_close(userHeapRelation, NoLock);
2255  index_close(userIndexRelation, NoLock);
2256 
2257  /*
2258  * We must commit our current transaction so that the indisvalid
2259  * update becomes visible to other transactions; then start another.
2260  * Note that any previously-built data structures are lost in the
2261  * commit. The only data we keep past here are the relation IDs.
2262  *
2263  * Before committing, get a session-level lock on the table, to ensure
2264  * that neither it nor the index can be dropped before we finish. This
2265  * cannot block, even if someone else is waiting for access, because
2266  * we already have the same lock within our transaction.
2267  */
2270 
2274 
2275  /*
2276  * Now we must wait until no running transaction could be using the
2277  * index for a query. Use AccessExclusiveLock here to check for
2278  * running transactions that hold locks of any kind on the table. Note
2279  * we do not need to worry about xacts that open the table for reading
2280  * after this point; they will see the index as invalid when they open
2281  * the relation.
2282  *
2283  * Note: the reason we use actual lock acquisition here, rather than
2284  * just checking the ProcArray and sleeping, is that deadlock is
2285  * possible if one of the transactions in question is blocked trying
2286  * to acquire an exclusive lock on our table. The lock code will
2287  * detect deadlock and error out properly.
2288  *
2289  * Note: we report progress through WaitForLockers() unconditionally
2290  * here, even though it will only be used when we're called by REINDEX
2291  * CONCURRENTLY and not when called by DROP INDEX CONCURRENTLY.
2292  */
2293  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2294 
2295  /* Finish invalidation of index and mark it as dead */
2296  index_concurrently_set_dead(heapId, indexId);
2297 
2298  /*
2299  * Again, commit the transaction to make the pg_index update visible
2300  * to other sessions.
2301  */
2304 
2305  /*
2306  * Wait till every transaction that saw the old index state has
2307  * finished. See above about progress reporting.
2308  */
2309  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2310 
2311  /*
2312  * Re-open relations to allow us to complete our actions.
2313  *
2314  * At this point, nothing should be accessing the index, but lets
2315  * leave nothing to chance and grab AccessExclusiveLock on the index
2316  * before the physical deletion.
2317  */
2318  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
2319  userIndexRelation = index_open(indexId, AccessExclusiveLock);
2320  }
2321  else
2322  {
2323  /* Not concurrent, so just transfer predicate locks and we're good */
2324  TransferPredicateLocksToHeapRelation(userIndexRelation);
2325  }
2326 
2327  /*
2328  * Schedule physical removal of the files (if any)
2329  */
2330  if (RELKIND_HAS_STORAGE(userIndexRelation->rd_rel->relkind))
2331  RelationDropStorage(userIndexRelation);
2332 
2333  /* ensure that stats are dropped if transaction commits */
2334  pgstat_drop_relation(userIndexRelation);
2335 
2336  /*
2337  * Close and flush the index's relcache entry, to ensure relcache doesn't
2338  * try to rebuild it while we're deleting catalog entries. We keep the
2339  * lock though.
2340  */
2341  index_close(userIndexRelation, NoLock);
2342 
2343  RelationForgetRelation(indexId);
2344 
2345  /*
2346  * fix INDEX relation, and check for expressional index
2347  */
2348  indexRelation = table_open(IndexRelationId, RowExclusiveLock);
2349 
2350  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
2351  if (!HeapTupleIsValid(tuple))
2352  elog(ERROR, "cache lookup failed for index %u", indexId);
2353 
2354  hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs,
2355  RelationGetDescr(indexRelation));
2356 
2357  CatalogTupleDelete(indexRelation, &tuple->t_self);
2358 
2359  ReleaseSysCache(tuple);
2360  table_close(indexRelation, RowExclusiveLock);
2361 
2362  /*
2363  * if it has any expression columns, we might have stored statistics about
2364  * them.
2365  */
2366  if (hasexprs)
2367  RemoveStatistics(indexId, 0);
2368 
2369  /*
2370  * fix ATTRIBUTE relation
2371  */
2372  DeleteAttributeTuples(indexId);
2373 
2374  /*
2375  * fix RELATION relation
2376  */
2377  DeleteRelationTuple(indexId);
2378 
2379  /*
2380  * fix INHERITS relation
2381  */
2382  DeleteInheritsTuple(indexId, InvalidOid, false, NULL);
2383 
2384  /*
2385  * We are presently too lazy to attempt to compute the new correct value
2386  * of relhasindex (the next VACUUM will fix it if necessary). So there is
2387  * no need to update the pg_class tuple for the owning relation. But we
2388  * must send out a shared-cache-inval notice on the owning relation to
2389  * ensure other backends update their relcache lists of indexes. (In the
2390  * concurrent case, this is redundant but harmless.)
2391  */
2392  CacheInvalidateRelcache(userHeapRelation);
2393 
2394  /*
2395  * Close owning rel, but keep lock
2396  */
2397  table_close(userHeapRelation, NoLock);
2398 
2399  /*
2400  * Release the session locks before we go.
2401  */
2402  if (concurrent)
2403  {
2406  }
2407 }
2408 
2409 /* ----------------------------------------------------------------
2410  * index_build support
2411  * ----------------------------------------------------------------
2412  */
2413 
2414 /* ----------------
2415  * BuildIndexInfo
2416  * Construct an IndexInfo record for an open index
2417  *
2418  * IndexInfo stores the information about the index that's needed by
2419  * FormIndexDatum, which is used for both index_build() and later insertion
2420  * of individual index tuples. Normally we build an IndexInfo for an index
2421  * just once per command, and then use it for (potentially) many tuples.
2422  * ----------------
2423  */
2424 IndexInfo *
2426 {
2427  IndexInfo *ii;
2428  Form_pg_index indexStruct = index->rd_index;
2429  int i;
2430  int numAtts;
2431 
2432  /* check the number of keys, and copy attr numbers into the IndexInfo */
2433  numAtts = indexStruct->indnatts;
2434  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2435  elog(ERROR, "invalid indnatts %d for index %u",
2436  numAtts, RelationGetRelid(index));
2437 
2438  /*
2439  * Create the node, fetching any expressions needed for expressional
2440  * indexes and index predicate if any.
2441  */
2442  ii = makeIndexInfo(indexStruct->indnatts,
2443  indexStruct->indnkeyatts,
2444  index->rd_rel->relam,
2447  indexStruct->indisunique,
2448  indexStruct->indnullsnotdistinct,
2449  indexStruct->indisready,
2450  false,
2451  index->rd_indam->amsummarizing);
2452 
2453  /* fill in attribute numbers */
2454  for (i = 0; i < numAtts; i++)
2455  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2456 
2457  /* fetch exclusion constraint info if any */
2458  if (indexStruct->indisexclusion)
2459  {
2461  &ii->ii_ExclusionOps,
2462  &ii->ii_ExclusionProcs,
2463  &ii->ii_ExclusionStrats);
2464  }
2465 
2466  return ii;
2467 }
2468 
2469 /* ----------------
2470  * BuildDummyIndexInfo
2471  * Construct a dummy IndexInfo record for an open index
2472  *
2473  * This differs from the real BuildIndexInfo in that it will never run any
2474  * user-defined code that might exist in index expressions or predicates.
2475  * Instead of the real index expressions, we return null constants that have
2476  * the right types/typmods/collations. Predicates and exclusion clauses are
2477  * just ignored. This is sufficient for the purpose of truncating an index,
2478  * since we will not need to actually evaluate the expressions or predicates;
2479  * the only thing that's likely to be done with the data is construction of
2480  * a tupdesc describing the index's rowtype.
2481  * ----------------
2482  */
2483 IndexInfo *
2485 {
2486  IndexInfo *ii;
2487  Form_pg_index indexStruct = index->rd_index;
2488  int i;
2489  int numAtts;
2490 
2491  /* check the number of keys, and copy attr numbers into the IndexInfo */
2492  numAtts = indexStruct->indnatts;
2493  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2494  elog(ERROR, "invalid indnatts %d for index %u",
2495  numAtts, RelationGetRelid(index));
2496 
2497  /*
2498  * Create the node, using dummy index expressions, and pretending there is
2499  * no predicate.
2500  */
2501  ii = makeIndexInfo(indexStruct->indnatts,
2502  indexStruct->indnkeyatts,
2503  index->rd_rel->relam,
2505  NIL,
2506  indexStruct->indisunique,
2507  indexStruct->indnullsnotdistinct,
2508  indexStruct->indisready,
2509  false,
2510  index->rd_indam->amsummarizing);
2511 
2512  /* fill in attribute numbers */
2513  for (i = 0; i < numAtts; i++)
2514  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2515 
2516  /* We ignore the exclusion constraint if any */
2517 
2518  return ii;
2519 }
2520 
2521 /*
2522  * CompareIndexInfo
2523  * Return whether the properties of two indexes (in different tables)
2524  * indicate that they have the "same" definitions.
2525  *
2526  * Note: passing collations and opfamilies separately is a kludge. Adding
2527  * them to IndexInfo may result in better coding here and elsewhere.
2528  *
2529  * Use build_attrmap_by_name(index2, index1) to build the attmap.
2530  */
2531 bool
2532 CompareIndexInfo(const IndexInfo *info1, const IndexInfo *info2,
2533  const Oid *collations1, const Oid *collations2,
2534  const Oid *opfamilies1, const Oid *opfamilies2,
2535  const AttrMap *attmap)
2536 {
2537  int i;
2538 
2539  if (info1->ii_Unique != info2->ii_Unique)
2540  return false;
2541 
2542  if (info1->ii_NullsNotDistinct != info2->ii_NullsNotDistinct)
2543  return false;
2544 
2545  /* indexes are only equivalent if they have the same access method */
2546  if (info1->ii_Am != info2->ii_Am)
2547  return false;
2548 
2549  /* and same number of attributes */
2550  if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs)
2551  return false;
2552 
2553  /* and same number of key attributes */
2554  if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs)
2555  return false;
2556 
2557  /*
2558  * and columns match through the attribute map (actual attribute numbers
2559  * might differ!) Note that this checks that index columns that are
2560  * expressions appear in the same positions. We will next compare the
2561  * expressions themselves.
2562  */
2563  for (i = 0; i < info1->ii_NumIndexAttrs; i++)
2564  {
2565  if (attmap->maplen < info2->ii_IndexAttrNumbers[i])
2566  elog(ERROR, "incorrect attribute map");
2567 
2568  /* ignore expressions for now (but check their collation/opfamily) */
2569  if (!(info1->ii_IndexAttrNumbers[i] == InvalidAttrNumber &&
2571  {
2572  /* fail if just one index has an expression in this column */
2573  if (info1->ii_IndexAttrNumbers[i] == InvalidAttrNumber ||
2575  return false;
2576 
2577  /* both are columns, so check for match after mapping */
2578  if (attmap->attnums[info2->ii_IndexAttrNumbers[i] - 1] !=
2579  info1->ii_IndexAttrNumbers[i])
2580  return false;
2581  }
2582 
2583  /* collation and opfamily are not valid for included columns */
2584  if (i >= info1->ii_NumIndexKeyAttrs)
2585  continue;
2586 
2587  if (collations1[i] != collations2[i])
2588  return false;
2589  if (opfamilies1[i] != opfamilies2[i])
2590  return false;
2591  }
2592 
2593  /*
2594  * For expression indexes: either both are expression indexes, or neither
2595  * is; if they are, make sure the expressions match.
2596  */
2597  if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL))
2598  return false;
2599  if (info1->ii_Expressions != NIL)
2600  {
2601  bool found_whole_row;
2602  Node *mapped;
2603 
2604  mapped = map_variable_attnos((Node *) info2->ii_Expressions,
2605  1, 0, attmap,
2606  InvalidOid, &found_whole_row);
2607  if (found_whole_row)
2608  {
2609  /*
2610  * we could throw an error here, but seems out of scope for this
2611  * routine.
2612  */
2613  return false;
2614  }
2615 
2616  if (!equal(info1->ii_Expressions, mapped))
2617  return false;
2618  }
2619 
2620  /* Partial index predicates must be identical, if they exist */
2621  if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL))
2622  return false;
2623  if (info1->ii_Predicate != NULL)
2624  {
2625  bool found_whole_row;
2626  Node *mapped;
2627 
2628  mapped = map_variable_attnos((Node *) info2->ii_Predicate,
2629  1, 0, attmap,
2630  InvalidOid, &found_whole_row);
2631  if (found_whole_row)
2632  {
2633  /*
2634  * we could throw an error here, but seems out of scope for this
2635  * routine.
2636  */
2637  return false;
2638  }
2639  if (!equal(info1->ii_Predicate, mapped))
2640  return false;
2641  }
2642 
2643  /* No support currently for comparing exclusion indexes. */
2644  if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL)
2645  return false;
2646 
2647  return true;
2648 }
2649 
2650 /* ----------------
2651  * BuildSpeculativeIndexInfo
2652  * Add extra state to IndexInfo record
2653  *
2654  * For unique indexes, we usually don't want to add info to the IndexInfo for
2655  * checking uniqueness, since the B-Tree AM handles that directly. However,
2656  * in the case of speculative insertion, additional support is required.
2657  *
2658  * Do this processing here rather than in BuildIndexInfo() to not incur the
2659  * overhead in the common non-speculative cases.
2660  * ----------------
2661  */
2662 void
2664 {
2665  int indnkeyatts;
2666  int i;
2667 
2669 
2670  /*
2671  * fetch info for checking unique indexes
2672  */
2673  Assert(ii->ii_Unique);
2674 
2675  if (index->rd_rel->relam != BTREE_AM_OID)
2676  elog(ERROR, "unexpected non-btree speculative unique index");
2677 
2678  ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2679  ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2680  ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts);
2681 
2682  /*
2683  * We have to look up the operator's strategy number. This provides a
2684  * cross-check that the operator does match the index.
2685  */
2686  /* We need the func OIDs and strategy numbers too */
2687  for (i = 0; i < indnkeyatts; i++)
2688  {
2690  ii->ii_UniqueOps[i] =
2691  get_opfamily_member(index->rd_opfamily[i],
2692  index->rd_opcintype[i],
2693  index->rd_opcintype[i],
2694  ii->ii_UniqueStrats[i]);
2695  if (!OidIsValid(ii->ii_UniqueOps[i]))
2696  elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2697  ii->ii_UniqueStrats[i], index->rd_opcintype[i],
2698  index->rd_opcintype[i], index->rd_opfamily[i]);
2699  ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]);
2700  }
2701 }
2702 
2703 /* ----------------
2704  * FormIndexDatum
2705  * Construct values[] and isnull[] arrays for a new index tuple.
2706  *
2707  * indexInfo Info about the index
2708  * slot Heap tuple for which we must prepare an index entry
2709  * estate executor state for evaluating any index expressions
2710  * values Array of index Datums (output area)
2711  * isnull Array of is-null indicators (output area)
2712  *
2713  * When there are no index expressions, estate may be NULL. Otherwise it
2714  * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
2715  * context must point to the heap tuple passed in.
2716  *
2717  * Notice we don't actually call index_form_tuple() here; we just prepare
2718  * its input arrays values[] and isnull[]. This is because the index AM
2719  * may wish to alter the data before storage.
2720  * ----------------
2721  */
2722 void
2724  TupleTableSlot *slot,
2725  EState *estate,
2726  Datum *values,
2727  bool *isnull)
2728 {
2729  ListCell *indexpr_item;
2730  int i;
2731 
2732  if (indexInfo->ii_Expressions != NIL &&
2733  indexInfo->ii_ExpressionsState == NIL)
2734  {
2735  /* First time through, set up expression evaluation state */
2736  indexInfo->ii_ExpressionsState =
2737  ExecPrepareExprList(indexInfo->ii_Expressions, estate);
2738  /* Check caller has set up context correctly */
2739  Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
2740  }
2741  indexpr_item = list_head(indexInfo->ii_ExpressionsState);
2742 
2743  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
2744  {
2745  int keycol = indexInfo->ii_IndexAttrNumbers[i];
2746  Datum iDatum;
2747  bool isNull;
2748 
2749  if (keycol < 0)
2750  iDatum = slot_getsysattr(slot, keycol, &isNull);
2751  else if (keycol != 0)
2752  {
2753  /*
2754  * Plain index column; get the value we need directly from the
2755  * heap tuple.
2756  */
2757  iDatum = slot_getattr(slot, keycol, &isNull);
2758  }
2759  else
2760  {
2761  /*
2762  * Index expression --- need to evaluate it.
2763  */
2764  if (indexpr_item == NULL)
2765  elog(ERROR, "wrong number of index expressions");
2766  iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item),
2767  GetPerTupleExprContext(estate),
2768  &isNull);
2769  indexpr_item = lnext(indexInfo->ii_ExpressionsState, indexpr_item);
2770  }
2771  values[i] = iDatum;
2772  isnull[i] = isNull;
2773  }
2774 
2775  if (indexpr_item != NULL)
2776  elog(ERROR, "wrong number of index expressions");
2777 }
2778 
2779 
2780 /*
2781  * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
2782  *
2783  * This routine updates the pg_class row of either an index or its parent
2784  * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed
2785  * to ensure we can do all the necessary work in just one update.
2786  *
2787  * hasindex: set relhasindex to this value
2788  * reltuples: if >= 0, set reltuples to this value; else no change
2789  *
2790  * If reltuples >= 0, relpages and relallvisible are also updated (using
2791  * RelationGetNumberOfBlocks() and visibilitymap_count()).
2792  *
2793  * NOTE: an important side-effect of this operation is that an SI invalidation
2794  * message is sent out to all backends --- including me --- causing relcache
2795  * entries to be flushed or updated with the new data. This must happen even
2796  * if we find that no change is needed in the pg_class row. When updating
2797  * a heap entry, this ensures that other backends find out about the new
2798  * index. When updating an index, it's important because some index AMs
2799  * expect a relcache flush to occur after REINDEX.
2800  */
2801 static void
2803  bool hasindex,
2804  double reltuples)
2805 {
2806  Oid relid = RelationGetRelid(rel);
2807  Relation pg_class;
2808  HeapTuple tuple;
2809  Form_pg_class rd_rel;
2810  bool dirty;
2811 
2812  /*
2813  * We always update the pg_class row using a non-transactional,
2814  * overwrite-in-place update. There are several reasons for this:
2815  *
2816  * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
2817  *
2818  * 2. We could be reindexing pg_class itself, in which case we can't move
2819  * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might
2820  * not know about all the indexes yet (see reindex_relation).
2821  *
2822  * 3. Because we execute CREATE INDEX with just share lock on the parent
2823  * rel (to allow concurrent index creations), an ordinary update could
2824  * suffer a tuple-concurrently-updated failure against another CREATE
2825  * INDEX committing at about the same time. We can avoid that by having
2826  * them both do nontransactional updates (we assume they will both be
2827  * trying to change the pg_class row to the same thing, so it doesn't
2828  * matter which goes first).
2829  *
2830  * It is safe to use a non-transactional update even though our
2831  * transaction could still fail before committing. Setting relhasindex
2832  * true is safe even if there are no indexes (VACUUM will eventually fix
2833  * it). And of course the new relpages and reltuples counts are correct
2834  * regardless. However, we don't want to change relpages (or
2835  * relallvisible) if the caller isn't providing an updated reltuples
2836  * count, because that would bollix the reltuples/relpages ratio which is
2837  * what's really important.
2838  */
2839 
2840  pg_class = table_open(RelationRelationId, RowExclusiveLock);
2841 
2842  /*
2843  * Make a copy of the tuple to update. Normally we use the syscache, but
2844  * we can't rely on that during bootstrap or while reindexing pg_class
2845  * itself.
2846  */
2847  if (IsBootstrapProcessingMode() ||
2848  ReindexIsProcessingHeap(RelationRelationId))
2849  {
2850  /* don't assume syscache will work */
2851  TableScanDesc pg_class_scan;
2852  ScanKeyData key[1];
2853 
2854  ScanKeyInit(&key[0],
2855  Anum_pg_class_oid,
2856  BTEqualStrategyNumber, F_OIDEQ,
2857  ObjectIdGetDatum(relid));
2858 
2859  pg_class_scan = table_beginscan_catalog(pg_class, 1, key);
2860  tuple = heap_getnext(pg_class_scan, ForwardScanDirection);
2861  tuple = heap_copytuple(tuple);
2862  table_endscan(pg_class_scan);
2863  }
2864  else
2865  {
2866  /* normal case, use syscache */
2867  tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid));
2868  }
2869 
2870  if (!HeapTupleIsValid(tuple))
2871  elog(ERROR, "could not find tuple for relation %u", relid);
2872  rd_rel = (Form_pg_class) GETSTRUCT(tuple);
2873 
2874  /* Should this be a more comprehensive test? */
2875  Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX);
2876 
2877  /*
2878  * As a special hack, if we are dealing with an empty table and the
2879  * existing reltuples is -1, we leave that alone. This ensures that
2880  * creating an index as part of CREATE TABLE doesn't cause the table to
2881  * prematurely look like it's been vacuumed.
2882  */
2883  if (reltuples == 0 && rd_rel->reltuples < 0)
2884  reltuples = -1;
2885 
2886  /* Apply required updates, if any, to copied tuple */
2887 
2888  dirty = false;
2889  if (rd_rel->relhasindex != hasindex)
2890  {
2891  rd_rel->relhasindex = hasindex;
2892  dirty = true;
2893  }
2894 
2895  if (reltuples >= 0)
2896  {
2897  BlockNumber relpages = RelationGetNumberOfBlocks(rel);
2898  BlockNumber relallvisible;
2899 
2900  if (rd_rel->relkind != RELKIND_INDEX)
2901  visibilitymap_count(rel, &relallvisible, NULL);
2902  else /* don't bother for indexes */
2903  relallvisible = 0;
2904 
2905  if (rd_rel->relpages != (int32) relpages)
2906  {
2907  rd_rel->relpages = (int32) relpages;
2908  dirty = true;
2909  }
2910  if (rd_rel->reltuples != (float4) reltuples)
2911  {
2912  rd_rel->reltuples = (float4) reltuples;
2913  dirty = true;
2914  }
2915  if (rd_rel->relallvisible != (int32) relallvisible)
2916  {
2917  rd_rel->relallvisible = (int32) relallvisible;
2918  dirty = true;
2919  }
2920  }
2921 
2922  /*
2923  * If anything changed, write out the tuple
2924  */
2925  if (dirty)
2926  {
2927  heap_inplace_update(pg_class, tuple);
2928  /* the above sends a cache inval message */
2929  }
2930  else
2931  {
2932  /* no need to change tuple, but force relcache inval anyway */
2934  }
2935 
2936  heap_freetuple(tuple);
2937 
2938  table_close(pg_class, RowExclusiveLock);
2939 }
2940 
2941 
2942 /*
2943  * index_build - invoke access-method-specific index build procedure
2944  *
2945  * On entry, the index's catalog entries are valid, and its physical disk
2946  * file has been created but is empty. We call the AM-specific build
2947  * procedure to fill in the index contents. We then update the pg_class
2948  * entries of the index and heap relation as needed, using statistics
2949  * returned by ambuild as well as data passed by the caller.
2950  *
2951  * isreindex indicates we are recreating a previously-existing index.
2952  * parallel indicates if parallelism may be useful.
2953  *
2954  * Note: before Postgres 8.2, the passed-in heap and index Relations
2955  * were automatically closed by this routine. This is no longer the case.
2956  * The caller opened 'em, and the caller should close 'em.
2957  */
2958 void
2959 index_build(Relation heapRelation,
2960  Relation indexRelation,
2961  IndexInfo *indexInfo,
2962  bool isreindex,
2963  bool parallel)
2964 {
2965  IndexBuildResult *stats;
2966  Oid save_userid;
2967  int save_sec_context;
2968  int save_nestlevel;
2969 
2970  /*
2971  * sanity checks
2972  */
2973  Assert(RelationIsValid(indexRelation));
2974  Assert(PointerIsValid(indexRelation->rd_indam));
2975  Assert(PointerIsValid(indexRelation->rd_indam->ambuild));
2976  Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty));
2977 
2978  /*
2979  * Determine worker process details for parallel CREATE INDEX. Currently,
2980  * only btree has support for parallel builds.
2981  *
2982  * Note that planner considers parallel safety for us.
2983  */
2984  if (parallel && IsNormalProcessingMode() &&
2985  indexRelation->rd_rel->relam == BTREE_AM_OID)
2986  indexInfo->ii_ParallelWorkers =
2988  RelationGetRelid(indexRelation));
2989 
2990  if (indexInfo->ii_ParallelWorkers == 0)
2991  ereport(DEBUG1,
2992  (errmsg_internal("building index \"%s\" on table \"%s\" serially",
2993  RelationGetRelationName(indexRelation),
2994  RelationGetRelationName(heapRelation))));
2995  else
2996  ereport(DEBUG1,
2997  (errmsg_internal("building index \"%s\" on table \"%s\" with request for %d parallel workers",
2998  RelationGetRelationName(indexRelation),
2999  RelationGetRelationName(heapRelation),
3000  indexInfo->ii_ParallelWorkers)));
3001 
3002  /*
3003  * Switch to the table owner's userid, so that any index functions are run
3004  * as that user. Also lock down security-restricted operations and
3005  * arrange to make GUC variable changes local to this command.
3006  */
3007  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3008  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3009  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3010  save_nestlevel = NewGUCNestLevel();
3011 
3012  /* Set up initial progress report status */
3013  {
3014  const int progress_index[] = {
3021  };
3022  const int64 progress_vals[] = {
3025  0, 0, 0, 0
3026  };
3027 
3028  pgstat_progress_update_multi_param(6, progress_index, progress_vals);
3029  }
3030 
3031  /*
3032  * Call the access method's build procedure
3033  */
3034  stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation,
3035  indexInfo);
3036  Assert(PointerIsValid(stats));
3037 
3038  /*
3039  * If this is an unlogged index, we may need to write out an init fork for
3040  * it -- but we must first check whether one already exists. If, for
3041  * example, an unlogged relation is truncated in the transaction that
3042  * created it, or truncated twice in a subsequent transaction, the
3043  * relfilenumber won't change, and nothing needs to be done here.
3044  */
3045  if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED &&
3046  !smgrexists(RelationGetSmgr(indexRelation), INIT_FORKNUM))
3047  {
3048  smgrcreate(RelationGetSmgr(indexRelation), INIT_FORKNUM, false);
3049  log_smgrcreate(&indexRelation->rd_locator, INIT_FORKNUM);
3050  indexRelation->rd_indam->ambuildempty(indexRelation);
3051  }
3052 
3053  /*
3054  * If we found any potentially broken HOT chains, mark the index as not
3055  * being usable until the current transaction is below the event horizon.
3056  * See src/backend/access/heap/README.HOT for discussion. While it might
3057  * become safe to use the index earlier based on actual cleanup activity
3058  * and other active transactions, the test for that would be much more
3059  * complex and would require some form of blocking, so keep it simple and
3060  * fast by just using the current transaction.
3061  *
3062  * However, when reindexing an existing index, we should do nothing here.
3063  * Any HOT chains that are broken with respect to the index must predate
3064  * the index's original creation, so there is no need to change the
3065  * index's usability horizon. Moreover, we *must not* try to change the
3066  * index's pg_index entry while reindexing pg_index itself, and this
3067  * optimization nicely prevents that. The more complex rules needed for a
3068  * reindex are handled separately after this function returns.
3069  *
3070  * We also need not set indcheckxmin during a concurrent index build,
3071  * because we won't set indisvalid true until all transactions that care
3072  * about the broken HOT chains are gone.
3073  *
3074  * Therefore, this code path can only be taken during non-concurrent
3075  * CREATE INDEX. Thus the fact that heap_update will set the pg_index
3076  * tuple's xmin doesn't matter, because that tuple was created in the
3077  * current transaction anyway. That also means we don't need to worry
3078  * about any concurrent readers of the tuple; no other transaction can see
3079  * it yet.
3080  */
3081  if (indexInfo->ii_BrokenHotChain &&
3082  !isreindex &&
3083  !indexInfo->ii_Concurrent)
3084  {
3085  Oid indexId = RelationGetRelid(indexRelation);
3086  Relation pg_index;
3087  HeapTuple indexTuple;
3088  Form_pg_index indexForm;
3089 
3090  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3091 
3092  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3093  ObjectIdGetDatum(indexId));
3094  if (!HeapTupleIsValid(indexTuple))
3095  elog(ERROR, "cache lookup failed for index %u", indexId);
3096  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3097 
3098  /* If it's a new index, indcheckxmin shouldn't be set ... */
3099  Assert(!indexForm->indcheckxmin);
3100 
3101  indexForm->indcheckxmin = true;
3102  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3103 
3104  heap_freetuple(indexTuple);
3105  table_close(pg_index, RowExclusiveLock);
3106  }
3107 
3108  /*
3109  * Update heap and index pg_class rows
3110  */
3111  index_update_stats(heapRelation,
3112  true,
3113  stats->heap_tuples);
3114 
3115  index_update_stats(indexRelation,
3116  false,
3117  stats->index_tuples);
3118 
3119  /* Make the updated catalog row versions visible */
3121 
3122  /*
3123  * If it's for an exclusion constraint, make a second pass over the heap
3124  * to verify that the constraint is satisfied. We must not do this until
3125  * the index is fully valid. (Broken HOT chains shouldn't matter, though;
3126  * see comments for IndexCheckExclusion.)
3127  */
3128  if (indexInfo->ii_ExclusionOps != NULL)
3129  IndexCheckExclusion(heapRelation, indexRelation, indexInfo);
3130 
3131  /* Roll back any GUC changes executed by index functions */
3132  AtEOXact_GUC(false, save_nestlevel);
3133 
3134  /* Restore userid and security context */
3135  SetUserIdAndSecContext(save_userid, save_sec_context);
3136 }
3137 
3138 /*
3139  * IndexCheckExclusion - verify that a new exclusion constraint is satisfied
3140  *
3141  * When creating an exclusion constraint, we first build the index normally
3142  * and then rescan the heap to check for conflicts. We assume that we only
3143  * need to validate tuples that are live according to an up-to-date snapshot,
3144  * and that these were correctly indexed even in the presence of broken HOT
3145  * chains. This should be OK since we are holding at least ShareLock on the
3146  * table, meaning there can be no uncommitted updates from other transactions.
3147  * (Note: that wouldn't necessarily work for system catalogs, since many
3148  * operations release write lock early on the system catalogs.)
3149  */
3150 static void
3152  Relation indexRelation,
3153  IndexInfo *indexInfo)
3154 {
3155  TableScanDesc scan;
3157  bool isnull[INDEX_MAX_KEYS];
3158  ExprState *predicate;
3159  TupleTableSlot *slot;
3160  EState *estate;
3161  ExprContext *econtext;
3162  Snapshot snapshot;
3163 
3164  /*
3165  * If we are reindexing the target index, mark it as no longer being
3166  * reindexed, to forestall an Assert in index_beginscan when we try to use
3167  * the index for probes. This is OK because the index is now fully valid.
3168  */
3171 
3172  /*
3173  * Need an EState for evaluation of index expressions and partial-index
3174  * predicates. Also a slot to hold the current tuple.
3175  */
3176  estate = CreateExecutorState();
3177  econtext = GetPerTupleExprContext(estate);
3178  slot = table_slot_create(heapRelation, NULL);
3179 
3180  /* Arrange for econtext's scan tuple to be the tuple under test */
3181  econtext->ecxt_scantuple = slot;
3182 
3183  /* Set up execution state for predicate, if any. */
3184  predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
3185 
3186  /*
3187  * Scan all live tuples in the base relation.
3188  */
3189  snapshot = RegisterSnapshot(GetLatestSnapshot());
3190  scan = table_beginscan_strat(heapRelation, /* relation */
3191  snapshot, /* snapshot */
3192  0, /* number of keys */
3193  NULL, /* scan key */
3194  true, /* buffer access strategy OK */
3195  true); /* syncscan OK */
3196 
3197  while (table_scan_getnextslot(scan, ForwardScanDirection, slot))
3198  {
3200 
3201  /*
3202  * In a partial index, ignore tuples that don't satisfy the predicate.
3203  */
3204  if (predicate != NULL)
3205  {
3206  if (!ExecQual(predicate, econtext))
3207  continue;
3208  }
3209 
3210  /*
3211  * Extract index column values, including computing expressions.
3212  */
3213  FormIndexDatum(indexInfo,
3214  slot,
3215  estate,
3216  values,
3217  isnull);
3218 
3219  /*
3220  * Check that this tuple has no conflicts.
3221  */
3222  check_exclusion_constraint(heapRelation,
3223  indexRelation, indexInfo,
3224  &(slot->tts_tid), values, isnull,
3225  estate, true);
3226 
3228  }
3229 
3230  table_endscan(scan);
3231  UnregisterSnapshot(snapshot);
3232 
3234 
3235  FreeExecutorState(estate);
3236 
3237  /* These may have been pointing to the now-gone estate */
3238  indexInfo->ii_ExpressionsState = NIL;
3239  indexInfo->ii_PredicateState = NULL;
3240 }
3241 
3242 
3243 /*
3244  * validate_index - support code for concurrent index builds
3245  *
3246  * We do a concurrent index build by first inserting the catalog entry for the
3247  * index via index_create(), marking it not indisready and not indisvalid.
3248  * Then we commit our transaction and start a new one, then we wait for all
3249  * transactions that could have been modifying the table to terminate. Now
3250  * we know that any subsequently-started transactions will see the index and
3251  * honor its constraints on HOT updates; so while existing HOT-chains might
3252  * be broken with respect to the index, no currently live tuple will have an
3253  * incompatible HOT update done to it. We now build the index normally via
3254  * index_build(), while holding a weak lock that allows concurrent
3255  * insert/update/delete. Also, we index only tuples that are valid
3256  * as of the start of the scan (see table_index_build_scan), whereas a normal
3257  * build takes care to include recently-dead tuples. This is OK because
3258  * we won't mark the index valid until all transactions that might be able
3259  * to see those tuples are gone. The reason for doing that is to avoid
3260  * bogus unique-index failures due to concurrent UPDATEs (we might see
3261  * different versions of the same row as being valid when we pass over them,
3262  * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that
3263  * does not contain any tuples added to the table while we built the index.
3264  *
3265  * Next, we mark the index "indisready" (but still not "indisvalid") and
3266  * commit the second transaction and start a third. Again we wait for all
3267  * transactions that could have been modifying the table to terminate. Now
3268  * we know that any subsequently-started transactions will see the index and
3269  * insert their new tuples into it. We then take a new reference snapshot
3270  * which is passed to validate_index(). Any tuples that are valid according
3271  * to this snap, but are not in the index, must be added to the index.
3272  * (Any tuples committed live after the snap will be inserted into the
3273  * index by their originating transaction. Any tuples committed dead before
3274  * the snap need not be indexed, because we will wait out all transactions
3275  * that might care about them before we mark the index valid.)
3276  *
3277  * validate_index() works by first gathering all the TIDs currently in the
3278  * index, using a bulkdelete callback that just stores the TIDs and doesn't
3279  * ever say "delete it". (This should be faster than a plain indexscan;
3280  * also, not all index AMs support full-index indexscan.) Then we sort the
3281  * TIDs, and finally scan the table doing a "merge join" against the TID list
3282  * to see which tuples are missing from the index. Thus we will ensure that
3283  * all tuples valid according to the reference snapshot are in the index.
3284  *
3285  * Building a unique index this way is tricky: we might try to insert a
3286  * tuple that is already dead or is in process of being deleted, and we
3287  * mustn't have a uniqueness failure against an updated version of the same
3288  * row. We could try to check the tuple to see if it's already dead and tell
3289  * index_insert() not to do the uniqueness check, but that still leaves us
3290  * with a race condition against an in-progress update. To handle that,
3291  * we expect the index AM to recheck liveness of the to-be-inserted tuple
3292  * before it declares a uniqueness error.
3293  *
3294  * After completing validate_index(), we wait until all transactions that
3295  * were alive at the time of the reference snapshot are gone; this is
3296  * necessary to be sure there are none left with a transaction snapshot
3297  * older than the reference (and hence possibly able to see tuples we did
3298  * not index). Then we mark the index "indisvalid" and commit. Subsequent
3299  * transactions will be able to use it for queries.
3300  *
3301  * Doing two full table scans is a brute-force strategy. We could try to be
3302  * cleverer, eg storing new tuples in a special area of the table (perhaps
3303  * making the table append-only by setting use_fsm). However that would
3304  * add yet more locking issues.
3305  */
3306 void
3307 validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
3308 {
3309  Relation heapRelation,
3310  indexRelation;
3311  IndexInfo *indexInfo;
3312  IndexVacuumInfo ivinfo;
3314  Oid save_userid;
3315  int save_sec_context;
3316  int save_nestlevel;
3317 
3318  {
3319  const int progress_index[] = {
3325  };
3326  const int64 progress_vals[] = {
3328  0, 0, 0, 0
3329  };
3330 
3331  pgstat_progress_update_multi_param(5, progress_index, progress_vals);
3332  }
3333 
3334  /* Open and lock the parent heap relation */
3335  heapRelation = table_open(heapId, ShareUpdateExclusiveLock);
3336 
3337  /*
3338  * Switch to the table owner's userid, so that any index functions are run
3339  * as that user. Also lock down security-restricted operations and
3340  * arrange to make GUC variable changes local to this command.
3341  */
3342  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3343  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3344  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3345  save_nestlevel = NewGUCNestLevel();
3346 
3347  indexRelation = index_open(indexId, RowExclusiveLock);
3348 
3349  /*
3350  * Fetch info needed for index_insert. (You might think this should be
3351  * passed in from DefineIndex, but its copy is long gone due to having
3352  * been built in a previous transaction.)
3353  */
3354  indexInfo = BuildIndexInfo(indexRelation);
3355 
3356  /* mark build is concurrent just for consistency */
3357  indexInfo->ii_Concurrent = true;
3358 
3359  /*
3360  * Scan the index and gather up all the TIDs into a tuplesort object.
3361  */
3362  ivinfo.index = indexRelation;
3363  ivinfo.heaprel = heapRelation;
3364  ivinfo.analyze_only = false;
3365  ivinfo.report_progress = true;
3366  ivinfo.estimated_count = true;
3367  ivinfo.message_level = DEBUG2;
3368  ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples;
3369  ivinfo.strategy = NULL;
3370 
3371  /*
3372  * Encode TIDs as int8 values for the sort, rather than directly sorting
3373  * item pointers. This can be significantly faster, primarily because TID
3374  * is a pass-by-reference type on all platforms, whereas int8 is
3375  * pass-by-value on most platforms.
3376  */
3377  state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator,
3378  InvalidOid, false,
3380  NULL, TUPLESORT_NONE);
3381  state.htups = state.itups = state.tups_inserted = 0;
3382 
3383  /* ambulkdelete updates progress metrics */
3384  (void) index_bulk_delete(&ivinfo, NULL,
3385  validate_index_callback, (void *) &state);
3386 
3387  /* Execute the sort */
3388  {
3389  const int progress_index[] = {
3393  };
3394  const int64 progress_vals[] = {
3396  0, 0
3397  };
3398 
3399  pgstat_progress_update_multi_param(3, progress_index, progress_vals);
3400  }
3401  tuplesort_performsort(state.tuplesort);
3402 
3403  /*
3404  * Now scan the heap and "merge" it with the index
3405  */
3408  table_index_validate_scan(heapRelation,
3409  indexRelation,
3410  indexInfo,
3411  snapshot,
3412  &state);
3413 
3414  /* Done with tuplesort object */
3415  tuplesort_end(state.tuplesort);
3416 
3417  elog(DEBUG2,
3418  "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
3419  state.htups, state.itups, state.tups_inserted);
3420 
3421  /* Roll back any GUC changes executed by index functions */
3422  AtEOXact_GUC(false, save_nestlevel);
3423 
3424  /* Restore userid and security context */
3425  SetUserIdAndSecContext(save_userid, save_sec_context);
3426 
3427  /* Close rels, but keep locks */
3428  index_close(indexRelation, NoLock);
3429  table_close(heapRelation, NoLock);
3430 }
3431 
3432 /*
3433  * validate_index_callback - bulkdelete callback to collect the index TIDs
3434  */
3435 static bool
3436 validate_index_callback(ItemPointer itemptr, void *opaque)
3437 {
3439  int64 encoded = itemptr_encode(itemptr);
3440 
3441  tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false);
3442  state->itups += 1;
3443  return false; /* never actually delete anything */
3444 }
3445 
3446 /*
3447  * index_set_state_flags - adjust pg_index state flags
3448  *
3449  * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index
3450  * flags that denote the index's state.
3451  *
3452  * Note that CatalogTupleUpdate() sends a cache invalidation message for the
3453  * tuple, so other sessions will hear about the update as soon as we commit.
3454  */
3455 void
3457 {
3458  Relation pg_index;
3459  HeapTuple indexTuple;
3460  Form_pg_index indexForm;
3461 
3462  /* Open pg_index and fetch a writable copy of the index's tuple */
3463  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3464 
3465  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3466  ObjectIdGetDatum(indexId));
3467  if (!HeapTupleIsValid(indexTuple))
3468  elog(ERROR, "cache lookup failed for index %u", indexId);
3469  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3470 
3471  /* Perform the requested state change on the copy */
3472  switch (action)
3473  {
3475  /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */
3476  Assert(indexForm->indislive);
3477  Assert(!indexForm->indisready);
3478  Assert(!indexForm->indisvalid);
3479  indexForm->indisready = true;
3480  break;
3482  /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */
3483  Assert(indexForm->indislive);
3484  Assert(indexForm->indisready);
3485  Assert(!indexForm->indisvalid);
3486  indexForm->indisvalid = true;
3487  break;
3489 
3490  /*
3491  * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence
3492  *
3493  * If indisready == true we leave it set so the index still gets
3494  * maintained by active transactions. We only need to ensure that
3495  * indisvalid is false. (We don't assert that either is initially
3496  * true, though, since we want to be able to retry a DROP INDEX
3497  * CONCURRENTLY that failed partway through.)
3498  *
3499  * Note: the CLUSTER logic assumes that indisclustered cannot be
3500  * set on any invalid index, so clear that flag too. For
3501  * cleanliness, also clear indisreplident.
3502  */
3503  indexForm->indisvalid = false;
3504  indexForm->indisclustered = false;
3505  indexForm->indisreplident = false;
3506  break;
3507  case INDEX_DROP_SET_DEAD:
3508 
3509  /*
3510  * Clear indisready/indislive during DROP INDEX CONCURRENTLY
3511  *
3512  * We clear both indisready and indislive, because we not only
3513  * want to stop updates, we want to prevent sessions from touching
3514  * the index at all.
3515  */
3516  Assert(!indexForm->indisvalid);
3517  Assert(!indexForm->indisclustered);
3518  Assert(!indexForm->indisreplident);
3519  indexForm->indisready = false;
3520  indexForm->indislive = false;
3521  break;
3522  }
3523 
3524  /* ... and update it */
3525  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3526 
3527  table_close(pg_index, RowExclusiveLock);
3528 }
3529 
3530 
3531 /*
3532  * IndexGetRelation: given an index's relation OID, get the OID of the
3533  * relation it is an index on. Uses the system cache.
3534  */
3535 Oid
3536 IndexGetRelation(Oid indexId, bool missing_ok)
3537 {
3538  HeapTuple tuple;
3540  Oid result;
3541 
3542  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
3543  if (!HeapTupleIsValid(tuple))
3544  {
3545  if (missing_ok)
3546  return InvalidOid;
3547  elog(ERROR, "cache lookup failed for index %u", indexId);
3548  }
3549  index = (Form_pg_index) GETSTRUCT(tuple);
3550  Assert(index->indexrelid == indexId);
3551 
3552  result = index->indrelid;
3553  ReleaseSysCache(tuple);
3554  return result;
3555 }
3556 
3557 /*
3558  * reindex_index - This routine is used to recreate a single index
3559  */
3560 void
3561 reindex_index(Oid indexId, bool skip_constraint_checks, char persistence,
3562  const ReindexParams *params)
3563 {
3564  Relation iRel,
3565  heapRelation;
3566  Oid heapId;
3567  Oid save_userid;
3568  int save_sec_context;
3569  int save_nestlevel;
3570  IndexInfo *indexInfo;
3571  volatile bool skipped_constraint = false;
3572  PGRUsage ru0;
3573  bool progress = ((params->options & REINDEXOPT_REPORT_PROGRESS) != 0);
3574  bool set_tablespace = false;
3575 
3576  pg_rusage_init(&ru0);
3577 
3578  /*
3579  * Open and lock the parent heap relation. ShareLock is sufficient since
3580  * we only need to be sure no schema or data changes are going on.
3581  */
3582  heapId = IndexGetRelation(indexId,
3583  (params->options & REINDEXOPT_MISSING_OK) != 0);
3584  /* if relation is missing, leave */
3585  if (!OidIsValid(heapId))
3586  return;
3587 
3588  if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3589  heapRelation = try_table_open(heapId, ShareLock);
3590  else
3591  heapRelation = table_open(heapId, ShareLock);
3592 
3593  /* if relation is gone, leave */
3594  if (!heapRelation)
3595  return;
3596 
3597  /*
3598  * Switch to the table owner's userid, so that any index functions are run
3599  * as that user. Also lock down security-restricted operations and
3600  * arrange to make GUC variable changes local to this command.
3601  */
3602  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3603  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3604  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3605  save_nestlevel = NewGUCNestLevel();
3606 
3607  if (progress)
3608  {
3609  const int progress_cols[] = {
3612  };
3613  const int64 progress_vals[] = {
3615  indexId
3616  };
3617 
3619  heapId);
3620  pgstat_progress_update_multi_param(2, progress_cols, progress_vals);
3621  }
3622 
3623  /*
3624  * Open the target index relation and get an exclusive lock on it, to
3625  * ensure that no one else is touching this particular index.
3626  */
3627  iRel = index_open(indexId, AccessExclusiveLock);
3628 
3629  if (progress)
3631  iRel->rd_rel->relam);
3632 
3633  /*
3634  * Partitioned indexes should never get processed here, as they have no
3635  * physical storage.
3636  */
3637  if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
3638  elog(ERROR, "cannot reindex partitioned index \"%s.%s\"",
3640  RelationGetRelationName(iRel));
3641 
3642  /*
3643  * Don't allow reindex on temp tables of other backends ... their local
3644  * buffer manager is not going to cope.
3645  */
3646  if (RELATION_IS_OTHER_TEMP(iRel))
3647  ereport(ERROR,
3648  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3649  errmsg("cannot reindex temporary tables of other sessions")));
3650 
3651  /*
3652  * Don't allow reindex of an invalid index on TOAST table. This is a
3653  * leftover from a failed REINDEX CONCURRENTLY, and if rebuilt it would
3654  * not be possible to drop it anymore.
3655  */
3657  !get_index_isvalid(indexId))
3658  ereport(ERROR,
3659  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3660  errmsg("cannot reindex invalid index on TOAST table")));
3661 
3662  /*
3663  * System relations cannot be moved even if allow_system_table_mods is
3664  * enabled to keep things consistent with the concurrent case where all
3665  * the indexes of a relation are processed in series, including indexes of
3666  * toast relations.
3667  *
3668  * Note that this check is not part of CheckRelationTableSpaceMove() as it
3669  * gets used for ALTER TABLE SET TABLESPACE that could cascade across
3670  * toast relations.
3671  */
3672  if (OidIsValid(params->tablespaceOid) &&
3673  IsSystemRelation(iRel))
3674  ereport(ERROR,
3675  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3676  errmsg("cannot move system relation \"%s\"",
3677  RelationGetRelationName(iRel))));
3678 
3679  /* Check if the tablespace of this index needs to be changed */
3680  if (OidIsValid(params->tablespaceOid) &&
3682  set_tablespace = true;
3683 
3684  /*
3685  * Also check for active uses of the index in the current transaction; we
3686  * don't want to reindex underneath an open indexscan.
3687  */
3688  CheckTableNotInUse(iRel, "REINDEX INDEX");
3689 
3690  /* Set new tablespace, if requested */
3691  if (set_tablespace)
3692  {
3693  /* Update its pg_class row */
3695 
3696  /*
3697  * Schedule unlinking of the old index storage at transaction commit.
3698  */
3699  RelationDropStorage(iRel);
3701 
3702  /* Make sure the reltablespace change is visible */
3704  }
3705 
3706  /*
3707  * All predicate locks on the index are about to be made invalid. Promote
3708  * them to relation locks on the heap.
3709  */
3711 
3712  /* Fetch info needed for index_build */
3713  indexInfo = BuildIndexInfo(iRel);
3714 
3715  /* If requested, skip checking uniqueness/exclusion constraints */
3716  if (skip_constraint_checks)
3717  {
3718  if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL)
3719  skipped_constraint = true;
3720  indexInfo->ii_Unique = false;
3721  indexInfo->ii_ExclusionOps = NULL;
3722  indexInfo->ii_ExclusionProcs = NULL;
3723  indexInfo->ii_ExclusionStrats = NULL;
3724  }
3725 
3726  /* Suppress use of the target index while rebuilding it */
3727  SetReindexProcessing(heapId, indexId);
3728 
3729  /* Create a new physical relation for the index */
3730  RelationSetNewRelfilenumber(iRel, persistence);
3731 
3732  /* Initialize the index and rebuild */
3733  /* Note: we do not need to re-establish pkey setting */
3734  index_build(heapRelation, iRel, indexInfo, true, true);
3735 
3736  /* Re-allow use of target index */
3738 
3739  /*
3740  * If the index is marked invalid/not-ready/dead (ie, it's from a failed
3741  * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway),
3742  * and we didn't skip a uniqueness check, we can now mark it valid. This
3743  * allows REINDEX to be used to clean up in such cases.
3744  *
3745  * We can also reset indcheckxmin, because we have now done a
3746  * non-concurrent index build, *except* in the case where index_build
3747  * found some still-broken HOT chains. If it did, and we don't have to
3748  * change any of the other flags, we just leave indcheckxmin alone (note
3749  * that index_build won't have changed it, because this is a reindex).
3750  * This is okay and desirable because not updating the tuple leaves the
3751  * index's usability horizon (recorded as the tuple's xmin value) the same
3752  * as it was.
3753  *
3754  * But, if the index was invalid/not-ready/dead and there were broken HOT
3755  * chains, we had better force indcheckxmin true, because the normal
3756  * argument that the HOT chains couldn't conflict with the index is
3757  * suspect for an invalid index. (A conflict is definitely possible if
3758  * the index was dead. It probably shouldn't happen otherwise, but let's
3759  * be conservative.) In this case advancing the usability horizon is
3760  * appropriate.
3761  *
3762  * Another reason for avoiding unnecessary updates here is that while
3763  * reindexing pg_index itself, we must not try to update tuples in it.
3764  * pg_index's indexes should always have these flags in their clean state,
3765  * so that won't happen.
3766  */
3767  if (!skipped_constraint)
3768  {
3769  Relation pg_index;
3770  HeapTuple indexTuple;
3771  Form_pg_index indexForm;
3772  bool index_bad;
3773 
3774  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3775 
3776  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3777  ObjectIdGetDatum(indexId));
3778  if (!HeapTupleIsValid(indexTuple))
3779  elog(ERROR, "cache lookup failed for index %u", indexId);
3780  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3781 
3782  index_bad = (!indexForm->indisvalid ||
3783  !indexForm->indisready ||
3784  !indexForm->indislive);
3785  if (index_bad ||
3786  (indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain))
3787  {
3788  if (!indexInfo->ii_BrokenHotChain)
3789  indexForm->indcheckxmin = false;
3790  else if (index_bad)
3791  indexForm->indcheckxmin = true;
3792  indexForm->indisvalid = true;
3793  indexForm->indisready = true;
3794  indexForm->indislive = true;
3795  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3796 
3797  /*
3798  * Invalidate the relcache for the table, so that after we commit
3799  * all sessions will refresh the table's index list. This ensures
3800  * that if anyone misses seeing the pg_index row during this
3801  * update, they'll refresh their list before attempting any update
3802  * on the table.
3803  */
3804  CacheInvalidateRelcache(heapRelation);
3805  }
3806 
3807  table_close(pg_index, RowExclusiveLock);
3808  }
3809 
3810  /* Log what we did */
3811  if ((params->options & REINDEXOPT_VERBOSE) != 0)
3812  ereport(INFO,
3813  (errmsg("index \"%s\" was reindexed",
3814  get_rel_name(indexId)),
3815  errdetail_internal("%s",
3816  pg_rusage_show(&ru0))));
3817 
3818  /* Roll back any GUC changes executed by index functions */
3819  AtEOXact_GUC(false, save_nestlevel);
3820 
3821  /* Restore userid and security context */
3822  SetUserIdAndSecContext(save_userid, save_sec_context);
3823 
3824  /* Close rels, but keep locks */
3825  index_close(iRel, NoLock);
3826  table_close(heapRelation, NoLock);
3827 
3828  if (progress)
3830 }
3831 
3832 /*
3833  * reindex_relation - This routine is used to recreate all indexes
3834  * of a relation (and optionally its toast relation too, if any).
3835  *
3836  * "flags" is a bitmask that can include any combination of these bits:
3837  *
3838  * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any).
3839  *
3840  * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely
3841  * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its
3842  * indexes are inconsistent with it. This makes things tricky if the relation
3843  * is a system catalog that we might consult during the reindexing. To deal
3844  * with that case, we mark all of the indexes as pending rebuild so that they
3845  * won't be trusted until rebuilt. The caller is required to call us *without*
3846  * having made the rebuilt table visible by doing CommandCounterIncrement;
3847  * we'll do CCI after having collected the index list. (This way we can still
3848  * use catalog indexes while collecting the list.)
3849  *
3850  * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion
3851  * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or
3852  * CLUSTER on a system catalog must omit this flag. REINDEX should be used to
3853  * rebuild an index if constraint inconsistency is suspected. For optimal
3854  * performance, other callers should include the flag only after transforming
3855  * the data in a manner that risks a change in constraint validity.
3856  *
3857  * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the
3858  * rebuilt indexes to unlogged.
3859  *
3860  * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the
3861  * rebuilt indexes to permanent.
3862  *
3863  * Returns true if any indexes were rebuilt (including toast table's index
3864  * when relevant). Note that a CommandCounterIncrement will occur after each
3865  * index rebuild.
3866  */
3867 bool
3868 reindex_relation(Oid relid, int flags, const ReindexParams *params)
3869 {
3870  Relation rel;
3871  Oid toast_relid;
3872  List *indexIds;
3873  char persistence;
3874  bool result;
3875  ListCell *indexId;
3876  int i;
3877 
3878  /*
3879  * Open and lock the relation. ShareLock is sufficient since we only need
3880  * to prevent schema and data changes in it. The lock level used here
3881  * should match ReindexTable().
3882  */
3883  if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3884  rel = try_table_open(relid, ShareLock);
3885  else
3886  rel = table_open(relid, ShareLock);
3887 
3888  /* if relation is gone, leave */
3889  if (!rel)
3890  return false;
3891 
3892  /*
3893  * Partitioned tables should never get processed here, as they have no
3894  * physical storage.
3895  */
3896  if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
3897  elog(ERROR, "cannot reindex partitioned table \"%s.%s\"",
3900 
3901  toast_relid = rel->rd_rel->reltoastrelid;
3902 
3903  /*
3904  * Get the list of index OIDs for this relation. (We trust to the
3905  * relcache to get this with a sequential scan if ignoring system
3906  * indexes.)
3907  */
3908  indexIds = RelationGetIndexList(rel);
3909 
3910  if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
3911  {
3912  /* Suppress use of all the indexes until they are rebuilt */
3913  SetReindexPending(indexIds);
3914 
3915  /*
3916  * Make the new heap contents visible --- now things might be
3917  * inconsistent!
3918  */
3920  }
3921 
3922  /*
3923  * Compute persistence of indexes: same as that of owning rel, unless
3924  * caller specified otherwise.
3925  */
3927  persistence = RELPERSISTENCE_UNLOGGED;
3928  else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT)
3929  persistence = RELPERSISTENCE_PERMANENT;
3930  else
3931  persistence = rel->rd_rel->relpersistence;
3932 
3933  /* Reindex all the indexes. */
3934  i = 1;
3935  foreach(indexId, indexIds)
3936  {
3937  Oid indexOid = lfirst_oid(indexId);
3938  Oid indexNamespaceId = get_rel_namespace(indexOid);
3939 
3940  /*
3941  * Skip any invalid indexes on a TOAST table. These can only be
3942  * duplicate leftovers from a failed REINDEX CONCURRENTLY, and if
3943  * rebuilt it would not be possible to drop them anymore.
3944  */
3945  if (IsToastNamespace(indexNamespaceId) &&
3946  !get_index_isvalid(indexOid))
3947  {
3948  ereport(WARNING,
3949  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3950  errmsg("cannot reindex invalid index \"%s.%s\" on TOAST table, skipping",
3951  get_namespace_name(indexNamespaceId),
3952  get_rel_name(indexOid))));
3953  continue;
3954  }
3955 
3956  reindex_index(indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS),
3957  persistence, params);
3958 
3960 
3961  /* Index should no longer be in the pending list */
3962  Assert(!ReindexIsProcessingIndex(indexOid));
3963 
3964  /* Set index rebuild count */
3966  i);
3967  i++;
3968  }
3969 
3970  /*
3971  * Close rel, but continue to hold the lock.
3972  */
3973  table_close(rel, NoLock);
3974 
3975  result = (indexIds != NIL);
3976 
3977  /*
3978  * If the relation has a secondary toast rel, reindex that too while we
3979  * still hold the lock on the main table.
3980  */
3981  if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid))
3982  {
3983  /*
3984  * Note that this should fail if the toast relation is missing, so
3985  * reset REINDEXOPT_MISSING_OK. Even if a new tablespace is set for
3986  * the parent relation, the indexes on its toast table are not moved.
3987  * This rule is enforced by setting tablespaceOid to InvalidOid.
3988  */
3989  ReindexParams newparams = *params;
3990 
3991  newparams.options &= ~(REINDEXOPT_MISSING_OK);
3992  newparams.tablespaceOid = InvalidOid;
3993  result |= reindex_relation(toast_relid, flags, &newparams);
3994  }
3995 
3996  return result;
3997 }
3998 
3999 
4000 /* ----------------------------------------------------------------
4001  * System index reindexing support
4002  *
4003  * When we are busy reindexing a system index, this code provides support
4004  * for preventing catalog lookups from using that index. We also make use
4005  * of this to catch attempted uses of user indexes during reindexing of
4006  * those indexes. This information is propagated to parallel workers;
4007  * attempting to change it during a parallel operation is not permitted.
4008  * ----------------------------------------------------------------
4009  */
4010 
4014 static int reindexingNestLevel = 0;
4015 
4016 /*
4017  * ReindexIsProcessingHeap
4018  * True if heap specified by OID is currently being reindexed.
4019  */
4020 bool
4022 {
4023  return heapOid == currentlyReindexedHeap;
4024 }
4025 
4026 /*
4027  * ReindexIsCurrentlyProcessingIndex
4028  * True if index specified by OID is currently being reindexed.
4029  */
4030 static bool
4032 {
4033  return indexOid == currentlyReindexedIndex;
4034 }
4035 
4036 /*
4037  * ReindexIsProcessingIndex
4038  * True if index specified by OID is currently being reindexed,
4039  * or should be treated as invalid because it is awaiting reindex.
4040  */
4041 bool
4043 {
4044  return indexOid == currentlyReindexedIndex ||
4046 }
4047 
4048 /*
4049  * SetReindexProcessing
4050  * Set flag that specified heap/index are being reindexed.
4051  */
4052 static void
4053 SetReindexProcessing(Oid heapOid, Oid indexOid)
4054 {
4055  Assert(OidIsValid(heapOid) && OidIsValid(indexOid));
4056  /* Reindexing is not re-entrant. */
4058  elog(ERROR, "cannot reindex while reindexing");
4059  currentlyReindexedHeap = heapOid;
4060  currentlyReindexedIndex = indexOid;
4061  /* Index is no longer "pending" reindex. */
4062  RemoveReindexPending(indexOid);
4063  /* This may have been set already, but in case it isn't, do so now. */
4065 }
4066 
4067 /*
4068  * ResetReindexProcessing
4069  * Unset reindexing status.
4070  */
4071 static void
4073 {
4076  /* reindexingNestLevel remains set till end of (sub)transaction */
4077 }
4078 
4079 /*
4080  * SetReindexPending
4081  * Mark the given indexes as pending reindex.
4082  *
4083  * NB: we assume that the current memory context stays valid throughout.
4084  */
4085 static void
4087 {
4088  /* Reindexing is not re-entrant. */
4090  elog(ERROR, "cannot reindex while reindexing");
4091  if (IsInParallelMode())
4092  elog(ERROR, "cannot modify reindex state during a parallel operation");
4095 }
4096 
4097 /*
4098  * RemoveReindexPending
4099  * Remove the given index from the pending list.
4100  */
4101 static void
4103 {
4104  if (IsInParallelMode())
4105  elog(ERROR, "cannot modify reindex state during a parallel operation");
4107  indexOid);
4108 }
4109 
4110 /*
4111  * ResetReindexState
4112  * Clear all reindexing state during (sub)transaction abort.
4113  */
4114 void
4115 ResetReindexState(int nestLevel)
4116 {
4117  /*
4118  * Because reindexing is not re-entrant, we don't need to cope with nested
4119  * reindexing states. We just need to avoid messing up the outer-level
4120  * state in case a subtransaction fails within a REINDEX. So checking the
4121  * current nest level against that of the reindex operation is sufficient.
4122  */
4123  if (reindexingNestLevel >= nestLevel)
4124  {
4127 
4128  /*
4129  * We needn't try to release the contents of pendingReindexedIndexes;
4130  * that list should be in a transaction-lifespan context, so it will
4131  * go away automatically.
4132  */
4134 
4135  reindexingNestLevel = 0;
4136  }
4137 }
4138 
4139 /*
4140  * EstimateReindexStateSpace
4141  * Estimate space needed to pass reindex state to parallel workers.
4142  */
4143 Size
4145 {
4148 }
4149 
4150 /*
4151  * SerializeReindexState
4152  * Serialize reindex state for parallel workers.
4153  */
4154 void
4155 SerializeReindexState(Size maxsize, char *start_address)
4156 {
4157  SerializedReindexState *sistate = (SerializedReindexState *) start_address;
4158  int c = 0;
4159  ListCell *lc;
4160 
4164  foreach(lc, pendingReindexedIndexes)
4165  sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc);
4166 }
4167 
4168 /*
4169  * RestoreReindexState
4170  * Restore reindex state in a parallel worker.
4171  */
4172 void
4173 RestoreReindexState(const void *reindexstate)
4174 {
4175  const SerializedReindexState *sistate = (const SerializedReindexState *) reindexstate;
4176  int c = 0;
4177  MemoryContext oldcontext;
4178 
4181 
4184  for (c = 0; c < sistate->numPendingReindexedIndexes; ++c)
4187  sistate->pendingReindexedIndexes[c]);
4188  MemoryContextSwitchTo(oldcontext);
4189 
4190  /* Note the worker has its own transaction nesting level */
4192 }
IndexAmRoutine * GetIndexAmRoutineByAmId(Oid amoid, bool noerror)
Definition: amapi.c:56
int16 AttrNumber
Definition: attnum.h:21
#define AttrNumberGetAttrOffset(attNum)
Definition: attnum.h:51
#define InvalidAttrNumber
Definition: attnum.h:23
void pgstat_progress_start_command(ProgressCommandType cmdtype, Oid relid)
void pgstat_progress_update_param(int index, int64 val)
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
void pgstat_progress_end_command(void)
@ PROGRESS_COMMAND_CREATE_INDEX
uint32 BlockNumber
Definition: block.h:31
static Datum values[MAXATTR]
Definition: bootstrap.c:156
void index_register(Oid heap, Oid ind, const IndexInfo *indexInfo)
Definition: bootstrap.c:906
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:229
#define CStringGetTextDatum(s)
Definition: builtins.h:94
#define TextDatumGetCString(d)
Definition: builtins.h:95
#define NameStr(name)
Definition: c.h:735
unsigned short uint16
Definition: c.h:494
uint16 bits16
Definition: c.h:503
signed short int16
Definition: c.h:482
signed int int32
Definition: c.h:483
TransactionId MultiXactId
Definition: c.h:651
#define PointerIsValid(pointer)
Definition: c.h:752
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:387
float float4
Definition: c.h:618
#define MemSet(start, val, len)
Definition: c.h:1009
uint32 TransactionId
Definition: c.h:641
#define OidIsValid(objectId)
Definition: c.h:764
size_t Size
Definition: c.h:594
bool IsToastNamespace(Oid namespaceId)
Definition: catalog.c:202
bool IsSystemRelation(Relation relation)
Definition: catalog.c:75
RelFileNumber GetNewRelFileNumber(Oid reltablespace, Relation pg_class, char relpersistence)
Definition: catalog.c:502
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:105
void record_object_address_dependencies(const ObjectAddress *depender, ObjectAddresses *referenced, DependencyType behavior)
Definition: dependency.c:2790
void recordDependencyOnSingleRelExpr(const ObjectAddress *depender, Node *expr, Oid relId, DependencyType behavior, DependencyType self_behavior, bool reverse_self)
Definition: dependency.c:1645
ObjectAddresses * new_object_addresses(void)
Definition: dependency.c:2532
void add_exact_object_address(const ObjectAddress *object, ObjectAddresses *addrs)
Definition: dependency.c:2581
void free_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2821
@ DEPENDENCY_AUTO
Definition: dependency.h:34
@ DEPENDENCY_INTERNAL
Definition: dependency.h:35
@ DEPENDENCY_PARTITION_PRI
Definition: dependency.h:36
@ DEPENDENCY_PARTITION_SEC
Definition: dependency.h:37
@ DEPENDENCY_NORMAL
Definition: dependency.h:33
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1156
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1229
int errcode(int sqlerrcode)
Definition: elog.c:858
int errmsg(const char *fmt,...)
Definition: elog.c:1069
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define NOTICE
Definition: elog.h:35
#define INFO
Definition: elog.h:34
#define ereport(elevel,...)
Definition: elog.h:149
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
ExprState * ExecPrepareQual(List *qual, EState *estate)
Definition: execExpr.c:764
List * ExecPrepareExprList(List *nodes, EState *estate)
Definition: execExpr.c:810
void check_exclusion_constraint(Relation heap, Relation index, IndexInfo *indexInfo, ItemPointer tupleid, const Datum *values, const bool *isnull, EState *estate, bool newIndex)
Definition: execIndexing.c:915
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1255
EState * CreateExecutorState(void)
Definition: execUtils.c:93
void FreeExecutorState(EState *estate)
Definition: execUtils.c:194
#define GetPerTupleExprContext(estate)
Definition: executor.h:549
static bool ExecQual(ExprState *state, ExprContext *econtext)
Definition: executor.h:412
static Datum ExecEvalExprSwitchContext(ExprState *state, ExprContext *econtext, bool *isNull)
Definition: executor.h:347
Datum Int64GetDatum(int64 X)
Definition: fmgr.c:1790
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:599
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:506
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:387
bool IsBinaryUpgrade
Definition: globals.c:116
int maintenance_work_mem
Definition: globals.c:129
int NewGUCNestLevel(void)
Definition: guc.c:2231
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:2245
void DeleteRelationTuple(Oid relid)
Definition: heap.c:1536
void DeleteAttributeTuples(Oid relid)
Definition: heap.c:1565
void RemoveStatistics(Oid relid, AttrNumber attnum)
Definition: heap.c:3241
void InsertPgAttributeTuples(Relation pg_attribute_rel, TupleDesc tupdesc, Oid new_rel_oid, const Datum *attoptions, CatalogIndexState indstate)
Definition: heap.c:697
void CheckAttributeType(const char *attname, Oid atttypid, Oid attcollation, List *containing_rowtypes, int flags)
Definition: heap.c:547
void CopyStatistics(Oid fromrelid, Oid torelid)
Definition: heap.c:3188
void InsertPgClassTuple(Relation pg_class_desc, Relation new_rel_desc, Oid new_rel_oid, Datum relacl, Datum reloptions)
Definition: heap.c:882
Relation heap_create(const char *relname, Oid relnamespace, Oid reltablespace, Oid relid, RelFileNumber relfilenumber, Oid accessmtd, TupleDesc tupDesc, char relkind, char relpersistence, bool shared_relation, bool mapped_relation, bool allow_system_table_mods, TransactionId *relfrozenxid, MultiXactId *relminmxid, bool create_storage)
Definition: heap.c:288
void heap_inplace_update(Relation relation, HeapTuple tuple)
Definition: heapam.c:5893
HeapTuple heap_getnext(TableScanDesc sscan, ScanDirection direction)
Definition: heapam.c:1086
HeapTuple heap_modify_tuple(HeapTuple tuple, TupleDesc tupleDesc, const Datum *replValues, const bool *replIsnull, const bool *doReplace)
Definition: heaptuple.c:1210
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:777
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: heaptuple.c:1117
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition: heaptuple.c:456
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1435
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
#define stmt
Definition: indent_codes.h:59
bool ReindexIsProcessingIndex(Oid indexOid)
Definition: index.c:4042
static bool validate_index_callback(ItemPointer itemptr, void *opaque)
Definition: index.c:3436
void validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
Definition: index.c:3307
void index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
Definition: index.c:2135
void ResetReindexState(int nestLevel)
Definition: index.c:4115
Oid IndexGetRelation(Oid indexId, bool missing_ok)
Definition: index.c:3536
static int reindexingNestLevel
Definition: index.c:4014
void index_concurrently_set_dead(Oid heapId, Oid indexId)
Definition: index.c:1841
static Oid currentlyReindexedHeap
Definition: index.c:4011
static void ResetReindexProcessing(void)
Definition: index.c:4072
void index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
Definition: index.c:1514
Oid index_create(Relation heapRelation, const char *indexRelationName, Oid indexRelationId, Oid parentIndexRelid, Oid parentConstraintId, RelFileNumber relFileNumber, IndexInfo *indexInfo, const List *indexColNames, Oid accessMethodId, Oid tableSpaceId, const Oid *collationIds, const Oid *opclassIds, const Datum *opclassOptions, const int16 *coloptions, Datum reloptions, bits16 flags, bits16 constr_flags, bool allow_system_table_mods, bool is_internal, Oid *constraintId)
Definition: index.c:711
static void RemoveReindexPending(Oid indexOid)
Definition: index.c:4102
static List * pendingReindexedIndexes
Definition: index.c:4013
void index_set_state_flags(Oid indexId, IndexStateFlagsAction action)
Definition: index.c:3456
bool CompareIndexInfo(const IndexInfo *info1, const IndexInfo *info2, const Oid *collations1, const Oid *collations2, const Oid *opfamilies1, const Oid *opfamilies2, const AttrMap *attmap)
Definition: index.c:2532
RelFileNumber binary_upgrade_next_index_pg_class_relfilenumber
Definition: index.c:90
IndexInfo * BuildDummyIndexInfo(Relation index)
Definition: index.c:2484
bool reindex_relation(Oid relid, int flags, const ReindexParams *params)
Definition: index.c:3868
static void AppendAttributeTuples(Relation indexRelation, const Datum *attopts)
Definition: index.c:516
void SerializeReindexState(Size maxsize, char *start_address)
Definition: index.c:4155
static void index_update_stats(Relation rel, bool hasindex, double reltuples)
Definition: index.c:2802
static bool relationHasPrimaryKey(Relation rel)
Definition: index.c:152
static void SetReindexProcessing(Oid heapOid, Oid indexOid)
Definition: index.c:4053
static void IndexCheckExclusion(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo)
Definition: index.c:3151
static void InitializeAttributeOids(Relation indexRelation, int numatts, Oid indexoid)
Definition: index.c:498
Oid index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, Oid tablespaceOid, const char *newName)
Definition: index.c:1283
Oid binary_upgrade_next_index_pg_class_oid
Definition: index.c:89
void BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii)
Definition: index.c:2663
void index_check_primary_key(Relation heapRel, const IndexInfo *indexInfo, bool is_alter_table, const IndexStmt *stmt)
Definition: index.c:206
bool ReindexIsProcessingHeap(Oid heapOid)
Definition: index.c:4021
static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid)
Definition: index.c:4031
void RestoreReindexState(const void *reindexstate)
Definition: index.c:4173
static TupleDesc ConstructTupleDescriptor(Relation heapRelation, const IndexInfo *indexInfo, const List *indexColNames, Oid accessMethodId, const Oid *collationIds, const Oid *opclassIds)
Definition: index.c:285
void index_build(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo, bool isreindex, bool parallel)
Definition: index.c:2959
ObjectAddress index_constraint_create(Relation heapRelation, Oid indexRelationId, Oid parentConstraintId, const IndexInfo *indexInfo, const char *constraintName, char constraintType, bits16 constr_flags, bool allow_system_table_mods, bool is_internal)
Definition: index.c:1902
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2723
static void SetReindexPending(List *indexes)
Definition: index.c:4086
void index_concurrently_build(Oid heapRelationId, Oid indexRelationId)
Definition: index.c:1448
void reindex_index(Oid indexId, bool skip_constraint_checks, char persistence, const ReindexParams *params)
Definition: index.c:3561
static void UpdateIndexRelation(Oid indexoid, Oid heapoid, Oid parentIndexId, const IndexInfo *indexInfo, const Oid *collationOids, const Oid *opclassOids, const int16 *coloptions, bool primary, bool isexclusion, bool immediate, bool isvalid, bool isready)
Definition: index.c:548
static Oid currentlyReindexedIndex
Definition: index.c:4012
Size EstimateReindexStateSpace(void)
Definition: index.c:4144
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2425
#define INDEX_CREATE_IS_PRIMARY
Definition: index.h:61
#define INDEX_CREATE_IF_NOT_EXISTS
Definition: index.h:65
#define REINDEX_REL_PROCESS_TOAST
Definition: index.h:156
#define INDEX_CREATE_PARTITIONED
Definition: index.h:66
#define REINDEXOPT_MISSING_OK
Definition: index.h:43
#define INDEX_CREATE_INVALID
Definition: index.h:67
static int64 itemptr_encode(ItemPointer itemptr)
Definition: index.h:186
#define INDEX_CREATE_ADD_CONSTRAINT
Definition: index.h:62
#define INDEX_CREATE_SKIP_BUILD
Definition: index.h:63
#define INDEX_CONSTR_CREATE_UPDATE_INDEX
Definition: index.h:93
#define REINDEX_REL_FORCE_INDEXES_UNLOGGED
Definition: index.h:159
#define INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS
Definition: index.h:94
#define INDEX_CONSTR_CREATE_DEFERRABLE
Definition: index.h:91
#define REINDEXOPT_REPORT_PROGRESS
Definition: index.h:42
#define INDEX_CONSTR_CREATE_MARK_AS_PRIMARY
Definition: index.h:90
#define REINDEX_REL_SUPPRESS_INDEX_USE
Definition: index.h:157
IndexStateFlagsAction
Definition: index.h:25
@ INDEX_CREATE_SET_VALID
Definition: index.h:27
@ INDEX_DROP_CLEAR_VALID
Definition: index.h:28
@ INDEX_DROP_SET_DEAD
Definition: index.h:29
@ INDEX_CREATE_SET_READY
Definition: index.h:26
#define REINDEX_REL_FORCE_INDEXES_PERMANENT
Definition: index.h:160
#define INDEX_CONSTR_CREATE_INIT_DEFERRED
Definition: index.h:92
#define INDEX_CREATE_CONCURRENT
Definition: index.h:64
#define REINDEXOPT_VERBOSE
Definition: index.h:41
#define REINDEX_REL_CHECK_CONSTRAINTS
Definition: index.h:158
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:158
IndexBulkDeleteResult * index_bulk_delete(IndexVacuumInfo *info, IndexBulkDeleteResult *istat, IndexBulkDeleteCallback callback, void *callback_state)
Definition: indexam.c:714
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:132
bytea * index_opclass_options(Relation indrel, AttrNumber attnum, Datum attoptions, bool validate)
Definition: indexam.c:962
void CatalogTupleUpdate(Relation heapRel, ItemPointer otid, HeapTuple tup)
Definition: indexing.c:313
void CatalogCloseIndexes(CatalogIndexState indstate)
Definition: indexing.c:61
void CatalogTupleInsert(Relation heapRel, HeapTuple tup)
Definition: indexing.c:233
CatalogIndexState CatalogOpenIndexes(Relation heapRel)
Definition: indexing.c:43
void CatalogTupleDelete(Relation heapRel, ItemPointer tid)
Definition: indexing.c:365
int2vector * buildint2vector(const int16 *int2s, int n)
Definition: int.c:114
void CacheInvalidateRelcache(Relation relation)
Definition: inval.c:1362
void CacheInvalidateRelcacheByTuple(HeapTuple classTuple)
Definition: inval.c:1398
invalidindex index d is invalid
Definition: isn.c:134
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
Assert(fmt[strlen(fmt) - 1] !='\n')
List * lappend(List *list, void *datum)
Definition: list.c:338
List * lappend_oid(List *list, Oid datum)
Definition: list.c:374
List * list_copy(const List *oldlist)
Definition: list.c:1572
List * list_delete_oid(List *list, Oid datum)
Definition: list.c:909
void list_free(List *list)
Definition: list.c:1545
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:721
void LockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:398
void LockRelation(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:245
void WaitForLockers(LOCKTAG heaplocktag, LOCKMODE lockmode, bool progress)
Definition: lmgr.c:986
void UnlockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:411
#define SET_LOCKTAG_RELATION(locktag, dboid, reloid)
Definition: lock.h:181
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define ShareLock
Definition: lockdefs.h:40
#define RowExclusiveLock
Definition: lockdefs.h:38
bool get_rel_relispartition(Oid relid)
Definition: lsyscache.c:2031
char get_rel_persistence(Oid relid)
Definition: lsyscache.c:2082
bool get_index_isvalid(Oid index_oid)
Definition: lsyscache.c:3560
int get_attstattarget(Oid relid, AttrNumber attnum)
Definition: lsyscache.c:884
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3348
Datum get_attoptions(Oid relid, int16 attnum)
Definition: lsyscache.c:996
Oid get_rel_namespace(Oid relid)
Definition: lsyscache.c:1956
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1289
char * get_rel_name(Oid relid)
Definition: lsyscache.c:1932
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:165
bool get_collation_isdeterministic(Oid colloid)
Definition: lsyscache.c:1080
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2814
Oid get_relname_relid(const char *relname, Oid relnamespace)
Definition: lsyscache.c:1889
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:722
Expr * make_ands_explicit(List *andclauses)
Definition: makefuncs.c:711
IndexInfo * makeIndexInfo(int numattrs, int numkeyattrs, Oid amoid, List *expressions, List *predicates, bool unique, bool nulls_not_distinct, bool isready, bool concurrent, bool summarizing)
Definition: makefuncs.c:746
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:330
void pfree(void *pointer)
Definition: mcxt.c:1456
MemoryContext TopMemoryContext
Definition: mcxt.c:141
void * palloc0(Size size)
Definition: mcxt.c:1257
void * palloc(Size size)
Definition: mcxt.c:1226
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:417
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:316
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:121
#define IsNormalProcessingMode()
Definition: miscadmin.h:419
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:630
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:637
#define InvalidMultiXactId
Definition: multixact.h:24
void namestrcpy(Name name, const char *str)
Definition: name.c:233
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:43
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:282
#define makeNode(_type_)
Definition: nodes.h:176
#define InvokeObjectPostAlterHookArg(classId, objectId, subId, auxiliaryId, is_internal)
Definition: objectaccess.h:200
#define InvokeObjectPostCreateHookArg(classId, objectId, subId, is_internal)
Definition: objectaccess.h:175
#define ObjectAddressSet(addr, class_id, object_id)
Definition: objectaddress.h:40
#define ObjectAddressSubSet(addr, class_id, object_id, object_sub_id)
Definition: objectaddress.h:33
oidvector * buildoidvector(const Oid *oids, int n)
Definition: oid.c:86
char * nodeToString(const void *obj)
Definition: outfuncs.c:883
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:138
List * SystemFuncName(char *name)
List * get_partition_ancestors(Oid relid)
Definition: partition.c:133
FormData_pg_attribute
Definition: pg_attribute.h:193
#define ATTRIBUTE_FIXED_PART_SIZE
Definition: pg_attribute.h:201
int16 attnum
Definition: pg_attribute.h:74
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:209
FormData_pg_class * Form_pg_class
Definition: pg_class.h:153
#define INDEX_MAX_KEYS
bool ConstraintNameIsUsed(ConstraintCategory conCat, Oid objId, const char *conname)
Oid CreateConstraintEntry(const char *constraintName, Oid constraintNamespace, char constraintType, bool isDeferrable, bool isDeferred, bool isValidated, Oid parentConstrId, Oid relId, const int16 *constraintKey, int constraintNKeys, int constraintNTotalKeys, Oid domainId, Oid indexRelId, Oid foreignRelId, const int16 *foreignKey, const Oid *pfEqOp, const Oid *ppEqOp, const Oid *ffEqOp, int foreignNKeys, char foreignUpdateType, char foreignDeleteType, const int16 *fkDeleteSetCols, int numFkDeleteSetCols, char foreignMatchType, const Oid *exclOp, Node *conExpr, const char *conBin, bool conIsLocal, int conInhCount, bool conNoInherit, bool is_internal)
Definition: pg_constraint.c:51
FormData_pg_constraint * Form_pg_constraint
@ CONSTRAINT_RELATION
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition: pg_depend.c:44
long deleteDependencyRecordsForClass(Oid classId, Oid objectId, Oid refclassId, char deptype)
Definition: pg_depend.c:350
long changeDependenciesOf(Oid classId, Oid oldObjectId, Oid newObjectId)
Definition: pg_depend.c:564
long changeDependenciesOn(Oid refClassId, Oid oldRefObjectId, Oid newRefObjectId)
Definition: pg_depend.c:620
Oid get_index_constraint(Oid indexId)
Definition: pg_depend.c:968
List * get_index_ref_constraints(Oid indexId)
Definition: pg_depend.c:1024
FormData_pg_index * Form_pg_index
Definition: pg_index.h:70
bool DeleteInheritsTuple(Oid inhrelid, Oid inhparent, bool expect_detach_pending, const char *childname)
Definition: pg_inherits.c:553
void StoreSingleInheritance(Oid relationId, Oid parentOid, int32 seqNumber)
Definition: pg_inherits.c:509
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define linitial_oid(l)
Definition: pg_list.h:180
#define lfirst_oid(lc)
Definition: pg_list.h:174
FormData_pg_opclass * Form_pg_opclass
Definition: pg_opclass.h:83
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
FormData_pg_trigger * Form_pg_trigger
Definition: pg_trigger.h:80
FormData_pg_type * Form_pg_type
Definition: pg_type.h:261
int progress
Definition: pgbench.c:261
void pgstat_copy_relation_stats(Relation dst, Relation src)
void pgstat_drop_relation(Relation rel)
int plan_create_index_workers(Oid tableOid, Oid indexOid)
Definition: planner.c:6683
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:172
static Datum BoolGetDatum(bool X)
Definition: postgres.h:102
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:212
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
void TransferPredicateLocksToHeapRelation(Relation relation)
Definition: predicate.c:3074
char * c
#define PROGRESS_CREATEIDX_PHASE_BUILD
Definition: progress.h:94
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN
Definition: progress.h:98
#define PROGRESS_CREATEIDX_ACCESS_METHOD_OID
Definition: progress.h:83
#define PROGRESS_CREATEIDX_TUPLES_TOTAL
Definition: progress.h:86
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT
Definition: progress.h:97
#define PROGRESS_SCAN_BLOCKS_DONE
Definition: progress.h:122
#define PROGRESS_CREATEIDX_TUPLES_DONE
Definition: progress.h:87
#define PROGRESS_CREATEIDX_SUBPHASE
Definition: progress.h:85
#define PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE
Definition: progress.h:106
#define PROGRESS_CREATEIDX_PHASE
Definition: progress.h:84
#define PROGRESS_CREATEIDX_COMMAND_REINDEX
Definition: progress.h:112
#define PROGRESS_CLUSTER_INDEX_REBUILD_COUNT
Definition: progress.h:64
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN
Definition: progress.h:96
#define PROGRESS_SCAN_BLOCKS_TOTAL
Definition: progress.h:121
#define PROGRESS_CREATEIDX_INDEX_OID
Definition: progress.h:82
#define PROGRESS_CREATEIDX_COMMAND
Definition: progress.h:81
void * stringToNode(const char *str)
Definition: read.c:90
#define RelationGetForm(relation)
Definition: rel.h:498
#define RelationGetRelid(relation)
Definition: rel.h:504
static SMgrRelation RelationGetSmgr(Relation rel)
Definition: rel.h:572
#define RelationGetDescr(relation)
Definition: rel.h:530
#define RelationIsMapped(relation)
Definition: rel.h:553
#define RelationGetRelationName(relation)
Definition: rel.h:538
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:659
#define RelationIsValid(relation)
Definition: rel.h:477
#define RelationGetNamespace(relation)
Definition: rel.h:545
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:523
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4773
void RelationInitIndexAccessInfo(Relation relation)
Definition: relcache.c:1419
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:5142
List * RelationGetDummyIndexExpressions(Relation relation)
Definition: relcache.c:5088
void RelationSetNewRelfilenumber(Relation relation, char persistence)
Definition: relcache.c:3743
void RelationForgetRelation(Oid rid)
Definition: relcache.c:2867
void RelationAssumeNewRelfilelocator(Relation relation)
Definition: relcache.c:3942
void RelationGetExclusionInfo(Relation indexRelation, Oid **operators, Oid **procs, uint16 **strategies)
Definition: relcache.c:5578
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:5029
Oid RelFileNumber
Definition: relpath.h:25
@ INIT_FORKNUM
Definition: relpath.h:53
#define InvalidRelFileNumber
Definition: relpath.h:26
#define RelFileNumberIsValid(relnumber)
Definition: relpath.h:27
Node * map_variable_attnos(Node *node, int target_varno, int sublevels_up, const AttrMap *attno_map, Oid to_rowtype, bool *found_whole_row)
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
@ ForwardScanDirection
Definition: sdir.h:28
Size mul_size(Size s1, Size s2)
Definition: shmem.c:519
void smgrcreate(SMgrRelation reln, ForkNumber forknum, bool isRedo)
Definition: smgr.c:374
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:251
Snapshot GetLatestSnapshot(void)
Definition: snapmgr.c:298
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:843
bool ActiveSnapshotSet(void)
Definition: snapmgr.c:789
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:801
void PopActiveSnapshot(void)
Definition: snapmgr.c:750
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:206
Relation relation_open(Oid relationId, LOCKMODE lockmode)
Definition: relation.c:48
void log_smgrcreate(const RelFileLocator *rlocator, ForkNumber forkNum)
Definition: storage.c:185
void RelationDropStorage(Relation rel)
Definition: storage.c:205
#define BTEqualStrategyNumber
Definition: stratnum.h:31
#define ERRCODE_DUPLICATE_OBJECT
Definition: streamutil.c:32
Definition: attmap.h:35
int maplen
Definition: attmap.h:37
AttrNumber * attnums
Definition: attmap.h:36
Node * whenClause
Definition: parsenodes.h:2866
List * transitionRels
Definition: parsenodes.h:2868
RangeVar * constrrel
Definition: parsenodes.h:2872
RangeVar * relation
Definition: parsenodes.h:2857
MemoryContext ecxt_per_tuple_memory
Definition: execnodes.h:256
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:248
ItemPointerData t_self
Definition: htup.h:65
ambuildempty_function ambuildempty
Definition: amapi.h:265
Oid amkeytype
Definition: amapi.h:255
ambuild_function ambuild
Definition: amapi.h:264
bool amsummarizing
Definition: amapi.h:251
double heap_tuples
Definition: genam.h:32
double index_tuples
Definition: genam.h:33
bool ii_Unique
Definition: execnodes.h:190
uint16 * ii_ExclusionStrats
Definition: execnodes.h:186
bool ii_BrokenHotChain
Definition: execnodes.h:196
int ii_NumIndexAttrs
Definition: execnodes.h:177
Oid * ii_UniqueOps
Definition: execnodes.h:187
ExprState * ii_PredicateState
Definition: execnodes.h:183
Oid * ii_ExclusionOps
Definition: execnodes.h:184
bool ii_NullsNotDistinct
Definition: execnodes.h:191
int ii_ParallelWorkers
Definition: execnodes.h:198
bool ii_Concurrent
Definition: execnodes.h:195
uint16 * ii_UniqueStrats
Definition: execnodes.h:189
int ii_NumIndexKeyAttrs
Definition: execnodes.h:178
List * ii_ExpressionsState
Definition: execnodes.h:181
List * ii_Expressions
Definition: execnodes.h:180
Oid * ii_ExclusionProcs
Definition: execnodes.h:185
Oid ii_Am
Definition: execnodes.h:199
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:179
Oid * ii_UniqueProcs
Definition: execnodes.h:188
bool ii_ReadyForInserts
Definition: execnodes.h:192
List * ii_Predicate
Definition: execnodes.h:182
Relation index
Definition: genam.h:46
double num_heap_tuples
Definition: genam.h:52
bool analyze_only
Definition: genam.h:48
BufferAccessStrategy strategy
Definition: genam.h:53
Relation heaprel
Definition: genam.h:47
bool report_progress
Definition: genam.h:49
int message_level
Definition: genam.h:51
bool estimated_count
Definition: genam.h:50
Definition: lock.h:165
Definition: pg_list.h:54
LockRelId lockRelId
Definition: rel.h:46
Definition: rel.h:39
Oid relId
Definition: rel.h:40
Oid dbId
Definition: rel.h:41
Definition: nodes.h:129
Oid tablespaceOid
Definition: index.h:36
bits32 options
Definition: index.h:35
struct IndexAmRoutine * rd_indam
Definition: rel.h:205
LockInfoData rd_lockInfo
Definition: rel.h:114
Form_pg_index rd_index
Definition: rel.h:191
MemoryContext rd_indexcxt
Definition: rel.h:203
RelFileLocator rd_locator
Definition: rel.h:57
Oid * rd_indcollation
Definition: rel.h:216
Form_pg_class rd_rel
Definition: rel.h:111
Oid currentlyReindexedHeap
Definition: index.c:99
Oid currentlyReindexedIndex
Definition: index.c:100
int numPendingReindexedIndexes
Definition: index.c:101
Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER]
Definition: index.c:102
ItemPointerData tts_tid
Definition: tuptable.h:129
Definition: type.h:95
Definition: c.h:704
int16 values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:711
Definition: c.h:715
Oid values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:722
Definition: regguts.h:323
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:868
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:820
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:1081
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:831
Datum SysCacheGetAttrNotNull(int cacheId, HeapTuple tup, AttrNumber attributeNumber)
Definition: syscache.c:1112
#define SearchSysCacheCopy1(cacheId, key1)
Definition: syscache.h:182
@ TYPEOID
Definition: syscache.h:114
@ INDEXRELID
Definition: syscache.h:66
@ ATTNUM
Definition: syscache.h:41
@ RELOID
Definition: syscache.h:89
@ CLAOID
Definition: syscache.h:48
@ CONSTROID
Definition: syscache.h:53
Relation try_table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:60
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
TableScanDesc table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
Definition: tableam.c:112
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:91
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:1009
static void table_index_validate_scan(Relation table_rel, Relation index_rel, struct IndexInfo *index_info, Snapshot snapshot, struct ValidateIndexState *state)
Definition: tableam.h:1836
static TableScanDesc table_beginscan_strat(Relation rel, Snapshot snapshot, int nkeys, struct ScanKeyData *key, bool allow_strat, bool allow_sync)
Definition: tableam.h:925
static bool table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:1050
void CheckTableNotInUse(Relation rel, const char *stmt)
Definition: tablecmds.c:4282
bool CheckRelationTableSpaceMove(Relation rel, Oid newTableSpaceId)
Definition: tablecmds.c:3565
void SetRelationHasSubclass(Oid relationId, bool relhassubclass)
Definition: tablecmds.c:3524
void SetRelationTableSpace(Relation rel, Oid newTableSpaceId, RelFileNumber newRelFilenumber)
Definition: tablecmds.c:3622
#define InvalidCompressionMethod
#define InvalidTransactionId
Definition: transam.h:31
ObjectAddress CreateTrigger(CreateTrigStmt *stmt, const char *queryString, Oid relOid, Oid refRelOid, Oid constraintOid, Oid indexOid, Oid funcoid, Oid parentTriggerOid, Node *whenClause, bool isInternal, bool in_partition)
Definition: trigger.c:165
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:67
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
void tuplesort_performsort(Tuplesortstate *state)
Definition: tuplesort.c:1382
void tuplesort_end(Tuplesortstate *state)
Definition: tuplesort.c:969
#define TUPLESORT_NONE
Definition: tuplesort.h:92
void tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull)
Tuplesortstate * tuplesort_begin_datum(Oid datumType, Oid sortOperator, Oid sortCollation, bool nullsFirstFlag, int workMem, SortCoordinate coordinate, int sortopt)
static Datum slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:409
static Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:388
void visibilitymap_count(Relation rel, BlockNumber *all_visible, BlockNumber *all_frozen)
const char * description
int GetCurrentTransactionNestLevel(void)
Definition: xact.c:914
void CommandCounterIncrement(void)
Definition: xact.c:1078
TransactionId GetTopTransactionIdIfAny(void)
Definition: xact.c:432
void StartTransactionCommand(void)
Definition: xact.c:2937
bool IsInParallelMode(void)
Definition: xact.c:1069
void CommitTransactionCommand(void)
Definition: xact.c:3034