PostgreSQL Source Code  git master
index.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * index.c
4  * code to create and destroy POSTGRES index relations
5  *
6  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/catalog/index.c
12  *
13  *
14  * INTERFACE ROUTINES
15  * index_create() - Create a cataloged index relation
16  * index_drop() - Removes index relation from catalogs
17  * BuildIndexInfo() - Prepare to insert index tuples
18  * FormIndexDatum() - Construct datum vector for one index tuple
19  *
20  *-------------------------------------------------------------------------
21  */
22 #include "postgres.h"
23 
24 #include <unistd.h>
25 
26 #include "access/amapi.h"
27 #include "access/heapam.h"
28 #include "access/multixact.h"
29 #include "access/relscan.h"
30 #include "access/tableam.h"
32 #include "access/transam.h"
33 #include "access/visibilitymap.h"
34 #include "access/xact.h"
35 #include "bootstrap/bootstrap.h"
36 #include "catalog/binary_upgrade.h"
37 #include "catalog/catalog.h"
38 #include "catalog/dependency.h"
39 #include "catalog/heap.h"
40 #include "catalog/index.h"
41 #include "catalog/objectaccess.h"
42 #include "catalog/partition.h"
43 #include "catalog/pg_am.h"
44 #include "catalog/pg_collation.h"
45 #include "catalog/pg_constraint.h"
46 #include "catalog/pg_description.h"
47 #include "catalog/pg_inherits.h"
48 #include "catalog/pg_opclass.h"
49 #include "catalog/pg_operator.h"
50 #include "catalog/pg_tablespace.h"
51 #include "catalog/pg_trigger.h"
52 #include "catalog/pg_type.h"
53 #include "catalog/storage.h"
54 #include "catalog/storage_xlog.h"
55 #include "commands/event_trigger.h"
56 #include "commands/progress.h"
57 #include "commands/tablecmds.h"
58 #include "commands/trigger.h"
59 #include "executor/executor.h"
60 #include "miscadmin.h"
61 #include "nodes/makefuncs.h"
62 #include "nodes/nodeFuncs.h"
63 #include "optimizer/optimizer.h"
64 #include "parser/parser.h"
65 #include "pgstat.h"
66 #include "rewrite/rewriteManip.h"
67 #include "storage/bufmgr.h"
68 #include "storage/lmgr.h"
69 #include "storage/predicate.h"
70 #include "storage/smgr.h"
71 #include "utils/builtins.h"
72 #include "utils/fmgroids.h"
73 #include "utils/guc.h"
74 #include "utils/inval.h"
75 #include "utils/lsyscache.h"
76 #include "utils/memutils.h"
77 #include "utils/pg_rusage.h"
78 #include "utils/rel.h"
79 #include "utils/snapmgr.h"
80 #include "utils/syscache.h"
81 #include "utils/tuplesort.h"
82 
83 /* Potentially set by pg_upgrade_support functions */
87 
88 /*
89  * Pointer-free representation of variables used when reindexing system
90  * catalogs; we use this to propagate those values to parallel workers.
91  */
92 typedef struct
93 {
99 
100 /* non-export function prototypes */
101 static bool relationHasPrimaryKey(Relation rel);
102 static TupleDesc ConstructTupleDescriptor(Relation heapRelation,
103  const IndexInfo *indexInfo,
104  const List *indexColNames,
105  Oid accessMethodId,
106  const Oid *collationIds,
107  const Oid *opclassIds);
108 static void InitializeAttributeOids(Relation indexRelation,
109  int numatts, Oid indexoid);
110 static void AppendAttributeTuples(Relation indexRelation, const Datum *attopts, const NullableDatum *stattargets);
111 static void UpdateIndexRelation(Oid indexoid, Oid heapoid,
112  Oid parentIndexId,
113  const IndexInfo *indexInfo,
114  const Oid *collationOids,
115  const Oid *opclassOids,
116  const int16 *coloptions,
117  bool primary,
118  bool isexclusion,
119  bool immediate,
120  bool isvalid,
121  bool isready);
122 static void index_update_stats(Relation rel,
123  bool hasindex,
124  double reltuples);
125 static void IndexCheckExclusion(Relation heapRelation,
126  Relation indexRelation,
127  IndexInfo *indexInfo);
128 static bool validate_index_callback(ItemPointer itemptr, void *opaque);
129 static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid);
130 static void SetReindexProcessing(Oid heapOid, Oid indexOid);
131 static void ResetReindexProcessing(void);
132 static void SetReindexPending(List *indexes);
133 static void RemoveReindexPending(Oid indexOid);
134 
135 
136 /*
137  * relationHasPrimaryKey
138  * See whether an existing relation has a primary key.
139  *
140  * Caller must have suitable lock on the relation.
141  *
142  * Note: we intentionally do not check indisvalid here; that's because this
143  * is used to enforce the rule that there can be only one indisprimary index,
144  * and we want that to be true even if said index is invalid.
145  */
146 static bool
148 {
149  bool result = false;
150  List *indexoidlist;
151  ListCell *indexoidscan;
152 
153  /*
154  * Get the list of index OIDs for the table from the relcache, and look up
155  * each one in the pg_index syscache until we find one marked primary key
156  * (hopefully there isn't more than one such).
157  */
158  indexoidlist = RelationGetIndexList(rel);
159 
160  foreach(indexoidscan, indexoidlist)
161  {
162  Oid indexoid = lfirst_oid(indexoidscan);
163  HeapTuple indexTuple;
164 
165  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid));
166  if (!HeapTupleIsValid(indexTuple)) /* should not happen */
167  elog(ERROR, "cache lookup failed for index %u", indexoid);
168  result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary;
169  ReleaseSysCache(indexTuple);
170  if (result)
171  break;
172  }
173 
174  list_free(indexoidlist);
175 
176  return result;
177 }
178 
179 /*
180  * index_check_primary_key
181  * Apply special checks needed before creating a PRIMARY KEY index
182  *
183  * This processing used to be in DefineIndex(), but has been split out
184  * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX.
185  *
186  * We check for a pre-existing primary key, and that all columns of the index
187  * are simple column references (not expressions), and that all those
188  * columns are marked NOT NULL. If not, fail.
189  *
190  * We used to automatically change unmarked columns to NOT NULL here by doing
191  * our own local ALTER TABLE command. But that doesn't work well if we're
192  * executing one subcommand of an ALTER TABLE: the operations may not get
193  * performed in the right order overall. Now we expect that the parser
194  * inserted any required ALTER TABLE SET NOT NULL operations before trying
195  * to create a primary-key index.
196  *
197  * Caller had better have at least ShareLock on the table, else the not-null
198  * checking isn't trustworthy.
199  */
200 void
202  const IndexInfo *indexInfo,
203  bool is_alter_table,
204  const IndexStmt *stmt)
205 {
206  int i;
207 
208  /*
209  * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't
210  * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we
211  * have faith that the parser rejected multiple pkey clauses; and CREATE
212  * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either.
213  */
214  if ((is_alter_table || heapRel->rd_rel->relispartition) &&
215  relationHasPrimaryKey(heapRel))
216  {
217  ereport(ERROR,
218  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
219  errmsg("multiple primary keys for table \"%s\" are not allowed",
220  RelationGetRelationName(heapRel))));
221  }
222 
223  /*
224  * Indexes created with NULLS NOT DISTINCT cannot be used for primary key
225  * constraints. While there is no direct syntax to reach here, it can be
226  * done by creating a separate index and attaching it via ALTER TABLE ..
227  * USING INDEX.
228  */
229  if (indexInfo->ii_NullsNotDistinct)
230  {
231  ereport(ERROR,
232  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
233  errmsg("primary keys cannot use NULLS NOT DISTINCT indexes")));
234  }
235 
236  /*
237  * Check that all of the attributes in a primary key are marked as not
238  * null. (We don't really expect to see that; it'd mean the parser messed
239  * up. But it seems wise to check anyway.)
240  */
241  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
242  {
243  AttrNumber attnum = indexInfo->ii_IndexAttrNumbers[i];
244  HeapTuple atttuple;
245  Form_pg_attribute attform;
246 
247  if (attnum == 0)
248  ereport(ERROR,
249  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
250  errmsg("primary keys cannot be expressions")));
251 
252  /* System attributes are never null, so no need to check */
253  if (attnum < 0)
254  continue;
255 
256  atttuple = SearchSysCache2(ATTNUM,
259  if (!HeapTupleIsValid(atttuple))
260  elog(ERROR, "cache lookup failed for attribute %d of relation %u",
261  attnum, RelationGetRelid(heapRel));
262  attform = (Form_pg_attribute) GETSTRUCT(atttuple);
263 
264  if (!attform->attnotnull)
265  ereport(ERROR,
266  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
267  errmsg("primary key column \"%s\" is not marked NOT NULL",
268  NameStr(attform->attname))));
269 
270  ReleaseSysCache(atttuple);
271  }
272 }
273 
274 /*
275  * ConstructTupleDescriptor
276  *
277  * Build an index tuple descriptor for a new index
278  */
279 static TupleDesc
281  const IndexInfo *indexInfo,
282  const List *indexColNames,
283  Oid accessMethodId,
284  const Oid *collationIds,
285  const Oid *opclassIds)
286 {
287  int numatts = indexInfo->ii_NumIndexAttrs;
288  int numkeyatts = indexInfo->ii_NumIndexKeyAttrs;
289  ListCell *colnames_item = list_head(indexColNames);
290  ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
291  IndexAmRoutine *amroutine;
292  TupleDesc heapTupDesc;
293  TupleDesc indexTupDesc;
294  int natts; /* #atts in heap rel --- for error checks */
295  int i;
296 
297  /* We need access to the index AM's API struct */
298  amroutine = GetIndexAmRoutineByAmId(accessMethodId, false);
299 
300  /* ... and to the table's tuple descriptor */
301  heapTupDesc = RelationGetDescr(heapRelation);
302  natts = RelationGetForm(heapRelation)->relnatts;
303 
304  /*
305  * allocate the new tuple descriptor
306  */
307  indexTupDesc = CreateTemplateTupleDesc(numatts);
308 
309  /*
310  * Fill in the pg_attribute row.
311  */
312  for (i = 0; i < numatts; i++)
313  {
314  AttrNumber atnum = indexInfo->ii_IndexAttrNumbers[i];
315  Form_pg_attribute to = TupleDescAttr(indexTupDesc, i);
316  HeapTuple tuple;
317  Form_pg_type typeTup;
318  Form_pg_opclass opclassTup;
319  Oid keyType;
320 
322  to->attnum = i + 1;
323  to->attcacheoff = -1;
324  to->attislocal = true;
325  to->attcollation = (i < numkeyatts) ? collationIds[i] : InvalidOid;
326 
327  /*
328  * Set the attribute name as specified by caller.
329  */
330  if (colnames_item == NULL) /* shouldn't happen */
331  elog(ERROR, "too few entries in colnames list");
332  namestrcpy(&to->attname, (const char *) lfirst(colnames_item));
333  colnames_item = lnext(indexColNames, colnames_item);
334 
335  /*
336  * For simple index columns, we copy some pg_attribute fields from the
337  * parent relation. For expressions we have to look at the expression
338  * result.
339  */
340  if (atnum != 0)
341  {
342  /* Simple index column */
343  const FormData_pg_attribute *from;
344 
345  Assert(atnum > 0); /* should've been caught above */
346 
347  if (atnum > natts) /* safety check */
348  elog(ERROR, "invalid column number %d", atnum);
349  from = TupleDescAttr(heapTupDesc,
350  AttrNumberGetAttrOffset(atnum));
351 
352  to->atttypid = from->atttypid;
353  to->attlen = from->attlen;
354  to->attndims = from->attndims;
355  to->atttypmod = from->atttypmod;
356  to->attbyval = from->attbyval;
357  to->attalign = from->attalign;
358  to->attstorage = from->attstorage;
359  to->attcompression = from->attcompression;
360  }
361  else
362  {
363  /* Expressional index */
364  Node *indexkey;
365 
366  if (indexpr_item == NULL) /* shouldn't happen */
367  elog(ERROR, "too few entries in indexprs list");
368  indexkey = (Node *) lfirst(indexpr_item);
369  indexpr_item = lnext(indexInfo->ii_Expressions, indexpr_item);
370 
371  /*
372  * Lookup the expression type in pg_type for the type length etc.
373  */
374  keyType = exprType(indexkey);
375  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
376  if (!HeapTupleIsValid(tuple))
377  elog(ERROR, "cache lookup failed for type %u", keyType);
378  typeTup = (Form_pg_type) GETSTRUCT(tuple);
379 
380  /*
381  * Assign some of the attributes values. Leave the rest.
382  */
383  to->atttypid = keyType;
384  to->attlen = typeTup->typlen;
385  to->atttypmod = exprTypmod(indexkey);
386  to->attbyval = typeTup->typbyval;
387  to->attalign = typeTup->typalign;
388  to->attstorage = typeTup->typstorage;
389 
390  /*
391  * For expression columns, set attcompression invalid, since
392  * there's no table column from which to copy the value. Whenever
393  * we actually need to compress a value, we'll use whatever the
394  * current value of default_toast_compression is at that point in
395  * time.
396  */
397  to->attcompression = InvalidCompressionMethod;
398 
399  ReleaseSysCache(tuple);
400 
401  /*
402  * Make sure the expression yields a type that's safe to store in
403  * an index. We need this defense because we have index opclasses
404  * for pseudo-types such as "record", and the actually stored type
405  * had better be safe; eg, a named composite type is okay, an
406  * anonymous record type is not. The test is the same as for
407  * whether a table column is of a safe type (which is why we
408  * needn't check for the non-expression case).
409  */
410  CheckAttributeType(NameStr(to->attname),
411  to->atttypid, to->attcollation,
412  NIL, 0);
413  }
414 
415  /*
416  * We do not yet have the correct relation OID for the index, so just
417  * set it invalid for now. InitializeAttributeOids() will fix it
418  * later.
419  */
420  to->attrelid = InvalidOid;
421 
422  /*
423  * Check the opclass and index AM to see if either provides a keytype
424  * (overriding the attribute type). Opclass (if exists) takes
425  * precedence.
426  */
427  keyType = amroutine->amkeytype;
428 
429  if (i < indexInfo->ii_NumIndexKeyAttrs)
430  {
431  tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclassIds[i]));
432  if (!HeapTupleIsValid(tuple))
433  elog(ERROR, "cache lookup failed for opclass %u", opclassIds[i]);
434  opclassTup = (Form_pg_opclass) GETSTRUCT(tuple);
435  if (OidIsValid(opclassTup->opckeytype))
436  keyType = opclassTup->opckeytype;
437 
438  /*
439  * If keytype is specified as ANYELEMENT, and opcintype is
440  * ANYARRAY, then the attribute type must be an array (else it'd
441  * not have matched this opclass); use its element type.
442  *
443  * We could also allow ANYCOMPATIBLE/ANYCOMPATIBLEARRAY here, but
444  * there seems no need to do so; there's no reason to declare an
445  * opclass as taking ANYCOMPATIBLEARRAY rather than ANYARRAY.
446  */
447  if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID)
448  {
449  keyType = get_base_element_type(to->atttypid);
450  if (!OidIsValid(keyType))
451  elog(ERROR, "could not get element type of array type %u",
452  to->atttypid);
453  }
454 
455  ReleaseSysCache(tuple);
456  }
457 
458  /*
459  * If a key type different from the heap value is specified, update
460  * the type-related fields in the index tupdesc.
461  */
462  if (OidIsValid(keyType) && keyType != to->atttypid)
463  {
464  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
465  if (!HeapTupleIsValid(tuple))
466  elog(ERROR, "cache lookup failed for type %u", keyType);
467  typeTup = (Form_pg_type) GETSTRUCT(tuple);
468 
469  to->atttypid = keyType;
470  to->atttypmod = -1;
471  to->attlen = typeTup->typlen;
472  to->attbyval = typeTup->typbyval;
473  to->attalign = typeTup->typalign;
474  to->attstorage = typeTup->typstorage;
475  /* As above, use the default compression method in this case */
476  to->attcompression = InvalidCompressionMethod;
477 
478  ReleaseSysCache(tuple);
479  }
480  }
481 
482  pfree(amroutine);
483 
484  return indexTupDesc;
485 }
486 
487 /* ----------------------------------------------------------------
488  * InitializeAttributeOids
489  * ----------------------------------------------------------------
490  */
491 static void
493  int numatts,
494  Oid indexoid)
495 {
496  TupleDesc tupleDescriptor;
497  int i;
498 
499  tupleDescriptor = RelationGetDescr(indexRelation);
500 
501  for (i = 0; i < numatts; i += 1)
502  TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid;
503 }
504 
505 /* ----------------------------------------------------------------
506  * AppendAttributeTuples
507  * ----------------------------------------------------------------
508  */
509 static void
510 AppendAttributeTuples(Relation indexRelation, const Datum *attopts, const NullableDatum *stattargets)
511 {
512  Relation pg_attribute;
513  CatalogIndexState indstate;
514  TupleDesc indexTupDesc;
515  FormExtraData_pg_attribute *attrs_extra = NULL;
516 
517  if (attopts)
518  {
519  attrs_extra = palloc0_array(FormExtraData_pg_attribute, indexRelation->rd_att->natts);
520 
521  for (int i = 0; i < indexRelation->rd_att->natts; i++)
522  {
523  if (attopts[i])
524  attrs_extra[i].attoptions.value = attopts[i];
525  else
526  attrs_extra[i].attoptions.isnull = true;
527 
528  if (stattargets)
529  attrs_extra[i].attstattarget = stattargets[i];
530  else
531  attrs_extra[i].attstattarget.isnull = true;
532  }
533  }
534 
535  /*
536  * open the attribute relation and its indexes
537  */
538  pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
539 
540  indstate = CatalogOpenIndexes(pg_attribute);
541 
542  /*
543  * insert data from new index's tupdesc into pg_attribute
544  */
545  indexTupDesc = RelationGetDescr(indexRelation);
546 
547  InsertPgAttributeTuples(pg_attribute, indexTupDesc, InvalidOid, attrs_extra, indstate);
548 
549  CatalogCloseIndexes(indstate);
550 
551  table_close(pg_attribute, RowExclusiveLock);
552 }
553 
554 /* ----------------------------------------------------------------
555  * UpdateIndexRelation
556  *
557  * Construct and insert a new entry in the pg_index catalog
558  * ----------------------------------------------------------------
559  */
560 static void
562  Oid heapoid,
563  Oid parentIndexId,
564  const IndexInfo *indexInfo,
565  const Oid *collationOids,
566  const Oid *opclassOids,
567  const int16 *coloptions,
568  bool primary,
569  bool isexclusion,
570  bool immediate,
571  bool isvalid,
572  bool isready)
573 {
574  int2vector *indkey;
575  oidvector *indcollation;
576  oidvector *indclass;
577  int2vector *indoption;
578  Datum exprsDatum;
579  Datum predDatum;
580  Datum values[Natts_pg_index];
581  bool nulls[Natts_pg_index] = {0};
582  Relation pg_index;
583  HeapTuple tuple;
584  int i;
585 
586  /*
587  * Copy the index key, opclass, and indoption info into arrays (should we
588  * make the caller pass them like this to start with?)
589  */
590  indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs);
591  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
592  indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i];
593  indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs);
594  indclass = buildoidvector(opclassOids, indexInfo->ii_NumIndexKeyAttrs);
595  indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs);
596 
597  /*
598  * Convert the index expressions (if any) to a text datum
599  */
600  if (indexInfo->ii_Expressions != NIL)
601  {
602  char *exprsString;
603 
604  exprsString = nodeToString(indexInfo->ii_Expressions);
605  exprsDatum = CStringGetTextDatum(exprsString);
606  pfree(exprsString);
607  }
608  else
609  exprsDatum = (Datum) 0;
610 
611  /*
612  * Convert the index predicate (if any) to a text datum. Note we convert
613  * implicit-AND format to normal explicit-AND for storage.
614  */
615  if (indexInfo->ii_Predicate != NIL)
616  {
617  char *predString;
618 
619  predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate));
620  predDatum = CStringGetTextDatum(predString);
621  pfree(predString);
622  }
623  else
624  predDatum = (Datum) 0;
625 
626 
627  /*
628  * open the system catalog index relation
629  */
630  pg_index = table_open(IndexRelationId, RowExclusiveLock);
631 
632  /*
633  * Build a pg_index tuple
634  */
635  values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid);
636  values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid);
637  values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs);
638  values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs);
639  values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique);
640  values[Anum_pg_index_indnullsnotdistinct - 1] = BoolGetDatum(indexInfo->ii_NullsNotDistinct);
641  values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary);
642  values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion);
643  values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate);
644  values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false);
645  values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid);
646  values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false);
647  values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready);
648  values[Anum_pg_index_indislive - 1] = BoolGetDatum(true);
649  values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false);
650  values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey);
651  values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation);
652  values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass);
653  values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption);
654  values[Anum_pg_index_indexprs - 1] = exprsDatum;
655  if (exprsDatum == (Datum) 0)
656  nulls[Anum_pg_index_indexprs - 1] = true;
657  values[Anum_pg_index_indpred - 1] = predDatum;
658  if (predDatum == (Datum) 0)
659  nulls[Anum_pg_index_indpred - 1] = true;
660 
661  tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls);
662 
663  /*
664  * insert the tuple into the pg_index catalog
665  */
666  CatalogTupleInsert(pg_index, tuple);
667 
668  /*
669  * close the relation and free the tuple
670  */
671  table_close(pg_index, RowExclusiveLock);
672  heap_freetuple(tuple);
673 }
674 
675 
676 /*
677  * index_create
678  *
679  * heapRelation: table to build index on (suitably locked by caller)
680  * indexRelationName: what it say
681  * indexRelationId: normally, pass InvalidOid to let this routine
682  * generate an OID for the index. During bootstrap this may be
683  * nonzero to specify a preselected OID.
684  * parentIndexRelid: if creating an index partition, the OID of the
685  * parent index; otherwise InvalidOid.
686  * parentConstraintId: if creating a constraint on a partition, the OID
687  * of the constraint in the parent; otherwise InvalidOid.
688  * relFileNumber: normally, pass InvalidRelFileNumber to get new storage.
689  * May be nonzero to attach an existing valid build.
690  * indexInfo: same info executor uses to insert into the index
691  * indexColNames: column names to use for index (List of char *)
692  * accessMethodId: OID of index AM to use
693  * tableSpaceId: OID of tablespace to use
694  * collationIds: array of collation OIDs, one per index column
695  * opclassIds: array of index opclass OIDs, one per index column
696  * coloptions: array of per-index-column indoption settings
697  * reloptions: AM-specific options
698  * flags: bitmask that can include any combination of these bits:
699  * INDEX_CREATE_IS_PRIMARY
700  * the index is a primary key
701  * INDEX_CREATE_ADD_CONSTRAINT:
702  * invoke index_constraint_create also
703  * INDEX_CREATE_SKIP_BUILD:
704  * skip the index_build() step for the moment; caller must do it
705  * later (typically via reindex_index())
706  * INDEX_CREATE_CONCURRENT:
707  * do not lock the table against writers. The index will be
708  * marked "invalid" and the caller must take additional steps
709  * to fix it up.
710  * INDEX_CREATE_IF_NOT_EXISTS:
711  * do not throw an error if a relation with the same name
712  * already exists.
713  * INDEX_CREATE_PARTITIONED:
714  * create a partitioned index (table must be partitioned)
715  * constr_flags: flags passed to index_constraint_create
716  * (only if INDEX_CREATE_ADD_CONSTRAINT is set)
717  * allow_system_table_mods: allow table to be a system catalog
718  * is_internal: if true, post creation hook for new index
719  * constraintId: if not NULL, receives OID of created constraint
720  *
721  * Returns the OID of the created index.
722  */
723 Oid
724 index_create(Relation heapRelation,
725  const char *indexRelationName,
726  Oid indexRelationId,
727  Oid parentIndexRelid,
728  Oid parentConstraintId,
729  RelFileNumber relFileNumber,
730  IndexInfo *indexInfo,
731  const List *indexColNames,
732  Oid accessMethodId,
733  Oid tableSpaceId,
734  const Oid *collationIds,
735  const Oid *opclassIds,
736  const Datum *opclassOptions,
737  const int16 *coloptions,
738  const NullableDatum *stattargets,
739  Datum reloptions,
740  bits16 flags,
741  bits16 constr_flags,
742  bool allow_system_table_mods,
743  bool is_internal,
744  Oid *constraintId)
745 {
746  Oid heapRelationId = RelationGetRelid(heapRelation);
747  Relation pg_class;
748  Relation indexRelation;
749  TupleDesc indexTupDesc;
750  bool shared_relation;
751  bool mapped_relation;
752  bool is_exclusion;
753  Oid namespaceId;
754  int i;
755  char relpersistence;
756  bool isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0;
757  bool invalid = (flags & INDEX_CREATE_INVALID) != 0;
758  bool concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0;
759  bool partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0;
760  char relkind;
761  TransactionId relfrozenxid;
762  MultiXactId relminmxid;
763  bool create_storage = !RelFileNumberIsValid(relFileNumber);
764 
765  /* constraint flags can only be set when a constraint is requested */
766  Assert((constr_flags == 0) ||
767  ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0));
768  /* partitioned indexes must never be "built" by themselves */
769  Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD));
770 
771  relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX;
772  is_exclusion = (indexInfo->ii_ExclusionOps != NULL);
773 
774  pg_class = table_open(RelationRelationId, RowExclusiveLock);
775 
776  /*
777  * The index will be in the same namespace as its parent table, and is
778  * shared across databases if and only if the parent is. Likewise, it
779  * will use the relfilenumber map if and only if the parent does; and it
780  * inherits the parent's relpersistence.
781  */
782  namespaceId = RelationGetNamespace(heapRelation);
783  shared_relation = heapRelation->rd_rel->relisshared;
784  mapped_relation = RelationIsMapped(heapRelation);
785  relpersistence = heapRelation->rd_rel->relpersistence;
786 
787  /*
788  * check parameters
789  */
790  if (indexInfo->ii_NumIndexAttrs < 1)
791  elog(ERROR, "must index at least one column");
792 
793  if (!allow_system_table_mods &&
794  IsSystemRelation(heapRelation) &&
796  ereport(ERROR,
797  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
798  errmsg("user-defined indexes on system catalog tables are not supported")));
799 
800  /*
801  * Btree text_pattern_ops uses text_eq as the equality operator, which is
802  * fine as long as the collation is deterministic; text_eq then reduces to
803  * bitwise equality and so it is semantically compatible with the other
804  * operators and functions in that opclass. But with a nondeterministic
805  * collation, text_eq could yield results that are incompatible with the
806  * actual behavior of the index (which is determined by the opclass's
807  * comparison function). We prevent such problems by refusing creation of
808  * an index with that opclass and a nondeterministic collation.
809  *
810  * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we
811  * find more cases, we might decide to create a real mechanism for marking
812  * opclasses as incompatible with nondeterminism; but for now, this small
813  * hack suffices.
814  *
815  * Another solution is to use a special operator, not text_eq, as the
816  * equality opclass member; but that is undesirable because it would
817  * prevent index usage in many queries that work fine today.
818  */
819  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
820  {
821  Oid collation = collationIds[i];
822  Oid opclass = opclassIds[i];
823 
824  if (collation)
825  {
826  if ((opclass == TEXT_BTREE_PATTERN_OPS_OID ||
827  opclass == VARCHAR_BTREE_PATTERN_OPS_OID ||
828  opclass == BPCHAR_BTREE_PATTERN_OPS_OID) &&
829  !get_collation_isdeterministic(collation))
830  {
831  HeapTuple classtup;
832 
833  classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass));
834  if (!HeapTupleIsValid(classtup))
835  elog(ERROR, "cache lookup failed for operator class %u", opclass);
836  ereport(ERROR,
837  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
838  errmsg("nondeterministic collations are not supported for operator class \"%s\"",
839  NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname))));
840  ReleaseSysCache(classtup);
841  }
842  }
843  }
844 
845  /*
846  * Concurrent index build on a system catalog is unsafe because we tend to
847  * release locks before committing in catalogs.
848  */
849  if (concurrent &&
850  IsCatalogRelation(heapRelation))
851  ereport(ERROR,
852  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
853  errmsg("concurrent index creation on system catalog tables is not supported")));
854 
855  /*
856  * This case is currently not supported. There's no way to ask for it in
857  * the grammar with CREATE INDEX, but it can happen with REINDEX.
858  */
859  if (concurrent && is_exclusion)
860  ereport(ERROR,
861  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
862  errmsg("concurrent index creation for exclusion constraints is not supported")));
863 
864  /*
865  * We cannot allow indexing a shared relation after initdb (because
866  * there's no way to make the entry in other databases' pg_class).
867  */
868  if (shared_relation && !IsBootstrapProcessingMode())
869  ereport(ERROR,
870  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
871  errmsg("shared indexes cannot be created after initdb")));
872 
873  /*
874  * Shared relations must be in pg_global, too (last-ditch check)
875  */
876  if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID)
877  elog(ERROR, "shared relations must be placed in pg_global tablespace");
878 
879  /*
880  * Check for duplicate name (both as to the index, and as to the
881  * associated constraint if any). Such cases would fail on the relevant
882  * catalogs' unique indexes anyway, but we prefer to give a friendlier
883  * error message.
884  */
885  if (get_relname_relid(indexRelationName, namespaceId))
886  {
887  if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0)
888  {
889  ereport(NOTICE,
890  (errcode(ERRCODE_DUPLICATE_TABLE),
891  errmsg("relation \"%s\" already exists, skipping",
892  indexRelationName)));
893  table_close(pg_class, RowExclusiveLock);
894  return InvalidOid;
895  }
896 
897  ereport(ERROR,
898  (errcode(ERRCODE_DUPLICATE_TABLE),
899  errmsg("relation \"%s\" already exists",
900  indexRelationName)));
901  }
902 
903  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 &&
905  indexRelationName))
906  {
907  /*
908  * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the
909  * conflicting constraint is not an index.
910  */
911  ereport(ERROR,
913  errmsg("constraint \"%s\" for relation \"%s\" already exists",
914  indexRelationName, RelationGetRelationName(heapRelation))));
915  }
916 
917  /*
918  * construct tuple descriptor for index tuples
919  */
920  indexTupDesc = ConstructTupleDescriptor(heapRelation,
921  indexInfo,
922  indexColNames,
923  accessMethodId,
924  collationIds,
925  opclassIds);
926 
927  /*
928  * Allocate an OID for the index, unless we were told what to use.
929  *
930  * The OID will be the relfilenumber as well, so make sure it doesn't
931  * collide with either pg_class OIDs or existing physical files.
932  */
933  if (!OidIsValid(indexRelationId))
934  {
935  /* Use binary-upgrade override for pg_class.oid and relfilenumber */
936  if (IsBinaryUpgrade)
937  {
939  ereport(ERROR,
940  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
941  errmsg("pg_class index OID value not set when in binary upgrade mode")));
942 
943  indexRelationId = binary_upgrade_next_index_pg_class_oid;
945 
946  /* Override the index relfilenumber */
947  if ((relkind == RELKIND_INDEX) &&
949  ereport(ERROR,
950  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
951  errmsg("index relfilenumber value not set when in binary upgrade mode")));
954 
955  /*
956  * Note that we want create_storage = true for binary upgrade. The
957  * storage we create here will be replaced later, but we need to
958  * have something on disk in the meanwhile.
959  */
960  Assert(create_storage);
961  }
962  else
963  {
964  indexRelationId =
965  GetNewRelFileNumber(tableSpaceId, pg_class, relpersistence);
966  }
967  }
968 
969  /*
970  * create the index relation's relcache entry and, if necessary, the
971  * physical disk file. (If we fail further down, it's the smgr's
972  * responsibility to remove the disk file again, if any.)
973  */
974  indexRelation = heap_create(indexRelationName,
975  namespaceId,
976  tableSpaceId,
977  indexRelationId,
978  relFileNumber,
979  accessMethodId,
980  indexTupDesc,
981  relkind,
982  relpersistence,
983  shared_relation,
984  mapped_relation,
985  allow_system_table_mods,
986  &relfrozenxid,
987  &relminmxid,
988  create_storage);
989 
990  Assert(relfrozenxid == InvalidTransactionId);
991  Assert(relminmxid == InvalidMultiXactId);
992  Assert(indexRelationId == RelationGetRelid(indexRelation));
993 
994  /*
995  * Obtain exclusive lock on it. Although no other transactions can see it
996  * until we commit, this prevents deadlock-risk complaints from lock
997  * manager in cases such as CLUSTER.
998  */
999  LockRelation(indexRelation, AccessExclusiveLock);
1000 
1001  /*
1002  * Fill in fields of the index's pg_class entry that are not set correctly
1003  * by heap_create.
1004  *
1005  * XXX should have a cleaner way to create cataloged indexes
1006  */
1007  indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner;
1008  indexRelation->rd_rel->relam = accessMethodId;
1009  indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid);
1010 
1011  /*
1012  * store index's pg_class entry
1013  */
1014  InsertPgClassTuple(pg_class, indexRelation,
1015  RelationGetRelid(indexRelation),
1016  (Datum) 0,
1017  reloptions);
1018 
1019  /* done with pg_class */
1020  table_close(pg_class, RowExclusiveLock);
1021 
1022  /*
1023  * now update the object id's of all the attribute tuple forms in the
1024  * index relation's tuple descriptor
1025  */
1026  InitializeAttributeOids(indexRelation,
1027  indexInfo->ii_NumIndexAttrs,
1028  indexRelationId);
1029 
1030  /*
1031  * append ATTRIBUTE tuples for the index
1032  */
1033  AppendAttributeTuples(indexRelation, opclassOptions, stattargets);
1034 
1035  /* ----------------
1036  * update pg_index
1037  * (append INDEX tuple)
1038  *
1039  * Note that this stows away a representation of "predicate".
1040  * (Or, could define a rule to maintain the predicate) --Nels, Feb '92
1041  * ----------------
1042  */
1043  UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid,
1044  indexInfo,
1045  collationIds, opclassIds, coloptions,
1046  isprimary, is_exclusion,
1047  (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0,
1048  !concurrent && !invalid,
1049  !concurrent);
1050 
1051  /*
1052  * Register relcache invalidation on the indexes' heap relation, to
1053  * maintain consistency of its index list
1054  */
1055  CacheInvalidateRelcache(heapRelation);
1056 
1057  /* update pg_inherits and the parent's relhassubclass, if needed */
1058  if (OidIsValid(parentIndexRelid))
1059  {
1060  StoreSingleInheritance(indexRelationId, parentIndexRelid, 1);
1061  LockRelationOid(parentIndexRelid, ShareUpdateExclusiveLock);
1062  SetRelationHasSubclass(parentIndexRelid, true);
1063  }
1064 
1065  /*
1066  * Register constraint and dependencies for the index.
1067  *
1068  * If the index is from a CONSTRAINT clause, construct a pg_constraint
1069  * entry. The index will be linked to the constraint, which in turn is
1070  * linked to the table. If it's not a CONSTRAINT, we need to make a
1071  * dependency directly on the table.
1072  *
1073  * We don't need a dependency on the namespace, because there'll be an
1074  * indirect dependency via our parent table.
1075  *
1076  * During bootstrap we can't register any dependencies, and we don't try
1077  * to make a constraint either.
1078  */
1080  {
1081  ObjectAddress myself,
1082  referenced;
1083  ObjectAddresses *addrs;
1084 
1085  ObjectAddressSet(myself, RelationRelationId, indexRelationId);
1086 
1087  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)
1088  {
1089  char constraintType;
1090  ObjectAddress localaddr;
1091 
1092  if (isprimary)
1093  constraintType = CONSTRAINT_PRIMARY;
1094  else if (indexInfo->ii_Unique)
1095  constraintType = CONSTRAINT_UNIQUE;
1096  else if (is_exclusion)
1097  constraintType = CONSTRAINT_EXCLUSION;
1098  else
1099  {
1100  elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
1101  constraintType = 0; /* keep compiler quiet */
1102  }
1103 
1104  localaddr = index_constraint_create(heapRelation,
1105  indexRelationId,
1106  parentConstraintId,
1107  indexInfo,
1108  indexRelationName,
1109  constraintType,
1110  constr_flags,
1111  allow_system_table_mods,
1112  is_internal);
1113  if (constraintId)
1114  *constraintId = localaddr.objectId;
1115  }
1116  else
1117  {
1118  bool have_simple_col = false;
1119 
1120  addrs = new_object_addresses();
1121 
1122  /* Create auto dependencies on simply-referenced columns */
1123  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
1124  {
1125  if (indexInfo->ii_IndexAttrNumbers[i] != 0)
1126  {
1127  ObjectAddressSubSet(referenced, RelationRelationId,
1128  heapRelationId,
1129  indexInfo->ii_IndexAttrNumbers[i]);
1130  add_exact_object_address(&referenced, addrs);
1131  have_simple_col = true;
1132  }
1133  }
1134 
1135  /*
1136  * If there are no simply-referenced columns, give the index an
1137  * auto dependency on the whole table. In most cases, this will
1138  * be redundant, but it might not be if the index expressions and
1139  * predicate contain no Vars or only whole-row Vars.
1140  */
1141  if (!have_simple_col)
1142  {
1143  ObjectAddressSet(referenced, RelationRelationId,
1144  heapRelationId);
1145  add_exact_object_address(&referenced, addrs);
1146  }
1147 
1149  free_object_addresses(addrs);
1150  }
1151 
1152  /*
1153  * If this is an index partition, create partition dependencies on
1154  * both the parent index and the table. (Note: these must be *in
1155  * addition to*, not instead of, all other dependencies. Otherwise
1156  * we'll be short some dependencies after DETACH PARTITION.)
1157  */
1158  if (OidIsValid(parentIndexRelid))
1159  {
1160  ObjectAddressSet(referenced, RelationRelationId, parentIndexRelid);
1161  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1162 
1163  ObjectAddressSet(referenced, RelationRelationId, heapRelationId);
1164  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1165  }
1166 
1167  /* placeholder for normal dependencies */
1168  addrs = new_object_addresses();
1169 
1170  /* Store dependency on collations */
1171 
1172  /* The default collation is pinned, so don't bother recording it */
1173  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1174  {
1175  if (OidIsValid(collationIds[i]) && collationIds[i] != DEFAULT_COLLATION_OID)
1176  {
1177  ObjectAddressSet(referenced, CollationRelationId, collationIds[i]);
1178  add_exact_object_address(&referenced, addrs);
1179  }
1180  }
1181 
1182  /* Store dependency on operator classes */
1183  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1184  {
1185  ObjectAddressSet(referenced, OperatorClassRelationId, opclassIds[i]);
1186  add_exact_object_address(&referenced, addrs);
1187  }
1188 
1190  free_object_addresses(addrs);
1191 
1192  /* Store dependencies on anything mentioned in index expressions */
1193  if (indexInfo->ii_Expressions)
1194  {
1196  (Node *) indexInfo->ii_Expressions,
1197  heapRelationId,
1199  DEPENDENCY_AUTO, false);
1200  }
1201 
1202  /* Store dependencies on anything mentioned in predicate */
1203  if (indexInfo->ii_Predicate)
1204  {
1206  (Node *) indexInfo->ii_Predicate,
1207  heapRelationId,
1209  DEPENDENCY_AUTO, false);
1210  }
1211  }
1212  else
1213  {
1214  /* Bootstrap mode - assert we weren't asked for constraint support */
1215  Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0);
1216  }
1217 
1218  /* Post creation hook for new index */
1219  InvokeObjectPostCreateHookArg(RelationRelationId,
1220  indexRelationId, 0, is_internal);
1221 
1222  /*
1223  * Advance the command counter so that we can see the newly-entered
1224  * catalog tuples for the index.
1225  */
1227 
1228  /*
1229  * In bootstrap mode, we have to fill in the index strategy structure with
1230  * information from the catalogs. If we aren't bootstrapping, then the
1231  * relcache entry has already been rebuilt thanks to sinval update during
1232  * CommandCounterIncrement.
1233  */
1235  RelationInitIndexAccessInfo(indexRelation);
1236  else
1237  Assert(indexRelation->rd_indexcxt != NULL);
1238 
1239  indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs;
1240 
1241  /* Validate opclass-specific options */
1242  if (opclassOptions)
1243  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1244  (void) index_opclass_options(indexRelation, i + 1,
1245  opclassOptions[i],
1246  true);
1247 
1248  /*
1249  * If this is bootstrap (initdb) time, then we don't actually fill in the
1250  * index yet. We'll be creating more indexes and classes later, so we
1251  * delay filling them in until just before we're done with bootstrapping.
1252  * Similarly, if the caller specified to skip the build then filling the
1253  * index is delayed till later (ALTER TABLE can save work in some cases
1254  * with this). Otherwise, we call the AM routine that constructs the
1255  * index.
1256  */
1258  {
1259  index_register(heapRelationId, indexRelationId, indexInfo);
1260  }
1261  else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0)
1262  {
1263  /*
1264  * Caller is responsible for filling the index later on. However,
1265  * we'd better make sure that the heap relation is correctly marked as
1266  * having an index.
1267  */
1268  index_update_stats(heapRelation,
1269  true,
1270  -1.0);
1271  /* Make the above update visible */
1273  }
1274  else
1275  {
1276  index_build(heapRelation, indexRelation, indexInfo, false, true);
1277  }
1278 
1279  /*
1280  * Close the index; but we keep the lock that we acquired above until end
1281  * of transaction. Closing the heap is caller's responsibility.
1282  */
1283  index_close(indexRelation, NoLock);
1284 
1285  return indexRelationId;
1286 }
1287 
1288 /*
1289  * index_concurrently_create_copy
1290  *
1291  * Create concurrently an index based on the definition of the one provided by
1292  * caller. The index is inserted into catalogs and needs to be built later
1293  * on. This is called during concurrent reindex processing.
1294  *
1295  * "tablespaceOid" is the tablespace to use for this index.
1296  */
1297 Oid
1299  Oid tablespaceOid, const char *newName)
1300 {
1301  Relation indexRelation;
1302  IndexInfo *oldInfo,
1303  *newInfo;
1304  Oid newIndexId = InvalidOid;
1305  HeapTuple indexTuple,
1306  classTuple;
1307  Datum indclassDatum,
1308  colOptionDatum,
1309  reloptionsDatum;
1310  Datum *opclassOptions;
1311  oidvector *indclass;
1312  int2vector *indcoloptions;
1313  NullableDatum *stattargets;
1314  bool isnull;
1315  List *indexColNames = NIL;
1316  List *indexExprs = NIL;
1317  List *indexPreds = NIL;
1318 
1319  indexRelation = index_open(oldIndexId, RowExclusiveLock);
1320 
1321  /* The new index needs some information from the old index */
1322  oldInfo = BuildIndexInfo(indexRelation);
1323 
1324  /*
1325  * Concurrent build of an index with exclusion constraints is not
1326  * supported.
1327  */
1328  if (oldInfo->ii_ExclusionOps != NULL)
1329  ereport(ERROR,
1330  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1331  errmsg("concurrent index creation for exclusion constraints is not supported")));
1332 
1333  /* Get the array of class and column options IDs from index info */
1334  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId));
1335  if (!HeapTupleIsValid(indexTuple))
1336  elog(ERROR, "cache lookup failed for index %u", oldIndexId);
1337  indclassDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1338  Anum_pg_index_indclass);
1339  indclass = (oidvector *) DatumGetPointer(indclassDatum);
1340 
1341  colOptionDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1342  Anum_pg_index_indoption);
1343  indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum);
1344 
1345  /* Fetch reloptions of index if any */
1346  classTuple = SearchSysCache1(RELOID, ObjectIdGetDatum(oldIndexId));
1347  if (!HeapTupleIsValid(classTuple))
1348  elog(ERROR, "cache lookup failed for relation %u", oldIndexId);
1349  reloptionsDatum = SysCacheGetAttr(RELOID, classTuple,
1350  Anum_pg_class_reloptions, &isnull);
1351 
1352  /*
1353  * Fetch the list of expressions and predicates directly from the
1354  * catalogs. This cannot rely on the information from IndexInfo of the
1355  * old index as these have been flattened for the planner.
1356  */
1357  if (oldInfo->ii_Expressions != NIL)
1358  {
1359  Datum exprDatum;
1360  char *exprString;
1361 
1362  exprDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1363  Anum_pg_index_indexprs);
1364  exprString = TextDatumGetCString(exprDatum);
1365  indexExprs = (List *) stringToNode(exprString);
1366  pfree(exprString);
1367  }
1368  if (oldInfo->ii_Predicate != NIL)
1369  {
1370  Datum predDatum;
1371  char *predString;
1372 
1373  predDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1374  Anum_pg_index_indpred);
1375  predString = TextDatumGetCString(predDatum);
1376  indexPreds = (List *) stringToNode(predString);
1377 
1378  /* Also convert to implicit-AND format */
1379  indexPreds = make_ands_implicit((Expr *) indexPreds);
1380  pfree(predString);
1381  }
1382 
1383  /*
1384  * Build the index information for the new index. Note that rebuild of
1385  * indexes with exclusion constraints is not supported, hence there is no
1386  * need to fill all the ii_Exclusion* fields.
1387  */
1388  newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs,
1389  oldInfo->ii_NumIndexKeyAttrs,
1390  oldInfo->ii_Am,
1391  indexExprs,
1392  indexPreds,
1393  oldInfo->ii_Unique,
1394  oldInfo->ii_NullsNotDistinct,
1395  false, /* not ready for inserts */
1396  true,
1397  indexRelation->rd_indam->amsummarizing);
1398 
1399  /*
1400  * Extract the list of column names and the column numbers for the new
1401  * index information. All this information will be used for the index
1402  * creation.
1403  */
1404  for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++)
1405  {
1406  TupleDesc indexTupDesc = RelationGetDescr(indexRelation);
1407  Form_pg_attribute att = TupleDescAttr(indexTupDesc, i);
1408 
1409  indexColNames = lappend(indexColNames, NameStr(att->attname));
1410  newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i];
1411  }
1412 
1413  /* Extract opclass options for each attribute */
1414  opclassOptions = palloc0(sizeof(Datum) * newInfo->ii_NumIndexAttrs);
1415  for (int i = 0; i < newInfo->ii_NumIndexAttrs; i++)
1416  opclassOptions[i] = get_attoptions(oldIndexId, i + 1);
1417 
1418  /* Extract statistic targets for each attribute */
1419  stattargets = palloc0_array(NullableDatum, newInfo->ii_NumIndexAttrs);
1420  for (int i = 0; i < newInfo->ii_NumIndexAttrs; i++)
1421  {
1422  HeapTuple tp;
1423  Datum dat;
1424 
1425  tp = SearchSysCache2(ATTNUM, ObjectIdGetDatum(oldIndexId), Int16GetDatum(i + 1));
1426  if (!HeapTupleIsValid(tp))
1427  elog(ERROR, "cache lookup failed for attribute %d of relation %u",
1428  i + 1, oldIndexId);
1429  dat = SysCacheGetAttr(ATTNUM, tp, Anum_pg_attribute_attstattarget, &isnull);
1430  ReleaseSysCache(tp);
1431  stattargets[i].value = dat;
1432  stattargets[i].isnull = isnull;
1433  }
1434 
1435  /*
1436  * Now create the new index.
1437  *
1438  * For a partition index, we adjust the partition dependency later, to
1439  * ensure a consistent state at all times. That is why parentIndexRelid
1440  * is not set here.
1441  */
1442  newIndexId = index_create(heapRelation,
1443  newName,
1444  InvalidOid, /* indexRelationId */
1445  InvalidOid, /* parentIndexRelid */
1446  InvalidOid, /* parentConstraintId */
1447  InvalidRelFileNumber, /* relFileNumber */
1448  newInfo,
1449  indexColNames,
1450  indexRelation->rd_rel->relam,
1451  tablespaceOid,
1452  indexRelation->rd_indcollation,
1453  indclass->values,
1454  opclassOptions,
1455  indcoloptions->values,
1456  stattargets,
1457  reloptionsDatum,
1459  0,
1460  true, /* allow table to be a system catalog? */
1461  false, /* is_internal? */
1462  NULL);
1463 
1464  /* Close the relations used and clean up */
1465  index_close(indexRelation, NoLock);
1466  ReleaseSysCache(indexTuple);
1467  ReleaseSysCache(classTuple);
1468 
1469  return newIndexId;
1470 }
1471 
1472 /*
1473  * index_concurrently_build
1474  *
1475  * Build index for a concurrent operation. Low-level locks are taken when
1476  * this operation is performed to prevent only schema changes, but they need
1477  * to be kept until the end of the transaction performing this operation.
1478  * 'indexOid' refers to an index relation OID already created as part of
1479  * previous processing, and 'heapOid' refers to its parent heap relation.
1480  */
1481 void
1483  Oid indexRelationId)
1484 {
1485  Relation heapRel;
1486  Oid save_userid;
1487  int save_sec_context;
1488  int save_nestlevel;
1489  Relation indexRelation;
1490  IndexInfo *indexInfo;
1491 
1492  /* This had better make sure that a snapshot is active */
1494 
1495  /* Open and lock the parent heap relation */
1496  heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock);
1497 
1498  /*
1499  * Switch to the table owner's userid, so that any index functions are run
1500  * as that user. Also lock down security-restricted operations and
1501  * arrange to make GUC variable changes local to this command.
1502  */
1503  GetUserIdAndSecContext(&save_userid, &save_sec_context);
1504  SetUserIdAndSecContext(heapRel->rd_rel->relowner,
1505  save_sec_context | SECURITY_RESTRICTED_OPERATION);
1506  save_nestlevel = NewGUCNestLevel();
1508 
1509  indexRelation = index_open(indexRelationId, RowExclusiveLock);
1510 
1511  /*
1512  * We have to re-build the IndexInfo struct, since it was lost in the
1513  * commit of the transaction where this concurrent index was created at
1514  * the catalog level.
1515  */
1516  indexInfo = BuildIndexInfo(indexRelation);
1517  Assert(!indexInfo->ii_ReadyForInserts);
1518  indexInfo->ii_Concurrent = true;
1519  indexInfo->ii_BrokenHotChain = false;
1520 
1521  /* Now build the index */
1522  index_build(heapRel, indexRelation, indexInfo, false, true);
1523 
1524  /* Roll back any GUC changes executed by index functions */
1525  AtEOXact_GUC(false, save_nestlevel);
1526 
1527  /* Restore userid and security context */
1528  SetUserIdAndSecContext(save_userid, save_sec_context);
1529 
1530  /* Close both the relations, but keep the locks */
1531  table_close(heapRel, NoLock);
1532  index_close(indexRelation, NoLock);
1533 
1534  /*
1535  * Update the pg_index row to mark the index as ready for inserts. Once we
1536  * commit this transaction, any new transactions that open the table must
1537  * insert new entries into the index for insertions and non-HOT updates.
1538  */
1540 }
1541 
1542 /*
1543  * index_concurrently_swap
1544  *
1545  * Swap name, dependencies, and constraints of the old index over to the new
1546  * index, while marking the old index as invalid and the new as valid.
1547  */
1548 void
1549 index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
1550 {
1551  Relation pg_class,
1552  pg_index,
1553  pg_constraint,
1554  pg_trigger;
1555  Relation oldClassRel,
1556  newClassRel;
1557  HeapTuple oldClassTuple,
1558  newClassTuple;
1559  Form_pg_class oldClassForm,
1560  newClassForm;
1561  HeapTuple oldIndexTuple,
1562  newIndexTuple;
1563  Form_pg_index oldIndexForm,
1564  newIndexForm;
1565  bool isPartition;
1566  Oid indexConstraintOid;
1567  List *constraintOids = NIL;
1568  ListCell *lc;
1569 
1570  /*
1571  * Take a necessary lock on the old and new index before swapping them.
1572  */
1573  oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock);
1574  newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock);
1575 
1576  /* Now swap names and dependencies of those indexes */
1577  pg_class = table_open(RelationRelationId, RowExclusiveLock);
1578 
1579  oldClassTuple = SearchSysCacheCopy1(RELOID,
1580  ObjectIdGetDatum(oldIndexId));
1581  if (!HeapTupleIsValid(oldClassTuple))
1582  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1583  newClassTuple = SearchSysCacheCopy1(RELOID,
1584  ObjectIdGetDatum(newIndexId));
1585  if (!HeapTupleIsValid(newClassTuple))
1586  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1587 
1588  oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple);
1589  newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple);
1590 
1591  /* Swap the names */
1592  namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname));
1593  namestrcpy(&oldClassForm->relname, oldName);
1594 
1595  /* Swap the partition flags to track inheritance properly */
1596  isPartition = newClassForm->relispartition;
1597  newClassForm->relispartition = oldClassForm->relispartition;
1598  oldClassForm->relispartition = isPartition;
1599 
1600  CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple);
1601  CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple);
1602 
1603  heap_freetuple(oldClassTuple);
1604  heap_freetuple(newClassTuple);
1605 
1606  /* Now swap index info */
1607  pg_index = table_open(IndexRelationId, RowExclusiveLock);
1608 
1609  oldIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1610  ObjectIdGetDatum(oldIndexId));
1611  if (!HeapTupleIsValid(oldIndexTuple))
1612  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1613  newIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1614  ObjectIdGetDatum(newIndexId));
1615  if (!HeapTupleIsValid(newIndexTuple))
1616  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1617 
1618  oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple);
1619  newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple);
1620 
1621  /*
1622  * Copy constraint flags from the old index. This is safe because the old
1623  * index guaranteed uniqueness.
1624  */
1625  newIndexForm->indisprimary = oldIndexForm->indisprimary;
1626  oldIndexForm->indisprimary = false;
1627  newIndexForm->indisexclusion = oldIndexForm->indisexclusion;
1628  oldIndexForm->indisexclusion = false;
1629  newIndexForm->indimmediate = oldIndexForm->indimmediate;
1630  oldIndexForm->indimmediate = true;
1631 
1632  /* Preserve indisreplident in the new index */
1633  newIndexForm->indisreplident = oldIndexForm->indisreplident;
1634 
1635  /* Preserve indisclustered in the new index */
1636  newIndexForm->indisclustered = oldIndexForm->indisclustered;
1637 
1638  /*
1639  * Mark the new index as valid, and the old index as invalid similarly to
1640  * what index_set_state_flags() does.
1641  */
1642  newIndexForm->indisvalid = true;
1643  oldIndexForm->indisvalid = false;
1644  oldIndexForm->indisclustered = false;
1645  oldIndexForm->indisreplident = false;
1646 
1647  CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple);
1648  CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple);
1649 
1650  heap_freetuple(oldIndexTuple);
1651  heap_freetuple(newIndexTuple);
1652 
1653  /*
1654  * Move constraints and triggers over to the new index
1655  */
1656 
1657  constraintOids = get_index_ref_constraints(oldIndexId);
1658 
1659  indexConstraintOid = get_index_constraint(oldIndexId);
1660 
1661  if (OidIsValid(indexConstraintOid))
1662  constraintOids = lappend_oid(constraintOids, indexConstraintOid);
1663 
1664  pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock);
1665  pg_trigger = table_open(TriggerRelationId, RowExclusiveLock);
1666 
1667  foreach(lc, constraintOids)
1668  {
1669  HeapTuple constraintTuple,
1670  triggerTuple;
1671  Form_pg_constraint conForm;
1672  ScanKeyData key[1];
1673  SysScanDesc scan;
1674  Oid constraintOid = lfirst_oid(lc);
1675 
1676  /* Move the constraint from the old to the new index */
1677  constraintTuple = SearchSysCacheCopy1(CONSTROID,
1678  ObjectIdGetDatum(constraintOid));
1679  if (!HeapTupleIsValid(constraintTuple))
1680  elog(ERROR, "could not find tuple for constraint %u", constraintOid);
1681 
1682  conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple));
1683 
1684  if (conForm->conindid == oldIndexId)
1685  {
1686  conForm->conindid = newIndexId;
1687 
1688  CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple);
1689  }
1690 
1691  heap_freetuple(constraintTuple);
1692 
1693  /* Search for trigger records */
1694  ScanKeyInit(&key[0],
1695  Anum_pg_trigger_tgconstraint,
1696  BTEqualStrategyNumber, F_OIDEQ,
1697  ObjectIdGetDatum(constraintOid));
1698 
1699  scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true,
1700  NULL, 1, key);
1701 
1702  while (HeapTupleIsValid((triggerTuple = systable_getnext(scan))))
1703  {
1704  Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1705 
1706  if (tgForm->tgconstrindid != oldIndexId)
1707  continue;
1708 
1709  /* Make a modifiable copy */
1710  triggerTuple = heap_copytuple(triggerTuple);
1711  tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1712 
1713  tgForm->tgconstrindid = newIndexId;
1714 
1715  CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple);
1716 
1717  heap_freetuple(triggerTuple);
1718  }
1719 
1720  systable_endscan(scan);
1721  }
1722 
1723  /*
1724  * Move comment if any
1725  */
1726  {
1728  ScanKeyData skey[3];
1729  SysScanDesc sd;
1730  HeapTuple tuple;
1731  Datum values[Natts_pg_description] = {0};
1732  bool nulls[Natts_pg_description] = {0};
1733  bool replaces[Natts_pg_description] = {0};
1734 
1735  values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId);
1736  replaces[Anum_pg_description_objoid - 1] = true;
1737 
1738  ScanKeyInit(&skey[0],
1739  Anum_pg_description_objoid,
1740  BTEqualStrategyNumber, F_OIDEQ,
1741  ObjectIdGetDatum(oldIndexId));
1742  ScanKeyInit(&skey[1],
1743  Anum_pg_description_classoid,
1744  BTEqualStrategyNumber, F_OIDEQ,
1745  ObjectIdGetDatum(RelationRelationId));
1746  ScanKeyInit(&skey[2],
1747  Anum_pg_description_objsubid,
1748  BTEqualStrategyNumber, F_INT4EQ,
1749  Int32GetDatum(0));
1750 
1751  description = table_open(DescriptionRelationId, RowExclusiveLock);
1752 
1753  sd = systable_beginscan(description, DescriptionObjIndexId, true,
1754  NULL, 3, skey);
1755 
1756  while ((tuple = systable_getnext(sd)) != NULL)
1757  {
1759  values, nulls, replaces);
1760  CatalogTupleUpdate(description, &tuple->t_self, tuple);
1761 
1762  break; /* Assume there can be only one match */
1763  }
1764 
1765  systable_endscan(sd);
1767  }
1768 
1769  /*
1770  * Swap inheritance relationship with parent index
1771  */
1772  if (get_rel_relispartition(oldIndexId))
1773  {
1774  List *ancestors = get_partition_ancestors(oldIndexId);
1775  Oid parentIndexRelid = linitial_oid(ancestors);
1776 
1777  DeleteInheritsTuple(oldIndexId, parentIndexRelid, false, NULL);
1778  StoreSingleInheritance(newIndexId, parentIndexRelid, 1);
1779 
1780  list_free(ancestors);
1781  }
1782 
1783  /*
1784  * Swap all dependencies of and on the old index to the new one, and
1785  * vice-versa. Note that a call to CommandCounterIncrement() would cause
1786  * duplicate entries in pg_depend, so this should not be done.
1787  */
1788  changeDependenciesOf(RelationRelationId, newIndexId, oldIndexId);
1789  changeDependenciesOn(RelationRelationId, newIndexId, oldIndexId);
1790 
1791  changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId);
1792  changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId);
1793 
1794  /* copy over statistics from old to new index */
1795  pgstat_copy_relation_stats(newClassRel, oldClassRel);
1796 
1797  /* Copy data of pg_statistic from the old index to the new one */
1798  CopyStatistics(oldIndexId, newIndexId);
1799 
1800  /* Close relations */
1801  table_close(pg_class, RowExclusiveLock);
1802  table_close(pg_index, RowExclusiveLock);
1803  table_close(pg_constraint, RowExclusiveLock);
1804  table_close(pg_trigger, RowExclusiveLock);
1805 
1806  /* The lock taken previously is not released until the end of transaction */
1807  relation_close(oldClassRel, NoLock);
1808  relation_close(newClassRel, NoLock);
1809 }
1810 
1811 /*
1812  * index_concurrently_set_dead
1813  *
1814  * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX
1815  * CONCURRENTLY before actually dropping the index. After calling this
1816  * function, the index is seen by all the backends as dead. Low-level locks
1817  * taken here are kept until the end of the transaction calling this function.
1818  */
1819 void
1821 {
1822  Relation userHeapRelation;
1823  Relation userIndexRelation;
1824 
1825  /*
1826  * No more predicate locks will be acquired on this index, and we're about
1827  * to stop doing inserts into the index which could show conflicts with
1828  * existing predicate locks, so now is the time to move them to the heap
1829  * relation.
1830  */
1831  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
1832  userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock);
1833  TransferPredicateLocksToHeapRelation(userIndexRelation);
1834 
1835  /*
1836  * Now we are sure that nobody uses the index for queries; they just might
1837  * have it open for updating it. So now we can unset indisready and
1838  * indislive, then wait till nobody could be using it at all anymore.
1839  */
1841 
1842  /*
1843  * Invalidate the relcache for the table, so that after this commit all
1844  * sessions will refresh the table's index list. Forgetting just the
1845  * index's relcache entry is not enough.
1846  */
1847  CacheInvalidateRelcache(userHeapRelation);
1848 
1849  /*
1850  * Close the relations again, though still holding session lock.
1851  */
1852  table_close(userHeapRelation, NoLock);
1853  index_close(userIndexRelation, NoLock);
1854 }
1855 
1856 /*
1857  * index_constraint_create
1858  *
1859  * Set up a constraint associated with an index. Return the new constraint's
1860  * address.
1861  *
1862  * heapRelation: table owning the index (must be suitably locked by caller)
1863  * indexRelationId: OID of the index
1864  * parentConstraintId: if constraint is on a partition, the OID of the
1865  * constraint in the parent.
1866  * indexInfo: same info executor uses to insert into the index
1867  * constraintName: what it say (generally, should match name of index)
1868  * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or
1869  * CONSTRAINT_EXCLUSION
1870  * flags: bitmask that can include any combination of these bits:
1871  * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY
1872  * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE
1873  * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED
1874  * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row
1875  * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies
1876  * of index on table's columns
1877  * allow_system_table_mods: allow table to be a system catalog
1878  * is_internal: index is constructed due to internal process
1879  */
1882  Oid indexRelationId,
1883  Oid parentConstraintId,
1884  const IndexInfo *indexInfo,
1885  const char *constraintName,
1886  char constraintType,
1887  bits16 constr_flags,
1888  bool allow_system_table_mods,
1889  bool is_internal)
1890 {
1891  Oid namespaceId = RelationGetNamespace(heapRelation);
1892  ObjectAddress myself,
1893  idxaddr;
1894  Oid conOid;
1895  bool deferrable;
1896  bool initdeferred;
1897  bool mark_as_primary;
1898  bool islocal;
1899  bool noinherit;
1900  int inhcount;
1901 
1902  deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0;
1903  initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0;
1904  mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0;
1905 
1906  /* constraint creation support doesn't work while bootstrapping */
1908 
1909  /* enforce system-table restriction */
1910  if (!allow_system_table_mods &&
1911  IsSystemRelation(heapRelation) &&
1913  ereport(ERROR,
1914  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1915  errmsg("user-defined indexes on system catalog tables are not supported")));
1916 
1917  /* primary/unique constraints shouldn't have any expressions */
1918  if (indexInfo->ii_Expressions &&
1919  constraintType != CONSTRAINT_EXCLUSION)
1920  elog(ERROR, "constraints cannot have index expressions");
1921 
1922  /*
1923  * If we're manufacturing a constraint for a pre-existing index, we need
1924  * to get rid of the existing auto dependencies for the index (the ones
1925  * that index_create() would have made instead of calling this function).
1926  *
1927  * Note: this code would not necessarily do the right thing if the index
1928  * has any expressions or predicate, but we'd never be turning such an
1929  * index into a UNIQUE or PRIMARY KEY constraint.
1930  */
1931  if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS)
1932  deleteDependencyRecordsForClass(RelationRelationId, indexRelationId,
1933  RelationRelationId, DEPENDENCY_AUTO);
1934 
1935  if (OidIsValid(parentConstraintId))
1936  {
1937  islocal = false;
1938  inhcount = 1;
1939  noinherit = false;
1940  }
1941  else
1942  {
1943  islocal = true;
1944  inhcount = 0;
1945  noinherit = true;
1946  }
1947 
1948  /*
1949  * Construct a pg_constraint entry.
1950  */
1951  conOid = CreateConstraintEntry(constraintName,
1952  namespaceId,
1953  constraintType,
1954  deferrable,
1955  initdeferred,
1956  true,
1957  parentConstraintId,
1958  RelationGetRelid(heapRelation),
1959  indexInfo->ii_IndexAttrNumbers,
1960  indexInfo->ii_NumIndexKeyAttrs,
1961  indexInfo->ii_NumIndexAttrs,
1962  InvalidOid, /* no domain */
1963  indexRelationId, /* index OID */
1964  InvalidOid, /* no foreign key */
1965  NULL,
1966  NULL,
1967  NULL,
1968  NULL,
1969  0,
1970  ' ',
1971  ' ',
1972  NULL,
1973  0,
1974  ' ',
1975  indexInfo->ii_ExclusionOps,
1976  NULL, /* no check constraint */
1977  NULL,
1978  islocal,
1979  inhcount,
1980  noinherit,
1981  is_internal);
1982 
1983  /*
1984  * Register the index as internally dependent on the constraint.
1985  *
1986  * Note that the constraint has a dependency on the table, so we don't
1987  * need (or want) any direct dependency from the index to the table.
1988  */
1989  ObjectAddressSet(myself, ConstraintRelationId, conOid);
1990  ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId);
1991  recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL);
1992 
1993  /*
1994  * Also, if this is a constraint on a partition, give it partition-type
1995  * dependencies on the parent constraint as well as the table.
1996  */
1997  if (OidIsValid(parentConstraintId))
1998  {
1999  ObjectAddress referenced;
2000 
2001  ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId);
2002  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
2003  ObjectAddressSet(referenced, RelationRelationId,
2004  RelationGetRelid(heapRelation));
2005  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
2006  }
2007 
2008  /*
2009  * If the constraint is deferrable, create the deferred uniqueness
2010  * checking trigger. (The trigger will be given an internal dependency on
2011  * the constraint by CreateTrigger.)
2012  */
2013  if (deferrable)
2014  {
2016 
2017  trigger->replace = false;
2018  trigger->isconstraint = true;
2019  trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ?
2020  "PK_ConstraintTrigger" :
2021  "Unique_ConstraintTrigger";
2022  trigger->relation = NULL;
2023  trigger->funcname = SystemFuncName("unique_key_recheck");
2024  trigger->args = NIL;
2025  trigger->row = true;
2026  trigger->timing = TRIGGER_TYPE_AFTER;
2027  trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE;
2028  trigger->columns = NIL;
2029  trigger->whenClause = NULL;
2030  trigger->transitionRels = NIL;
2031  trigger->deferrable = true;
2032  trigger->initdeferred = initdeferred;
2033  trigger->constrrel = NULL;
2034 
2035  (void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation),
2036  InvalidOid, conOid, indexRelationId, InvalidOid,
2037  InvalidOid, NULL, true, false);
2038  }
2039 
2040  /*
2041  * If needed, mark the index as primary and/or deferred in pg_index.
2042  *
2043  * Note: When making an existing index into a constraint, caller must have
2044  * a table lock that prevents concurrent table updates; otherwise, there
2045  * is a risk that concurrent readers of the table will miss seeing this
2046  * index at all.
2047  */
2048  if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) &&
2049  (mark_as_primary || deferrable))
2050  {
2051  Relation pg_index;
2052  HeapTuple indexTuple;
2053  Form_pg_index indexForm;
2054  bool dirty = false;
2055  bool marked_as_primary = false;
2056 
2057  pg_index = table_open(IndexRelationId, RowExclusiveLock);
2058 
2059  indexTuple = SearchSysCacheCopy1(INDEXRELID,
2060  ObjectIdGetDatum(indexRelationId));
2061  if (!HeapTupleIsValid(indexTuple))
2062  elog(ERROR, "cache lookup failed for index %u", indexRelationId);
2063  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
2064 
2065  if (mark_as_primary && !indexForm->indisprimary)
2066  {
2067  indexForm->indisprimary = true;
2068  dirty = true;
2069  marked_as_primary = true;
2070  }
2071 
2072  if (deferrable && indexForm->indimmediate)
2073  {
2074  indexForm->indimmediate = false;
2075  dirty = true;
2076  }
2077 
2078  if (dirty)
2079  {
2080  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
2081 
2082  /*
2083  * When we mark an existing index as primary, force a relcache
2084  * flush on its parent table, so that all sessions will become
2085  * aware that the table now has a primary key. This is important
2086  * because it affects some replication behaviors.
2087  */
2088  if (marked_as_primary)
2089  CacheInvalidateRelcache(heapRelation);
2090 
2091  InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0,
2092  InvalidOid, is_internal);
2093  }
2094 
2095  heap_freetuple(indexTuple);
2096  table_close(pg_index, RowExclusiveLock);
2097  }
2098 
2099  return myself;
2100 }
2101 
2102 /*
2103  * index_drop
2104  *
2105  * NOTE: this routine should now only be called through performDeletion(),
2106  * else associated dependencies won't be cleaned up.
2107  *
2108  * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is
2109  * false but concurrent_lock_mode is true, then do a normal DROP INDEX but
2110  * take a lock for CONCURRENTLY processing. That is used as part of REINDEX
2111  * CONCURRENTLY.
2112  */
2113 void
2114 index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
2115 {
2116  Oid heapId;
2117  Relation userHeapRelation;
2118  Relation userIndexRelation;
2119  Relation indexRelation;
2120  HeapTuple tuple;
2121  bool hasexprs;
2122  LockRelId heaprelid,
2123  indexrelid;
2124  LOCKTAG heaplocktag;
2125  LOCKMODE lockmode;
2126 
2127  /*
2128  * A temporary relation uses a non-concurrent DROP. Other backends can't
2129  * access a temporary relation, so there's no harm in grabbing a stronger
2130  * lock (see comments in RemoveRelations), and a non-concurrent DROP is
2131  * more efficient.
2132  */
2133  Assert(get_rel_persistence(indexId) != RELPERSISTENCE_TEMP ||
2134  (!concurrent && !concurrent_lock_mode));
2135 
2136  /*
2137  * To drop an index safely, we must grab exclusive lock on its parent
2138  * table. Exclusive lock on the index alone is insufficient because
2139  * another backend might be about to execute a query on the parent table.
2140  * If it relies on a previously cached list of index OIDs, then it could
2141  * attempt to access the just-dropped index. We must therefore take a
2142  * table lock strong enough to prevent all queries on the table from
2143  * proceeding until we commit and send out a shared-cache-inval notice
2144  * that will make them update their index lists.
2145  *
2146  * In the concurrent case we avoid this requirement by disabling index use
2147  * in multiple steps and waiting out any transactions that might be using
2148  * the index, so we don't need exclusive lock on the parent table. Instead
2149  * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't
2150  * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get
2151  * AccessExclusiveLock on the index below, once we're sure nobody else is
2152  * using it.)
2153  */
2154  heapId = IndexGetRelation(indexId, false);
2155  lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock;
2156  userHeapRelation = table_open(heapId, lockmode);
2157  userIndexRelation = index_open(indexId, lockmode);
2158 
2159  /*
2160  * We might still have open queries using it in our own session, which the
2161  * above locking won't prevent, so test explicitly.
2162  */
2163  CheckTableNotInUse(userIndexRelation, "DROP INDEX");
2164 
2165  /*
2166  * Drop Index Concurrently is more or less the reverse process of Create
2167  * Index Concurrently.
2168  *
2169  * First we unset indisvalid so queries starting afterwards don't use the
2170  * index to answer queries anymore. We have to keep indisready = true so
2171  * transactions that are still scanning the index can continue to see
2172  * valid index contents. For instance, if they are using READ COMMITTED
2173  * mode, and another transaction makes changes and commits, they need to
2174  * see those new tuples in the index.
2175  *
2176  * After all transactions that could possibly have used the index for
2177  * queries end, we can unset indisready and indislive, then wait till
2178  * nobody could be touching it anymore. (Note: we need indislive because
2179  * this state must be distinct from the initial state during CREATE INDEX
2180  * CONCURRENTLY, which has indislive true while indisready and indisvalid
2181  * are false. That's because in that state, transactions must examine the
2182  * index for HOT-safety decisions, while in this state we don't want them
2183  * to open it at all.)
2184  *
2185  * Since all predicate locks on the index are about to be made invalid, we
2186  * must promote them to predicate locks on the heap. In the
2187  * non-concurrent case we can just do that now. In the concurrent case
2188  * it's a bit trickier. The predicate locks must be moved when there are
2189  * no index scans in progress on the index and no more can subsequently
2190  * start, so that no new predicate locks can be made on the index. Also,
2191  * they must be moved before heap inserts stop maintaining the index, else
2192  * the conflict with the predicate lock on the index gap could be missed
2193  * before the lock on the heap relation is in place to detect a conflict
2194  * based on the heap tuple insert.
2195  */
2196  if (concurrent)
2197  {
2198  /*
2199  * We must commit our transaction in order to make the first pg_index
2200  * state update visible to other sessions. If the DROP machinery has
2201  * already performed any other actions (removal of other objects,
2202  * pg_depend entries, etc), the commit would make those actions
2203  * permanent, which would leave us with inconsistent catalog state if
2204  * we fail partway through the following sequence. Since DROP INDEX
2205  * CONCURRENTLY is restricted to dropping just one index that has no
2206  * dependencies, we should get here before anything's been done ---
2207  * but let's check that to be sure. We can verify that the current
2208  * transaction has not executed any transactional updates by checking
2209  * that no XID has been assigned.
2210  */
2212  ereport(ERROR,
2213  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2214  errmsg("DROP INDEX CONCURRENTLY must be first action in transaction")));
2215 
2216  /*
2217  * Mark index invalid by updating its pg_index entry
2218  */
2220 
2221  /*
2222  * Invalidate the relcache for the table, so that after this commit
2223  * all sessions will refresh any cached plans that might reference the
2224  * index.
2225  */
2226  CacheInvalidateRelcache(userHeapRelation);
2227 
2228  /* save lockrelid and locktag for below, then close but keep locks */
2229  heaprelid = userHeapRelation->rd_lockInfo.lockRelId;
2230  SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
2231  indexrelid = userIndexRelation->rd_lockInfo.lockRelId;
2232 
2233  table_close(userHeapRelation, NoLock);
2234  index_close(userIndexRelation, NoLock);
2235 
2236  /*
2237  * We must commit our current transaction so that the indisvalid
2238  * update becomes visible to other transactions; then start another.
2239  * Note that any previously-built data structures are lost in the
2240  * commit. The only data we keep past here are the relation IDs.
2241  *
2242  * Before committing, get a session-level lock on the table, to ensure
2243  * that neither it nor the index can be dropped before we finish. This
2244  * cannot block, even if someone else is waiting for access, because
2245  * we already have the same lock within our transaction.
2246  */
2249 
2253 
2254  /*
2255  * Now we must wait until no running transaction could be using the
2256  * index for a query. Use AccessExclusiveLock here to check for
2257  * running transactions that hold locks of any kind on the table. Note
2258  * we do not need to worry about xacts that open the table for reading
2259  * after this point; they will see the index as invalid when they open
2260  * the relation.
2261  *
2262  * Note: the reason we use actual lock acquisition here, rather than
2263  * just checking the ProcArray and sleeping, is that deadlock is
2264  * possible if one of the transactions in question is blocked trying
2265  * to acquire an exclusive lock on our table. The lock code will
2266  * detect deadlock and error out properly.
2267  *
2268  * Note: we report progress through WaitForLockers() unconditionally
2269  * here, even though it will only be used when we're called by REINDEX
2270  * CONCURRENTLY and not when called by DROP INDEX CONCURRENTLY.
2271  */
2272  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2273 
2274  /* Finish invalidation of index and mark it as dead */
2275  index_concurrently_set_dead(heapId, indexId);
2276 
2277  /*
2278  * Again, commit the transaction to make the pg_index update visible
2279  * to other sessions.
2280  */
2283 
2284  /*
2285  * Wait till every transaction that saw the old index state has
2286  * finished. See above about progress reporting.
2287  */
2288  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2289 
2290  /*
2291  * Re-open relations to allow us to complete our actions.
2292  *
2293  * At this point, nothing should be accessing the index, but lets
2294  * leave nothing to chance and grab AccessExclusiveLock on the index
2295  * before the physical deletion.
2296  */
2297  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
2298  userIndexRelation = index_open(indexId, AccessExclusiveLock);
2299  }
2300  else
2301  {
2302  /* Not concurrent, so just transfer predicate locks and we're good */
2303  TransferPredicateLocksToHeapRelation(userIndexRelation);
2304  }
2305 
2306  /*
2307  * Schedule physical removal of the files (if any)
2308  */
2309  if (RELKIND_HAS_STORAGE(userIndexRelation->rd_rel->relkind))
2310  RelationDropStorage(userIndexRelation);
2311 
2312  /* ensure that stats are dropped if transaction commits */
2313  pgstat_drop_relation(userIndexRelation);
2314 
2315  /*
2316  * Close and flush the index's relcache entry, to ensure relcache doesn't
2317  * try to rebuild it while we're deleting catalog entries. We keep the
2318  * lock though.
2319  */
2320  index_close(userIndexRelation, NoLock);
2321 
2322  RelationForgetRelation(indexId);
2323 
2324  /*
2325  * fix INDEX relation, and check for expressional index
2326  */
2327  indexRelation = table_open(IndexRelationId, RowExclusiveLock);
2328 
2329  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
2330  if (!HeapTupleIsValid(tuple))
2331  elog(ERROR, "cache lookup failed for index %u", indexId);
2332 
2333  hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs,
2334  RelationGetDescr(indexRelation));
2335 
2336  CatalogTupleDelete(indexRelation, &tuple->t_self);
2337 
2338  ReleaseSysCache(tuple);
2339  table_close(indexRelation, RowExclusiveLock);
2340 
2341  /*
2342  * if it has any expression columns, we might have stored statistics about
2343  * them.
2344  */
2345  if (hasexprs)
2346  RemoveStatistics(indexId, 0);
2347 
2348  /*
2349  * fix ATTRIBUTE relation
2350  */
2351  DeleteAttributeTuples(indexId);
2352 
2353  /*
2354  * fix RELATION relation
2355  */
2356  DeleteRelationTuple(indexId);
2357 
2358  /*
2359  * fix INHERITS relation
2360  */
2361  DeleteInheritsTuple(indexId, InvalidOid, false, NULL);
2362 
2363  /*
2364  * We are presently too lazy to attempt to compute the new correct value
2365  * of relhasindex (the next VACUUM will fix it if necessary). So there is
2366  * no need to update the pg_class tuple for the owning relation. But we
2367  * must send out a shared-cache-inval notice on the owning relation to
2368  * ensure other backends update their relcache lists of indexes. (In the
2369  * concurrent case, this is redundant but harmless.)
2370  */
2371  CacheInvalidateRelcache(userHeapRelation);
2372 
2373  /*
2374  * Close owning rel, but keep lock
2375  */
2376  table_close(userHeapRelation, NoLock);
2377 
2378  /*
2379  * Release the session locks before we go.
2380  */
2381  if (concurrent)
2382  {
2385  }
2386 }
2387 
2388 /* ----------------------------------------------------------------
2389  * index_build support
2390  * ----------------------------------------------------------------
2391  */
2392 
2393 /* ----------------
2394  * BuildIndexInfo
2395  * Construct an IndexInfo record for an open index
2396  *
2397  * IndexInfo stores the information about the index that's needed by
2398  * FormIndexDatum, which is used for both index_build() and later insertion
2399  * of individual index tuples. Normally we build an IndexInfo for an index
2400  * just once per command, and then use it for (potentially) many tuples.
2401  * ----------------
2402  */
2403 IndexInfo *
2405 {
2406  IndexInfo *ii;
2407  Form_pg_index indexStruct = index->rd_index;
2408  int i;
2409  int numAtts;
2410 
2411  /* check the number of keys, and copy attr numbers into the IndexInfo */
2412  numAtts = indexStruct->indnatts;
2413  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2414  elog(ERROR, "invalid indnatts %d for index %u",
2415  numAtts, RelationGetRelid(index));
2416 
2417  /*
2418  * Create the node, fetching any expressions needed for expressional
2419  * indexes and index predicate if any.
2420  */
2421  ii = makeIndexInfo(indexStruct->indnatts,
2422  indexStruct->indnkeyatts,
2423  index->rd_rel->relam,
2426  indexStruct->indisunique,
2427  indexStruct->indnullsnotdistinct,
2428  indexStruct->indisready,
2429  false,
2430  index->rd_indam->amsummarizing);
2431 
2432  /* fill in attribute numbers */
2433  for (i = 0; i < numAtts; i++)
2434  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2435 
2436  /* fetch exclusion constraint info if any */
2437  if (indexStruct->indisexclusion)
2438  {
2440  &ii->ii_ExclusionOps,
2441  &ii->ii_ExclusionProcs,
2442  &ii->ii_ExclusionStrats);
2443  }
2444 
2445  return ii;
2446 }
2447 
2448 /* ----------------
2449  * BuildDummyIndexInfo
2450  * Construct a dummy IndexInfo record for an open index
2451  *
2452  * This differs from the real BuildIndexInfo in that it will never run any
2453  * user-defined code that might exist in index expressions or predicates.
2454  * Instead of the real index expressions, we return null constants that have
2455  * the right types/typmods/collations. Predicates and exclusion clauses are
2456  * just ignored. This is sufficient for the purpose of truncating an index,
2457  * since we will not need to actually evaluate the expressions or predicates;
2458  * the only thing that's likely to be done with the data is construction of
2459  * a tupdesc describing the index's rowtype.
2460  * ----------------
2461  */
2462 IndexInfo *
2464 {
2465  IndexInfo *ii;
2466  Form_pg_index indexStruct = index->rd_index;
2467  int i;
2468  int numAtts;
2469 
2470  /* check the number of keys, and copy attr numbers into the IndexInfo */
2471  numAtts = indexStruct->indnatts;
2472  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2473  elog(ERROR, "invalid indnatts %d for index %u",
2474  numAtts, RelationGetRelid(index));
2475 
2476  /*
2477  * Create the node, using dummy index expressions, and pretending there is
2478  * no predicate.
2479  */
2480  ii = makeIndexInfo(indexStruct->indnatts,
2481  indexStruct->indnkeyatts,
2482  index->rd_rel->relam,
2484  NIL,
2485  indexStruct->indisunique,
2486  indexStruct->indnullsnotdistinct,
2487  indexStruct->indisready,
2488  false,
2489  index->rd_indam->amsummarizing);
2490 
2491  /* fill in attribute numbers */
2492  for (i = 0; i < numAtts; i++)
2493  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2494 
2495  /* We ignore the exclusion constraint if any */
2496 
2497  return ii;
2498 }
2499 
2500 /*
2501  * CompareIndexInfo
2502  * Return whether the properties of two indexes (in different tables)
2503  * indicate that they have the "same" definitions.
2504  *
2505  * Note: passing collations and opfamilies separately is a kludge. Adding
2506  * them to IndexInfo may result in better coding here and elsewhere.
2507  *
2508  * Use build_attrmap_by_name(index2, index1) to build the attmap.
2509  */
2510 bool
2511 CompareIndexInfo(const IndexInfo *info1, const IndexInfo *info2,
2512  const Oid *collations1, const Oid *collations2,
2513  const Oid *opfamilies1, const Oid *opfamilies2,
2514  const AttrMap *attmap)
2515 {
2516  int i;
2517 
2518  if (info1->ii_Unique != info2->ii_Unique)
2519  return false;
2520 
2521  if (info1->ii_NullsNotDistinct != info2->ii_NullsNotDistinct)
2522  return false;
2523 
2524  /* indexes are only equivalent if they have the same access method */
2525  if (info1->ii_Am != info2->ii_Am)
2526  return false;
2527 
2528  /* and same number of attributes */
2529  if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs)
2530  return false;
2531 
2532  /* and same number of key attributes */
2533  if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs)
2534  return false;
2535 
2536  /*
2537  * and columns match through the attribute map (actual attribute numbers
2538  * might differ!) Note that this checks that index columns that are
2539  * expressions appear in the same positions. We will next compare the
2540  * expressions themselves.
2541  */
2542  for (i = 0; i < info1->ii_NumIndexAttrs; i++)
2543  {
2544  if (attmap->maplen < info2->ii_IndexAttrNumbers[i])
2545  elog(ERROR, "incorrect attribute map");
2546 
2547  /* ignore expressions for now (but check their collation/opfamily) */
2548  if (!(info1->ii_IndexAttrNumbers[i] == InvalidAttrNumber &&
2550  {
2551  /* fail if just one index has an expression in this column */
2552  if (info1->ii_IndexAttrNumbers[i] == InvalidAttrNumber ||
2554  return false;
2555 
2556  /* both are columns, so check for match after mapping */
2557  if (attmap->attnums[info2->ii_IndexAttrNumbers[i] - 1] !=
2558  info1->ii_IndexAttrNumbers[i])
2559  return false;
2560  }
2561 
2562  /* collation and opfamily are not valid for included columns */
2563  if (i >= info1->ii_NumIndexKeyAttrs)
2564  continue;
2565 
2566  if (collations1[i] != collations2[i])
2567  return false;
2568  if (opfamilies1[i] != opfamilies2[i])
2569  return false;
2570  }
2571 
2572  /*
2573  * For expression indexes: either both are expression indexes, or neither
2574  * is; if they are, make sure the expressions match.
2575  */
2576  if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL))
2577  return false;
2578  if (info1->ii_Expressions != NIL)
2579  {
2580  bool found_whole_row;
2581  Node *mapped;
2582 
2583  mapped = map_variable_attnos((Node *) info2->ii_Expressions,
2584  1, 0, attmap,
2585  InvalidOid, &found_whole_row);
2586  if (found_whole_row)
2587  {
2588  /*
2589  * we could throw an error here, but seems out of scope for this
2590  * routine.
2591  */
2592  return false;
2593  }
2594 
2595  if (!equal(info1->ii_Expressions, mapped))
2596  return false;
2597  }
2598 
2599  /* Partial index predicates must be identical, if they exist */
2600  if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL))
2601  return false;
2602  if (info1->ii_Predicate != NULL)
2603  {
2604  bool found_whole_row;
2605  Node *mapped;
2606 
2607  mapped = map_variable_attnos((Node *) info2->ii_Predicate,
2608  1, 0, attmap,
2609  InvalidOid, &found_whole_row);
2610  if (found_whole_row)
2611  {
2612  /*
2613  * we could throw an error here, but seems out of scope for this
2614  * routine.
2615  */
2616  return false;
2617  }
2618  if (!equal(info1->ii_Predicate, mapped))
2619  return false;
2620  }
2621 
2622  /* No support currently for comparing exclusion indexes. */
2623  if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL)
2624  return false;
2625 
2626  return true;
2627 }
2628 
2629 /* ----------------
2630  * BuildSpeculativeIndexInfo
2631  * Add extra state to IndexInfo record
2632  *
2633  * For unique indexes, we usually don't want to add info to the IndexInfo for
2634  * checking uniqueness, since the B-Tree AM handles that directly. However,
2635  * in the case of speculative insertion, additional support is required.
2636  *
2637  * Do this processing here rather than in BuildIndexInfo() to not incur the
2638  * overhead in the common non-speculative cases.
2639  * ----------------
2640  */
2641 void
2643 {
2644  int indnkeyatts;
2645  int i;
2646 
2648 
2649  /*
2650  * fetch info for checking unique indexes
2651  */
2652  Assert(ii->ii_Unique);
2653 
2654  if (index->rd_rel->relam != BTREE_AM_OID)
2655  elog(ERROR, "unexpected non-btree speculative unique index");
2656 
2657  ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2658  ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2659  ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts);
2660 
2661  /*
2662  * We have to look up the operator's strategy number. This provides a
2663  * cross-check that the operator does match the index.
2664  */
2665  /* We need the func OIDs and strategy numbers too */
2666  for (i = 0; i < indnkeyatts; i++)
2667  {
2669  ii->ii_UniqueOps[i] =
2670  get_opfamily_member(index->rd_opfamily[i],
2671  index->rd_opcintype[i],
2672  index->rd_opcintype[i],
2673  ii->ii_UniqueStrats[i]);
2674  if (!OidIsValid(ii->ii_UniqueOps[i]))
2675  elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2676  ii->ii_UniqueStrats[i], index->rd_opcintype[i],
2677  index->rd_opcintype[i], index->rd_opfamily[i]);
2678  ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]);
2679  }
2680 }
2681 
2682 /* ----------------
2683  * FormIndexDatum
2684  * Construct values[] and isnull[] arrays for a new index tuple.
2685  *
2686  * indexInfo Info about the index
2687  * slot Heap tuple for which we must prepare an index entry
2688  * estate executor state for evaluating any index expressions
2689  * values Array of index Datums (output area)
2690  * isnull Array of is-null indicators (output area)
2691  *
2692  * When there are no index expressions, estate may be NULL. Otherwise it
2693  * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
2694  * context must point to the heap tuple passed in.
2695  *
2696  * Notice we don't actually call index_form_tuple() here; we just prepare
2697  * its input arrays values[] and isnull[]. This is because the index AM
2698  * may wish to alter the data before storage.
2699  * ----------------
2700  */
2701 void
2703  TupleTableSlot *slot,
2704  EState *estate,
2705  Datum *values,
2706  bool *isnull)
2707 {
2708  ListCell *indexpr_item;
2709  int i;
2710 
2711  if (indexInfo->ii_Expressions != NIL &&
2712  indexInfo->ii_ExpressionsState == NIL)
2713  {
2714  /* First time through, set up expression evaluation state */
2715  indexInfo->ii_ExpressionsState =
2716  ExecPrepareExprList(indexInfo->ii_Expressions, estate);
2717  /* Check caller has set up context correctly */
2718  Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
2719  }
2720  indexpr_item = list_head(indexInfo->ii_ExpressionsState);
2721 
2722  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
2723  {
2724  int keycol = indexInfo->ii_IndexAttrNumbers[i];
2725  Datum iDatum;
2726  bool isNull;
2727 
2728  if (keycol < 0)
2729  iDatum = slot_getsysattr(slot, keycol, &isNull);
2730  else if (keycol != 0)
2731  {
2732  /*
2733  * Plain index column; get the value we need directly from the
2734  * heap tuple.
2735  */
2736  iDatum = slot_getattr(slot, keycol, &isNull);
2737  }
2738  else
2739  {
2740  /*
2741  * Index expression --- need to evaluate it.
2742  */
2743  if (indexpr_item == NULL)
2744  elog(ERROR, "wrong number of index expressions");
2745  iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item),
2746  GetPerTupleExprContext(estate),
2747  &isNull);
2748  indexpr_item = lnext(indexInfo->ii_ExpressionsState, indexpr_item);
2749  }
2750  values[i] = iDatum;
2751  isnull[i] = isNull;
2752  }
2753 
2754  if (indexpr_item != NULL)
2755  elog(ERROR, "wrong number of index expressions");
2756 }
2757 
2758 
2759 /*
2760  * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
2761  *
2762  * This routine updates the pg_class row of either an index or its parent
2763  * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed
2764  * to ensure we can do all the necessary work in just one update.
2765  *
2766  * hasindex: set relhasindex to this value
2767  * reltuples: if >= 0, set reltuples to this value; else no change
2768  *
2769  * If reltuples >= 0, relpages and relallvisible are also updated (using
2770  * RelationGetNumberOfBlocks() and visibilitymap_count()).
2771  *
2772  * NOTE: an important side-effect of this operation is that an SI invalidation
2773  * message is sent out to all backends --- including me --- causing relcache
2774  * entries to be flushed or updated with the new data. This must happen even
2775  * if we find that no change is needed in the pg_class row. When updating
2776  * a heap entry, this ensures that other backends find out about the new
2777  * index. When updating an index, it's important because some index AMs
2778  * expect a relcache flush to occur after REINDEX.
2779  */
2780 static void
2782  bool hasindex,
2783  double reltuples)
2784 {
2785  Oid relid = RelationGetRelid(rel);
2786  Relation pg_class;
2787  HeapTuple tuple;
2788  Form_pg_class rd_rel;
2789  bool dirty;
2790 
2791  /*
2792  * We always update the pg_class row using a non-transactional,
2793  * overwrite-in-place update. There are several reasons for this:
2794  *
2795  * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
2796  *
2797  * 2. We could be reindexing pg_class itself, in which case we can't move
2798  * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might
2799  * not know about all the indexes yet (see reindex_relation).
2800  *
2801  * 3. Because we execute CREATE INDEX with just share lock on the parent
2802  * rel (to allow concurrent index creations), an ordinary update could
2803  * suffer a tuple-concurrently-updated failure against another CREATE
2804  * INDEX committing at about the same time. We can avoid that by having
2805  * them both do nontransactional updates (we assume they will both be
2806  * trying to change the pg_class row to the same thing, so it doesn't
2807  * matter which goes first).
2808  *
2809  * It is safe to use a non-transactional update even though our
2810  * transaction could still fail before committing. Setting relhasindex
2811  * true is safe even if there are no indexes (VACUUM will eventually fix
2812  * it). And of course the new relpages and reltuples counts are correct
2813  * regardless. However, we don't want to change relpages (or
2814  * relallvisible) if the caller isn't providing an updated reltuples
2815  * count, because that would bollix the reltuples/relpages ratio which is
2816  * what's really important.
2817  */
2818 
2819  pg_class = table_open(RelationRelationId, RowExclusiveLock);
2820 
2821  /*
2822  * Make a copy of the tuple to update. Normally we use the syscache, but
2823  * we can't rely on that during bootstrap or while reindexing pg_class
2824  * itself.
2825  */
2826  if (IsBootstrapProcessingMode() ||
2827  ReindexIsProcessingHeap(RelationRelationId))
2828  {
2829  /* don't assume syscache will work */
2830  TableScanDesc pg_class_scan;
2831  ScanKeyData key[1];
2832 
2833  ScanKeyInit(&key[0],
2834  Anum_pg_class_oid,
2835  BTEqualStrategyNumber, F_OIDEQ,
2836  ObjectIdGetDatum(relid));
2837 
2838  pg_class_scan = table_beginscan_catalog(pg_class, 1, key);
2839  tuple = heap_getnext(pg_class_scan, ForwardScanDirection);
2840  tuple = heap_copytuple(tuple);
2841  table_endscan(pg_class_scan);
2842  }
2843  else
2844  {
2845  /* normal case, use syscache */
2846  tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid));
2847  }
2848 
2849  if (!HeapTupleIsValid(tuple))
2850  elog(ERROR, "could not find tuple for relation %u", relid);
2851  rd_rel = (Form_pg_class) GETSTRUCT(tuple);
2852 
2853  /* Should this be a more comprehensive test? */
2854  Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX);
2855 
2856  /*
2857  * As a special hack, if we are dealing with an empty table and the
2858  * existing reltuples is -1, we leave that alone. This ensures that
2859  * creating an index as part of CREATE TABLE doesn't cause the table to
2860  * prematurely look like it's been vacuumed.
2861  */
2862  if (reltuples == 0 && rd_rel->reltuples < 0)
2863  reltuples = -1;
2864 
2865  /* Apply required updates, if any, to copied tuple */
2866 
2867  dirty = false;
2868  if (rd_rel->relhasindex != hasindex)
2869  {
2870  rd_rel->relhasindex = hasindex;
2871  dirty = true;
2872  }
2873 
2874  /*
2875  * Avoid updating statistics during binary upgrade, because the indexes
2876  * are created before the data is moved into place.
2877  */
2878  if (reltuples >= 0 && !IsBinaryUpgrade)
2879  {
2880  BlockNumber relpages = RelationGetNumberOfBlocks(rel);
2881  BlockNumber relallvisible;
2882 
2883  if (rd_rel->relkind != RELKIND_INDEX)
2884  visibilitymap_count(rel, &relallvisible, NULL);
2885  else /* don't bother for indexes */
2886  relallvisible = 0;
2887 
2888  if (rd_rel->relpages != (int32) relpages)
2889  {
2890  rd_rel->relpages = (int32) relpages;
2891  dirty = true;
2892  }
2893  if (rd_rel->reltuples != (float4) reltuples)
2894  {
2895  rd_rel->reltuples = (float4) reltuples;
2896  dirty = true;
2897  }
2898  if (rd_rel->relallvisible != (int32) relallvisible)
2899  {
2900  rd_rel->relallvisible = (int32) relallvisible;
2901  dirty = true;
2902  }
2903  }
2904 
2905  /*
2906  * If anything changed, write out the tuple
2907  */
2908  if (dirty)
2909  {
2910  heap_inplace_update(pg_class, tuple);
2911  /* the above sends a cache inval message */
2912  }
2913  else
2914  {
2915  /* no need to change tuple, but force relcache inval anyway */
2917  }
2918 
2919  heap_freetuple(tuple);
2920 
2921  table_close(pg_class, RowExclusiveLock);
2922 }
2923 
2924 
2925 /*
2926  * index_build - invoke access-method-specific index build procedure
2927  *
2928  * On entry, the index's catalog entries are valid, and its physical disk
2929  * file has been created but is empty. We call the AM-specific build
2930  * procedure to fill in the index contents. We then update the pg_class
2931  * entries of the index and heap relation as needed, using statistics
2932  * returned by ambuild as well as data passed by the caller.
2933  *
2934  * isreindex indicates we are recreating a previously-existing index.
2935  * parallel indicates if parallelism may be useful.
2936  *
2937  * Note: before Postgres 8.2, the passed-in heap and index Relations
2938  * were automatically closed by this routine. This is no longer the case.
2939  * The caller opened 'em, and the caller should close 'em.
2940  */
2941 void
2942 index_build(Relation heapRelation,
2943  Relation indexRelation,
2944  IndexInfo *indexInfo,
2945  bool isreindex,
2946  bool parallel)
2947 {
2948  IndexBuildResult *stats;
2949  Oid save_userid;
2950  int save_sec_context;
2951  int save_nestlevel;
2952 
2953  /*
2954  * sanity checks
2955  */
2956  Assert(RelationIsValid(indexRelation));
2957  Assert(PointerIsValid(indexRelation->rd_indam));
2958  Assert(PointerIsValid(indexRelation->rd_indam->ambuild));
2959  Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty));
2960 
2961  /*
2962  * Determine worker process details for parallel CREATE INDEX. Currently,
2963  * only btree has support for parallel builds.
2964  *
2965  * Note that planner considers parallel safety for us.
2966  */
2967  if (parallel && IsNormalProcessingMode() &&
2968  indexRelation->rd_indam->amcanbuildparallel)
2969  indexInfo->ii_ParallelWorkers =
2971  RelationGetRelid(indexRelation));
2972 
2973  if (indexInfo->ii_ParallelWorkers == 0)
2974  ereport(DEBUG1,
2975  (errmsg_internal("building index \"%s\" on table \"%s\" serially",
2976  RelationGetRelationName(indexRelation),
2977  RelationGetRelationName(heapRelation))));
2978  else
2979  ereport(DEBUG1,
2980  (errmsg_internal("building index \"%s\" on table \"%s\" with request for %d parallel workers",
2981  RelationGetRelationName(indexRelation),
2982  RelationGetRelationName(heapRelation),
2983  indexInfo->ii_ParallelWorkers)));
2984 
2985  /*
2986  * Switch to the table owner's userid, so that any index functions are run
2987  * as that user. Also lock down security-restricted operations and
2988  * arrange to make GUC variable changes local to this command.
2989  */
2990  GetUserIdAndSecContext(&save_userid, &save_sec_context);
2991  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
2992  save_sec_context | SECURITY_RESTRICTED_OPERATION);
2993  save_nestlevel = NewGUCNestLevel();
2995 
2996  /* Set up initial progress report status */
2997  {
2998  const int progress_index[] = {
3005  };
3006  const int64 progress_vals[] = {
3009  0, 0, 0, 0
3010  };
3011 
3012  pgstat_progress_update_multi_param(6, progress_index, progress_vals);
3013  }
3014 
3015  /*
3016  * Call the access method's build procedure
3017  */
3018  stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation,
3019  indexInfo);
3020  Assert(PointerIsValid(stats));
3021 
3022  /*
3023  * If this is an unlogged index, we may need to write out an init fork for
3024  * it -- but we must first check whether one already exists. If, for
3025  * example, an unlogged relation is truncated in the transaction that
3026  * created it, or truncated twice in a subsequent transaction, the
3027  * relfilenumber won't change, and nothing needs to be done here.
3028  */
3029  if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED &&
3030  !smgrexists(RelationGetSmgr(indexRelation), INIT_FORKNUM))
3031  {
3032  smgrcreate(RelationGetSmgr(indexRelation), INIT_FORKNUM, false);
3033  log_smgrcreate(&indexRelation->rd_locator, INIT_FORKNUM);
3034  indexRelation->rd_indam->ambuildempty(indexRelation);
3035  }
3036 
3037  /*
3038  * If we found any potentially broken HOT chains, mark the index as not
3039  * being usable until the current transaction is below the event horizon.
3040  * See src/backend/access/heap/README.HOT for discussion. While it might
3041  * become safe to use the index earlier based on actual cleanup activity
3042  * and other active transactions, the test for that would be much more
3043  * complex and would require some form of blocking, so keep it simple and
3044  * fast by just using the current transaction.
3045  *
3046  * However, when reindexing an existing index, we should do nothing here.
3047  * Any HOT chains that are broken with respect to the index must predate
3048  * the index's original creation, so there is no need to change the
3049  * index's usability horizon. Moreover, we *must not* try to change the
3050  * index's pg_index entry while reindexing pg_index itself, and this
3051  * optimization nicely prevents that. The more complex rules needed for a
3052  * reindex are handled separately after this function returns.
3053  *
3054  * We also need not set indcheckxmin during a concurrent index build,
3055  * because we won't set indisvalid true until all transactions that care
3056  * about the broken HOT chains are gone.
3057  *
3058  * Therefore, this code path can only be taken during non-concurrent
3059  * CREATE INDEX. Thus the fact that heap_update will set the pg_index
3060  * tuple's xmin doesn't matter, because that tuple was created in the
3061  * current transaction anyway. That also means we don't need to worry
3062  * about any concurrent readers of the tuple; no other transaction can see
3063  * it yet.
3064  */
3065  if (indexInfo->ii_BrokenHotChain &&
3066  !isreindex &&
3067  !indexInfo->ii_Concurrent)
3068  {
3069  Oid indexId = RelationGetRelid(indexRelation);
3070  Relation pg_index;
3071  HeapTuple indexTuple;
3072  Form_pg_index indexForm;
3073 
3074  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3075 
3076  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3077  ObjectIdGetDatum(indexId));
3078  if (!HeapTupleIsValid(indexTuple))
3079  elog(ERROR, "cache lookup failed for index %u", indexId);
3080  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3081 
3082  /* If it's a new index, indcheckxmin shouldn't be set ... */
3083  Assert(!indexForm->indcheckxmin);
3084 
3085  indexForm->indcheckxmin = true;
3086  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3087 
3088  heap_freetuple(indexTuple);
3089  table_close(pg_index, RowExclusiveLock);
3090  }
3091 
3092  /*
3093  * Update heap and index pg_class rows
3094  */
3095  index_update_stats(heapRelation,
3096  true,
3097  stats->heap_tuples);
3098 
3099  index_update_stats(indexRelation,
3100  false,
3101  stats->index_tuples);
3102 
3103  /* Make the updated catalog row versions visible */
3105 
3106  /*
3107  * If it's for an exclusion constraint, make a second pass over the heap
3108  * to verify that the constraint is satisfied. We must not do this until
3109  * the index is fully valid. (Broken HOT chains shouldn't matter, though;
3110  * see comments for IndexCheckExclusion.)
3111  */
3112  if (indexInfo->ii_ExclusionOps != NULL)
3113  IndexCheckExclusion(heapRelation, indexRelation, indexInfo);
3114 
3115  /* Roll back any GUC changes executed by index functions */
3116  AtEOXact_GUC(false, save_nestlevel);
3117 
3118  /* Restore userid and security context */
3119  SetUserIdAndSecContext(save_userid, save_sec_context);
3120 }
3121 
3122 /*
3123  * IndexCheckExclusion - verify that a new exclusion constraint is satisfied
3124  *
3125  * When creating an exclusion constraint, we first build the index normally
3126  * and then rescan the heap to check for conflicts. We assume that we only
3127  * need to validate tuples that are live according to an up-to-date snapshot,
3128  * and that these were correctly indexed even in the presence of broken HOT
3129  * chains. This should be OK since we are holding at least ShareLock on the
3130  * table, meaning there can be no uncommitted updates from other transactions.
3131  * (Note: that wouldn't necessarily work for system catalogs, since many
3132  * operations release write lock early on the system catalogs.)
3133  */
3134 static void
3136  Relation indexRelation,
3137  IndexInfo *indexInfo)
3138 {
3139  TableScanDesc scan;
3141  bool isnull[INDEX_MAX_KEYS];
3142  ExprState *predicate;
3143  TupleTableSlot *slot;
3144  EState *estate;
3145  ExprContext *econtext;
3146  Snapshot snapshot;
3147 
3148  /*
3149  * If we are reindexing the target index, mark it as no longer being
3150  * reindexed, to forestall an Assert in index_beginscan when we try to use
3151  * the index for probes. This is OK because the index is now fully valid.
3152  */
3155 
3156  /*
3157  * Need an EState for evaluation of index expressions and partial-index
3158  * predicates. Also a slot to hold the current tuple.
3159  */
3160  estate = CreateExecutorState();
3161  econtext = GetPerTupleExprContext(estate);
3162  slot = table_slot_create(heapRelation, NULL);
3163 
3164  /* Arrange for econtext's scan tuple to be the tuple under test */
3165  econtext->ecxt_scantuple = slot;
3166 
3167  /* Set up execution state for predicate, if any. */
3168  predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
3169 
3170  /*
3171  * Scan all live tuples in the base relation.
3172  */
3173  snapshot = RegisterSnapshot(GetLatestSnapshot());
3174  scan = table_beginscan_strat(heapRelation, /* relation */
3175  snapshot, /* snapshot */
3176  0, /* number of keys */
3177  NULL, /* scan key */
3178  true, /* buffer access strategy OK */
3179  true); /* syncscan OK */
3180 
3181  while (table_scan_getnextslot(scan, ForwardScanDirection, slot))
3182  {
3184 
3185  /*
3186  * In a partial index, ignore tuples that don't satisfy the predicate.
3187  */
3188  if (predicate != NULL)
3189  {
3190  if (!ExecQual(predicate, econtext))
3191  continue;
3192  }
3193 
3194  /*
3195  * Extract index column values, including computing expressions.
3196  */
3197  FormIndexDatum(indexInfo,
3198  slot,
3199  estate,
3200  values,
3201  isnull);
3202 
3203  /*
3204  * Check that this tuple has no conflicts.
3205  */
3206  check_exclusion_constraint(heapRelation,
3207  indexRelation, indexInfo,
3208  &(slot->tts_tid), values, isnull,
3209  estate, true);
3210 
3212  }
3213 
3214  table_endscan(scan);
3215  UnregisterSnapshot(snapshot);
3216 
3218 
3219  FreeExecutorState(estate);
3220 
3221  /* These may have been pointing to the now-gone estate */
3222  indexInfo->ii_ExpressionsState = NIL;
3223  indexInfo->ii_PredicateState = NULL;
3224 }
3225 
3226 
3227 /*
3228  * validate_index - support code for concurrent index builds
3229  *
3230  * We do a concurrent index build by first inserting the catalog entry for the
3231  * index via index_create(), marking it not indisready and not indisvalid.
3232  * Then we commit our transaction and start a new one, then we wait for all
3233  * transactions that could have been modifying the table to terminate. Now
3234  * we know that any subsequently-started transactions will see the index and
3235  * honor its constraints on HOT updates; so while existing HOT-chains might
3236  * be broken with respect to the index, no currently live tuple will have an
3237  * incompatible HOT update done to it. We now build the index normally via
3238  * index_build(), while holding a weak lock that allows concurrent
3239  * insert/update/delete. Also, we index only tuples that are valid
3240  * as of the start of the scan (see table_index_build_scan), whereas a normal
3241  * build takes care to include recently-dead tuples. This is OK because
3242  * we won't mark the index valid until all transactions that might be able
3243  * to see those tuples are gone. The reason for doing that is to avoid
3244  * bogus unique-index failures due to concurrent UPDATEs (we might see
3245  * different versions of the same row as being valid when we pass over them,
3246  * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that
3247  * does not contain any tuples added to the table while we built the index.
3248  *
3249  * Next, we mark the index "indisready" (but still not "indisvalid") and
3250  * commit the second transaction and start a third. Again we wait for all
3251  * transactions that could have been modifying the table to terminate. Now
3252  * we know that any subsequently-started transactions will see the index and
3253  * insert their new tuples into it. We then take a new reference snapshot
3254  * which is passed to validate_index(). Any tuples that are valid according
3255  * to this snap, but are not in the index, must be added to the index.
3256  * (Any tuples committed live after the snap will be inserted into the
3257  * index by their originating transaction. Any tuples committed dead before
3258  * the snap need not be indexed, because we will wait out all transactions
3259  * that might care about them before we mark the index valid.)
3260  *
3261  * validate_index() works by first gathering all the TIDs currently in the
3262  * index, using a bulkdelete callback that just stores the TIDs and doesn't
3263  * ever say "delete it". (This should be faster than a plain indexscan;
3264  * also, not all index AMs support full-index indexscan.) Then we sort the
3265  * TIDs, and finally scan the table doing a "merge join" against the TID list
3266  * to see which tuples are missing from the index. Thus we will ensure that
3267  * all tuples valid according to the reference snapshot are in the index.
3268  *
3269  * Building a unique index this way is tricky: we might try to insert a
3270  * tuple that is already dead or is in process of being deleted, and we
3271  * mustn't have a uniqueness failure against an updated version of the same
3272  * row. We could try to check the tuple to see if it's already dead and tell
3273  * index_insert() not to do the uniqueness check, but that still leaves us
3274  * with a race condition against an in-progress update. To handle that,
3275  * we expect the index AM to recheck liveness of the to-be-inserted tuple
3276  * before it declares a uniqueness error.
3277  *
3278  * After completing validate_index(), we wait until all transactions that
3279  * were alive at the time of the reference snapshot are gone; this is
3280  * necessary to be sure there are none left with a transaction snapshot
3281  * older than the reference (and hence possibly able to see tuples we did
3282  * not index). Then we mark the index "indisvalid" and commit. Subsequent
3283  * transactions will be able to use it for queries.
3284  *
3285  * Doing two full table scans is a brute-force strategy. We could try to be
3286  * cleverer, eg storing new tuples in a special area of the table (perhaps
3287  * making the table append-only by setting use_fsm). However that would
3288  * add yet more locking issues.
3289  */
3290 void
3291 validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
3292 {
3293  Relation heapRelation,
3294  indexRelation;
3295  IndexInfo *indexInfo;
3296  IndexVacuumInfo ivinfo;
3298  Oid save_userid;
3299  int save_sec_context;
3300  int save_nestlevel;
3301 
3302  {
3303  const int progress_index[] = {
3309  };
3310  const int64 progress_vals[] = {
3312  0, 0, 0, 0
3313  };
3314 
3315  pgstat_progress_update_multi_param(5, progress_index, progress_vals);
3316  }
3317 
3318  /* Open and lock the parent heap relation */
3319  heapRelation = table_open(heapId, ShareUpdateExclusiveLock);
3320 
3321  /*
3322  * Switch to the table owner's userid, so that any index functions are run
3323  * as that user. Also lock down security-restricted operations and
3324  * arrange to make GUC variable changes local to this command.
3325  */
3326  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3327  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3328  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3329  save_nestlevel = NewGUCNestLevel();
3331 
3332  indexRelation = index_open(indexId, RowExclusiveLock);
3333 
3334  /*
3335  * Fetch info needed for index_insert. (You might think this should be
3336  * passed in from DefineIndex, but its copy is long gone due to having
3337  * been built in a previous transaction.)
3338  */
3339  indexInfo = BuildIndexInfo(indexRelation);
3340 
3341  /* mark build is concurrent just for consistency */
3342  indexInfo->ii_Concurrent = true;
3343 
3344  /*
3345  * Scan the index and gather up all the TIDs into a tuplesort object.
3346  */
3347  ivinfo.index = indexRelation;
3348  ivinfo.heaprel = heapRelation;
3349  ivinfo.analyze_only = false;
3350  ivinfo.report_progress = true;
3351  ivinfo.estimated_count = true;
3352  ivinfo.message_level = DEBUG2;
3353  ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples;
3354  ivinfo.strategy = NULL;
3355 
3356  /*
3357  * Encode TIDs as int8 values for the sort, rather than directly sorting
3358  * item pointers. This can be significantly faster, primarily because TID
3359  * is a pass-by-reference type on all platforms, whereas int8 is
3360  * pass-by-value on most platforms.
3361  */
3362  state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator,
3363  InvalidOid, false,
3365  NULL, TUPLESORT_NONE);
3366  state.htups = state.itups = state.tups_inserted = 0;
3367 
3368  /* ambulkdelete updates progress metrics */
3369  (void) index_bulk_delete(&ivinfo, NULL,
3370  validate_index_callback, (void *) &state);
3371 
3372  /* Execute the sort */
3373  {
3374  const int progress_index[] = {
3378  };
3379  const int64 progress_vals[] = {
3381  0, 0
3382  };
3383 
3384  pgstat_progress_update_multi_param(3, progress_index, progress_vals);
3385  }
3386  tuplesort_performsort(state.tuplesort);
3387 
3388  /*
3389  * Now scan the heap and "merge" it with the index
3390  */
3393  table_index_validate_scan(heapRelation,
3394  indexRelation,
3395  indexInfo,
3396  snapshot,
3397  &state);
3398 
3399  /* Done with tuplesort object */
3400  tuplesort_end(state.tuplesort);
3401 
3402  /* Make sure to release resources cached in indexInfo (if needed). */
3403  index_insert_cleanup(indexRelation, indexInfo);
3404 
3405  elog(DEBUG2,
3406  "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
3407  state.htups, state.itups, state.tups_inserted);
3408 
3409  /* Roll back any GUC changes executed by index functions */
3410  AtEOXact_GUC(false, save_nestlevel);
3411 
3412  /* Restore userid and security context */
3413  SetUserIdAndSecContext(save_userid, save_sec_context);
3414 
3415  /* Close rels, but keep locks */
3416  index_close(indexRelation, NoLock);
3417  table_close(heapRelation, NoLock);
3418 }
3419 
3420 /*
3421  * validate_index_callback - bulkdelete callback to collect the index TIDs
3422  */
3423 static bool
3424 validate_index_callback(ItemPointer itemptr, void *opaque)
3425 {
3427  int64 encoded = itemptr_encode(itemptr);
3428 
3429  tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false);
3430  state->itups += 1;
3431  return false; /* never actually delete anything */
3432 }
3433 
3434 /*
3435  * index_set_state_flags - adjust pg_index state flags
3436  *
3437  * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index
3438  * flags that denote the index's state.
3439  *
3440  * Note that CatalogTupleUpdate() sends a cache invalidation message for the
3441  * tuple, so other sessions will hear about the update as soon as we commit.
3442  */
3443 void
3445 {
3446  Relation pg_index;
3447  HeapTuple indexTuple;
3448  Form_pg_index indexForm;
3449 
3450  /* Open pg_index and fetch a writable copy of the index's tuple */
3451  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3452 
3453  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3454  ObjectIdGetDatum(indexId));
3455  if (!HeapTupleIsValid(indexTuple))
3456  elog(ERROR, "cache lookup failed for index %u", indexId);
3457  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3458 
3459  /* Perform the requested state change on the copy */
3460  switch (action)
3461  {
3463  /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */
3464  Assert(indexForm->indislive);
3465  Assert(!indexForm->indisready);
3466  Assert(!indexForm->indisvalid);
3467  indexForm->indisready = true;
3468  break;
3470  /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */
3471  Assert(indexForm->indislive);
3472  Assert(indexForm->indisready);
3473  Assert(!indexForm->indisvalid);
3474  indexForm->indisvalid = true;
3475  break;
3477 
3478  /*
3479  * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence
3480  *
3481  * If indisready == true we leave it set so the index still gets
3482  * maintained by active transactions. We only need to ensure that
3483  * indisvalid is false. (We don't assert that either is initially
3484  * true, though, since we want to be able to retry a DROP INDEX
3485  * CONCURRENTLY that failed partway through.)
3486  *
3487  * Note: the CLUSTER logic assumes that indisclustered cannot be
3488  * set on any invalid index, so clear that flag too. For
3489  * cleanliness, also clear indisreplident.
3490  */
3491  indexForm->indisvalid = false;
3492  indexForm->indisclustered = false;
3493  indexForm->indisreplident = false;
3494  break;
3495  case INDEX_DROP_SET_DEAD:
3496 
3497  /*
3498  * Clear indisready/indislive during DROP INDEX CONCURRENTLY
3499  *
3500  * We clear both indisready and indislive, because we not only
3501  * want to stop updates, we want to prevent sessions from touching
3502  * the index at all.
3503  */
3504  Assert(!indexForm->indisvalid);
3505  Assert(!indexForm->indisclustered);
3506  Assert(!indexForm->indisreplident);
3507  indexForm->indisready = false;
3508  indexForm->indislive = false;
3509  break;
3510  }
3511 
3512  /* ... and update it */
3513  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3514 
3515  table_close(pg_index, RowExclusiveLock);
3516 }
3517 
3518 
3519 /*
3520  * IndexGetRelation: given an index's relation OID, get the OID of the
3521  * relation it is an index on. Uses the system cache.
3522  */
3523 Oid
3524 IndexGetRelation(Oid indexId, bool missing_ok)
3525 {
3526  HeapTuple tuple;
3528  Oid result;
3529 
3530  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
3531  if (!HeapTupleIsValid(tuple))
3532  {
3533  if (missing_ok)
3534  return InvalidOid;
3535  elog(ERROR, "cache lookup failed for index %u", indexId);
3536  }
3537  index = (Form_pg_index) GETSTRUCT(tuple);
3538  Assert(index->indexrelid == indexId);
3539 
3540  result = index->indrelid;
3541  ReleaseSysCache(tuple);
3542  return result;
3543 }
3544 
3545 /*
3546  * reindex_index - This routine is used to recreate a single index
3547  */
3548 void
3550  bool skip_constraint_checks, char persistence,
3551  const ReindexParams *params)
3552 {
3553  Relation iRel,
3554  heapRelation;
3555  Oid heapId;
3556  Oid save_userid;
3557  int save_sec_context;
3558  int save_nestlevel;
3559  IndexInfo *indexInfo;
3560  volatile bool skipped_constraint = false;
3561  PGRUsage ru0;
3562  bool progress = ((params->options & REINDEXOPT_REPORT_PROGRESS) != 0);
3563  bool set_tablespace = false;
3564 
3565  pg_rusage_init(&ru0);
3566 
3567  /*
3568  * Open and lock the parent heap relation. ShareLock is sufficient since
3569  * we only need to be sure no schema or data changes are going on.
3570  */
3571  heapId = IndexGetRelation(indexId,
3572  (params->options & REINDEXOPT_MISSING_OK) != 0);
3573  /* if relation is missing, leave */
3574  if (!OidIsValid(heapId))
3575  return;
3576 
3577  if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3578  heapRelation = try_table_open(heapId, ShareLock);
3579  else
3580  heapRelation = table_open(heapId, ShareLock);
3581 
3582  /* if relation is gone, leave */
3583  if (!heapRelation)
3584  return;
3585 
3586  /*
3587  * Switch to the table owner's userid, so that any index functions are run
3588  * as that user. Also lock down security-restricted operations and
3589  * arrange to make GUC variable changes local to this command.
3590  */
3591  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3592  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3593  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3594  save_nestlevel = NewGUCNestLevel();
3596 
3597  if (progress)
3598  {
3599  const int progress_cols[] = {
3602  };
3603  const int64 progress_vals[] = {
3605  indexId
3606  };
3607 
3609  heapId);
3610  pgstat_progress_update_multi_param(2, progress_cols, progress_vals);
3611  }
3612 
3613  /*
3614  * Open the target index relation and get an exclusive lock on it, to
3615  * ensure that no one else is touching this particular index.
3616  */
3617  if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3618  iRel = try_index_open(indexId, AccessExclusiveLock);
3619  else
3620  iRel = index_open(indexId, AccessExclusiveLock);
3621 
3622  /* if index relation is gone, leave */
3623  if (!iRel)
3624  {
3625  /* Roll back any GUC changes */
3626  AtEOXact_GUC(false, save_nestlevel);
3627 
3628  /* Restore userid and security context */
3629  SetUserIdAndSecContext(save_userid, save_sec_context);
3630 
3631  /* Close parent heap relation, but keep locks */
3632  table_close(heapRelation, NoLock);
3633  return;
3634  }
3635 
3636  if (progress)
3638  iRel->rd_rel->relam);
3639 
3640  /*
3641  * If a statement is available, telling that this comes from a REINDEX
3642  * command, collect the index for event triggers.
3643  */
3644  if (stmt)
3645  {
3646  ObjectAddress address;
3647 
3648  ObjectAddressSet(address, RelationRelationId, indexId);
3651  (Node *) stmt);
3652  }
3653 
3654  /*
3655  * Partitioned indexes should never get processed here, as they have no
3656  * physical storage.
3657  */
3658  if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
3659  elog(ERROR, "cannot reindex partitioned index \"%s.%s\"",
3661  RelationGetRelationName(iRel));
3662 
3663  /*
3664  * Don't allow reindex on temp tables of other backends ... their local
3665  * buffer manager is not going to cope.
3666  */
3667  if (RELATION_IS_OTHER_TEMP(iRel))
3668  ereport(ERROR,
3669  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3670  errmsg("cannot reindex temporary tables of other sessions")));
3671 
3672  /*
3673  * Don't allow reindex of an invalid index on TOAST table. This is a
3674  * leftover from a failed REINDEX CONCURRENTLY, and if rebuilt it would
3675  * not be possible to drop it anymore.
3676  */
3678  !get_index_isvalid(indexId))
3679  ereport(ERROR,
3680  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3681  errmsg("cannot reindex invalid index on TOAST table")));
3682 
3683  /*
3684  * System relations cannot be moved even if allow_system_table_mods is
3685  * enabled to keep things consistent with the concurrent case where all
3686  * the indexes of a relation are processed in series, including indexes of
3687  * toast relations.
3688  *
3689  * Note that this check is not part of CheckRelationTableSpaceMove() as it
3690  * gets used for ALTER TABLE SET TABLESPACE that could cascade across
3691  * toast relations.
3692  */
3693  if (OidIsValid(params->tablespaceOid) &&
3694  IsSystemRelation(iRel))
3695  ereport(ERROR,
3696  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3697  errmsg("cannot move system relation \"%s\"",
3698  RelationGetRelationName(iRel))));
3699 
3700  /* Check if the tablespace of this index needs to be changed */
3701  if (OidIsValid(params->tablespaceOid) &&
3703  set_tablespace = true;
3704 
3705  /*
3706  * Also check for active uses of the index in the current transaction; we
3707  * don't want to reindex underneath an open indexscan.
3708  */
3709  CheckTableNotInUse(iRel, "REINDEX INDEX");
3710 
3711  /* Set new tablespace, if requested */
3712  if (set_tablespace)
3713  {
3714  /* Update its pg_class row */
3716 
3717  /*
3718  * Schedule unlinking of the old index storage at transaction commit.
3719  */
3720  RelationDropStorage(iRel);
3722 
3723  /* Make sure the reltablespace change is visible */
3725  }
3726 
3727  /*
3728  * All predicate locks on the index are about to be made invalid. Promote
3729  * them to relation locks on the heap.
3730  */
3732 
3733  /* Fetch info needed for index_build */
3734  indexInfo = BuildIndexInfo(iRel);
3735 
3736  /* If requested, skip checking uniqueness/exclusion constraints */
3737  if (skip_constraint_checks)
3738  {
3739  if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL)
3740  skipped_constraint = true;
3741  indexInfo->ii_Unique = false;
3742  indexInfo->ii_ExclusionOps = NULL;
3743  indexInfo->ii_ExclusionProcs = NULL;
3744  indexInfo->ii_ExclusionStrats = NULL;
3745  }
3746 
3747  /* Suppress use of the target index while rebuilding it */
3748  SetReindexProcessing(heapId, indexId);
3749 
3750  /* Create a new physical relation for the index */
3751  RelationSetNewRelfilenumber(iRel, persistence);
3752 
3753  /* Initialize the index and rebuild */
3754  /* Note: we do not need to re-establish pkey setting */
3755  index_build(heapRelation, iRel, indexInfo, true, true);
3756 
3757  /* Re-allow use of target index */
3759 
3760  /*
3761  * If the index is marked invalid/not-ready/dead (ie, it's from a failed
3762  * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway),
3763  * and we didn't skip a uniqueness check, we can now mark it valid. This
3764  * allows REINDEX to be used to clean up in such cases.
3765  *
3766  * We can also reset indcheckxmin, because we have now done a
3767  * non-concurrent index build, *except* in the case where index_build
3768  * found some still-broken HOT chains. If it did, and we don't have to
3769  * change any of the other flags, we just leave indcheckxmin alone (note
3770  * that index_build won't have changed it, because this is a reindex).
3771  * This is okay and desirable because not updating the tuple leaves the
3772  * index's usability horizon (recorded as the tuple's xmin value) the same
3773  * as it was.
3774  *
3775  * But, if the index was invalid/not-ready/dead and there were broken HOT
3776  * chains, we had better force indcheckxmin true, because the normal
3777  * argument that the HOT chains couldn't conflict with the index is
3778  * suspect for an invalid index. (A conflict is definitely possible if
3779  * the index was dead. It probably shouldn't happen otherwise, but let's
3780  * be conservative.) In this case advancing the usability horizon is
3781  * appropriate.
3782  *
3783  * Another reason for avoiding unnecessary updates here is that while
3784  * reindexing pg_index itself, we must not try to update tuples in it.
3785  * pg_index's indexes should always have these flags in their clean state,
3786  * so that won't happen.
3787  */
3788  if (!skipped_constraint)
3789  {
3790  Relation pg_index;
3791  HeapTuple indexTuple;
3792  Form_pg_index indexForm;
3793  bool index_bad;
3794 
3795  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3796 
3797  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3798  ObjectIdGetDatum(indexId));
3799  if (!HeapTupleIsValid(indexTuple))
3800  elog(ERROR, "cache lookup failed for index %u", indexId);
3801  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3802 
3803  index_bad = (!indexForm->indisvalid ||
3804  !indexForm->indisready ||
3805  !indexForm->indislive);
3806  if (index_bad ||
3807  (indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain))
3808  {
3809  if (!indexInfo->ii_BrokenHotChain)
3810  indexForm->indcheckxmin = false;
3811  else if (index_bad)
3812  indexForm->indcheckxmin = true;
3813  indexForm->indisvalid = true;
3814  indexForm->indisready = true;
3815  indexForm->indislive = true;
3816  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3817 
3818  /*
3819  * Invalidate the relcache for the table, so that after we commit
3820  * all sessions will refresh the table's index list. This ensures
3821  * that if anyone misses seeing the pg_index row during this
3822  * update, they'll refresh their list before attempting any update
3823  * on the table.
3824  */
3825  CacheInvalidateRelcache(heapRelation);
3826  }
3827 
3828  table_close(pg_index, RowExclusiveLock);
3829  }
3830 
3831  /* Log what we did */
3832  if ((params->options & REINDEXOPT_VERBOSE) != 0)
3833  ereport(INFO,
3834  (errmsg("index \"%s\" was reindexed",
3835  get_rel_name(indexId)),
3836  errdetail_internal("%s",
3837  pg_rusage_show(&ru0))));
3838 
3839  /* Roll back any GUC changes executed by index functions */
3840  AtEOXact_GUC(false, save_nestlevel);
3841 
3842  /* Restore userid and security context */
3843  SetUserIdAndSecContext(save_userid, save_sec_context);
3844 
3845  /* Close rels, but keep locks */
3846  index_close(iRel, NoLock);
3847  table_close(heapRelation, NoLock);
3848 
3849  if (progress)
3851 }
3852 
3853 /*
3854  * reindex_relation - This routine is used to recreate all indexes
3855  * of a relation (and optionally its toast relation too, if any).
3856  *
3857  * "flags" is a bitmask that can include any combination of these bits:
3858  *
3859  * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any).
3860  *
3861  * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely
3862  * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its
3863  * indexes are inconsistent with it. This makes things tricky if the relation
3864  * is a system catalog that we might consult during the reindexing. To deal
3865  * with that case, we mark all of the indexes as pending rebuild so that they
3866  * won't be trusted until rebuilt. The caller is required to call us *without*
3867  * having made the rebuilt table visible by doing CommandCounterIncrement;
3868  * we'll do CCI after having collected the index list. (This way we can still
3869  * use catalog indexes while collecting the list.)
3870  *
3871  * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion
3872  * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or
3873  * CLUSTER on a system catalog must omit this flag. REINDEX should be used to
3874  * rebuild an index if constraint inconsistency is suspected. For optimal
3875  * performance, other callers should include the flag only after transforming
3876  * the data in a manner that risks a change in constraint validity.
3877  *
3878  * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the
3879  * rebuilt indexes to unlogged.
3880  *
3881  * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the
3882  * rebuilt indexes to permanent.
3883  *
3884  * Returns true if any indexes were rebuilt (including toast table's index
3885  * when relevant). Note that a CommandCounterIncrement will occur after each
3886  * index rebuild.
3887  */
3888 bool
3889 reindex_relation(const ReindexStmt *stmt, Oid relid, int flags,
3890  const ReindexParams *params)
3891 {
3892  Relation rel;
3893  Oid toast_relid;
3894  List *indexIds;
3895  char persistence;
3896  bool result = false;
3897  ListCell *indexId;
3898  int i;
3899 
3900  /*
3901  * Open and lock the relation. ShareLock is sufficient since we only need
3902  * to prevent schema and data changes in it. The lock level used here
3903  * should match ReindexTable().
3904  */
3905  if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3906  rel = try_table_open(relid, ShareLock);
3907  else
3908  rel = table_open(relid, ShareLock);
3909 
3910  /* if relation is gone, leave */
3911  if (!rel)
3912  return false;
3913 
3914  /*
3915  * Partitioned tables should never get processed here, as they have no
3916  * physical storage.
3917  */
3918  if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
3919  elog(ERROR, "cannot reindex partitioned table \"%s.%s\"",
3922 
3923  toast_relid = rel->rd_rel->reltoastrelid;
3924 
3925  /*
3926  * Get the list of index OIDs for this relation. (We trust the relcache
3927  * to get this with a sequential scan if ignoring system indexes.)
3928  */
3929  indexIds = RelationGetIndexList(rel);
3930 
3931  if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
3932  {
3933  /* Suppress use of all the indexes until they are rebuilt */
3934  SetReindexPending(indexIds);
3935 
3936  /*
3937  * Make the new heap contents visible --- now things might be
3938  * inconsistent!
3939  */
3941  }
3942 
3943  /*
3944  * Reindex the toast table, if any, before the main table.
3945  *
3946  * This helps in cases where a corruption in the toast table's index would
3947  * otherwise error and stop REINDEX TABLE command when it tries to fetch a
3948  * toasted datum. This way. the toast table's index is rebuilt and fixed
3949  * before it is used for reindexing the main table.
3950  *
3951  * It is critical to call reindex_relation() *after* the call to
3952  * RelationGetIndexList() returning the list of indexes on the relation,
3953  * because reindex_relation() will call CommandCounterIncrement() after
3954  * every reindex_index(). See REINDEX_REL_SUPPRESS_INDEX_USE for more
3955  * details.
3956  */
3957  if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid))
3958  {
3959  /*
3960  * Note that this should fail if the toast relation is missing, so
3961  * reset REINDEXOPT_MISSING_OK. Even if a new tablespace is set for
3962  * the parent relation, the indexes on its toast table are not moved.
3963  * This rule is enforced by setting tablespaceOid to InvalidOid.
3964  */
3965  ReindexParams newparams = *params;
3966 
3967  newparams.options &= ~(REINDEXOPT_MISSING_OK);
3968  newparams.tablespaceOid = InvalidOid;
3969  result |= reindex_relation(stmt, toast_relid, flags, &newparams);
3970  }
3971 
3972  /*
3973  * Compute persistence of indexes: same as that of owning rel, unless
3974  * caller specified otherwise.
3975  */
3977  persistence = RELPERSISTENCE_UNLOGGED;
3978  else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT)
3979  persistence = RELPERSISTENCE_PERMANENT;
3980  else
3981  persistence = rel->rd_rel->relpersistence;
3982 
3983  /* Reindex all the indexes. */
3984  i = 1;
3985  foreach(indexId, indexIds)
3986  {
3987  Oid indexOid = lfirst_oid(indexId);
3988  Oid indexNamespaceId = get_rel_namespace(indexOid);
3989 
3990  /*
3991  * Skip any invalid indexes on a TOAST table. These can only be
3992  * duplicate leftovers from a failed REINDEX CONCURRENTLY, and if
3993  * rebuilt it would not be possible to drop them anymore.
3994  */
3995  if (IsToastNamespace(indexNamespaceId) &&
3996  !get_index_isvalid(indexOid))
3997  {
3998  ereport(WARNING,
3999  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4000  errmsg("cannot reindex invalid index \"%s.%s\" on TOAST table, skipping",
4001  get_namespace_name(indexNamespaceId),
4002  get_rel_name(indexOid))));
4003  continue;
4004  }
4005 
4006  reindex_index(stmt, indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS),
4007  persistence, params);
4008 
4010 
4011  /* Index should no longer be in the pending list */
4012  Assert(!ReindexIsProcessingIndex(indexOid));
4013 
4014  /* Set index rebuild count */
4016  i);
4017  i++;
4018  }
4019 
4020  /*
4021  * Close rel, but continue to hold the lock.
4022  */
4023  table_close(rel, NoLock);
4024 
4025  result |= (indexIds != NIL);
4026 
4027  return result;
4028 }
4029 
4030 
4031 /* ----------------------------------------------------------------
4032  * System index reindexing support
4033  *
4034  * When we are busy reindexing a system index, this code provides support
4035  * for preventing catalog lookups from using that index. We also make use
4036  * of this to catch attempted uses of user indexes during reindexing of
4037  * those indexes. This information is propagated to parallel workers;
4038  * attempting to change it during a parallel operation is not permitted.
4039  * ----------------------------------------------------------------
4040  */
4041 
4045 static int reindexingNestLevel = 0;
4046 
4047 /*
4048  * ReindexIsProcessingHeap
4049  * True if heap specified by OID is currently being reindexed.
4050  */
4051 bool
4053 {
4054  return heapOid == currentlyReindexedHeap;
4055 }
4056 
4057 /*
4058  * ReindexIsCurrentlyProcessingIndex
4059  * True if index specified by OID is currently being reindexed.
4060  */
4061 static bool
4063 {
4064  return indexOid == currentlyReindexedIndex;
4065 }
4066 
4067 /*
4068  * ReindexIsProcessingIndex
4069  * True if index specified by OID is currently being reindexed,
4070  * or should be treated as invalid because it is awaiting reindex.
4071  */
4072 bool
4074 {
4075  return indexOid == currentlyReindexedIndex ||
4077 }
4078 
4079 /*
4080  * SetReindexProcessing
4081  * Set flag that specified heap/index are being reindexed.
4082  */
4083 static void
4084 SetReindexProcessing(Oid heapOid, Oid indexOid)
4085 {
4086  Assert(OidIsValid(heapOid) && OidIsValid(indexOid));
4087  /* Reindexing is not re-entrant. */
4089  elog(ERROR, "cannot reindex while reindexing");
4090  currentlyReindexedHeap = heapOid;
4091  currentlyReindexedIndex = indexOid;
4092  /* Index is no longer "pending" reindex. */
4093  RemoveReindexPending(indexOid);
4094  /* This may have been set already, but in case it isn't, do so now. */
4096 }
4097 
4098 /*
4099  * ResetReindexProcessing
4100  * Unset reindexing status.
4101  */
4102 static void
4104 {
4107  /* reindexingNestLevel remains set till end of (sub)transaction */
4108 }
4109 
4110 /*
4111  * SetReindexPending
4112  * Mark the given indexes as pending reindex.
4113  *
4114  * NB: we assume that the current memory context stays valid throughout.
4115  */
4116 static void
4118 {
4119  /* Reindexing is not re-entrant. */
4121  elog(ERROR, "cannot reindex while reindexing");
4122  if (IsInParallelMode())
4123  elog(ERROR, "cannot modify reindex state during a parallel operation");
4126 }
4127 
4128 /*
4129  * RemoveReindexPending
4130  * Remove the given index from the pending list.
4131  */
4132 static void
4134 {
4135  if (IsInParallelMode())
4136  elog(ERROR, "cannot modify reindex state during a parallel operation");
4138  indexOid);
4139 }
4140 
4141 /*
4142  * ResetReindexState
4143  * Clear all reindexing state during (sub)transaction abort.
4144  */
4145 void
4146 ResetReindexState(int nestLevel)
4147 {
4148  /*
4149  * Because reindexing is not re-entrant, we don't need to cope with nested
4150  * reindexing states. We just need to avoid messing up the outer-level
4151  * state in case a subtransaction fails within a REINDEX. So checking the
4152  * current nest level against that of the reindex operation is sufficient.
4153  */
4154  if (reindexingNestLevel >= nestLevel)
4155  {
4158 
4159  /*
4160  * We needn't try to release the contents of pendingReindexedIndexes;
4161  * that list should be in a transaction-lifespan context, so it will
4162  * go away automatically.
4163  */
4165 
4166  reindexingNestLevel = 0;
4167  }
4168 }
4169 
4170 /*
4171  * EstimateReindexStateSpace
4172  * Estimate space needed to pass reindex state to parallel workers.
4173  */
4174 Size
4176 {
4179 }
4180 
4181 /*
4182  * SerializeReindexState
4183  * Serialize reindex state for parallel workers.
4184  */
4185 void
4186 SerializeReindexState(Size maxsize, char *start_address)
4187 {
4188  SerializedReindexState *sistate = (SerializedReindexState *) start_address;
4189  int c = 0;
4190  ListCell *lc;
4191 
4195  foreach(lc, pendingReindexedIndexes)
4196  sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc);
4197 }
4198 
4199 /*
4200  * RestoreReindexState
4201  * Restore reindex state in a parallel worker.
4202  */
4203 void
4204 RestoreReindexState(const void *reindexstate)
4205 {
4206  const SerializedReindexState *sistate = (const SerializedReindexState *) reindexstate;
4207  int c = 0;
4208  MemoryContext oldcontext;
4209 
4212 
4215  for (c = 0; c < sistate->numPendingReindexedIndexes; ++c)
4218  sistate->pendingReindexedIndexes[c]);
4219  MemoryContextSwitchTo(oldcontext);
4220 
4221  /* Note the worker has its own transaction nesting level */
4223 }
IndexAmRoutine * GetIndexAmRoutineByAmId(Oid amoid, bool noerror)
Definition: amapi.c:56
int16 AttrNumber
Definition: attnum.h:21
#define AttrNumberGetAttrOffset(attNum)
Definition: attnum.h:51
#define InvalidAttrNumber
Definition: attnum.h:23
void pgstat_progress_start_command(ProgressCommandType cmdtype, Oid relid)
void pgstat_progress_update_param(int index, int64 val)
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
void pgstat_progress_end_command(void)
@ PROGRESS_COMMAND_CREATE_INDEX
uint32 BlockNumber
Definition: block.h:31
static Datum values[MAXATTR]
Definition: bootstrap.c:150
void index_register(Oid heap, Oid ind, const IndexInfo *indexInfo)
Definition: bootstrap.c:900
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:273
#define CStringGetTextDatum(s)
Definition: builtins.h:97
#define TextDatumGetCString(d)
Definition: builtins.h:98
#define NameStr(name)
Definition: c.h:746
unsigned short uint16
Definition: c.h:505
uint16 bits16
Definition: c.h:514
signed short int16
Definition: c.h:493
signed int int32
Definition: c.h:494
#define Assert(condition)
Definition: c.h:858
TransactionId MultiXactId
Definition: c.h:662
#define PointerIsValid(pointer)
Definition: c.h:763
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:398
float float4
Definition: c.h:629
#define MemSet(start, val, len)
Definition: c.h:1020
uint32 TransactionId
Definition: c.h:652
#define OidIsValid(objectId)
Definition: c.h:775
size_t Size
Definition: c.h:605
bool IsToastNamespace(Oid namespaceId)
Definition: catalog.c:221
bool IsSystemRelation(Relation relation)
Definition: catalog.c:73
RelFileNumber GetNewRelFileNumber(Oid reltablespace, Relation pg_class, char relpersistence)
Definition: catalog.c:521
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:103
void record_object_address_dependencies(const ObjectAddress *depender, ObjectAddresses *referenced, DependencyType behavior)
Definition: dependency.c:2742
void recordDependencyOnSingleRelExpr(const ObjectAddress *depender, Node *expr, Oid relId, DependencyType behavior, DependencyType self_behavior, bool reverse_self)
Definition: dependency.c:1596
ObjectAddresses * new_object_addresses(void)
Definition: dependency.c:2487
void add_exact_object_address(const ObjectAddress *object, ObjectAddresses *addrs)
Definition: dependency.c:2533
void free_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2773
@ DEPENDENCY_AUTO
Definition: dependency.h:34
@ DEPENDENCY_INTERNAL
Definition: dependency.h:35
@ DEPENDENCY_PARTITION_PRI
Definition: dependency.h:36
@ DEPENDENCY_PARTITION_SEC
Definition: dependency.h:37
@ DEPENDENCY_NORMAL
Definition: dependency.h:33
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1157
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1230
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define NOTICE
Definition: elog.h:35
#define INFO
Definition: elog.h:34
#define ereport(elevel,...)
Definition: elog.h:149
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
void EventTriggerCollectSimpleCommand(ObjectAddress address, ObjectAddress secondaryObject, Node *parsetree)
ExprState * ExecPrepareQual(List *qual, EState *estate)
Definition: execExpr.c:767
List * ExecPrepareExprList(List *nodes, EState *estate)
Definition: execExpr.c:813
void check_exclusion_constraint(Relation heap, Relation index, IndexInfo *indexInfo, ItemPointer tupleid, const Datum *values, const bool *isnull, EState *estate, bool newIndex)
Definition: execIndexing.c:915
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1341
EState * CreateExecutorState(void)
Definition: execUtils.c:88
void FreeExecutorState(EState *estate)
Definition: execUtils.c:189
#define GetPerTupleExprContext(estate)
Definition: executor.h:550
static bool ExecQual(ExprState *state, ExprContext *econtext)
Definition: executor.h:413
static Datum ExecEvalExprSwitchContext(ExprState *state, ExprContext *econtext, bool *isNull)
Definition: executor.h:348
#define palloc0_array(type, count)
Definition: fe_memutils.h:65
Datum Int64GetDatum(int64 X)
Definition: fmgr.c:1807
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:596
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:503
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:384
bool IsBinaryUpgrade
Definition: globals.c:119
int maintenance_work_mem
Definition: globals.c:131
int NewGUCNestLevel(void)
Definition: guc.c:2234
void RestrictSearchPath(void)
Definition: guc.c:2245
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:2261
void DeleteRelationTuple(Oid relid)
Definition: heap.c:1557
void DeleteAttributeTuples(Oid relid)
Definition: heap.c:1586
void RemoveStatistics(Oid relid, AttrNumber attnum)
Definition: heap.c:2923
void CheckAttributeType(const char *attname, Oid atttypid, Oid attcollation, List *containing_rowtypes, int flags)
Definition: heap.c:548
void CopyStatistics(Oid fromrelid, Oid torelid)
Definition: heap.c:2870
void InsertPgClassTuple(Relation pg_class_desc, Relation new_rel_desc, Oid new_rel_oid, Datum relacl, Datum reloptions)
Definition: heap.c:896
void InsertPgAttributeTuples(Relation pg_attribute_rel, TupleDesc tupdesc, Oid new_rel_oid, const FormExtraData_pg_attribute tupdesc_extra[], CatalogIndexState indstate)
Definition: heap.c:702
Relation heap_create(const char *relname, Oid relnamespace, Oid reltablespace, Oid relid, RelFileNumber relfilenumber, Oid accessmtd, TupleDesc tupDesc, char relkind, char relpersistence, bool shared_relation, bool mapped_relation, bool allow_system_table_mods, TransactionId *relfrozenxid, MultiXactId *relminmxid, bool create_storage)
Definition: heap.c:289
void heap_inplace_update(Relation relation, HeapTuple tuple)
Definition: heapam.c:6063
HeapTuple heap_getnext(TableScanDesc sscan, ScanDirection direction)
Definition: heapam.c:1252
HeapTuple heap_modify_tuple(HeapTuple tuple, TupleDesc tupleDesc, const Datum *replValues, const bool *replIsnull, const bool *doReplace)
Definition: heaptuple.c:1209
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:776
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: heaptuple.c:1116
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition: heaptuple.c:455
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1434
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
#define stmt
Definition: indent_codes.h:59
bool ReindexIsProcessingIndex(Oid indexOid)
Definition: index.c:4073
static bool validate_index_callback(ItemPointer itemptr, void *opaque)
Definition: index.c:3424
void validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
Definition: index.c:3291
void index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
Definition: index.c:2114
void ResetReindexState(int nestLevel)
Definition: index.c:4146
Oid IndexGetRelation(Oid indexId, bool missing_ok)
Definition: index.c:3524
static int reindexingNestLevel
Definition: index.c:4045
void index_concurrently_set_dead(Oid heapId, Oid indexId)
Definition: index.c:1820
Oid index_create(Relation heapRelation, const char *indexRelationName, Oid indexRelationId, Oid parentIndexRelid, Oid parentConstraintId, RelFileNumber relFileNumber, IndexInfo *indexInfo, const List *indexColNames, Oid accessMethodId, Oid tableSpaceId, const Oid *collationIds, const Oid *opclassIds, const Datum *opclassOptions, const int16 *coloptions, const NullableDatum *stattargets, Datum reloptions, bits16 flags, bits16 constr_flags, bool allow_system_table_mods, bool is_internal, Oid *constraintId)
Definition: index.c:724
static Oid currentlyReindexedHeap
Definition: index.c:4042
static void ResetReindexProcessing(void)
Definition: index.c:4103
void index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
Definition: index.c:1549
static void RemoveReindexPending(Oid indexOid)
Definition: index.c:4133
static List * pendingReindexedIndexes
Definition: index.c:4044
void index_set_state_flags(Oid indexId, IndexStateFlagsAction action)
Definition: index.c:3444
bool CompareIndexInfo(const IndexInfo *info1, const IndexInfo *info2, const Oid *collations1, const Oid *collations2, const Oid *opfamilies1, const Oid *opfamilies2, const AttrMap *attmap)
Definition: index.c:2511
RelFileNumber binary_upgrade_next_index_pg_class_relfilenumber
Definition: index.c:85
IndexInfo * BuildDummyIndexInfo(Relation index)
Definition: index.c:2463
bool reindex_relation(const ReindexStmt *stmt, Oid relid, int flags, const ReindexParams *params)
Definition: index.c:3889
void SerializeReindexState(Size maxsize, char *start_address)
Definition: index.c:4186
static void index_update_stats(Relation rel, bool hasindex, double reltuples)
Definition: index.c:2781
static bool relationHasPrimaryKey(Relation rel)
Definition: index.c:147
static void SetReindexProcessing(Oid heapOid, Oid indexOid)
Definition: index.c:4084
static void IndexCheckExclusion(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo)
Definition: index.c:3135
static void InitializeAttributeOids(Relation indexRelation, int numatts, Oid indexoid)
Definition: index.c:492
Oid index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, Oid tablespaceOid, const char *newName)
Definition: index.c:1298
Oid binary_upgrade_next_index_pg_class_oid
Definition: index.c:84
static void AppendAttributeTuples(Relation indexRelation, const Datum *attopts, const NullableDatum *stattargets)
Definition: index.c:510
void BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii)
Definition: index.c:2642
void index_check_primary_key(Relation heapRel, const IndexInfo *indexInfo, bool is_alter_table, const IndexStmt *stmt)
Definition: index.c:201
bool ReindexIsProcessingHeap(Oid heapOid)
Definition: index.c:4052
static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid)
Definition: index.c:4062
void RestoreReindexState(const void *reindexstate)
Definition: index.c:4204
static TupleDesc ConstructTupleDescriptor(Relation heapRelation, const IndexInfo *indexInfo, const List *indexColNames, Oid accessMethodId, const Oid *collationIds, const Oid *opclassIds)
Definition: index.c:280
void index_build(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo, bool isreindex, bool parallel)
Definition: index.c:2942
ObjectAddress index_constraint_create(Relation heapRelation, Oid indexRelationId, Oid parentConstraintId, const IndexInfo *indexInfo, const char *constraintName, char constraintType, bits16 constr_flags, bool allow_system_table_mods, bool is_internal)
Definition: index.c:1881
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2702
static void SetReindexPending(List *indexes)
Definition: index.c:4117
void index_concurrently_build(Oid heapRelationId, Oid indexRelationId)
Definition: index.c:1482
static void UpdateIndexRelation(Oid indexoid, Oid heapoid, Oid parentIndexId, const IndexInfo *indexInfo, const Oid *collationOids, const Oid *opclassOids, const int16 *coloptions, bool primary, bool isexclusion, bool immediate, bool isvalid, bool isready)
Definition: index.c:561
static Oid currentlyReindexedIndex
Definition: index.c:4043
Size EstimateReindexStateSpace(void)
Definition: index.c:4175
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2404
void reindex_index(const ReindexStmt *stmt, Oid indexId, bool skip_constraint_checks, char persistence, const ReindexParams *params)
Definition: index.c:3549
#define INDEX_CREATE_IS_PRIMARY
Definition: index.h:61
#define INDEX_CREATE_IF_NOT_EXISTS
Definition: index.h:65
#define REINDEX_REL_PROCESS_TOAST
Definition: index.h:158
#define INDEX_CREATE_PARTITIONED
Definition: index.h:66
#define REINDEXOPT_MISSING_OK
Definition: index.h:43
#define INDEX_CREATE_INVALID
Definition: index.h:67
static int64 itemptr_encode(ItemPointer itemptr)
Definition: index.h:189
#define INDEX_CREATE_ADD_CONSTRAINT
Definition: index.h:62
#define INDEX_CREATE_SKIP_BUILD
Definition: index.h:63
#define INDEX_CONSTR_CREATE_UPDATE_INDEX
Definition: index.h:94
#define REINDEX_REL_FORCE_INDEXES_UNLOGGED
Definition: index.h:161
#define INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS
Definition: index.h:95
#define INDEX_CONSTR_CREATE_DEFERRABLE
Definition: index.h:92
#define REINDEXOPT_REPORT_PROGRESS
Definition: index.h:42
#define INDEX_CONSTR_CREATE_MARK_AS_PRIMARY
Definition: index.h:91
#define REINDEX_REL_SUPPRESS_INDEX_USE
Definition: index.h:159
IndexStateFlagsAction
Definition: index.h:25
@ INDEX_CREATE_SET_VALID
Definition: index.h:27
@ INDEX_DROP_CLEAR_VALID
Definition: index.h:28
@ INDEX_DROP_SET_DEAD
Definition: index.h:29
@ INDEX_CREATE_SET_READY
Definition: index.h:26
#define REINDEX_REL_FORCE_INDEXES_PERMANENT
Definition: index.h:162
#define INDEX_CONSTR_CREATE_INIT_DEFERRED
Definition: index.h:93
#define INDEX_CREATE_CONCURRENT
Definition: index.h:64
#define REINDEXOPT_VERBOSE
Definition: index.h:41
#define REINDEX_REL_CHECK_CONSTRAINTS
Definition: index.h:160
void index_insert_cleanup(Relation indexRelation, IndexInfo *indexInfo)
Definition: indexam.c:241
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
Relation try_index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:152
IndexBulkDeleteResult * index_bulk_delete(IndexVacuumInfo *info, IndexBulkDeleteResult *istat, IndexBulkDeleteCallback callback, void *callback_state)
Definition: indexam.c:748
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
bytea * index_opclass_options(Relation indrel, AttrNumber attnum, Datum attoptions, bool validate)
Definition: indexam.c:996
void CatalogTupleUpdate(Relation heapRel, ItemPointer otid, HeapTuple tup)
Definition: indexing.c:313
void CatalogCloseIndexes(CatalogIndexState indstate)
Definition: indexing.c:61
void CatalogTupleInsert(Relation heapRel, HeapTuple tup)
Definition: indexing.c:233
CatalogIndexState CatalogOpenIndexes(Relation heapRel)
Definition: indexing.c:43
void CatalogTupleDelete(Relation heapRel, ItemPointer tid)
Definition: indexing.c:365
int2vector * buildint2vector(const int16 *int2s, int n)
Definition: int.c:114
void CacheInvalidateRelcache(Relation relation)
Definition: inval.c:1360
void CacheInvalidateRelcacheByTuple(HeapTuple classTuple)
Definition: inval.c:1396
invalidindex index d is invalid
Definition: isn.c:134
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
List * lappend(List *list, void *datum)
Definition: list.c:339
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
List * list_copy(const List *oldlist)
Definition: list.c:1573
List * list_delete_oid(List *list, Oid datum)
Definition: list.c:910
void list_free(List *list)
Definition: list.c:1546
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:722
void LockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:387
void LockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:108
void LockRelation(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:244
void WaitForLockers(LOCKTAG heaplocktag, LOCKMODE lockmode, bool progress)
Definition: lmgr.c:975
void UnlockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:400
#define SET_LOCKTAG_RELATION(locktag, dboid, reloid)
Definition: lock.h:181
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define ShareLock
Definition: lockdefs.h:40
#define RowExclusiveLock
Definition: lockdefs.h:38
bool get_rel_relispartition(Oid relid)
Definition: lsyscache.c:2027
char get_rel_persistence(Oid relid)
Definition: lsyscache.c:2078
bool get_index_isvalid(Oid index_oid)
Definition: lsyscache.c:3578
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3366
Datum get_attoptions(Oid relid, int16 attnum)
Definition: lsyscache.c:970
Oid get_rel_namespace(Oid relid)
Definition: lsyscache.c:1952
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1285
char * get_rel_name(Oid relid)
Definition: lsyscache.c:1928
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:166
bool get_collation_isdeterministic(Oid colloid)
Definition: lsyscache.c:1054
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2832
Oid get_relname_relid(const char *relname, Oid relnamespace)
Definition: lsyscache.c:1885
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:737
Expr * make_ands_explicit(List *andclauses)
Definition: makefuncs.c:726
IndexInfo * makeIndexInfo(int numattrs, int numkeyattrs, Oid amoid, List *expressions, List *predicates, bool unique, bool nulls_not_distinct, bool isready, bool concurrent, bool summarizing)
Definition: makefuncs.c:761
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:383
void pfree(void *pointer)
Definition: mcxt.c:1521
MemoryContext TopMemoryContext
Definition: mcxt.c:149
void * palloc0(Size size)
Definition: mcxt.c:1347
void * palloc(Size size)
Definition: mcxt.c:1317
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:454
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:315
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
#define IsNormalProcessingMode()
Definition: miscadmin.h:456
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:635
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:642
#define InvalidMultiXactId
Definition: multixact.h:24
void namestrcpy(Name name, const char *str)
Definition: name.c:233
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:298
#define makeNode(_type_)
Definition: nodes.h:155
#define InvokeObjectPostAlterHookArg(classId, objectId, subId, auxiliaryId, is_internal)
Definition: objectaccess.h:200
#define InvokeObjectPostCreateHookArg(classId, objectId, subId, is_internal)
Definition: objectaccess.h:175
const ObjectAddress InvalidObjectAddress
#define ObjectAddressSet(addr, class_id, object_id)
Definition: objectaddress.h:40
#define ObjectAddressSubSet(addr, class_id, object_id, object_sub_id)
Definition: objectaddress.h:33
oidvector * buildoidvector(const Oid *oids, int n)
Definition: oid.c:87
char * nodeToString(const void *obj)
Definition: outfuncs.c:791
List * SystemFuncName(char *name)
List * get_partition_ancestors(Oid relid)
Definition: partition.c:134
FormData_pg_attribute
Definition: pg_attribute.h:193
#define ATTRIBUTE_FIXED_PART_SIZE
Definition: pg_attribute.h:201
int16 attnum
Definition: pg_attribute.h:74
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:209
FormData_pg_class * Form_pg_class
Definition: pg_class.h:153
#define INDEX_MAX_KEYS
bool ConstraintNameIsUsed(ConstraintCategory conCat, Oid objId, const char *conname)
Oid CreateConstraintEntry(const char *constraintName, Oid constraintNamespace, char constraintType, bool isDeferrable, bool isDeferred, bool isValidated, Oid parentConstrId, Oid relId, const int16 *constraintKey, int constraintNKeys, int constraintNTotalKeys, Oid domainId, Oid indexRelId, Oid foreignRelId, const int16 *foreignKey, const Oid *pfEqOp, const Oid *ppEqOp, const Oid *ffEqOp, int foreignNKeys, char foreignUpdateType, char foreignDeleteType, const int16 *fkDeleteSetCols, int numFkDeleteSetCols, char foreignMatchType, const Oid *exclOp, Node *conExpr, const char *conBin, bool conIsLocal, int conInhCount, bool conNoInherit, bool is_internal)
Definition: pg_constraint.c:48
FormData_pg_constraint * Form_pg_constraint
@ CONSTRAINT_RELATION
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition: pg_depend.c:46
long deleteDependencyRecordsForClass(Oid classId, Oid objectId, Oid refclassId, char deptype)
Definition: pg_depend.c:352
long changeDependenciesOf(Oid classId, Oid oldObjectId, Oid newObjectId)
Definition: pg_depend.c:566
long changeDependenciesOn(Oid refClassId, Oid oldRefObjectId, Oid newRefObjectId)
Definition: pg_depend.c:622
Oid get_index_constraint(Oid indexId)
Definition: pg_depend.c:989
List * get_index_ref_constraints(Oid indexId)
Definition: pg_depend.c:1045
FormData_pg_index * Form_pg_index
Definition: pg_index.h:70
bool DeleteInheritsTuple(Oid inhrelid, Oid inhparent, bool expect_detach_pending, const char *childname)
Definition: pg_inherits.c:552
void StoreSingleInheritance(Oid relationId, Oid parentOid, int32 seqNumber)
Definition: pg_inherits.c:508
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define linitial_oid(l)
Definition: pg_list.h:180
#define lfirst_oid(lc)
Definition: pg_list.h:174
FormData_pg_opclass * Form_pg_opclass
Definition: pg_opclass.h:83
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
FormData_pg_trigger * Form_pg_trigger
Definition: pg_trigger.h:80
FormData_pg_type * Form_pg_type
Definition: pg_type.h:261
static int progress
Definition: pgbench.c:261
void pgstat_copy_relation_stats(Relation dst, Relation src)
void pgstat_drop_relation(Relation rel)
int plan_create_index_workers(Oid tableOid, Oid indexOid)
Definition: planner.c:6780
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:172
static Datum BoolGetDatum(bool X)
Definition: postgres.h:102
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:212
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
void TransferPredicateLocksToHeapRelation(Relation relation)
Definition: predicate.c:3108
char * c
#define PROGRESS_CREATEIDX_PHASE_BUILD
Definition: progress.h:95
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN
Definition: progress.h:99
#define PROGRESS_CREATEIDX_ACCESS_METHOD_OID
Definition: progress.h:84
#define PROGRESS_CREATEIDX_TUPLES_TOTAL
Definition: progress.h:87
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT
Definition: progress.h:98
#define PROGRESS_SCAN_BLOCKS_DONE
Definition: progress.h:123
#define PROGRESS_CREATEIDX_TUPLES_DONE
Definition: progress.h:88
#define PROGRESS_CREATEIDX_SUBPHASE
Definition: progress.h:86
#define PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE
Definition: progress.h:107
#define PROGRESS_CREATEIDX_PHASE
Definition: progress.h:85
#define PROGRESS_CREATEIDX_COMMAND_REINDEX
Definition: progress.h:113
#define PROGRESS_CLUSTER_INDEX_REBUILD_COUNT
Definition: progress.h:65
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN
Definition: progress.h:97
#define PROGRESS_SCAN_BLOCKS_TOTAL
Definition: progress.h:122
#define PROGRESS_CREATEIDX_INDEX_OID
Definition: progress.h:83
#define PROGRESS_CREATEIDX_COMMAND
Definition: progress.h:82
MemoryContextSwitchTo(old_ctx)
void * stringToNode(const char *str)
Definition: read.c:90
#define RelationGetForm(relation)
Definition: rel.h:499
#define RelationGetRelid(relation)
Definition: rel.h:505
static SMgrRelation RelationGetSmgr(Relation rel)
Definition: rel.h:567
#define RelationGetDescr(relation)
Definition: rel.h:531
#define RelationIsMapped(relation)
Definition: rel.h:554
#define RelationGetRelationName(relation)
Definition: rel.h:539
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:658
#define RelationIsValid(relation)
Definition: rel.h:478
#define RelationGetNamespace(relation)
Definition: rel.h:546
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:524
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4801
void RelationInitIndexAccessInfo(Relation relation)
Definition: relcache.c:1424
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:5151
List * RelationGetDummyIndexExpressions(Relation relation)
Definition: relcache.c:5097
void RelationSetNewRelfilenumber(Relation relation, char persistence)
Definition: relcache.c:3767
void RelationForgetRelation(Oid rid)
Definition: relcache.c:2911
void RelationAssumeNewRelfilelocator(Relation relation)
Definition: relcache.c:3966
void RelationGetExclusionInfo(Relation indexRelation, Oid **operators, Oid **procs, uint16 **strategies)
Definition: relcache.c:5591
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:5038
Oid RelFileNumber
Definition: relpath.h:25
@ INIT_FORKNUM
Definition: relpath.h:53
#define InvalidRelFileNumber
Definition: relpath.h:26
#define RelFileNumberIsValid(relnumber)
Definition: relpath.h:27
Node * map_variable_attnos(Node *node, int target_varno, int sublevels_up, const AttrMap *attno_map, Oid to_rowtype, bool *found_whole_row)
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
@ ForwardScanDirection
Definition: sdir.h:28
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
void smgrcreate(SMgrRelation reln, ForkNumber forknum, bool isRedo)
Definition: smgr.c:411
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:398
Snapshot GetLatestSnapshot(void)
Definition: snapmgr.c:291
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:836
bool ActiveSnapshotSet(void)
Definition: snapmgr.c:782
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:794
void PopActiveSnapshot(void)
Definition: snapmgr.c:743
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:205
Relation relation_open(Oid relationId, LOCKMODE lockmode)
Definition: relation.c:47
void log_smgrcreate(const RelFileLocator *rlocator, ForkNumber forkNum)
Definition: storage.c:186
void RelationDropStorage(Relation rel)
Definition: storage.c:206
#define BTEqualStrategyNumber
Definition: stratnum.h:31
#define ERRCODE_DUPLICATE_OBJECT
Definition: streamutil.c:32
Definition: attmap.h:35
int maplen
Definition: attmap.h:37
AttrNumber * attnums
Definition: attmap.h:36
Node * whenClause
Definition: parsenodes.h:3021
List * transitionRels
Definition: parsenodes.h:3023
RangeVar * constrrel
Definition: parsenodes.h:3027
RangeVar * relation
Definition: parsenodes.h:3012
MemoryContext ecxt_per_tuple_memory
Definition: execnodes.h:263
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:255
ItemPointerData t_self
Definition: htup.h:65
ambuildempty_function ambuildempty
Definition: amapi.h:268
Oid amkeytype
Definition: amapi.h:258
ambuild_function ambuild
Definition: amapi.h:267
bool amsummarizing
Definition: amapi.h:254
bool amcanbuildparallel
Definition: amapi.h:248
double heap_tuples
Definition: genam.h:32
double index_tuples
Definition: genam.h:33
bool ii_Unique
Definition: execnodes.h:197
uint16 * ii_ExclusionStrats
Definition: execnodes.h:193
bool ii_BrokenHotChain
Definition: execnodes.h:203
int ii_NumIndexAttrs
Definition: execnodes.h:184
Oid * ii_UniqueOps
Definition: execnodes.h:194
ExprState * ii_PredicateState
Definition: execnodes.h:190
Oid * ii_ExclusionOps
Definition: execnodes.h:191
bool ii_NullsNotDistinct
Definition: execnodes.h:198
int ii_ParallelWorkers
Definition: execnodes.h:205
bool ii_Concurrent
Definition: execnodes.h:202
uint16 * ii_UniqueStrats
Definition: execnodes.h:196
int ii_NumIndexKeyAttrs
Definition: execnodes.h:185
List * ii_ExpressionsState
Definition: execnodes.h:188
List * ii_Expressions
Definition: execnodes.h:187
Oid * ii_ExclusionProcs
Definition: execnodes.h:192
Oid ii_Am
Definition: execnodes.h:206
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:186
Oid * ii_UniqueProcs
Definition: execnodes.h:195
bool ii_ReadyForInserts
Definition: execnodes.h:199
List * ii_Predicate
Definition: execnodes.h:189
Relation index
Definition: genam.h:46
double num_heap_tuples
Definition: genam.h:52
bool analyze_only
Definition: genam.h:48
BufferAccessStrategy strategy
Definition: genam.h:53
Relation heaprel
Definition: genam.h:47
bool report_progress
Definition: genam.h:49
int message_level
Definition: genam.h:51
bool estimated_count
Definition: genam.h:50
Definition: lock.h:165
Definition: pg_list.h:54
LockRelId lockRelId
Definition: rel.h:46
Definition: rel.h:39
Oid relId
Definition: rel.h:40
Oid dbId
Definition: rel.h:41
Definition: nodes.h:129
Datum value
Definition: postgres.h:75
bool isnull
Definition: postgres.h:77
Oid tablespaceOid
Definition: index.h:36
bits32 options
Definition: index.h:35
struct IndexAmRoutine * rd_indam
Definition: rel.h:206
LockInfoData rd_lockInfo
Definition: rel.h:114
TupleDesc rd_att
Definition: rel.h:112
Form_pg_index rd_index
Definition: rel.h:192
MemoryContext rd_indexcxt
Definition: rel.h:204
RelFileLocator rd_locator
Definition: rel.h:57
Oid * rd_indcollation
Definition: rel.h:217
Form_pg_class rd_rel
Definition: rel.h:111
Oid currentlyReindexedHeap
Definition: index.c:94
Oid currentlyReindexedIndex
Definition: index.c:95
int numPendingReindexedIndexes
Definition: index.c:96
Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER]
Definition: index.c:97
ItemPointerData tts_tid
Definition: tuptable.h:129
Definition: type.h:95
Definition: c.h:715
int16 values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:722
Definition: c.h:726
Oid values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:733
Definition: regguts.h:323
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:266
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:218
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:479
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:229
Datum SysCacheGetAttrNotNull(int cacheId, HeapTuple tup, AttrNumber attributeNumber)
Definition: syscache.c:510
#define SearchSysCacheCopy1(cacheId, key1)
Definition: syscache.h:86
Relation try_table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:60
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
TableScanDesc table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
Definition: tableam.c:112
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:91
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:1019
static void table_index_validate_scan(Relation table_rel, Relation index_rel, struct IndexInfo *index_info, Snapshot snapshot, struct ValidateIndexState *state)
Definition: tableam.h:1839
static TableScanDesc table_beginscan_strat(Relation rel, Snapshot snapshot, int nkeys, struct ScanKeyData *key, bool allow_strat, bool allow_sync)
Definition: tableam.h:932
static bool table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:1055
void CheckTableNotInUse(Relation rel, const char *stmt)
Definition: tablecmds.c:4244
bool CheckRelationTableSpaceMove(Relation rel, Oid newTableSpaceId)
Definition: tablecmds.c:3530
void SetRelationHasSubclass(Oid relationId, bool relhassubclass)
Definition: tablecmds.c:3484
void SetRelationTableSpace(Relation rel, Oid newTableSpaceId, RelFileNumber newRelFilenumber)
Definition: tablecmds.c:3587
#define InvalidCompressionMethod
#define InvalidTransactionId
Definition: transam.h:31
ObjectAddress CreateTrigger(CreateTrigStmt *stmt, const char *queryString, Oid relOid, Oid refRelOid, Oid constraintOid, Oid indexOid, Oid funcoid, Oid parentTriggerOid, Node *whenClause, bool isInternal, bool in_partition)
Definition: trigger.c:158
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:67
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
void tuplesort_performsort(Tuplesortstate *state)
Definition: tuplesort.c:1386
void tuplesort_end(Tuplesortstate *state)
Definition: tuplesort.c:972
#define TUPLESORT_NONE
Definition: tuplesort.h:93
void tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull)
Tuplesortstate * tuplesort_begin_datum(Oid datumType, Oid sortOperator, Oid sortCollation, bool nullsFirstFlag, int workMem, SortCoordinate coordinate, int sortopt)
static Datum slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:416
static Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:395
void visibilitymap_count(Relation rel, BlockNumber *all_visible, BlockNumber *all_frozen)
const char * description
int GetCurrentTransactionNestLevel(void)
Definition: xact.c:927
void CommandCounterIncrement(void)
Definition: xact.c:1098
TransactionId GetTopTransactionIdIfAny(void)
Definition: xact.c:439
void StartTransactionCommand(void)
Definition: xact.c:3033
bool IsInParallelMode(void)
Definition: xact.c:1087
void CommitTransactionCommand(void)
Definition: xact.c:3131