PostgreSQL Source Code  git master
index.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * index.c
4  * code to create and destroy POSTGRES index relations
5  *
6  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/catalog/index.c
12  *
13  *
14  * INTERFACE ROUTINES
15  * index_create() - Create a cataloged index relation
16  * index_drop() - Removes index relation from catalogs
17  * BuildIndexInfo() - Prepare to insert index tuples
18  * FormIndexDatum() - Construct datum vector for one index tuple
19  *
20  *-------------------------------------------------------------------------
21  */
22 #include "postgres.h"
23 
24 #include <unistd.h>
25 
26 #include "access/amapi.h"
27 #include "access/heapam.h"
28 #include "access/multixact.h"
29 #include "access/relscan.h"
30 #include "access/sysattr.h"
31 #include "access/tableam.h"
32 #include "access/transam.h"
33 #include "access/visibilitymap.h"
34 #include "access/xact.h"
35 #include "bootstrap/bootstrap.h"
36 #include "catalog/binary_upgrade.h"
37 #include "catalog/catalog.h"
38 #include "catalog/dependency.h"
39 #include "catalog/heap.h"
40 #include "catalog/index.h"
41 #include "catalog/objectaccess.h"
42 #include "catalog/partition.h"
43 #include "catalog/pg_am.h"
44 #include "catalog/pg_collation.h"
45 #include "catalog/pg_constraint.h"
46 #include "catalog/pg_depend.h"
47 #include "catalog/pg_description.h"
48 #include "catalog/pg_inherits.h"
49 #include "catalog/pg_opclass.h"
50 #include "catalog/pg_operator.h"
51 #include "catalog/pg_tablespace.h"
52 #include "catalog/pg_trigger.h"
53 #include "catalog/pg_type.h"
54 #include "catalog/storage.h"
55 #include "commands/event_trigger.h"
56 #include "commands/progress.h"
57 #include "commands/tablecmds.h"
58 #include "commands/trigger.h"
59 #include "executor/executor.h"
60 #include "miscadmin.h"
61 #include "nodes/makefuncs.h"
62 #include "nodes/nodeFuncs.h"
63 #include "optimizer/optimizer.h"
64 #include "parser/parser.h"
65 #include "pgstat.h"
66 #include "rewrite/rewriteManip.h"
67 #include "storage/bufmgr.h"
68 #include "storage/lmgr.h"
69 #include "storage/predicate.h"
70 #include "storage/procarray.h"
71 #include "storage/smgr.h"
72 #include "utils/builtins.h"
73 #include "utils/fmgroids.h"
74 #include "utils/guc.h"
75 #include "utils/inval.h"
76 #include "utils/lsyscache.h"
77 #include "utils/memutils.h"
78 #include "utils/pg_rusage.h"
79 #include "utils/snapmgr.h"
80 #include "utils/syscache.h"
81 #include "utils/tuplesort.h"
82 
83 /* Potentially set by pg_upgrade_support functions */
85 
86 /*
87  * Pointer-free representation of variables used when reindexing system
88  * catalogs; we use this to propagate those values to parallel workers.
89  */
90 typedef struct
91 {
97 
98 /* non-export function prototypes */
99 static bool relationHasPrimaryKey(Relation rel);
100 static TupleDesc ConstructTupleDescriptor(Relation heapRelation,
101  IndexInfo *indexInfo,
102  List *indexColNames,
103  Oid accessMethodObjectId,
104  Oid *collationObjectId,
105  Oid *classObjectId);
106 static void InitializeAttributeOids(Relation indexRelation,
107  int numatts, Oid indexoid);
108 static void AppendAttributeTuples(Relation indexRelation, int numatts);
109 static void UpdateIndexRelation(Oid indexoid, Oid heapoid,
110  Oid parentIndexId,
111  IndexInfo *indexInfo,
112  Oid *collationOids,
113  Oid *classOids,
114  int16 *coloptions,
115  bool primary,
116  bool isexclusion,
117  bool immediate,
118  bool isvalid,
119  bool isready);
120 static void index_update_stats(Relation rel,
121  bool hasindex,
122  double reltuples);
123 static void IndexCheckExclusion(Relation heapRelation,
124  Relation indexRelation,
125  IndexInfo *indexInfo);
126 static bool validate_index_callback(ItemPointer itemptr, void *opaque);
127 static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid);
128 static void SetReindexProcessing(Oid heapOid, Oid indexOid);
129 static void ResetReindexProcessing(void);
130 static void SetReindexPending(List *indexes);
131 static void RemoveReindexPending(Oid indexOid);
132 static void ResetReindexPending(void);
133 
134 
135 /*
136  * relationHasPrimaryKey
137  * See whether an existing relation has a primary key.
138  *
139  * Caller must have suitable lock on the relation.
140  *
141  * Note: we intentionally do not check indisvalid here; that's because this
142  * is used to enforce the rule that there can be only one indisprimary index,
143  * and we want that to be true even if said index is invalid.
144  */
145 static bool
147 {
148  bool result = false;
149  List *indexoidlist;
150  ListCell *indexoidscan;
151 
152  /*
153  * Get the list of index OIDs for the table from the relcache, and look up
154  * each one in the pg_index syscache until we find one marked primary key
155  * (hopefully there isn't more than one such).
156  */
157  indexoidlist = RelationGetIndexList(rel);
158 
159  foreach(indexoidscan, indexoidlist)
160  {
161  Oid indexoid = lfirst_oid(indexoidscan);
162  HeapTuple indexTuple;
163 
164  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid));
165  if (!HeapTupleIsValid(indexTuple)) /* should not happen */
166  elog(ERROR, "cache lookup failed for index %u", indexoid);
167  result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary;
168  ReleaseSysCache(indexTuple);
169  if (result)
170  break;
171  }
172 
173  list_free(indexoidlist);
174 
175  return result;
176 }
177 
178 /*
179  * index_check_primary_key
180  * Apply special checks needed before creating a PRIMARY KEY index
181  *
182  * This processing used to be in DefineIndex(), but has been split out
183  * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX.
184  *
185  * We check for a pre-existing primary key, and that all columns of the index
186  * are simple column references (not expressions), and that all those
187  * columns are marked NOT NULL. If not, fail.
188  *
189  * We used to automatically change unmarked columns to NOT NULL here by doing
190  * our own local ALTER TABLE command. But that doesn't work well if we're
191  * executing one subcommand of an ALTER TABLE: the operations may not get
192  * performed in the right order overall. Now we expect that the parser
193  * inserted any required ALTER TABLE SET NOT NULL operations before trying
194  * to create a primary-key index.
195  *
196  * Caller had better have at least ShareLock on the table, else the not-null
197  * checking isn't trustworthy.
198  */
199 void
201  IndexInfo *indexInfo,
202  bool is_alter_table,
203  IndexStmt *stmt)
204 {
205  int i;
206 
207  /*
208  * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't
209  * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we
210  * have faith that the parser rejected multiple pkey clauses; and CREATE
211  * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either.
212  */
213  if ((is_alter_table || heapRel->rd_rel->relispartition) &&
214  relationHasPrimaryKey(heapRel))
215  {
216  ereport(ERROR,
217  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
218  errmsg("multiple primary keys for table \"%s\" are not allowed",
219  RelationGetRelationName(heapRel))));
220  }
221 
222  /*
223  * Check that all of the attributes in a primary key are marked as not
224  * null. (We don't really expect to see that; it'd mean the parser messed
225  * up. But it seems wise to check anyway.)
226  */
227  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
228  {
229  AttrNumber attnum = indexInfo->ii_IndexAttrNumbers[i];
230  HeapTuple atttuple;
231  Form_pg_attribute attform;
232 
233  if (attnum == 0)
234  ereport(ERROR,
235  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
236  errmsg("primary keys cannot be expressions")));
237 
238  /* System attributes are never null, so no need to check */
239  if (attnum < 0)
240  continue;
241 
242  atttuple = SearchSysCache2(ATTNUM,
244  Int16GetDatum(attnum));
245  if (!HeapTupleIsValid(atttuple))
246  elog(ERROR, "cache lookup failed for attribute %d of relation %u",
247  attnum, RelationGetRelid(heapRel));
248  attform = (Form_pg_attribute) GETSTRUCT(atttuple);
249 
250  if (!attform->attnotnull)
251  ereport(ERROR,
252  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
253  errmsg("primary key column \"%s\" is not marked NOT NULL",
254  NameStr(attform->attname))));
255 
256  ReleaseSysCache(atttuple);
257  }
258 }
259 
260 /*
261  * ConstructTupleDescriptor
262  *
263  * Build an index tuple descriptor for a new index
264  */
265 static TupleDesc
267  IndexInfo *indexInfo,
268  List *indexColNames,
269  Oid accessMethodObjectId,
270  Oid *collationObjectId,
271  Oid *classObjectId)
272 {
273  int numatts = indexInfo->ii_NumIndexAttrs;
274  int numkeyatts = indexInfo->ii_NumIndexKeyAttrs;
275  ListCell *colnames_item = list_head(indexColNames);
276  ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
277  IndexAmRoutine *amroutine;
278  TupleDesc heapTupDesc;
279  TupleDesc indexTupDesc;
280  int natts; /* #atts in heap rel --- for error checks */
281  int i;
282 
283  /* We need access to the index AM's API struct */
284  amroutine = GetIndexAmRoutineByAmId(accessMethodObjectId, false);
285 
286  /* ... and to the table's tuple descriptor */
287  heapTupDesc = RelationGetDescr(heapRelation);
288  natts = RelationGetForm(heapRelation)->relnatts;
289 
290  /*
291  * allocate the new tuple descriptor
292  */
293  indexTupDesc = CreateTemplateTupleDesc(numatts);
294 
295  /*
296  * Fill in the pg_attribute row.
297  */
298  for (i = 0; i < numatts; i++)
299  {
300  AttrNumber atnum = indexInfo->ii_IndexAttrNumbers[i];
301  Form_pg_attribute to = TupleDescAttr(indexTupDesc, i);
302  HeapTuple tuple;
303  Form_pg_type typeTup;
304  Form_pg_opclass opclassTup;
305  Oid keyType;
306 
308  to->attnum = i + 1;
309  to->attstattarget = -1;
310  to->attcacheoff = -1;
311  to->attislocal = true;
312  to->attcollation = (i < numkeyatts) ?
313  collationObjectId[i] : InvalidOid;
314 
315  /*
316  * Set the attribute name as specified by caller.
317  */
318  if (colnames_item == NULL) /* shouldn't happen */
319  elog(ERROR, "too few entries in colnames list");
320  namestrcpy(&to->attname, (const char *) lfirst(colnames_item));
321  colnames_item = lnext(indexColNames, colnames_item);
322 
323  /*
324  * For simple index columns, we copy some pg_attribute fields from the
325  * parent relation. For expressions we have to look at the expression
326  * result.
327  */
328  if (atnum != 0)
329  {
330  /* Simple index column */
331  const FormData_pg_attribute *from;
332 
333  Assert(atnum > 0); /* should've been caught above */
334 
335  if (atnum > natts) /* safety check */
336  elog(ERROR, "invalid column number %d", atnum);
337  from = TupleDescAttr(heapTupDesc,
338  AttrNumberGetAttrOffset(atnum));
339 
340  to->atttypid = from->atttypid;
341  to->attlen = from->attlen;
342  to->attndims = from->attndims;
343  to->atttypmod = from->atttypmod;
344  to->attbyval = from->attbyval;
345  to->attstorage = from->attstorage;
346  to->attalign = from->attalign;
347  }
348  else
349  {
350  /* Expressional index */
351  Node *indexkey;
352 
353  if (indexpr_item == NULL) /* shouldn't happen */
354  elog(ERROR, "too few entries in indexprs list");
355  indexkey = (Node *) lfirst(indexpr_item);
356  indexpr_item = lnext(indexInfo->ii_Expressions, indexpr_item);
357 
358  /*
359  * Lookup the expression type in pg_type for the type length etc.
360  */
361  keyType = exprType(indexkey);
362  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
363  if (!HeapTupleIsValid(tuple))
364  elog(ERROR, "cache lookup failed for type %u", keyType);
365  typeTup = (Form_pg_type) GETSTRUCT(tuple);
366 
367  /*
368  * Assign some of the attributes values. Leave the rest.
369  */
370  to->atttypid = keyType;
371  to->attlen = typeTup->typlen;
372  to->attbyval = typeTup->typbyval;
373  to->attstorage = typeTup->typstorage;
374  to->attalign = typeTup->typalign;
375  to->atttypmod = exprTypmod(indexkey);
376 
377  ReleaseSysCache(tuple);
378 
379  /*
380  * Make sure the expression yields a type that's safe to store in
381  * an index. We need this defense because we have index opclasses
382  * for pseudo-types such as "record", and the actually stored type
383  * had better be safe; eg, a named composite type is okay, an
384  * anonymous record type is not. The test is the same as for
385  * whether a table column is of a safe type (which is why we
386  * needn't check for the non-expression case).
387  */
388  CheckAttributeType(NameStr(to->attname),
389  to->atttypid, to->attcollation,
390  NIL, 0);
391  }
392 
393  /*
394  * We do not yet have the correct relation OID for the index, so just
395  * set it invalid for now. InitializeAttributeOids() will fix it
396  * later.
397  */
398  to->attrelid = InvalidOid;
399 
400  /*
401  * Check the opclass and index AM to see if either provides a keytype
402  * (overriding the attribute type). Opclass (if exists) takes
403  * precedence.
404  */
405  keyType = amroutine->amkeytype;
406 
407  if (i < indexInfo->ii_NumIndexKeyAttrs)
408  {
409  tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(classObjectId[i]));
410  if (!HeapTupleIsValid(tuple))
411  elog(ERROR, "cache lookup failed for opclass %u",
412  classObjectId[i]);
413  opclassTup = (Form_pg_opclass) GETSTRUCT(tuple);
414  if (OidIsValid(opclassTup->opckeytype))
415  keyType = opclassTup->opckeytype;
416 
417  /*
418  * If keytype is specified as ANYELEMENT, and opcintype is
419  * ANYARRAY, then the attribute type must be an array (else it'd
420  * not have matched this opclass); use its element type.
421  *
422  * We could also allow ANYCOMPATIBLE/ANYCOMPATIBLEARRAY here, but
423  * there seems no need to do so; there's no reason to declare an
424  * opclass as taking ANYCOMPATIBLEARRAY rather than ANYARRAY.
425  */
426  if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID)
427  {
428  keyType = get_base_element_type(to->atttypid);
429  if (!OidIsValid(keyType))
430  elog(ERROR, "could not get element type of array type %u",
431  to->atttypid);
432  }
433 
434  ReleaseSysCache(tuple);
435  }
436 
437  /*
438  * If a key type different from the heap value is specified, update
439  * the type-related fields in the index tupdesc.
440  */
441  if (OidIsValid(keyType) && keyType != to->atttypid)
442  {
443  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
444  if (!HeapTupleIsValid(tuple))
445  elog(ERROR, "cache lookup failed for type %u", keyType);
446  typeTup = (Form_pg_type) GETSTRUCT(tuple);
447 
448  to->atttypid = keyType;
449  to->atttypmod = -1;
450  to->attlen = typeTup->typlen;
451  to->attbyval = typeTup->typbyval;
452  to->attalign = typeTup->typalign;
453  to->attstorage = typeTup->typstorage;
454 
455  ReleaseSysCache(tuple);
456  }
457  }
458 
459  pfree(amroutine);
460 
461  return indexTupDesc;
462 }
463 
464 /* ----------------------------------------------------------------
465  * InitializeAttributeOids
466  * ----------------------------------------------------------------
467  */
468 static void
470  int numatts,
471  Oid indexoid)
472 {
473  TupleDesc tupleDescriptor;
474  int i;
475 
476  tupleDescriptor = RelationGetDescr(indexRelation);
477 
478  for (i = 0; i < numatts; i += 1)
479  TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid;
480 }
481 
482 /* ----------------------------------------------------------------
483  * AppendAttributeTuples
484  * ----------------------------------------------------------------
485  */
486 static void
487 AppendAttributeTuples(Relation indexRelation, int numatts)
488 {
489  Relation pg_attribute;
490  CatalogIndexState indstate;
491  TupleDesc indexTupDesc;
492  int i;
493 
494  /*
495  * open the attribute relation and its indexes
496  */
497  pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
498 
499  indstate = CatalogOpenIndexes(pg_attribute);
500 
501  /*
502  * insert data from new index's tupdesc into pg_attribute
503  */
504  indexTupDesc = RelationGetDescr(indexRelation);
505 
506  for (i = 0; i < numatts; i++)
507  {
508  Form_pg_attribute attr = TupleDescAttr(indexTupDesc, i);
509 
510  Assert(attr->attnum == i + 1);
511 
512  InsertPgAttributeTuple(pg_attribute, attr, indstate);
513  }
514 
515  CatalogCloseIndexes(indstate);
516 
517  table_close(pg_attribute, RowExclusiveLock);
518 }
519 
520 /* ----------------------------------------------------------------
521  * UpdateIndexRelation
522  *
523  * Construct and insert a new entry in the pg_index catalog
524  * ----------------------------------------------------------------
525  */
526 static void
528  Oid heapoid,
529  Oid parentIndexId,
530  IndexInfo *indexInfo,
531  Oid *collationOids,
532  Oid *classOids,
533  int16 *coloptions,
534  bool primary,
535  bool isexclusion,
536  bool immediate,
537  bool isvalid,
538  bool isready)
539 {
540  int2vector *indkey;
541  oidvector *indcollation;
542  oidvector *indclass;
543  int2vector *indoption;
544  Datum exprsDatum;
545  Datum predDatum;
546  Datum values[Natts_pg_index];
547  bool nulls[Natts_pg_index];
548  Relation pg_index;
549  HeapTuple tuple;
550  int i;
551 
552  /*
553  * Copy the index key, opclass, and indoption info into arrays (should we
554  * make the caller pass them like this to start with?)
555  */
556  indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs);
557  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
558  indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i];
559  indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs);
560  indclass = buildoidvector(classOids, indexInfo->ii_NumIndexKeyAttrs);
561  indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs);
562 
563  /*
564  * Convert the index expressions (if any) to a text datum
565  */
566  if (indexInfo->ii_Expressions != NIL)
567  {
568  char *exprsString;
569 
570  exprsString = nodeToString(indexInfo->ii_Expressions);
571  exprsDatum = CStringGetTextDatum(exprsString);
572  pfree(exprsString);
573  }
574  else
575  exprsDatum = (Datum) 0;
576 
577  /*
578  * Convert the index predicate (if any) to a text datum. Note we convert
579  * implicit-AND format to normal explicit-AND for storage.
580  */
581  if (indexInfo->ii_Predicate != NIL)
582  {
583  char *predString;
584 
585  predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate));
586  predDatum = CStringGetTextDatum(predString);
587  pfree(predString);
588  }
589  else
590  predDatum = (Datum) 0;
591 
592  /*
593  * open the system catalog index relation
594  */
595  pg_index = table_open(IndexRelationId, RowExclusiveLock);
596 
597  /*
598  * Build a pg_index tuple
599  */
600  MemSet(nulls, false, sizeof(nulls));
601 
602  values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid);
603  values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid);
604  values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs);
605  values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs);
606  values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique);
607  values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary);
608  values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion);
609  values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate);
610  values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false);
611  values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid);
612  values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false);
613  values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready);
614  values[Anum_pg_index_indislive - 1] = BoolGetDatum(true);
615  values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false);
616  values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey);
617  values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation);
618  values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass);
619  values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption);
620  values[Anum_pg_index_indexprs - 1] = exprsDatum;
621  if (exprsDatum == (Datum) 0)
622  nulls[Anum_pg_index_indexprs - 1] = true;
623  values[Anum_pg_index_indpred - 1] = predDatum;
624  if (predDatum == (Datum) 0)
625  nulls[Anum_pg_index_indpred - 1] = true;
626 
627  tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls);
628 
629  /*
630  * insert the tuple into the pg_index catalog
631  */
632  CatalogTupleInsert(pg_index, tuple);
633 
634  /*
635  * close the relation and free the tuple
636  */
637  table_close(pg_index, RowExclusiveLock);
638  heap_freetuple(tuple);
639 }
640 
641 
642 /*
643  * index_create
644  *
645  * heapRelation: table to build index on (suitably locked by caller)
646  * indexRelationName: what it say
647  * indexRelationId: normally, pass InvalidOid to let this routine
648  * generate an OID for the index. During bootstrap this may be
649  * nonzero to specify a preselected OID.
650  * parentIndexRelid: if creating an index partition, the OID of the
651  * parent index; otherwise InvalidOid.
652  * parentConstraintId: if creating a constraint on a partition, the OID
653  * of the constraint in the parent; otherwise InvalidOid.
654  * relFileNode: normally, pass InvalidOid to get new storage. May be
655  * nonzero to attach an existing valid build.
656  * indexInfo: same info executor uses to insert into the index
657  * indexColNames: column names to use for index (List of char *)
658  * accessMethodObjectId: OID of index AM to use
659  * tableSpaceId: OID of tablespace to use
660  * collationObjectId: array of collation OIDs, one per index column
661  * classObjectId: array of index opclass OIDs, one per index column
662  * coloptions: array of per-index-column indoption settings
663  * reloptions: AM-specific options
664  * flags: bitmask that can include any combination of these bits:
665  * INDEX_CREATE_IS_PRIMARY
666  * the index is a primary key
667  * INDEX_CREATE_ADD_CONSTRAINT:
668  * invoke index_constraint_create also
669  * INDEX_CREATE_SKIP_BUILD:
670  * skip the index_build() step for the moment; caller must do it
671  * later (typically via reindex_index())
672  * INDEX_CREATE_CONCURRENT:
673  * do not lock the table against writers. The index will be
674  * marked "invalid" and the caller must take additional steps
675  * to fix it up.
676  * INDEX_CREATE_IF_NOT_EXISTS:
677  * do not throw an error if a relation with the same name
678  * already exists.
679  * INDEX_CREATE_PARTITIONED:
680  * create a partitioned index (table must be partitioned)
681  * constr_flags: flags passed to index_constraint_create
682  * (only if INDEX_CREATE_ADD_CONSTRAINT is set)
683  * allow_system_table_mods: allow table to be a system catalog
684  * is_internal: if true, post creation hook for new index
685  * constraintId: if not NULL, receives OID of created constraint
686  *
687  * Returns the OID of the created index.
688  */
689 Oid
690 index_create(Relation heapRelation,
691  const char *indexRelationName,
692  Oid indexRelationId,
693  Oid parentIndexRelid,
694  Oid parentConstraintId,
695  Oid relFileNode,
696  IndexInfo *indexInfo,
697  List *indexColNames,
698  Oid accessMethodObjectId,
699  Oid tableSpaceId,
700  Oid *collationObjectId,
701  Oid *classObjectId,
702  int16 *coloptions,
703  Datum reloptions,
704  bits16 flags,
705  bits16 constr_flags,
706  bool allow_system_table_mods,
707  bool is_internal,
708  Oid *constraintId)
709 {
710  Oid heapRelationId = RelationGetRelid(heapRelation);
711  Relation pg_class;
712  Relation indexRelation;
713  TupleDesc indexTupDesc;
714  bool shared_relation;
715  bool mapped_relation;
716  bool is_exclusion;
717  Oid namespaceId;
718  int i;
719  char relpersistence;
720  bool isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0;
721  bool invalid = (flags & INDEX_CREATE_INVALID) != 0;
722  bool concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0;
723  bool partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0;
724  char relkind;
725  TransactionId relfrozenxid;
726  MultiXactId relminmxid;
727 
728  /* constraint flags can only be set when a constraint is requested */
729  Assert((constr_flags == 0) ||
730  ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0));
731  /* partitioned indexes must never be "built" by themselves */
732  Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD));
733 
734  relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX;
735  is_exclusion = (indexInfo->ii_ExclusionOps != NULL);
736 
737  pg_class = table_open(RelationRelationId, RowExclusiveLock);
738 
739  /*
740  * The index will be in the same namespace as its parent table, and is
741  * shared across databases if and only if the parent is. Likewise, it
742  * will use the relfilenode map if and only if the parent does; and it
743  * inherits the parent's relpersistence.
744  */
745  namespaceId = RelationGetNamespace(heapRelation);
746  shared_relation = heapRelation->rd_rel->relisshared;
747  mapped_relation = RelationIsMapped(heapRelation);
748  relpersistence = heapRelation->rd_rel->relpersistence;
749 
750  /*
751  * check parameters
752  */
753  if (indexInfo->ii_NumIndexAttrs < 1)
754  elog(ERROR, "must index at least one column");
755 
756  if (!allow_system_table_mods &&
757  IsSystemRelation(heapRelation) &&
759  ereport(ERROR,
760  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
761  errmsg("user-defined indexes on system catalog tables are not supported")));
762 
763  /*
764  * Btree text_pattern_ops uses text_eq as the equality operator, which is
765  * fine as long as the collation is deterministic; text_eq then reduces to
766  * bitwise equality and so it is semantically compatible with the other
767  * operators and functions in that opclass. But with a nondeterministic
768  * collation, text_eq could yield results that are incompatible with the
769  * actual behavior of the index (which is determined by the opclass's
770  * comparison function). We prevent such problems by refusing creation of
771  * an index with that opclass and a nondeterministic collation.
772  *
773  * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we
774  * find more cases, we might decide to create a real mechanism for marking
775  * opclasses as incompatible with nondeterminism; but for now, this small
776  * hack suffices.
777  *
778  * Another solution is to use a special operator, not text_eq, as the
779  * equality opclass member; but that is undesirable because it would
780  * prevent index usage in many queries that work fine today.
781  */
782  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
783  {
784  Oid collation = collationObjectId[i];
785  Oid opclass = classObjectId[i];
786 
787  if (collation)
788  {
789  if ((opclass == TEXT_BTREE_PATTERN_OPS_OID ||
790  opclass == VARCHAR_BTREE_PATTERN_OPS_OID ||
791  opclass == BPCHAR_BTREE_PATTERN_OPS_OID) &&
792  !get_collation_isdeterministic(collation))
793  {
794  HeapTuple classtup;
795 
796  classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass));
797  if (!HeapTupleIsValid(classtup))
798  elog(ERROR, "cache lookup failed for operator class %u", opclass);
799  ereport(ERROR,
800  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
801  errmsg("nondeterministic collations are not supported for operator class \"%s\"",
802  NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname))));
803  ReleaseSysCache(classtup);
804  }
805  }
806  }
807 
808  /*
809  * Concurrent index build on a system catalog is unsafe because we tend to
810  * release locks before committing in catalogs.
811  */
812  if (concurrent &&
813  IsCatalogRelation(heapRelation))
814  ereport(ERROR,
815  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
816  errmsg("concurrent index creation on system catalog tables is not supported")));
817 
818  /*
819  * This case is currently not supported. There's no way to ask for it in
820  * the grammar with CREATE INDEX, but it can happen with REINDEX.
821  */
822  if (concurrent && is_exclusion)
823  ereport(ERROR,
824  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
825  errmsg("concurrent index creation for exclusion constraints is not supported")));
826 
827  /*
828  * We cannot allow indexing a shared relation after initdb (because
829  * there's no way to make the entry in other databases' pg_class).
830  */
831  if (shared_relation && !IsBootstrapProcessingMode())
832  ereport(ERROR,
833  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
834  errmsg("shared indexes cannot be created after initdb")));
835 
836  /*
837  * Shared relations must be in pg_global, too (last-ditch check)
838  */
839  if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID)
840  elog(ERROR, "shared relations must be placed in pg_global tablespace");
841 
842  /*
843  * Check for duplicate name (both as to the index, and as to the
844  * associated constraint if any). Such cases would fail on the relevant
845  * catalogs' unique indexes anyway, but we prefer to give a friendlier
846  * error message.
847  */
848  if (get_relname_relid(indexRelationName, namespaceId))
849  {
850  if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0)
851  {
852  ereport(NOTICE,
853  (errcode(ERRCODE_DUPLICATE_TABLE),
854  errmsg("relation \"%s\" already exists, skipping",
855  indexRelationName)));
856  table_close(pg_class, RowExclusiveLock);
857  return InvalidOid;
858  }
859 
860  ereport(ERROR,
861  (errcode(ERRCODE_DUPLICATE_TABLE),
862  errmsg("relation \"%s\" already exists",
863  indexRelationName)));
864  }
865 
866  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 &&
868  indexRelationName))
869  {
870  /*
871  * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the
872  * conflicting constraint is not an index.
873  */
874  ereport(ERROR,
876  errmsg("constraint \"%s\" for relation \"%s\" already exists",
877  indexRelationName, RelationGetRelationName(heapRelation))));
878  }
879 
880  /*
881  * construct tuple descriptor for index tuples
882  */
883  indexTupDesc = ConstructTupleDescriptor(heapRelation,
884  indexInfo,
885  indexColNames,
886  accessMethodObjectId,
887  collationObjectId,
888  classObjectId);
889 
890  /*
891  * Allocate an OID for the index, unless we were told what to use.
892  *
893  * The OID will be the relfilenode as well, so make sure it doesn't
894  * collide with either pg_class OIDs or existing physical files.
895  */
896  if (!OidIsValid(indexRelationId))
897  {
898  /* Use binary-upgrade override for pg_class.oid/relfilenode? */
899  if (IsBinaryUpgrade)
900  {
902  ereport(ERROR,
903  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
904  errmsg("pg_class index OID value not set when in binary upgrade mode")));
905 
906  indexRelationId = binary_upgrade_next_index_pg_class_oid;
908  }
909  else
910  {
911  indexRelationId =
912  GetNewRelFileNode(tableSpaceId, pg_class, relpersistence);
913  }
914  }
915 
916  /*
917  * create the index relation's relcache entry and, if necessary, the
918  * physical disk file. (If we fail further down, it's the smgr's
919  * responsibility to remove the disk file again, if any.)
920  */
921  indexRelation = heap_create(indexRelationName,
922  namespaceId,
923  tableSpaceId,
924  indexRelationId,
925  relFileNode,
926  accessMethodObjectId,
927  indexTupDesc,
928  relkind,
929  relpersistence,
930  shared_relation,
931  mapped_relation,
932  allow_system_table_mods,
933  &relfrozenxid,
934  &relminmxid);
935 
936  Assert(relfrozenxid == InvalidTransactionId);
937  Assert(relminmxid == InvalidMultiXactId);
938  Assert(indexRelationId == RelationGetRelid(indexRelation));
939 
940  /*
941  * Obtain exclusive lock on it. Although no other transactions can see it
942  * until we commit, this prevents deadlock-risk complaints from lock
943  * manager in cases such as CLUSTER.
944  */
945  LockRelation(indexRelation, AccessExclusiveLock);
946 
947  /*
948  * Fill in fields of the index's pg_class entry that are not set correctly
949  * by heap_create.
950  *
951  * XXX should have a cleaner way to create cataloged indexes
952  */
953  indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner;
954  indexRelation->rd_rel->relam = accessMethodObjectId;
955  indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid);
956 
957  /*
958  * store index's pg_class entry
959  */
960  InsertPgClassTuple(pg_class, indexRelation,
961  RelationGetRelid(indexRelation),
962  (Datum) 0,
963  reloptions);
964 
965  /* done with pg_class */
966  table_close(pg_class, RowExclusiveLock);
967 
968  /*
969  * now update the object id's of all the attribute tuple forms in the
970  * index relation's tuple descriptor
971  */
972  InitializeAttributeOids(indexRelation,
973  indexInfo->ii_NumIndexAttrs,
974  indexRelationId);
975 
976  /*
977  * append ATTRIBUTE tuples for the index
978  */
979  AppendAttributeTuples(indexRelation, indexInfo->ii_NumIndexAttrs);
980 
981  /* ----------------
982  * update pg_index
983  * (append INDEX tuple)
984  *
985  * Note that this stows away a representation of "predicate".
986  * (Or, could define a rule to maintain the predicate) --Nels, Feb '92
987  * ----------------
988  */
989  UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid,
990  indexInfo,
991  collationObjectId, classObjectId, coloptions,
992  isprimary, is_exclusion,
993  (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0,
994  !concurrent && !invalid,
995  !concurrent);
996 
997  /*
998  * Register relcache invalidation on the indexes' heap relation, to
999  * maintain consistency of its index list
1000  */
1001  CacheInvalidateRelcache(heapRelation);
1002 
1003  /* update pg_inherits and the parent's relhassubclass, if needed */
1004  if (OidIsValid(parentIndexRelid))
1005  {
1006  StoreSingleInheritance(indexRelationId, parentIndexRelid, 1);
1007  SetRelationHasSubclass(parentIndexRelid, true);
1008  }
1009 
1010  /*
1011  * Register constraint and dependencies for the index.
1012  *
1013  * If the index is from a CONSTRAINT clause, construct a pg_constraint
1014  * entry. The index will be linked to the constraint, which in turn is
1015  * linked to the table. If it's not a CONSTRAINT, we need to make a
1016  * dependency directly on the table.
1017  *
1018  * We don't need a dependency on the namespace, because there'll be an
1019  * indirect dependency via our parent table.
1020  *
1021  * During bootstrap we can't register any dependencies, and we don't try
1022  * to make a constraint either.
1023  */
1025  {
1026  ObjectAddress myself,
1027  referenced;
1028 
1029  myself.classId = RelationRelationId;
1030  myself.objectId = indexRelationId;
1031  myself.objectSubId = 0;
1032 
1033  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)
1034  {
1035  char constraintType;
1036  ObjectAddress localaddr;
1037 
1038  if (isprimary)
1039  constraintType = CONSTRAINT_PRIMARY;
1040  else if (indexInfo->ii_Unique)
1041  constraintType = CONSTRAINT_UNIQUE;
1042  else if (is_exclusion)
1043  constraintType = CONSTRAINT_EXCLUSION;
1044  else
1045  {
1046  elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
1047  constraintType = 0; /* keep compiler quiet */
1048  }
1049 
1050  localaddr = index_constraint_create(heapRelation,
1051  indexRelationId,
1052  parentConstraintId,
1053  indexInfo,
1054  indexRelationName,
1055  constraintType,
1056  constr_flags,
1057  allow_system_table_mods,
1058  is_internal);
1059  if (constraintId)
1060  *constraintId = localaddr.objectId;
1061  }
1062  else
1063  {
1064  bool have_simple_col = false;
1065 
1066  /* Create auto dependencies on simply-referenced columns */
1067  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
1068  {
1069  if (indexInfo->ii_IndexAttrNumbers[i] != 0)
1070  {
1071  referenced.classId = RelationRelationId;
1072  referenced.objectId = heapRelationId;
1073  referenced.objectSubId = indexInfo->ii_IndexAttrNumbers[i];
1074 
1075  recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO);
1076 
1077  have_simple_col = true;
1078  }
1079  }
1080 
1081  /*
1082  * If there are no simply-referenced columns, give the index an
1083  * auto dependency on the whole table. In most cases, this will
1084  * be redundant, but it might not be if the index expressions and
1085  * predicate contain no Vars or only whole-row Vars.
1086  */
1087  if (!have_simple_col)
1088  {
1089  referenced.classId = RelationRelationId;
1090  referenced.objectId = heapRelationId;
1091  referenced.objectSubId = 0;
1092 
1093  recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO);
1094  }
1095  }
1096 
1097  /*
1098  * If this is an index partition, create partition dependencies on
1099  * both the parent index and the table. (Note: these must be *in
1100  * addition to*, not instead of, all other dependencies. Otherwise
1101  * we'll be short some dependencies after DETACH PARTITION.)
1102  */
1103  if (OidIsValid(parentIndexRelid))
1104  {
1105  referenced.classId = RelationRelationId;
1106  referenced.objectId = parentIndexRelid;
1107  referenced.objectSubId = 0;
1108 
1109  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1110 
1111  referenced.classId = RelationRelationId;
1112  referenced.objectId = heapRelationId;
1113  referenced.objectSubId = 0;
1114 
1115  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1116  }
1117 
1118  /* Store dependency on collations */
1119  /* The default collation is pinned, so don't bother recording it */
1120  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1121  {
1122  if (OidIsValid(collationObjectId[i]) &&
1123  collationObjectId[i] != DEFAULT_COLLATION_OID)
1124  {
1125  referenced.classId = CollationRelationId;
1126  referenced.objectId = collationObjectId[i];
1127  referenced.objectSubId = 0;
1128 
1129  recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL);
1130  }
1131  }
1132 
1133  /* Store dependency on operator classes */
1134  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1135  {
1136  referenced.classId = OperatorClassRelationId;
1137  referenced.objectId = classObjectId[i];
1138  referenced.objectSubId = 0;
1139 
1140  recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL);
1141  }
1142 
1143  /* Store dependencies on anything mentioned in index expressions */
1144  if (indexInfo->ii_Expressions)
1145  {
1147  (Node *) indexInfo->ii_Expressions,
1148  heapRelationId,
1150  DEPENDENCY_AUTO, false);
1151  }
1152 
1153  /* Store dependencies on anything mentioned in predicate */
1154  if (indexInfo->ii_Predicate)
1155  {
1157  (Node *) indexInfo->ii_Predicate,
1158  heapRelationId,
1160  DEPENDENCY_AUTO, false);
1161  }
1162  }
1163  else
1164  {
1165  /* Bootstrap mode - assert we weren't asked for constraint support */
1166  Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0);
1167  }
1168 
1169  /* Post creation hook for new index */
1170  InvokeObjectPostCreateHookArg(RelationRelationId,
1171  indexRelationId, 0, is_internal);
1172 
1173  /*
1174  * Advance the command counter so that we can see the newly-entered
1175  * catalog tuples for the index.
1176  */
1178 
1179  /*
1180  * In bootstrap mode, we have to fill in the index strategy structure with
1181  * information from the catalogs. If we aren't bootstrapping, then the
1182  * relcache entry has already been rebuilt thanks to sinval update during
1183  * CommandCounterIncrement.
1184  */
1186  RelationInitIndexAccessInfo(indexRelation);
1187  else
1188  Assert(indexRelation->rd_indexcxt != NULL);
1189 
1190  indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs;
1191 
1192  /*
1193  * If this is bootstrap (initdb) time, then we don't actually fill in the
1194  * index yet. We'll be creating more indexes and classes later, so we
1195  * delay filling them in until just before we're done with bootstrapping.
1196  * Similarly, if the caller specified to skip the build then filling the
1197  * index is delayed till later (ALTER TABLE can save work in some cases
1198  * with this). Otherwise, we call the AM routine that constructs the
1199  * index.
1200  */
1202  {
1203  index_register(heapRelationId, indexRelationId, indexInfo);
1204  }
1205  else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0)
1206  {
1207  /*
1208  * Caller is responsible for filling the index later on. However,
1209  * we'd better make sure that the heap relation is correctly marked as
1210  * having an index.
1211  */
1212  index_update_stats(heapRelation,
1213  true,
1214  -1.0);
1215  /* Make the above update visible */
1217  }
1218  else
1219  {
1220  index_build(heapRelation, indexRelation, indexInfo, false, true);
1221  }
1222 
1223  /*
1224  * Close the index; but we keep the lock that we acquired above until end
1225  * of transaction. Closing the heap is caller's responsibility.
1226  */
1227  index_close(indexRelation, NoLock);
1228 
1229  return indexRelationId;
1230 }
1231 
1232 /*
1233  * index_concurrently_create_copy
1234  *
1235  * Create concurrently an index based on the definition of the one provided by
1236  * caller. The index is inserted into catalogs and needs to be built later
1237  * on. This is called during concurrent reindex processing.
1238  */
1239 Oid
1240 index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, const char *newName)
1241 {
1242  Relation indexRelation;
1243  IndexInfo *oldInfo,
1244  *newInfo;
1245  Oid newIndexId = InvalidOid;
1246  HeapTuple indexTuple,
1247  classTuple;
1248  Datum indclassDatum,
1249  colOptionDatum,
1250  optionDatum;
1251  oidvector *indclass;
1252  int2vector *indcoloptions;
1253  bool isnull;
1254  List *indexColNames = NIL;
1255  List *indexExprs = NIL;
1256  List *indexPreds = NIL;
1257 
1258  indexRelation = index_open(oldIndexId, RowExclusiveLock);
1259 
1260  /* The new index needs some information from the old index */
1261  oldInfo = BuildIndexInfo(indexRelation);
1262 
1263  /*
1264  * Concurrent build of an index with exclusion constraints is not
1265  * supported.
1266  */
1267  if (oldInfo->ii_ExclusionOps != NULL)
1268  ereport(ERROR,
1269  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1270  errmsg("concurrent index creation for exclusion constraints is not supported")));
1271 
1272  /* Get the array of class and column options IDs from index info */
1273  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId));
1274  if (!HeapTupleIsValid(indexTuple))
1275  elog(ERROR, "cache lookup failed for index %u", oldIndexId);
1276  indclassDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1277  Anum_pg_index_indclass, &isnull);
1278  Assert(!isnull);
1279  indclass = (oidvector *) DatumGetPointer(indclassDatum);
1280 
1281  colOptionDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1282  Anum_pg_index_indoption, &isnull);
1283  Assert(!isnull);
1284  indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum);
1285 
1286  /* Fetch options of index if any */
1287  classTuple = SearchSysCache1(RELOID, oldIndexId);
1288  if (!HeapTupleIsValid(classTuple))
1289  elog(ERROR, "cache lookup failed for relation %u", oldIndexId);
1290  optionDatum = SysCacheGetAttr(RELOID, classTuple,
1291  Anum_pg_class_reloptions, &isnull);
1292 
1293  /*
1294  * Fetch the list of expressions and predicates directly from the
1295  * catalogs. This cannot rely on the information from IndexInfo of the
1296  * old index as these have been flattened for the planner.
1297  */
1298  if (oldInfo->ii_Expressions != NIL)
1299  {
1300  Datum exprDatum;
1301  char *exprString;
1302 
1303  exprDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1304  Anum_pg_index_indexprs, &isnull);
1305  Assert(!isnull);
1306  exprString = TextDatumGetCString(exprDatum);
1307  indexExprs = (List *) stringToNode(exprString);
1308  pfree(exprString);
1309  }
1310  if (oldInfo->ii_Predicate != NIL)
1311  {
1312  Datum predDatum;
1313  char *predString;
1314 
1315  predDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1316  Anum_pg_index_indpred, &isnull);
1317  Assert(!isnull);
1318  predString = TextDatumGetCString(predDatum);
1319  indexPreds = (List *) stringToNode(predString);
1320 
1321  /* Also convert to implicit-AND format */
1322  indexPreds = make_ands_implicit((Expr *) indexPreds);
1323  pfree(predString);
1324  }
1325 
1326  /*
1327  * Build the index information for the new index. Note that rebuild of
1328  * indexes with exclusion constraints is not supported, hence there is no
1329  * need to fill all the ii_Exclusion* fields.
1330  */
1331  newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs,
1332  oldInfo->ii_NumIndexKeyAttrs,
1333  oldInfo->ii_Am,
1334  indexExprs,
1335  indexPreds,
1336  oldInfo->ii_Unique,
1337  false, /* not ready for inserts */
1338  true);
1339 
1340  /*
1341  * Extract the list of column names and the column numbers for the new
1342  * index information. All this information will be used for the index
1343  * creation.
1344  */
1345  for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++)
1346  {
1347  TupleDesc indexTupDesc = RelationGetDescr(indexRelation);
1348  Form_pg_attribute att = TupleDescAttr(indexTupDesc, i);
1349 
1350  indexColNames = lappend(indexColNames, NameStr(att->attname));
1351  newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i];
1352  }
1353 
1354  /*
1355  * Now create the new index.
1356  *
1357  * For a partition index, we adjust the partition dependency later, to
1358  * ensure a consistent state at all times. That is why parentIndexRelid
1359  * is not set here.
1360  */
1361  newIndexId = index_create(heapRelation,
1362  newName,
1363  InvalidOid, /* indexRelationId */
1364  InvalidOid, /* parentIndexRelid */
1365  InvalidOid, /* parentConstraintId */
1366  InvalidOid, /* relFileNode */
1367  newInfo,
1368  indexColNames,
1369  indexRelation->rd_rel->relam,
1370  indexRelation->rd_rel->reltablespace,
1371  indexRelation->rd_indcollation,
1372  indclass->values,
1373  indcoloptions->values,
1374  optionDatum,
1376  0,
1377  true, /* allow table to be a system catalog? */
1378  false, /* is_internal? */
1379  NULL);
1380 
1381  /* Close the relations used and clean up */
1382  index_close(indexRelation, NoLock);
1383  ReleaseSysCache(indexTuple);
1384  ReleaseSysCache(classTuple);
1385 
1386  return newIndexId;
1387 }
1388 
1389 /*
1390  * index_concurrently_build
1391  *
1392  * Build index for a concurrent operation. Low-level locks are taken when
1393  * this operation is performed to prevent only schema changes, but they need
1394  * to be kept until the end of the transaction performing this operation.
1395  * 'indexOid' refers to an index relation OID already created as part of
1396  * previous processing, and 'heapOid' refers to its parent heap relation.
1397  */
1398 void
1400  Oid indexRelationId)
1401 {
1402  Relation heapRel;
1403  Relation indexRelation;
1404  IndexInfo *indexInfo;
1405 
1406  /* This had better make sure that a snapshot is active */
1408 
1409  /* Open and lock the parent heap relation */
1410  heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock);
1411 
1412  /* And the target index relation */
1413  indexRelation = index_open(indexRelationId, RowExclusiveLock);
1414 
1415  /*
1416  * We have to re-build the IndexInfo struct, since it was lost in the
1417  * commit of the transaction where this concurrent index was created at
1418  * the catalog level.
1419  */
1420  indexInfo = BuildIndexInfo(indexRelation);
1421  Assert(!indexInfo->ii_ReadyForInserts);
1422  indexInfo->ii_Concurrent = true;
1423  indexInfo->ii_BrokenHotChain = false;
1424 
1425  /* Now build the index */
1426  index_build(heapRel, indexRelation, indexInfo, false, true);
1427 
1428  /* Close both the relations, but keep the locks */
1429  table_close(heapRel, NoLock);
1430  index_close(indexRelation, NoLock);
1431 
1432  /*
1433  * Update the pg_index row to mark the index as ready for inserts. Once we
1434  * commit this transaction, any new transactions that open the table must
1435  * insert new entries into the index for insertions and non-HOT updates.
1436  */
1438 }
1439 
1440 /*
1441  * index_concurrently_swap
1442  *
1443  * Swap name, dependencies, and constraints of the old index over to the new
1444  * index, while marking the old index as invalid and the new as valid.
1445  */
1446 void
1447 index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
1448 {
1449  Relation pg_class,
1450  pg_index,
1451  pg_constraint,
1452  pg_trigger;
1453  Relation oldClassRel,
1454  newClassRel;
1455  HeapTuple oldClassTuple,
1456  newClassTuple;
1457  Form_pg_class oldClassForm,
1458  newClassForm;
1459  HeapTuple oldIndexTuple,
1460  newIndexTuple;
1461  Form_pg_index oldIndexForm,
1462  newIndexForm;
1463  bool isPartition;
1464  Oid indexConstraintOid;
1465  List *constraintOids = NIL;
1466  ListCell *lc;
1467 
1468  /*
1469  * Take a necessary lock on the old and new index before swapping them.
1470  */
1471  oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock);
1472  newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock);
1473 
1474  /* Now swap names and dependencies of those indexes */
1475  pg_class = table_open(RelationRelationId, RowExclusiveLock);
1476 
1477  oldClassTuple = SearchSysCacheCopy1(RELOID,
1478  ObjectIdGetDatum(oldIndexId));
1479  if (!HeapTupleIsValid(oldClassTuple))
1480  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1481  newClassTuple = SearchSysCacheCopy1(RELOID,
1482  ObjectIdGetDatum(newIndexId));
1483  if (!HeapTupleIsValid(newClassTuple))
1484  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1485 
1486  oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple);
1487  newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple);
1488 
1489  /* Swap the names */
1490  namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname));
1491  namestrcpy(&oldClassForm->relname, oldName);
1492 
1493  /* Swap the partition flags to track inheritance properly */
1494  isPartition = newClassForm->relispartition;
1495  newClassForm->relispartition = oldClassForm->relispartition;
1496  oldClassForm->relispartition = isPartition;
1497 
1498  CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple);
1499  CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple);
1500 
1501  heap_freetuple(oldClassTuple);
1502  heap_freetuple(newClassTuple);
1503 
1504  /* Now swap index info */
1505  pg_index = table_open(IndexRelationId, RowExclusiveLock);
1506 
1507  oldIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1508  ObjectIdGetDatum(oldIndexId));
1509  if (!HeapTupleIsValid(oldIndexTuple))
1510  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1511  newIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1512  ObjectIdGetDatum(newIndexId));
1513  if (!HeapTupleIsValid(newIndexTuple))
1514  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1515 
1516  oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple);
1517  newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple);
1518 
1519  /*
1520  * Copy constraint flags from the old index. This is safe because the old
1521  * index guaranteed uniqueness.
1522  */
1523  newIndexForm->indisprimary = oldIndexForm->indisprimary;
1524  oldIndexForm->indisprimary = false;
1525  newIndexForm->indisexclusion = oldIndexForm->indisexclusion;
1526  oldIndexForm->indisexclusion = false;
1527  newIndexForm->indimmediate = oldIndexForm->indimmediate;
1528  oldIndexForm->indimmediate = true;
1529 
1530  /* Preserve indisclustered in the new index */
1531  newIndexForm->indisclustered = oldIndexForm->indisclustered;
1532 
1533  /*
1534  * Mark the new index as valid, and the old index as invalid similarly
1535  * to what index_set_state_flags() does.
1536  */
1537  newIndexForm->indisvalid = true;
1538  oldIndexForm->indisvalid = false;
1539  oldIndexForm->indisclustered = false;
1540 
1541  CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple);
1542  CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple);
1543 
1544  heap_freetuple(oldIndexTuple);
1545  heap_freetuple(newIndexTuple);
1546 
1547  /*
1548  * Move constraints and triggers over to the new index
1549  */
1550 
1551  constraintOids = get_index_ref_constraints(oldIndexId);
1552 
1553  indexConstraintOid = get_index_constraint(oldIndexId);
1554 
1555  if (OidIsValid(indexConstraintOid))
1556  constraintOids = lappend_oid(constraintOids, indexConstraintOid);
1557 
1558  pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock);
1559  pg_trigger = table_open(TriggerRelationId, RowExclusiveLock);
1560 
1561  foreach(lc, constraintOids)
1562  {
1563  HeapTuple constraintTuple,
1564  triggerTuple;
1565  Form_pg_constraint conForm;
1566  ScanKeyData key[1];
1567  SysScanDesc scan;
1568  Oid constraintOid = lfirst_oid(lc);
1569 
1570  /* Move the constraint from the old to the new index */
1571  constraintTuple = SearchSysCacheCopy1(CONSTROID,
1572  ObjectIdGetDatum(constraintOid));
1573  if (!HeapTupleIsValid(constraintTuple))
1574  elog(ERROR, "could not find tuple for constraint %u", constraintOid);
1575 
1576  conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple));
1577 
1578  if (conForm->conindid == oldIndexId)
1579  {
1580  conForm->conindid = newIndexId;
1581 
1582  CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple);
1583  }
1584 
1585  heap_freetuple(constraintTuple);
1586 
1587  /* Search for trigger records */
1588  ScanKeyInit(&key[0],
1589  Anum_pg_trigger_tgconstraint,
1590  BTEqualStrategyNumber, F_OIDEQ,
1591  ObjectIdGetDatum(constraintOid));
1592 
1593  scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true,
1594  NULL, 1, key);
1595 
1596  while (HeapTupleIsValid((triggerTuple = systable_getnext(scan))))
1597  {
1598  Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1599 
1600  if (tgForm->tgconstrindid != oldIndexId)
1601  continue;
1602 
1603  /* Make a modifiable copy */
1604  triggerTuple = heap_copytuple(triggerTuple);
1605  tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1606 
1607  tgForm->tgconstrindid = newIndexId;
1608 
1609  CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple);
1610 
1611  heap_freetuple(triggerTuple);
1612  }
1613 
1614  systable_endscan(scan);
1615  }
1616 
1617  /*
1618  * Move comment if any
1619  */
1620  {
1621  Relation description;
1622  ScanKeyData skey[3];
1623  SysScanDesc sd;
1624  HeapTuple tuple;
1625  Datum values[Natts_pg_description] = {0};
1626  bool nulls[Natts_pg_description] = {0};
1627  bool replaces[Natts_pg_description] = {0};
1628 
1629  values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId);
1630  replaces[Anum_pg_description_objoid - 1] = true;
1631 
1632  ScanKeyInit(&skey[0],
1633  Anum_pg_description_objoid,
1634  BTEqualStrategyNumber, F_OIDEQ,
1635  ObjectIdGetDatum(oldIndexId));
1636  ScanKeyInit(&skey[1],
1637  Anum_pg_description_classoid,
1638  BTEqualStrategyNumber, F_OIDEQ,
1639  ObjectIdGetDatum(RelationRelationId));
1640  ScanKeyInit(&skey[2],
1641  Anum_pg_description_objsubid,
1642  BTEqualStrategyNumber, F_INT4EQ,
1643  Int32GetDatum(0));
1644 
1645  description = table_open(DescriptionRelationId, RowExclusiveLock);
1646 
1647  sd = systable_beginscan(description, DescriptionObjIndexId, true,
1648  NULL, 3, skey);
1649 
1650  while ((tuple = systable_getnext(sd)) != NULL)
1651  {
1652  tuple = heap_modify_tuple(tuple, RelationGetDescr(description),
1653  values, nulls, replaces);
1654  CatalogTupleUpdate(description, &tuple->t_self, tuple);
1655 
1656  break; /* Assume there can be only one match */
1657  }
1658 
1659  systable_endscan(sd);
1660  table_close(description, NoLock);
1661  }
1662 
1663  /*
1664  * Swap inheritance relationship with parent index
1665  */
1666  if (get_rel_relispartition(oldIndexId))
1667  {
1668  List *ancestors = get_partition_ancestors(oldIndexId);
1669  Oid parentIndexRelid = linitial_oid(ancestors);
1670 
1671  DeleteInheritsTuple(oldIndexId, parentIndexRelid);
1672  StoreSingleInheritance(newIndexId, parentIndexRelid, 1);
1673 
1674  list_free(ancestors);
1675  }
1676 
1677  /*
1678  * Swap all dependencies of and on the old index to the new one, and
1679  * vice-versa. Note that a call to CommandCounterIncrement() would cause
1680  * duplicate entries in pg_depend, so this should not be done.
1681  */
1682  changeDependenciesOf(RelationRelationId, newIndexId, oldIndexId);
1683  changeDependenciesOn(RelationRelationId, newIndexId, oldIndexId);
1684 
1685  changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId);
1686  changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId);
1687 
1688  /*
1689  * Copy over statistics from old to new index
1690  */
1691  {
1692  PgStat_StatTabEntry *tabentry;
1693 
1694  tabentry = pgstat_fetch_stat_tabentry(oldIndexId);
1695  if (tabentry)
1696  {
1697  if (newClassRel->pgstat_info)
1698  {
1699  newClassRel->pgstat_info->t_counts.t_numscans = tabentry->numscans;
1700  newClassRel->pgstat_info->t_counts.t_tuples_returned = tabentry->tuples_returned;
1701  newClassRel->pgstat_info->t_counts.t_tuples_fetched = tabentry->tuples_fetched;
1702  newClassRel->pgstat_info->t_counts.t_blocks_fetched = tabentry->blocks_fetched;
1703  newClassRel->pgstat_info->t_counts.t_blocks_hit = tabentry->blocks_hit;
1704 
1705  /*
1706  * The data will be sent by the next pgstat_report_stat()
1707  * call.
1708  */
1709  }
1710  }
1711  }
1712 
1713  /* Close relations */
1714  table_close(pg_class, RowExclusiveLock);
1715  table_close(pg_index, RowExclusiveLock);
1716  table_close(pg_constraint, RowExclusiveLock);
1717  table_close(pg_trigger, RowExclusiveLock);
1718 
1719  /* The lock taken previously is not released until the end of transaction */
1720  relation_close(oldClassRel, NoLock);
1721  relation_close(newClassRel, NoLock);
1722 }
1723 
1724 /*
1725  * index_concurrently_set_dead
1726  *
1727  * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX
1728  * CONCURRENTLY before actually dropping the index. After calling this
1729  * function, the index is seen by all the backends as dead. Low-level locks
1730  * taken here are kept until the end of the transaction calling this function.
1731  */
1732 void
1734 {
1735  Relation userHeapRelation;
1736  Relation userIndexRelation;
1737 
1738  /*
1739  * No more predicate locks will be acquired on this index, and we're about
1740  * to stop doing inserts into the index which could show conflicts with
1741  * existing predicate locks, so now is the time to move them to the heap
1742  * relation.
1743  */
1744  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
1745  userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock);
1746  TransferPredicateLocksToHeapRelation(userIndexRelation);
1747 
1748  /*
1749  * Now we are sure that nobody uses the index for queries; they just might
1750  * have it open for updating it. So now we can unset indisready and
1751  * indislive, then wait till nobody could be using it at all anymore.
1752  */
1754 
1755  /*
1756  * Invalidate the relcache for the table, so that after this commit all
1757  * sessions will refresh the table's index list. Forgetting just the
1758  * index's relcache entry is not enough.
1759  */
1760  CacheInvalidateRelcache(userHeapRelation);
1761 
1762  /*
1763  * Close the relations again, though still holding session lock.
1764  */
1765  table_close(userHeapRelation, NoLock);
1766  index_close(userIndexRelation, NoLock);
1767 }
1768 
1769 /*
1770  * index_constraint_create
1771  *
1772  * Set up a constraint associated with an index. Return the new constraint's
1773  * address.
1774  *
1775  * heapRelation: table owning the index (must be suitably locked by caller)
1776  * indexRelationId: OID of the index
1777  * parentConstraintId: if constraint is on a partition, the OID of the
1778  * constraint in the parent.
1779  * indexInfo: same info executor uses to insert into the index
1780  * constraintName: what it say (generally, should match name of index)
1781  * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or
1782  * CONSTRAINT_EXCLUSION
1783  * flags: bitmask that can include any combination of these bits:
1784  * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY
1785  * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE
1786  * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED
1787  * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row
1788  * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies
1789  * of index on table's columns
1790  * allow_system_table_mods: allow table to be a system catalog
1791  * is_internal: index is constructed due to internal process
1792  */
1795  Oid indexRelationId,
1796  Oid parentConstraintId,
1797  IndexInfo *indexInfo,
1798  const char *constraintName,
1799  char constraintType,
1800  bits16 constr_flags,
1801  bool allow_system_table_mods,
1802  bool is_internal)
1803 {
1804  Oid namespaceId = RelationGetNamespace(heapRelation);
1805  ObjectAddress myself,
1806  idxaddr;
1807  Oid conOid;
1808  bool deferrable;
1809  bool initdeferred;
1810  bool mark_as_primary;
1811  bool islocal;
1812  bool noinherit;
1813  int inhcount;
1814 
1815  deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0;
1816  initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0;
1817  mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0;
1818 
1819  /* constraint creation support doesn't work while bootstrapping */
1821 
1822  /* enforce system-table restriction */
1823  if (!allow_system_table_mods &&
1824  IsSystemRelation(heapRelation) &&
1826  ereport(ERROR,
1827  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1828  errmsg("user-defined indexes on system catalog tables are not supported")));
1829 
1830  /* primary/unique constraints shouldn't have any expressions */
1831  if (indexInfo->ii_Expressions &&
1832  constraintType != CONSTRAINT_EXCLUSION)
1833  elog(ERROR, "constraints cannot have index expressions");
1834 
1835  /*
1836  * If we're manufacturing a constraint for a pre-existing index, we need
1837  * to get rid of the existing auto dependencies for the index (the ones
1838  * that index_create() would have made instead of calling this function).
1839  *
1840  * Note: this code would not necessarily do the right thing if the index
1841  * has any expressions or predicate, but we'd never be turning such an
1842  * index into a UNIQUE or PRIMARY KEY constraint.
1843  */
1844  if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS)
1845  deleteDependencyRecordsForClass(RelationRelationId, indexRelationId,
1846  RelationRelationId, DEPENDENCY_AUTO);
1847 
1848  if (OidIsValid(parentConstraintId))
1849  {
1850  islocal = false;
1851  inhcount = 1;
1852  noinherit = false;
1853  }
1854  else
1855  {
1856  islocal = true;
1857  inhcount = 0;
1858  noinherit = true;
1859  }
1860 
1861  /*
1862  * Construct a pg_constraint entry.
1863  */
1864  conOid = CreateConstraintEntry(constraintName,
1865  namespaceId,
1866  constraintType,
1867  deferrable,
1868  initdeferred,
1869  true,
1870  parentConstraintId,
1871  RelationGetRelid(heapRelation),
1872  indexInfo->ii_IndexAttrNumbers,
1873  indexInfo->ii_NumIndexKeyAttrs,
1874  indexInfo->ii_NumIndexAttrs,
1875  InvalidOid, /* no domain */
1876  indexRelationId, /* index OID */
1877  InvalidOid, /* no foreign key */
1878  NULL,
1879  NULL,
1880  NULL,
1881  NULL,
1882  0,
1883  ' ',
1884  ' ',
1885  ' ',
1886  indexInfo->ii_ExclusionOps,
1887  NULL, /* no check constraint */
1888  NULL,
1889  islocal,
1890  inhcount,
1891  noinherit,
1892  is_internal);
1893 
1894  /*
1895  * Register the index as internally dependent on the constraint.
1896  *
1897  * Note that the constraint has a dependency on the table, so we don't
1898  * need (or want) any direct dependency from the index to the table.
1899  */
1900  ObjectAddressSet(myself, ConstraintRelationId, conOid);
1901  ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId);
1902  recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL);
1903 
1904  /*
1905  * Also, if this is a constraint on a partition, give it partition-type
1906  * dependencies on the parent constraint as well as the table.
1907  */
1908  if (OidIsValid(parentConstraintId))
1909  {
1910  ObjectAddress referenced;
1911 
1912  ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId);
1913  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1914  ObjectAddressSet(referenced, RelationRelationId,
1915  RelationGetRelid(heapRelation));
1916  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1917  }
1918 
1919  /*
1920  * If the constraint is deferrable, create the deferred uniqueness
1921  * checking trigger. (The trigger will be given an internal dependency on
1922  * the constraint by CreateTrigger.)
1923  */
1924  if (deferrable)
1925  {
1926  CreateTrigStmt *trigger;
1927 
1928  trigger = makeNode(CreateTrigStmt);
1929  trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ?
1930  "PK_ConstraintTrigger" :
1931  "Unique_ConstraintTrigger";
1932  trigger->relation = NULL;
1933  trigger->funcname = SystemFuncName("unique_key_recheck");
1934  trigger->args = NIL;
1935  trigger->row = true;
1936  trigger->timing = TRIGGER_TYPE_AFTER;
1937  trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE;
1938  trigger->columns = NIL;
1939  trigger->whenClause = NULL;
1940  trigger->isconstraint = true;
1941  trigger->deferrable = true;
1942  trigger->initdeferred = initdeferred;
1943  trigger->constrrel = NULL;
1944 
1945  (void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation),
1946  InvalidOid, conOid, indexRelationId, InvalidOid,
1947  InvalidOid, NULL, true, false);
1948  }
1949 
1950  /*
1951  * If needed, mark the index as primary and/or deferred in pg_index.
1952  *
1953  * Note: When making an existing index into a constraint, caller must have
1954  * a table lock that prevents concurrent table updates; otherwise, there
1955  * is a risk that concurrent readers of the table will miss seeing this
1956  * index at all.
1957  */
1958  if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) &&
1959  (mark_as_primary || deferrable))
1960  {
1961  Relation pg_index;
1962  HeapTuple indexTuple;
1963  Form_pg_index indexForm;
1964  bool dirty = false;
1965 
1966  pg_index = table_open(IndexRelationId, RowExclusiveLock);
1967 
1968  indexTuple = SearchSysCacheCopy1(INDEXRELID,
1969  ObjectIdGetDatum(indexRelationId));
1970  if (!HeapTupleIsValid(indexTuple))
1971  elog(ERROR, "cache lookup failed for index %u", indexRelationId);
1972  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
1973 
1974  if (mark_as_primary && !indexForm->indisprimary)
1975  {
1976  indexForm->indisprimary = true;
1977  dirty = true;
1978  }
1979 
1980  if (deferrable && indexForm->indimmediate)
1981  {
1982  indexForm->indimmediate = false;
1983  dirty = true;
1984  }
1985 
1986  if (dirty)
1987  {
1988  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
1989 
1990  InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0,
1991  InvalidOid, is_internal);
1992  }
1993 
1994  heap_freetuple(indexTuple);
1995  table_close(pg_index, RowExclusiveLock);
1996  }
1997 
1998  return myself;
1999 }
2000 
2001 /*
2002  * index_drop
2003  *
2004  * NOTE: this routine should now only be called through performDeletion(),
2005  * else associated dependencies won't be cleaned up.
2006  *
2007  * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is
2008  * false but concurrent_lock_mode is true, then do a normal DROP INDEX but
2009  * take a lock for CONCURRENTLY processing. That is used as part of REINDEX
2010  * CONCURRENTLY.
2011  */
2012 void
2013 index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
2014 {
2015  Oid heapId;
2016  Relation userHeapRelation;
2017  Relation userIndexRelation;
2018  Relation indexRelation;
2019  HeapTuple tuple;
2020  bool hasexprs;
2021  LockRelId heaprelid,
2022  indexrelid;
2023  LOCKTAG heaplocktag;
2024  LOCKMODE lockmode;
2025 
2026  /*
2027  * A temporary relation uses a non-concurrent DROP. Other backends can't
2028  * access a temporary relation, so there's no harm in grabbing a stronger
2029  * lock (see comments in RemoveRelations), and a non-concurrent DROP is
2030  * more efficient.
2031  */
2032  Assert(get_rel_persistence(indexId) != RELPERSISTENCE_TEMP ||
2033  (!concurrent && !concurrent_lock_mode));
2034 
2035  /*
2036  * To drop an index safely, we must grab exclusive lock on its parent
2037  * table. Exclusive lock on the index alone is insufficient because
2038  * another backend might be about to execute a query on the parent table.
2039  * If it relies on a previously cached list of index OIDs, then it could
2040  * attempt to access the just-dropped index. We must therefore take a
2041  * table lock strong enough to prevent all queries on the table from
2042  * proceeding until we commit and send out a shared-cache-inval notice
2043  * that will make them update their index lists.
2044  *
2045  * In the concurrent case we avoid this requirement by disabling index use
2046  * in multiple steps and waiting out any transactions that might be using
2047  * the index, so we don't need exclusive lock on the parent table. Instead
2048  * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't
2049  * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get
2050  * AccessExclusiveLock on the index below, once we're sure nobody else is
2051  * using it.)
2052  */
2053  heapId = IndexGetRelation(indexId, false);
2054  lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock;
2055  userHeapRelation = table_open(heapId, lockmode);
2056  userIndexRelation = index_open(indexId, lockmode);
2057 
2058  /*
2059  * We might still have open queries using it in our own session, which the
2060  * above locking won't prevent, so test explicitly.
2061  */
2062  CheckTableNotInUse(userIndexRelation, "DROP INDEX");
2063 
2064  /*
2065  * Drop Index Concurrently is more or less the reverse process of Create
2066  * Index Concurrently.
2067  *
2068  * First we unset indisvalid so queries starting afterwards don't use the
2069  * index to answer queries anymore. We have to keep indisready = true so
2070  * transactions that are still scanning the index can continue to see
2071  * valid index contents. For instance, if they are using READ COMMITTED
2072  * mode, and another transaction makes changes and commits, they need to
2073  * see those new tuples in the index.
2074  *
2075  * After all transactions that could possibly have used the index for
2076  * queries end, we can unset indisready and indislive, then wait till
2077  * nobody could be touching it anymore. (Note: we need indislive because
2078  * this state must be distinct from the initial state during CREATE INDEX
2079  * CONCURRENTLY, which has indislive true while indisready and indisvalid
2080  * are false. That's because in that state, transactions must examine the
2081  * index for HOT-safety decisions, while in this state we don't want them
2082  * to open it at all.)
2083  *
2084  * Since all predicate locks on the index are about to be made invalid, we
2085  * must promote them to predicate locks on the heap. In the
2086  * non-concurrent case we can just do that now. In the concurrent case
2087  * it's a bit trickier. The predicate locks must be moved when there are
2088  * no index scans in progress on the index and no more can subsequently
2089  * start, so that no new predicate locks can be made on the index. Also,
2090  * they must be moved before heap inserts stop maintaining the index, else
2091  * the conflict with the predicate lock on the index gap could be missed
2092  * before the lock on the heap relation is in place to detect a conflict
2093  * based on the heap tuple insert.
2094  */
2095  if (concurrent)
2096  {
2097  /*
2098  * We must commit our transaction in order to make the first pg_index
2099  * state update visible to other sessions. If the DROP machinery has
2100  * already performed any other actions (removal of other objects,
2101  * pg_depend entries, etc), the commit would make those actions
2102  * permanent, which would leave us with inconsistent catalog state if
2103  * we fail partway through the following sequence. Since DROP INDEX
2104  * CONCURRENTLY is restricted to dropping just one index that has no
2105  * dependencies, we should get here before anything's been done ---
2106  * but let's check that to be sure. We can verify that the current
2107  * transaction has not executed any transactional updates by checking
2108  * that no XID has been assigned.
2109  */
2111  ereport(ERROR,
2112  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2113  errmsg("DROP INDEX CONCURRENTLY must be first action in transaction")));
2114 
2115  /*
2116  * Mark index invalid by updating its pg_index entry
2117  */
2119 
2120  /*
2121  * Invalidate the relcache for the table, so that after this commit
2122  * all sessions will refresh any cached plans that might reference the
2123  * index.
2124  */
2125  CacheInvalidateRelcache(userHeapRelation);
2126 
2127  /* save lockrelid and locktag for below, then close but keep locks */
2128  heaprelid = userHeapRelation->rd_lockInfo.lockRelId;
2129  SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
2130  indexrelid = userIndexRelation->rd_lockInfo.lockRelId;
2131 
2132  table_close(userHeapRelation, NoLock);
2133  index_close(userIndexRelation, NoLock);
2134 
2135  /*
2136  * We must commit our current transaction so that the indisvalid
2137  * update becomes visible to other transactions; then start another.
2138  * Note that any previously-built data structures are lost in the
2139  * commit. The only data we keep past here are the relation IDs.
2140  *
2141  * Before committing, get a session-level lock on the table, to ensure
2142  * that neither it nor the index can be dropped before we finish. This
2143  * cannot block, even if someone else is waiting for access, because
2144  * we already have the same lock within our transaction.
2145  */
2148 
2152 
2153  /*
2154  * Now we must wait until no running transaction could be using the
2155  * index for a query. Use AccessExclusiveLock here to check for
2156  * running transactions that hold locks of any kind on the table. Note
2157  * we do not need to worry about xacts that open the table for reading
2158  * after this point; they will see the index as invalid when they open
2159  * the relation.
2160  *
2161  * Note: the reason we use actual lock acquisition here, rather than
2162  * just checking the ProcArray and sleeping, is that deadlock is
2163  * possible if one of the transactions in question is blocked trying
2164  * to acquire an exclusive lock on our table. The lock code will
2165  * detect deadlock and error out properly.
2166  *
2167  * Note: we report progress through WaitForLockers() unconditionally
2168  * here, even though it will only be used when we're called by REINDEX
2169  * CONCURRENTLY and not when called by DROP INDEX CONCURRENTLY.
2170  */
2171  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2172 
2173  /* Finish invalidation of index and mark it as dead */
2174  index_concurrently_set_dead(heapId, indexId);
2175 
2176  /*
2177  * Again, commit the transaction to make the pg_index update visible
2178  * to other sessions.
2179  */
2182 
2183  /*
2184  * Wait till every transaction that saw the old index state has
2185  * finished. See above about progress reporting.
2186  */
2187  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2188 
2189  /*
2190  * Re-open relations to allow us to complete our actions.
2191  *
2192  * At this point, nothing should be accessing the index, but lets
2193  * leave nothing to chance and grab AccessExclusiveLock on the index
2194  * before the physical deletion.
2195  */
2196  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
2197  userIndexRelation = index_open(indexId, AccessExclusiveLock);
2198  }
2199  else
2200  {
2201  /* Not concurrent, so just transfer predicate locks and we're good */
2202  TransferPredicateLocksToHeapRelation(userIndexRelation);
2203  }
2204 
2205  /*
2206  * Schedule physical removal of the files (if any)
2207  */
2208  if (userIndexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
2209  RelationDropStorage(userIndexRelation);
2210 
2211  /*
2212  * Close and flush the index's relcache entry, to ensure relcache doesn't
2213  * try to rebuild it while we're deleting catalog entries. We keep the
2214  * lock though.
2215  */
2216  index_close(userIndexRelation, NoLock);
2217 
2218  RelationForgetRelation(indexId);
2219 
2220  /*
2221  * fix INDEX relation, and check for expressional index
2222  */
2223  indexRelation = table_open(IndexRelationId, RowExclusiveLock);
2224 
2225  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
2226  if (!HeapTupleIsValid(tuple))
2227  elog(ERROR, "cache lookup failed for index %u", indexId);
2228 
2229  hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs,
2230  RelationGetDescr(indexRelation));
2231 
2232  CatalogTupleDelete(indexRelation, &tuple->t_self);
2233 
2234  ReleaseSysCache(tuple);
2235  table_close(indexRelation, RowExclusiveLock);
2236 
2237  /*
2238  * if it has any expression columns, we might have stored statistics about
2239  * them.
2240  */
2241  if (hasexprs)
2242  RemoveStatistics(indexId, 0);
2243 
2244  /*
2245  * fix ATTRIBUTE relation
2246  */
2247  DeleteAttributeTuples(indexId);
2248 
2249  /*
2250  * fix RELATION relation
2251  */
2252  DeleteRelationTuple(indexId);
2253 
2254  /*
2255  * fix INHERITS relation
2256  */
2257  DeleteInheritsTuple(indexId, InvalidOid);
2258 
2259  /*
2260  * We are presently too lazy to attempt to compute the new correct value
2261  * of relhasindex (the next VACUUM will fix it if necessary). So there is
2262  * no need to update the pg_class tuple for the owning relation. But we
2263  * must send out a shared-cache-inval notice on the owning relation to
2264  * ensure other backends update their relcache lists of indexes. (In the
2265  * concurrent case, this is redundant but harmless.)
2266  */
2267  CacheInvalidateRelcache(userHeapRelation);
2268 
2269  /*
2270  * Close owning rel, but keep lock
2271  */
2272  table_close(userHeapRelation, NoLock);
2273 
2274  /*
2275  * Release the session locks before we go.
2276  */
2277  if (concurrent)
2278  {
2281  }
2282 }
2283 
2284 /* ----------------------------------------------------------------
2285  * index_build support
2286  * ----------------------------------------------------------------
2287  */
2288 
2289 /* ----------------
2290  * BuildIndexInfo
2291  * Construct an IndexInfo record for an open index
2292  *
2293  * IndexInfo stores the information about the index that's needed by
2294  * FormIndexDatum, which is used for both index_build() and later insertion
2295  * of individual index tuples. Normally we build an IndexInfo for an index
2296  * just once per command, and then use it for (potentially) many tuples.
2297  * ----------------
2298  */
2299 IndexInfo *
2301 {
2302  IndexInfo *ii;
2303  Form_pg_index indexStruct = index->rd_index;
2304  int i;
2305  int numAtts;
2306 
2307  /* check the number of keys, and copy attr numbers into the IndexInfo */
2308  numAtts = indexStruct->indnatts;
2309  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2310  elog(ERROR, "invalid indnatts %d for index %u",
2311  numAtts, RelationGetRelid(index));
2312 
2313  /*
2314  * Create the node, fetching any expressions needed for expressional
2315  * indexes and index predicate if any.
2316  */
2317  ii = makeIndexInfo(indexStruct->indnatts,
2318  indexStruct->indnkeyatts,
2319  index->rd_rel->relam,
2322  indexStruct->indisunique,
2323  indexStruct->indisready,
2324  false);
2325 
2326  /* fill in attribute numbers */
2327  for (i = 0; i < numAtts; i++)
2328  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2329 
2330  /* fetch exclusion constraint info if any */
2331  if (indexStruct->indisexclusion)
2332  {
2334  &ii->ii_ExclusionOps,
2335  &ii->ii_ExclusionProcs,
2336  &ii->ii_ExclusionStrats);
2337  }
2338 
2339  return ii;
2340 }
2341 
2342 /* ----------------
2343  * BuildDummyIndexInfo
2344  * Construct a dummy IndexInfo record for an open index
2345  *
2346  * This differs from the real BuildIndexInfo in that it will never run any
2347  * user-defined code that might exist in index expressions or predicates.
2348  * Instead of the real index expressions, we return null constants that have
2349  * the right types/typmods/collations. Predicates and exclusion clauses are
2350  * just ignored. This is sufficient for the purpose of truncating an index,
2351  * since we will not need to actually evaluate the expressions or predicates;
2352  * the only thing that's likely to be done with the data is construction of
2353  * a tupdesc describing the index's rowtype.
2354  * ----------------
2355  */
2356 IndexInfo *
2358 {
2359  IndexInfo *ii;
2360  Form_pg_index indexStruct = index->rd_index;
2361  int i;
2362  int numAtts;
2363 
2364  /* check the number of keys, and copy attr numbers into the IndexInfo */
2365  numAtts = indexStruct->indnatts;
2366  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2367  elog(ERROR, "invalid indnatts %d for index %u",
2368  numAtts, RelationGetRelid(index));
2369 
2370  /*
2371  * Create the node, using dummy index expressions, and pretending there is
2372  * no predicate.
2373  */
2374  ii = makeIndexInfo(indexStruct->indnatts,
2375  indexStruct->indnkeyatts,
2376  index->rd_rel->relam,
2378  NIL,
2379  indexStruct->indisunique,
2380  indexStruct->indisready,
2381  false);
2382 
2383  /* fill in attribute numbers */
2384  for (i = 0; i < numAtts; i++)
2385  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2386 
2387  /* We ignore the exclusion constraint if any */
2388 
2389  return ii;
2390 }
2391 
2392 /*
2393  * CompareIndexInfo
2394  * Return whether the properties of two indexes (in different tables)
2395  * indicate that they have the "same" definitions.
2396  *
2397  * Note: passing collations and opfamilies separately is a kludge. Adding
2398  * them to IndexInfo may result in better coding here and elsewhere.
2399  *
2400  * Use build_attrmap_by_name(index2, index1) to build the attmap.
2401  */
2402 bool
2404  Oid *collations1, Oid *collations2,
2405  Oid *opfamilies1, Oid *opfamilies2,
2406  AttrMap *attmap)
2407 {
2408  int i;
2409 
2410  if (info1->ii_Unique != info2->ii_Unique)
2411  return false;
2412 
2413  /* indexes are only equivalent if they have the same access method */
2414  if (info1->ii_Am != info2->ii_Am)
2415  return false;
2416 
2417  /* and same number of attributes */
2418  if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs)
2419  return false;
2420 
2421  /* and same number of key attributes */
2422  if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs)
2423  return false;
2424 
2425  /*
2426  * and columns match through the attribute map (actual attribute numbers
2427  * might differ!) Note that this implies that index columns that are
2428  * expressions appear in the same positions. We will next compare the
2429  * expressions themselves.
2430  */
2431  for (i = 0; i < info1->ii_NumIndexAttrs; i++)
2432  {
2433  if (attmap->maplen < info2->ii_IndexAttrNumbers[i])
2434  elog(ERROR, "incorrect attribute map");
2435 
2436  /* ignore expressions at this stage */
2437  if ((info1->ii_IndexAttrNumbers[i] != InvalidAttrNumber) &&
2438  (attmap->attnums[info2->ii_IndexAttrNumbers[i] - 1] !=
2439  info1->ii_IndexAttrNumbers[i]))
2440  return false;
2441 
2442  /* collation and opfamily is not valid for including columns */
2443  if (i >= info1->ii_NumIndexKeyAttrs)
2444  continue;
2445 
2446  if (collations1[i] != collations2[i])
2447  return false;
2448  if (opfamilies1[i] != opfamilies2[i])
2449  return false;
2450  }
2451 
2452  /*
2453  * For expression indexes: either both are expression indexes, or neither
2454  * is; if they are, make sure the expressions match.
2455  */
2456  if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL))
2457  return false;
2458  if (info1->ii_Expressions != NIL)
2459  {
2460  bool found_whole_row;
2461  Node *mapped;
2462 
2463  mapped = map_variable_attnos((Node *) info2->ii_Expressions,
2464  1, 0, attmap,
2465  InvalidOid, &found_whole_row);
2466  if (found_whole_row)
2467  {
2468  /*
2469  * we could throw an error here, but seems out of scope for this
2470  * routine.
2471  */
2472  return false;
2473  }
2474 
2475  if (!equal(info1->ii_Expressions, mapped))
2476  return false;
2477  }
2478 
2479  /* Partial index predicates must be identical, if they exist */
2480  if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL))
2481  return false;
2482  if (info1->ii_Predicate != NULL)
2483  {
2484  bool found_whole_row;
2485  Node *mapped;
2486 
2487  mapped = map_variable_attnos((Node *) info2->ii_Predicate,
2488  1, 0, attmap,
2489  InvalidOid, &found_whole_row);
2490  if (found_whole_row)
2491  {
2492  /*
2493  * we could throw an error here, but seems out of scope for this
2494  * routine.
2495  */
2496  return false;
2497  }
2498  if (!equal(info1->ii_Predicate, mapped))
2499  return false;
2500  }
2501 
2502  /* No support currently for comparing exclusion indexes. */
2503  if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL)
2504  return false;
2505 
2506  return true;
2507 }
2508 
2509 /* ----------------
2510  * BuildSpeculativeIndexInfo
2511  * Add extra state to IndexInfo record
2512  *
2513  * For unique indexes, we usually don't want to add info to the IndexInfo for
2514  * checking uniqueness, since the B-Tree AM handles that directly. However,
2515  * in the case of speculative insertion, additional support is required.
2516  *
2517  * Do this processing here rather than in BuildIndexInfo() to not incur the
2518  * overhead in the common non-speculative cases.
2519  * ----------------
2520  */
2521 void
2523 {
2524  int indnkeyatts;
2525  int i;
2526 
2527  indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index);
2528 
2529  /*
2530  * fetch info for checking unique indexes
2531  */
2532  Assert(ii->ii_Unique);
2533 
2534  if (index->rd_rel->relam != BTREE_AM_OID)
2535  elog(ERROR, "unexpected non-btree speculative unique index");
2536 
2537  ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2538  ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2539  ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts);
2540 
2541  /*
2542  * We have to look up the operator's strategy number. This provides a
2543  * cross-check that the operator does match the index.
2544  */
2545  /* We need the func OIDs and strategy numbers too */
2546  for (i = 0; i < indnkeyatts; i++)
2547  {
2549  ii->ii_UniqueOps[i] =
2550  get_opfamily_member(index->rd_opfamily[i],
2551  index->rd_opcintype[i],
2552  index->rd_opcintype[i],
2553  ii->ii_UniqueStrats[i]);
2554  if (!OidIsValid(ii->ii_UniqueOps[i]))
2555  elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2556  ii->ii_UniqueStrats[i], index->rd_opcintype[i],
2557  index->rd_opcintype[i], index->rd_opfamily[i]);
2558  ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]);
2559  }
2560 }
2561 
2562 /* ----------------
2563  * FormIndexDatum
2564  * Construct values[] and isnull[] arrays for a new index tuple.
2565  *
2566  * indexInfo Info about the index
2567  * slot Heap tuple for which we must prepare an index entry
2568  * estate executor state for evaluating any index expressions
2569  * values Array of index Datums (output area)
2570  * isnull Array of is-null indicators (output area)
2571  *
2572  * When there are no index expressions, estate may be NULL. Otherwise it
2573  * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
2574  * context must point to the heap tuple passed in.
2575  *
2576  * Notice we don't actually call index_form_tuple() here; we just prepare
2577  * its input arrays values[] and isnull[]. This is because the index AM
2578  * may wish to alter the data before storage.
2579  * ----------------
2580  */
2581 void
2583  TupleTableSlot *slot,
2584  EState *estate,
2585  Datum *values,
2586  bool *isnull)
2587 {
2588  ListCell *indexpr_item;
2589  int i;
2590 
2591  if (indexInfo->ii_Expressions != NIL &&
2592  indexInfo->ii_ExpressionsState == NIL)
2593  {
2594  /* First time through, set up expression evaluation state */
2595  indexInfo->ii_ExpressionsState =
2596  ExecPrepareExprList(indexInfo->ii_Expressions, estate);
2597  /* Check caller has set up context correctly */
2598  Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
2599  }
2600  indexpr_item = list_head(indexInfo->ii_ExpressionsState);
2601 
2602  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
2603  {
2604  int keycol = indexInfo->ii_IndexAttrNumbers[i];
2605  Datum iDatum;
2606  bool isNull;
2607 
2608  if (keycol < 0)
2609  iDatum = slot_getsysattr(slot, keycol, &isNull);
2610  else if (keycol != 0)
2611  {
2612  /*
2613  * Plain index column; get the value we need directly from the
2614  * heap tuple.
2615  */
2616  iDatum = slot_getattr(slot, keycol, &isNull);
2617  }
2618  else
2619  {
2620  /*
2621  * Index expression --- need to evaluate it.
2622  */
2623  if (indexpr_item == NULL)
2624  elog(ERROR, "wrong number of index expressions");
2625  iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item),
2626  GetPerTupleExprContext(estate),
2627  &isNull);
2628  indexpr_item = lnext(indexInfo->ii_ExpressionsState, indexpr_item);
2629  }
2630  values[i] = iDatum;
2631  isnull[i] = isNull;
2632  }
2633 
2634  if (indexpr_item != NULL)
2635  elog(ERROR, "wrong number of index expressions");
2636 }
2637 
2638 
2639 /*
2640  * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
2641  *
2642  * This routine updates the pg_class row of either an index or its parent
2643  * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed
2644  * to ensure we can do all the necessary work in just one update.
2645  *
2646  * hasindex: set relhasindex to this value
2647  * reltuples: if >= 0, set reltuples to this value; else no change
2648  *
2649  * If reltuples >= 0, relpages and relallvisible are also updated (using
2650  * RelationGetNumberOfBlocks() and visibilitymap_count()).
2651  *
2652  * NOTE: an important side-effect of this operation is that an SI invalidation
2653  * message is sent out to all backends --- including me --- causing relcache
2654  * entries to be flushed or updated with the new data. This must happen even
2655  * if we find that no change is needed in the pg_class row. When updating
2656  * a heap entry, this ensures that other backends find out about the new
2657  * index. When updating an index, it's important because some index AMs
2658  * expect a relcache flush to occur after REINDEX.
2659  */
2660 static void
2662  bool hasindex,
2663  double reltuples)
2664 {
2665  Oid relid = RelationGetRelid(rel);
2666  Relation pg_class;
2667  HeapTuple tuple;
2668  Form_pg_class rd_rel;
2669  bool dirty;
2670 
2671  /*
2672  * We always update the pg_class row using a non-transactional,
2673  * overwrite-in-place update. There are several reasons for this:
2674  *
2675  * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
2676  *
2677  * 2. We could be reindexing pg_class itself, in which case we can't move
2678  * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might
2679  * not know about all the indexes yet (see reindex_relation).
2680  *
2681  * 3. Because we execute CREATE INDEX with just share lock on the parent
2682  * rel (to allow concurrent index creations), an ordinary update could
2683  * suffer a tuple-concurrently-updated failure against another CREATE
2684  * INDEX committing at about the same time. We can avoid that by having
2685  * them both do nontransactional updates (we assume they will both be
2686  * trying to change the pg_class row to the same thing, so it doesn't
2687  * matter which goes first).
2688  *
2689  * It is safe to use a non-transactional update even though our
2690  * transaction could still fail before committing. Setting relhasindex
2691  * true is safe even if there are no indexes (VACUUM will eventually fix
2692  * it). And of course the new relpages and reltuples counts are correct
2693  * regardless. However, we don't want to change relpages (or
2694  * relallvisible) if the caller isn't providing an updated reltuples
2695  * count, because that would bollix the reltuples/relpages ratio which is
2696  * what's really important.
2697  */
2698 
2699  pg_class = table_open(RelationRelationId, RowExclusiveLock);
2700 
2701  /*
2702  * Make a copy of the tuple to update. Normally we use the syscache, but
2703  * we can't rely on that during bootstrap or while reindexing pg_class
2704  * itself.
2705  */
2706  if (IsBootstrapProcessingMode() ||
2707  ReindexIsProcessingHeap(RelationRelationId))
2708  {
2709  /* don't assume syscache will work */
2710  TableScanDesc pg_class_scan;
2711  ScanKeyData key[1];
2712 
2713  ScanKeyInit(&key[0],
2714  Anum_pg_class_oid,
2715  BTEqualStrategyNumber, F_OIDEQ,
2716  ObjectIdGetDatum(relid));
2717 
2718  pg_class_scan = table_beginscan_catalog(pg_class, 1, key);
2719  tuple = heap_getnext(pg_class_scan, ForwardScanDirection);
2720  tuple = heap_copytuple(tuple);
2721  table_endscan(pg_class_scan);
2722  }
2723  else
2724  {
2725  /* normal case, use syscache */
2726  tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid));
2727  }
2728 
2729  if (!HeapTupleIsValid(tuple))
2730  elog(ERROR, "could not find tuple for relation %u", relid);
2731  rd_rel = (Form_pg_class) GETSTRUCT(tuple);
2732 
2733  /* Should this be a more comprehensive test? */
2734  Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX);
2735 
2736  /* Apply required updates, if any, to copied tuple */
2737 
2738  dirty = false;
2739  if (rd_rel->relhasindex != hasindex)
2740  {
2741  rd_rel->relhasindex = hasindex;
2742  dirty = true;
2743  }
2744 
2745  if (reltuples >= 0)
2746  {
2747  BlockNumber relpages = RelationGetNumberOfBlocks(rel);
2748  BlockNumber relallvisible;
2749 
2750  if (rd_rel->relkind != RELKIND_INDEX)
2751  visibilitymap_count(rel, &relallvisible, NULL);
2752  else /* don't bother for indexes */
2753  relallvisible = 0;
2754 
2755  if (rd_rel->relpages != (int32) relpages)
2756  {
2757  rd_rel->relpages = (int32) relpages;
2758  dirty = true;
2759  }
2760  if (rd_rel->reltuples != (float4) reltuples)
2761  {
2762  rd_rel->reltuples = (float4) reltuples;
2763  dirty = true;
2764  }
2765  if (rd_rel->relallvisible != (int32) relallvisible)
2766  {
2767  rd_rel->relallvisible = (int32) relallvisible;
2768  dirty = true;
2769  }
2770  }
2771 
2772  /*
2773  * If anything changed, write out the tuple
2774  */
2775  if (dirty)
2776  {
2777  heap_inplace_update(pg_class, tuple);
2778  /* the above sends a cache inval message */
2779  }
2780  else
2781  {
2782  /* no need to change tuple, but force relcache inval anyway */
2784  }
2785 
2786  heap_freetuple(tuple);
2787 
2788  table_close(pg_class, RowExclusiveLock);
2789 }
2790 
2791 
2792 /*
2793  * index_build - invoke access-method-specific index build procedure
2794  *
2795  * On entry, the index's catalog entries are valid, and its physical disk
2796  * file has been created but is empty. We call the AM-specific build
2797  * procedure to fill in the index contents. We then update the pg_class
2798  * entries of the index and heap relation as needed, using statistics
2799  * returned by ambuild as well as data passed by the caller.
2800  *
2801  * isreindex indicates we are recreating a previously-existing index.
2802  * parallel indicates if parallelism may be useful.
2803  *
2804  * Note: before Postgres 8.2, the passed-in heap and index Relations
2805  * were automatically closed by this routine. This is no longer the case.
2806  * The caller opened 'em, and the caller should close 'em.
2807  */
2808 void
2809 index_build(Relation heapRelation,
2810  Relation indexRelation,
2811  IndexInfo *indexInfo,
2812  bool isreindex,
2813  bool parallel)
2814 {
2815  IndexBuildResult *stats;
2816  Oid save_userid;
2817  int save_sec_context;
2818  int save_nestlevel;
2819 
2820  /*
2821  * sanity checks
2822  */
2823  Assert(RelationIsValid(indexRelation));
2824  Assert(PointerIsValid(indexRelation->rd_indam));
2825  Assert(PointerIsValid(indexRelation->rd_indam->ambuild));
2826  Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty));
2827 
2828  /*
2829  * Determine worker process details for parallel CREATE INDEX. Currently,
2830  * only btree has support for parallel builds.
2831  *
2832  * Note that planner considers parallel safety for us.
2833  */
2834  if (parallel && IsNormalProcessingMode() &&
2835  indexRelation->rd_rel->relam == BTREE_AM_OID)
2836  indexInfo->ii_ParallelWorkers =
2838  RelationGetRelid(indexRelation));
2839 
2840  if (indexInfo->ii_ParallelWorkers == 0)
2841  ereport(DEBUG1,
2842  (errmsg("building index \"%s\" on table \"%s\" serially",
2843  RelationGetRelationName(indexRelation),
2844  RelationGetRelationName(heapRelation))));
2845  else
2846  ereport(DEBUG1,
2847  (errmsg_plural("building index \"%s\" on table \"%s\" with request for %d parallel worker",
2848  "building index \"%s\" on table \"%s\" with request for %d parallel workers",
2849  indexInfo->ii_ParallelWorkers,
2850  RelationGetRelationName(indexRelation),
2851  RelationGetRelationName(heapRelation),
2852  indexInfo->ii_ParallelWorkers)));
2853 
2854  /*
2855  * Switch to the table owner's userid, so that any index functions are run
2856  * as that user. Also lock down security-restricted operations and
2857  * arrange to make GUC variable changes local to this command.
2858  */
2859  GetUserIdAndSecContext(&save_userid, &save_sec_context);
2860  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
2861  save_sec_context | SECURITY_RESTRICTED_OPERATION);
2862  save_nestlevel = NewGUCNestLevel();
2863 
2864  /* Set up initial progress report status */
2865  {
2866  const int index[] = {
2873  };
2874  const int64 val[] = {
2877  0, 0, 0, 0
2878  };
2879 
2880  pgstat_progress_update_multi_param(6, index, val);
2881  }
2882 
2883  /*
2884  * Call the access method's build procedure
2885  */
2886  stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation,
2887  indexInfo);
2888  Assert(PointerIsValid(stats));
2889 
2890  /*
2891  * If this is an unlogged index, we may need to write out an init fork for
2892  * it -- but we must first check whether one already exists. If, for
2893  * example, an unlogged relation is truncated in the transaction that
2894  * created it, or truncated twice in a subsequent transaction, the
2895  * relfilenode won't change, and nothing needs to be done here.
2896  */
2897  if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED &&
2898  !smgrexists(indexRelation->rd_smgr, INIT_FORKNUM))
2899  {
2900  RelationOpenSmgr(indexRelation);
2901  smgrcreate(indexRelation->rd_smgr, INIT_FORKNUM, false);
2902  indexRelation->rd_indam->ambuildempty(indexRelation);
2903  }
2904 
2905  /*
2906  * If we found any potentially broken HOT chains, mark the index as not
2907  * being usable until the current transaction is below the event horizon.
2908  * See src/backend/access/heap/README.HOT for discussion. Also set this
2909  * if early pruning/vacuuming is enabled for the heap relation. While it
2910  * might become safe to use the index earlier based on actual cleanup
2911  * activity and other active transactions, the test for that would be much
2912  * more complex and would require some form of blocking, so keep it simple
2913  * and fast by just using the current transaction.
2914  *
2915  * However, when reindexing an existing index, we should do nothing here.
2916  * Any HOT chains that are broken with respect to the index must predate
2917  * the index's original creation, so there is no need to change the
2918  * index's usability horizon. Moreover, we *must not* try to change the
2919  * index's pg_index entry while reindexing pg_index itself, and this
2920  * optimization nicely prevents that. The more complex rules needed for a
2921  * reindex are handled separately after this function returns.
2922  *
2923  * We also need not set indcheckxmin during a concurrent index build,
2924  * because we won't set indisvalid true until all transactions that care
2925  * about the broken HOT chains or early pruning/vacuuming are gone.
2926  *
2927  * Therefore, this code path can only be taken during non-concurrent
2928  * CREATE INDEX. Thus the fact that heap_update will set the pg_index
2929  * tuple's xmin doesn't matter, because that tuple was created in the
2930  * current transaction anyway. That also means we don't need to worry
2931  * about any concurrent readers of the tuple; no other transaction can see
2932  * it yet.
2933  */
2934  if ((indexInfo->ii_BrokenHotChain || EarlyPruningEnabled(heapRelation)) &&
2935  !isreindex &&
2936  !indexInfo->ii_Concurrent)
2937  {
2938  Oid indexId = RelationGetRelid(indexRelation);
2939  Relation pg_index;
2940  HeapTuple indexTuple;
2941  Form_pg_index indexForm;
2942 
2943  pg_index = table_open(IndexRelationId, RowExclusiveLock);
2944 
2945  indexTuple = SearchSysCacheCopy1(INDEXRELID,
2946  ObjectIdGetDatum(indexId));
2947  if (!HeapTupleIsValid(indexTuple))
2948  elog(ERROR, "cache lookup failed for index %u", indexId);
2949  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
2950 
2951  /* If it's a new index, indcheckxmin shouldn't be set ... */
2952  Assert(!indexForm->indcheckxmin);
2953 
2954  indexForm->indcheckxmin = true;
2955  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
2956 
2957  heap_freetuple(indexTuple);
2958  table_close(pg_index, RowExclusiveLock);
2959  }
2960 
2961  /*
2962  * Update heap and index pg_class rows
2963  */
2964  index_update_stats(heapRelation,
2965  true,
2966  stats->heap_tuples);
2967 
2968  index_update_stats(indexRelation,
2969  false,
2970  stats->index_tuples);
2971 
2972  /* Make the updated catalog row versions visible */
2974 
2975  /*
2976  * If it's for an exclusion constraint, make a second pass over the heap
2977  * to verify that the constraint is satisfied. We must not do this until
2978  * the index is fully valid. (Broken HOT chains shouldn't matter, though;
2979  * see comments for IndexCheckExclusion.)
2980  */
2981  if (indexInfo->ii_ExclusionOps != NULL)
2982  IndexCheckExclusion(heapRelation, indexRelation, indexInfo);
2983 
2984  /* Roll back any GUC changes executed by index functions */
2985  AtEOXact_GUC(false, save_nestlevel);
2986 
2987  /* Restore userid and security context */
2988  SetUserIdAndSecContext(save_userid, save_sec_context);
2989 }
2990 
2991 /*
2992  * IndexCheckExclusion - verify that a new exclusion constraint is satisfied
2993  *
2994  * When creating an exclusion constraint, we first build the index normally
2995  * and then rescan the heap to check for conflicts. We assume that we only
2996  * need to validate tuples that are live according to an up-to-date snapshot,
2997  * and that these were correctly indexed even in the presence of broken HOT
2998  * chains. This should be OK since we are holding at least ShareLock on the
2999  * table, meaning there can be no uncommitted updates from other transactions.
3000  * (Note: that wouldn't necessarily work for system catalogs, since many
3001  * operations release write lock early on the system catalogs.)
3002  */
3003 static void
3005  Relation indexRelation,
3006  IndexInfo *indexInfo)
3007 {
3008  TableScanDesc scan;
3010  bool isnull[INDEX_MAX_KEYS];
3011  ExprState *predicate;
3012  TupleTableSlot *slot;
3013  EState *estate;
3014  ExprContext *econtext;
3015  Snapshot snapshot;
3016 
3017  /*
3018  * If we are reindexing the target index, mark it as no longer being
3019  * reindexed, to forestall an Assert in index_beginscan when we try to use
3020  * the index for probes. This is OK because the index is now fully valid.
3021  */
3024 
3025  /*
3026  * Need an EState for evaluation of index expressions and partial-index
3027  * predicates. Also a slot to hold the current tuple.
3028  */
3029  estate = CreateExecutorState();
3030  econtext = GetPerTupleExprContext(estate);
3031  slot = table_slot_create(heapRelation, NULL);
3032 
3033  /* Arrange for econtext's scan tuple to be the tuple under test */
3034  econtext->ecxt_scantuple = slot;
3035 
3036  /* Set up execution state for predicate, if any. */
3037  predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
3038 
3039  /*
3040  * Scan all live tuples in the base relation.
3041  */
3042  snapshot = RegisterSnapshot(GetLatestSnapshot());
3043  scan = table_beginscan_strat(heapRelation, /* relation */
3044  snapshot, /* snapshot */
3045  0, /* number of keys */
3046  NULL, /* scan key */
3047  true, /* buffer access strategy OK */
3048  true); /* syncscan OK */
3049 
3050  while (table_scan_getnextslot(scan, ForwardScanDirection, slot))
3051  {
3053 
3054  /*
3055  * In a partial index, ignore tuples that don't satisfy the predicate.
3056  */
3057  if (predicate != NULL)
3058  {
3059  if (!ExecQual(predicate, econtext))
3060  continue;
3061  }
3062 
3063  /*
3064  * Extract index column values, including computing expressions.
3065  */
3066  FormIndexDatum(indexInfo,
3067  slot,
3068  estate,
3069  values,
3070  isnull);
3071 
3072  /*
3073  * Check that this tuple has no conflicts.
3074  */
3075  check_exclusion_constraint(heapRelation,
3076  indexRelation, indexInfo,
3077  &(slot->tts_tid), values, isnull,
3078  estate, true);
3079 
3081  }
3082 
3083  table_endscan(scan);
3084  UnregisterSnapshot(snapshot);
3085 
3087 
3088  FreeExecutorState(estate);
3089 
3090  /* These may have been pointing to the now-gone estate */
3091  indexInfo->ii_ExpressionsState = NIL;
3092  indexInfo->ii_PredicateState = NULL;
3093 }
3094 
3095 
3096 /*
3097  * validate_index - support code for concurrent index builds
3098  *
3099  * We do a concurrent index build by first inserting the catalog entry for the
3100  * index via index_create(), marking it not indisready and not indisvalid.
3101  * Then we commit our transaction and start a new one, then we wait for all
3102  * transactions that could have been modifying the table to terminate. Now
3103  * we know that any subsequently-started transactions will see the index and
3104  * honor its constraints on HOT updates; so while existing HOT-chains might
3105  * be broken with respect to the index, no currently live tuple will have an
3106  * incompatible HOT update done to it. We now build the index normally via
3107  * index_build(), while holding a weak lock that allows concurrent
3108  * insert/update/delete. Also, we index only tuples that are valid
3109  * as of the start of the scan (see table_index_build_scan), whereas a normal
3110  * build takes care to include recently-dead tuples. This is OK because
3111  * we won't mark the index valid until all transactions that might be able
3112  * to see those tuples are gone. The reason for doing that is to avoid
3113  * bogus unique-index failures due to concurrent UPDATEs (we might see
3114  * different versions of the same row as being valid when we pass over them,
3115  * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that
3116  * does not contain any tuples added to the table while we built the index.
3117  *
3118  * Next, we mark the index "indisready" (but still not "indisvalid") and
3119  * commit the second transaction and start a third. Again we wait for all
3120  * transactions that could have been modifying the table to terminate. Now
3121  * we know that any subsequently-started transactions will see the index and
3122  * insert their new tuples into it. We then take a new reference snapshot
3123  * which is passed to validate_index(). Any tuples that are valid according
3124  * to this snap, but are not in the index, must be added to the index.
3125  * (Any tuples committed live after the snap will be inserted into the
3126  * index by their originating transaction. Any tuples committed dead before
3127  * the snap need not be indexed, because we will wait out all transactions
3128  * that might care about them before we mark the index valid.)
3129  *
3130  * validate_index() works by first gathering all the TIDs currently in the
3131  * index, using a bulkdelete callback that just stores the TIDs and doesn't
3132  * ever say "delete it". (This should be faster than a plain indexscan;
3133  * also, not all index AMs support full-index indexscan.) Then we sort the
3134  * TIDs, and finally scan the table doing a "merge join" against the TID list
3135  * to see which tuples are missing from the index. Thus we will ensure that
3136  * all tuples valid according to the reference snapshot are in the index.
3137  *
3138  * Building a unique index this way is tricky: we might try to insert a
3139  * tuple that is already dead or is in process of being deleted, and we
3140  * mustn't have a uniqueness failure against an updated version of the same
3141  * row. We could try to check the tuple to see if it's already dead and tell
3142  * index_insert() not to do the uniqueness check, but that still leaves us
3143  * with a race condition against an in-progress update. To handle that,
3144  * we expect the index AM to recheck liveness of the to-be-inserted tuple
3145  * before it declares a uniqueness error.
3146  *
3147  * After completing validate_index(), we wait until all transactions that
3148  * were alive at the time of the reference snapshot are gone; this is
3149  * necessary to be sure there are none left with a transaction snapshot
3150  * older than the reference (and hence possibly able to see tuples we did
3151  * not index). Then we mark the index "indisvalid" and commit. Subsequent
3152  * transactions will be able to use it for queries.
3153  *
3154  * Doing two full table scans is a brute-force strategy. We could try to be
3155  * cleverer, eg storing new tuples in a special area of the table (perhaps
3156  * making the table append-only by setting use_fsm). However that would
3157  * add yet more locking issues.
3158  */
3159 void
3160 validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
3161 {
3162  Relation heapRelation,
3163  indexRelation;
3164  IndexInfo *indexInfo;
3165  IndexVacuumInfo ivinfo;
3167  Oid save_userid;
3168  int save_sec_context;
3169  int save_nestlevel;
3170 
3171  {
3172  const int index[] = {
3178  };
3179  const int64 val[] = {
3181  0, 0, 0, 0
3182  };
3183 
3184  pgstat_progress_update_multi_param(5, index, val);
3185  }
3186 
3187  /* Open and lock the parent heap relation */
3188  heapRelation = table_open(heapId, ShareUpdateExclusiveLock);
3189  /* And the target index relation */
3190  indexRelation = index_open(indexId, RowExclusiveLock);
3191 
3192  /*
3193  * Fetch info needed for index_insert. (You might think this should be
3194  * passed in from DefineIndex, but its copy is long gone due to having
3195  * been built in a previous transaction.)
3196  */
3197  indexInfo = BuildIndexInfo(indexRelation);
3198 
3199  /* mark build is concurrent just for consistency */
3200  indexInfo->ii_Concurrent = true;
3201 
3202  /*
3203  * Switch to the table owner's userid, so that any index functions are run
3204  * as that user. Also lock down security-restricted operations and
3205  * arrange to make GUC variable changes local to this command.
3206  */
3207  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3208  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3209  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3210  save_nestlevel = NewGUCNestLevel();
3211 
3212  /*
3213  * Scan the index and gather up all the TIDs into a tuplesort object.
3214  */
3215  ivinfo.index = indexRelation;
3216  ivinfo.analyze_only = false;
3217  ivinfo.report_progress = true;
3218  ivinfo.estimated_count = true;
3219  ivinfo.message_level = DEBUG2;
3220  ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples;
3221  ivinfo.strategy = NULL;
3222 
3223  /*
3224  * Encode TIDs as int8 values for the sort, rather than directly sorting
3225  * item pointers. This can be significantly faster, primarily because TID
3226  * is a pass-by-reference type on all platforms, whereas int8 is
3227  * pass-by-value on most platforms.
3228  */
3229  state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator,
3230  InvalidOid, false,
3232  NULL, false);
3233  state.htups = state.itups = state.tups_inserted = 0;
3234 
3235  /* ambulkdelete updates progress metrics */
3236  (void) index_bulk_delete(&ivinfo, NULL,
3237  validate_index_callback, (void *) &state);
3238 
3239  /* Execute the sort */
3240  {
3241  const int index[] = {
3245  };
3246  const int64 val[] = {
3248  0, 0
3249  };
3250 
3251  pgstat_progress_update_multi_param(3, index, val);
3252  }
3254 
3255  /*
3256  * Now scan the heap and "merge" it with the index
3257  */
3260  table_index_validate_scan(heapRelation,
3261  indexRelation,
3262  indexInfo,
3263  snapshot,
3264  &state);
3265 
3266  /* Done with tuplesort object */
3267  tuplesort_end(state.tuplesort);
3268 
3269  elog(DEBUG2,
3270  "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
3271  state.htups, state.itups, state.tups_inserted);
3272 
3273  /* Roll back any GUC changes executed by index functions */
3274  AtEOXact_GUC(false, save_nestlevel);
3275 
3276  /* Restore userid and security context */
3277  SetUserIdAndSecContext(save_userid, save_sec_context);
3278 
3279  /* Close rels, but keep locks */
3280  index_close(indexRelation, NoLock);
3281  table_close(heapRelation, NoLock);
3282 }
3283 
3284 /*
3285  * validate_index_callback - bulkdelete callback to collect the index TIDs
3286  */
3287 static bool
3288 validate_index_callback(ItemPointer itemptr, void *opaque)
3289 {
3291  int64 encoded = itemptr_encode(itemptr);
3292 
3293  tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false);
3294  state->itups += 1;
3295  return false; /* never actually delete anything */
3296 }
3297 
3298 /*
3299  * index_set_state_flags - adjust pg_index state flags
3300  *
3301  * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index
3302  * flags that denote the index's state. Because the update is not
3303  * transactional and will not roll back on error, this must only be used as
3304  * the last step in a transaction that has not made any transactional catalog
3305  * updates!
3306  *
3307  * Note that heap_inplace_update does send a cache inval message for the
3308  * tuple, so other sessions will hear about the update as soon as we commit.
3309  *
3310  * NB: In releases prior to PostgreSQL 9.4, the use of a non-transactional
3311  * update here would have been unsafe; now that MVCC rules apply even for
3312  * system catalog scans, we could potentially use a transactional update here
3313  * instead.
3314  */
3315 void
3317 {
3318  Relation pg_index;
3319  HeapTuple indexTuple;
3320  Form_pg_index indexForm;
3321 
3322  /* Assert that current xact hasn't done any transactional updates */
3324 
3325  /* Open pg_index and fetch a writable copy of the index's tuple */
3326  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3327 
3328  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3329  ObjectIdGetDatum(indexId));
3330  if (!HeapTupleIsValid(indexTuple))
3331  elog(ERROR, "cache lookup failed for index %u", indexId);
3332  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3333 
3334  /* Perform the requested state change on the copy */
3335  switch (action)
3336  {
3338  /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */
3339  Assert(indexForm->indislive);
3340  Assert(!indexForm->indisready);
3341  Assert(!indexForm->indisvalid);
3342  indexForm->indisready = true;
3343  break;
3345  /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */
3346  Assert(indexForm->indislive);
3347  Assert(indexForm->indisready);
3348  Assert(!indexForm->indisvalid);
3349  indexForm->indisvalid = true;
3350  break;
3352 
3353  /*
3354  * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence
3355  *
3356  * If indisready == true we leave it set so the index still gets
3357  * maintained by active transactions. We only need to ensure that
3358  * indisvalid is false. (We don't assert that either is initially
3359  * true, though, since we want to be able to retry a DROP INDEX
3360  * CONCURRENTLY that failed partway through.)
3361  *
3362  * Note: the CLUSTER logic assumes that indisclustered cannot be
3363  * set on any invalid index, so clear that flag too.
3364  */
3365  indexForm->indisvalid = false;
3366  indexForm->indisclustered = false;
3367  break;
3368  case INDEX_DROP_SET_DEAD:
3369 
3370  /*
3371  * Clear indisready/indislive during DROP INDEX CONCURRENTLY
3372  *
3373  * We clear both indisready and indislive, because we not only
3374  * want to stop updates, we want to prevent sessions from touching
3375  * the index at all.
3376  */
3377  Assert(!indexForm->indisvalid);
3378  indexForm->indisready = false;
3379  indexForm->indislive = false;
3380  break;
3381  }
3382 
3383  /* ... and write it back in-place */
3384  heap_inplace_update(pg_index, indexTuple);
3385 
3386  table_close(pg_index, RowExclusiveLock);
3387 }
3388 
3389 
3390 /*
3391  * IndexGetRelation: given an index's relation OID, get the OID of the
3392  * relation it is an index on. Uses the system cache.
3393  */
3394 Oid
3395 IndexGetRelation(Oid indexId, bool missing_ok)
3396 {
3397  HeapTuple tuple;
3399  Oid result;
3400 
3401  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
3402  if (!HeapTupleIsValid(tuple))
3403  {
3404  if (missing_ok)
3405  return InvalidOid;
3406  elog(ERROR, "cache lookup failed for index %u", indexId);
3407  }
3408  index = (Form_pg_index) GETSTRUCT(tuple);
3409  Assert(index->indexrelid == indexId);
3410 
3411  result = index->indrelid;
3412  ReleaseSysCache(tuple);
3413  return result;
3414 }
3415 
3416 /*
3417  * reindex_index - This routine is used to recreate a single index
3418  */
3419 void
3420 reindex_index(Oid indexId, bool skip_constraint_checks, char persistence,
3421  int options)
3422 {
3423  Relation iRel,
3424  heapRelation;
3425  Oid heapId;
3426  IndexInfo *indexInfo;
3427  volatile bool skipped_constraint = false;
3428  PGRUsage ru0;
3429  bool progress = (options & REINDEXOPT_REPORT_PROGRESS) != 0;
3430 
3431  pg_rusage_init(&ru0);
3432 
3433  /*
3434  * Open and lock the parent heap relation. ShareLock is sufficient since
3435  * we only need to be sure no schema or data changes are going on.
3436  */
3437  heapId = IndexGetRelation(indexId, false);
3438  heapRelation = table_open(heapId, ShareLock);
3439 
3440  if (progress)
3441  {
3443  heapId);
3447  indexId);
3448  }
3449 
3450  /*
3451  * Open the target index relation and get an exclusive lock on it, to
3452  * ensure that no one else is touching this particular index.
3453  */
3454  iRel = index_open(indexId, AccessExclusiveLock);
3455 
3456  if (progress)
3458  iRel->rd_rel->relam);
3459 
3460  /*
3461  * The case of reindexing partitioned tables and indexes is handled
3462  * differently by upper layers, so this case shouldn't arise.
3463  */
3464  if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
3465  elog(ERROR, "unsupported relation kind for index \"%s\"",
3466  RelationGetRelationName(iRel));
3467 
3468  /*
3469  * Don't allow reindex on temp tables of other backends ... their local
3470  * buffer manager is not going to cope.
3471  */
3472  if (RELATION_IS_OTHER_TEMP(iRel))
3473  ereport(ERROR,
3474  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3475  errmsg("cannot reindex temporary tables of other sessions")));
3476 
3477  /*
3478  * Don't allow reindex of an invalid index on TOAST table. This is a
3479  * leftover from a failed REINDEX CONCURRENTLY, and if rebuilt it would
3480  * not be possible to drop it anymore.
3481  */
3483  !get_index_isvalid(indexId))
3484  ereport(ERROR,
3485  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3486  errmsg("cannot reindex invalid index on TOAST table")));
3487 
3488  /*
3489  * Also check for active uses of the index in the current transaction; we
3490  * don't want to reindex underneath an open indexscan.
3491  */
3492  CheckTableNotInUse(iRel, "REINDEX INDEX");
3493 
3494  /*
3495  * All predicate locks on the index are about to be made invalid. Promote
3496  * them to relation locks on the heap.
3497  */
3499 
3500  /* Fetch info needed for index_build */
3501  indexInfo = BuildIndexInfo(iRel);
3502 
3503  /* If requested, skip checking uniqueness/exclusion constraints */
3504  if (skip_constraint_checks)
3505  {
3506  if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL)
3507  skipped_constraint = true;
3508  indexInfo->ii_Unique = false;
3509  indexInfo->ii_ExclusionOps = NULL;
3510  indexInfo->ii_ExclusionProcs = NULL;
3511  indexInfo->ii_ExclusionStrats = NULL;
3512  }
3513 
3514  /* ensure SetReindexProcessing state isn't leaked */
3515  PG_TRY();
3516  {
3517  /* Suppress use of the target index while rebuilding it */
3518  SetReindexProcessing(heapId, indexId);
3519 
3520  /* Create a new physical relation for the index */
3521  RelationSetNewRelfilenode(iRel, persistence);
3522 
3523  /* Initialize the index and rebuild */
3524  /* Note: we do not need to re-establish pkey setting */
3525  index_build(heapRelation, iRel, indexInfo, true, true);
3526  }
3527  PG_FINALLY();
3528  {
3529  /* Make sure flag gets cleared on error exit */
3531  }
3532  PG_END_TRY();
3533 
3534  /*
3535  * If the index is marked invalid/not-ready/dead (ie, it's from a failed
3536  * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway),
3537  * and we didn't skip a uniqueness check, we can now mark it valid. This
3538  * allows REINDEX to be used to clean up in such cases.
3539  *
3540  * We can also reset indcheckxmin, because we have now done a
3541  * non-concurrent index build, *except* in the case where index_build
3542  * found some still-broken HOT chains. If it did, and we don't have to
3543  * change any of the other flags, we just leave indcheckxmin alone (note
3544  * that index_build won't have changed it, because this is a reindex).
3545  * This is okay and desirable because not updating the tuple leaves the
3546  * index's usability horizon (recorded as the tuple's xmin value) the same
3547  * as it was.
3548  *
3549  * But, if the index was invalid/not-ready/dead and there were broken HOT
3550  * chains, we had better force indcheckxmin true, because the normal
3551  * argument that the HOT chains couldn't conflict with the index is
3552  * suspect for an invalid index. (A conflict is definitely possible if
3553  * the index was dead. It probably shouldn't happen otherwise, but let's
3554  * be conservative.) In this case advancing the usability horizon is
3555  * appropriate.
3556  *
3557  * Another reason for avoiding unnecessary updates here is that while
3558  * reindexing pg_index itself, we must not try to update tuples in it.
3559  * pg_index's indexes should always have these flags in their clean state,
3560  * so that won't happen.
3561  *
3562  * If early pruning/vacuuming is enabled for the heap relation, the
3563  * usability horizon must be advanced to the current transaction on every
3564  * build or rebuild. pg_index is OK in this regard because catalog tables
3565  * are not subject to early cleanup.
3566  */
3567  if (!skipped_constraint)
3568  {
3569  Relation pg_index;
3570  HeapTuple indexTuple;
3571  Form_pg_index indexForm;
3572  bool index_bad;
3573  bool early_pruning_enabled = EarlyPruningEnabled(heapRelation);
3574 
3575  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3576 
3577  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3578  ObjectIdGetDatum(indexId));
3579  if (!HeapTupleIsValid(indexTuple))
3580  elog(ERROR, "cache lookup failed for index %u", indexId);
3581  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3582 
3583  index_bad = (!indexForm->indisvalid ||
3584  !indexForm->indisready ||
3585  !indexForm->indislive);
3586  if (index_bad ||
3587  (indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain) ||
3588  early_pruning_enabled)
3589  {
3590  if (!indexInfo->ii_BrokenHotChain && !early_pruning_enabled)
3591  indexForm->indcheckxmin = false;
3592  else if (index_bad || early_pruning_enabled)
3593  indexForm->indcheckxmin = true;
3594  indexForm->indisvalid = true;
3595  indexForm->indisready = true;
3596  indexForm->indislive = true;
3597  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3598 
3599  /*
3600  * Invalidate the relcache for the table, so that after we commit
3601  * all sessions will refresh the table's index list. This ensures
3602  * that if anyone misses seeing the pg_index row during this
3603  * update, they'll refresh their list before attempting any update
3604  * on the table.
3605  */
3606  CacheInvalidateRelcache(heapRelation);
3607  }
3608 
3609  table_close(pg_index, RowExclusiveLock);
3610  }
3611 
3612  /* Log what we did */
3613  if (options & REINDEXOPT_VERBOSE)
3614  ereport(INFO,
3615  (errmsg("index \"%s\" was reindexed",
3616  get_rel_name(indexId)),
3617  errdetail_internal("%s",
3618  pg_rusage_show(&ru0))));
3619 
3620  if (progress)
3622 
3623  /* Close rels, but keep locks */
3624  index_close(iRel, NoLock);
3625  table_close(heapRelation, NoLock);
3626 }
3627 
3628 /*
3629  * reindex_relation - This routine is used to recreate all indexes
3630  * of a relation (and optionally its toast relation too, if any).
3631  *
3632  * "flags" is a bitmask that can include any combination of these bits:
3633  *
3634  * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any).
3635  *
3636  * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely
3637  * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its
3638  * indexes are inconsistent with it. This makes things tricky if the relation
3639  * is a system catalog that we might consult during the reindexing. To deal
3640  * with that case, we mark all of the indexes as pending rebuild so that they
3641  * won't be trusted until rebuilt. The caller is required to call us *without*
3642  * having made the rebuilt table visible by doing CommandCounterIncrement;
3643  * we'll do CCI after having collected the index list. (This way we can still
3644  * use catalog indexes while collecting the list.)
3645  *
3646  * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion
3647  * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or
3648  * CLUSTER on a system catalog must omit this flag. REINDEX should be used to
3649  * rebuild an index if constraint inconsistency is suspected. For optimal
3650  * performance, other callers should include the flag only after transforming
3651  * the data in a manner that risks a change in constraint validity.
3652  *
3653  * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the
3654  * rebuilt indexes to unlogged.
3655  *
3656  * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the
3657  * rebuilt indexes to permanent.
3658  *
3659  * Returns true if any indexes were rebuilt (including toast table's index
3660  * when relevant). Note that a CommandCounterIncrement will occur after each
3661  * index rebuild.
3662  */
3663 bool
3665 {
3666  Relation rel;
3667  Oid toast_relid;
3668  List *indexIds;
3669  bool result;
3670  int i;
3671 
3672  /*
3673  * Open and lock the relation. ShareLock is sufficient since we only need
3674  * to prevent schema and data changes in it. The lock level used here
3675  * should match ReindexTable().
3676  */
3677  rel = table_open(relid, ShareLock);
3678 
3679  /*
3680  * This may be useful when implemented someday; but that day is not today.
3681  * For now, avoid erroring out when called in a multi-table context
3682  * (REINDEX SCHEMA) and happen to come across a partitioned table. The
3683  * partitions may be reindexed on their own anyway.
3684  */
3685  if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
3686  {
3687  ereport(WARNING,
3688  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3689  errmsg("REINDEX of partitioned tables is not yet implemented, skipping \"%s\"",
3690  RelationGetRelationName(rel))));
3691  table_close(rel, ShareLock);
3692  return false;
3693  }
3694 
3695  toast_relid = rel->rd_rel->reltoastrelid;
3696 
3697  /*
3698  * Get the list of index OIDs for this relation. (We trust to the
3699  * relcache to get this with a sequential scan if ignoring system
3700  * indexes.)
3701  */
3702  indexIds = RelationGetIndexList(rel);
3703 
3704  PG_TRY();
3705  {
3706  ListCell *indexId;
3707  char persistence;
3708 
3709  if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
3710  {
3711  /* Suppress use of all the indexes until they are rebuilt */
3712  SetReindexPending(indexIds);
3713 
3714  /*
3715  * Make the new heap contents visible --- now things might be
3716  * inconsistent!
3717  */
3719  }
3720 
3721  /*
3722  * Compute persistence of indexes: same as that of owning rel, unless
3723  * caller specified otherwise.
3724  */
3726  persistence = RELPERSISTENCE_UNLOGGED;
3727  else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT)
3728  persistence = RELPERSISTENCE_PERMANENT;
3729  else
3730  persistence = rel->rd_rel->relpersistence;
3731 
3732  /* Reindex all the indexes. */
3733  i = 1;
3734  foreach(indexId, indexIds)
3735  {
3736  Oid indexOid = lfirst_oid(indexId);
3737  Oid indexNamespaceId = get_rel_namespace(indexOid);
3738 
3739  /*
3740  * Skip any invalid indexes on a TOAST table. These can only be
3741  * duplicate leftovers from a failed REINDEX CONCURRENTLY, and if
3742  * rebuilt it would not be possible to drop them anymore.
3743  */
3744  if (IsToastNamespace(indexNamespaceId) &&
3745  !get_index_isvalid(indexOid))
3746  {
3747  ereport(WARNING,
3748  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3749  errmsg("cannot reindex invalid index \"%s.%s\" on TOAST table, skipping",
3750  get_namespace_name(indexNamespaceId),
3751  get_rel_name(indexOid))));
3752  continue;
3753  }
3754 
3755  reindex_index(indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS),
3756  persistence, options);
3757 
3759 
3760  /* Index should no longer be in the pending list */
3761  Assert(!ReindexIsProcessingIndex(indexOid));
3762 
3763  /* Set index rebuild count */
3765  i);
3766  i++;
3767  }
3768  }
3769  PG_FINALLY();
3770  {
3771  /* Make sure list gets cleared on error exit */
3773  }
3774  PG_END_TRY();
3775 
3776  /*
3777  * Close rel, but continue to hold the lock.
3778  */
3779  table_close(rel, NoLock);
3780 
3781  result = (indexIds != NIL);
3782 
3783  /*
3784  * If the relation has a secondary toast rel, reindex that too while we
3785  * still hold the lock on the master table.
3786  */
3787  if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid))
3788  result |= reindex_relation(toast_relid, flags, options);
3789 
3790  return result;
3791 }
3792 
3793 
3794 /* ----------------------------------------------------------------
3795  * System index reindexing support
3796  *
3797  * When we are busy reindexing a system index, this code provides support
3798  * for preventing catalog lookups from using that index. We also make use
3799  * of this to catch attempted uses of user indexes during reindexing of
3800  * those indexes. This information is propagated to parallel workers;
3801  * attempting to change it during a parallel operation is not permitted.
3802  * ----------------------------------------------------------------
3803  */
3804 
3808 
3809 /*
3810  * ReindexIsProcessingHeap
3811  * True if heap specified by OID is currently being reindexed.
3812  */
3813 bool
3815 {
3816  return heapOid == currentlyReindexedHeap;
3817 }
3818 
3819 /*
3820  * ReindexIsCurrentlyProcessingIndex
3821  * True if index specified by OID is currently being reindexed.
3822  */
3823 static bool
3825 {
3826  return indexOid == currentlyReindexedIndex;
3827 }
3828 
3829 /*
3830  * ReindexIsProcessingIndex
3831  * True if index specified by OID is currently being reindexed,
3832  * or should be treated as invalid because it is awaiting reindex.
3833  */
3834 bool
3836 {
3837  return indexOid == currentlyReindexedIndex ||
3838  list_member_oid(pendingReindexedIndexes, indexOid);
3839 }
3840 
3841 /*
3842  * SetReindexProcessing
3843  * Set flag that specified heap/index are being reindexed.
3844  *
3845  * NB: caller must use a PG_TRY block to ensure ResetReindexProcessing is done.
3846  */
3847 static void
3848 SetReindexProcessing(Oid heapOid, Oid indexOid)
3849 {
3850  Assert(OidIsValid(heapOid) && OidIsValid(indexOid));
3851  /* Reindexing is not re-entrant. */
3853  elog(ERROR, "cannot reindex while reindexing");
3854  currentlyReindexedHeap = heapOid;
3855  currentlyReindexedIndex = indexOid;
3856  /* Index is no longer "pending" reindex. */
3857  RemoveReindexPending(indexOid);
3858 }
3859 
3860 /*
3861  * ResetReindexProcessing
3862  * Unset reindexing status.
3863  */
3864 static void
3866 {
3867  /* This may be called in leader error path */
3870 }
3871 
3872 /*
3873  * SetReindexPending
3874  * Mark the given indexes as pending reindex.
3875  *
3876  * NB: caller must use a PG_TRY block to ensure ResetReindexPending is done.
3877  * Also, we assume that the current memory context stays valid throughout.
3878  */
3879 static void
3881 {
3882  /* Reindexing is not re-entrant. */
3883  if (pendingReindexedIndexes)
3884  elog(ERROR, "cannot reindex while reindexing");
3885  if (IsInParallelMode())
3886  elog(ERROR, "cannot modify reindex state during a parallel operation");
3887  pendingReindexedIndexes = list_copy(indexes);
3888 }
3889 
3890 /*
3891  * RemoveReindexPending
3892  * Remove the given index from the pending list.
3893  */
3894 static void
3896 {
3897  if (IsInParallelMode())
3898  elog(ERROR, "cannot modify reindex state during a parallel operation");
3899  pendingReindexedIndexes = list_delete_oid(pendingReindexedIndexes,
3900  indexOid);
3901 }
3902 
3903 /*
3904  * ResetReindexPending
3905  * Unset reindex-pending status.
3906  */
3907 static void
3909 {
3910  /* This may be called in leader error path */
3911  pendingReindexedIndexes = NIL;
3912 }
3913 
3914 /*
3915  * EstimateReindexStateSpace
3916  * Estimate space needed to pass reindex state to parallel workers.
3917  */
3918 Size
3920 {
3921  return offsetof(SerializedReindexState, pendingReindexedIndexes)
3922  + mul_size(sizeof(Oid), list_length(pendingReindexedIndexes));
3923 }
3924 
3925 /*
3926  * SerializeReindexState
3927  * Serialize reindex state for parallel workers.
3928  */
3929 void
3930 SerializeReindexState(Size maxsize, char *start_address)
3931 {
3932  SerializedReindexState *sistate = (SerializedReindexState *) start_address;
3933  int c = 0;
3934  ListCell *lc;
3935 
3938  sistate->numPendingReindexedIndexes = list_length(pendingReindexedIndexes);
3939  foreach(lc, pendingReindexedIndexes)
3940  sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc);
3941 }
3942 
3943 /*
3944  * RestoreReindexState
3945  * Restore reindex state in a parallel worker.
3946  */
3947 void
3948 RestoreReindexState(void *reindexstate)
3949 {
3950  SerializedReindexState *sistate = (SerializedReindexState *) reindexstate;
3951  int c = 0;
3952  MemoryContext oldcontext;
3953 
3956 
3957  Assert(pendingReindexedIndexes == NIL);
3959  for (c = 0; c < sistate->numPendingReindexedIndexes; ++c)
3960  pendingReindexedIndexes =
3961  lappend_oid(pendingReindexedIndexes,
3962  sistate->pendingReindexedIndexes[c]);
3963  MemoryContextSwitchTo(oldcontext);
3964 }
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:77
signed short int16
Definition: c.h:354
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2582
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:680
void WaitForLockers(LOCKTAG heaplocktag, LOCKMODE lockmode, bool progress)
Definition: lmgr.c:942
#define NIL
Definition: pg_list.h:65
Definition: c.h:594
struct IndexAmRoutine * rd_indam
Definition: rel.h:168
Oid IndexGetRelation(Oid indexId, bool missing_ok)
Definition: index.c:3395
void RelationGetExclusionInfo(Relation indexRelation, Oid **operators, Oid **procs, uint16 **strategies)
Definition: relcache.c:4998
uint16 * ii_UniqueStrats
Definition: execnodes.h:169
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:98
List * SystemFuncName(char *name)
LockRelId lockRelId
Definition: rel.h:44
static Oid currentlyReindexedHeap
Definition: index.c:3805
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT
Definition: progress.h:95
bool CompareIndexInfo(IndexInfo *info1, IndexInfo *info2, Oid *collations1, Oid *collations2, Oid *opfamilies1, Oid *opfamilies2, AttrMap *attmap)
Definition: index.c:2403
static void index_update_stats(Relation rel, bool hasindex, double reltuples)
Definition: index.c:2661
bool ConstraintNameIsUsed(ConstraintCategory conCat, Oid objId, const char *conname)
void tuplesort_performsort(Tuplesortstate *state)
Definition: tuplesort.c:1791
static Datum ExecEvalExprSwitchContext(ExprState *state, ExprContext *econtext, bool *isNull)
Definition: executor.h:305
#define DEBUG1
Definition: elog.h:25
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:133
void smgrcreate(SMgrRelation reln, ForkNumber forknum, bool isRedo)
Definition: smgr.c:333
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:529
#define GETSTRUCT(TUP)
Definition: htup_details.h:655
void index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
Definition: index.c:2013
static void UpdateIndexRelation(Oid indexoid, Oid heapoid, Oid parentIndexId, IndexInfo *indexInfo, Oid *collationOids, Oid *classOids, int16 *coloptions, bool primary, bool isexclusion, bool immediate, bool isvalid, bool isready)
Definition: index.c:527
void tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull)
Definition: tuplesort.c:1556
Oid currentlyReindexedIndex
Definition: index.c:93
List * ii_Predicate
Definition: execnodes.h:162
Tuplesortstate * tuplesort_begin_datum(Oid datumType, Oid sortOperator, Oid sortCollation, bool nullsFirstFlag, int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:1099
static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid)
Definition: index.c:3824
PgStat_Counter tuples_returned
Definition: pgstat.h:639
bool IsSystemRelation(Relation relation)
Definition: catalog.c:68
uint32 TransactionId
Definition: c.h:513
#define INDEX_CREATE_IF_NOT_EXISTS
Definition: index.h:51
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:298
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:865
TableScanDesc table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
Definition: tableam.c:98
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:321
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:44
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:551
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:3027
#define RelationGetDescr(relation)
Definition: rel.h:461
#define INDEX_CREATE_INVALID
Definition: index.h:53
int LOCKMODE
Definition: lockdefs.h:26
PgStat_Counter t_tuples_fetched
Definition: pgstat.h:103
void pgstat_progress_start_command(ProgressCommandType cmdtype, Oid relid)
Definition: pgstat.c:3140
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:934
void index_set_state_flags(Oid indexId, IndexStateFlagsAction action)
Definition: index.c:3316
uint16 bits16
Definition: c.h:375
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:275
static void SetReindexProcessing(Oid heapOid, Oid indexOid)
Definition: index.c:3848
static void SetReindexPending(List *indexes)
Definition: index.c:3880
#define PointerGetDatum(X)
Definition: postgres.h:556
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
Node * whenClause
Definition: parsenodes.h:2437
struct SMgrRelationData * rd_smgr
Definition: rel.h:57
Oid CreateConstraintEntry(const char *constraintName, Oid constraintNamespace, char constraintType, bool isDeferrable, bool isDeferred, bool isValidated, Oid parentConstrId, Oid relId, const int16 *constraintKey, int constraintNKeys, int constraintNTotalKeys, Oid domainId, Oid indexRelId, Oid foreignRelId, const int16 *foreignKey, const Oid *pfEqOp, const Oid *ppEqOp, const Oid *ffEqOp, int foreignNKeys, char foreignUpdateType, char foreignDeleteType, char foreignMatchType, const Oid *exclOp, Node *conExpr, const char *conBin, bool conIsLocal, int conInhCount, bool conNoInherit, bool is_internal)
Definition: pg_constraint.c:50
void SerializeReindexState(Size maxsize, char *start_address)
Definition: index.c:3930
void pgstat_progress_update_param(int index, int64 val)
Definition: pgstat.c:3161
ExprState * ii_PredicateState
Definition: execnodes.h:163
#define RelationGetForm(relation)
Definition: rel.h:429
void CommitTransactionCommand(void)
Definition: xact.c:2898
MemoryContext ecxt_per_tuple_memory
Definition: execnodes.h:232
List * RelationGetDummyIndexExpressions(Relation relation)
Definition: relcache.c:4623
bool analyze_only
Definition: genam.h:47
int2vector * buildint2vector(const int16 *int2s, int n)
Definition: int.c:114
Oid dbId
Definition: rel.h:39
bool report_progress
Definition: genam.h:48
Oid get_rel_namespace(Oid relid)
Definition: lsyscache.c:1780
BufferAccessStrategy strategy
Definition: genam.h:52
static void InitializeAttributeOids(Relation indexRelation, int numatts, Oid indexoid)
Definition: index.c:469
Oid binary_upgrade_next_index_pg_class_oid
Definition: index.c:84
int maplen
Definition: attmap.h:37
#define REINDEXOPT_REPORT_PROGRESS
Definition: parsenodes.h:3346
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
#define Int16GetDatum(X)
Definition: postgres.h:451
Definition: lock.h:163
static void ResetReindexPending(void)
Definition: index.c:3908
bool DeleteInheritsTuple(Oid inhrelid, Oid inhparent)
Definition: pg_inherits.c:454
static List * pendingReindexedIndexes
Definition: index.c:3807
List * list_copy(const List *oldlist)
Definition: list.c:1404
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:276
Definition: nodes.h:526
Oid * ii_ExclusionProcs
Definition: execnodes.h:165
bool get_collation_isdeterministic(Oid colloid)
Definition: lsyscache.c:968
int errcode(int sqlerrcode)
Definition: elog.c:610
void * stringToNode(const char *str)
Definition: read.c:89
Relation index
Definition: genam.h:46
#define MemSet(start, val, len)
Definition: c.h:971
#define INFO
Definition: elog.h:33
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition: heaptuple.c:359
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:136
#define PROGRESS_CREATEIDX_TUPLES_TOTAL
Definition: progress.h:84
uint32 BlockNumber
Definition: block.h:31
void RelationForgetRelation(Oid rid)
Definition: relcache.c:2708
void PopActiveSnapshot(void)
Definition: snapmgr.c:814
void CatalogTupleDelete(Relation heapRel, ItemPointer tid)
Definition: indexing.c:269
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition: pg_depend.c:43
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2300
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:247
PgStat_Counter numscans
Definition: pgstat.h:637
#define INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS
Definition: index.h:79
void visibilitymap_count(Relation rel, BlockNumber *all_visible, BlockNumber *all_frozen)
void index_check_primary_key(Relation heapRel, IndexInfo *indexInfo, bool is_alter_table, IndexStmt *stmt)
Definition: index.c:200
PgStat_TableCounts t_counts
Definition: pgstat.h:159
void index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
Definition: index.c:1447
Node * map_variable_attnos(Node *node, int target_varno, int sublevels_up, const AttrMap *attno_map, Oid to_rowtype, bool *found_whole_row)
#define REINDEX_REL_SUPPRESS_INDEX_USE
Definition: index.h:139
static bool table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:904
bool IsToastNamespace(Oid namespaceId)
Definition: catalog.c:195
Form_pg_class rd_rel
Definition: rel.h:89
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1338
unsigned int Oid
Definition: postgres_ext.h:31
static bool ExecQual(ExprState *state, ExprContext *econtext)
Definition: executor.h:370
Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER]
Definition: index.c:95
int namestrcpy(Name name, const char *str)
Definition: name.c:250
Oid amkeytype
Definition: amapi.h:205
Oid index_create(Relation heapRelation, const char *indexRelationName, Oid indexRelationId, Oid parentIndexRelid, Oid parentConstraintId, Oid relFileNode, IndexInfo *indexInfo, List *indexColNames, Oid accessMethodObjectId, Oid tableSpaceId, Oid *collationObjectId, Oid *classObjectId, int16 *coloptions, Datum reloptions, bits16 flags, bits16 constr_flags, bool allow_system_table_mods, bool is_internal, Oid *constraintId)
Definition: index.c:690
List * lappend_oid(List *list, Oid datum)
Definition: list.c:358
#define OidIsValid(objectId)
Definition: c.h:644
#define InvokeObjectPostAlterHookArg(classId, objectId, subId, auxiliaryId, is_internal)
Definition: objectaccess.h:178
PgStat_Counter t_tuples_returned
Definition: pgstat.h:102
Oid * ii_UniqueOps
Definition: execnodes.h:167
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:356
bool IsBinaryUpgrade
Definition: globals.c:110
double itups
Definition: index.h:37
static TableScanDesc table_beginscan_strat(Relation rel, Snapshot snapshot, int nkeys, struct ScanKeyData *key, bool allow_strat, bool allow_sync)
Definition: tableam.h:779
#define REINDEXOPT_VERBOSE
Definition: parsenodes.h:3345
signed int int32
Definition: c.h:355
Definition: attmap.h:34
int errdetail_internal(const char *fmt,...)
Definition: elog.c:984
static void ResetReindexProcessing(void)
Definition: index.c:3865
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:4677
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
Definition: type.h:89
#define INDEX_CONSTR_CREATE_INIT_DEFERRED
Definition: index.h:77
void RelationSetNewRelfilenode(Relation relation, char persistence)
Definition: relcache.c:3420
void SetRelationHasSubclass(Oid relationId, bool relhassubclass)
Definition: tablecmds.c:2895
void InsertPgClassTuple(Relation pg_class_desc, Relation new_rel_desc, Oid new_rel_oid, Datum relacl, Datum reloptions)
Definition: heap.c:880
#define RelationOpenSmgr(relation)
Definition: rel.h:492
RangeVar * constrrel
Definition: parsenodes.h:2444
void FreeExecutorState(EState *estate)
Definition: execUtils.c:190
#define GetPerTupleExprContext(estate)
Definition: executor.h:506
List * ii_ExpressionsState
Definition: execnodes.h:161
Form_pg_index rd_index
Definition: rel.h:154
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:448
unsigned short uint16
Definition: c.h:366
void pfree(void *pointer)
Definition: mcxt.c:1056
bool IsInParallelMode(void)
Definition: xact.c:996
Oid * rd_indcollation
Definition: rel.h:179
#define EarlyPruningEnabled(rel)
Definition: snapmgr.h:45
void UnlockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:382
#define ObjectIdGetDatum(X)
Definition: postgres.h:507
#define ERROR
Definition: elog.h:43
int ii_NumIndexKeyAttrs
Definition: execnodes.h:158
Definition: rel.h:36
ambuild_function ambuild
Definition: amapi.h:214
void LockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:369
IndexAmRoutine * GetIndexAmRoutineByAmId(Oid amoid, bool noerror)
Definition: amapi.c:56
#define RelationIsValid(relation)
Definition: rel.h:408
bool ReindexIsProcessingHeap(Oid heapOid)
Definition: index.c:3814
Relation relation_open(Oid relationId, LOCKMODE lockmode)
Definition: relation.c:48
ItemPointerData t_self
Definition: htup.h:65
Oid get_relname_relid(const char *relname, Oid relnamespace)
Definition: lsyscache.c:1713
#define DEBUG2
Definition: elog.h:24
Tuplesortstate * tuplesort
Definition: index.h:35
#define AttrNumberGetAttrOffset(attNum)
Definition: attnum.h:51
PgStat_StatTabEntry * pgstat_fetch_stat_tabentry(Oid relid)
Definition: pgstat.c:2455
#define SET_LOCKTAG_RELATION(locktag, dboid, reloid)
Definition: lock.h:180
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3120
char * c
#define NoLock
Definition: lockdefs.h:34
LockInfoData rd_lockInfo
Definition: rel.h:92
#define IsNormalProcessingMode()
Definition: miscadmin.h:394
HeapTuple heap_getnext(TableScanDesc sscan, ScanDirection direction)
Definition: heapam.c:1291
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1224
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:4564
Oid * ii_UniqueProcs
Definition: execnodes.h:168
Oid values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:602
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:544
#define RowExclusiveLock
Definition: lockdefs.h:38
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:5900
#define PROGRESS_CREATEIDX_INDEX_OID
Definition: progress.h:80
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:164
IndexStateFlagsAction
Definition: index.h:24
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define InvalidTransactionId
Definition: transam.h:31
#define RelationGetRelationName(relation)
Definition: rel.h:469
ExprState * ExecPrepareQual(List *qual, EState *estate)
Definition: execExpr.c:520
static ListCell * list_head(const List *l)
Definition: pg_list.h:125
List * list_delete_oid(List *list, Oid datum)
Definition: list.c:835
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:193
PgStat_Counter tuples_fetched
Definition: pgstat.h:640
bool ii_BrokenHotChain
Definition: execnodes.h:173
bool ActiveSnapshotSet(void)
Definition: snapmgr.c:853
Oid * rd_opfamily
Definition: rel.h:169
Oid get_index_constraint(Oid indexId)
Definition: pg_depend.c:916
#define TriggerConstraintIndexId
Definition: indexing.h:251
static int64 itemptr_encode(ItemPointer itemptr)
Definition: index.h:168
static TupleDesc ConstructTupleDescriptor(Relation heapRelation, IndexInfo *indexInfo, List *indexColNames, Oid accessMethodObjectId, Oid *collationObjectId, Oid *classObjectId)
Definition: index.c:266
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:454
TransactionId GetTopTransactionIdIfAny(void)
Definition: xact.c:409
Oid index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, const char *newName)
Definition: index.c:1240
IndexInfo * makeIndexInfo(int numattrs, int numkeyattrs, Oid amoid, List *expressions, List *predicates, bool unique, bool isready, bool concurrent)
Definition: makefuncs.c:740
void CheckTableNotInUse(Relation rel, const char *stmt)
Definition: tablecmds.c:3479
void StoreSingleInheritance(Oid relationId, Oid parentOid, int32 seqNumber)
Definition: pg_inherits.c:417
Datum Int64GetDatum(int64 X)
Definition: fmgr.c:1699
static void IndexCheckExclusion(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo)
Definition: index.c:3004
#define ATTRIBUTE_FIXED_PART_SIZE
Definition: pg_attribute.h:185
Size EstimateReindexStateSpace(void)
Definition: index.c:3919
void index_register(Oid heap, Oid ind, IndexInfo *indexInfo)
Definition: bootstrap.c:1069
bool ii_ReadyForInserts
Definition: execnodes.h:171
PgStat_Counter t_blocks_hit
Definition: pgstat.h:116
MemoryContext TopMemoryContext
Definition: mcxt.c:44
int numPendingReindexedIndexes
Definition: index.c:94
EState * CreateExecutorState(void)
Definition: execUtils.c:88
void TransferPredicateLocksToHeapRelation(Relation relation)
Definition: predicate.c:3077
bool get_rel_relispartition(Oid relid)
Definition: lsyscache.c:1855
List * ExecPrepareExprList(List *nodes, EState *estate)
Definition: execExpr.c:566
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:907
List * lappend(List *list, void *datum)
Definition: list.c:322
static Oid currentlyReindexedIndex
Definition: index.c:3806
#define PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE
Definition: progress.h:104
#define WARNING
Definition: elog.h:40
void validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
Definition: index.c:3160
static void AppendAttributeTuples(Relation indexRelation, int numatts)
Definition: index.c:487
#define RelationIsMapped(relation)
Definition: rel.h:484
FormData_pg_index * Form_pg_index
Definition: pg_index.h:66
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:1116
float float4
Definition: c.h:490
int progress
Definition: pgbench.c:234
#define PROGRESS_CREATEIDX_PHASE
Definition: progress.h:82
Definition: c.h:583
Size mul_size(Size s1, Size s2)
Definition: shmem.c:515
#define PG_FINALLY()
Definition: elog.h:312
#define TextDatumGetCString(d)
Definition: builtins.h:88
#define PROGRESS_SCAN_BLOCKS_DONE
Definition: progress.h:120
void pgstat_progress_end_command(void)
Definition: pgstat.c:3212
void RelationDropStorage(Relation rel)
Definition: storage.c:147
IndexBulkDeleteResult * index_bulk_delete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback, void *callback_state)
Definition: indexam.c:682
uintptr_t Datum
Definition: postgres.h:367
void CommandCounterIncrement(void)
Definition: xact.c:1005
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:1164
Expr * make_ands_explicit(List *andclauses)
Definition: makefuncs.c:705
int ii_NumIndexAttrs
Definition: execnodes.h:157
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:716
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:1377
static bool relationHasPrimaryKey(Relation rel)
Definition: index.c:146
#define PROGRESS_CREATEIDX_COMMAND_REINDEX
Definition: progress.h:110
PgStat_Counter blocks_hit
Definition: pgstat.h:653
#define InvalidMultiXactId
Definition: multixact.h:23
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:195
#define InvokeObjectPostCreateHookArg(classId, objectId, subId, is_internal)
Definition: objectaccess.h:153
long deleteDependencyRecordsForClass(Oid classId, Oid objectId, Oid refclassId, char deptype)
Definition: pg_depend.c:240
PgStat_Counter t_numscans
Definition: pgstat.h:100
#define INDEX_CREATE_IS_PRIMARY
Definition: index.h:47
#define BoolGetDatum(X)
Definition: postgres.h:402
static void RemoveReindexPending(Oid indexOid)
Definition: index.c:3895
long changeDependenciesOf(Oid classId, Oid oldObjectId, Oid newObjectId)
Definition: pg_depend.c:407
#define InvalidOid
Definition: postgres_ext.h:36
static Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:381
FormData_pg_attribute
Definition: pg_attribute.h:177
#define INDEX_CREATE_CONCURRENT
Definition: index.h:50
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1118
int16 attnum
Definition: pg_attribute.h:79
#define ereport(elevel,...)
Definition: elog.h:144
void DeleteRelationTuple(Oid relid)
Definition: heap.c:1504
int maintenance_work_mem
Definition: globals.c:122
#define NOTICE
Definition: elog.h:37
int message_level
Definition: genam.h:50
TransactionId MultiXactId
Definition: c.h:523
double num_heap_tuples
Definition: genam.h:51
bool ii_Unique
Definition: execnodes.h:170
#define makeNode(_type_)
Definition: nodes.h:574
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
FormData_pg_constraint * Form_pg_constraint
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:675
void index_build(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo, bool isreindex, bool parallel)
Definition: index.c:2809
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define REINDEX_REL_FORCE_INDEXES_UNLOGGED
Definition: index.h:141
List * ii_Expressions
Definition: execnodes.h:160
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:206
#define Assert(condition)
Definition: c.h:738
oidvector * buildoidvector(const Oid *oids, int n)
Definition: oid.c:167
#define lfirst(lc)
Definition: pg_list.h:190
Definition: regguts.h:298
double tups_inserted
Definition: index.h:37
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:565
#define PROGRESS_CREATEIDX_PHASE_BUILD
Definition: progress.h:92
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN
Definition: progress.h:96
void StartTransactionCommand(void)
Definition: xact.c:2797
AttrNumber * attnums
Definition: attmap.h:36
void recordDependencyOnSingleRelExpr(const ObjectAddress *depender, Node *expr, Oid relId, DependencyType behavior, DependencyType self_behavior, bool reverse_self)
Definition: dependency.c:1630
CatalogIndexState CatalogOpenIndexes(Relation heapRel)
Definition: indexing.c:42
Relation heap_create(const char *relname, Oid relnamespace, Oid reltablespace, Oid relid, Oid relfilenode, Oid accessmtd, TupleDesc tupDesc, char relkind, char relpersistence, bool shared_relation, bool mapped_relation, bool allow_system_table_mods, TransactionId *relfrozenxid, MultiXactId *relminmxid)
Definition: heap.c:294
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
Definition: pgstat.c:3183
#define linitial_oid(l)
Definition: pg_list.h:197
#define INDEX_MAX_KEYS
int ii_ParallelWorkers
Definition: execnodes.h:174
size_t Size
Definition: c.h:466
void CatalogTupleUpdate(Relation heapRel, ItemPointer otid, HeapTuple tup)
Definition: indexing.c:224
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
struct PgStat_TableStatus * pgstat_info
Definition: rel.h:215
int plan_create_index_workers(Oid tableOid, Oid indexOid)
Definition: planner.c:6242
bool get_index_isvalid(Oid index_oid)
Definition: lsyscache.c:3286
FormData_pg_type * Form_pg_type
Definition: pg_type.h:255
static int list_length(const List *l)
Definition: pg_list.h:169
#define REINDEX_REL_CHECK_CONSTRAINTS
Definition: index.h:140
FormData_pg_trigger * Form_pg_trigger
Definition: pg_trigger.h:72
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:1127
Oid GetNewRelFileNode(Oid reltablespace, Relation pg_class, char relpersistence)
Definition: catalog.c:380
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:224
#define PROGRESS_SCAN_BLOCKS_TOTAL
Definition: progress.h:119
List * get_index_ref_constraints(Oid indexId)
Definition: pg_depend.c:972
void DeleteAttributeTuples(Oid relid)
Definition: heap.c:1533
int16 values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:591
#define INDEX_CONSTR_CREATE_UPDATE_INDEX
Definition: index.h:78
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4330
Snapshot GetLatestSnapshot(void)
Definition: snapmgr.c:381
void reindex_index(Oid indexId, bool skip_constraint_checks, char persistence, int options)
Definition: index.c:3420
bool ii_Concurrent
Definition: execnodes.h:172
#define InvalidAttrNumber
Definition: attnum.h:23
#define ObjectAddressSet(addr, class_id, object_id)
Definition: objectaddress.h:40
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:152
#define DatumGetPointer(X)
Definition: postgres.h:549
void CacheInvalidateRelcache(Relation relation)
Definition: inval.c:1270
double htups
Definition: index.h:37
void RemoveStatistics(Oid relid, AttrNumber attnum)
Definition: heap.c:3121
char get_rel_persistence(Oid relid)
Definition: lsyscache.c:1906
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:863
static Datum values[MAXATTR]
Definition: bootstrap.c:167
void RelationInitIndexAccessInfo(Relation relation)
Definition: relcache.c:1350
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:392
FormData_pg_class * Form_pg_class
Definition: pg_class.h:153
#define INDEX_CREATE_SKIP_BUILD
Definition: index.h:49
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2625
#define SearchSysCacheCopy1(cacheId, key1)
Definition: syscache.h:174
#define AccessExclusiveLock
Definition: lockdefs.h:45
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN
Definition: progress.h:94
#define INDEX_CREATE_PARTITIONED
Definition: index.h:52
#define Int32GetDatum(X)
Definition: postgres.h:479
int NewGUCNestLevel(void)
Definition: guc.c:5886
void InsertPgAttributeTuple(Relation pg_attribute_rel, Form_pg_attribute new_attribute, CatalogIndexState indstate)
Definition: heap.c:726
Oid * ii_ExclusionOps
Definition: execnodes.h:164
void RestoreReindexState(void *reindexstate)
Definition: index.c:3948
void * palloc(Size size)
Definition: mcxt.c:949
int errmsg(const char *fmt,...)
Definition: elog.c:824
void heap_inplace_update(Relation relation, HeapTuple tuple)
Definition: heapam.c:5717
IndexInfo * BuildDummyIndexInfo(Relation index)
Definition: index.c:2357
static void table_index_validate_scan(Relation table_rel, Relation index_rel, struct IndexInfo *index_info, Snapshot snapshot, struct ValidateIndexState *state)
Definition: tableam.h:1595
#define PROGRESS_CREATEIDX_TUPLES_DONE
Definition: progress.h:85
void list_free(List *list)
Definition: list.c:1377
#define elog(elevel,...)
Definition: elog.h:214
ambuildempty_function ambuildempty
Definition: amapi.h:215
MemoryContext rd_indexcxt
Definition: rel.h:166
#define ShareLock
Definition: lockdefs.h:41
int i
void LockRelation(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:216
RangeVar * relation
Definition: parsenodes.h:2428
Oid currentlyReindexedHeap
Definition: index.c:92
#define PROGRESS_CLUSTER_INDEX_REBUILD_COUNT
Definition: progress.h:62
#define NameStr(name)
Definition: c.h:615
ObjectAddress CreateTrigger(CreateTrigStmt *stmt, const char *queryString, Oid relOid, Oid refRelOid, Oid constraintOid, Oid indexOid, Oid funcoid, Oid parentTriggerOid, Node *whenClause, bool isInternal, bool in_partition)
Definition: trigger.c:157
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
#define CStringGetTextDatum(s)
Definition: builtins.h:87
char * nodeToString(const void *obj)
Definition: outfuncs.c:4328
#define REINDEX_REL_FORCE_INDEXES_PERMANENT
Definition: index.h:142
void CatalogCloseIndexes(CatalogIndexState indstate)
Definition: indexing.c:60
#define REINDEX_REL_PROCESS_TOAST
Definition: index.h:138
void BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii)
Definition: index.c:2522
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:99
#define PROGRESS_CREATEIDX_SUBPHASE
Definition: progress.h:83
void CacheInvalidateRelcacheByTuple(HeapTuple classTuple)
Definition: inval.c:1306
void check_exclusion_constraint(Relation heap, Relation index, IndexInfo *indexInfo, ItemPointer tupleid, Datum *values, bool *isnull, EState *estate, bool newIndex)
Definition: execIndexing.c:866
Oid * rd_opcintype
Definition: rel.h:170
static Datum slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:402
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:159
uint16 * ii_ExclusionStrats
Definition: execnodes.h:166
void CheckAttributeType(const char *attname, Oid atttypid, Oid attcollation, List *containing_rowtypes, int flags)
Definition: heap.c:581
void tuplesort_end(Tuplesortstate *state)
Definition: tuplesort.c:1236
#define PG_TRY()
Definition: elog.h:295
#define INDEX_CREATE_ADD_CONSTRAINT
Definition: index.h:48
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:39
HeapTuple heap_modify_tuple(HeapTuple tuple, TupleDesc tupleDesc, Datum *replValues, bool *replIsnull, bool *doReplace)
Definition: heaptuple.c:1113
void index_concurrently_set_dead(Oid heapId, Oid indexId)
Definition: index.c:1733
bool ReindexIsProcessingIndex(Oid indexOid)
Definition: index.c:3835
void index_concurrently_build(Oid heapRelationId, Oid indexRelationId)
Definition: index.c:1399
FormData_pg_opclass * Form_pg_opclass
Definition: pg_opclass.h:83
#define ERRCODE_DUPLICATE_OBJECT
Definition: streamutil.c:31
static bool validate_index_callback(ItemPointer itemptr, void *opaque)
Definition: index.c:3288
PgStat_Counter blocks_fetched
Definition: pgstat.h:652
bool reindex_relation(Oid relid, int flags, int options)
Definition: index.c:3664
Definition: pg_list.h:50
long changeDependenciesOn(Oid refClassId, Oid oldRefObjectId, Oid newRefObjectId)
Definition: pg_depend.c:463
char * get_rel_name(Oid relid)
Definition: lsyscache.c:1756
#define PointerIsValid(pointer)
Definition: c.h:632
ItemPointerData tts_tid
Definition: tuptable.h:130
List * get_partition_ancestors(Oid relid)
Definition: partition.c:115
int16 AttrNumber
Definition: attnum.h:21
#define RelationGetRelid(relation)
Definition: rel.h:435
#define INDEX_CONSTR_CREATE_DEFERRABLE
Definition: index.h:76
long val
Definition: informix.c:664
#define PROGRESS_CREATEIDX_COMMAND
Definition: progress.h:79
void CatalogTupleInsert(Relation heapRel, HeapTuple tup)
Definition: indexing.c:183
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:126
#define PG_END_TRY()
Definition: elog.h:320
#define BTEqualStrategyNumber
Definition: stratnum.h:31
#define offsetof(type, field)
Definition: c.h:661
PgStat_Counter t_blocks_fetched
Definition: pgstat.h:115
#define lfirst_oid(lc)
Definition: pg_list.h:192
double index_tuples
Definition: genam.h:33
#define INDEX_CONSTR_CREATE_MARK_AS_PRIMARY
Definition: index.h:75
double heap_tuples
Definition: genam.h:32
#define PROGRESS_CREATEIDX_ACCESS_METHOD_OID
Definition: progress.h:81
Oid relId
Definition: rel.h:38
bool estimated_count
Definition: genam.h:49
ObjectAddress index_constraint_create(Relation heapRelation, Oid indexRelationId, Oid parentConstraintId, IndexInfo *indexInfo, const char *constraintName, char constraintType, bits16 constr_flags, bool allow_system_table_mods, bool is_internal)
Definition: index.c:1794
#define DescriptionObjIndexId
Definition: indexing.h:154
Oid ii_Am
Definition: execnodes.h:175
#define RelationGetNamespace(relation)
Definition: rel.h:476