PostgreSQL Source Code  git master
index.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * index.c
4  * code to create and destroy POSTGRES index relations
5  *
6  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/catalog/index.c
12  *
13  *
14  * INTERFACE ROUTINES
15  * index_create() - Create a cataloged index relation
16  * index_drop() - Removes index relation from catalogs
17  * BuildIndexInfo() - Prepare to insert index tuples
18  * FormIndexDatum() - Construct datum vector for one index tuple
19  *
20  *-------------------------------------------------------------------------
21  */
22 #include "postgres.h"
23 
24 #include <unistd.h>
25 
26 #include "access/amapi.h"
27 #include "access/heapam.h"
28 #include "access/multixact.h"
29 #include "access/relscan.h"
30 #include "access/sysattr.h"
31 #include "access/tableam.h"
32 #include "access/transam.h"
33 #include "access/visibilitymap.h"
34 #include "access/xact.h"
35 #include "bootstrap/bootstrap.h"
36 #include "catalog/binary_upgrade.h"
37 #include "catalog/catalog.h"
38 #include "catalog/dependency.h"
39 #include "catalog/heap.h"
40 #include "catalog/index.h"
41 #include "catalog/objectaccess.h"
42 #include "catalog/partition.h"
43 #include "catalog/pg_am.h"
44 #include "catalog/pg_collation.h"
45 #include "catalog/pg_constraint.h"
46 #include "catalog/pg_description.h"
47 #include "catalog/pg_depend.h"
48 #include "catalog/pg_inherits.h"
49 #include "catalog/pg_operator.h"
50 #include "catalog/pg_opclass.h"
51 #include "catalog/pg_tablespace.h"
52 #include "catalog/pg_trigger.h"
53 #include "catalog/pg_type.h"
54 #include "catalog/storage.h"
55 #include "commands/event_trigger.h"
56 #include "commands/progress.h"
57 #include "commands/tablecmds.h"
58 #include "commands/trigger.h"
59 #include "executor/executor.h"
60 #include "miscadmin.h"
61 #include "nodes/makefuncs.h"
62 #include "nodes/nodeFuncs.h"
63 #include "optimizer/optimizer.h"
64 #include "parser/parser.h"
65 #include "pgstat.h"
66 #include "rewrite/rewriteManip.h"
67 #include "storage/bufmgr.h"
68 #include "storage/lmgr.h"
69 #include "storage/predicate.h"
70 #include "storage/procarray.h"
71 #include "storage/smgr.h"
72 #include "utils/builtins.h"
73 #include "utils/fmgroids.h"
74 #include "utils/guc.h"
75 #include "utils/inval.h"
76 #include "utils/lsyscache.h"
77 #include "utils/memutils.h"
78 #include "utils/pg_rusage.h"
79 #include "utils/syscache.h"
80 #include "utils/tuplesort.h"
81 #include "utils/snapmgr.h"
82 
83 
84 /* Potentially set by pg_upgrade_support functions */
86 
87 /*
88  * Pointer-free representation of variables used when reindexing system
89  * catalogs; we use this to propagate those values to parallel workers.
90  */
91 typedef struct
92 {
96  Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER];
98 
99 /* non-export function prototypes */
100 static bool relationHasPrimaryKey(Relation rel);
101 static TupleDesc ConstructTupleDescriptor(Relation heapRelation,
102  IndexInfo *indexInfo,
103  List *indexColNames,
104  Oid accessMethodObjectId,
105  Oid *collationObjectId,
106  Oid *classObjectId);
107 static void InitializeAttributeOids(Relation indexRelation,
108  int numatts, Oid indexoid);
109 static void AppendAttributeTuples(Relation indexRelation, int numatts);
110 static void UpdateIndexRelation(Oid indexoid, Oid heapoid,
111  Oid parentIndexId,
112  IndexInfo *indexInfo,
113  Oid *collationOids,
114  Oid *classOids,
115  int16 *coloptions,
116  bool primary,
117  bool isexclusion,
118  bool immediate,
119  bool isvalid,
120  bool isready);
121 static void index_update_stats(Relation rel,
122  bool hasindex,
123  double reltuples);
124 static void IndexCheckExclusion(Relation heapRelation,
125  Relation indexRelation,
126  IndexInfo *indexInfo);
127 static bool validate_index_callback(ItemPointer itemptr, void *opaque);
128 static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid);
129 static void SetReindexProcessing(Oid heapOid, Oid indexOid);
130 static void ResetReindexProcessing(void);
131 static void SetReindexPending(List *indexes);
132 static void RemoveReindexPending(Oid indexOid);
133 static void ResetReindexPending(void);
134 
135 
136 /*
137  * relationHasPrimaryKey
138  * See whether an existing relation has a primary key.
139  *
140  * Caller must have suitable lock on the relation.
141  *
142  * Note: we intentionally do not check indisvalid here; that's because this
143  * is used to enforce the rule that there can be only one indisprimary index,
144  * and we want that to be true even if said index is invalid.
145  */
146 static bool
148 {
149  bool result = false;
150  List *indexoidlist;
151  ListCell *indexoidscan;
152 
153  /*
154  * Get the list of index OIDs for the table from the relcache, and look up
155  * each one in the pg_index syscache until we find one marked primary key
156  * (hopefully there isn't more than one such).
157  */
158  indexoidlist = RelationGetIndexList(rel);
159 
160  foreach(indexoidscan, indexoidlist)
161  {
162  Oid indexoid = lfirst_oid(indexoidscan);
163  HeapTuple indexTuple;
164 
165  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid));
166  if (!HeapTupleIsValid(indexTuple)) /* should not happen */
167  elog(ERROR, "cache lookup failed for index %u", indexoid);
168  result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary;
169  ReleaseSysCache(indexTuple);
170  if (result)
171  break;
172  }
173 
174  list_free(indexoidlist);
175 
176  return result;
177 }
178 
179 /*
180  * index_check_primary_key
181  * Apply special checks needed before creating a PRIMARY KEY index
182  *
183  * This processing used to be in DefineIndex(), but has been split out
184  * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX.
185  *
186  * We check for a pre-existing primary key, and that all columns of the index
187  * are simple column references (not expressions), and that all those
188  * columns are marked NOT NULL. If not, fail.
189  *
190  * We used to automatically change unmarked columns to NOT NULL here by doing
191  * our own local ALTER TABLE command. But that doesn't work well if we're
192  * executing one subcommand of an ALTER TABLE: the operations may not get
193  * performed in the right order overall. Now we expect that the parser
194  * inserted any required ALTER TABLE SET NOT NULL operations before trying
195  * to create a primary-key index.
196  *
197  * Caller had better have at least ShareLock on the table, else the not-null
198  * checking isn't trustworthy.
199  */
200 void
202  IndexInfo *indexInfo,
203  bool is_alter_table,
204  IndexStmt *stmt)
205 {
206  int i;
207 
208  /*
209  * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't
210  * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we
211  * have faith that the parser rejected multiple pkey clauses; and CREATE
212  * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either.
213  */
214  if ((is_alter_table || heapRel->rd_rel->relispartition) &&
215  relationHasPrimaryKey(heapRel))
216  {
217  ereport(ERROR,
218  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
219  errmsg("multiple primary keys for table \"%s\" are not allowed",
220  RelationGetRelationName(heapRel))));
221  }
222 
223  /*
224  * Check that all of the attributes in a primary key are marked as not
225  * null. (We don't really expect to see that; it'd mean the parser messed
226  * up. But it seems wise to check anyway.)
227  */
228  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
229  {
230  AttrNumber attnum = indexInfo->ii_IndexAttrNumbers[i];
231  HeapTuple atttuple;
232  Form_pg_attribute attform;
233 
234  if (attnum == 0)
235  ereport(ERROR,
236  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
237  errmsg("primary keys cannot be expressions")));
238 
239  /* System attributes are never null, so no need to check */
240  if (attnum < 0)
241  continue;
242 
243  atttuple = SearchSysCache2(ATTNUM,
245  Int16GetDatum(attnum));
246  if (!HeapTupleIsValid(atttuple))
247  elog(ERROR, "cache lookup failed for attribute %d of relation %u",
248  attnum, RelationGetRelid(heapRel));
249  attform = (Form_pg_attribute) GETSTRUCT(atttuple);
250 
251  if (!attform->attnotnull)
252  ereport(ERROR,
253  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
254  errmsg("primary key column \"%s\" is not marked NOT NULL",
255  NameStr(attform->attname))));
256 
257  ReleaseSysCache(atttuple);
258  }
259 }
260 
261 /*
262  * ConstructTupleDescriptor
263  *
264  * Build an index tuple descriptor for a new index
265  */
266 static TupleDesc
268  IndexInfo *indexInfo,
269  List *indexColNames,
270  Oid accessMethodObjectId,
271  Oid *collationObjectId,
272  Oid *classObjectId)
273 {
274  int numatts = indexInfo->ii_NumIndexAttrs;
275  int numkeyatts = indexInfo->ii_NumIndexKeyAttrs;
276  ListCell *colnames_item = list_head(indexColNames);
277  ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
278  IndexAmRoutine *amroutine;
279  TupleDesc heapTupDesc;
280  TupleDesc indexTupDesc;
281  int natts; /* #atts in heap rel --- for error checks */
282  int i;
283 
284  /* We need access to the index AM's API struct */
285  amroutine = GetIndexAmRoutineByAmId(accessMethodObjectId, false);
286 
287  /* ... and to the table's tuple descriptor */
288  heapTupDesc = RelationGetDescr(heapRelation);
289  natts = RelationGetForm(heapRelation)->relnatts;
290 
291  /*
292  * allocate the new tuple descriptor
293  */
294  indexTupDesc = CreateTemplateTupleDesc(numatts);
295 
296  /*
297  * Fill in the pg_attribute row.
298  */
299  for (i = 0; i < numatts; i++)
300  {
301  AttrNumber atnum = indexInfo->ii_IndexAttrNumbers[i];
302  Form_pg_attribute to = TupleDescAttr(indexTupDesc, i);
303  HeapTuple tuple;
304  Form_pg_type typeTup;
305  Form_pg_opclass opclassTup;
306  Oid keyType;
307 
309  to->attnum = i + 1;
310  to->attstattarget = -1;
311  to->attcacheoff = -1;
312  to->attislocal = true;
313  to->attcollation = (i < numkeyatts) ?
314  collationObjectId[i] : InvalidOid;
315 
316  /*
317  * For simple index columns, we copy some pg_attribute fields from the
318  * parent relation. For expressions we have to look at the expression
319  * result.
320  */
321  if (atnum != 0)
322  {
323  /* Simple index column */
324  const FormData_pg_attribute *from;
325 
326  Assert(atnum > 0); /* should've been caught above */
327 
328  if (atnum > natts) /* safety check */
329  elog(ERROR, "invalid column number %d", atnum);
330  from = TupleDescAttr(heapTupDesc,
331  AttrNumberGetAttrOffset(atnum));
332 
333  namecpy(&to->attname, &from->attname);
334  to->atttypid = from->atttypid;
335  to->attlen = from->attlen;
336  to->attndims = from->attndims;
337  to->atttypmod = from->atttypmod;
338  to->attbyval = from->attbyval;
339  to->attstorage = from->attstorage;
340  to->attalign = from->attalign;
341  }
342  else
343  {
344  /* Expressional index */
345  Node *indexkey;
346 
347  if (indexpr_item == NULL) /* shouldn't happen */
348  elog(ERROR, "too few entries in indexprs list");
349  indexkey = (Node *) lfirst(indexpr_item);
350  indexpr_item = lnext(indexInfo->ii_Expressions, indexpr_item);
351 
352  /*
353  * Lookup the expression type in pg_type for the type length etc.
354  */
355  keyType = exprType(indexkey);
356  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
357  if (!HeapTupleIsValid(tuple))
358  elog(ERROR, "cache lookup failed for type %u", keyType);
359  typeTup = (Form_pg_type) GETSTRUCT(tuple);
360 
361  /*
362  * Assign some of the attributes values. Leave the rest.
363  */
364  to->atttypid = keyType;
365  to->attlen = typeTup->typlen;
366  to->attbyval = typeTup->typbyval;
367  to->attstorage = typeTup->typstorage;
368  to->attalign = typeTup->typalign;
369  to->atttypmod = exprTypmod(indexkey);
370 
371  ReleaseSysCache(tuple);
372 
373  /*
374  * Make sure the expression yields a type that's safe to store in
375  * an index. We need this defense because we have index opclasses
376  * for pseudo-types such as "record", and the actually stored type
377  * had better be safe; eg, a named composite type is okay, an
378  * anonymous record type is not. The test is the same as for
379  * whether a table column is of a safe type (which is why we
380  * needn't check for the non-expression case).
381  */
382  CheckAttributeType(NameStr(to->attname),
383  to->atttypid, to->attcollation,
384  NIL, 0);
385  }
386 
387  /*
388  * We do not yet have the correct relation OID for the index, so just
389  * set it invalid for now. InitializeAttributeOids() will fix it
390  * later.
391  */
392  to->attrelid = InvalidOid;
393 
394  /*
395  * Set the attribute name as specified by caller.
396  */
397  if (colnames_item == NULL) /* shouldn't happen */
398  elog(ERROR, "too few entries in colnames list");
399  namestrcpy(&to->attname, (const char *) lfirst(colnames_item));
400  colnames_item = lnext(indexColNames, colnames_item);
401 
402  /*
403  * Check the opclass and index AM to see if either provides a keytype
404  * (overriding the attribute type). Opclass (if exists) takes
405  * precedence.
406  */
407  keyType = amroutine->amkeytype;
408 
409  /*
410  * Code below is concerned to the opclasses which are not used with
411  * the included columns.
412  */
413  if (i < indexInfo->ii_NumIndexKeyAttrs)
414  {
415  tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(classObjectId[i]));
416  if (!HeapTupleIsValid(tuple))
417  elog(ERROR, "cache lookup failed for opclass %u",
418  classObjectId[i]);
419  opclassTup = (Form_pg_opclass) GETSTRUCT(tuple);
420  if (OidIsValid(opclassTup->opckeytype))
421  keyType = opclassTup->opckeytype;
422 
423  /*
424  * If keytype is specified as ANYELEMENT, and opcintype is
425  * ANYARRAY, then the attribute type must be an array (else it'd
426  * not have matched this opclass); use its element type.
427  */
428  if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID)
429  {
430  keyType = get_base_element_type(to->atttypid);
431  if (!OidIsValid(keyType))
432  elog(ERROR, "could not get element type of array type %u",
433  to->atttypid);
434  }
435 
436  ReleaseSysCache(tuple);
437  }
438 
439  /*
440  * If a key type different from the heap value is specified, update
441  * the type-related fields in the index tupdesc.
442  */
443  if (OidIsValid(keyType) && keyType != to->atttypid)
444  {
445  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
446  if (!HeapTupleIsValid(tuple))
447  elog(ERROR, "cache lookup failed for type %u", keyType);
448  typeTup = (Form_pg_type) GETSTRUCT(tuple);
449 
450  to->atttypid = keyType;
451  to->atttypmod = -1;
452  to->attlen = typeTup->typlen;
453  to->attbyval = typeTup->typbyval;
454  to->attalign = typeTup->typalign;
455  to->attstorage = typeTup->typstorage;
456 
457  ReleaseSysCache(tuple);
458  }
459  }
460 
461  pfree(amroutine);
462 
463  return indexTupDesc;
464 }
465 
466 /* ----------------------------------------------------------------
467  * InitializeAttributeOids
468  * ----------------------------------------------------------------
469  */
470 static void
472  int numatts,
473  Oid indexoid)
474 {
475  TupleDesc tupleDescriptor;
476  int i;
477 
478  tupleDescriptor = RelationGetDescr(indexRelation);
479 
480  for (i = 0; i < numatts; i += 1)
481  TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid;
482 }
483 
484 /* ----------------------------------------------------------------
485  * AppendAttributeTuples
486  * ----------------------------------------------------------------
487  */
488 static void
489 AppendAttributeTuples(Relation indexRelation, int numatts)
490 {
491  Relation pg_attribute;
492  CatalogIndexState indstate;
493  TupleDesc indexTupDesc;
494  int i;
495 
496  /*
497  * open the attribute relation and its indexes
498  */
499  pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
500 
501  indstate = CatalogOpenIndexes(pg_attribute);
502 
503  /*
504  * insert data from new index's tupdesc into pg_attribute
505  */
506  indexTupDesc = RelationGetDescr(indexRelation);
507 
508  for (i = 0; i < numatts; i++)
509  {
510  Form_pg_attribute attr = TupleDescAttr(indexTupDesc, i);
511 
512  Assert(attr->attnum == i + 1);
513 
514  InsertPgAttributeTuple(pg_attribute, attr, indstate);
515  }
516 
517  CatalogCloseIndexes(indstate);
518 
519  table_close(pg_attribute, RowExclusiveLock);
520 }
521 
522 /* ----------------------------------------------------------------
523  * UpdateIndexRelation
524  *
525  * Construct and insert a new entry in the pg_index catalog
526  * ----------------------------------------------------------------
527  */
528 static void
530  Oid heapoid,
531  Oid parentIndexId,
532  IndexInfo *indexInfo,
533  Oid *collationOids,
534  Oid *classOids,
535  int16 *coloptions,
536  bool primary,
537  bool isexclusion,
538  bool immediate,
539  bool isvalid,
540  bool isready)
541 {
542  int2vector *indkey;
543  oidvector *indcollation;
544  oidvector *indclass;
545  int2vector *indoption;
546  Datum exprsDatum;
547  Datum predDatum;
548  Datum values[Natts_pg_index];
549  bool nulls[Natts_pg_index];
550  Relation pg_index;
551  HeapTuple tuple;
552  int i;
553 
554  /*
555  * Copy the index key, opclass, and indoption info into arrays (should we
556  * make the caller pass them like this to start with?)
557  */
558  indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs);
559  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
560  indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i];
561  indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs);
562  indclass = buildoidvector(classOids, indexInfo->ii_NumIndexKeyAttrs);
563  indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs);
564 
565  /*
566  * Convert the index expressions (if any) to a text datum
567  */
568  if (indexInfo->ii_Expressions != NIL)
569  {
570  char *exprsString;
571 
572  exprsString = nodeToString(indexInfo->ii_Expressions);
573  exprsDatum = CStringGetTextDatum(exprsString);
574  pfree(exprsString);
575  }
576  else
577  exprsDatum = (Datum) 0;
578 
579  /*
580  * Convert the index predicate (if any) to a text datum. Note we convert
581  * implicit-AND format to normal explicit-AND for storage.
582  */
583  if (indexInfo->ii_Predicate != NIL)
584  {
585  char *predString;
586 
587  predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate));
588  predDatum = CStringGetTextDatum(predString);
589  pfree(predString);
590  }
591  else
592  predDatum = (Datum) 0;
593 
594  /*
595  * open the system catalog index relation
596  */
597  pg_index = table_open(IndexRelationId, RowExclusiveLock);
598 
599  /*
600  * Build a pg_index tuple
601  */
602  MemSet(nulls, false, sizeof(nulls));
603 
604  values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid);
605  values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid);
606  values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs);
607  values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs);
608  values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique);
609  values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary);
610  values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion);
611  values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate);
612  values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false);
613  values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid);
614  values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false);
615  values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready);
616  values[Anum_pg_index_indislive - 1] = BoolGetDatum(true);
617  values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false);
618  values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey);
619  values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation);
620  values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass);
621  values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption);
622  values[Anum_pg_index_indexprs - 1] = exprsDatum;
623  if (exprsDatum == (Datum) 0)
624  nulls[Anum_pg_index_indexprs - 1] = true;
625  values[Anum_pg_index_indpred - 1] = predDatum;
626  if (predDatum == (Datum) 0)
627  nulls[Anum_pg_index_indpred - 1] = true;
628 
629  tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls);
630 
631  /*
632  * insert the tuple into the pg_index catalog
633  */
634  CatalogTupleInsert(pg_index, tuple);
635 
636  /*
637  * close the relation and free the tuple
638  */
639  table_close(pg_index, RowExclusiveLock);
640  heap_freetuple(tuple);
641 }
642 
643 
644 /*
645  * index_create
646  *
647  * heapRelation: table to build index on (suitably locked by caller)
648  * indexRelationName: what it say
649  * indexRelationId: normally, pass InvalidOid to let this routine
650  * generate an OID for the index. During bootstrap this may be
651  * nonzero to specify a preselected OID.
652  * parentIndexRelid: if creating an index partition, the OID of the
653  * parent index; otherwise InvalidOid.
654  * parentConstraintId: if creating a constraint on a partition, the OID
655  * of the constraint in the parent; otherwise InvalidOid.
656  * relFileNode: normally, pass InvalidOid to get new storage. May be
657  * nonzero to attach an existing valid build.
658  * indexInfo: same info executor uses to insert into the index
659  * indexColNames: column names to use for index (List of char *)
660  * accessMethodObjectId: OID of index AM to use
661  * tableSpaceId: OID of tablespace to use
662  * collationObjectId: array of collation OIDs, one per index column
663  * classObjectId: array of index opclass OIDs, one per index column
664  * coloptions: array of per-index-column indoption settings
665  * reloptions: AM-specific options
666  * flags: bitmask that can include any combination of these bits:
667  * INDEX_CREATE_IS_PRIMARY
668  * the index is a primary key
669  * INDEX_CREATE_ADD_CONSTRAINT:
670  * invoke index_constraint_create also
671  * INDEX_CREATE_SKIP_BUILD:
672  * skip the index_build() step for the moment; caller must do it
673  * later (typically via reindex_index())
674  * INDEX_CREATE_CONCURRENT:
675  * do not lock the table against writers. The index will be
676  * marked "invalid" and the caller must take additional steps
677  * to fix it up.
678  * INDEX_CREATE_IF_NOT_EXISTS:
679  * do not throw an error if a relation with the same name
680  * already exists.
681  * INDEX_CREATE_PARTITIONED:
682  * create a partitioned index (table must be partitioned)
683  * constr_flags: flags passed to index_constraint_create
684  * (only if INDEX_CREATE_ADD_CONSTRAINT is set)
685  * allow_system_table_mods: allow table to be a system catalog
686  * is_internal: if true, post creation hook for new index
687  * constraintId: if not NULL, receives OID of created constraint
688  *
689  * Returns the OID of the created index.
690  */
691 Oid
692 index_create(Relation heapRelation,
693  const char *indexRelationName,
694  Oid indexRelationId,
695  Oid parentIndexRelid,
696  Oid parentConstraintId,
697  Oid relFileNode,
698  IndexInfo *indexInfo,
699  List *indexColNames,
700  Oid accessMethodObjectId,
701  Oid tableSpaceId,
702  Oid *collationObjectId,
703  Oid *classObjectId,
704  int16 *coloptions,
705  Datum reloptions,
706  bits16 flags,
707  bits16 constr_flags,
708  bool allow_system_table_mods,
709  bool is_internal,
710  Oid *constraintId)
711 {
712  Oid heapRelationId = RelationGetRelid(heapRelation);
713  Relation pg_class;
714  Relation indexRelation;
715  TupleDesc indexTupDesc;
716  bool shared_relation;
717  bool mapped_relation;
718  bool is_exclusion;
719  Oid namespaceId;
720  int i;
721  char relpersistence;
722  bool isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0;
723  bool invalid = (flags & INDEX_CREATE_INVALID) != 0;
724  bool concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0;
725  bool partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0;
726  char relkind;
729 
730  /* constraint flags can only be set when a constraint is requested */
731  Assert((constr_flags == 0) ||
732  ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0));
733  /* partitioned indexes must never be "built" by themselves */
734  Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD));
735 
736  relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX;
737  is_exclusion = (indexInfo->ii_ExclusionOps != NULL);
738 
739  pg_class = table_open(RelationRelationId, RowExclusiveLock);
740 
741  /*
742  * The index will be in the same namespace as its parent table, and is
743  * shared across databases if and only if the parent is. Likewise, it
744  * will use the relfilenode map if and only if the parent does; and it
745  * inherits the parent's relpersistence.
746  */
747  namespaceId = RelationGetNamespace(heapRelation);
748  shared_relation = heapRelation->rd_rel->relisshared;
749  mapped_relation = RelationIsMapped(heapRelation);
750  relpersistence = heapRelation->rd_rel->relpersistence;
751 
752  /*
753  * check parameters
754  */
755  if (indexInfo->ii_NumIndexAttrs < 1)
756  elog(ERROR, "must index at least one column");
757 
758  if (!allow_system_table_mods &&
759  IsSystemRelation(heapRelation) &&
761  ereport(ERROR,
762  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
763  errmsg("user-defined indexes on system catalog tables are not supported")));
764 
765  /*
766  * Btree text_pattern_ops uses text_eq as the equality operator, which is
767  * fine as long as the collation is deterministic; text_eq then reduces to
768  * bitwise equality and so it is semantically compatible with the other
769  * operators and functions in that opclass. But with a nondeterministic
770  * collation, text_eq could yield results that are incompatible with the
771  * actual behavior of the index (which is determined by the opclass's
772  * comparison function). We prevent such problems by refusing creation of
773  * an index with that opclass and a nondeterministic collation.
774  *
775  * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we
776  * find more cases, we might decide to create a real mechanism for marking
777  * opclasses as incompatible with nondeterminism; but for now, this small
778  * hack suffices.
779  *
780  * Another solution is to use a special operator, not text_eq, as the
781  * equality opclass member; but that is undesirable because it would
782  * prevent index usage in many queries that work fine today.
783  */
784  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
785  {
786  Oid collation = collationObjectId[i];
787  Oid opclass = classObjectId[i];
788 
789  if (collation)
790  {
791  if ((opclass == TEXT_BTREE_PATTERN_OPS_OID ||
792  opclass == VARCHAR_BTREE_PATTERN_OPS_OID ||
793  opclass == BPCHAR_BTREE_PATTERN_OPS_OID) &&
794  !get_collation_isdeterministic(collation))
795  {
796  HeapTuple classtup;
797 
798  classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass));
799  if (!HeapTupleIsValid(classtup))
800  elog(ERROR, "cache lookup failed for operator class %u", opclass);
801  ereport(ERROR,
802  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
803  errmsg("nondeterministic collations are not supported for operator class \"%s\"",
804  NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname))));
805  ReleaseSysCache(classtup);
806  }
807  }
808  }
809 
810  /*
811  * Concurrent index build on a system catalog is unsafe because we tend to
812  * release locks before committing in catalogs.
813  */
814  if (concurrent &&
815  IsCatalogRelation(heapRelation))
816  ereport(ERROR,
817  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
818  errmsg("concurrent index creation on system catalog tables is not supported")));
819 
820  /*
821  * This case is currently not supported. There's no way to ask for it in
822  * the grammar with CREATE INDEX, but it can happen with REINDEX.
823  */
824  if (concurrent && is_exclusion)
825  ereport(ERROR,
826  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
827  errmsg("concurrent index creation for exclusion constraints is not supported")));
828 
829  /*
830  * We cannot allow indexing a shared relation after initdb (because
831  * there's no way to make the entry in other databases' pg_class).
832  */
833  if (shared_relation && !IsBootstrapProcessingMode())
834  ereport(ERROR,
835  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
836  errmsg("shared indexes cannot be created after initdb")));
837 
838  /*
839  * Shared relations must be in pg_global, too (last-ditch check)
840  */
841  if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID)
842  elog(ERROR, "shared relations must be placed in pg_global tablespace");
843 
844  /*
845  * Check for duplicate name (both as to the index, and as to the
846  * associated constraint if any). Such cases would fail on the relevant
847  * catalogs' unique indexes anyway, but we prefer to give a friendlier
848  * error message.
849  */
850  if (get_relname_relid(indexRelationName, namespaceId))
851  {
852  if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0)
853  {
854  ereport(NOTICE,
855  (errcode(ERRCODE_DUPLICATE_TABLE),
856  errmsg("relation \"%s\" already exists, skipping",
857  indexRelationName)));
858  table_close(pg_class, RowExclusiveLock);
859  return InvalidOid;
860  }
861 
862  ereport(ERROR,
863  (errcode(ERRCODE_DUPLICATE_TABLE),
864  errmsg("relation \"%s\" already exists",
865  indexRelationName)));
866  }
867 
868  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 &&
870  indexRelationName))
871  {
872  /*
873  * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the
874  * conflicting constraint is not an index.
875  */
876  ereport(ERROR,
878  errmsg("constraint \"%s\" for relation \"%s\" already exists",
879  indexRelationName, RelationGetRelationName(heapRelation))));
880  }
881 
882  /*
883  * construct tuple descriptor for index tuples
884  */
885  indexTupDesc = ConstructTupleDescriptor(heapRelation,
886  indexInfo,
887  indexColNames,
888  accessMethodObjectId,
889  collationObjectId,
890  classObjectId);
891 
892  /*
893  * Allocate an OID for the index, unless we were told what to use.
894  *
895  * The OID will be the relfilenode as well, so make sure it doesn't
896  * collide with either pg_class OIDs or existing physical files.
897  */
898  if (!OidIsValid(indexRelationId))
899  {
900  /* Use binary-upgrade override for pg_class.oid/relfilenode? */
901  if (IsBinaryUpgrade)
902  {
904  ereport(ERROR,
905  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
906  errmsg("pg_class index OID value not set when in binary upgrade mode")));
907 
908  indexRelationId = binary_upgrade_next_index_pg_class_oid;
910  }
911  else
912  {
913  indexRelationId =
914  GetNewRelFileNode(tableSpaceId, pg_class, relpersistence);
915  }
916  }
917 
918  /*
919  * create the index relation's relcache entry and, if necessary, the
920  * physical disk file. (If we fail further down, it's the smgr's
921  * responsibility to remove the disk file again, if any.)
922  */
923  indexRelation = heap_create(indexRelationName,
924  namespaceId,
925  tableSpaceId,
926  indexRelationId,
927  relFileNode,
928  accessMethodObjectId,
929  indexTupDesc,
930  relkind,
931  relpersistence,
932  shared_relation,
933  mapped_relation,
934  allow_system_table_mods,
935  &relfrozenxid,
936  &relminmxid);
937 
938  Assert(relfrozenxid == InvalidTransactionId);
939  Assert(relminmxid == InvalidMultiXactId);
940  Assert(indexRelationId == RelationGetRelid(indexRelation));
941 
942  /*
943  * Obtain exclusive lock on it. Although no other transactions can see it
944  * until we commit, this prevents deadlock-risk complaints from lock
945  * manager in cases such as CLUSTER.
946  */
947  LockRelation(indexRelation, AccessExclusiveLock);
948 
949  /*
950  * Fill in fields of the index's pg_class entry that are not set correctly
951  * by heap_create.
952  *
953  * XXX should have a cleaner way to create cataloged indexes
954  */
955  indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner;
956  indexRelation->rd_rel->relam = accessMethodObjectId;
957  indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid);
958 
959  /*
960  * store index's pg_class entry
961  */
962  InsertPgClassTuple(pg_class, indexRelation,
963  RelationGetRelid(indexRelation),
964  (Datum) 0,
965  reloptions);
966 
967  /* done with pg_class */
968  table_close(pg_class, RowExclusiveLock);
969 
970  /*
971  * now update the object id's of all the attribute tuple forms in the
972  * index relation's tuple descriptor
973  */
974  InitializeAttributeOids(indexRelation,
975  indexInfo->ii_NumIndexAttrs,
976  indexRelationId);
977 
978  /*
979  * append ATTRIBUTE tuples for the index
980  */
981  AppendAttributeTuples(indexRelation, indexInfo->ii_NumIndexAttrs);
982 
983  /* ----------------
984  * update pg_index
985  * (append INDEX tuple)
986  *
987  * Note that this stows away a representation of "predicate".
988  * (Or, could define a rule to maintain the predicate) --Nels, Feb '92
989  * ----------------
990  */
991  UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid,
992  indexInfo,
993  collationObjectId, classObjectId, coloptions,
994  isprimary, is_exclusion,
995  (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0,
996  !concurrent && !invalid,
997  !concurrent);
998 
999  /*
1000  * Register relcache invalidation on the indexes' heap relation, to
1001  * maintain consistency of its index list
1002  */
1003  CacheInvalidateRelcache(heapRelation);
1004 
1005  /* update pg_inherits and the parent's relhassubclass, if needed */
1006  if (OidIsValid(parentIndexRelid))
1007  {
1008  StoreSingleInheritance(indexRelationId, parentIndexRelid, 1);
1009  SetRelationHasSubclass(parentIndexRelid, true);
1010  }
1011 
1012  /*
1013  * Register constraint and dependencies for the index.
1014  *
1015  * If the index is from a CONSTRAINT clause, construct a pg_constraint
1016  * entry. The index will be linked to the constraint, which in turn is
1017  * linked to the table. If it's not a CONSTRAINT, we need to make a
1018  * dependency directly on the table.
1019  *
1020  * We don't need a dependency on the namespace, because there'll be an
1021  * indirect dependency via our parent table.
1022  *
1023  * During bootstrap we can't register any dependencies, and we don't try
1024  * to make a constraint either.
1025  */
1027  {
1028  ObjectAddress myself,
1029  referenced;
1030 
1031  myself.classId = RelationRelationId;
1032  myself.objectId = indexRelationId;
1033  myself.objectSubId = 0;
1034 
1035  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)
1036  {
1037  char constraintType;
1038  ObjectAddress localaddr;
1039 
1040  if (isprimary)
1041  constraintType = CONSTRAINT_PRIMARY;
1042  else if (indexInfo->ii_Unique)
1043  constraintType = CONSTRAINT_UNIQUE;
1044  else if (is_exclusion)
1045  constraintType = CONSTRAINT_EXCLUSION;
1046  else
1047  {
1048  elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
1049  constraintType = 0; /* keep compiler quiet */
1050  }
1051 
1052  localaddr = index_constraint_create(heapRelation,
1053  indexRelationId,
1054  parentConstraintId,
1055  indexInfo,
1056  indexRelationName,
1057  constraintType,
1058  constr_flags,
1059  allow_system_table_mods,
1060  is_internal);
1061  if (constraintId)
1062  *constraintId = localaddr.objectId;
1063  }
1064  else
1065  {
1066  bool have_simple_col = false;
1067 
1068  /* Create auto dependencies on simply-referenced columns */
1069  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
1070  {
1071  if (indexInfo->ii_IndexAttrNumbers[i] != 0)
1072  {
1073  referenced.classId = RelationRelationId;
1074  referenced.objectId = heapRelationId;
1075  referenced.objectSubId = indexInfo->ii_IndexAttrNumbers[i];
1076 
1077  recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO);
1078 
1079  have_simple_col = true;
1080  }
1081  }
1082 
1083  /*
1084  * If there are no simply-referenced columns, give the index an
1085  * auto dependency on the whole table. In most cases, this will
1086  * be redundant, but it might not be if the index expressions and
1087  * predicate contain no Vars or only whole-row Vars.
1088  */
1089  if (!have_simple_col)
1090  {
1091  referenced.classId = RelationRelationId;
1092  referenced.objectId = heapRelationId;
1093  referenced.objectSubId = 0;
1094 
1095  recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO);
1096  }
1097  }
1098 
1099  /*
1100  * If this is an index partition, create partition dependencies on
1101  * both the parent index and the table. (Note: these must be *in
1102  * addition to*, not instead of, all other dependencies. Otherwise
1103  * we'll be short some dependencies after DETACH PARTITION.)
1104  */
1105  if (OidIsValid(parentIndexRelid))
1106  {
1107  referenced.classId = RelationRelationId;
1108  referenced.objectId = parentIndexRelid;
1109  referenced.objectSubId = 0;
1110 
1111  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1112 
1113  referenced.classId = RelationRelationId;
1114  referenced.objectId = heapRelationId;
1115  referenced.objectSubId = 0;
1116 
1117  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1118  }
1119 
1120  /* Store dependency on collations */
1121  /* The default collation is pinned, so don't bother recording it */
1122  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1123  {
1124  if (OidIsValid(collationObjectId[i]) &&
1125  collationObjectId[i] != DEFAULT_COLLATION_OID)
1126  {
1127  referenced.classId = CollationRelationId;
1128  referenced.objectId = collationObjectId[i];
1129  referenced.objectSubId = 0;
1130 
1131  recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL);
1132  }
1133  }
1134 
1135  /* Store dependency on operator classes */
1136  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1137  {
1138  referenced.classId = OperatorClassRelationId;
1139  referenced.objectId = classObjectId[i];
1140  referenced.objectSubId = 0;
1141 
1142  recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL);
1143  }
1144 
1145  /* Store dependencies on anything mentioned in index expressions */
1146  if (indexInfo->ii_Expressions)
1147  {
1149  (Node *) indexInfo->ii_Expressions,
1150  heapRelationId,
1152  DEPENDENCY_AUTO, false);
1153  }
1154 
1155  /* Store dependencies on anything mentioned in predicate */
1156  if (indexInfo->ii_Predicate)
1157  {
1159  (Node *) indexInfo->ii_Predicate,
1160  heapRelationId,
1162  DEPENDENCY_AUTO, false);
1163  }
1164  }
1165  else
1166  {
1167  /* Bootstrap mode - assert we weren't asked for constraint support */
1168  Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0);
1169  }
1170 
1171  /* Post creation hook for new index */
1172  InvokeObjectPostCreateHookArg(RelationRelationId,
1173  indexRelationId, 0, is_internal);
1174 
1175  /*
1176  * Advance the command counter so that we can see the newly-entered
1177  * catalog tuples for the index.
1178  */
1180 
1181  /*
1182  * In bootstrap mode, we have to fill in the index strategy structure with
1183  * information from the catalogs. If we aren't bootstrapping, then the
1184  * relcache entry has already been rebuilt thanks to sinval update during
1185  * CommandCounterIncrement.
1186  */
1188  RelationInitIndexAccessInfo(indexRelation);
1189  else
1190  Assert(indexRelation->rd_indexcxt != NULL);
1191 
1192  indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs;
1193 
1194  /*
1195  * If this is bootstrap (initdb) time, then we don't actually fill in the
1196  * index yet. We'll be creating more indexes and classes later, so we
1197  * delay filling them in until just before we're done with bootstrapping.
1198  * Similarly, if the caller specified to skip the build then filling the
1199  * index is delayed till later (ALTER TABLE can save work in some cases
1200  * with this). Otherwise, we call the AM routine that constructs the
1201  * index.
1202  */
1204  {
1205  index_register(heapRelationId, indexRelationId, indexInfo);
1206  }
1207  else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0)
1208  {
1209  /*
1210  * Caller is responsible for filling the index later on. However,
1211  * we'd better make sure that the heap relation is correctly marked as
1212  * having an index.
1213  */
1214  index_update_stats(heapRelation,
1215  true,
1216  -1.0);
1217  /* Make the above update visible */
1219  }
1220  else
1221  {
1222  index_build(heapRelation, indexRelation, indexInfo, false, true);
1223  }
1224 
1225  /*
1226  * Close the index; but we keep the lock that we acquired above until end
1227  * of transaction. Closing the heap is caller's responsibility.
1228  */
1229  index_close(indexRelation, NoLock);
1230 
1231  return indexRelationId;
1232 }
1233 
1234 /*
1235  * index_concurrently_create_copy
1236  *
1237  * Create concurrently an index based on the definition of the one provided by
1238  * caller. The index is inserted into catalogs and needs to be built later
1239  * on. This is called during concurrent reindex processing.
1240  */
1241 Oid
1242 index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, const char *newName)
1243 {
1244  Relation indexRelation;
1245  IndexInfo *oldInfo,
1246  *newInfo;
1247  Oid newIndexId = InvalidOid;
1248  HeapTuple indexTuple,
1249  classTuple;
1250  Datum indclassDatum,
1251  colOptionDatum,
1252  optionDatum;
1253  oidvector *indclass;
1254  int2vector *indcoloptions;
1255  bool isnull;
1256  List *indexColNames = NIL;
1257  List *indexExprs = NIL;
1258  List *indexPreds = NIL;
1259 
1260  indexRelation = index_open(oldIndexId, RowExclusiveLock);
1261 
1262  /* The new index needs some information from the old index */
1263  oldInfo = BuildIndexInfo(indexRelation);
1264 
1265  /*
1266  * Concurrent build of an index with exclusion constraints is not
1267  * supported.
1268  */
1269  if (oldInfo->ii_ExclusionOps != NULL)
1270  ereport(ERROR,
1271  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1272  errmsg("concurrent index creation for exclusion constraints is not supported")));
1273 
1274  /* Get the array of class and column options IDs from index info */
1275  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId));
1276  if (!HeapTupleIsValid(indexTuple))
1277  elog(ERROR, "cache lookup failed for index %u", oldIndexId);
1278  indclassDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1279  Anum_pg_index_indclass, &isnull);
1280  Assert(!isnull);
1281  indclass = (oidvector *) DatumGetPointer(indclassDatum);
1282 
1283  colOptionDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1284  Anum_pg_index_indoption, &isnull);
1285  Assert(!isnull);
1286  indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum);
1287 
1288  /* Fetch options of index if any */
1289  classTuple = SearchSysCache1(RELOID, oldIndexId);
1290  if (!HeapTupleIsValid(classTuple))
1291  elog(ERROR, "cache lookup failed for relation %u", oldIndexId);
1292  optionDatum = SysCacheGetAttr(RELOID, classTuple,
1293  Anum_pg_class_reloptions, &isnull);
1294 
1295  /*
1296  * Fetch the list of expressions and predicates directly from the
1297  * catalogs. This cannot rely on the information from IndexInfo of the
1298  * old index as these have been flattened for the planner.
1299  */
1300  if (oldInfo->ii_Expressions != NIL)
1301  {
1302  Datum exprDatum;
1303  char *exprString;
1304 
1305  exprDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1306  Anum_pg_index_indexprs, &isnull);
1307  Assert(!isnull);
1308  exprString = TextDatumGetCString(exprDatum);
1309  indexExprs = (List *) stringToNode(exprString);
1310  pfree(exprString);
1311  }
1312  if (oldInfo->ii_Predicate != NIL)
1313  {
1314  Datum predDatum;
1315  char *predString;
1316 
1317  predDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1318  Anum_pg_index_indpred, &isnull);
1319  Assert(!isnull);
1320  predString = TextDatumGetCString(predDatum);
1321  indexPreds = (List *) stringToNode(predString);
1322 
1323  /* Also convert to implicit-AND format */
1324  indexPreds = make_ands_implicit((Expr *) indexPreds);
1325  pfree(predString);
1326  }
1327 
1328  /*
1329  * Build the index information for the new index. Note that rebuild of
1330  * indexes with exclusion constraints is not supported, hence there is no
1331  * need to fill all the ii_Exclusion* fields.
1332  */
1333  newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs,
1334  oldInfo->ii_NumIndexKeyAttrs,
1335  oldInfo->ii_Am,
1336  indexExprs,
1337  indexPreds,
1338  oldInfo->ii_Unique,
1339  false, /* not ready for inserts */
1340  true);
1341 
1342  /*
1343  * Extract the list of column names and the column numbers for the new
1344  * index information. All this information will be used for the index
1345  * creation.
1346  */
1347  for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++)
1348  {
1349  TupleDesc indexTupDesc = RelationGetDescr(indexRelation);
1350  Form_pg_attribute att = TupleDescAttr(indexTupDesc, i);
1351 
1352  indexColNames = lappend(indexColNames, NameStr(att->attname));
1353  newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i];
1354  }
1355 
1356  /*
1357  * Now create the new index.
1358  *
1359  * For a partition index, we adjust the partition dependency later, to
1360  * ensure a consistent state at all times. That is why parentIndexRelid
1361  * is not set here.
1362  */
1363  newIndexId = index_create(heapRelation,
1364  newName,
1365  InvalidOid, /* indexRelationId */
1366  InvalidOid, /* parentIndexRelid */
1367  InvalidOid, /* parentConstraintId */
1368  InvalidOid, /* relFileNode */
1369  newInfo,
1370  indexColNames,
1371  indexRelation->rd_rel->relam,
1372  indexRelation->rd_rel->reltablespace,
1373  indexRelation->rd_indcollation,
1374  indclass->values,
1375  indcoloptions->values,
1376  optionDatum,
1378  0,
1379  true, /* allow table to be a system catalog? */
1380  false, /* is_internal? */
1381  NULL);
1382 
1383  /* Close the relations used and clean up */
1384  index_close(indexRelation, NoLock);
1385  ReleaseSysCache(indexTuple);
1386  ReleaseSysCache(classTuple);
1387 
1388  return newIndexId;
1389 }
1390 
1391 /*
1392  * index_concurrently_build
1393  *
1394  * Build index for a concurrent operation. Low-level locks are taken when
1395  * this operation is performed to prevent only schema changes, but they need
1396  * to be kept until the end of the transaction performing this operation.
1397  * 'indexOid' refers to an index relation OID already created as part of
1398  * previous processing, and 'heapOid' refers to its parent heap relation.
1399  */
1400 void
1402  Oid indexRelationId)
1403 {
1404  Relation heapRel;
1405  Relation indexRelation;
1406  IndexInfo *indexInfo;
1407 
1408  /* This had better make sure that a snapshot is active */
1410 
1411  /* Open and lock the parent heap relation */
1412  heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock);
1413 
1414  /* And the target index relation */
1415  indexRelation = index_open(indexRelationId, RowExclusiveLock);
1416 
1417  /*
1418  * We have to re-build the IndexInfo struct, since it was lost in the
1419  * commit of the transaction where this concurrent index was created at
1420  * the catalog level.
1421  */
1422  indexInfo = BuildIndexInfo(indexRelation);
1423  Assert(!indexInfo->ii_ReadyForInserts);
1424  indexInfo->ii_Concurrent = true;
1425  indexInfo->ii_BrokenHotChain = false;
1426 
1427  /* Now build the index */
1428  index_build(heapRel, indexRelation, indexInfo, false, true);
1429 
1430  /* Close both the relations, but keep the locks */
1431  table_close(heapRel, NoLock);
1432  index_close(indexRelation, NoLock);
1433 
1434  /*
1435  * Update the pg_index row to mark the index as ready for inserts. Once we
1436  * commit this transaction, any new transactions that open the table must
1437  * insert new entries into the index for insertions and non-HOT updates.
1438  */
1440 }
1441 
1442 /*
1443  * index_concurrently_swap
1444  *
1445  * Swap name, dependencies, and constraints of the old index over to the new
1446  * index, while marking the old index as invalid and the new as valid.
1447  */
1448 void
1449 index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
1450 {
1451  Relation pg_class,
1452  pg_index,
1453  pg_constraint,
1454  pg_trigger;
1455  Relation oldClassRel,
1456  newClassRel;
1457  HeapTuple oldClassTuple,
1458  newClassTuple;
1459  Form_pg_class oldClassForm,
1460  newClassForm;
1461  HeapTuple oldIndexTuple,
1462  newIndexTuple;
1463  Form_pg_index oldIndexForm,
1464  newIndexForm;
1465  Oid indexConstraintOid;
1466  List *constraintOids = NIL;
1467  ListCell *lc;
1468 
1469  /*
1470  * Take a necessary lock on the old and new index before swapping them.
1471  */
1472  oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock);
1473  newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock);
1474 
1475  /* Now swap names and dependencies of those indexes */
1476  pg_class = table_open(RelationRelationId, RowExclusiveLock);
1477 
1478  oldClassTuple = SearchSysCacheCopy1(RELOID,
1479  ObjectIdGetDatum(oldIndexId));
1480  if (!HeapTupleIsValid(oldClassTuple))
1481  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1482  newClassTuple = SearchSysCacheCopy1(RELOID,
1483  ObjectIdGetDatum(newIndexId));
1484  if (!HeapTupleIsValid(newClassTuple))
1485  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1486 
1487  oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple);
1488  newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple);
1489 
1490  /* Swap the names */
1491  namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname));
1492  namestrcpy(&oldClassForm->relname, oldName);
1493 
1494  /* Copy partition flag to track inheritance properly */
1495  newClassForm->relispartition = oldClassForm->relispartition;
1496 
1497  CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple);
1498  CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple);
1499 
1500  heap_freetuple(oldClassTuple);
1501  heap_freetuple(newClassTuple);
1502 
1503  /* Now swap index info */
1504  pg_index = table_open(IndexRelationId, RowExclusiveLock);
1505 
1506  oldIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1507  ObjectIdGetDatum(oldIndexId));
1508  if (!HeapTupleIsValid(oldIndexTuple))
1509  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1510  newIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1511  ObjectIdGetDatum(newIndexId));
1512  if (!HeapTupleIsValid(newIndexTuple))
1513  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1514 
1515  oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple);
1516  newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple);
1517 
1518  /*
1519  * Copy constraint flags from the old index. This is safe because the old
1520  * index guaranteed uniqueness.
1521  */
1522  newIndexForm->indisprimary = oldIndexForm->indisprimary;
1523  oldIndexForm->indisprimary = false;
1524  newIndexForm->indisexclusion = oldIndexForm->indisexclusion;
1525  oldIndexForm->indisexclusion = false;
1526  newIndexForm->indimmediate = oldIndexForm->indimmediate;
1527  oldIndexForm->indimmediate = true;
1528 
1529  /* Mark old index as valid and new as invalid as index_set_state_flags */
1530  newIndexForm->indisvalid = true;
1531  oldIndexForm->indisvalid = false;
1532  oldIndexForm->indisclustered = false;
1533 
1534  CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple);
1535  CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple);
1536 
1537  heap_freetuple(oldIndexTuple);
1538  heap_freetuple(newIndexTuple);
1539 
1540  /*
1541  * Move constraints and triggers over to the new index
1542  */
1543 
1544  constraintOids = get_index_ref_constraints(oldIndexId);
1545 
1546  indexConstraintOid = get_index_constraint(oldIndexId);
1547 
1548  if (OidIsValid(indexConstraintOid))
1549  constraintOids = lappend_oid(constraintOids, indexConstraintOid);
1550 
1551  pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock);
1552  pg_trigger = table_open(TriggerRelationId, RowExclusiveLock);
1553 
1554  foreach(lc, constraintOids)
1555  {
1556  HeapTuple constraintTuple,
1557  triggerTuple;
1558  Form_pg_constraint conForm;
1559  ScanKeyData key[1];
1560  SysScanDesc scan;
1561  Oid constraintOid = lfirst_oid(lc);
1562 
1563  /* Move the constraint from the old to the new index */
1564  constraintTuple = SearchSysCacheCopy1(CONSTROID,
1565  ObjectIdGetDatum(constraintOid));
1566  if (!HeapTupleIsValid(constraintTuple))
1567  elog(ERROR, "could not find tuple for constraint %u", constraintOid);
1568 
1569  conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple));
1570 
1571  if (conForm->conindid == oldIndexId)
1572  {
1573  conForm->conindid = newIndexId;
1574 
1575  CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple);
1576  }
1577 
1578  heap_freetuple(constraintTuple);
1579 
1580  /* Search for trigger records */
1581  ScanKeyInit(&key[0],
1582  Anum_pg_trigger_tgconstraint,
1583  BTEqualStrategyNumber, F_OIDEQ,
1584  ObjectIdGetDatum(constraintOid));
1585 
1586  scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true,
1587  NULL, 1, key);
1588 
1589  while (HeapTupleIsValid((triggerTuple = systable_getnext(scan))))
1590  {
1591  Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1592 
1593  if (tgForm->tgconstrindid != oldIndexId)
1594  continue;
1595 
1596  /* Make a modifiable copy */
1597  triggerTuple = heap_copytuple(triggerTuple);
1598  tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1599 
1600  tgForm->tgconstrindid = newIndexId;
1601 
1602  CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple);
1603 
1604  heap_freetuple(triggerTuple);
1605  }
1606 
1607  systable_endscan(scan);
1608  }
1609 
1610  /*
1611  * Move comment if any
1612  */
1613  {
1614  Relation description;
1615  ScanKeyData skey[3];
1616  SysScanDesc sd;
1617  HeapTuple tuple;
1618  Datum values[Natts_pg_description] = {0};
1619  bool nulls[Natts_pg_description] = {0};
1620  bool replaces[Natts_pg_description] = {0};
1621 
1622  values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId);
1623  replaces[Anum_pg_description_objoid - 1] = true;
1624 
1625  ScanKeyInit(&skey[0],
1626  Anum_pg_description_objoid,
1627  BTEqualStrategyNumber, F_OIDEQ,
1628  ObjectIdGetDatum(oldIndexId));
1629  ScanKeyInit(&skey[1],
1630  Anum_pg_description_classoid,
1631  BTEqualStrategyNumber, F_OIDEQ,
1632  ObjectIdGetDatum(RelationRelationId));
1633  ScanKeyInit(&skey[2],
1634  Anum_pg_description_objsubid,
1635  BTEqualStrategyNumber, F_INT4EQ,
1636  Int32GetDatum(0));
1637 
1638  description = table_open(DescriptionRelationId, RowExclusiveLock);
1639 
1640  sd = systable_beginscan(description, DescriptionObjIndexId, true,
1641  NULL, 3, skey);
1642 
1643  while ((tuple = systable_getnext(sd)) != NULL)
1644  {
1645  tuple = heap_modify_tuple(tuple, RelationGetDescr(description),
1646  values, nulls, replaces);
1647  CatalogTupleUpdate(description, &tuple->t_self, tuple);
1648 
1649  break; /* Assume there can be only one match */
1650  }
1651 
1652  systable_endscan(sd);
1653  table_close(description, NoLock);
1654  }
1655 
1656  /*
1657  * Swap inheritance relationship with parent index
1658  */
1659  if (get_rel_relispartition(oldIndexId))
1660  {
1661  List *ancestors = get_partition_ancestors(oldIndexId);
1662  Oid parentIndexRelid = linitial_oid(ancestors);
1663 
1664  DeleteInheritsTuple(oldIndexId, parentIndexRelid);
1665  StoreSingleInheritance(newIndexId, parentIndexRelid, 1);
1666 
1667  list_free(ancestors);
1668  }
1669 
1670  /*
1671  * Move all dependencies of and on the old index to the new one
1672  */
1673  changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId);
1674  changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId);
1675 
1676  /*
1677  * Copy over statistics from old to new index
1678  */
1679  {
1680  PgStat_StatTabEntry *tabentry;
1681 
1682  tabentry = pgstat_fetch_stat_tabentry(oldIndexId);
1683  if (tabentry)
1684  {
1685  if (newClassRel->pgstat_info)
1686  {
1687  newClassRel->pgstat_info->t_counts.t_numscans = tabentry->numscans;
1688  newClassRel->pgstat_info->t_counts.t_tuples_returned = tabentry->tuples_returned;
1689  newClassRel->pgstat_info->t_counts.t_tuples_fetched = tabentry->tuples_fetched;
1690  newClassRel->pgstat_info->t_counts.t_blocks_fetched = tabentry->blocks_fetched;
1691  newClassRel->pgstat_info->t_counts.t_blocks_hit = tabentry->blocks_hit;
1692 
1693  /*
1694  * The data will be sent by the next pgstat_report_stat()
1695  * call.
1696  */
1697  }
1698  }
1699  }
1700 
1701  /* Close relations */
1702  table_close(pg_class, RowExclusiveLock);
1703  table_close(pg_index, RowExclusiveLock);
1704  table_close(pg_constraint, RowExclusiveLock);
1705  table_close(pg_trigger, RowExclusiveLock);
1706 
1707  /* The lock taken previously is not released until the end of transaction */
1708  relation_close(oldClassRel, NoLock);
1709  relation_close(newClassRel, NoLock);
1710 }
1711 
1712 /*
1713  * index_concurrently_set_dead
1714  *
1715  * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX
1716  * CONCURRENTLY before actually dropping the index. After calling this
1717  * function, the index is seen by all the backends as dead. Low-level locks
1718  * taken here are kept until the end of the transaction calling this function.
1719  */
1720 void
1722 {
1723  Relation userHeapRelation;
1724  Relation userIndexRelation;
1725 
1726  /*
1727  * No more predicate locks will be acquired on this index, and we're about
1728  * to stop doing inserts into the index which could show conflicts with
1729  * existing predicate locks, so now is the time to move them to the heap
1730  * relation.
1731  */
1732  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
1733  userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock);
1734  TransferPredicateLocksToHeapRelation(userIndexRelation);
1735 
1736  /*
1737  * Now we are sure that nobody uses the index for queries; they just might
1738  * have it open for updating it. So now we can unset indisready and
1739  * indislive, then wait till nobody could be using it at all anymore.
1740  */
1742 
1743  /*
1744  * Invalidate the relcache for the table, so that after this commit all
1745  * sessions will refresh the table's index list. Forgetting just the
1746  * index's relcache entry is not enough.
1747  */
1748  CacheInvalidateRelcache(userHeapRelation);
1749 
1750  /*
1751  * Close the relations again, though still holding session lock.
1752  */
1753  table_close(userHeapRelation, NoLock);
1754  index_close(userIndexRelation, NoLock);
1755 }
1756 
1757 /*
1758  * index_constraint_create
1759  *
1760  * Set up a constraint associated with an index. Return the new constraint's
1761  * address.
1762  *
1763  * heapRelation: table owning the index (must be suitably locked by caller)
1764  * indexRelationId: OID of the index
1765  * parentConstraintId: if constraint is on a partition, the OID of the
1766  * constraint in the parent.
1767  * indexInfo: same info executor uses to insert into the index
1768  * constraintName: what it say (generally, should match name of index)
1769  * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or
1770  * CONSTRAINT_EXCLUSION
1771  * flags: bitmask that can include any combination of these bits:
1772  * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY
1773  * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE
1774  * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED
1775  * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row
1776  * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies
1777  * of index on table's columns
1778  * allow_system_table_mods: allow table to be a system catalog
1779  * is_internal: index is constructed due to internal process
1780  */
1783  Oid indexRelationId,
1784  Oid parentConstraintId,
1785  IndexInfo *indexInfo,
1786  const char *constraintName,
1787  char constraintType,
1788  bits16 constr_flags,
1789  bool allow_system_table_mods,
1790  bool is_internal)
1791 {
1792  Oid namespaceId = RelationGetNamespace(heapRelation);
1793  ObjectAddress myself,
1794  idxaddr;
1795  Oid conOid;
1796  bool deferrable;
1797  bool initdeferred;
1798  bool mark_as_primary;
1799  bool islocal;
1800  bool noinherit;
1801  int inhcount;
1802 
1803  deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0;
1804  initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0;
1805  mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0;
1806 
1807  /* constraint creation support doesn't work while bootstrapping */
1809 
1810  /* enforce system-table restriction */
1811  if (!allow_system_table_mods &&
1812  IsSystemRelation(heapRelation) &&
1814  ereport(ERROR,
1815  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1816  errmsg("user-defined indexes on system catalog tables are not supported")));
1817 
1818  /* primary/unique constraints shouldn't have any expressions */
1819  if (indexInfo->ii_Expressions &&
1820  constraintType != CONSTRAINT_EXCLUSION)
1821  elog(ERROR, "constraints cannot have index expressions");
1822 
1823  /*
1824  * If we're manufacturing a constraint for a pre-existing index, we need
1825  * to get rid of the existing auto dependencies for the index (the ones
1826  * that index_create() would have made instead of calling this function).
1827  *
1828  * Note: this code would not necessarily do the right thing if the index
1829  * has any expressions or predicate, but we'd never be turning such an
1830  * index into a UNIQUE or PRIMARY KEY constraint.
1831  */
1832  if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS)
1833  deleteDependencyRecordsForClass(RelationRelationId, indexRelationId,
1834  RelationRelationId, DEPENDENCY_AUTO);
1835 
1836  if (OidIsValid(parentConstraintId))
1837  {
1838  islocal = false;
1839  inhcount = 1;
1840  noinherit = false;
1841  }
1842  else
1843  {
1844  islocal = true;
1845  inhcount = 0;
1846  noinherit = true;
1847  }
1848 
1849  /*
1850  * Construct a pg_constraint entry.
1851  */
1852  conOid = CreateConstraintEntry(constraintName,
1853  namespaceId,
1854  constraintType,
1855  deferrable,
1856  initdeferred,
1857  true,
1858  parentConstraintId,
1859  RelationGetRelid(heapRelation),
1860  indexInfo->ii_IndexAttrNumbers,
1861  indexInfo->ii_NumIndexKeyAttrs,
1862  indexInfo->ii_NumIndexAttrs,
1863  InvalidOid, /* no domain */
1864  indexRelationId, /* index OID */
1865  InvalidOid, /* no foreign key */
1866  NULL,
1867  NULL,
1868  NULL,
1869  NULL,
1870  0,
1871  ' ',
1872  ' ',
1873  ' ',
1874  indexInfo->ii_ExclusionOps,
1875  NULL, /* no check constraint */
1876  NULL,
1877  islocal,
1878  inhcount,
1879  noinherit,
1880  is_internal);
1881 
1882  /*
1883  * Register the index as internally dependent on the constraint.
1884  *
1885  * Note that the constraint has a dependency on the table, so we don't
1886  * need (or want) any direct dependency from the index to the table.
1887  */
1888  ObjectAddressSet(myself, ConstraintRelationId, conOid);
1889  ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId);
1890  recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL);
1891 
1892  /*
1893  * Also, if this is a constraint on a partition, give it partition-type
1894  * dependencies on the parent constraint as well as the table.
1895  */
1896  if (OidIsValid(parentConstraintId))
1897  {
1898  ObjectAddress referenced;
1899 
1900  ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId);
1901  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1902  ObjectAddressSet(referenced, RelationRelationId,
1903  RelationGetRelid(heapRelation));
1904  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1905  }
1906 
1907  /*
1908  * If the constraint is deferrable, create the deferred uniqueness
1909  * checking trigger. (The trigger will be given an internal dependency on
1910  * the constraint by CreateTrigger.)
1911  */
1912  if (deferrable)
1913  {
1914  CreateTrigStmt *trigger;
1915 
1916  trigger = makeNode(CreateTrigStmt);
1917  trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ?
1918  "PK_ConstraintTrigger" :
1919  "Unique_ConstraintTrigger";
1920  trigger->relation = NULL;
1921  trigger->funcname = SystemFuncName("unique_key_recheck");
1922  trigger->args = NIL;
1923  trigger->row = true;
1924  trigger->timing = TRIGGER_TYPE_AFTER;
1925  trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE;
1926  trigger->columns = NIL;
1927  trigger->whenClause = NULL;
1928  trigger->isconstraint = true;
1929  trigger->deferrable = true;
1930  trigger->initdeferred = initdeferred;
1931  trigger->constrrel = NULL;
1932 
1933  (void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation),
1934  InvalidOid, conOid, indexRelationId, InvalidOid,
1935  InvalidOid, NULL, true, false);
1936  }
1937 
1938  /*
1939  * If needed, mark the index as primary and/or deferred in pg_index.
1940  *
1941  * Note: When making an existing index into a constraint, caller must have
1942  * a table lock that prevents concurrent table updates; otherwise, there
1943  * is a risk that concurrent readers of the table will miss seeing this
1944  * index at all.
1945  */
1946  if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) &&
1947  (mark_as_primary || deferrable))
1948  {
1949  Relation pg_index;
1950  HeapTuple indexTuple;
1951  Form_pg_index indexForm;
1952  bool dirty = false;
1953 
1954  pg_index = table_open(IndexRelationId, RowExclusiveLock);
1955 
1956  indexTuple = SearchSysCacheCopy1(INDEXRELID,
1957  ObjectIdGetDatum(indexRelationId));
1958  if (!HeapTupleIsValid(indexTuple))
1959  elog(ERROR, "cache lookup failed for index %u", indexRelationId);
1960  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
1961 
1962  if (mark_as_primary && !indexForm->indisprimary)
1963  {
1964  indexForm->indisprimary = true;
1965  dirty = true;
1966  }
1967 
1968  if (deferrable && indexForm->indimmediate)
1969  {
1970  indexForm->indimmediate = false;
1971  dirty = true;
1972  }
1973 
1974  if (dirty)
1975  {
1976  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
1977 
1978  InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0,
1979  InvalidOid, is_internal);
1980  }
1981 
1982  heap_freetuple(indexTuple);
1983  table_close(pg_index, RowExclusiveLock);
1984  }
1985 
1986  return myself;
1987 }
1988 
1989 /*
1990  * index_drop
1991  *
1992  * NOTE: this routine should now only be called through performDeletion(),
1993  * else associated dependencies won't be cleaned up.
1994  *
1995  * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is
1996  * false but concurrent_lock_mode is true, then do a normal DROP INDEX but
1997  * take a lock for CONCURRENTLY processing. That is used as part of REINDEX
1998  * CONCURRENTLY.
1999  */
2000 void
2001 index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
2002 {
2003  Oid heapId;
2004  Relation userHeapRelation;
2005  Relation userIndexRelation;
2006  Relation indexRelation;
2007  HeapTuple tuple;
2008  bool hasexprs;
2009  LockRelId heaprelid,
2010  indexrelid;
2011  LOCKTAG heaplocktag;
2012  LOCKMODE lockmode;
2013 
2014  /*
2015  * To drop an index safely, we must grab exclusive lock on its parent
2016  * table. Exclusive lock on the index alone is insufficient because
2017  * another backend might be about to execute a query on the parent table.
2018  * If it relies on a previously cached list of index OIDs, then it could
2019  * attempt to access the just-dropped index. We must therefore take a
2020  * table lock strong enough to prevent all queries on the table from
2021  * proceeding until we commit and send out a shared-cache-inval notice
2022  * that will make them update their index lists.
2023  *
2024  * In the concurrent case we avoid this requirement by disabling index use
2025  * in multiple steps and waiting out any transactions that might be using
2026  * the index, so we don't need exclusive lock on the parent table. Instead
2027  * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't
2028  * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get
2029  * AccessExclusiveLock on the index below, once we're sure nobody else is
2030  * using it.)
2031  */
2032  heapId = IndexGetRelation(indexId, false);
2033  lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock;
2034  userHeapRelation = table_open(heapId, lockmode);
2035  userIndexRelation = index_open(indexId, lockmode);
2036 
2037  /*
2038  * We might still have open queries using it in our own session, which the
2039  * above locking won't prevent, so test explicitly.
2040  */
2041  CheckTableNotInUse(userIndexRelation, "DROP INDEX");
2042 
2043  /*
2044  * Drop Index Concurrently is more or less the reverse process of Create
2045  * Index Concurrently.
2046  *
2047  * First we unset indisvalid so queries starting afterwards don't use the
2048  * index to answer queries anymore. We have to keep indisready = true so
2049  * transactions that are still scanning the index can continue to see
2050  * valid index contents. For instance, if they are using READ COMMITTED
2051  * mode, and another transaction makes changes and commits, they need to
2052  * see those new tuples in the index.
2053  *
2054  * After all transactions that could possibly have used the index for
2055  * queries end, we can unset indisready and indislive, then wait till
2056  * nobody could be touching it anymore. (Note: we need indislive because
2057  * this state must be distinct from the initial state during CREATE INDEX
2058  * CONCURRENTLY, which has indislive true while indisready and indisvalid
2059  * are false. That's because in that state, transactions must examine the
2060  * index for HOT-safety decisions, while in this state we don't want them
2061  * to open it at all.)
2062  *
2063  * Since all predicate locks on the index are about to be made invalid, we
2064  * must promote them to predicate locks on the heap. In the
2065  * non-concurrent case we can just do that now. In the concurrent case
2066  * it's a bit trickier. The predicate locks must be moved when there are
2067  * no index scans in progress on the index and no more can subsequently
2068  * start, so that no new predicate locks can be made on the index. Also,
2069  * they must be moved before heap inserts stop maintaining the index, else
2070  * the conflict with the predicate lock on the index gap could be missed
2071  * before the lock on the heap relation is in place to detect a conflict
2072  * based on the heap tuple insert.
2073  */
2074  if (concurrent)
2075  {
2076  /*
2077  * We must commit our transaction in order to make the first pg_index
2078  * state update visible to other sessions. If the DROP machinery has
2079  * already performed any other actions (removal of other objects,
2080  * pg_depend entries, etc), the commit would make those actions
2081  * permanent, which would leave us with inconsistent catalog state if
2082  * we fail partway through the following sequence. Since DROP INDEX
2083  * CONCURRENTLY is restricted to dropping just one index that has no
2084  * dependencies, we should get here before anything's been done ---
2085  * but let's check that to be sure. We can verify that the current
2086  * transaction has not executed any transactional updates by checking
2087  * that no XID has been assigned.
2088  */
2090  ereport(ERROR,
2091  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2092  errmsg("DROP INDEX CONCURRENTLY must be first action in transaction")));
2093 
2094  /*
2095  * Mark index invalid by updating its pg_index entry
2096  */
2098 
2099  /*
2100  * Invalidate the relcache for the table, so that after this commit
2101  * all sessions will refresh any cached plans that might reference the
2102  * index.
2103  */
2104  CacheInvalidateRelcache(userHeapRelation);
2105 
2106  /* save lockrelid and locktag for below, then close but keep locks */
2107  heaprelid = userHeapRelation->rd_lockInfo.lockRelId;
2108  SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
2109  indexrelid = userIndexRelation->rd_lockInfo.lockRelId;
2110 
2111  table_close(userHeapRelation, NoLock);
2112  index_close(userIndexRelation, NoLock);
2113 
2114  /*
2115  * We must commit our current transaction so that the indisvalid
2116  * update becomes visible to other transactions; then start another.
2117  * Note that any previously-built data structures are lost in the
2118  * commit. The only data we keep past here are the relation IDs.
2119  *
2120  * Before committing, get a session-level lock on the table, to ensure
2121  * that neither it nor the index can be dropped before we finish. This
2122  * cannot block, even if someone else is waiting for access, because
2123  * we already have the same lock within our transaction.
2124  */
2127 
2131 
2132  /*
2133  * Now we must wait until no running transaction could be using the
2134  * index for a query. Use AccessExclusiveLock here to check for
2135  * running transactions that hold locks of any kind on the table. Note
2136  * we do not need to worry about xacts that open the table for reading
2137  * after this point; they will see the index as invalid when they open
2138  * the relation.
2139  *
2140  * Note: the reason we use actual lock acquisition here, rather than
2141  * just checking the ProcArray and sleeping, is that deadlock is
2142  * possible if one of the transactions in question is blocked trying
2143  * to acquire an exclusive lock on our table. The lock code will
2144  * detect deadlock and error out properly.
2145  *
2146  * Note: we report progress through WaitForLockers() unconditionally
2147  * here, even though it will only be used when we're called by REINDEX
2148  * CONCURRENTLY and not when called by DROP INDEX CONCURRENTLY.
2149  */
2150  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2151 
2152  /* Finish invalidation of index and mark it as dead */
2153  index_concurrently_set_dead(heapId, indexId);
2154 
2155  /*
2156  * Again, commit the transaction to make the pg_index update visible
2157  * to other sessions.
2158  */
2161 
2162  /*
2163  * Wait till every transaction that saw the old index state has
2164  * finished. See above about progress reporting.
2165  */
2166  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2167 
2168  /*
2169  * Re-open relations to allow us to complete our actions.
2170  *
2171  * At this point, nothing should be accessing the index, but lets
2172  * leave nothing to chance and grab AccessExclusiveLock on the index
2173  * before the physical deletion.
2174  */
2175  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
2176  userIndexRelation = index_open(indexId, AccessExclusiveLock);
2177  }
2178  else
2179  {
2180  /* Not concurrent, so just transfer predicate locks and we're good */
2181  TransferPredicateLocksToHeapRelation(userIndexRelation);
2182  }
2183 
2184  /*
2185  * Schedule physical removal of the files (if any)
2186  */
2187  if (userIndexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
2188  RelationDropStorage(userIndexRelation);
2189 
2190  /*
2191  * Close and flush the index's relcache entry, to ensure relcache doesn't
2192  * try to rebuild it while we're deleting catalog entries. We keep the
2193  * lock though.
2194  */
2195  index_close(userIndexRelation, NoLock);
2196 
2197  RelationForgetRelation(indexId);
2198 
2199  /*
2200  * fix INDEX relation, and check for expressional index
2201  */
2202  indexRelation = table_open(IndexRelationId, RowExclusiveLock);
2203 
2204  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
2205  if (!HeapTupleIsValid(tuple))
2206  elog(ERROR, "cache lookup failed for index %u", indexId);
2207 
2208  hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs,
2209  RelationGetDescr(indexRelation));
2210 
2211  CatalogTupleDelete(indexRelation, &tuple->t_self);
2212 
2213  ReleaseSysCache(tuple);
2214  table_close(indexRelation, RowExclusiveLock);
2215 
2216  /*
2217  * if it has any expression columns, we might have stored statistics about
2218  * them.
2219  */
2220  if (hasexprs)
2221  RemoveStatistics(indexId, 0);
2222 
2223  /*
2224  * fix ATTRIBUTE relation
2225  */
2226  DeleteAttributeTuples(indexId);
2227 
2228  /*
2229  * fix RELATION relation
2230  */
2231  DeleteRelationTuple(indexId);
2232 
2233  /*
2234  * fix INHERITS relation
2235  */
2236  DeleteInheritsTuple(indexId, InvalidOid);
2237 
2238  /*
2239  * We are presently too lazy to attempt to compute the new correct value
2240  * of relhasindex (the next VACUUM will fix it if necessary). So there is
2241  * no need to update the pg_class tuple for the owning relation. But we
2242  * must send out a shared-cache-inval notice on the owning relation to
2243  * ensure other backends update their relcache lists of indexes. (In the
2244  * concurrent case, this is redundant but harmless.)
2245  */
2246  CacheInvalidateRelcache(userHeapRelation);
2247 
2248  /*
2249  * Close owning rel, but keep lock
2250  */
2251  table_close(userHeapRelation, NoLock);
2252 
2253  /*
2254  * Release the session locks before we go.
2255  */
2256  if (concurrent)
2257  {
2260  }
2261 }
2262 
2263 /* ----------------------------------------------------------------
2264  * index_build support
2265  * ----------------------------------------------------------------
2266  */
2267 
2268 /* ----------------
2269  * BuildIndexInfo
2270  * Construct an IndexInfo record for an open index
2271  *
2272  * IndexInfo stores the information about the index that's needed by
2273  * FormIndexDatum, which is used for both index_build() and later insertion
2274  * of individual index tuples. Normally we build an IndexInfo for an index
2275  * just once per command, and then use it for (potentially) many tuples.
2276  * ----------------
2277  */
2278 IndexInfo *
2280 {
2281  IndexInfo *ii;
2282  Form_pg_index indexStruct = index->rd_index;
2283  int i;
2284  int numAtts;
2285 
2286  /* check the number of keys, and copy attr numbers into the IndexInfo */
2287  numAtts = indexStruct->indnatts;
2288  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2289  elog(ERROR, "invalid indnatts %d for index %u",
2290  numAtts, RelationGetRelid(index));
2291 
2292  /*
2293  * Create the node, fetching any expressions needed for expressional
2294  * indexes and index predicate if any.
2295  */
2296  ii = makeIndexInfo(indexStruct->indnatts,
2297  indexStruct->indnkeyatts,
2298  index->rd_rel->relam,
2301  indexStruct->indisunique,
2302  indexStruct->indisready,
2303  false);
2304 
2305  /* fill in attribute numbers */
2306  for (i = 0; i < numAtts; i++)
2307  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2308 
2309  /* fetch exclusion constraint info if any */
2310  if (indexStruct->indisexclusion)
2311  {
2313  &ii->ii_ExclusionOps,
2314  &ii->ii_ExclusionProcs,
2315  &ii->ii_ExclusionStrats);
2316  }
2317 
2318  return ii;
2319 }
2320 
2321 /*
2322  * CompareIndexInfo
2323  * Return whether the properties of two indexes (in different tables)
2324  * indicate that they have the "same" definitions.
2325  *
2326  * Note: passing collations and opfamilies separately is a kludge. Adding
2327  * them to IndexInfo may result in better coding here and elsewhere.
2328  *
2329  * Use convert_tuples_by_name_map(index2, index1) to build the attmap.
2330  */
2331 bool
2333  Oid *collations1, Oid *collations2,
2334  Oid *opfamilies1, Oid *opfamilies2,
2335  AttrNumber *attmap, int maplen)
2336 {
2337  int i;
2338 
2339  if (info1->ii_Unique != info2->ii_Unique)
2340  return false;
2341 
2342  /* indexes are only equivalent if they have the same access method */
2343  if (info1->ii_Am != info2->ii_Am)
2344  return false;
2345 
2346  /* and same number of attributes */
2347  if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs)
2348  return false;
2349 
2350  /* and same number of key attributes */
2351  if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs)
2352  return false;
2353 
2354  /*
2355  * and columns match through the attribute map (actual attribute numbers
2356  * might differ!) Note that this implies that index columns that are
2357  * expressions appear in the same positions. We will next compare the
2358  * expressions themselves.
2359  */
2360  for (i = 0; i < info1->ii_NumIndexAttrs; i++)
2361  {
2362  if (maplen < info2->ii_IndexAttrNumbers[i])
2363  elog(ERROR, "incorrect attribute map");
2364 
2365  /* ignore expressions at this stage */
2366  if ((info1->ii_IndexAttrNumbers[i] != InvalidAttrNumber) &&
2367  (attmap[info2->ii_IndexAttrNumbers[i] - 1] !=
2368  info1->ii_IndexAttrNumbers[i]))
2369  return false;
2370 
2371  /* collation and opfamily is not valid for including columns */
2372  if (i >= info1->ii_NumIndexKeyAttrs)
2373  continue;
2374 
2375  if (collations1[i] != collations2[i])
2376  return false;
2377  if (opfamilies1[i] != opfamilies2[i])
2378  return false;
2379  }
2380 
2381  /*
2382  * For expression indexes: either both are expression indexes, or neither
2383  * is; if they are, make sure the expressions match.
2384  */
2385  if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL))
2386  return false;
2387  if (info1->ii_Expressions != NIL)
2388  {
2389  bool found_whole_row;
2390  Node *mapped;
2391 
2392  mapped = map_variable_attnos((Node *) info2->ii_Expressions,
2393  1, 0, attmap, maplen,
2394  InvalidOid, &found_whole_row);
2395  if (found_whole_row)
2396  {
2397  /*
2398  * we could throw an error here, but seems out of scope for this
2399  * routine.
2400  */
2401  return false;
2402  }
2403 
2404  if (!equal(info1->ii_Expressions, mapped))
2405  return false;
2406  }
2407 
2408  /* Partial index predicates must be identical, if they exist */
2409  if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL))
2410  return false;
2411  if (info1->ii_Predicate != NULL)
2412  {
2413  bool found_whole_row;
2414  Node *mapped;
2415 
2416  mapped = map_variable_attnos((Node *) info2->ii_Predicate,
2417  1, 0, attmap, maplen,
2418  InvalidOid, &found_whole_row);
2419  if (found_whole_row)
2420  {
2421  /*
2422  * we could throw an error here, but seems out of scope for this
2423  * routine.
2424  */
2425  return false;
2426  }
2427  if (!equal(info1->ii_Predicate, mapped))
2428  return false;
2429  }
2430 
2431  /* No support currently for comparing exclusion indexes. */
2432  if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL)
2433  return false;
2434 
2435  return true;
2436 }
2437 
2438 /* ----------------
2439  * BuildSpeculativeIndexInfo
2440  * Add extra state to IndexInfo record
2441  *
2442  * For unique indexes, we usually don't want to add info to the IndexInfo for
2443  * checking uniqueness, since the B-Tree AM handles that directly. However,
2444  * in the case of speculative insertion, additional support is required.
2445  *
2446  * Do this processing here rather than in BuildIndexInfo() to not incur the
2447  * overhead in the common non-speculative cases.
2448  * ----------------
2449  */
2450 void
2452 {
2453  int indnkeyatts;
2454  int i;
2455 
2456  indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index);
2457 
2458  /*
2459  * fetch info for checking unique indexes
2460  */
2461  Assert(ii->ii_Unique);
2462 
2463  if (index->rd_rel->relam != BTREE_AM_OID)
2464  elog(ERROR, "unexpected non-btree speculative unique index");
2465 
2466  ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2467  ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2468  ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts);
2469 
2470  /*
2471  * We have to look up the operator's strategy number. This provides a
2472  * cross-check that the operator does match the index.
2473  */
2474  /* We need the func OIDs and strategy numbers too */
2475  for (i = 0; i < indnkeyatts; i++)
2476  {
2478  ii->ii_UniqueOps[i] =
2479  get_opfamily_member(index->rd_opfamily[i],
2480  index->rd_opcintype[i],
2481  index->rd_opcintype[i],
2482  ii->ii_UniqueStrats[i]);
2483  if (!OidIsValid(ii->ii_UniqueOps[i]))
2484  elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2485  ii->ii_UniqueStrats[i], index->rd_opcintype[i],
2486  index->rd_opcintype[i], index->rd_opfamily[i]);
2487  ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]);
2488  }
2489 }
2490 
2491 /* ----------------
2492  * FormIndexDatum
2493  * Construct values[] and isnull[] arrays for a new index tuple.
2494  *
2495  * indexInfo Info about the index
2496  * slot Heap tuple for which we must prepare an index entry
2497  * estate executor state for evaluating any index expressions
2498  * values Array of index Datums (output area)
2499  * isnull Array of is-null indicators (output area)
2500  *
2501  * When there are no index expressions, estate may be NULL. Otherwise it
2502  * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
2503  * context must point to the heap tuple passed in.
2504  *
2505  * Notice we don't actually call index_form_tuple() here; we just prepare
2506  * its input arrays values[] and isnull[]. This is because the index AM
2507  * may wish to alter the data before storage.
2508  * ----------------
2509  */
2510 void
2512  TupleTableSlot *slot,
2513  EState *estate,
2514  Datum *values,
2515  bool *isnull)
2516 {
2517  ListCell *indexpr_item;
2518  int i;
2519 
2520  if (indexInfo->ii_Expressions != NIL &&
2521  indexInfo->ii_ExpressionsState == NIL)
2522  {
2523  /* First time through, set up expression evaluation state */
2524  indexInfo->ii_ExpressionsState =
2525  ExecPrepareExprList(indexInfo->ii_Expressions, estate);
2526  /* Check caller has set up context correctly */
2527  Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
2528  }
2529  indexpr_item = list_head(indexInfo->ii_ExpressionsState);
2530 
2531  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
2532  {
2533  int keycol = indexInfo->ii_IndexAttrNumbers[i];
2534  Datum iDatum;
2535  bool isNull;
2536 
2537  if (keycol < 0)
2538  iDatum = slot_getsysattr(slot, keycol, &isNull);
2539  else if (keycol != 0)
2540  {
2541  /*
2542  * Plain index column; get the value we need directly from the
2543  * heap tuple.
2544  */
2545  iDatum = slot_getattr(slot, keycol, &isNull);
2546  }
2547  else
2548  {
2549  /*
2550  * Index expression --- need to evaluate it.
2551  */
2552  if (indexpr_item == NULL)
2553  elog(ERROR, "wrong number of index expressions");
2554  iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item),
2555  GetPerTupleExprContext(estate),
2556  &isNull);
2557  indexpr_item = lnext(indexInfo->ii_ExpressionsState, indexpr_item);
2558  }
2559  values[i] = iDatum;
2560  isnull[i] = isNull;
2561  }
2562 
2563  if (indexpr_item != NULL)
2564  elog(ERROR, "wrong number of index expressions");
2565 }
2566 
2567 
2568 /*
2569  * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
2570  *
2571  * This routine updates the pg_class row of either an index or its parent
2572  * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed
2573  * to ensure we can do all the necessary work in just one update.
2574  *
2575  * hasindex: set relhasindex to this value
2576  * reltuples: if >= 0, set reltuples to this value; else no change
2577  *
2578  * If reltuples >= 0, relpages and relallvisible are also updated (using
2579  * RelationGetNumberOfBlocks() and visibilitymap_count()).
2580  *
2581  * NOTE: an important side-effect of this operation is that an SI invalidation
2582  * message is sent out to all backends --- including me --- causing relcache
2583  * entries to be flushed or updated with the new data. This must happen even
2584  * if we find that no change is needed in the pg_class row. When updating
2585  * a heap entry, this ensures that other backends find out about the new
2586  * index. When updating an index, it's important because some index AMs
2587  * expect a relcache flush to occur after REINDEX.
2588  */
2589 static void
2591  bool hasindex,
2592  double reltuples)
2593 {
2594  Oid relid = RelationGetRelid(rel);
2595  Relation pg_class;
2596  HeapTuple tuple;
2597  Form_pg_class rd_rel;
2598  bool dirty;
2599 
2600  /*
2601  * We always update the pg_class row using a non-transactional,
2602  * overwrite-in-place update. There are several reasons for this:
2603  *
2604  * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
2605  *
2606  * 2. We could be reindexing pg_class itself, in which case we can't move
2607  * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might
2608  * not know about all the indexes yet (see reindex_relation).
2609  *
2610  * 3. Because we execute CREATE INDEX with just share lock on the parent
2611  * rel (to allow concurrent index creations), an ordinary update could
2612  * suffer a tuple-concurrently-updated failure against another CREATE
2613  * INDEX committing at about the same time. We can avoid that by having
2614  * them both do nontransactional updates (we assume they will both be
2615  * trying to change the pg_class row to the same thing, so it doesn't
2616  * matter which goes first).
2617  *
2618  * It is safe to use a non-transactional update even though our
2619  * transaction could still fail before committing. Setting relhasindex
2620  * true is safe even if there are no indexes (VACUUM will eventually fix
2621  * it). And of course the new relpages and reltuples counts are correct
2622  * regardless. However, we don't want to change relpages (or
2623  * relallvisible) if the caller isn't providing an updated reltuples
2624  * count, because that would bollix the reltuples/relpages ratio which is
2625  * what's really important.
2626  */
2627 
2628  pg_class = table_open(RelationRelationId, RowExclusiveLock);
2629 
2630  /*
2631  * Make a copy of the tuple to update. Normally we use the syscache, but
2632  * we can't rely on that during bootstrap or while reindexing pg_class
2633  * itself.
2634  */
2635  if (IsBootstrapProcessingMode() ||
2636  ReindexIsProcessingHeap(RelationRelationId))
2637  {
2638  /* don't assume syscache will work */
2639  TableScanDesc pg_class_scan;
2640  ScanKeyData key[1];
2641 
2642  ScanKeyInit(&key[0],
2643  Anum_pg_class_oid,
2644  BTEqualStrategyNumber, F_OIDEQ,
2645  ObjectIdGetDatum(relid));
2646 
2647  pg_class_scan = table_beginscan_catalog(pg_class, 1, key);
2648  tuple = heap_getnext(pg_class_scan, ForwardScanDirection);
2649  tuple = heap_copytuple(tuple);
2650  table_endscan(pg_class_scan);
2651  }
2652  else
2653  {
2654  /* normal case, use syscache */
2655  tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid));
2656  }
2657 
2658  if (!HeapTupleIsValid(tuple))
2659  elog(ERROR, "could not find tuple for relation %u", relid);
2660  rd_rel = (Form_pg_class) GETSTRUCT(tuple);
2661 
2662  /* Should this be a more comprehensive test? */
2663  Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX);
2664 
2665  /* Apply required updates, if any, to copied tuple */
2666 
2667  dirty = false;
2668  if (rd_rel->relhasindex != hasindex)
2669  {
2670  rd_rel->relhasindex = hasindex;
2671  dirty = true;
2672  }
2673 
2674  if (reltuples >= 0)
2675  {
2678 
2679  if (rd_rel->relkind != RELKIND_INDEX)
2680  visibilitymap_count(rel, &relallvisible, NULL);
2681  else /* don't bother for indexes */
2682  relallvisible = 0;
2683 
2684  if (rd_rel->relpages != (int32) relpages)
2685  {
2686  rd_rel->relpages = (int32) relpages;
2687  dirty = true;
2688  }
2689  if (rd_rel->reltuples != (float4) reltuples)
2690  {
2691  rd_rel->reltuples = (float4) reltuples;
2692  dirty = true;
2693  }
2694  if (rd_rel->relallvisible != (int32) relallvisible)
2695  {
2696  rd_rel->relallvisible = (int32) relallvisible;
2697  dirty = true;
2698  }
2699  }
2700 
2701  /*
2702  * If anything changed, write out the tuple
2703  */
2704  if (dirty)
2705  {
2706  heap_inplace_update(pg_class, tuple);
2707  /* the above sends a cache inval message */
2708  }
2709  else
2710  {
2711  /* no need to change tuple, but force relcache inval anyway */
2713  }
2714 
2715  heap_freetuple(tuple);
2716 
2717  table_close(pg_class, RowExclusiveLock);
2718 }
2719 
2720 
2721 /*
2722  * index_build - invoke access-method-specific index build procedure
2723  *
2724  * On entry, the index's catalog entries are valid, and its physical disk
2725  * file has been created but is empty. We call the AM-specific build
2726  * procedure to fill in the index contents. We then update the pg_class
2727  * entries of the index and heap relation as needed, using statistics
2728  * returned by ambuild as well as data passed by the caller.
2729  *
2730  * isreindex indicates we are recreating a previously-existing index.
2731  * parallel indicates if parallelism may be useful.
2732  *
2733  * Note: before Postgres 8.2, the passed-in heap and index Relations
2734  * were automatically closed by this routine. This is no longer the case.
2735  * The caller opened 'em, and the caller should close 'em.
2736  */
2737 void
2738 index_build(Relation heapRelation,
2739  Relation indexRelation,
2740  IndexInfo *indexInfo,
2741  bool isreindex,
2742  bool parallel)
2743 {
2744  IndexBuildResult *stats;
2745  Oid save_userid;
2746  int save_sec_context;
2747  int save_nestlevel;
2748 
2749  /*
2750  * sanity checks
2751  */
2752  Assert(RelationIsValid(indexRelation));
2753  Assert(PointerIsValid(indexRelation->rd_indam));
2754  Assert(PointerIsValid(indexRelation->rd_indam->ambuild));
2755  Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty));
2756 
2757  /*
2758  * Determine worker process details for parallel CREATE INDEX. Currently,
2759  * only btree has support for parallel builds.
2760  *
2761  * Note that planner considers parallel safety for us.
2762  */
2763  if (parallel && IsNormalProcessingMode() &&
2764  indexRelation->rd_rel->relam == BTREE_AM_OID)
2765  indexInfo->ii_ParallelWorkers =
2767  RelationGetRelid(indexRelation));
2768 
2769  if (indexInfo->ii_ParallelWorkers == 0)
2770  ereport(DEBUG1,
2771  (errmsg("building index \"%s\" on table \"%s\" serially",
2772  RelationGetRelationName(indexRelation),
2773  RelationGetRelationName(heapRelation))));
2774  else
2775  ereport(DEBUG1,
2776  (errmsg_plural("building index \"%s\" on table \"%s\" with request for %d parallel worker",
2777  "building index \"%s\" on table \"%s\" with request for %d parallel workers",
2778  indexInfo->ii_ParallelWorkers,
2779  RelationGetRelationName(indexRelation),
2780  RelationGetRelationName(heapRelation),
2781  indexInfo->ii_ParallelWorkers)));
2782 
2783  /*
2784  * Switch to the table owner's userid, so that any index functions are run
2785  * as that user. Also lock down security-restricted operations and
2786  * arrange to make GUC variable changes local to this command.
2787  */
2788  GetUserIdAndSecContext(&save_userid, &save_sec_context);
2789  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
2790  save_sec_context | SECURITY_RESTRICTED_OPERATION);
2791  save_nestlevel = NewGUCNestLevel();
2792 
2793  /* Set up initial progress report status */
2794  {
2795  const int index[] = {
2802  };
2803  const int64 val[] = {
2806  0, 0, 0, 0
2807  };
2808 
2809  pgstat_progress_update_multi_param(6, index, val);
2810  }
2811 
2812  /*
2813  * Call the access method's build procedure
2814  */
2815  stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation,
2816  indexInfo);
2817  Assert(PointerIsValid(stats));
2818 
2819  /*
2820  * If this is an unlogged index, we may need to write out an init fork for
2821  * it -- but we must first check whether one already exists. If, for
2822  * example, an unlogged relation is truncated in the transaction that
2823  * created it, or truncated twice in a subsequent transaction, the
2824  * relfilenode won't change, and nothing needs to be done here.
2825  */
2826  if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED &&
2827  !smgrexists(indexRelation->rd_smgr, INIT_FORKNUM))
2828  {
2829  RelationOpenSmgr(indexRelation);
2830  smgrcreate(indexRelation->rd_smgr, INIT_FORKNUM, false);
2831  indexRelation->rd_indam->ambuildempty(indexRelation);
2832  }
2833 
2834  /*
2835  * If we found any potentially broken HOT chains, mark the index as not
2836  * being usable until the current transaction is below the event horizon.
2837  * See src/backend/access/heap/README.HOT for discussion. Also set this
2838  * if early pruning/vacuuming is enabled for the heap relation. While it
2839  * might become safe to use the index earlier based on actual cleanup
2840  * activity and other active transactions, the test for that would be much
2841  * more complex and would require some form of blocking, so keep it simple
2842  * and fast by just using the current transaction.
2843  *
2844  * However, when reindexing an existing index, we should do nothing here.
2845  * Any HOT chains that are broken with respect to the index must predate
2846  * the index's original creation, so there is no need to change the
2847  * index's usability horizon. Moreover, we *must not* try to change the
2848  * index's pg_index entry while reindexing pg_index itself, and this
2849  * optimization nicely prevents that. The more complex rules needed for a
2850  * reindex are handled separately after this function returns.
2851  *
2852  * We also need not set indcheckxmin during a concurrent index build,
2853  * because we won't set indisvalid true until all transactions that care
2854  * about the broken HOT chains or early pruning/vacuuming are gone.
2855  *
2856  * Therefore, this code path can only be taken during non-concurrent
2857  * CREATE INDEX. Thus the fact that heap_update will set the pg_index
2858  * tuple's xmin doesn't matter, because that tuple was created in the
2859  * current transaction anyway. That also means we don't need to worry
2860  * about any concurrent readers of the tuple; no other transaction can see
2861  * it yet.
2862  */
2863  if ((indexInfo->ii_BrokenHotChain || EarlyPruningEnabled(heapRelation)) &&
2864  !isreindex &&
2865  !indexInfo->ii_Concurrent)
2866  {
2867  Oid indexId = RelationGetRelid(indexRelation);
2868  Relation pg_index;
2869  HeapTuple indexTuple;
2870  Form_pg_index indexForm;
2871 
2872  pg_index = table_open(IndexRelationId, RowExclusiveLock);
2873 
2874  indexTuple = SearchSysCacheCopy1(INDEXRELID,
2875  ObjectIdGetDatum(indexId));
2876  if (!HeapTupleIsValid(indexTuple))
2877  elog(ERROR, "cache lookup failed for index %u", indexId);
2878  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
2879 
2880  /* If it's a new index, indcheckxmin shouldn't be set ... */
2881  Assert(!indexForm->indcheckxmin);
2882 
2883  indexForm->indcheckxmin = true;
2884  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
2885 
2886  heap_freetuple(indexTuple);
2887  table_close(pg_index, RowExclusiveLock);
2888  }
2889 
2890  /*
2891  * Update heap and index pg_class rows
2892  */
2893  index_update_stats(heapRelation,
2894  true,
2895  stats->heap_tuples);
2896 
2897  index_update_stats(indexRelation,
2898  false,
2899  stats->index_tuples);
2900 
2901  /* Make the updated catalog row versions visible */
2903 
2904  /*
2905  * If it's for an exclusion constraint, make a second pass over the heap
2906  * to verify that the constraint is satisfied. We must not do this until
2907  * the index is fully valid. (Broken HOT chains shouldn't matter, though;
2908  * see comments for IndexCheckExclusion.)
2909  */
2910  if (indexInfo->ii_ExclusionOps != NULL)
2911  IndexCheckExclusion(heapRelation, indexRelation, indexInfo);
2912 
2913  /* Roll back any GUC changes executed by index functions */
2914  AtEOXact_GUC(false, save_nestlevel);
2915 
2916  /* Restore userid and security context */
2917  SetUserIdAndSecContext(save_userid, save_sec_context);
2918 }
2919 
2920 /*
2921  * IndexCheckExclusion - verify that a new exclusion constraint is satisfied
2922  *
2923  * When creating an exclusion constraint, we first build the index normally
2924  * and then rescan the heap to check for conflicts. We assume that we only
2925  * need to validate tuples that are live according to an up-to-date snapshot,
2926  * and that these were correctly indexed even in the presence of broken HOT
2927  * chains. This should be OK since we are holding at least ShareLock on the
2928  * table, meaning there can be no uncommitted updates from other transactions.
2929  * (Note: that wouldn't necessarily work for system catalogs, since many
2930  * operations release write lock early on the system catalogs.)
2931  */
2932 static void
2934  Relation indexRelation,
2935  IndexInfo *indexInfo)
2936 {
2937  TableScanDesc scan;
2939  bool isnull[INDEX_MAX_KEYS];
2940  ExprState *predicate;
2941  TupleTableSlot *slot;
2942  EState *estate;
2943  ExprContext *econtext;
2944  Snapshot snapshot;
2945 
2946  /*
2947  * If we are reindexing the target index, mark it as no longer being
2948  * reindexed, to forestall an Assert in index_beginscan when we try to use
2949  * the index for probes. This is OK because the index is now fully valid.
2950  */
2953 
2954  /*
2955  * Need an EState for evaluation of index expressions and partial-index
2956  * predicates. Also a slot to hold the current tuple.
2957  */
2958  estate = CreateExecutorState();
2959  econtext = GetPerTupleExprContext(estate);
2960  slot = table_slot_create(heapRelation, NULL);
2961 
2962  /* Arrange for econtext's scan tuple to be the tuple under test */
2963  econtext->ecxt_scantuple = slot;
2964 
2965  /* Set up execution state for predicate, if any. */
2966  predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
2967 
2968  /*
2969  * Scan all live tuples in the base relation.
2970  */
2971  snapshot = RegisterSnapshot(GetLatestSnapshot());
2972  scan = table_beginscan_strat(heapRelation, /* relation */
2973  snapshot, /* snapshot */
2974  0, /* number of keys */
2975  NULL, /* scan key */
2976  true, /* buffer access strategy OK */
2977  true); /* syncscan OK */
2978 
2979  while (table_scan_getnextslot(scan, ForwardScanDirection, slot))
2980  {
2982 
2983  /*
2984  * In a partial index, ignore tuples that don't satisfy the predicate.
2985  */
2986  if (predicate != NULL)
2987  {
2988  if (!ExecQual(predicate, econtext))
2989  continue;
2990  }
2991 
2992  /*
2993  * Extract index column values, including computing expressions.
2994  */
2995  FormIndexDatum(indexInfo,
2996  slot,
2997  estate,
2998  values,
2999  isnull);
3000 
3001  /*
3002  * Check that this tuple has no conflicts.
3003  */
3004  check_exclusion_constraint(heapRelation,
3005  indexRelation, indexInfo,
3006  &(slot->tts_tid), values, isnull,
3007  estate, true);
3008 
3010  }
3011 
3012  table_endscan(scan);
3013  UnregisterSnapshot(snapshot);
3014 
3016 
3017  FreeExecutorState(estate);
3018 
3019  /* These may have been pointing to the now-gone estate */
3020  indexInfo->ii_ExpressionsState = NIL;
3021  indexInfo->ii_PredicateState = NULL;
3022 }
3023 
3024 
3025 /*
3026  * validate_index - support code for concurrent index builds
3027  *
3028  * We do a concurrent index build by first inserting the catalog entry for the
3029  * index via index_create(), marking it not indisready and not indisvalid.
3030  * Then we commit our transaction and start a new one, then we wait for all
3031  * transactions that could have been modifying the table to terminate. Now
3032  * we know that any subsequently-started transactions will see the index and
3033  * honor its constraints on HOT updates; so while existing HOT-chains might
3034  * be broken with respect to the index, no currently live tuple will have an
3035  * incompatible HOT update done to it. We now build the index normally via
3036  * index_build(), while holding a weak lock that allows concurrent
3037  * insert/update/delete. Also, we index only tuples that are valid
3038  * as of the start of the scan (see table_index_build_scan), whereas a normal
3039  * build takes care to include recently-dead tuples. This is OK because
3040  * we won't mark the index valid until all transactions that might be able
3041  * to see those tuples are gone. The reason for doing that is to avoid
3042  * bogus unique-index failures due to concurrent UPDATEs (we might see
3043  * different versions of the same row as being valid when we pass over them,
3044  * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that
3045  * does not contain any tuples added to the table while we built the index.
3046  *
3047  * Next, we mark the index "indisready" (but still not "indisvalid") and
3048  * commit the second transaction and start a third. Again we wait for all
3049  * transactions that could have been modifying the table to terminate. Now
3050  * we know that any subsequently-started transactions will see the index and
3051  * insert their new tuples into it. We then take a new reference snapshot
3052  * which is passed to validate_index(). Any tuples that are valid according
3053  * to this snap, but are not in the index, must be added to the index.
3054  * (Any tuples committed live after the snap will be inserted into the
3055  * index by their originating transaction. Any tuples committed dead before
3056  * the snap need not be indexed, because we will wait out all transactions
3057  * that might care about them before we mark the index valid.)
3058  *
3059  * validate_index() works by first gathering all the TIDs currently in the
3060  * index, using a bulkdelete callback that just stores the TIDs and doesn't
3061  * ever say "delete it". (This should be faster than a plain indexscan;
3062  * also, not all index AMs support full-index indexscan.) Then we sort the
3063  * TIDs, and finally scan the table doing a "merge join" against the TID list
3064  * to see which tuples are missing from the index. Thus we will ensure that
3065  * all tuples valid according to the reference snapshot are in the index.
3066  *
3067  * Building a unique index this way is tricky: we might try to insert a
3068  * tuple that is already dead or is in process of being deleted, and we
3069  * mustn't have a uniqueness failure against an updated version of the same
3070  * row. We could try to check the tuple to see if it's already dead and tell
3071  * index_insert() not to do the uniqueness check, but that still leaves us
3072  * with a race condition against an in-progress update. To handle that,
3073  * we expect the index AM to recheck liveness of the to-be-inserted tuple
3074  * before it declares a uniqueness error.
3075  *
3076  * After completing validate_index(), we wait until all transactions that
3077  * were alive at the time of the reference snapshot are gone; this is
3078  * necessary to be sure there are none left with a transaction snapshot
3079  * older than the reference (and hence possibly able to see tuples we did
3080  * not index). Then we mark the index "indisvalid" and commit. Subsequent
3081  * transactions will be able to use it for queries.
3082  *
3083  * Doing two full table scans is a brute-force strategy. We could try to be
3084  * cleverer, eg storing new tuples in a special area of the table (perhaps
3085  * making the table append-only by setting use_fsm). However that would
3086  * add yet more locking issues.
3087  */
3088 void
3089 validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
3090 {
3091  Relation heapRelation,
3092  indexRelation;
3093  IndexInfo *indexInfo;
3094  IndexVacuumInfo ivinfo;
3096  Oid save_userid;
3097  int save_sec_context;
3098  int save_nestlevel;
3099 
3100  {
3101  const int index[] = {
3107  };
3108  const int64 val[] = {
3110  0, 0, 0, 0
3111  };
3112 
3113  pgstat_progress_update_multi_param(5, index, val);
3114  }
3115 
3116  /* Open and lock the parent heap relation */
3117  heapRelation = table_open(heapId, ShareUpdateExclusiveLock);
3118  /* And the target index relation */
3119  indexRelation = index_open(indexId, RowExclusiveLock);
3120 
3121  /*
3122  * Fetch info needed for index_insert. (You might think this should be
3123  * passed in from DefineIndex, but its copy is long gone due to having
3124  * been built in a previous transaction.)
3125  */
3126  indexInfo = BuildIndexInfo(indexRelation);
3127 
3128  /* mark build is concurrent just for consistency */
3129  indexInfo->ii_Concurrent = true;
3130 
3131  /*
3132  * Switch to the table owner's userid, so that any index functions are run
3133  * as that user. Also lock down security-restricted operations and
3134  * arrange to make GUC variable changes local to this command.
3135  */
3136  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3137  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3138  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3139  save_nestlevel = NewGUCNestLevel();
3140 
3141  /*
3142  * Scan the index and gather up all the TIDs into a tuplesort object.
3143  */
3144  ivinfo.index = indexRelation;
3145  ivinfo.analyze_only = false;
3146  ivinfo.report_progress = true;
3147  ivinfo.estimated_count = true;
3148  ivinfo.message_level = DEBUG2;
3149  ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples;
3150  ivinfo.strategy = NULL;
3151 
3152  /*
3153  * Encode TIDs as int8 values for the sort, rather than directly sorting
3154  * item pointers. This can be significantly faster, primarily because TID
3155  * is a pass-by-reference type on all platforms, whereas int8 is
3156  * pass-by-value on most platforms.
3157  */
3158  state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator,
3159  InvalidOid, false,
3161  NULL, false);
3162  state.htups = state.itups = state.tups_inserted = 0;
3163 
3164  /* ambulkdelete updates progress metrics */
3165  (void) index_bulk_delete(&ivinfo, NULL,
3166  validate_index_callback, (void *) &state);
3167 
3168  /* Execute the sort */
3169  {
3170  const int index[] = {
3174  };
3175  const int64 val[] = {
3177  0, 0
3178  };
3179 
3180  pgstat_progress_update_multi_param(3, index, val);
3181  }
3183 
3184  /*
3185  * Now scan the heap and "merge" it with the index
3186  */
3189  table_index_validate_scan(heapRelation,
3190  indexRelation,
3191  indexInfo,
3192  snapshot,
3193  &state);
3194 
3195  /* Done with tuplesort object */
3196  tuplesort_end(state.tuplesort);
3197 
3198  elog(DEBUG2,
3199  "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
3200  state.htups, state.itups, state.tups_inserted);
3201 
3202  /* Roll back any GUC changes executed by index functions */
3203  AtEOXact_GUC(false, save_nestlevel);
3204 
3205  /* Restore userid and security context */
3206  SetUserIdAndSecContext(save_userid, save_sec_context);
3207 
3208  /* Close rels, but keep locks */
3209  index_close(indexRelation, NoLock);
3210  table_close(heapRelation, NoLock);
3211 }
3212 
3213 /*
3214  * validate_index_callback - bulkdelete callback to collect the index TIDs
3215  */
3216 static bool
3217 validate_index_callback(ItemPointer itemptr, void *opaque)
3218 {
3220  int64 encoded = itemptr_encode(itemptr);
3221 
3222  tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false);
3223  state->itups += 1;
3224  return false; /* never actually delete anything */
3225 }
3226 
3227 /*
3228  * index_set_state_flags - adjust pg_index state flags
3229  *
3230  * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index
3231  * flags that denote the index's state. Because the update is not
3232  * transactional and will not roll back on error, this must only be used as
3233  * the last step in a transaction that has not made any transactional catalog
3234  * updates!
3235  *
3236  * Note that heap_inplace_update does send a cache inval message for the
3237  * tuple, so other sessions will hear about the update as soon as we commit.
3238  *
3239  * NB: In releases prior to PostgreSQL 9.4, the use of a non-transactional
3240  * update here would have been unsafe; now that MVCC rules apply even for
3241  * system catalog scans, we could potentially use a transactional update here
3242  * instead.
3243  */
3244 void
3246 {
3247  Relation pg_index;
3248  HeapTuple indexTuple;
3249  Form_pg_index indexForm;
3250 
3251  /* Assert that current xact hasn't done any transactional updates */
3253 
3254  /* Open pg_index and fetch a writable copy of the index's tuple */
3255  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3256 
3257  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3258  ObjectIdGetDatum(indexId));
3259  if (!HeapTupleIsValid(indexTuple))
3260  elog(ERROR, "cache lookup failed for index %u", indexId);
3261  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3262 
3263  /* Perform the requested state change on the copy */
3264  switch (action)
3265  {
3267  /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */
3268  Assert(indexForm->indislive);
3269  Assert(!indexForm->indisready);
3270  Assert(!indexForm->indisvalid);
3271  indexForm->indisready = true;
3272  break;
3274  /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */
3275  Assert(indexForm->indislive);
3276  Assert(indexForm->indisready);
3277  Assert(!indexForm->indisvalid);
3278  indexForm->indisvalid = true;
3279  break;
3281 
3282  /*
3283  * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence
3284  *
3285  * If indisready == true we leave it set so the index still gets
3286  * maintained by active transactions. We only need to ensure that
3287  * indisvalid is false. (We don't assert that either is initially
3288  * true, though, since we want to be able to retry a DROP INDEX
3289  * CONCURRENTLY that failed partway through.)
3290  *
3291  * Note: the CLUSTER logic assumes that indisclustered cannot be
3292  * set on any invalid index, so clear that flag too.
3293  */
3294  indexForm->indisvalid = false;
3295  indexForm->indisclustered = false;
3296  break;
3297  case INDEX_DROP_SET_DEAD:
3298 
3299  /*
3300  * Clear indisready/indislive during DROP INDEX CONCURRENTLY
3301  *
3302  * We clear both indisready and indislive, because we not only
3303  * want to stop updates, we want to prevent sessions from touching
3304  * the index at all.
3305  */
3306  Assert(!indexForm->indisvalid);
3307  indexForm->indisready = false;
3308  indexForm->indislive = false;
3309  break;
3310  }
3311 
3312  /* ... and write it back in-place */
3313  heap_inplace_update(pg_index, indexTuple);
3314 
3315  table_close(pg_index, RowExclusiveLock);
3316 }
3317 
3318 
3319 /*
3320  * IndexGetRelation: given an index's relation OID, get the OID of the
3321  * relation it is an index on. Uses the system cache.
3322  */
3323 Oid
3324 IndexGetRelation(Oid indexId, bool missing_ok)
3325 {
3326  HeapTuple tuple;
3328  Oid result;
3329 
3330  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
3331  if (!HeapTupleIsValid(tuple))
3332  {
3333  if (missing_ok)
3334  return InvalidOid;
3335  elog(ERROR, "cache lookup failed for index %u", indexId);
3336  }
3337  index = (Form_pg_index) GETSTRUCT(tuple);
3338  Assert(index->indexrelid == indexId);
3339 
3340  result = index->indrelid;
3341  ReleaseSysCache(tuple);
3342  return result;
3343 }
3344 
3345 /*
3346  * reindex_index - This routine is used to recreate a single index
3347  */
3348 void
3349 reindex_index(Oid indexId, bool skip_constraint_checks, char persistence,
3350  int options)
3351 {
3352  Relation iRel,
3353  heapRelation;
3354  Oid heapId;
3355  IndexInfo *indexInfo;
3356  volatile bool skipped_constraint = false;
3357  PGRUsage ru0;
3358  bool progress = (options & REINDEXOPT_REPORT_PROGRESS) != 0;
3359 
3360  pg_rusage_init(&ru0);
3361 
3362  /*
3363  * Open and lock the parent heap relation. ShareLock is sufficient since
3364  * we only need to be sure no schema or data changes are going on.
3365  */
3366  heapId = IndexGetRelation(indexId, false);
3367  heapRelation = table_open(heapId, ShareLock);
3368 
3369  if (progress)
3370  {
3372  heapId);
3376  indexId);
3377  }
3378 
3379  /*
3380  * Open the target index relation and get an exclusive lock on it, to
3381  * ensure that no one else is touching this particular index.
3382  */
3383  iRel = index_open(indexId, AccessExclusiveLock);
3384 
3385  if (progress)
3387  iRel->rd_rel->relam);
3388 
3389  /*
3390  * The case of reindexing partitioned tables and indexes is handled
3391  * differently by upper layers, so this case shouldn't arise.
3392  */
3393  if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
3394  elog(ERROR, "unsupported relation kind for index \"%s\"",
3395  RelationGetRelationName(iRel));
3396 
3397  /*
3398  * Don't allow reindex on temp tables of other backends ... their local
3399  * buffer manager is not going to cope.
3400  */
3401  if (RELATION_IS_OTHER_TEMP(iRel))
3402  ereport(ERROR,
3403  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3404  errmsg("cannot reindex temporary tables of other sessions")));
3405 
3406  /*
3407  * Also check for active uses of the index in the current transaction; we
3408  * don't want to reindex underneath an open indexscan.
3409  */
3410  CheckTableNotInUse(iRel, "REINDEX INDEX");
3411 
3412  /*
3413  * All predicate locks on the index are about to be made invalid. Promote
3414  * them to relation locks on the heap.
3415  */
3417 
3418  /* Fetch info needed for index_build */
3419  indexInfo = BuildIndexInfo(iRel);
3420 
3421  /* If requested, skip checking uniqueness/exclusion constraints */
3422  if (skip_constraint_checks)
3423  {
3424  if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL)
3425  skipped_constraint = true;
3426  indexInfo->ii_Unique = false;
3427  indexInfo->ii_ExclusionOps = NULL;
3428  indexInfo->ii_ExclusionProcs = NULL;
3429  indexInfo->ii_ExclusionStrats = NULL;
3430  }
3431 
3432  /* ensure SetReindexProcessing state isn't leaked */
3433  PG_TRY();
3434  {
3435  /* Suppress use of the target index while rebuilding it */
3436  SetReindexProcessing(heapId, indexId);
3437 
3438  /* Create a new physical relation for the index */
3439  RelationSetNewRelfilenode(iRel, persistence);
3440 
3441  /* Initialize the index and rebuild */
3442  /* Note: we do not need to re-establish pkey setting */
3443  index_build(heapRelation, iRel, indexInfo, true, true);
3444  }
3445  PG_CATCH();
3446  {
3447  /* Make sure flag gets cleared on error exit */
3449  PG_RE_THROW();
3450  }
3451  PG_END_TRY();
3453 
3454  /*
3455  * If the index is marked invalid/not-ready/dead (ie, it's from a failed
3456  * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway),
3457  * and we didn't skip a uniqueness check, we can now mark it valid. This
3458  * allows REINDEX to be used to clean up in such cases.
3459  *
3460  * We can also reset indcheckxmin, because we have now done a
3461  * non-concurrent index build, *except* in the case where index_build
3462  * found some still-broken HOT chains. If it did, and we don't have to
3463  * change any of the other flags, we just leave indcheckxmin alone (note
3464  * that index_build won't have changed it, because this is a reindex).
3465  * This is okay and desirable because not updating the tuple leaves the
3466  * index's usability horizon (recorded as the tuple's xmin value) the same
3467  * as it was.
3468  *
3469  * But, if the index was invalid/not-ready/dead and there were broken HOT
3470  * chains, we had better force indcheckxmin true, because the normal
3471  * argument that the HOT chains couldn't conflict with the index is
3472  * suspect for an invalid index. (A conflict is definitely possible if
3473  * the index was dead. It probably shouldn't happen otherwise, but let's
3474  * be conservative.) In this case advancing the usability horizon is
3475  * appropriate.
3476  *
3477  * Another reason for avoiding unnecessary updates here is that while
3478  * reindexing pg_index itself, we must not try to update tuples in it.
3479  * pg_index's indexes should always have these flags in their clean state,
3480  * so that won't happen.
3481  *
3482  * If early pruning/vacuuming is enabled for the heap relation, the
3483  * usability horizon must be advanced to the current transaction on every
3484  * build or rebuild. pg_index is OK in this regard because catalog tables
3485  * are not subject to early cleanup.
3486  */
3487  if (!skipped_constraint)
3488  {
3489  Relation pg_index;
3490  HeapTuple indexTuple;
3491  Form_pg_index indexForm;
3492  bool index_bad;
3493  bool early_pruning_enabled = EarlyPruningEnabled(heapRelation);
3494 
3495  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3496 
3497  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3498  ObjectIdGetDatum(indexId));
3499  if (!HeapTupleIsValid(indexTuple))
3500  elog(ERROR, "cache lookup failed for index %u", indexId);
3501  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3502 
3503  index_bad = (!indexForm->indisvalid ||
3504  !indexForm->indisready ||
3505  !indexForm->indislive);
3506  if (index_bad ||
3507  (indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain) ||
3508  early_pruning_enabled)
3509  {
3510  if (!indexInfo->ii_BrokenHotChain && !early_pruning_enabled)
3511  indexForm->indcheckxmin = false;
3512  else if (index_bad || early_pruning_enabled)
3513  indexForm->indcheckxmin = true;
3514  indexForm->indisvalid = true;
3515  indexForm->indisready = true;
3516  indexForm->indislive = true;
3517  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3518 
3519  /*
3520  * Invalidate the relcache for the table, so that after we commit
3521  * all sessions will refresh the table's index list. This ensures
3522  * that if anyone misses seeing the pg_index row during this
3523  * update, they'll refresh their list before attempting any update
3524  * on the table.
3525  */
3526  CacheInvalidateRelcache(heapRelation);
3527  }
3528 
3529  table_close(pg_index, RowExclusiveLock);
3530  }
3531 
3532  /* Log what we did */
3533  if (options & REINDEXOPT_VERBOSE)
3534  ereport(INFO,
3535  (errmsg("index \"%s\" was reindexed",
3536  get_rel_name(indexId)),
3537  errdetail_internal("%s",
3538  pg_rusage_show(&ru0))));
3539 
3540  if (progress)
3542 
3543  /* Close rels, but keep locks */
3544  index_close(iRel, NoLock);
3545  table_close(heapRelation, NoLock);
3546 }
3547 
3548 /*
3549  * reindex_relation - This routine is used to recreate all indexes
3550  * of a relation (and optionally its toast relation too, if any).
3551  *
3552  * "flags" is a bitmask that can include any combination of these bits:
3553  *
3554  * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any).
3555  *
3556  * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely
3557  * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its
3558  * indexes are inconsistent with it. This makes things tricky if the relation
3559  * is a system catalog that we might consult during the reindexing. To deal
3560  * with that case, we mark all of the indexes as pending rebuild so that they
3561  * won't be trusted until rebuilt. The caller is required to call us *without*
3562  * having made the rebuilt table visible by doing CommandCounterIncrement;
3563  * we'll do CCI after having collected the index list. (This way we can still
3564  * use catalog indexes while collecting the list.)
3565  *
3566  * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion
3567  * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or
3568  * CLUSTER on a system catalog must omit this flag. REINDEX should be used to
3569  * rebuild an index if constraint inconsistency is suspected. For optimal
3570  * performance, other callers should include the flag only after transforming
3571  * the data in a manner that risks a change in constraint validity.
3572  *
3573  * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the
3574  * rebuilt indexes to unlogged.
3575  *
3576  * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the
3577  * rebuilt indexes to permanent.
3578  *
3579  * Returns true if any indexes were rebuilt (including toast table's index
3580  * when relevant). Note that a CommandCounterIncrement will occur after each
3581  * index rebuild.
3582  */
3583 bool
3585 {
3586  Relation rel;
3587  Oid toast_relid;
3588  List *indexIds;
3589  bool result;
3590  int i;
3591 
3592  /*
3593  * Open and lock the relation. ShareLock is sufficient since we only need
3594  * to prevent schema and data changes in it. The lock level used here
3595  * should match ReindexTable().
3596  */
3597  rel = table_open(relid, ShareLock);
3598 
3599  /*
3600  * This may be useful when implemented someday; but that day is not today.
3601  * For now, avoid erroring out when called in a multi-table context
3602  * (REINDEX SCHEMA) and happen to come across a partitioned table. The
3603  * partitions may be reindexed on their own anyway.
3604  */
3605  if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
3606  {
3607  ereport(WARNING,
3608  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3609  errmsg("REINDEX of partitioned tables is not yet implemented, skipping \"%s\"",
3610  RelationGetRelationName(rel))));
3611  table_close(rel, ShareLock);
3612  return false;
3613  }
3614 
3615  toast_relid = rel->rd_rel->reltoastrelid;
3616 
3617  /*
3618  * Get the list of index OIDs for this relation. (We trust to the
3619  * relcache to get this with a sequential scan if ignoring system
3620  * indexes.)
3621  */
3622  indexIds = RelationGetIndexList(rel);
3623 
3624  PG_TRY();
3625  {
3626  ListCell *indexId;
3627  char persistence;
3628 
3629  if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
3630  {
3631  /* Suppress use of all the indexes until they are rebuilt */
3632  SetReindexPending(indexIds);
3633 
3634  /*
3635  * Make the new heap contents visible --- now things might be
3636  * inconsistent!
3637  */
3639  }
3640 
3641  /*
3642  * Compute persistence of indexes: same as that of owning rel, unless
3643  * caller specified otherwise.
3644  */
3646  persistence = RELPERSISTENCE_UNLOGGED;
3647  else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT)
3648  persistence = RELPERSISTENCE_PERMANENT;
3649  else
3650  persistence = rel->rd_rel->relpersistence;
3651 
3652  /* Reindex all the indexes. */
3653  i = 1;
3654  foreach(indexId, indexIds)
3655  {
3656  Oid indexOid = lfirst_oid(indexId);
3657 
3658  reindex_index(indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS),
3659  persistence, options);
3660 
3662 
3663  /* Index should no longer be in the pending list */
3664  Assert(!ReindexIsProcessingIndex(indexOid));
3665 
3666  /* Set index rebuild count */
3668  i);
3669  i++;
3670  }
3671  }
3672  PG_CATCH();
3673  {
3674  /* Make sure list gets cleared on error exit */
3676  PG_RE_THROW();
3677  }
3678  PG_END_TRY();
3680 
3681  /*
3682  * Close rel, but continue to hold the lock.
3683  */
3684  table_close(rel, NoLock);
3685 
3686  result = (indexIds != NIL);
3687 
3688  /*
3689  * If the relation has a secondary toast rel, reindex that too while we
3690  * still hold the lock on the master table.
3691  */
3692  if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid))
3693  result |= reindex_relation(toast_relid, flags, options);
3694 
3695  return result;
3696 }
3697 
3698 
3699 /* ----------------------------------------------------------------
3700  * System index reindexing support
3701  *
3702  * When we are busy reindexing a system index, this code provides support
3703  * for preventing catalog lookups from using that index. We also make use
3704  * of this to catch attempted uses of user indexes during reindexing of
3705  * those indexes. This information is propagated to parallel workers;
3706  * attempting to change it during a parallel operation is not permitted.
3707  * ----------------------------------------------------------------
3708  */
3709 
3713 
3714 /*
3715  * ReindexIsProcessingHeap
3716  * True if heap specified by OID is currently being reindexed.
3717  */
3718 bool
3720 {
3721  return heapOid == currentlyReindexedHeap;
3722 }
3723 
3724 /*
3725  * ReindexIsCurrentlyProcessingIndex
3726  * True if index specified by OID is currently being reindexed.
3727  */
3728 static bool
3730 {
3731  return indexOid == currentlyReindexedIndex;
3732 }
3733 
3734 /*
3735  * ReindexIsProcessingIndex
3736  * True if index specified by OID is currently being reindexed,
3737  * or should be treated as invalid because it is awaiting reindex.
3738  */
3739 bool
3741 {
3742  return indexOid == currentlyReindexedIndex ||
3743  list_member_oid(pendingReindexedIndexes, indexOid);
3744 }
3745 
3746 /*
3747  * SetReindexProcessing
3748  * Set flag that specified heap/index are being reindexed.
3749  *
3750  * NB: caller must use a PG_TRY block to ensure ResetReindexProcessing is done.
3751  */
3752 static void
3753 SetReindexProcessing(Oid heapOid, Oid indexOid)
3754 {
3755  Assert(OidIsValid(heapOid) && OidIsValid(indexOid));
3756  /* Reindexing is not re-entrant. */
3758  elog(ERROR, "cannot reindex while reindexing");
3759  currentlyReindexedHeap = heapOid;
3760  currentlyReindexedIndex = indexOid;
3761  /* Index is no longer "pending" reindex. */
3762  RemoveReindexPending(indexOid);
3763 }
3764 
3765 /*
3766  * ResetReindexProcessing
3767  * Unset reindexing status.
3768  */
3769 static void
3771 {
3772  /* This may be called in leader error path */
3775 }
3776 
3777 /*
3778  * SetReindexPending
3779  * Mark the given indexes as pending reindex.
3780  *
3781  * NB: caller must use a PG_TRY block to ensure ResetReindexPending is done.
3782  * Also, we assume that the current memory context stays valid throughout.
3783  */
3784 static void
3786 {
3787  /* Reindexing is not re-entrant. */
3788  if (pendingReindexedIndexes)
3789  elog(ERROR, "cannot reindex while reindexing");
3790  if (IsInParallelMode())
3791  elog(ERROR, "cannot modify reindex state during a parallel operation");
3792  pendingReindexedIndexes = list_copy(indexes);
3793 }
3794 
3795 /*
3796  * RemoveReindexPending
3797  * Remove the given index from the pending list.
3798  */
3799 static void
3801 {
3802  if (IsInParallelMode())
3803  elog(ERROR, "cannot modify reindex state during a parallel operation");
3804  pendingReindexedIndexes = list_delete_oid(pendingReindexedIndexes,
3805  indexOid);
3806 }
3807 
3808 /*
3809  * ResetReindexPending
3810  * Unset reindex-pending status.
3811  */
3812 static void
3814 {
3815  /* This may be called in leader error path */
3816  pendingReindexedIndexes = NIL;
3817 }
3818 
3819 /*
3820  * EstimateReindexStateSpace
3821  * Estimate space needed to pass reindex state to parallel workers.
3822  */
3823 Size
3825 {
3826  return offsetof(SerializedReindexState, pendingReindexedIndexes)
3827  + mul_size(sizeof(Oid), list_length(pendingReindexedIndexes));
3828 }
3829 
3830 /*
3831  * SerializeReindexState
3832  * Serialize reindex state for parallel workers.
3833  */
3834 void
3835 SerializeReindexState(Size maxsize, char *start_address)
3836 {
3837  SerializedReindexState *sistate = (SerializedReindexState *) start_address;
3838  int c = 0;
3839  ListCell *lc;
3840 
3843  sistate->numPendingReindexedIndexes = list_length(pendingReindexedIndexes);
3844  foreach(lc, pendingReindexedIndexes)
3845  sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc);
3846 }
3847 
3848 /*
3849  * RestoreReindexState
3850  * Restore reindex state in a parallel worker.
3851  */
3852 void
3853 RestoreReindexState(void *reindexstate)
3854 {
3855  SerializedReindexState *sistate = (SerializedReindexState *) reindexstate;
3856  int c = 0;
3857  MemoryContext oldcontext;
3858 
3861 
3862  Assert(pendingReindexedIndexes == NIL);
3864  for (c = 0; c < sistate->numPendingReindexedIndexes; ++c)
3865  pendingReindexedIndexes =
3866  lappend_oid(pendingReindexedIndexes,
3867  sistate->pendingReindexedIndexes[c]);
3868  MemoryContextSwitchTo(oldcontext);
3869 }
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:77
signed short int16
Definition: c.h:345
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2511
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:680
void WaitForLockers(LOCKTAG heaplocktag, LOCKMODE lockmode, bool progress)
Definition: lmgr.c:942
#define NIL
Definition: pg_list.h:65
Definition: c.h:588
struct IndexAmRoutine * rd_indam
Definition: rel.h:157
Oid IndexGetRelation(Oid indexId, bool missing_ok)
Definition: index.c:3324
void RelationGetExclusionInfo(Relation indexRelation, Oid **operators, Oid **procs, uint16 **strategies)
Definition: relcache.c:4965
uint16 * ii_UniqueStrats
Definition: execnodes.h:169
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:100
List * SystemFuncName(char *name)
LockRelId lockRelId
Definition: rel.h:43
static Oid currentlyReindexedHeap
Definition: index.c:3710
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT
Definition: progress.h:78
static void index_update_stats(Relation rel, bool hasindex, double reltuples)
Definition: index.c:2590
bool ConstraintNameIsUsed(ConstraintCategory conCat, Oid objId, const char *conname)
void tuplesort_performsort(Tuplesortstate *state)
Definition: tuplesort.c:1791
bool CompareIndexInfo(IndexInfo *info1, IndexInfo *info2, Oid *collations1, Oid *collations2, Oid *opfamilies1, Oid *opfamilies2, AttrNumber *attmap, int maplen)
Definition: index.c:2332
static Datum ExecEvalExprSwitchContext(ExprState *state, ExprContext *econtext, bool *isNull)
Definition: executor.h:300
#define DEBUG1
Definition: elog.h:25
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:133
void smgrcreate(SMgrRelation reln, ForkNumber forknum, bool isRedo)
Definition: smgr.c:333
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:525
#define GETSTRUCT(TUP)
Definition: htup_details.h:655
void index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
Definition: index.c:2001
static void UpdateIndexRelation(Oid indexoid, Oid heapoid, Oid parentIndexId, IndexInfo *indexInfo, Oid *collationOids, Oid *classOids, int16 *coloptions, bool primary, bool isexclusion, bool immediate, bool isvalid, bool isready)
Definition: index.c:529
void tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull)
Definition: tuplesort.c:1556
Oid currentlyReindexedIndex
Definition: index.c:94
List * ii_Predicate
Definition: execnodes.h:162
Tuplesortstate * tuplesort_begin_datum(Oid datumType, Oid sortOperator, Oid sortCollation, bool nullsFirstFlag, int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:1099
static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid)
Definition: index.c:3729
PgStat_Counter tuples_returned
Definition: pgstat.h:638
bool IsSystemRelation(Relation relation)
Definition: catalog.c:70
uint32 TransactionId
Definition: c.h:507
#define INDEX_CREATE_IF_NOT_EXISTS
Definition: index.h:51
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:300
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:865
TableScanDesc table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
Definition: tableam.c:98
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:321
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:44
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:492
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:3008
#define RelationGetDescr(relation)
Definition: rel.h:445
#define INDEX_CREATE_INVALID
Definition: index.h:53
int LOCKMODE
Definition: lockdefs.h:26
PgStat_Counter t_tuples_fetched
Definition: pgstat.h:102
void pgstat_progress_start_command(ProgressCommandType cmdtype, Oid relid)
Definition: pgstat.c:3199
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:837
void index_set_state_flags(Oid indexId, IndexStateFlagsAction action)
Definition: index.c:3245
uint16 bits16
Definition: c.h:366
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:276
static void SetReindexProcessing(Oid heapOid, Oid indexOid)
Definition: index.c:3753
int namecpy(Name n1, const NameData *n2)
Definition: name.c:233
static void SetReindexPending(List *indexes)
Definition: index.c:3785
#define PointerGetDatum(X)
Definition: postgres.h:556
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
Node * whenClause
Definition: parsenodes.h:2417
struct SMgrRelationData * rd_smgr
Definition: rel.h:56
Oid CreateConstraintEntry(const char *constraintName, Oid constraintNamespace, char constraintType, bool isDeferrable, bool isDeferred, bool isValidated, Oid parentConstrId, Oid relId, const int16 *constraintKey, int constraintNKeys, int constraintNTotalKeys, Oid domainId, Oid indexRelId, Oid foreignRelId, const int16 *foreignKey, const Oid *pfEqOp, const Oid *ppEqOp, const Oid *ffEqOp, int foreignNKeys, char foreignUpdateType, char foreignDeleteType, char foreignMatchType, const Oid *exclOp, Node *conExpr, const char *conBin, bool conIsLocal, int conInhCount, bool conNoInherit, bool is_internal)
Definition: pg_constraint.c:51
void SerializeReindexState(Size maxsize, char *start_address)
Definition: index.c:3835
void pgstat_progress_update_param(int index, int64 val)
Definition: pgstat.c:3220
ExprState * ii_PredicateState
Definition: execnodes.h:163
#define RelationGetForm(relation)
Definition: rel.h:413
void CommitTransactionCommand(void)
Definition: xact.c:2895
MemoryContext ecxt_per_tuple_memory
Definition: execnodes.h:232
bool analyze_only
Definition: genam.h:47
int2vector * buildint2vector(const int16 *int2s, int n)
Definition: int.c:114
Oid dbId
Definition: rel.h:38
bool report_progress
Definition: genam.h:48
BufferAccessStrategy strategy
Definition: genam.h:52
static void InitializeAttributeOids(Relation indexRelation, int numatts, Oid indexoid)
Definition: index.c:471
Oid binary_upgrade_next_index_pg_class_oid
Definition: index.c:85
#define REINDEXOPT_REPORT_PROGRESS
Definition: parsenodes.h:3316
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
#define Int16GetDatum(X)
Definition: postgres.h:451
Definition: lock.h:164
static void ResetReindexPending(void)
Definition: index.c:3813
bool DeleteInheritsTuple(Oid inhrelid, Oid inhparent)
Definition: pg_inherits.c:454
static List * pendingReindexedIndexes
Definition: index.c:3712
List * list_copy(const List *oldlist)
Definition: list.c:1404
Definition: nodes.h:525
Oid * ii_ExclusionProcs
Definition: execnodes.h:165
bool get_collation_isdeterministic(Oid colloid)
Definition: lsyscache.c:942
int errcode(int sqlerrcode)
Definition: elog.c:570
void * stringToNode(const char *str)
Definition: read.c:89
Relation index
Definition: genam.h:46
#define MemSet(start, val, len)
Definition: c.h:955
#define INFO
Definition: elog.h:33
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition: heaptuple.c:359
int32 relallvisible
Definition: pg_class.h:66
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:136
#define PROGRESS_CREATEIDX_TUPLES_TOTAL
Definition: progress.h:67
uint32 BlockNumber
Definition: block.h:31
void RelationForgetRelation(Oid rid)
Definition: relcache.c:2703
void PopActiveSnapshot(void)
Definition: snapmgr.c:814
void CatalogTupleDelete(Relation heapRel, ItemPointer tid)
Definition: indexing.c:269
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition: pg_depend.c:43
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2279
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:247
PgStat_Counter numscans
Definition: pgstat.h:636
#define INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS
Definition: index.h:79
void visibilitymap_count(Relation rel, BlockNumber *all_visible, BlockNumber *all_frozen)
void index_check_primary_key(Relation heapRel, IndexInfo *indexInfo, bool is_alter_table, IndexStmt *stmt)
Definition: index.c:201
PgStat_TableCounts t_counts
Definition: pgstat.h:158
void index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
Definition: index.c:1449
#define REINDEX_REL_SUPPRESS_INDEX_USE
Definition: index.h:137
static bool table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:872
Form_pg_class rd_rel
Definition: rel.h:83
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1338
unsigned int Oid
Definition: postgres_ext.h:31
static bool ExecQual(ExprState *state, ExprContext *econtext)
Definition: executor.h:365
Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER]
Definition: index.c:96
int namestrcpy(Name name, const char *str)
Definition: name.c:250
Oid amkeytype
Definition: amapi.h:201
Oid index_create(Relation heapRelation, const char *indexRelationName, Oid indexRelationId, Oid parentIndexRelid, Oid parentConstraintId, Oid relFileNode, IndexInfo *indexInfo, List *indexColNames, Oid accessMethodObjectId, Oid tableSpaceId, Oid *collationObjectId, Oid *classObjectId, int16 *coloptions, Datum reloptions, bits16 flags, bits16 constr_flags, bool allow_system_table_mods, bool is_internal, Oid *constraintId)
Definition: index.c:692
List * lappend_oid(List *list, Oid datum)
Definition: list.c:358
#define OidIsValid(objectId)
Definition: c.h:638
#define InvokeObjectPostAlterHookArg(classId, objectId, subId, auxiliaryId, is_internal)
Definition: objectaccess.h:166
PgStat_Counter t_tuples_returned
Definition: pgstat.h:101
Oid * ii_UniqueOps
Definition: execnodes.h:167
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:352
bool IsBinaryUpgrade
Definition: globals.c:110
double itups
Definition: index.h:37
static TableScanDesc table_beginscan_strat(Relation rel, Snapshot snapshot, int nkeys, struct ScanKeyData *key, bool allow_strat, bool allow_sync)
Definition: tableam.h:760
#define REINDEXOPT_VERBOSE
Definition: parsenodes.h:3315
int32 relpages
Definition: pg_class.h:60
char relkind
Definition: pg_class.h:81
signed int int32
Definition: c.h:346
int errdetail_internal(const char *fmt,...)
Definition: elog.c:887
static void ResetReindexProcessing(void)
Definition: index.c:3770
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:4644
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
Definition: type.h:89
#define INDEX_CONSTR_CREATE_INIT_DEFERRED
Definition: index.h:77
void RelationSetNewRelfilenode(Relation relation, char persistence)
Definition: relcache.c:3418
void SetRelationHasSubclass(Oid relationId, bool relhassubclass)
Definition: tablecmds.c:2832
void InsertPgClassTuple(Relation pg_class_desc, Relation new_rel_desc, Oid new_rel_oid, Datum relacl, Datum reloptions)
Definition: heap.c:848
#define RelationOpenSmgr(relation)
Definition: rel.h:476
RangeVar * constrrel
Definition: parsenodes.h:2424
void FreeExecutorState(EState *estate)
Definition: execUtils.c:190
#define GetPerTupleExprContext(estate)
Definition: executor.h:501
List * ii_ExpressionsState
Definition: execnodes.h:161
Form_pg_index rd_index
Definition: rel.h:143
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:444
unsigned short uint16
Definition: c.h:357
void pfree(void *pointer)
Definition: mcxt.c:1056
bool IsInParallelMode(void)
Definition: xact.c:994
Oid * rd_indcollation
Definition: rel.h:168
#define EarlyPruningEnabled(rel)
Definition: snapmgr.h:45
void UnlockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:382
#define ObjectIdGetDatum(X)
Definition: postgres.h:507
#define ERROR
Definition: elog.h:43
int ii_NumIndexKeyAttrs
Definition: execnodes.h:158
Definition: rel.h:35
ambuild_function ambuild
Definition: amapi.h:210
char relpersistence
Definition: pg_class.h:78
void LockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:369
IndexAmRoutine * GetIndexAmRoutineByAmId(Oid amoid, bool noerror)
Definition: amapi.c:56
#define RelationIsValid(relation)
Definition: rel.h:392
bool ReindexIsProcessingHeap(Oid heapOid)
Definition: index.c:3719
Relation relation_open(Oid relationId, LOCKMODE lockmode)
Definition: relation.c:48
ItemPointerData t_self
Definition: htup.h:65
Oid get_relname_relid(const char *relname, Oid relnamespace)
Definition: lsyscache.c:1687
#define DEBUG2
Definition: elog.h:24
Tuplesortstate * tuplesort
Definition: index.h:35
#define AttrNumberGetAttrOffset(attNum)
Definition: attnum.h:51
PgStat_StatTabEntry * pgstat_fetch_stat_tabentry(Oid relid)
Definition: pgstat.c:2459
#define SET_LOCKTAG_RELATION(locktag, dboid, reloid)
Definition: lock.h:181
char * c
#define NoLock
Definition: lockdefs.h:34
LockInfoData rd_lockInfo
Definition: rel.h:86
#define IsNormalProcessingMode()
Definition: miscadmin.h:376
HeapTuple heap_getnext(TableScanDesc sscan, ScanDirection direction)
Definition: heapam.c:1290
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1219
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:4582
Oid * ii_UniqueProcs
Definition: execnodes.h:168
Oid values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:596
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:485
#define RowExclusiveLock
Definition: lockdefs.h:38
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:5729
#define PROGRESS_CREATEIDX_INDEX_OID
Definition: progress.h:63
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:163
IndexStateFlagsAction
Definition: index.h:24
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define InvalidTransactionId
Definition: transam.h:31
#define RelationGetRelationName(relation)
Definition: rel.h:453
ExprState * ExecPrepareQual(List *qual, EState *estate)
Definition: execExpr.c:518
static ListCell * list_head(const List *l)
Definition: pg_list.h:125
List * list_delete_oid(List *list, Oid datum)
Definition: list.c:835
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:200
PgStat_Counter tuples_fetched
Definition: pgstat.h:639
bool ii_BrokenHotChain
Definition: execnodes.h:173
bool ActiveSnapshotSet(void)
Definition: snapmgr.c:853
Oid * rd_opfamily
Definition: rel.h:158
Oid get_index_constraint(Oid indexId)
Definition: pg_depend.c:873
#define TriggerConstraintIndexId
Definition: indexing.h:254
static int64 itemptr_encode(ItemPointer itemptr)
Definition: index.h:166
static TupleDesc ConstructTupleDescriptor(Relation heapRelation, IndexInfo *indexInfo, List *indexColNames, Oid accessMethodObjectId, Oid *collationObjectId, Oid *classObjectId)
Definition: index.c:267
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:438
TransactionId GetTopTransactionIdIfAny(void)
Definition: xact.c:410
Oid index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, const char *newName)
Definition: index.c:1242
IndexInfo * makeIndexInfo(int numattrs, int numkeyattrs, Oid amoid, List *expressions, List *predicates, bool unique, bool isready, bool concurrent)
Definition: makefuncs.c:740
void CheckTableNotInUse(Relation rel, const char *stmt)
Definition: tablecmds.c:3416
void StoreSingleInheritance(Oid relationId, Oid parentOid, int32 seqNumber)
Definition: pg_inherits.c:417
Datum Int64GetDatum(int64 X)
Definition: fmgr.c:1699
static void IndexCheckExclusion(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo)
Definition: index.c:2933
#define ATTRIBUTE_FIXED_PART_SIZE
Definition: pg_attribute.h:192
Size EstimateReindexStateSpace(void)
Definition: index.c:3824
void index_register(Oid heap, Oid ind, IndexInfo *indexInfo)
Definition: bootstrap.c:1077
bool ii_ReadyForInserts
Definition: execnodes.h:171
#define ereport(elevel, rest)
Definition: elog.h:141
Node * map_variable_attnos(Node *node, int target_varno, int sublevels_up, const AttrNumber *attno_map, int map_length, Oid to_rowtype, bool *found_whole_row)
PgStat_Counter t_blocks_hit
Definition: pgstat.h:115
MemoryContext TopMemoryContext
Definition: mcxt.c:44
int numPendingReindexedIndexes
Definition: index.c:95
EState * CreateExecutorState(void)
Definition: execUtils.c:88
void TransferPredicateLocksToHeapRelation(Relation relation)
Definition: predicate.c:3097
bool get_rel_relispartition(Oid relid)
Definition: lsyscache.c:1829
List * ExecPrepareExprList(List *nodes, EState *estate)
Definition: execExpr.c:564
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:907
List * lappend(List *list, void *datum)
Definition: list.c:322
static Oid currentlyReindexedIndex
Definition: index.c:3711
#define PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE
Definition: progress.h:87
#define WARNING
Definition: elog.h:40
void validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
Definition: index.c:3089
static void AppendAttributeTuples(Relation indexRelation, int numatts)
Definition: index.c:489
#define RelationIsMapped(relation)
Definition: rel.h:468
FormData_pg_index * Form_pg_index
Definition: pg_index.h:66
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:1124
float float4
Definition: c.h:490
int progress
Definition: pgbench.c:232
#define PROGRESS_CREATEIDX_PHASE
Definition: progress.h:65
Definition: c.h:577
Size mul_size(Size s1, Size s2)
Definition: shmem.c:492
#define TextDatumGetCString(d)
Definition: builtins.h:84
#define PROGRESS_SCAN_BLOCKS_DONE
Definition: progress.h:103
void pgstat_progress_end_command(void)
Definition: pgstat.c:3271
void RelationDropStorage(Relation rel)
Definition: storage.c:148
IndexBulkDeleteResult * index_bulk_delete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback, void *callback_state)
Definition: indexam.c:682
uintptr_t Datum
Definition: postgres.h:367
void CommandCounterIncrement(void)
Definition: xact.c:1003
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:1172
Expr * make_ands_explicit(List *andclauses)
Definition: makefuncs.c:705
int ii_NumIndexAttrs
Definition: execnodes.h:157
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:716
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:1385
static bool relationHasPrimaryKey(Relation rel)
Definition: index.c:147
#define PROGRESS_CREATEIDX_COMMAND_REINDEX
Definition: progress.h:93
PgStat_Counter blocks_hit
Definition: pgstat.h:651
#define InvalidMultiXactId
Definition: multixact.h:23
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:198
#define InvokeObjectPostCreateHookArg(classId, objectId, subId, is_internal)
Definition: objectaccess.h:147
long deleteDependencyRecordsForClass(Oid classId, Oid objectId, Oid refclassId, char deptype)
Definition: pg_depend.c:240
PgStat_Counter t_numscans
Definition: pgstat.h:99
#define INDEX_CREATE_IS_PRIMARY
Definition: index.h:47
#define BoolGetDatum(X)
Definition: postgres.h:402
static void RemoveReindexPending(Oid indexOid)
Definition: index.c:3800
long changeDependenciesOf(Oid classId, Oid oldObjectId, Oid newObjectId)
Definition: pg_depend.c:407
#define InvalidOid
Definition: postgres_ext.h:36
static Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:382
FormData_pg_attribute
Definition: pg_attribute.h:184
#define INDEX_CREATE_CONCURRENT
Definition: index.h:50
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1092
int16 attnum
Definition: pg_attribute.h:79
void DeleteRelationTuple(Oid relid)
Definition: heap.c:1472
int maintenance_work_mem
Definition: globals.c:122
TransactionId relminmxid
Definition: pg_class.h:126
#define NOTICE
Definition: elog.h:37
int message_level
Definition: genam.h:50
TransactionId MultiXactId
Definition: c.h:517
double num_heap_tuples
Definition: genam.h:51
bool ii_Unique
Definition: execnodes.h:170
#define PG_CATCH()
Definition: elog.h:310
#define makeNode(_type_)
Definition: nodes.h:573
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
FormData_pg_constraint * Form_pg_constraint
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:675
void index_build(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo, bool isreindex, bool parallel)
Definition: index.c:2738
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define REINDEX_REL_FORCE_INDEXES_UNLOGGED
Definition: index.h:139
List * ii_Expressions
Definition: execnodes.h:160
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:206
#define Assert(condition)
Definition: c.h:732
oidvector * buildoidvector(const Oid *oids, int n)
Definition: oid.c:167
#define lfirst(lc)
Definition: pg_list.h:190
Definition: regguts.h:298
double tups_inserted
Definition: index.h:37
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:549
#define PROGRESS_CREATEIDX_PHASE_BUILD
Definition: progress.h:75
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN
Definition: progress.h:79
void StartTransactionCommand(void)
Definition: xact.c:2794
void recordDependencyOnSingleRelExpr(const ObjectAddress *depender, Node *expr, Oid relId, DependencyType behavior, DependencyType self_behavior, bool reverse_self)
Definition: dependency.c:1629
CatalogIndexState CatalogOpenIndexes(Relation heapRel)
Definition: indexing.c:42
Relation heap_create(const char *relname, Oid relnamespace, Oid reltablespace, Oid relid, Oid relfilenode, Oid accessmtd, TupleDesc tupDesc, char relkind, char relpersistence, bool shared_relation, bool mapped_relation, bool allow_system_table_mods, TransactionId *relfrozenxid, MultiXactId *relminmxid)
Definition: heap.c:295
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
Definition: pgstat.c:3242
#define linitial_oid(l)
Definition: pg_list.h:197
#define INDEX_MAX_KEYS
int ii_ParallelWorkers
Definition: execnodes.h:174
size_t Size
Definition: c.h:466
void CatalogTupleUpdate(Relation heapRel, ItemPointer otid, HeapTuple tup)
Definition: indexing.c:224
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
struct PgStat_TableStatus * pgstat_info
Definition: rel.h:204
int plan_create_index_workers(Oid tableOid, Oid indexOid)
Definition: planner.c:6244
FormData_pg_type * Form_pg_type
Definition: pg_type.h:251
static int list_length(const List *l)
Definition: pg_list.h:169
#define REINDEX_REL_CHECK_CONSTRAINTS
Definition: index.h:138
FormData_pg_trigger * Form_pg_trigger
Definition: pg_trigger.h:71
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:1135
Oid GetNewRelFileNode(Oid reltablespace, Relation pg_class, char relpersistence)
Definition: catalog.c:386
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:224
#define PROGRESS_SCAN_BLOCKS_TOTAL
Definition: progress.h:102
List * get_index_ref_constraints(Oid indexId)
Definition: pg_depend.c:929
void DeleteAttributeTuples(Oid relid)
Definition: heap.c:1501
#define PG_RE_THROW()
Definition: elog.h:331
int16 values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:585
#define INDEX_CONSTR_CREATE_UPDATE_INDEX
Definition: index.h:78
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4348
Snapshot GetLatestSnapshot(void)
Definition: snapmgr.c:381
void reindex_index(Oid indexId, bool skip_constraint_checks, char persistence, int options)
Definition: index.c:3349
bool ii_Concurrent
Definition: execnodes.h:172
#define InvalidAttrNumber
Definition: attnum.h:23
#define ObjectAddressSet(addr, class_id, object_id)
Definition: objectaddress.h:40
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:152
#define DatumGetPointer(X)
Definition: postgres.h:549
void CacheInvalidateRelcache(Relation relation)
Definition: inval.c:1270
double htups
Definition: index.h:37
void RemoveStatistics(Oid relid, AttrNumber attnum)
Definition: heap.c:3090
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:831
static Datum values[MAXATTR]
Definition: bootstrap.c:167
void RelationInitIndexAccessInfo(Relation relation)
Definition: relcache.c:1362
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:374
FormData_pg_class * Form_pg_class
Definition: pg_class.h:150
#define INDEX_CREATE_SKIP_BUILD
Definition: index.h:49
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2599
#define SearchSysCacheCopy1(cacheId, key1)
Definition: syscache.h:174
#define AccessExclusiveLock
Definition: lockdefs.h:45
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN
Definition: progress.h:77
#define INDEX_CREATE_PARTITIONED
Definition: index.h:52
#define Int32GetDatum(X)
Definition: postgres.h:479
int NewGUCNestLevel(void)
Definition: guc.c:5715
void InsertPgAttributeTuple(Relation pg_attribute_rel, Form_pg_attribute new_attribute, CatalogIndexState indstate)
Definition: heap.c:694
Oid * ii_ExclusionOps
Definition: execnodes.h:164
void RestoreReindexState(void *reindexstate)
Definition: index.c:3853
void * palloc(Size size)
Definition: mcxt.c:949
int errmsg(const char *fmt,...)
Definition: elog.c:784
void heap_inplace_update(Relation relation, HeapTuple tuple)
Definition: heapam.c:5707
static void table_index_validate_scan(Relation table_rel, Relation index_rel, struct IndexInfo *index_info, Snapshot snapshot, struct ValidateIndexState *state)
Definition: tableam.h:1563
#define PROGRESS_CREATEIDX_TUPLES_DONE
Definition: progress.h:68
TransactionId relfrozenxid
Definition: pg_class.h:123
void list_free(List *list)
Definition: list.c:1377
#define elog(elevel,...)
Definition: elog.h:226
ambuildempty_function ambuildempty
Definition: amapi.h:211
MemoryContext rd_indexcxt
Definition: rel.h:155
#define ShareLock
Definition: lockdefs.h:41
int i
void LockRelation(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:216
RangeVar * relation
Definition: parsenodes.h:2408
Oid currentlyReindexedHeap
Definition: index.c:93
#define PROGRESS_CLUSTER_INDEX_REBUILD_COUNT
Definition: progress.h:45
#define NameStr(name)
Definition: c.h:609
ObjectAddress CreateTrigger(CreateTrigStmt *stmt, const char *queryString, Oid relOid, Oid refRelOid, Oid constraintOid, Oid indexOid, Oid funcoid, Oid parentTriggerOid, Node *whenClause, bool isInternal, bool in_partition)
Definition: trigger.c:162
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
#define CStringGetTextDatum(s)
Definition: builtins.h:83
char * nodeToString(const void *obj)
Definition: outfuncs.c:4316
#define REINDEX_REL_FORCE_INDEXES_PERMANENT
Definition: index.h:140
void CatalogCloseIndexes(CatalogIndexState indstate)
Definition: indexing.c:60
#define REINDEX_REL_PROCESS_TOAST
Definition: index.h:136
void BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii)
Definition: index.c:2451
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:99
#define PROGRESS_CREATEIDX_SUBPHASE
Definition: progress.h:66
void CacheInvalidateRelcacheByTuple(HeapTuple classTuple)
Definition: inval.c:1306
void check_exclusion_constraint(Relation heap, Relation index, IndexInfo *indexInfo, ItemPointer tupleid, Datum *values, bool *isnull, EState *estate, bool newIndex)
Definition: execIndexing.c:866
Oid * rd_opcintype
Definition: rel.h:159
static Datum slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:403
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:159
uint16 * ii_ExclusionStrats
Definition: execnodes.h:166
void CheckAttributeType(const char *attname, Oid atttypid, Oid attcollation, List *containing_rowtypes, int flags)
Definition: heap.c:578
void tuplesort_end(Tuplesortstate *state)
Definition: tuplesort.c:1236
#define PG_TRY()
Definition: elog.h:301
#define INDEX_CREATE_ADD_CONSTRAINT
Definition: index.h:48
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:39
HeapTuple heap_modify_tuple(HeapTuple tuple, TupleDesc tupleDesc, Datum *replValues, bool *replIsnull, bool *doReplace)
Definition: heaptuple.c:1113
void index_concurrently_set_dead(Oid heapId, Oid indexId)
Definition: index.c:1721
bool ReindexIsProcessingIndex(Oid indexOid)
Definition: index.c:3740
void index_concurrently_build(Oid heapRelationId, Oid indexRelationId)
Definition: index.c:1401
FormData_pg_opclass * Form_pg_opclass
Definition: pg_opclass.h:83
#define ERRCODE_DUPLICATE_OBJECT
Definition: streamutil.c:33
static bool validate_index_callback(ItemPointer itemptr, void *opaque)
Definition: index.c:3217
PgStat_Counter blocks_fetched
Definition: pgstat.h:650
bool reindex_relation(Oid relid, int flags, int options)
Definition: index.c:3584
Definition: pg_list.h:50
long changeDependenciesOn(Oid refClassId, Oid oldRefObjectId, Oid newRefObjectId)
Definition: pg_depend.c:463
char * get_rel_name(Oid relid)
Definition: lsyscache.c:1730
#define PointerIsValid(pointer)
Definition: c.h:626
ItemPointerData tts_tid
Definition: tuptable.h:130
List * get_partition_ancestors(Oid relid)
Definition: partition.c:116
int16 AttrNumber
Definition: attnum.h:21
#define RelationGetRelid(relation)
Definition: rel.h:419
#define INDEX_CONSTR_CREATE_DEFERRABLE
Definition: index.h:76
long val
Definition: informix.c:684
#define PROGRESS_CREATEIDX_COMMAND
Definition: progress.h:62
void CatalogTupleInsert(Relation heapRel, HeapTuple tup)
Definition: indexing.c:183
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:126
float4 reltuples
Definition: pg_class.h:63
#define PG_END_TRY()
Definition: elog.h:317
#define BTEqualStrategyNumber
Definition: stratnum.h:31
#define offsetof(type, field)
Definition: c.h:655
PgStat_Counter t_blocks_fetched
Definition: pgstat.h:114
#define lfirst_oid(lc)
Definition: pg_list.h:192
double index_tuples
Definition: genam.h:33
#define INDEX_CONSTR_CREATE_MARK_AS_PRIMARY
Definition: index.h:75
double heap_tuples
Definition: genam.h:32
#define PROGRESS_CREATEIDX_ACCESS_METHOD_OID
Definition: progress.h:64
Oid relId
Definition: rel.h:37
bool estimated_count
Definition: genam.h:49
ObjectAddress index_constraint_create(Relation heapRelation, Oid indexRelationId, Oid parentConstraintId, IndexInfo *indexInfo, const char *constraintName, char constraintType, bits16 constr_flags, bool allow_system_table_mods, bool is_internal)
Definition: index.c:1782
#define DescriptionObjIndexId
Definition: indexing.h:154
Oid ii_Am
Definition: execnodes.h:175
#define RelationGetNamespace(relation)
Definition: rel.h:460