PostgreSQL Source Code  git master
index.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * index.c
4  * code to create and destroy POSTGRES index relations
5  *
6  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/catalog/index.c
12  *
13  *
14  * INTERFACE ROUTINES
15  * index_create() - Create a cataloged index relation
16  * index_drop() - Removes index relation from catalogs
17  * BuildIndexInfo() - Prepare to insert index tuples
18  * FormIndexDatum() - Construct datum vector for one index tuple
19  *
20  *-------------------------------------------------------------------------
21  */
22 #include "postgres.h"
23 
24 #include <unistd.h>
25 
26 #include "access/amapi.h"
27 #include "access/heapam.h"
28 #include "access/multixact.h"
29 #include "access/reloptions.h"
30 #include "access/relscan.h"
31 #include "access/sysattr.h"
32 #include "access/tableam.h"
34 #include "access/transam.h"
35 #include "access/visibilitymap.h"
36 #include "access/xact.h"
37 #include "bootstrap/bootstrap.h"
38 #include "catalog/binary_upgrade.h"
39 #include "catalog/catalog.h"
40 #include "catalog/dependency.h"
41 #include "catalog/heap.h"
42 #include "catalog/index.h"
43 #include "catalog/objectaccess.h"
44 #include "catalog/partition.h"
45 #include "catalog/pg_am.h"
46 #include "catalog/pg_collation.h"
47 #include "catalog/pg_constraint.h"
48 #include "catalog/pg_depend.h"
49 #include "catalog/pg_description.h"
50 #include "catalog/pg_inherits.h"
51 #include "catalog/pg_opclass.h"
52 #include "catalog/pg_operator.h"
53 #include "catalog/pg_tablespace.h"
54 #include "catalog/pg_trigger.h"
55 #include "catalog/pg_type.h"
56 #include "catalog/storage.h"
57 #include "commands/event_trigger.h"
58 #include "commands/progress.h"
59 #include "commands/tablecmds.h"
60 #include "commands/tablespace.h"
61 #include "commands/trigger.h"
62 #include "executor/executor.h"
63 #include "miscadmin.h"
64 #include "nodes/makefuncs.h"
65 #include "nodes/nodeFuncs.h"
66 #include "optimizer/optimizer.h"
67 #include "parser/parser.h"
68 #include "pgstat.h"
69 #include "rewrite/rewriteManip.h"
70 #include "storage/bufmgr.h"
71 #include "storage/lmgr.h"
72 #include "storage/predicate.h"
73 #include "storage/procarray.h"
74 #include "storage/smgr.h"
75 #include "utils/builtins.h"
76 #include "utils/datum.h"
77 #include "utils/fmgroids.h"
78 #include "utils/guc.h"
79 #include "utils/inval.h"
80 #include "utils/lsyscache.h"
81 #include "utils/memutils.h"
82 #include "utils/pg_rusage.h"
83 #include "utils/rel.h"
84 #include "utils/snapmgr.h"
85 #include "utils/syscache.h"
86 #include "utils/tuplesort.h"
87 
88 /* Potentially set by pg_upgrade_support functions */
92 
93 /*
94  * Pointer-free representation of variables used when reindexing system
95  * catalogs; we use this to propagate those values to parallel workers.
96  */
97 typedef struct
98 {
104 
105 /* non-export function prototypes */
106 static bool relationHasPrimaryKey(Relation rel);
107 static TupleDesc ConstructTupleDescriptor(Relation heapRelation,
108  IndexInfo *indexInfo,
109  List *indexColNames,
110  Oid accessMethodObjectId,
111  Oid *collationObjectId,
112  Oid *classObjectId);
113 static void InitializeAttributeOids(Relation indexRelation,
114  int numatts, Oid indexoid);
115 static void AppendAttributeTuples(Relation indexRelation, Datum *attopts);
116 static void UpdateIndexRelation(Oid indexoid, Oid heapoid,
117  Oid parentIndexId,
118  IndexInfo *indexInfo,
119  Oid *collationOids,
120  Oid *classOids,
121  int16 *coloptions,
122  bool primary,
123  bool isexclusion,
124  bool immediate,
125  bool isvalid,
126  bool isready);
127 static void index_update_stats(Relation rel,
128  bool hasindex,
129  double reltuples);
130 static void IndexCheckExclusion(Relation heapRelation,
131  Relation indexRelation,
132  IndexInfo *indexInfo);
133 static bool validate_index_callback(ItemPointer itemptr, void *opaque);
134 static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid);
135 static void SetReindexProcessing(Oid heapOid, Oid indexOid);
136 static void ResetReindexProcessing(void);
137 static void SetReindexPending(List *indexes);
138 static void RemoveReindexPending(Oid indexOid);
139 
140 
141 /*
142  * relationHasPrimaryKey
143  * See whether an existing relation has a primary key.
144  *
145  * Caller must have suitable lock on the relation.
146  *
147  * Note: we intentionally do not check indisvalid here; that's because this
148  * is used to enforce the rule that there can be only one indisprimary index,
149  * and we want that to be true even if said index is invalid.
150  */
151 static bool
153 {
154  bool result = false;
155  List *indexoidlist;
156  ListCell *indexoidscan;
157 
158  /*
159  * Get the list of index OIDs for the table from the relcache, and look up
160  * each one in the pg_index syscache until we find one marked primary key
161  * (hopefully there isn't more than one such).
162  */
163  indexoidlist = RelationGetIndexList(rel);
164 
165  foreach(indexoidscan, indexoidlist)
166  {
167  Oid indexoid = lfirst_oid(indexoidscan);
168  HeapTuple indexTuple;
169 
170  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid));
171  if (!HeapTupleIsValid(indexTuple)) /* should not happen */
172  elog(ERROR, "cache lookup failed for index %u", indexoid);
173  result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary;
174  ReleaseSysCache(indexTuple);
175  if (result)
176  break;
177  }
178 
179  list_free(indexoidlist);
180 
181  return result;
182 }
183 
184 /*
185  * index_check_primary_key
186  * Apply special checks needed before creating a PRIMARY KEY index
187  *
188  * This processing used to be in DefineIndex(), but has been split out
189  * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX.
190  *
191  * We check for a pre-existing primary key, and that all columns of the index
192  * are simple column references (not expressions), and that all those
193  * columns are marked NOT NULL. If not, fail.
194  *
195  * We used to automatically change unmarked columns to NOT NULL here by doing
196  * our own local ALTER TABLE command. But that doesn't work well if we're
197  * executing one subcommand of an ALTER TABLE: the operations may not get
198  * performed in the right order overall. Now we expect that the parser
199  * inserted any required ALTER TABLE SET NOT NULL operations before trying
200  * to create a primary-key index.
201  *
202  * Caller had better have at least ShareLock on the table, else the not-null
203  * checking isn't trustworthy.
204  */
205 void
207  IndexInfo *indexInfo,
208  bool is_alter_table,
209  IndexStmt *stmt)
210 {
211  int i;
212 
213  /*
214  * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't
215  * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we
216  * have faith that the parser rejected multiple pkey clauses; and CREATE
217  * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either.
218  */
219  if ((is_alter_table || heapRel->rd_rel->relispartition) &&
220  relationHasPrimaryKey(heapRel))
221  {
222  ereport(ERROR,
223  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
224  errmsg("multiple primary keys for table \"%s\" are not allowed",
225  RelationGetRelationName(heapRel))));
226  }
227 
228  /*
229  * Indexes created with NULLS NOT DISTINCT cannot be used for primary key
230  * constraints. While there is no direct syntax to reach here, it can be
231  * done by creating a separate index and attaching it via ALTER TABLE ..
232  * USING INDEX.
233  */
234  if (indexInfo->ii_NullsNotDistinct)
235  {
236  ereport(ERROR,
237  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
238  errmsg("primary keys cannot use NULLS NOT DISTINCT indexes")));
239  }
240 
241  /*
242  * Check that all of the attributes in a primary key are marked as not
243  * null. (We don't really expect to see that; it'd mean the parser messed
244  * up. But it seems wise to check anyway.)
245  */
246  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
247  {
248  AttrNumber attnum = indexInfo->ii_IndexAttrNumbers[i];
249  HeapTuple atttuple;
250  Form_pg_attribute attform;
251 
252  if (attnum == 0)
253  ereport(ERROR,
254  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
255  errmsg("primary keys cannot be expressions")));
256 
257  /* System attributes are never null, so no need to check */
258  if (attnum < 0)
259  continue;
260 
261  atttuple = SearchSysCache2(ATTNUM,
264  if (!HeapTupleIsValid(atttuple))
265  elog(ERROR, "cache lookup failed for attribute %d of relation %u",
266  attnum, RelationGetRelid(heapRel));
267  attform = (Form_pg_attribute) GETSTRUCT(atttuple);
268 
269  if (!attform->attnotnull)
270  ereport(ERROR,
271  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
272  errmsg("primary key column \"%s\" is not marked NOT NULL",
273  NameStr(attform->attname))));
274 
275  ReleaseSysCache(atttuple);
276  }
277 }
278 
279 /*
280  * ConstructTupleDescriptor
281  *
282  * Build an index tuple descriptor for a new index
283  */
284 static TupleDesc
286  IndexInfo *indexInfo,
287  List *indexColNames,
288  Oid accessMethodObjectId,
289  Oid *collationObjectId,
290  Oid *classObjectId)
291 {
292  int numatts = indexInfo->ii_NumIndexAttrs;
293  int numkeyatts = indexInfo->ii_NumIndexKeyAttrs;
294  ListCell *colnames_item = list_head(indexColNames);
295  ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
296  IndexAmRoutine *amroutine;
297  TupleDesc heapTupDesc;
298  TupleDesc indexTupDesc;
299  int natts; /* #atts in heap rel --- for error checks */
300  int i;
301 
302  /* We need access to the index AM's API struct */
303  amroutine = GetIndexAmRoutineByAmId(accessMethodObjectId, false);
304 
305  /* ... and to the table's tuple descriptor */
306  heapTupDesc = RelationGetDescr(heapRelation);
307  natts = RelationGetForm(heapRelation)->relnatts;
308 
309  /*
310  * allocate the new tuple descriptor
311  */
312  indexTupDesc = CreateTemplateTupleDesc(numatts);
313 
314  /*
315  * Fill in the pg_attribute row.
316  */
317  for (i = 0; i < numatts; i++)
318  {
319  AttrNumber atnum = indexInfo->ii_IndexAttrNumbers[i];
320  Form_pg_attribute to = TupleDescAttr(indexTupDesc, i);
321  HeapTuple tuple;
322  Form_pg_type typeTup;
323  Form_pg_opclass opclassTup;
324  Oid keyType;
325 
327  to->attnum = i + 1;
328  to->attstattarget = -1;
329  to->attcacheoff = -1;
330  to->attislocal = true;
331  to->attcollation = (i < numkeyatts) ?
332  collationObjectId[i] : InvalidOid;
333 
334  /*
335  * Set the attribute name as specified by caller.
336  */
337  if (colnames_item == NULL) /* shouldn't happen */
338  elog(ERROR, "too few entries in colnames list");
339  namestrcpy(&to->attname, (const char *) lfirst(colnames_item));
340  colnames_item = lnext(indexColNames, colnames_item);
341 
342  /*
343  * For simple index columns, we copy some pg_attribute fields from the
344  * parent relation. For expressions we have to look at the expression
345  * result.
346  */
347  if (atnum != 0)
348  {
349  /* Simple index column */
350  const FormData_pg_attribute *from;
351 
352  Assert(atnum > 0); /* should've been caught above */
353 
354  if (atnum > natts) /* safety check */
355  elog(ERROR, "invalid column number %d", atnum);
356  from = TupleDescAttr(heapTupDesc,
357  AttrNumberGetAttrOffset(atnum));
358 
359  to->atttypid = from->atttypid;
360  to->attlen = from->attlen;
361  to->attndims = from->attndims;
362  to->atttypmod = from->atttypmod;
363  to->attbyval = from->attbyval;
364  to->attalign = from->attalign;
365  to->attstorage = from->attstorage;
366  to->attcompression = from->attcompression;
367  }
368  else
369  {
370  /* Expressional index */
371  Node *indexkey;
372 
373  if (indexpr_item == NULL) /* shouldn't happen */
374  elog(ERROR, "too few entries in indexprs list");
375  indexkey = (Node *) lfirst(indexpr_item);
376  indexpr_item = lnext(indexInfo->ii_Expressions, indexpr_item);
377 
378  /*
379  * Lookup the expression type in pg_type for the type length etc.
380  */
381  keyType = exprType(indexkey);
382  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
383  if (!HeapTupleIsValid(tuple))
384  elog(ERROR, "cache lookup failed for type %u", keyType);
385  typeTup = (Form_pg_type) GETSTRUCT(tuple);
386 
387  /*
388  * Assign some of the attributes values. Leave the rest.
389  */
390  to->atttypid = keyType;
391  to->attlen = typeTup->typlen;
392  to->atttypmod = exprTypmod(indexkey);
393  to->attbyval = typeTup->typbyval;
394  to->attalign = typeTup->typalign;
395  to->attstorage = typeTup->typstorage;
396 
397  /*
398  * For expression columns, set attcompression invalid, since
399  * there's no table column from which to copy the value. Whenever
400  * we actually need to compress a value, we'll use whatever the
401  * current value of default_toast_compression is at that point in
402  * time.
403  */
404  to->attcompression = InvalidCompressionMethod;
405 
406  ReleaseSysCache(tuple);
407 
408  /*
409  * Make sure the expression yields a type that's safe to store in
410  * an index. We need this defense because we have index opclasses
411  * for pseudo-types such as "record", and the actually stored type
412  * had better be safe; eg, a named composite type is okay, an
413  * anonymous record type is not. The test is the same as for
414  * whether a table column is of a safe type (which is why we
415  * needn't check for the non-expression case).
416  */
417  CheckAttributeType(NameStr(to->attname),
418  to->atttypid, to->attcollation,
419  NIL, 0);
420  }
421 
422  /*
423  * We do not yet have the correct relation OID for the index, so just
424  * set it invalid for now. InitializeAttributeOids() will fix it
425  * later.
426  */
427  to->attrelid = InvalidOid;
428 
429  /*
430  * Check the opclass and index AM to see if either provides a keytype
431  * (overriding the attribute type). Opclass (if exists) takes
432  * precedence.
433  */
434  keyType = amroutine->amkeytype;
435 
436  if (i < indexInfo->ii_NumIndexKeyAttrs)
437  {
438  tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(classObjectId[i]));
439  if (!HeapTupleIsValid(tuple))
440  elog(ERROR, "cache lookup failed for opclass %u",
441  classObjectId[i]);
442  opclassTup = (Form_pg_opclass) GETSTRUCT(tuple);
443  if (OidIsValid(opclassTup->opckeytype))
444  keyType = opclassTup->opckeytype;
445 
446  /*
447  * If keytype is specified as ANYELEMENT, and opcintype is
448  * ANYARRAY, then the attribute type must be an array (else it'd
449  * not have matched this opclass); use its element type.
450  *
451  * We could also allow ANYCOMPATIBLE/ANYCOMPATIBLEARRAY here, but
452  * there seems no need to do so; there's no reason to declare an
453  * opclass as taking ANYCOMPATIBLEARRAY rather than ANYARRAY.
454  */
455  if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID)
456  {
457  keyType = get_base_element_type(to->atttypid);
458  if (!OidIsValid(keyType))
459  elog(ERROR, "could not get element type of array type %u",
460  to->atttypid);
461  }
462 
463  ReleaseSysCache(tuple);
464  }
465 
466  /*
467  * If a key type different from the heap value is specified, update
468  * the type-related fields in the index tupdesc.
469  */
470  if (OidIsValid(keyType) && keyType != to->atttypid)
471  {
472  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
473  if (!HeapTupleIsValid(tuple))
474  elog(ERROR, "cache lookup failed for type %u", keyType);
475  typeTup = (Form_pg_type) GETSTRUCT(tuple);
476 
477  to->atttypid = keyType;
478  to->atttypmod = -1;
479  to->attlen = typeTup->typlen;
480  to->attbyval = typeTup->typbyval;
481  to->attalign = typeTup->typalign;
482  to->attstorage = typeTup->typstorage;
483  /* As above, use the default compression method in this case */
484  to->attcompression = InvalidCompressionMethod;
485 
486  ReleaseSysCache(tuple);
487  }
488  }
489 
490  pfree(amroutine);
491 
492  return indexTupDesc;
493 }
494 
495 /* ----------------------------------------------------------------
496  * InitializeAttributeOids
497  * ----------------------------------------------------------------
498  */
499 static void
501  int numatts,
502  Oid indexoid)
503 {
504  TupleDesc tupleDescriptor;
505  int i;
506 
507  tupleDescriptor = RelationGetDescr(indexRelation);
508 
509  for (i = 0; i < numatts; i += 1)
510  TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid;
511 }
512 
513 /* ----------------------------------------------------------------
514  * AppendAttributeTuples
515  * ----------------------------------------------------------------
516  */
517 static void
518 AppendAttributeTuples(Relation indexRelation, Datum *attopts)
519 {
520  Relation pg_attribute;
521  CatalogIndexState indstate;
522  TupleDesc indexTupDesc;
523 
524  /*
525  * open the attribute relation and its indexes
526  */
527  pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
528 
529  indstate = CatalogOpenIndexes(pg_attribute);
530 
531  /*
532  * insert data from new index's tupdesc into pg_attribute
533  */
534  indexTupDesc = RelationGetDescr(indexRelation);
535 
536  InsertPgAttributeTuples(pg_attribute, indexTupDesc, InvalidOid, attopts, indstate);
537 
538  CatalogCloseIndexes(indstate);
539 
540  table_close(pg_attribute, RowExclusiveLock);
541 }
542 
543 /* ----------------------------------------------------------------
544  * UpdateIndexRelation
545  *
546  * Construct and insert a new entry in the pg_index catalog
547  * ----------------------------------------------------------------
548  */
549 static void
551  Oid heapoid,
552  Oid parentIndexId,
553  IndexInfo *indexInfo,
554  Oid *collationOids,
555  Oid *classOids,
556  int16 *coloptions,
557  bool primary,
558  bool isexclusion,
559  bool immediate,
560  bool isvalid,
561  bool isready)
562 {
563  int2vector *indkey;
564  oidvector *indcollation;
565  oidvector *indclass;
566  int2vector *indoption;
567  Datum exprsDatum;
568  Datum predDatum;
569  Datum values[Natts_pg_index];
570  bool nulls[Natts_pg_index] = {0};
571  Relation pg_index;
572  HeapTuple tuple;
573  int i;
574 
575  /*
576  * Copy the index key, opclass, and indoption info into arrays (should we
577  * make the caller pass them like this to start with?)
578  */
579  indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs);
580  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
581  indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i];
582  indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs);
583  indclass = buildoidvector(classOids, indexInfo->ii_NumIndexKeyAttrs);
584  indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs);
585 
586  /*
587  * Convert the index expressions (if any) to a text datum
588  */
589  if (indexInfo->ii_Expressions != NIL)
590  {
591  char *exprsString;
592 
593  exprsString = nodeToString(indexInfo->ii_Expressions);
594  exprsDatum = CStringGetTextDatum(exprsString);
595  pfree(exprsString);
596  }
597  else
598  exprsDatum = (Datum) 0;
599 
600  /*
601  * Convert the index predicate (if any) to a text datum. Note we convert
602  * implicit-AND format to normal explicit-AND for storage.
603  */
604  if (indexInfo->ii_Predicate != NIL)
605  {
606  char *predString;
607 
608  predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate));
609  predDatum = CStringGetTextDatum(predString);
610  pfree(predString);
611  }
612  else
613  predDatum = (Datum) 0;
614 
615 
616  /*
617  * open the system catalog index relation
618  */
619  pg_index = table_open(IndexRelationId, RowExclusiveLock);
620 
621  /*
622  * Build a pg_index tuple
623  */
624  values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid);
625  values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid);
626  values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs);
627  values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs);
628  values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique);
629  values[Anum_pg_index_indnullsnotdistinct - 1] = BoolGetDatum(indexInfo->ii_NullsNotDistinct);
630  values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary);
631  values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion);
632  values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate);
633  values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false);
634  values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid);
635  values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false);
636  values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready);
637  values[Anum_pg_index_indislive - 1] = BoolGetDatum(true);
638  values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false);
639  values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey);
640  values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation);
641  values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass);
642  values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption);
643  values[Anum_pg_index_indexprs - 1] = exprsDatum;
644  if (exprsDatum == (Datum) 0)
645  nulls[Anum_pg_index_indexprs - 1] = true;
646  values[Anum_pg_index_indpred - 1] = predDatum;
647  if (predDatum == (Datum) 0)
648  nulls[Anum_pg_index_indpred - 1] = true;
649 
650  tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls);
651 
652  /*
653  * insert the tuple into the pg_index catalog
654  */
655  CatalogTupleInsert(pg_index, tuple);
656 
657  /*
658  * close the relation and free the tuple
659  */
660  table_close(pg_index, RowExclusiveLock);
661  heap_freetuple(tuple);
662 }
663 
664 
665 /*
666  * index_create
667  *
668  * heapRelation: table to build index on (suitably locked by caller)
669  * indexRelationName: what it say
670  * indexRelationId: normally, pass InvalidOid to let this routine
671  * generate an OID for the index. During bootstrap this may be
672  * nonzero to specify a preselected OID.
673  * parentIndexRelid: if creating an index partition, the OID of the
674  * parent index; otherwise InvalidOid.
675  * parentConstraintId: if creating a constraint on a partition, the OID
676  * of the constraint in the parent; otherwise InvalidOid.
677  * relFileNumber: normally, pass InvalidRelFileNumber to get new storage.
678  * May be nonzero to attach an existing valid build.
679  * indexInfo: same info executor uses to insert into the index
680  * indexColNames: column names to use for index (List of char *)
681  * accessMethodObjectId: OID of index AM to use
682  * tableSpaceId: OID of tablespace to use
683  * collationObjectId: array of collation OIDs, one per index column
684  * classObjectId: array of index opclass OIDs, one per index column
685  * coloptions: array of per-index-column indoption settings
686  * reloptions: AM-specific options
687  * flags: bitmask that can include any combination of these bits:
688  * INDEX_CREATE_IS_PRIMARY
689  * the index is a primary key
690  * INDEX_CREATE_ADD_CONSTRAINT:
691  * invoke index_constraint_create also
692  * INDEX_CREATE_SKIP_BUILD:
693  * skip the index_build() step for the moment; caller must do it
694  * later (typically via reindex_index())
695  * INDEX_CREATE_CONCURRENT:
696  * do not lock the table against writers. The index will be
697  * marked "invalid" and the caller must take additional steps
698  * to fix it up.
699  * INDEX_CREATE_IF_NOT_EXISTS:
700  * do not throw an error if a relation with the same name
701  * already exists.
702  * INDEX_CREATE_PARTITIONED:
703  * create a partitioned index (table must be partitioned)
704  * constr_flags: flags passed to index_constraint_create
705  * (only if INDEX_CREATE_ADD_CONSTRAINT is set)
706  * allow_system_table_mods: allow table to be a system catalog
707  * is_internal: if true, post creation hook for new index
708  * constraintId: if not NULL, receives OID of created constraint
709  *
710  * Returns the OID of the created index.
711  */
712 Oid
713 index_create(Relation heapRelation,
714  const char *indexRelationName,
715  Oid indexRelationId,
716  Oid parentIndexRelid,
717  Oid parentConstraintId,
718  RelFileNumber relFileNumber,
719  IndexInfo *indexInfo,
720  List *indexColNames,
721  Oid accessMethodObjectId,
722  Oid tableSpaceId,
723  Oid *collationObjectId,
724  Oid *classObjectId,
725  int16 *coloptions,
726  Datum reloptions,
727  bits16 flags,
728  bits16 constr_flags,
729  bool allow_system_table_mods,
730  bool is_internal,
731  Oid *constraintId)
732 {
733  Oid heapRelationId = RelationGetRelid(heapRelation);
734  Relation pg_class;
735  Relation indexRelation;
736  TupleDesc indexTupDesc;
737  bool shared_relation;
738  bool mapped_relation;
739  bool is_exclusion;
740  Oid namespaceId;
741  int i;
742  char relpersistence;
743  bool isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0;
744  bool invalid = (flags & INDEX_CREATE_INVALID) != 0;
745  bool concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0;
746  bool partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0;
747  char relkind;
748  TransactionId relfrozenxid;
749  MultiXactId relminmxid;
750  bool create_storage = !RelFileNumberIsValid(relFileNumber);
751 
752  /* constraint flags can only be set when a constraint is requested */
753  Assert((constr_flags == 0) ||
754  ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0));
755  /* partitioned indexes must never be "built" by themselves */
756  Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD));
757 
758  relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX;
759  is_exclusion = (indexInfo->ii_ExclusionOps != NULL);
760 
761  pg_class = table_open(RelationRelationId, RowExclusiveLock);
762 
763  /*
764  * The index will be in the same namespace as its parent table, and is
765  * shared across databases if and only if the parent is. Likewise, it
766  * will use the relfilenumber map if and only if the parent does; and it
767  * inherits the parent's relpersistence.
768  */
769  namespaceId = RelationGetNamespace(heapRelation);
770  shared_relation = heapRelation->rd_rel->relisshared;
771  mapped_relation = RelationIsMapped(heapRelation);
772  relpersistence = heapRelation->rd_rel->relpersistence;
773 
774  /*
775  * check parameters
776  */
777  if (indexInfo->ii_NumIndexAttrs < 1)
778  elog(ERROR, "must index at least one column");
779 
780  if (!allow_system_table_mods &&
781  IsSystemRelation(heapRelation) &&
783  ereport(ERROR,
784  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
785  errmsg("user-defined indexes on system catalog tables are not supported")));
786 
787  /*
788  * Btree text_pattern_ops uses text_eq as the equality operator, which is
789  * fine as long as the collation is deterministic; text_eq then reduces to
790  * bitwise equality and so it is semantically compatible with the other
791  * operators and functions in that opclass. But with a nondeterministic
792  * collation, text_eq could yield results that are incompatible with the
793  * actual behavior of the index (which is determined by the opclass's
794  * comparison function). We prevent such problems by refusing creation of
795  * an index with that opclass and a nondeterministic collation.
796  *
797  * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we
798  * find more cases, we might decide to create a real mechanism for marking
799  * opclasses as incompatible with nondeterminism; but for now, this small
800  * hack suffices.
801  *
802  * Another solution is to use a special operator, not text_eq, as the
803  * equality opclass member; but that is undesirable because it would
804  * prevent index usage in many queries that work fine today.
805  */
806  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
807  {
808  Oid collation = collationObjectId[i];
809  Oid opclass = classObjectId[i];
810 
811  if (collation)
812  {
813  if ((opclass == TEXT_BTREE_PATTERN_OPS_OID ||
814  opclass == VARCHAR_BTREE_PATTERN_OPS_OID ||
815  opclass == BPCHAR_BTREE_PATTERN_OPS_OID) &&
816  !get_collation_isdeterministic(collation))
817  {
818  HeapTuple classtup;
819 
820  classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass));
821  if (!HeapTupleIsValid(classtup))
822  elog(ERROR, "cache lookup failed for operator class %u", opclass);
823  ereport(ERROR,
824  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
825  errmsg("nondeterministic collations are not supported for operator class \"%s\"",
826  NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname))));
827  ReleaseSysCache(classtup);
828  }
829  }
830  }
831 
832  /*
833  * Concurrent index build on a system catalog is unsafe because we tend to
834  * release locks before committing in catalogs.
835  */
836  if (concurrent &&
837  IsCatalogRelation(heapRelation))
838  ereport(ERROR,
839  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
840  errmsg("concurrent index creation on system catalog tables is not supported")));
841 
842  /*
843  * This case is currently not supported. There's no way to ask for it in
844  * the grammar with CREATE INDEX, but it can happen with REINDEX.
845  */
846  if (concurrent && is_exclusion)
847  ereport(ERROR,
848  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
849  errmsg("concurrent index creation for exclusion constraints is not supported")));
850 
851  /*
852  * We cannot allow indexing a shared relation after initdb (because
853  * there's no way to make the entry in other databases' pg_class).
854  */
855  if (shared_relation && !IsBootstrapProcessingMode())
856  ereport(ERROR,
857  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
858  errmsg("shared indexes cannot be created after initdb")));
859 
860  /*
861  * Shared relations must be in pg_global, too (last-ditch check)
862  */
863  if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID)
864  elog(ERROR, "shared relations must be placed in pg_global tablespace");
865 
866  /*
867  * Check for duplicate name (both as to the index, and as to the
868  * associated constraint if any). Such cases would fail on the relevant
869  * catalogs' unique indexes anyway, but we prefer to give a friendlier
870  * error message.
871  */
872  if (get_relname_relid(indexRelationName, namespaceId))
873  {
874  if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0)
875  {
876  ereport(NOTICE,
877  (errcode(ERRCODE_DUPLICATE_TABLE),
878  errmsg("relation \"%s\" already exists, skipping",
879  indexRelationName)));
880  table_close(pg_class, RowExclusiveLock);
881  return InvalidOid;
882  }
883 
884  ereport(ERROR,
885  (errcode(ERRCODE_DUPLICATE_TABLE),
886  errmsg("relation \"%s\" already exists",
887  indexRelationName)));
888  }
889 
890  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 &&
892  indexRelationName))
893  {
894  /*
895  * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the
896  * conflicting constraint is not an index.
897  */
898  ereport(ERROR,
900  errmsg("constraint \"%s\" for relation \"%s\" already exists",
901  indexRelationName, RelationGetRelationName(heapRelation))));
902  }
903 
904  /*
905  * construct tuple descriptor for index tuples
906  */
907  indexTupDesc = ConstructTupleDescriptor(heapRelation,
908  indexInfo,
909  indexColNames,
910  accessMethodObjectId,
911  collationObjectId,
912  classObjectId);
913 
914  /*
915  * Allocate an OID for the index, unless we were told what to use.
916  *
917  * The OID will be the relfilenumber as well, so make sure it doesn't
918  * collide with either pg_class OIDs or existing physical files.
919  */
920  if (!OidIsValid(indexRelationId))
921  {
922  /* Use binary-upgrade override for pg_class.oid and relfilenumber */
923  if (IsBinaryUpgrade)
924  {
926  ereport(ERROR,
927  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
928  errmsg("pg_class index OID value not set when in binary upgrade mode")));
929 
930  indexRelationId = binary_upgrade_next_index_pg_class_oid;
932 
933  /* Override the index relfilenumber */
934  if ((relkind == RELKIND_INDEX) &&
936  ereport(ERROR,
937  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
938  errmsg("index relfilenumber value not set when in binary upgrade mode")));
941 
942  /*
943  * Note that we want create_storage = true for binary upgrade. The
944  * storage we create here will be replaced later, but we need to
945  * have something on disk in the meanwhile.
946  */
947  Assert(create_storage);
948  }
949  else
950  {
951  indexRelationId =
952  GetNewRelFileNumber(tableSpaceId, pg_class, relpersistence);
953  }
954  }
955 
956  /*
957  * create the index relation's relcache entry and, if necessary, the
958  * physical disk file. (If we fail further down, it's the smgr's
959  * responsibility to remove the disk file again, if any.)
960  */
961  indexRelation = heap_create(indexRelationName,
962  namespaceId,
963  tableSpaceId,
964  indexRelationId,
965  relFileNumber,
966  accessMethodObjectId,
967  indexTupDesc,
968  relkind,
969  relpersistence,
970  shared_relation,
971  mapped_relation,
972  allow_system_table_mods,
973  &relfrozenxid,
974  &relminmxid,
975  create_storage);
976 
977  Assert(relfrozenxid == InvalidTransactionId);
978  Assert(relminmxid == InvalidMultiXactId);
979  Assert(indexRelationId == RelationGetRelid(indexRelation));
980 
981  /*
982  * Obtain exclusive lock on it. Although no other transactions can see it
983  * until we commit, this prevents deadlock-risk complaints from lock
984  * manager in cases such as CLUSTER.
985  */
986  LockRelation(indexRelation, AccessExclusiveLock);
987 
988  /*
989  * Fill in fields of the index's pg_class entry that are not set correctly
990  * by heap_create.
991  *
992  * XXX should have a cleaner way to create cataloged indexes
993  */
994  indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner;
995  indexRelation->rd_rel->relam = accessMethodObjectId;
996  indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid);
997 
998  /*
999  * store index's pg_class entry
1000  */
1001  InsertPgClassTuple(pg_class, indexRelation,
1002  RelationGetRelid(indexRelation),
1003  (Datum) 0,
1004  reloptions);
1005 
1006  /* done with pg_class */
1007  table_close(pg_class, RowExclusiveLock);
1008 
1009  /*
1010  * now update the object id's of all the attribute tuple forms in the
1011  * index relation's tuple descriptor
1012  */
1013  InitializeAttributeOids(indexRelation,
1014  indexInfo->ii_NumIndexAttrs,
1015  indexRelationId);
1016 
1017  /*
1018  * append ATTRIBUTE tuples for the index
1019  */
1020  AppendAttributeTuples(indexRelation, indexInfo->ii_OpclassOptions);
1021 
1022  /* ----------------
1023  * update pg_index
1024  * (append INDEX tuple)
1025  *
1026  * Note that this stows away a representation of "predicate".
1027  * (Or, could define a rule to maintain the predicate) --Nels, Feb '92
1028  * ----------------
1029  */
1030  UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid,
1031  indexInfo,
1032  collationObjectId, classObjectId, coloptions,
1033  isprimary, is_exclusion,
1034  (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0,
1035  !concurrent && !invalid,
1036  !concurrent);
1037 
1038  /*
1039  * Register relcache invalidation on the indexes' heap relation, to
1040  * maintain consistency of its index list
1041  */
1042  CacheInvalidateRelcache(heapRelation);
1043 
1044  /* update pg_inherits and the parent's relhassubclass, if needed */
1045  if (OidIsValid(parentIndexRelid))
1046  {
1047  StoreSingleInheritance(indexRelationId, parentIndexRelid, 1);
1048  SetRelationHasSubclass(parentIndexRelid, true);
1049  }
1050 
1051  /*
1052  * Register constraint and dependencies for the index.
1053  *
1054  * If the index is from a CONSTRAINT clause, construct a pg_constraint
1055  * entry. The index will be linked to the constraint, which in turn is
1056  * linked to the table. If it's not a CONSTRAINT, we need to make a
1057  * dependency directly on the table.
1058  *
1059  * We don't need a dependency on the namespace, because there'll be an
1060  * indirect dependency via our parent table.
1061  *
1062  * During bootstrap we can't register any dependencies, and we don't try
1063  * to make a constraint either.
1064  */
1066  {
1067  ObjectAddress myself,
1068  referenced;
1069  ObjectAddresses *addrs;
1070 
1071  ObjectAddressSet(myself, RelationRelationId, indexRelationId);
1072 
1073  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)
1074  {
1075  char constraintType;
1076  ObjectAddress localaddr;
1077 
1078  if (isprimary)
1079  constraintType = CONSTRAINT_PRIMARY;
1080  else if (indexInfo->ii_Unique)
1081  constraintType = CONSTRAINT_UNIQUE;
1082  else if (is_exclusion)
1083  constraintType = CONSTRAINT_EXCLUSION;
1084  else
1085  {
1086  elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
1087  constraintType = 0; /* keep compiler quiet */
1088  }
1089 
1090  localaddr = index_constraint_create(heapRelation,
1091  indexRelationId,
1092  parentConstraintId,
1093  indexInfo,
1094  indexRelationName,
1095  constraintType,
1096  constr_flags,
1097  allow_system_table_mods,
1098  is_internal);
1099  if (constraintId)
1100  *constraintId = localaddr.objectId;
1101  }
1102  else
1103  {
1104  bool have_simple_col = false;
1105 
1106  addrs = new_object_addresses();
1107 
1108  /* Create auto dependencies on simply-referenced columns */
1109  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
1110  {
1111  if (indexInfo->ii_IndexAttrNumbers[i] != 0)
1112  {
1113  ObjectAddressSubSet(referenced, RelationRelationId,
1114  heapRelationId,
1115  indexInfo->ii_IndexAttrNumbers[i]);
1116  add_exact_object_address(&referenced, addrs);
1117  have_simple_col = true;
1118  }
1119  }
1120 
1121  /*
1122  * If there are no simply-referenced columns, give the index an
1123  * auto dependency on the whole table. In most cases, this will
1124  * be redundant, but it might not be if the index expressions and
1125  * predicate contain no Vars or only whole-row Vars.
1126  */
1127  if (!have_simple_col)
1128  {
1129  ObjectAddressSet(referenced, RelationRelationId,
1130  heapRelationId);
1131  add_exact_object_address(&referenced, addrs);
1132  }
1133 
1135  free_object_addresses(addrs);
1136  }
1137 
1138  /*
1139  * If this is an index partition, create partition dependencies on
1140  * both the parent index and the table. (Note: these must be *in
1141  * addition to*, not instead of, all other dependencies. Otherwise
1142  * we'll be short some dependencies after DETACH PARTITION.)
1143  */
1144  if (OidIsValid(parentIndexRelid))
1145  {
1146  ObjectAddressSet(referenced, RelationRelationId, parentIndexRelid);
1147  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1148 
1149  ObjectAddressSet(referenced, RelationRelationId, heapRelationId);
1150  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1151  }
1152 
1153  /* placeholder for normal dependencies */
1154  addrs = new_object_addresses();
1155 
1156  /* Store dependency on collations */
1157 
1158  /* The default collation is pinned, so don't bother recording it */
1159  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1160  {
1161  if (OidIsValid(collationObjectId[i]) &&
1162  collationObjectId[i] != DEFAULT_COLLATION_OID)
1163  {
1164  ObjectAddressSet(referenced, CollationRelationId,
1165  collationObjectId[i]);
1166  add_exact_object_address(&referenced, addrs);
1167  }
1168  }
1169 
1170  /* Store dependency on operator classes */
1171  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1172  {
1173  ObjectAddressSet(referenced, OperatorClassRelationId, classObjectId[i]);
1174  add_exact_object_address(&referenced, addrs);
1175  }
1176 
1178  free_object_addresses(addrs);
1179 
1180  /* Store dependencies on anything mentioned in index expressions */
1181  if (indexInfo->ii_Expressions)
1182  {
1184  (Node *) indexInfo->ii_Expressions,
1185  heapRelationId,
1187  DEPENDENCY_AUTO, false);
1188  }
1189 
1190  /* Store dependencies on anything mentioned in predicate */
1191  if (indexInfo->ii_Predicate)
1192  {
1194  (Node *) indexInfo->ii_Predicate,
1195  heapRelationId,
1197  DEPENDENCY_AUTO, false);
1198  }
1199  }
1200  else
1201  {
1202  /* Bootstrap mode - assert we weren't asked for constraint support */
1203  Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0);
1204  }
1205 
1206  /* Post creation hook for new index */
1207  InvokeObjectPostCreateHookArg(RelationRelationId,
1208  indexRelationId, 0, is_internal);
1209 
1210  /*
1211  * Advance the command counter so that we can see the newly-entered
1212  * catalog tuples for the index.
1213  */
1215 
1216  /*
1217  * In bootstrap mode, we have to fill in the index strategy structure with
1218  * information from the catalogs. If we aren't bootstrapping, then the
1219  * relcache entry has already been rebuilt thanks to sinval update during
1220  * CommandCounterIncrement.
1221  */
1223  RelationInitIndexAccessInfo(indexRelation);
1224  else
1225  Assert(indexRelation->rd_indexcxt != NULL);
1226 
1227  indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs;
1228 
1229  /* Validate opclass-specific options */
1230  if (indexInfo->ii_OpclassOptions)
1231  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1232  (void) index_opclass_options(indexRelation, i + 1,
1233  indexInfo->ii_OpclassOptions[i],
1234  true);
1235 
1236  /*
1237  * If this is bootstrap (initdb) time, then we don't actually fill in the
1238  * index yet. We'll be creating more indexes and classes later, so we
1239  * delay filling them in until just before we're done with bootstrapping.
1240  * Similarly, if the caller specified to skip the build then filling the
1241  * index is delayed till later (ALTER TABLE can save work in some cases
1242  * with this). Otherwise, we call the AM routine that constructs the
1243  * index.
1244  */
1246  {
1247  index_register(heapRelationId, indexRelationId, indexInfo);
1248  }
1249  else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0)
1250  {
1251  /*
1252  * Caller is responsible for filling the index later on. However,
1253  * we'd better make sure that the heap relation is correctly marked as
1254  * having an index.
1255  */
1256  index_update_stats(heapRelation,
1257  true,
1258  -1.0);
1259  /* Make the above update visible */
1261  }
1262  else
1263  {
1264  index_build(heapRelation, indexRelation, indexInfo, false, true);
1265  }
1266 
1267  /*
1268  * Close the index; but we keep the lock that we acquired above until end
1269  * of transaction. Closing the heap is caller's responsibility.
1270  */
1271  index_close(indexRelation, NoLock);
1272 
1273  return indexRelationId;
1274 }
1275 
1276 /*
1277  * index_concurrently_create_copy
1278  *
1279  * Create concurrently an index based on the definition of the one provided by
1280  * caller. The index is inserted into catalogs and needs to be built later
1281  * on. This is called during concurrent reindex processing.
1282  *
1283  * "tablespaceOid" is the tablespace to use for this index.
1284  */
1285 Oid
1287  Oid tablespaceOid, const char *newName)
1288 {
1289  Relation indexRelation;
1290  IndexInfo *oldInfo,
1291  *newInfo;
1292  Oid newIndexId = InvalidOid;
1293  HeapTuple indexTuple,
1294  classTuple;
1295  Datum indclassDatum,
1296  colOptionDatum,
1297  optionDatum;
1298  oidvector *indclass;
1299  int2vector *indcoloptions;
1300  bool isnull;
1301  List *indexColNames = NIL;
1302  List *indexExprs = NIL;
1303  List *indexPreds = NIL;
1304 
1305  indexRelation = index_open(oldIndexId, RowExclusiveLock);
1306 
1307  /* The new index needs some information from the old index */
1308  oldInfo = BuildIndexInfo(indexRelation);
1309 
1310  /*
1311  * Concurrent build of an index with exclusion constraints is not
1312  * supported.
1313  */
1314  if (oldInfo->ii_ExclusionOps != NULL)
1315  ereport(ERROR,
1316  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1317  errmsg("concurrent index creation for exclusion constraints is not supported")));
1318 
1319  /* Get the array of class and column options IDs from index info */
1320  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId));
1321  if (!HeapTupleIsValid(indexTuple))
1322  elog(ERROR, "cache lookup failed for index %u", oldIndexId);
1323  indclassDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1324  Anum_pg_index_indclass);
1325  indclass = (oidvector *) DatumGetPointer(indclassDatum);
1326 
1327  colOptionDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1328  Anum_pg_index_indoption);
1329  indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum);
1330 
1331  /* Fetch options of index if any */
1332  classTuple = SearchSysCache1(RELOID, oldIndexId);
1333  if (!HeapTupleIsValid(classTuple))
1334  elog(ERROR, "cache lookup failed for relation %u", oldIndexId);
1335  optionDatum = SysCacheGetAttr(RELOID, classTuple,
1336  Anum_pg_class_reloptions, &isnull);
1337 
1338  /*
1339  * Fetch the list of expressions and predicates directly from the
1340  * catalogs. This cannot rely on the information from IndexInfo of the
1341  * old index as these have been flattened for the planner.
1342  */
1343  if (oldInfo->ii_Expressions != NIL)
1344  {
1345  Datum exprDatum;
1346  char *exprString;
1347 
1348  exprDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1349  Anum_pg_index_indexprs);
1350  exprString = TextDatumGetCString(exprDatum);
1351  indexExprs = (List *) stringToNode(exprString);
1352  pfree(exprString);
1353  }
1354  if (oldInfo->ii_Predicate != NIL)
1355  {
1356  Datum predDatum;
1357  char *predString;
1358 
1359  predDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1360  Anum_pg_index_indpred);
1361  predString = TextDatumGetCString(predDatum);
1362  indexPreds = (List *) stringToNode(predString);
1363 
1364  /* Also convert to implicit-AND format */
1365  indexPreds = make_ands_implicit((Expr *) indexPreds);
1366  pfree(predString);
1367  }
1368 
1369  /*
1370  * Build the index information for the new index. Note that rebuild of
1371  * indexes with exclusion constraints is not supported, hence there is no
1372  * need to fill all the ii_Exclusion* fields.
1373  */
1374  newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs,
1375  oldInfo->ii_NumIndexKeyAttrs,
1376  oldInfo->ii_Am,
1377  indexExprs,
1378  indexPreds,
1379  oldInfo->ii_Unique,
1380  oldInfo->ii_NullsNotDistinct,
1381  false, /* not ready for inserts */
1382  true,
1383  indexRelation->rd_indam->amsummarizing);
1384 
1385  /*
1386  * Extract the list of column names and the column numbers for the new
1387  * index information. All this information will be used for the index
1388  * creation.
1389  */
1390  for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++)
1391  {
1392  TupleDesc indexTupDesc = RelationGetDescr(indexRelation);
1393  Form_pg_attribute att = TupleDescAttr(indexTupDesc, i);
1394 
1395  indexColNames = lappend(indexColNames, NameStr(att->attname));
1396  newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i];
1397  }
1398 
1399  /* Extract opclass parameters for each attribute, if any */
1400  if (oldInfo->ii_OpclassOptions != NULL)
1401  {
1402  newInfo->ii_OpclassOptions = palloc0(sizeof(Datum) *
1403  newInfo->ii_NumIndexAttrs);
1404  for (int i = 0; i < newInfo->ii_NumIndexAttrs; i++)
1405  newInfo->ii_OpclassOptions[i] = get_attoptions(oldIndexId, i + 1);
1406  }
1407 
1408  /*
1409  * Now create the new index.
1410  *
1411  * For a partition index, we adjust the partition dependency later, to
1412  * ensure a consistent state at all times. That is why parentIndexRelid
1413  * is not set here.
1414  */
1415  newIndexId = index_create(heapRelation,
1416  newName,
1417  InvalidOid, /* indexRelationId */
1418  InvalidOid, /* parentIndexRelid */
1419  InvalidOid, /* parentConstraintId */
1420  InvalidRelFileNumber, /* relFileNumber */
1421  newInfo,
1422  indexColNames,
1423  indexRelation->rd_rel->relam,
1424  tablespaceOid,
1425  indexRelation->rd_indcollation,
1426  indclass->values,
1427  indcoloptions->values,
1428  optionDatum,
1430  0,
1431  true, /* allow table to be a system catalog? */
1432  false, /* is_internal? */
1433  NULL);
1434 
1435  /* Close the relations used and clean up */
1436  index_close(indexRelation, NoLock);
1437  ReleaseSysCache(indexTuple);
1438  ReleaseSysCache(classTuple);
1439 
1440  return newIndexId;
1441 }
1442 
1443 /*
1444  * index_concurrently_build
1445  *
1446  * Build index for a concurrent operation. Low-level locks are taken when
1447  * this operation is performed to prevent only schema changes, but they need
1448  * to be kept until the end of the transaction performing this operation.
1449  * 'indexOid' refers to an index relation OID already created as part of
1450  * previous processing, and 'heapOid' refers to its parent heap relation.
1451  */
1452 void
1454  Oid indexRelationId)
1455 {
1456  Relation heapRel;
1457  Oid save_userid;
1458  int save_sec_context;
1459  int save_nestlevel;
1460  Relation indexRelation;
1461  IndexInfo *indexInfo;
1462 
1463  /* This had better make sure that a snapshot is active */
1465 
1466  /* Open and lock the parent heap relation */
1467  heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock);
1468 
1469  /*
1470  * Switch to the table owner's userid, so that any index functions are run
1471  * as that user. Also lock down security-restricted operations and
1472  * arrange to make GUC variable changes local to this command.
1473  */
1474  GetUserIdAndSecContext(&save_userid, &save_sec_context);
1475  SetUserIdAndSecContext(heapRel->rd_rel->relowner,
1476  save_sec_context | SECURITY_RESTRICTED_OPERATION);
1477  save_nestlevel = NewGUCNestLevel();
1478 
1479  indexRelation = index_open(indexRelationId, RowExclusiveLock);
1480 
1481  /*
1482  * We have to re-build the IndexInfo struct, since it was lost in the
1483  * commit of the transaction where this concurrent index was created at
1484  * the catalog level.
1485  */
1486  indexInfo = BuildIndexInfo(indexRelation);
1487  Assert(!indexInfo->ii_ReadyForInserts);
1488  indexInfo->ii_Concurrent = true;
1489  indexInfo->ii_BrokenHotChain = false;
1490 
1491  /* Now build the index */
1492  index_build(heapRel, indexRelation, indexInfo, false, true);
1493 
1494  /* Roll back any GUC changes executed by index functions */
1495  AtEOXact_GUC(false, save_nestlevel);
1496 
1497  /* Restore userid and security context */
1498  SetUserIdAndSecContext(save_userid, save_sec_context);
1499 
1500  /* Close both the relations, but keep the locks */
1501  table_close(heapRel, NoLock);
1502  index_close(indexRelation, NoLock);
1503 
1504  /*
1505  * Update the pg_index row to mark the index as ready for inserts. Once we
1506  * commit this transaction, any new transactions that open the table must
1507  * insert new entries into the index for insertions and non-HOT updates.
1508  */
1510 }
1511 
1512 /*
1513  * index_concurrently_swap
1514  *
1515  * Swap name, dependencies, and constraints of the old index over to the new
1516  * index, while marking the old index as invalid and the new as valid.
1517  */
1518 void
1519 index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
1520 {
1521  Relation pg_class,
1522  pg_index,
1523  pg_constraint,
1524  pg_trigger;
1525  Relation oldClassRel,
1526  newClassRel;
1527  HeapTuple oldClassTuple,
1528  newClassTuple;
1529  Form_pg_class oldClassForm,
1530  newClassForm;
1531  HeapTuple oldIndexTuple,
1532  newIndexTuple;
1533  Form_pg_index oldIndexForm,
1534  newIndexForm;
1535  bool isPartition;
1536  Oid indexConstraintOid;
1537  List *constraintOids = NIL;
1538  ListCell *lc;
1539 
1540  /*
1541  * Take a necessary lock on the old and new index before swapping them.
1542  */
1543  oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock);
1544  newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock);
1545 
1546  /* Now swap names and dependencies of those indexes */
1547  pg_class = table_open(RelationRelationId, RowExclusiveLock);
1548 
1549  oldClassTuple = SearchSysCacheCopy1(RELOID,
1550  ObjectIdGetDatum(oldIndexId));
1551  if (!HeapTupleIsValid(oldClassTuple))
1552  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1553  newClassTuple = SearchSysCacheCopy1(RELOID,
1554  ObjectIdGetDatum(newIndexId));
1555  if (!HeapTupleIsValid(newClassTuple))
1556  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1557 
1558  oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple);
1559  newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple);
1560 
1561  /* Swap the names */
1562  namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname));
1563  namestrcpy(&oldClassForm->relname, oldName);
1564 
1565  /* Swap the partition flags to track inheritance properly */
1566  isPartition = newClassForm->relispartition;
1567  newClassForm->relispartition = oldClassForm->relispartition;
1568  oldClassForm->relispartition = isPartition;
1569 
1570  CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple);
1571  CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple);
1572 
1573  heap_freetuple(oldClassTuple);
1574  heap_freetuple(newClassTuple);
1575 
1576  /* Now swap index info */
1577  pg_index = table_open(IndexRelationId, RowExclusiveLock);
1578 
1579  oldIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1580  ObjectIdGetDatum(oldIndexId));
1581  if (!HeapTupleIsValid(oldIndexTuple))
1582  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1583  newIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1584  ObjectIdGetDatum(newIndexId));
1585  if (!HeapTupleIsValid(newIndexTuple))
1586  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1587 
1588  oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple);
1589  newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple);
1590 
1591  /*
1592  * Copy constraint flags from the old index. This is safe because the old
1593  * index guaranteed uniqueness.
1594  */
1595  newIndexForm->indisprimary = oldIndexForm->indisprimary;
1596  oldIndexForm->indisprimary = false;
1597  newIndexForm->indisexclusion = oldIndexForm->indisexclusion;
1598  oldIndexForm->indisexclusion = false;
1599  newIndexForm->indimmediate = oldIndexForm->indimmediate;
1600  oldIndexForm->indimmediate = true;
1601 
1602  /* Preserve indisreplident in the new index */
1603  newIndexForm->indisreplident = oldIndexForm->indisreplident;
1604 
1605  /* Preserve indisclustered in the new index */
1606  newIndexForm->indisclustered = oldIndexForm->indisclustered;
1607 
1608  /*
1609  * Mark the new index as valid, and the old index as invalid similarly to
1610  * what index_set_state_flags() does.
1611  */
1612  newIndexForm->indisvalid = true;
1613  oldIndexForm->indisvalid = false;
1614  oldIndexForm->indisclustered = false;
1615  oldIndexForm->indisreplident = false;
1616 
1617  CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple);
1618  CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple);
1619 
1620  heap_freetuple(oldIndexTuple);
1621  heap_freetuple(newIndexTuple);
1622 
1623  /*
1624  * Move constraints and triggers over to the new index
1625  */
1626 
1627  constraintOids = get_index_ref_constraints(oldIndexId);
1628 
1629  indexConstraintOid = get_index_constraint(oldIndexId);
1630 
1631  if (OidIsValid(indexConstraintOid))
1632  constraintOids = lappend_oid(constraintOids, indexConstraintOid);
1633 
1634  pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock);
1635  pg_trigger = table_open(TriggerRelationId, RowExclusiveLock);
1636 
1637  foreach(lc, constraintOids)
1638  {
1639  HeapTuple constraintTuple,
1640  triggerTuple;
1641  Form_pg_constraint conForm;
1642  ScanKeyData key[1];
1643  SysScanDesc scan;
1644  Oid constraintOid = lfirst_oid(lc);
1645 
1646  /* Move the constraint from the old to the new index */
1647  constraintTuple = SearchSysCacheCopy1(CONSTROID,
1648  ObjectIdGetDatum(constraintOid));
1649  if (!HeapTupleIsValid(constraintTuple))
1650  elog(ERROR, "could not find tuple for constraint %u", constraintOid);
1651 
1652  conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple));
1653 
1654  if (conForm->conindid == oldIndexId)
1655  {
1656  conForm->conindid = newIndexId;
1657 
1658  CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple);
1659  }
1660 
1661  heap_freetuple(constraintTuple);
1662 
1663  /* Search for trigger records */
1664  ScanKeyInit(&key[0],
1665  Anum_pg_trigger_tgconstraint,
1666  BTEqualStrategyNumber, F_OIDEQ,
1667  ObjectIdGetDatum(constraintOid));
1668 
1669  scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true,
1670  NULL, 1, key);
1671 
1672  while (HeapTupleIsValid((triggerTuple = systable_getnext(scan))))
1673  {
1674  Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1675 
1676  if (tgForm->tgconstrindid != oldIndexId)
1677  continue;
1678 
1679  /* Make a modifiable copy */
1680  triggerTuple = heap_copytuple(triggerTuple);
1681  tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1682 
1683  tgForm->tgconstrindid = newIndexId;
1684 
1685  CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple);
1686 
1687  heap_freetuple(triggerTuple);
1688  }
1689 
1690  systable_endscan(scan);
1691  }
1692 
1693  /*
1694  * Move comment if any
1695  */
1696  {
1697  Relation description;
1698  ScanKeyData skey[3];
1699  SysScanDesc sd;
1700  HeapTuple tuple;
1701  Datum values[Natts_pg_description] = {0};
1702  bool nulls[Natts_pg_description] = {0};
1703  bool replaces[Natts_pg_description] = {0};
1704 
1705  values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId);
1706  replaces[Anum_pg_description_objoid - 1] = true;
1707 
1708  ScanKeyInit(&skey[0],
1709  Anum_pg_description_objoid,
1710  BTEqualStrategyNumber, F_OIDEQ,
1711  ObjectIdGetDatum(oldIndexId));
1712  ScanKeyInit(&skey[1],
1713  Anum_pg_description_classoid,
1714  BTEqualStrategyNumber, F_OIDEQ,
1715  ObjectIdGetDatum(RelationRelationId));
1716  ScanKeyInit(&skey[2],
1717  Anum_pg_description_objsubid,
1718  BTEqualStrategyNumber, F_INT4EQ,
1719  Int32GetDatum(0));
1720 
1721  description = table_open(DescriptionRelationId, RowExclusiveLock);
1722 
1723  sd = systable_beginscan(description, DescriptionObjIndexId, true,
1724  NULL, 3, skey);
1725 
1726  while ((tuple = systable_getnext(sd)) != NULL)
1727  {
1728  tuple = heap_modify_tuple(tuple, RelationGetDescr(description),
1729  values, nulls, replaces);
1730  CatalogTupleUpdate(description, &tuple->t_self, tuple);
1731 
1732  break; /* Assume there can be only one match */
1733  }
1734 
1735  systable_endscan(sd);
1736  table_close(description, NoLock);
1737  }
1738 
1739  /*
1740  * Swap inheritance relationship with parent index
1741  */
1742  if (get_rel_relispartition(oldIndexId))
1743  {
1744  List *ancestors = get_partition_ancestors(oldIndexId);
1745  Oid parentIndexRelid = linitial_oid(ancestors);
1746 
1747  DeleteInheritsTuple(oldIndexId, parentIndexRelid, false, NULL);
1748  StoreSingleInheritance(newIndexId, parentIndexRelid, 1);
1749 
1750  list_free(ancestors);
1751  }
1752 
1753  /*
1754  * Swap all dependencies of and on the old index to the new one, and
1755  * vice-versa. Note that a call to CommandCounterIncrement() would cause
1756  * duplicate entries in pg_depend, so this should not be done.
1757  */
1758  changeDependenciesOf(RelationRelationId, newIndexId, oldIndexId);
1759  changeDependenciesOn(RelationRelationId, newIndexId, oldIndexId);
1760 
1761  changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId);
1762  changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId);
1763 
1764  /* copy over statistics from old to new index */
1765  pgstat_copy_relation_stats(newClassRel, oldClassRel);
1766 
1767  /* Copy data of pg_statistic from the old index to the new one */
1768  CopyStatistics(oldIndexId, newIndexId);
1769 
1770  /* Copy pg_attribute.attstattarget for each index attribute */
1771  {
1772  HeapTuple attrTuple;
1773  Relation pg_attribute;
1774  SysScanDesc scan;
1775  ScanKeyData key[1];
1776 
1777  pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
1778  ScanKeyInit(&key[0],
1779  Anum_pg_attribute_attrelid,
1780  BTEqualStrategyNumber, F_OIDEQ,
1781  ObjectIdGetDatum(newIndexId));
1782  scan = systable_beginscan(pg_attribute, AttributeRelidNumIndexId,
1783  true, NULL, 1, key);
1784 
1785  while (HeapTupleIsValid((attrTuple = systable_getnext(scan))))
1786  {
1787  Form_pg_attribute att = (Form_pg_attribute) GETSTRUCT(attrTuple);
1788  Datum repl_val[Natts_pg_attribute];
1789  bool repl_null[Natts_pg_attribute];
1790  bool repl_repl[Natts_pg_attribute];
1791  int attstattarget;
1792  HeapTuple newTuple;
1793 
1794  /* Ignore dropped columns */
1795  if (att->attisdropped)
1796  continue;
1797 
1798  /*
1799  * Get attstattarget from the old index and refresh the new value.
1800  */
1801  attstattarget = get_attstattarget(oldIndexId, att->attnum);
1802 
1803  /* no need for a refresh if both match */
1804  if (attstattarget == att->attstattarget)
1805  continue;
1806 
1807  memset(repl_val, 0, sizeof(repl_val));
1808  memset(repl_null, false, sizeof(repl_null));
1809  memset(repl_repl, false, sizeof(repl_repl));
1810 
1811  repl_repl[Anum_pg_attribute_attstattarget - 1] = true;
1812  repl_val[Anum_pg_attribute_attstattarget - 1] = Int16GetDatum(attstattarget);
1813 
1814  newTuple = heap_modify_tuple(attrTuple,
1815  RelationGetDescr(pg_attribute),
1816  repl_val, repl_null, repl_repl);
1817  CatalogTupleUpdate(pg_attribute, &newTuple->t_self, newTuple);
1818 
1819  heap_freetuple(newTuple);
1820  }
1821 
1822  systable_endscan(scan);
1823  table_close(pg_attribute, RowExclusiveLock);
1824  }
1825 
1826  /* Close relations */
1827  table_close(pg_class, RowExclusiveLock);
1828  table_close(pg_index, RowExclusiveLock);
1829  table_close(pg_constraint, RowExclusiveLock);
1830  table_close(pg_trigger, RowExclusiveLock);
1831 
1832  /* The lock taken previously is not released until the end of transaction */
1833  relation_close(oldClassRel, NoLock);
1834  relation_close(newClassRel, NoLock);
1835 }
1836 
1837 /*
1838  * index_concurrently_set_dead
1839  *
1840  * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX
1841  * CONCURRENTLY before actually dropping the index. After calling this
1842  * function, the index is seen by all the backends as dead. Low-level locks
1843  * taken here are kept until the end of the transaction calling this function.
1844  */
1845 void
1847 {
1848  Relation userHeapRelation;
1849  Relation userIndexRelation;
1850 
1851  /*
1852  * No more predicate locks will be acquired on this index, and we're about
1853  * to stop doing inserts into the index which could show conflicts with
1854  * existing predicate locks, so now is the time to move them to the heap
1855  * relation.
1856  */
1857  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
1858  userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock);
1859  TransferPredicateLocksToHeapRelation(userIndexRelation);
1860 
1861  /*
1862  * Now we are sure that nobody uses the index for queries; they just might
1863  * have it open for updating it. So now we can unset indisready and
1864  * indislive, then wait till nobody could be using it at all anymore.
1865  */
1867 
1868  /*
1869  * Invalidate the relcache for the table, so that after this commit all
1870  * sessions will refresh the table's index list. Forgetting just the
1871  * index's relcache entry is not enough.
1872  */
1873  CacheInvalidateRelcache(userHeapRelation);
1874 
1875  /*
1876  * Close the relations again, though still holding session lock.
1877  */
1878  table_close(userHeapRelation, NoLock);
1879  index_close(userIndexRelation, NoLock);
1880 }
1881 
1882 /*
1883  * index_constraint_create
1884  *
1885  * Set up a constraint associated with an index. Return the new constraint's
1886  * address.
1887  *
1888  * heapRelation: table owning the index (must be suitably locked by caller)
1889  * indexRelationId: OID of the index
1890  * parentConstraintId: if constraint is on a partition, the OID of the
1891  * constraint in the parent.
1892  * indexInfo: same info executor uses to insert into the index
1893  * constraintName: what it say (generally, should match name of index)
1894  * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or
1895  * CONSTRAINT_EXCLUSION
1896  * flags: bitmask that can include any combination of these bits:
1897  * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY
1898  * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE
1899  * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED
1900  * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row
1901  * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies
1902  * of index on table's columns
1903  * allow_system_table_mods: allow table to be a system catalog
1904  * is_internal: index is constructed due to internal process
1905  */
1908  Oid indexRelationId,
1909  Oid parentConstraintId,
1910  IndexInfo *indexInfo,
1911  const char *constraintName,
1912  char constraintType,
1913  bits16 constr_flags,
1914  bool allow_system_table_mods,
1915  bool is_internal)
1916 {
1917  Oid namespaceId = RelationGetNamespace(heapRelation);
1918  ObjectAddress myself,
1919  idxaddr;
1920  Oid conOid;
1921  bool deferrable;
1922  bool initdeferred;
1923  bool mark_as_primary;
1924  bool islocal;
1925  bool noinherit;
1926  int inhcount;
1927 
1928  deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0;
1929  initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0;
1930  mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0;
1931 
1932  /* constraint creation support doesn't work while bootstrapping */
1934 
1935  /* enforce system-table restriction */
1936  if (!allow_system_table_mods &&
1937  IsSystemRelation(heapRelation) &&
1939  ereport(ERROR,
1940  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1941  errmsg("user-defined indexes on system catalog tables are not supported")));
1942 
1943  /* primary/unique constraints shouldn't have any expressions */
1944  if (indexInfo->ii_Expressions &&
1945  constraintType != CONSTRAINT_EXCLUSION)
1946  elog(ERROR, "constraints cannot have index expressions");
1947 
1948  /*
1949  * If we're manufacturing a constraint for a pre-existing index, we need
1950  * to get rid of the existing auto dependencies for the index (the ones
1951  * that index_create() would have made instead of calling this function).
1952  *
1953  * Note: this code would not necessarily do the right thing if the index
1954  * has any expressions or predicate, but we'd never be turning such an
1955  * index into a UNIQUE or PRIMARY KEY constraint.
1956  */
1957  if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS)
1958  deleteDependencyRecordsForClass(RelationRelationId, indexRelationId,
1959  RelationRelationId, DEPENDENCY_AUTO);
1960 
1961  if (OidIsValid(parentConstraintId))
1962  {
1963  islocal = false;
1964  inhcount = 1;
1965  noinherit = false;
1966  }
1967  else
1968  {
1969  islocal = true;
1970  inhcount = 0;
1971  noinherit = true;
1972  }
1973 
1974  /*
1975  * Construct a pg_constraint entry.
1976  */
1977  conOid = CreateConstraintEntry(constraintName,
1978  namespaceId,
1979  constraintType,
1980  deferrable,
1981  initdeferred,
1982  true,
1983  parentConstraintId,
1984  RelationGetRelid(heapRelation),
1985  indexInfo->ii_IndexAttrNumbers,
1986  indexInfo->ii_NumIndexKeyAttrs,
1987  indexInfo->ii_NumIndexAttrs,
1988  InvalidOid, /* no domain */
1989  indexRelationId, /* index OID */
1990  InvalidOid, /* no foreign key */
1991  NULL,
1992  NULL,
1993  NULL,
1994  NULL,
1995  0,
1996  ' ',
1997  ' ',
1998  NULL,
1999  0,
2000  ' ',
2001  indexInfo->ii_ExclusionOps,
2002  NULL, /* no check constraint */
2003  NULL,
2004  islocal,
2005  inhcount,
2006  noinherit,
2007  is_internal);
2008 
2009  /*
2010  * Register the index as internally dependent on the constraint.
2011  *
2012  * Note that the constraint has a dependency on the table, so we don't
2013  * need (or want) any direct dependency from the index to the table.
2014  */
2015  ObjectAddressSet(myself, ConstraintRelationId, conOid);
2016  ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId);
2017  recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL);
2018 
2019  /*
2020  * Also, if this is a constraint on a partition, give it partition-type
2021  * dependencies on the parent constraint as well as the table.
2022  */
2023  if (OidIsValid(parentConstraintId))
2024  {
2025  ObjectAddress referenced;
2026 
2027  ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId);
2028  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
2029  ObjectAddressSet(referenced, RelationRelationId,
2030  RelationGetRelid(heapRelation));
2031  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
2032  }
2033 
2034  /*
2035  * If the constraint is deferrable, create the deferred uniqueness
2036  * checking trigger. (The trigger will be given an internal dependency on
2037  * the constraint by CreateTrigger.)
2038  */
2039  if (deferrable)
2040  {
2042 
2043  trigger->replace = false;
2044  trigger->isconstraint = true;
2045  trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ?
2046  "PK_ConstraintTrigger" :
2047  "Unique_ConstraintTrigger";
2048  trigger->relation = NULL;
2049  trigger->funcname = SystemFuncName("unique_key_recheck");
2050  trigger->args = NIL;
2051  trigger->row = true;
2052  trigger->timing = TRIGGER_TYPE_AFTER;
2053  trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE;
2054  trigger->columns = NIL;
2055  trigger->whenClause = NULL;
2056  trigger->transitionRels = NIL;
2057  trigger->deferrable = true;
2058  trigger->initdeferred = initdeferred;
2059  trigger->constrrel = NULL;
2060 
2061  (void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation),
2062  InvalidOid, conOid, indexRelationId, InvalidOid,
2063  InvalidOid, NULL, true, false);
2064  }
2065 
2066  /*
2067  * If needed, mark the index as primary and/or deferred in pg_index.
2068  *
2069  * Note: When making an existing index into a constraint, caller must have
2070  * a table lock that prevents concurrent table updates; otherwise, there
2071  * is a risk that concurrent readers of the table will miss seeing this
2072  * index at all.
2073  */
2074  if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) &&
2075  (mark_as_primary || deferrable))
2076  {
2077  Relation pg_index;
2078  HeapTuple indexTuple;
2079  Form_pg_index indexForm;
2080  bool dirty = false;
2081  bool marked_as_primary = false;
2082 
2083  pg_index = table_open(IndexRelationId, RowExclusiveLock);
2084 
2085  indexTuple = SearchSysCacheCopy1(INDEXRELID,
2086  ObjectIdGetDatum(indexRelationId));
2087  if (!HeapTupleIsValid(indexTuple))
2088  elog(ERROR, "cache lookup failed for index %u", indexRelationId);
2089  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
2090 
2091  if (mark_as_primary && !indexForm->indisprimary)
2092  {
2093  indexForm->indisprimary = true;
2094  dirty = true;
2095  marked_as_primary = true;
2096  }
2097 
2098  if (deferrable && indexForm->indimmediate)
2099  {
2100  indexForm->indimmediate = false;
2101  dirty = true;
2102  }
2103 
2104  if (dirty)
2105  {
2106  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
2107 
2108  /*
2109  * When we mark an existing index as primary, force a relcache
2110  * flush on its parent table, so that all sessions will become
2111  * aware that the table now has a primary key. This is important
2112  * because it affects some replication behaviors.
2113  */
2114  if (marked_as_primary)
2115  CacheInvalidateRelcache(heapRelation);
2116 
2117  InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0,
2118  InvalidOid, is_internal);
2119  }
2120 
2121  heap_freetuple(indexTuple);
2122  table_close(pg_index, RowExclusiveLock);
2123  }
2124 
2125  return myself;
2126 }
2127 
2128 /*
2129  * index_drop
2130  *
2131  * NOTE: this routine should now only be called through performDeletion(),
2132  * else associated dependencies won't be cleaned up.
2133  *
2134  * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is
2135  * false but concurrent_lock_mode is true, then do a normal DROP INDEX but
2136  * take a lock for CONCURRENTLY processing. That is used as part of REINDEX
2137  * CONCURRENTLY.
2138  */
2139 void
2140 index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
2141 {
2142  Oid heapId;
2143  Relation userHeapRelation;
2144  Relation userIndexRelation;
2145  Relation indexRelation;
2146  HeapTuple tuple;
2147  bool hasexprs;
2148  LockRelId heaprelid,
2149  indexrelid;
2150  LOCKTAG heaplocktag;
2151  LOCKMODE lockmode;
2152 
2153  /*
2154  * A temporary relation uses a non-concurrent DROP. Other backends can't
2155  * access a temporary relation, so there's no harm in grabbing a stronger
2156  * lock (see comments in RemoveRelations), and a non-concurrent DROP is
2157  * more efficient.
2158  */
2159  Assert(get_rel_persistence(indexId) != RELPERSISTENCE_TEMP ||
2160  (!concurrent && !concurrent_lock_mode));
2161 
2162  /*
2163  * To drop an index safely, we must grab exclusive lock on its parent
2164  * table. Exclusive lock on the index alone is insufficient because
2165  * another backend might be about to execute a query on the parent table.
2166  * If it relies on a previously cached list of index OIDs, then it could
2167  * attempt to access the just-dropped index. We must therefore take a
2168  * table lock strong enough to prevent all queries on the table from
2169  * proceeding until we commit and send out a shared-cache-inval notice
2170  * that will make them update their index lists.
2171  *
2172  * In the concurrent case we avoid this requirement by disabling index use
2173  * in multiple steps and waiting out any transactions that might be using
2174  * the index, so we don't need exclusive lock on the parent table. Instead
2175  * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't
2176  * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get
2177  * AccessExclusiveLock on the index below, once we're sure nobody else is
2178  * using it.)
2179  */
2180  heapId = IndexGetRelation(indexId, false);
2181  lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock;
2182  userHeapRelation = table_open(heapId, lockmode);
2183  userIndexRelation = index_open(indexId, lockmode);
2184 
2185  /*
2186  * We might still have open queries using it in our own session, which the
2187  * above locking won't prevent, so test explicitly.
2188  */
2189  CheckTableNotInUse(userIndexRelation, "DROP INDEX");
2190 
2191  /*
2192  * Drop Index Concurrently is more or less the reverse process of Create
2193  * Index Concurrently.
2194  *
2195  * First we unset indisvalid so queries starting afterwards don't use the
2196  * index to answer queries anymore. We have to keep indisready = true so
2197  * transactions that are still scanning the index can continue to see
2198  * valid index contents. For instance, if they are using READ COMMITTED
2199  * mode, and another transaction makes changes and commits, they need to
2200  * see those new tuples in the index.
2201  *
2202  * After all transactions that could possibly have used the index for
2203  * queries end, we can unset indisready and indislive, then wait till
2204  * nobody could be touching it anymore. (Note: we need indislive because
2205  * this state must be distinct from the initial state during CREATE INDEX
2206  * CONCURRENTLY, which has indislive true while indisready and indisvalid
2207  * are false. That's because in that state, transactions must examine the
2208  * index for HOT-safety decisions, while in this state we don't want them
2209  * to open it at all.)
2210  *
2211  * Since all predicate locks on the index are about to be made invalid, we
2212  * must promote them to predicate locks on the heap. In the
2213  * non-concurrent case we can just do that now. In the concurrent case
2214  * it's a bit trickier. The predicate locks must be moved when there are
2215  * no index scans in progress on the index and no more can subsequently
2216  * start, so that no new predicate locks can be made on the index. Also,
2217  * they must be moved before heap inserts stop maintaining the index, else
2218  * the conflict with the predicate lock on the index gap could be missed
2219  * before the lock on the heap relation is in place to detect a conflict
2220  * based on the heap tuple insert.
2221  */
2222  if (concurrent)
2223  {
2224  /*
2225  * We must commit our transaction in order to make the first pg_index
2226  * state update visible to other sessions. If the DROP machinery has
2227  * already performed any other actions (removal of other objects,
2228  * pg_depend entries, etc), the commit would make those actions
2229  * permanent, which would leave us with inconsistent catalog state if
2230  * we fail partway through the following sequence. Since DROP INDEX
2231  * CONCURRENTLY is restricted to dropping just one index that has no
2232  * dependencies, we should get here before anything's been done ---
2233  * but let's check that to be sure. We can verify that the current
2234  * transaction has not executed any transactional updates by checking
2235  * that no XID has been assigned.
2236  */
2238  ereport(ERROR,
2239  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2240  errmsg("DROP INDEX CONCURRENTLY must be first action in transaction")));
2241 
2242  /*
2243  * Mark index invalid by updating its pg_index entry
2244  */
2246 
2247  /*
2248  * Invalidate the relcache for the table, so that after this commit
2249  * all sessions will refresh any cached plans that might reference the
2250  * index.
2251  */
2252  CacheInvalidateRelcache(userHeapRelation);
2253 
2254  /* save lockrelid and locktag for below, then close but keep locks */
2255  heaprelid = userHeapRelation->rd_lockInfo.lockRelId;
2256  SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
2257  indexrelid = userIndexRelation->rd_lockInfo.lockRelId;
2258 
2259  table_close(userHeapRelation, NoLock);
2260  index_close(userIndexRelation, NoLock);
2261 
2262  /*
2263  * We must commit our current transaction so that the indisvalid
2264  * update becomes visible to other transactions; then start another.
2265  * Note that any previously-built data structures are lost in the
2266  * commit. The only data we keep past here are the relation IDs.
2267  *
2268  * Before committing, get a session-level lock on the table, to ensure
2269  * that neither it nor the index can be dropped before we finish. This
2270  * cannot block, even if someone else is waiting for access, because
2271  * we already have the same lock within our transaction.
2272  */
2275 
2279 
2280  /*
2281  * Now we must wait until no running transaction could be using the
2282  * index for a query. Use AccessExclusiveLock here to check for
2283  * running transactions that hold locks of any kind on the table. Note
2284  * we do not need to worry about xacts that open the table for reading
2285  * after this point; they will see the index as invalid when they open
2286  * the relation.
2287  *
2288  * Note: the reason we use actual lock acquisition here, rather than
2289  * just checking the ProcArray and sleeping, is that deadlock is
2290  * possible if one of the transactions in question is blocked trying
2291  * to acquire an exclusive lock on our table. The lock code will
2292  * detect deadlock and error out properly.
2293  *
2294  * Note: we report progress through WaitForLockers() unconditionally
2295  * here, even though it will only be used when we're called by REINDEX
2296  * CONCURRENTLY and not when called by DROP INDEX CONCURRENTLY.
2297  */
2298  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2299 
2300  /* Finish invalidation of index and mark it as dead */
2301  index_concurrently_set_dead(heapId, indexId);
2302 
2303  /*
2304  * Again, commit the transaction to make the pg_index update visible
2305  * to other sessions.
2306  */
2309 
2310  /*
2311  * Wait till every transaction that saw the old index state has
2312  * finished. See above about progress reporting.
2313  */
2314  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2315 
2316  /*
2317  * Re-open relations to allow us to complete our actions.
2318  *
2319  * At this point, nothing should be accessing the index, but lets
2320  * leave nothing to chance and grab AccessExclusiveLock on the index
2321  * before the physical deletion.
2322  */
2323  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
2324  userIndexRelation = index_open(indexId, AccessExclusiveLock);
2325  }
2326  else
2327  {
2328  /* Not concurrent, so just transfer predicate locks and we're good */
2329  TransferPredicateLocksToHeapRelation(userIndexRelation);
2330  }
2331 
2332  /*
2333  * Schedule physical removal of the files (if any)
2334  */
2335  if (RELKIND_HAS_STORAGE(userIndexRelation->rd_rel->relkind))
2336  RelationDropStorage(userIndexRelation);
2337 
2338  /* ensure that stats are dropped if transaction commits */
2339  pgstat_drop_relation(userIndexRelation);
2340 
2341  /*
2342  * Close and flush the index's relcache entry, to ensure relcache doesn't
2343  * try to rebuild it while we're deleting catalog entries. We keep the
2344  * lock though.
2345  */
2346  index_close(userIndexRelation, NoLock);
2347 
2348  RelationForgetRelation(indexId);
2349 
2350  /*
2351  * fix INDEX relation, and check for expressional index
2352  */
2353  indexRelation = table_open(IndexRelationId, RowExclusiveLock);
2354 
2355  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
2356  if (!HeapTupleIsValid(tuple))
2357  elog(ERROR, "cache lookup failed for index %u", indexId);
2358 
2359  hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs,
2360  RelationGetDescr(indexRelation));
2361 
2362  CatalogTupleDelete(indexRelation, &tuple->t_self);
2363 
2364  ReleaseSysCache(tuple);
2365  table_close(indexRelation, RowExclusiveLock);
2366 
2367  /*
2368  * if it has any expression columns, we might have stored statistics about
2369  * them.
2370  */
2371  if (hasexprs)
2372  RemoveStatistics(indexId, 0);
2373 
2374  /*
2375  * fix ATTRIBUTE relation
2376  */
2377  DeleteAttributeTuples(indexId);
2378 
2379  /*
2380  * fix RELATION relation
2381  */
2382  DeleteRelationTuple(indexId);
2383 
2384  /*
2385  * fix INHERITS relation
2386  */
2387  DeleteInheritsTuple(indexId, InvalidOid, false, NULL);
2388 
2389  /*
2390  * We are presently too lazy to attempt to compute the new correct value
2391  * of relhasindex (the next VACUUM will fix it if necessary). So there is
2392  * no need to update the pg_class tuple for the owning relation. But we
2393  * must send out a shared-cache-inval notice on the owning relation to
2394  * ensure other backends update their relcache lists of indexes. (In the
2395  * concurrent case, this is redundant but harmless.)
2396  */
2397  CacheInvalidateRelcache(userHeapRelation);
2398 
2399  /*
2400  * Close owning rel, but keep lock
2401  */
2402  table_close(userHeapRelation, NoLock);
2403 
2404  /*
2405  * Release the session locks before we go.
2406  */
2407  if (concurrent)
2408  {
2411  }
2412 }
2413 
2414 /* ----------------------------------------------------------------
2415  * index_build support
2416  * ----------------------------------------------------------------
2417  */
2418 
2419 /* ----------------
2420  * BuildIndexInfo
2421  * Construct an IndexInfo record for an open index
2422  *
2423  * IndexInfo stores the information about the index that's needed by
2424  * FormIndexDatum, which is used for both index_build() and later insertion
2425  * of individual index tuples. Normally we build an IndexInfo for an index
2426  * just once per command, and then use it for (potentially) many tuples.
2427  * ----------------
2428  */
2429 IndexInfo *
2431 {
2432  IndexInfo *ii;
2433  Form_pg_index indexStruct = index->rd_index;
2434  int i;
2435  int numAtts;
2436 
2437  /* check the number of keys, and copy attr numbers into the IndexInfo */
2438  numAtts = indexStruct->indnatts;
2439  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2440  elog(ERROR, "invalid indnatts %d for index %u",
2441  numAtts, RelationGetRelid(index));
2442 
2443  /*
2444  * Create the node, fetching any expressions needed for expressional
2445  * indexes and index predicate if any.
2446  */
2447  ii = makeIndexInfo(indexStruct->indnatts,
2448  indexStruct->indnkeyatts,
2449  index->rd_rel->relam,
2452  indexStruct->indisunique,
2453  indexStruct->indnullsnotdistinct,
2454  indexStruct->indisready,
2455  false,
2456  index->rd_indam->amsummarizing);
2457 
2458  /* fill in attribute numbers */
2459  for (i = 0; i < numAtts; i++)
2460  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2461 
2462  /* fetch exclusion constraint info if any */
2463  if (indexStruct->indisexclusion)
2464  {
2466  &ii->ii_ExclusionOps,
2467  &ii->ii_ExclusionProcs,
2468  &ii->ii_ExclusionStrats);
2469  }
2470 
2472 
2473  return ii;
2474 }
2475 
2476 /* ----------------
2477  * BuildDummyIndexInfo
2478  * Construct a dummy IndexInfo record for an open index
2479  *
2480  * This differs from the real BuildIndexInfo in that it will never run any
2481  * user-defined code that might exist in index expressions or predicates.
2482  * Instead of the real index expressions, we return null constants that have
2483  * the right types/typmods/collations. Predicates and exclusion clauses are
2484  * just ignored. This is sufficient for the purpose of truncating an index,
2485  * since we will not need to actually evaluate the expressions or predicates;
2486  * the only thing that's likely to be done with the data is construction of
2487  * a tupdesc describing the index's rowtype.
2488  * ----------------
2489  */
2490 IndexInfo *
2492 {
2493  IndexInfo *ii;
2494  Form_pg_index indexStruct = index->rd_index;
2495  int i;
2496  int numAtts;
2497 
2498  /* check the number of keys, and copy attr numbers into the IndexInfo */
2499  numAtts = indexStruct->indnatts;
2500  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2501  elog(ERROR, "invalid indnatts %d for index %u",
2502  numAtts, RelationGetRelid(index));
2503 
2504  /*
2505  * Create the node, using dummy index expressions, and pretending there is
2506  * no predicate.
2507  */
2508  ii = makeIndexInfo(indexStruct->indnatts,
2509  indexStruct->indnkeyatts,
2510  index->rd_rel->relam,
2512  NIL,
2513  indexStruct->indisunique,
2514  indexStruct->indnullsnotdistinct,
2515  indexStruct->indisready,
2516  false,
2517  index->rd_indam->amsummarizing);
2518 
2519  /* fill in attribute numbers */
2520  for (i = 0; i < numAtts; i++)
2521  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2522 
2523  /* We ignore the exclusion constraint if any */
2524 
2525  return ii;
2526 }
2527 
2528 /*
2529  * CompareIndexInfo
2530  * Return whether the properties of two indexes (in different tables)
2531  * indicate that they have the "same" definitions.
2532  *
2533  * Note: passing collations and opfamilies separately is a kludge. Adding
2534  * them to IndexInfo may result in better coding here and elsewhere.
2535  *
2536  * Use build_attrmap_by_name(index2, index1) to build the attmap.
2537  */
2538 bool
2540  Oid *collations1, Oid *collations2,
2541  Oid *opfamilies1, Oid *opfamilies2,
2542  AttrMap *attmap)
2543 {
2544  int i;
2545 
2546  if (info1->ii_Unique != info2->ii_Unique)
2547  return false;
2548 
2549  if (info1->ii_NullsNotDistinct != info2->ii_NullsNotDistinct)
2550  return false;
2551 
2552  /* indexes are only equivalent if they have the same access method */
2553  if (info1->ii_Am != info2->ii_Am)
2554  return false;
2555 
2556  /* and same number of attributes */
2557  if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs)
2558  return false;
2559 
2560  /* and same number of key attributes */
2561  if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs)
2562  return false;
2563 
2564  /*
2565  * and columns match through the attribute map (actual attribute numbers
2566  * might differ!) Note that this implies that index columns that are
2567  * expressions appear in the same positions. We will next compare the
2568  * expressions themselves.
2569  */
2570  for (i = 0; i < info1->ii_NumIndexAttrs; i++)
2571  {
2572  if (attmap->maplen < info2->ii_IndexAttrNumbers[i])
2573  elog(ERROR, "incorrect attribute map");
2574 
2575  /* ignore expressions at this stage */
2576  if ((info1->ii_IndexAttrNumbers[i] != InvalidAttrNumber) &&
2577  (attmap->attnums[info2->ii_IndexAttrNumbers[i] - 1] !=
2578  info1->ii_IndexAttrNumbers[i]))
2579  return false;
2580 
2581  /* collation and opfamily is not valid for including columns */
2582  if (i >= info1->ii_NumIndexKeyAttrs)
2583  continue;
2584 
2585  if (collations1[i] != collations2[i])
2586  return false;
2587  if (opfamilies1[i] != opfamilies2[i])
2588  return false;
2589  }
2590 
2591  /*
2592  * For expression indexes: either both are expression indexes, or neither
2593  * is; if they are, make sure the expressions match.
2594  */
2595  if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL))
2596  return false;
2597  if (info1->ii_Expressions != NIL)
2598  {
2599  bool found_whole_row;
2600  Node *mapped;
2601 
2602  mapped = map_variable_attnos((Node *) info2->ii_Expressions,
2603  1, 0, attmap,
2604  InvalidOid, &found_whole_row);
2605  if (found_whole_row)
2606  {
2607  /*
2608  * we could throw an error here, but seems out of scope for this
2609  * routine.
2610  */
2611  return false;
2612  }
2613 
2614  if (!equal(info1->ii_Expressions, mapped))
2615  return false;
2616  }
2617 
2618  /* Partial index predicates must be identical, if they exist */
2619  if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL))
2620  return false;
2621  if (info1->ii_Predicate != NULL)
2622  {
2623  bool found_whole_row;
2624  Node *mapped;
2625 
2626  mapped = map_variable_attnos((Node *) info2->ii_Predicate,
2627  1, 0, attmap,
2628  InvalidOid, &found_whole_row);
2629  if (found_whole_row)
2630  {
2631  /*
2632  * we could throw an error here, but seems out of scope for this
2633  * routine.
2634  */
2635  return false;
2636  }
2637  if (!equal(info1->ii_Predicate, mapped))
2638  return false;
2639  }
2640 
2641  /* No support currently for comparing exclusion indexes. */
2642  if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL)
2643  return false;
2644 
2645  return true;
2646 }
2647 
2648 /* ----------------
2649  * BuildSpeculativeIndexInfo
2650  * Add extra state to IndexInfo record
2651  *
2652  * For unique indexes, we usually don't want to add info to the IndexInfo for
2653  * checking uniqueness, since the B-Tree AM handles that directly. However,
2654  * in the case of speculative insertion, additional support is required.
2655  *
2656  * Do this processing here rather than in BuildIndexInfo() to not incur the
2657  * overhead in the common non-speculative cases.
2658  * ----------------
2659  */
2660 void
2662 {
2663  int indnkeyatts;
2664  int i;
2665 
2667 
2668  /*
2669  * fetch info for checking unique indexes
2670  */
2671  Assert(ii->ii_Unique);
2672 
2673  if (index->rd_rel->relam != BTREE_AM_OID)
2674  elog(ERROR, "unexpected non-btree speculative unique index");
2675 
2676  ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2677  ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2678  ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts);
2679 
2680  /*
2681  * We have to look up the operator's strategy number. This provides a
2682  * cross-check that the operator does match the index.
2683  */
2684  /* We need the func OIDs and strategy numbers too */
2685  for (i = 0; i < indnkeyatts; i++)
2686  {
2688  ii->ii_UniqueOps[i] =
2689  get_opfamily_member(index->rd_opfamily[i],
2690  index->rd_opcintype[i],
2691  index->rd_opcintype[i],
2692  ii->ii_UniqueStrats[i]);
2693  if (!OidIsValid(ii->ii_UniqueOps[i]))
2694  elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2695  ii->ii_UniqueStrats[i], index->rd_opcintype[i],
2696  index->rd_opcintype[i], index->rd_opfamily[i]);
2697  ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]);
2698  }
2699 }
2700 
2701 /* ----------------
2702  * FormIndexDatum
2703  * Construct values[] and isnull[] arrays for a new index tuple.
2704  *
2705  * indexInfo Info about the index
2706  * slot Heap tuple for which we must prepare an index entry
2707  * estate executor state for evaluating any index expressions
2708  * values Array of index Datums (output area)
2709  * isnull Array of is-null indicators (output area)
2710  *
2711  * When there are no index expressions, estate may be NULL. Otherwise it
2712  * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
2713  * context must point to the heap tuple passed in.
2714  *
2715  * Notice we don't actually call index_form_tuple() here; we just prepare
2716  * its input arrays values[] and isnull[]. This is because the index AM
2717  * may wish to alter the data before storage.
2718  * ----------------
2719  */
2720 void
2722  TupleTableSlot *slot,
2723  EState *estate,
2724  Datum *values,
2725  bool *isnull)
2726 {
2727  ListCell *indexpr_item;
2728  int i;
2729 
2730  if (indexInfo->ii_Expressions != NIL &&
2731  indexInfo->ii_ExpressionsState == NIL)
2732  {
2733  /* First time through, set up expression evaluation state */
2734  indexInfo->ii_ExpressionsState =
2735  ExecPrepareExprList(indexInfo->ii_Expressions, estate);
2736  /* Check caller has set up context correctly */
2737  Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
2738  }
2739  indexpr_item = list_head(indexInfo->ii_ExpressionsState);
2740 
2741  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
2742  {
2743  int keycol = indexInfo->ii_IndexAttrNumbers[i];
2744  Datum iDatum;
2745  bool isNull;
2746 
2747  if (keycol < 0)
2748  iDatum = slot_getsysattr(slot, keycol, &isNull);
2749  else if (keycol != 0)
2750  {
2751  /*
2752  * Plain index column; get the value we need directly from the
2753  * heap tuple.
2754  */
2755  iDatum = slot_getattr(slot, keycol, &isNull);
2756  }
2757  else
2758  {
2759  /*
2760  * Index expression --- need to evaluate it.
2761  */
2762  if (indexpr_item == NULL)
2763  elog(ERROR, "wrong number of index expressions");
2764  iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item),
2765  GetPerTupleExprContext(estate),
2766  &isNull);
2767  indexpr_item = lnext(indexInfo->ii_ExpressionsState, indexpr_item);
2768  }
2769  values[i] = iDatum;
2770  isnull[i] = isNull;
2771  }
2772 
2773  if (indexpr_item != NULL)
2774  elog(ERROR, "wrong number of index expressions");
2775 }
2776 
2777 
2778 /*
2779  * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
2780  *
2781  * This routine updates the pg_class row of either an index or its parent
2782  * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed
2783  * to ensure we can do all the necessary work in just one update.
2784  *
2785  * hasindex: set relhasindex to this value
2786  * reltuples: if >= 0, set reltuples to this value; else no change
2787  *
2788  * If reltuples >= 0, relpages and relallvisible are also updated (using
2789  * RelationGetNumberOfBlocks() and visibilitymap_count()).
2790  *
2791  * NOTE: an important side-effect of this operation is that an SI invalidation
2792  * message is sent out to all backends --- including me --- causing relcache
2793  * entries to be flushed or updated with the new data. This must happen even
2794  * if we find that no change is needed in the pg_class row. When updating
2795  * a heap entry, this ensures that other backends find out about the new
2796  * index. When updating an index, it's important because some index AMs
2797  * expect a relcache flush to occur after REINDEX.
2798  */
2799 static void
2801  bool hasindex,
2802  double reltuples)
2803 {
2804  Oid relid = RelationGetRelid(rel);
2805  Relation pg_class;
2806  HeapTuple tuple;
2807  Form_pg_class rd_rel;
2808  bool dirty;
2809 
2810  /*
2811  * We always update the pg_class row using a non-transactional,
2812  * overwrite-in-place update. There are several reasons for this:
2813  *
2814  * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
2815  *
2816  * 2. We could be reindexing pg_class itself, in which case we can't move
2817  * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might
2818  * not know about all the indexes yet (see reindex_relation).
2819  *
2820  * 3. Because we execute CREATE INDEX with just share lock on the parent
2821  * rel (to allow concurrent index creations), an ordinary update could
2822  * suffer a tuple-concurrently-updated failure against another CREATE
2823  * INDEX committing at about the same time. We can avoid that by having
2824  * them both do nontransactional updates (we assume they will both be
2825  * trying to change the pg_class row to the same thing, so it doesn't
2826  * matter which goes first).
2827  *
2828  * It is safe to use a non-transactional update even though our
2829  * transaction could still fail before committing. Setting relhasindex
2830  * true is safe even if there are no indexes (VACUUM will eventually fix
2831  * it). And of course the new relpages and reltuples counts are correct
2832  * regardless. However, we don't want to change relpages (or
2833  * relallvisible) if the caller isn't providing an updated reltuples
2834  * count, because that would bollix the reltuples/relpages ratio which is
2835  * what's really important.
2836  */
2837 
2838  pg_class = table_open(RelationRelationId, RowExclusiveLock);
2839 
2840  /*
2841  * Make a copy of the tuple to update. Normally we use the syscache, but
2842  * we can't rely on that during bootstrap or while reindexing pg_class
2843  * itself.
2844  */
2845  if (IsBootstrapProcessingMode() ||
2846  ReindexIsProcessingHeap(RelationRelationId))
2847  {
2848  /* don't assume syscache will work */
2849  TableScanDesc pg_class_scan;
2850  ScanKeyData key[1];
2851 
2852  ScanKeyInit(&key[0],
2853  Anum_pg_class_oid,
2854  BTEqualStrategyNumber, F_OIDEQ,
2855  ObjectIdGetDatum(relid));
2856 
2857  pg_class_scan = table_beginscan_catalog(pg_class, 1, key);
2858  tuple = heap_getnext(pg_class_scan, ForwardScanDirection);
2859  tuple = heap_copytuple(tuple);
2860  table_endscan(pg_class_scan);
2861  }
2862  else
2863  {
2864  /* normal case, use syscache */
2865  tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid));
2866  }
2867 
2868  if (!HeapTupleIsValid(tuple))
2869  elog(ERROR, "could not find tuple for relation %u", relid);
2870  rd_rel = (Form_pg_class) GETSTRUCT(tuple);
2871 
2872  /* Should this be a more comprehensive test? */
2873  Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX);
2874 
2875  /*
2876  * As a special hack, if we are dealing with an empty table and the
2877  * existing reltuples is -1, we leave that alone. This ensures that
2878  * creating an index as part of CREATE TABLE doesn't cause the table to
2879  * prematurely look like it's been vacuumed.
2880  */
2881  if (reltuples == 0 && rd_rel->reltuples < 0)
2882  reltuples = -1;
2883 
2884  /* Apply required updates, if any, to copied tuple */
2885 
2886  dirty = false;
2887  if (rd_rel->relhasindex != hasindex)
2888  {
2889  rd_rel->relhasindex = hasindex;
2890  dirty = true;
2891  }
2892 
2893  if (reltuples >= 0)
2894  {
2895  BlockNumber relpages = RelationGetNumberOfBlocks(rel);
2896  BlockNumber relallvisible;
2897 
2898  if (rd_rel->relkind != RELKIND_INDEX)
2899  visibilitymap_count(rel, &relallvisible, NULL);
2900  else /* don't bother for indexes */
2901  relallvisible = 0;
2902 
2903  if (rd_rel->relpages != (int32) relpages)
2904  {
2905  rd_rel->relpages = (int32) relpages;
2906  dirty = true;
2907  }
2908  if (rd_rel->reltuples != (float4) reltuples)
2909  {
2910  rd_rel->reltuples = (float4) reltuples;
2911  dirty = true;
2912  }
2913  if (rd_rel->relallvisible != (int32) relallvisible)
2914  {
2915  rd_rel->relallvisible = (int32) relallvisible;
2916  dirty = true;
2917  }
2918  }
2919 
2920  /*
2921  * If anything changed, write out the tuple
2922  */
2923  if (dirty)
2924  {
2925  heap_inplace_update(pg_class, tuple);
2926  /* the above sends a cache inval message */
2927  }
2928  else
2929  {
2930  /* no need to change tuple, but force relcache inval anyway */
2932  }
2933 
2934  heap_freetuple(tuple);
2935 
2936  table_close(pg_class, RowExclusiveLock);
2937 }
2938 
2939 
2940 /*
2941  * index_build - invoke access-method-specific index build procedure
2942  *
2943  * On entry, the index's catalog entries are valid, and its physical disk
2944  * file has been created but is empty. We call the AM-specific build
2945  * procedure to fill in the index contents. We then update the pg_class
2946  * entries of the index and heap relation as needed, using statistics
2947  * returned by ambuild as well as data passed by the caller.
2948  *
2949  * isreindex indicates we are recreating a previously-existing index.
2950  * parallel indicates if parallelism may be useful.
2951  *
2952  * Note: before Postgres 8.2, the passed-in heap and index Relations
2953  * were automatically closed by this routine. This is no longer the case.
2954  * The caller opened 'em, and the caller should close 'em.
2955  */
2956 void
2957 index_build(Relation heapRelation,
2958  Relation indexRelation,
2959  IndexInfo *indexInfo,
2960  bool isreindex,
2961  bool parallel)
2962 {
2963  IndexBuildResult *stats;
2964  Oid save_userid;
2965  int save_sec_context;
2966  int save_nestlevel;
2967 
2968  /*
2969  * sanity checks
2970  */
2971  Assert(RelationIsValid(indexRelation));
2972  Assert(PointerIsValid(indexRelation->rd_indam));
2973  Assert(PointerIsValid(indexRelation->rd_indam->ambuild));
2974  Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty));
2975 
2976  /*
2977  * Determine worker process details for parallel CREATE INDEX. Currently,
2978  * only btree has support for parallel builds.
2979  *
2980  * Note that planner considers parallel safety for us.
2981  */
2982  if (parallel && IsNormalProcessingMode() &&
2983  indexRelation->rd_rel->relam == BTREE_AM_OID)
2984  indexInfo->ii_ParallelWorkers =
2986  RelationGetRelid(indexRelation));
2987 
2988  if (indexInfo->ii_ParallelWorkers == 0)
2989  ereport(DEBUG1,
2990  (errmsg_internal("building index \"%s\" on table \"%s\" serially",
2991  RelationGetRelationName(indexRelation),
2992  RelationGetRelationName(heapRelation))));
2993  else
2994  ereport(DEBUG1,
2995  (errmsg_internal("building index \"%s\" on table \"%s\" with request for %d parallel workers",
2996  RelationGetRelationName(indexRelation),
2997  RelationGetRelationName(heapRelation),
2998  indexInfo->ii_ParallelWorkers)));
2999 
3000  /*
3001  * Switch to the table owner's userid, so that any index functions are run
3002  * as that user. Also lock down security-restricted operations and
3003  * arrange to make GUC variable changes local to this command.
3004  */
3005  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3006  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3007  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3008  save_nestlevel = NewGUCNestLevel();
3009 
3010  /* Set up initial progress report status */
3011  {
3012  const int progress_index[] = {
3019  };
3020  const int64 progress_vals[] = {
3023  0, 0, 0, 0
3024  };
3025 
3026  pgstat_progress_update_multi_param(6, progress_index, progress_vals);
3027  }
3028 
3029  /*
3030  * Call the access method's build procedure
3031  */
3032  stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation,
3033  indexInfo);
3034  Assert(PointerIsValid(stats));
3035 
3036  /*
3037  * If this is an unlogged index, we may need to write out an init fork for
3038  * it -- but we must first check whether one already exists. If, for
3039  * example, an unlogged relation is truncated in the transaction that
3040  * created it, or truncated twice in a subsequent transaction, the
3041  * relfilenumber won't change, and nothing needs to be done here.
3042  */
3043  if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED &&
3044  !smgrexists(RelationGetSmgr(indexRelation), INIT_FORKNUM))
3045  {
3046  smgrcreate(RelationGetSmgr(indexRelation), INIT_FORKNUM, false);
3047  indexRelation->rd_indam->ambuildempty(indexRelation);
3048  }
3049 
3050  /*
3051  * If we found any potentially broken HOT chains, mark the index as not
3052  * being usable until the current transaction is below the event horizon.
3053  * See src/backend/access/heap/README.HOT for discussion. Also set this
3054  * if early pruning/vacuuming is enabled for the heap relation. While it
3055  * might become safe to use the index earlier based on actual cleanup
3056  * activity and other active transactions, the test for that would be much
3057  * more complex and would require some form of blocking, so keep it simple
3058  * and fast by just using the current transaction.
3059  *
3060  * However, when reindexing an existing index, we should do nothing here.
3061  * Any HOT chains that are broken with respect to the index must predate
3062  * the index's original creation, so there is no need to change the
3063  * index's usability horizon. Moreover, we *must not* try to change the
3064  * index's pg_index entry while reindexing pg_index itself, and this
3065  * optimization nicely prevents that. The more complex rules needed for a
3066  * reindex are handled separately after this function returns.
3067  *
3068  * We also need not set indcheckxmin during a concurrent index build,
3069  * because we won't set indisvalid true until all transactions that care
3070  * about the broken HOT chains or early pruning/vacuuming are gone.
3071  *
3072  * Therefore, this code path can only be taken during non-concurrent
3073  * CREATE INDEX. Thus the fact that heap_update will set the pg_index
3074  * tuple's xmin doesn't matter, because that tuple was created in the
3075  * current transaction anyway. That also means we don't need to worry
3076  * about any concurrent readers of the tuple; no other transaction can see
3077  * it yet.
3078  */
3079  if ((indexInfo->ii_BrokenHotChain || EarlyPruningEnabled(heapRelation)) &&
3080  !isreindex &&
3081  !indexInfo->ii_Concurrent)
3082  {
3083  Oid indexId = RelationGetRelid(indexRelation);
3084  Relation pg_index;
3085  HeapTuple indexTuple;
3086  Form_pg_index indexForm;
3087 
3088  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3089 
3090  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3091  ObjectIdGetDatum(indexId));
3092  if (!HeapTupleIsValid(indexTuple))
3093  elog(ERROR, "cache lookup failed for index %u", indexId);
3094  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3095 
3096  /* If it's a new index, indcheckxmin shouldn't be set ... */
3097  Assert(!indexForm->indcheckxmin);
3098 
3099  indexForm->indcheckxmin = true;
3100  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3101 
3102  heap_freetuple(indexTuple);
3103  table_close(pg_index, RowExclusiveLock);
3104  }
3105 
3106  /*
3107  * Update heap and index pg_class rows
3108  */
3109  index_update_stats(heapRelation,
3110  true,
3111  stats->heap_tuples);
3112 
3113  index_update_stats(indexRelation,
3114  false,
3115  stats->index_tuples);
3116 
3117  /* Make the updated catalog row versions visible */
3119 
3120  /*
3121  * If it's for an exclusion constraint, make a second pass over the heap
3122  * to verify that the constraint is satisfied. We must not do this until
3123  * the index is fully valid. (Broken HOT chains shouldn't matter, though;
3124  * see comments for IndexCheckExclusion.)
3125  */
3126  if (indexInfo->ii_ExclusionOps != NULL)
3127  IndexCheckExclusion(heapRelation, indexRelation, indexInfo);
3128 
3129  /* Roll back any GUC changes executed by index functions */
3130  AtEOXact_GUC(false, save_nestlevel);
3131 
3132  /* Restore userid and security context */
3133  SetUserIdAndSecContext(save_userid, save_sec_context);
3134 }
3135 
3136 /*
3137  * IndexCheckExclusion - verify that a new exclusion constraint is satisfied
3138  *
3139  * When creating an exclusion constraint, we first build the index normally
3140  * and then rescan the heap to check for conflicts. We assume that we only
3141  * need to validate tuples that are live according to an up-to-date snapshot,
3142  * and that these were correctly indexed even in the presence of broken HOT
3143  * chains. This should be OK since we are holding at least ShareLock on the
3144  * table, meaning there can be no uncommitted updates from other transactions.
3145  * (Note: that wouldn't necessarily work for system catalogs, since many
3146  * operations release write lock early on the system catalogs.)
3147  */
3148 static void
3150  Relation indexRelation,
3151  IndexInfo *indexInfo)
3152 {
3153  TableScanDesc scan;
3155  bool isnull[INDEX_MAX_KEYS];
3156  ExprState *predicate;
3157  TupleTableSlot *slot;
3158  EState *estate;
3159  ExprContext *econtext;
3160  Snapshot snapshot;
3161 
3162  /*
3163  * If we are reindexing the target index, mark it as no longer being
3164  * reindexed, to forestall an Assert in index_beginscan when we try to use
3165  * the index for probes. This is OK because the index is now fully valid.
3166  */
3169 
3170  /*
3171  * Need an EState for evaluation of index expressions and partial-index
3172  * predicates. Also a slot to hold the current tuple.
3173  */
3174  estate = CreateExecutorState();
3175  econtext = GetPerTupleExprContext(estate);
3176  slot = table_slot_create(heapRelation, NULL);
3177 
3178  /* Arrange for econtext's scan tuple to be the tuple under test */
3179  econtext->ecxt_scantuple = slot;
3180 
3181  /* Set up execution state for predicate, if any. */
3182  predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
3183 
3184  /*
3185  * Scan all live tuples in the base relation.
3186  */
3187  snapshot = RegisterSnapshot(GetLatestSnapshot());
3188  scan = table_beginscan_strat(heapRelation, /* relation */
3189  snapshot, /* snapshot */
3190  0, /* number of keys */
3191  NULL, /* scan key */
3192  true, /* buffer access strategy OK */
3193  true); /* syncscan OK */
3194 
3195  while (table_scan_getnextslot(scan, ForwardScanDirection, slot))
3196  {
3198 
3199  /*
3200  * In a partial index, ignore tuples that don't satisfy the predicate.
3201  */
3202  if (predicate != NULL)
3203  {
3204  if (!ExecQual(predicate, econtext))
3205  continue;
3206  }
3207 
3208  /*
3209  * Extract index column values, including computing expressions.
3210  */
3211  FormIndexDatum(indexInfo,
3212  slot,
3213  estate,
3214  values,
3215  isnull);
3216 
3217  /*
3218  * Check that this tuple has no conflicts.
3219  */
3220  check_exclusion_constraint(heapRelation,
3221  indexRelation, indexInfo,
3222  &(slot->tts_tid), values, isnull,
3223  estate, true);
3224 
3226  }
3227 
3228  table_endscan(scan);
3229  UnregisterSnapshot(snapshot);
3230 
3232 
3233  FreeExecutorState(estate);
3234 
3235  /* These may have been pointing to the now-gone estate */
3236  indexInfo->ii_ExpressionsState = NIL;
3237  indexInfo->ii_PredicateState = NULL;
3238 }
3239 
3240 
3241 /*
3242  * validate_index - support code for concurrent index builds
3243  *
3244  * We do a concurrent index build by first inserting the catalog entry for the
3245  * index via index_create(), marking it not indisready and not indisvalid.
3246  * Then we commit our transaction and start a new one, then we wait for all
3247  * transactions that could have been modifying the table to terminate. Now
3248  * we know that any subsequently-started transactions will see the index and
3249  * honor its constraints on HOT updates; so while existing HOT-chains might
3250  * be broken with respect to the index, no currently live tuple will have an
3251  * incompatible HOT update done to it. We now build the index normally via
3252  * index_build(), while holding a weak lock that allows concurrent
3253  * insert/update/delete. Also, we index only tuples that are valid
3254  * as of the start of the scan (see table_index_build_scan), whereas a normal
3255  * build takes care to include recently-dead tuples. This is OK because
3256  * we won't mark the index valid until all transactions that might be able
3257  * to see those tuples are gone. The reason for doing that is to avoid
3258  * bogus unique-index failures due to concurrent UPDATEs (we might see
3259  * different versions of the same row as being valid when we pass over them,
3260  * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that
3261  * does not contain any tuples added to the table while we built the index.
3262  *
3263  * Next, we mark the index "indisready" (but still not "indisvalid") and
3264  * commit the second transaction and start a third. Again we wait for all
3265  * transactions that could have been modifying the table to terminate. Now
3266  * we know that any subsequently-started transactions will see the index and
3267  * insert their new tuples into it. We then take a new reference snapshot
3268  * which is passed to validate_index(). Any tuples that are valid according
3269  * to this snap, but are not in the index, must be added to the index.
3270  * (Any tuples committed live after the snap will be inserted into the
3271  * index by their originating transaction. Any tuples committed dead before
3272  * the snap need not be indexed, because we will wait out all transactions
3273  * that might care about them before we mark the index valid.)
3274  *
3275  * validate_index() works by first gathering all the TIDs currently in the
3276  * index, using a bulkdelete callback that just stores the TIDs and doesn't
3277  * ever say "delete it". (This should be faster than a plain indexscan;
3278  * also, not all index AMs support full-index indexscan.) Then we sort the
3279  * TIDs, and finally scan the table doing a "merge join" against the TID list
3280  * to see which tuples are missing from the index. Thus we will ensure that
3281  * all tuples valid according to the reference snapshot are in the index.
3282  *
3283  * Building a unique index this way is tricky: we might try to insert a
3284  * tuple that is already dead or is in process of being deleted, and we
3285  * mustn't have a uniqueness failure against an updated version of the same
3286  * row. We could try to check the tuple to see if it's already dead and tell
3287  * index_insert() not to do the uniqueness check, but that still leaves us
3288  * with a race condition against an in-progress update. To handle that,
3289  * we expect the index AM to recheck liveness of the to-be-inserted tuple
3290  * before it declares a uniqueness error.
3291  *
3292  * After completing validate_index(), we wait until all transactions that
3293  * were alive at the time of the reference snapshot are gone; this is
3294  * necessary to be sure there are none left with a transaction snapshot
3295  * older than the reference (and hence possibly able to see tuples we did
3296  * not index). Then we mark the index "indisvalid" and commit. Subsequent
3297  * transactions will be able to use it for queries.
3298  *
3299  * Doing two full table scans is a brute-force strategy. We could try to be
3300  * cleverer, eg storing new tuples in a special area of the table (perhaps
3301  * making the table append-only by setting use_fsm). However that would
3302  * add yet more locking issues.
3303  */
3304 void
3305 validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
3306 {
3307  Relation heapRelation,
3308  indexRelation;
3309  IndexInfo *indexInfo;
3310  IndexVacuumInfo ivinfo;
3312  Oid save_userid;
3313  int save_sec_context;
3314  int save_nestlevel;
3315 
3316  {
3317  const int progress_index[] = {
3323  };
3324  const int64 progress_vals[] = {
3326  0, 0, 0, 0
3327  };
3328 
3329  pgstat_progress_update_multi_param(5, progress_index, progress_vals);
3330  }
3331 
3332  /* Open and lock the parent heap relation */
3333  heapRelation = table_open(heapId, ShareUpdateExclusiveLock);
3334 
3335  /*
3336  * Switch to the table owner's userid, so that any index functions are run
3337  * as that user. Also lock down security-restricted operations and
3338  * arrange to make GUC variable changes local to this command.
3339  */
3340  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3341  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3342  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3343  save_nestlevel = NewGUCNestLevel();
3344 
3345  indexRelation = index_open(indexId, RowExclusiveLock);
3346 
3347  /*
3348  * Fetch info needed for index_insert. (You might think this should be
3349  * passed in from DefineIndex, but its copy is long gone due to having
3350  * been built in a previous transaction.)
3351  */
3352  indexInfo = BuildIndexInfo(indexRelation);
3353 
3354  /* mark build is concurrent just for consistency */
3355  indexInfo->ii_Concurrent = true;
3356 
3357  /*
3358  * Scan the index and gather up all the TIDs into a tuplesort object.
3359  */
3360  ivinfo.index = indexRelation;
3361  ivinfo.heaprel = heapRelation;
3362  ivinfo.analyze_only = false;
3363  ivinfo.report_progress = true;
3364  ivinfo.estimated_count = true;
3365  ivinfo.message_level = DEBUG2;
3366  ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples;
3367  ivinfo.strategy = NULL;
3368 
3369  /*
3370  * Encode TIDs as int8 values for the sort, rather than directly sorting
3371  * item pointers. This can be significantly faster, primarily because TID
3372  * is a pass-by-reference type on all platforms, whereas int8 is
3373  * pass-by-value on most platforms.
3374  */
3375  state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator,
3376  InvalidOid, false,
3378  NULL, TUPLESORT_NONE);
3379  state.htups = state.itups = state.tups_inserted = 0;
3380 
3381  /* ambulkdelete updates progress metrics */
3382  (void) index_bulk_delete(&ivinfo, NULL,
3383  validate_index_callback, (void *) &state);
3384 
3385  /* Execute the sort */
3386  {
3387  const int progress_index[] = {
3391  };
3392  const int64 progress_vals[] = {
3394  0, 0
3395  };
3396 
3397  pgstat_progress_update_multi_param(3, progress_index, progress_vals);
3398  }
3399  tuplesort_performsort(state.tuplesort);
3400 
3401  /*
3402  * Now scan the heap and "merge" it with the index
3403  */
3406  table_index_validate_scan(heapRelation,
3407  indexRelation,
3408  indexInfo,
3409  snapshot,
3410  &state);
3411 
3412  /* Done with tuplesort object */
3413  tuplesort_end(state.tuplesort);
3414 
3415  elog(DEBUG2,
3416  "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
3417  state.htups, state.itups, state.tups_inserted);
3418 
3419  /* Roll back any GUC changes executed by index functions */
3420  AtEOXact_GUC(false, save_nestlevel);
3421 
3422  /* Restore userid and security context */
3423  SetUserIdAndSecContext(save_userid, save_sec_context);
3424 
3425  /* Close rels, but keep locks */
3426  index_close(indexRelation, NoLock);
3427  table_close(heapRelation, NoLock);
3428 }
3429 
3430 /*
3431  * validate_index_callback - bulkdelete callback to collect the index TIDs
3432  */
3433 static bool
3434 validate_index_callback(ItemPointer itemptr, void *opaque)
3435 {
3437  int64 encoded = itemptr_encode(itemptr);
3438 
3439  tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false);
3440  state->itups += 1;
3441  return false; /* never actually delete anything */
3442 }
3443 
3444 /*
3445  * index_set_state_flags - adjust pg_index state flags
3446  *
3447  * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index
3448  * flags that denote the index's state.
3449  *
3450  * Note that CatalogTupleUpdate() sends a cache invalidation message for the
3451  * tuple, so other sessions will hear about the update as soon as we commit.
3452  */
3453 void
3455 {
3456  Relation pg_index;
3457  HeapTuple indexTuple;
3458  Form_pg_index indexForm;
3459 
3460  /* Open pg_index and fetch a writable copy of the index's tuple */
3461  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3462 
3463  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3464  ObjectIdGetDatum(indexId));
3465  if (!HeapTupleIsValid(indexTuple))
3466  elog(ERROR, "cache lookup failed for index %u", indexId);
3467  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3468 
3469  /* Perform the requested state change on the copy */
3470  switch (action)
3471  {
3473  /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */
3474  Assert(indexForm->indislive);
3475  Assert(!indexForm->indisready);
3476  Assert(!indexForm->indisvalid);
3477  indexForm->indisready = true;
3478  break;
3480  /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */
3481  Assert(indexForm->indislive);
3482  Assert(indexForm->indisready);
3483  Assert(!indexForm->indisvalid);
3484  indexForm->indisvalid = true;
3485  break;
3487 
3488  /*
3489  * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence
3490  *
3491  * If indisready == true we leave it set so the index still gets
3492  * maintained by active transactions. We only need to ensure that
3493  * indisvalid is false. (We don't assert that either is initially
3494  * true, though, since we want to be able to retry a DROP INDEX
3495  * CONCURRENTLY that failed partway through.)
3496  *
3497  * Note: the CLUSTER logic assumes that indisclustered cannot be
3498  * set on any invalid index, so clear that flag too. For
3499  * cleanliness, also clear indisreplident.
3500  */
3501  indexForm->indisvalid = false;
3502  indexForm->indisclustered = false;
3503  indexForm->indisreplident = false;
3504  break;
3505  case INDEX_DROP_SET_DEAD:
3506 
3507  /*
3508  * Clear indisready/indislive during DROP INDEX CONCURRENTLY
3509  *
3510  * We clear both indisready and indislive, because we not only
3511  * want to stop updates, we want to prevent sessions from touching
3512  * the index at all.
3513  */
3514  Assert(!indexForm->indisvalid);
3515  Assert(!indexForm->indisclustered);
3516  Assert(!indexForm->indisreplident);
3517  indexForm->indisready = false;
3518  indexForm->indislive = false;
3519  break;
3520  }
3521 
3522  /* ... and update it */
3523  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3524 
3525  table_close(pg_index, RowExclusiveLock);
3526 }
3527 
3528 
3529 /*
3530  * IndexGetRelation: given an index's relation OID, get the OID of the
3531  * relation it is an index on. Uses the system cache.
3532  */
3533 Oid
3534 IndexGetRelation(Oid indexId, bool missing_ok)
3535 {
3536  HeapTuple tuple;
3538  Oid result;
3539 
3540  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
3541  if (!HeapTupleIsValid(tuple))
3542  {
3543  if (missing_ok)
3544  return InvalidOid;
3545  elog(ERROR, "cache lookup failed for index %u", indexId);
3546  }
3547  index = (Form_pg_index) GETSTRUCT(tuple);
3548  Assert(index->indexrelid == indexId);
3549 
3550  result = index->indrelid;
3551  ReleaseSysCache(tuple);
3552  return result;
3553 }
3554 
3555 /*
3556  * reindex_index - This routine is used to recreate a single index
3557  */
3558 void
3559 reindex_index(Oid indexId, bool skip_constraint_checks, char persistence,
3560  ReindexParams *params)
3561 {
3562  Relation iRel,
3563  heapRelation;
3564  Oid heapId;
3565  Oid save_userid;
3566  int save_sec_context;
3567  int save_nestlevel;
3568  IndexInfo *indexInfo;
3569  volatile bool skipped_constraint = false;
3570  PGRUsage ru0;
3571  bool progress = ((params->options & REINDEXOPT_REPORT_PROGRESS) != 0);
3572  bool set_tablespace = false;
3573 
3574  pg_rusage_init(&ru0);
3575 
3576  /*
3577  * Open and lock the parent heap relation. ShareLock is sufficient since
3578  * we only need to be sure no schema or data changes are going on.
3579  */
3580  heapId = IndexGetRelation(indexId,
3581  (params->options & REINDEXOPT_MISSING_OK) != 0);
3582  /* if relation is missing, leave */
3583  if (!OidIsValid(heapId))
3584  return;
3585 
3586  if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3587  heapRelation = try_table_open(heapId, ShareLock);
3588  else
3589  heapRelation = table_open(heapId, ShareLock);
3590 
3591  /* if relation is gone, leave */
3592  if (!heapRelation)
3593  return;
3594 
3595  /*
3596  * Switch to the table owner's userid, so that any index functions are run
3597  * as that user. Also lock down security-restricted operations and
3598  * arrange to make GUC variable changes local to this command.
3599  */
3600  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3601  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3602  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3603  save_nestlevel = NewGUCNestLevel();
3604 
3605  if (progress)
3606  {
3607  const int progress_cols[] = {
3610  };
3611  const int64 progress_vals[] = {
3613  indexId
3614  };
3615 
3617  heapId);
3618  pgstat_progress_update_multi_param(2, progress_cols, progress_vals);
3619  }
3620 
3621  /*
3622  * Open the target index relation and get an exclusive lock on it, to
3623  * ensure that no one else is touching this particular index.
3624  */
3625  iRel = index_open(indexId, AccessExclusiveLock);
3626 
3627  if (progress)
3629  iRel->rd_rel->relam);
3630 
3631  /*
3632  * Partitioned indexes should never get processed here, as they have no
3633  * physical storage.
3634  */
3635  if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
3636  elog(ERROR, "cannot reindex partitioned index \"%s.%s\"",
3638  RelationGetRelationName(iRel));
3639 
3640  /*
3641  * Don't allow reindex on temp tables of other backends ... their local
3642  * buffer manager is not going to cope.
3643  */
3644  if (RELATION_IS_OTHER_TEMP(iRel))
3645  ereport(ERROR,
3646  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3647  errmsg("cannot reindex temporary tables of other sessions")));
3648 
3649  /*
3650  * Don't allow reindex of an invalid index on TOAST table. This is a
3651  * leftover from a failed REINDEX CONCURRENTLY, and if rebuilt it would
3652  * not be possible to drop it anymore.
3653  */
3655  !get_index_isvalid(indexId))
3656  ereport(ERROR,
3657  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3658  errmsg("cannot reindex invalid index on TOAST table")));
3659 
3660  /*
3661  * System relations cannot be moved even if allow_system_table_mods is
3662  * enabled to keep things consistent with the concurrent case where all
3663  * the indexes of a relation are processed in series, including indexes of
3664  * toast relations.
3665  *
3666  * Note that this check is not part of CheckRelationTableSpaceMove() as it
3667  * gets used for ALTER TABLE SET TABLESPACE that could cascade across
3668  * toast relations.
3669  */
3670  if (OidIsValid(params->tablespaceOid) &&
3671  IsSystemRelation(iRel))
3672  ereport(ERROR,
3673  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3674  errmsg("cannot move system relation \"%s\"",
3675  RelationGetRelationName(iRel))));
3676 
3677  /* Check if the tablespace of this index needs to be changed */
3678  if (OidIsValid(params->tablespaceOid) &&
3680  set_tablespace = true;
3681 
3682  /*
3683  * Also check for active uses of the index in the current transaction; we
3684  * don't want to reindex underneath an open indexscan.
3685  */
3686  CheckTableNotInUse(iRel, "REINDEX INDEX");
3687 
3688  /* Set new tablespace, if requested */
3689  if (set_tablespace)
3690  {
3691  /* Update its pg_class row */
3693 
3694  /*
3695  * Schedule unlinking of the old index storage at transaction commit.
3696  */
3697  RelationDropStorage(iRel);
3699 
3700  /* Make sure the reltablespace change is visible */
3702  }
3703 
3704  /*
3705  * All predicate locks on the index are about to be made invalid. Promote
3706  * them to relation locks on the heap.
3707  */
3709 
3710  /* Fetch info needed for index_build */
3711  indexInfo = BuildIndexInfo(iRel);
3712 
3713  /* If requested, skip checking uniqueness/exclusion constraints */
3714  if (skip_constraint_checks)
3715  {
3716  if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL)
3717  skipped_constraint = true;
3718  indexInfo->ii_Unique = false;
3719  indexInfo->ii_ExclusionOps = NULL;
3720  indexInfo->ii_ExclusionProcs = NULL;
3721  indexInfo->ii_ExclusionStrats = NULL;
3722  }
3723 
3724  /* Suppress use of the target index while rebuilding it */
3725  SetReindexProcessing(heapId, indexId);
3726 
3727  /* Create a new physical relation for the index */
3728  RelationSetNewRelfilenumber(iRel, persistence);
3729 
3730  /* Initialize the index and rebuild */
3731  /* Note: we do not need to re-establish pkey setting */
3732  index_build(heapRelation, iRel, indexInfo, true, true);
3733 
3734  /* Re-allow use of target index */
3736 
3737  /*
3738  * If the index is marked invalid/not-ready/dead (ie, it's from a failed
3739  * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway),
3740  * and we didn't skip a uniqueness check, we can now mark it valid. This
3741  * allows REINDEX to be used to clean up in such cases.
3742  *
3743  * We can also reset indcheckxmin, because we have now done a
3744  * non-concurrent index build, *except* in the case where index_build
3745  * found some still-broken HOT chains. If it did, and we don't have to
3746  * change any of the other flags, we just leave indcheckxmin alone (note
3747  * that index_build won't have changed it, because this is a reindex).
3748  * This is okay and desirable because not updating the tuple leaves the
3749  * index's usability horizon (recorded as the tuple's xmin value) the same
3750  * as it was.
3751  *
3752  * But, if the index was invalid/not-ready/dead and there were broken HOT
3753  * chains, we had better force indcheckxmin true, because the normal
3754  * argument that the HOT chains couldn't conflict with the index is
3755  * suspect for an invalid index. (A conflict is definitely possible if
3756  * the index was dead. It probably shouldn't happen otherwise, but let's
3757  * be conservative.) In this case advancing the usability horizon is
3758  * appropriate.
3759  *
3760  * Another reason for avoiding unnecessary updates here is that while
3761  * reindexing pg_index itself, we must not try to update tuples in it.
3762  * pg_index's indexes should always have these flags in their clean state,
3763  * so that won't happen.
3764  *
3765  * If early pruning/vacuuming is enabled for the heap relation, the
3766  * usability horizon must be advanced to the current transaction on every
3767  * build or rebuild. pg_index is OK in this regard because catalog tables
3768  * are not subject to early cleanup.
3769  */
3770  if (!skipped_constraint)
3771  {
3772  Relation pg_index;
3773  HeapTuple indexTuple;
3774  Form_pg_index indexForm;
3775  bool index_bad;
3776  bool early_pruning_enabled = EarlyPruningEnabled(heapRelation);
3777 
3778  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3779 
3780  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3781  ObjectIdGetDatum(indexId));
3782  if (!HeapTupleIsValid(indexTuple))
3783  elog(ERROR, "cache lookup failed for index %u", indexId);
3784  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3785 
3786  index_bad = (!indexForm->indisvalid ||
3787  !indexForm->indisready ||
3788  !indexForm->indislive);
3789  if (index_bad ||
3790  (indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain) ||
3791  early_pruning_enabled)
3792  {
3793  if (!indexInfo->ii_BrokenHotChain && !early_pruning_enabled)
3794  indexForm->indcheckxmin = false;
3795  else if (index_bad || early_pruning_enabled)
3796  indexForm->indcheckxmin = true;
3797  indexForm->indisvalid = true;
3798  indexForm->indisready = true;
3799  indexForm->indislive = true;
3800  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3801 
3802  /*
3803  * Invalidate the relcache for the table, so that after we commit
3804  * all sessions will refresh the table's index list. This ensures
3805  * that if anyone misses seeing the pg_index row during this
3806  * update, they'll refresh their list before attempting any update
3807  * on the table.
3808  */
3809  CacheInvalidateRelcache(heapRelation);
3810  }
3811 
3812  table_close(pg_index, RowExclusiveLock);
3813  }
3814 
3815  /* Log what we did */
3816  if ((params->options & REINDEXOPT_VERBOSE) != 0)
3817  ereport(INFO,
3818  (errmsg("index \"%s\" was reindexed",
3819  get_rel_name(indexId)),
3820  errdetail_internal("%s",
3821  pg_rusage_show(&ru0))));
3822 
3823  /* Roll back any GUC changes executed by index functions */
3824  AtEOXact_GUC(false, save_nestlevel);
3825 
3826  /* Restore userid and security context */
3827  SetUserIdAndSecContext(save_userid, save_sec_context);
3828 
3829  /* Close rels, but keep locks */
3830  index_close(iRel, NoLock);
3831  table_close(heapRelation, NoLock);
3832 
3833  if (progress)
3835 }
3836 
3837 /*
3838  * reindex_relation - This routine is used to recreate all indexes
3839  * of a relation (and optionally its toast relation too, if any).
3840  *
3841  * "flags" is a bitmask that can include any combination of these bits:
3842  *
3843  * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any).
3844  *
3845  * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely
3846  * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its
3847  * indexes are inconsistent with it. This makes things tricky if the relation
3848  * is a system catalog that we might consult during the reindexing. To deal
3849  * with that case, we mark all of the indexes as pending rebuild so that they
3850  * won't be trusted until rebuilt. The caller is required to call us *without*
3851  * having made the rebuilt table visible by doing CommandCounterIncrement;
3852  * we'll do CCI after having collected the index list. (This way we can still
3853  * use catalog indexes while collecting the list.)
3854  *
3855  * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion
3856  * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or
3857  * CLUSTER on a system catalog must omit this flag. REINDEX should be used to
3858  * rebuild an index if constraint inconsistency is suspected. For optimal
3859  * performance, other callers should include the flag only after transforming
3860  * the data in a manner that risks a change in constraint validity.
3861  *
3862  * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the
3863  * rebuilt indexes to unlogged.
3864  *
3865  * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the
3866  * rebuilt indexes to permanent.
3867  *
3868  * Returns true if any indexes were rebuilt (including toast table's index
3869  * when relevant). Note that a CommandCounterIncrement will occur after each
3870  * index rebuild.
3871  */
3872 bool
3873 reindex_relation(Oid relid, int flags, ReindexParams *params)
3874 {
3875  Relation rel;
3876  Oid toast_relid;
3877  List *indexIds;
3878  char persistence;
3879  bool result;
3880  ListCell *indexId;
3881  int i;
3882 
3883  /*
3884  * Open and lock the relation. ShareLock is sufficient since we only need
3885  * to prevent schema and data changes in it. The lock level used here
3886  * should match ReindexTable().
3887  */
3888  if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3889  rel = try_table_open(relid, ShareLock);
3890  else
3891  rel = table_open(relid, ShareLock);
3892 
3893  /* if relation is gone, leave */
3894  if (!rel)
3895  return false;
3896 
3897  /*
3898  * Partitioned tables should never get processed here, as they have no
3899  * physical storage.
3900  */
3901  if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
3902  elog(ERROR, "cannot reindex partitioned table \"%s.%s\"",
3905 
3906  toast_relid = rel->rd_rel->reltoastrelid;
3907 
3908  /*
3909  * Get the list of index OIDs for this relation. (We trust to the
3910  * relcache to get this with a sequential scan if ignoring system
3911  * indexes.)
3912  */
3913  indexIds = RelationGetIndexList(rel);
3914 
3915  if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
3916  {
3917  /* Suppress use of all the indexes until they are rebuilt */
3918  SetReindexPending(indexIds);
3919 
3920  /*
3921  * Make the new heap contents visible --- now things might be
3922  * inconsistent!
3923  */
3925  }
3926 
3927  /*
3928  * Compute persistence of indexes: same as that of owning rel, unless
3929  * caller specified otherwise.
3930  */
3932  persistence = RELPERSISTENCE_UNLOGGED;
3933  else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT)
3934  persistence = RELPERSISTENCE_PERMANENT;
3935  else
3936  persistence = rel->rd_rel->relpersistence;
3937 
3938  /* Reindex all the indexes. */
3939  i = 1;
3940  foreach(indexId, indexIds)
3941  {
3942  Oid indexOid = lfirst_oid(indexId);
3943  Oid indexNamespaceId = get_rel_namespace(indexOid);
3944 
3945  /*
3946  * Skip any invalid indexes on a TOAST table. These can only be
3947  * duplicate leftovers from a failed REINDEX CONCURRENTLY, and if
3948  * rebuilt it would not be possible to drop them anymore.
3949  */
3950  if (IsToastNamespace(indexNamespaceId) &&
3951  !get_index_isvalid(indexOid))
3952  {
3953  ereport(WARNING,
3954  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3955  errmsg("cannot reindex invalid index \"%s.%s\" on TOAST table, skipping",
3956  get_namespace_name(indexNamespaceId),
3957  get_rel_name(indexOid))));
3958  continue;
3959  }
3960 
3961  reindex_index(indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS),
3962  persistence, params);
3963 
3965 
3966  /* Index should no longer be in the pending list */
3967  Assert(!ReindexIsProcessingIndex(indexOid));
3968 
3969  /* Set index rebuild count */
3971  i);
3972  i++;
3973  }
3974 
3975  /*
3976  * Close rel, but continue to hold the lock.
3977  */
3978  table_close(rel, NoLock);
3979 
3980  result = (indexIds != NIL);
3981 
3982  /*
3983  * If the relation has a secondary toast rel, reindex that too while we
3984  * still hold the lock on the main table.
3985  */
3986  if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid))
3987  {
3988  /*
3989  * Note that this should fail if the toast relation is missing, so
3990  * reset REINDEXOPT_MISSING_OK. Even if a new tablespace is set for
3991  * the parent relation, the indexes on its toast table are not moved.
3992  * This rule is enforced by setting tablespaceOid to InvalidOid.
3993  */
3994  ReindexParams newparams = *params;
3995 
3996  newparams.options &= ~(REINDEXOPT_MISSING_OK);
3997  newparams.tablespaceOid = InvalidOid;
3998  result |= reindex_relation(toast_relid, flags, &newparams);
3999  }
4000 
4001  return result;
4002 }
4003 
4004 
4005 /* ----------------------------------------------------------------
4006  * System index reindexing support
4007  *
4008  * When we are busy reindexing a system index, this code provides support
4009  * for preventing catalog lookups from using that index. We also make use
4010  * of this to catch attempted uses of user indexes during reindexing of
4011  * those indexes. This information is propagated to parallel workers;
4012  * attempting to change it during a parallel operation is not permitted.
4013  * ----------------------------------------------------------------
4014  */
4015 
4019 static int reindexingNestLevel = 0;
4020 
4021 /*
4022  * ReindexIsProcessingHeap
4023  * True if heap specified by OID is currently being reindexed.
4024  */
4025 bool
4027 {
4028  return heapOid == currentlyReindexedHeap;
4029 }
4030 
4031 /*
4032  * ReindexIsCurrentlyProcessingIndex
4033  * True if index specified by OID is currently being reindexed.
4034  */
4035 static bool
4037 {
4038  return indexOid == currentlyReindexedIndex;
4039 }
4040 
4041 /*
4042  * ReindexIsProcessingIndex
4043  * True if index specified by OID is currently being reindexed,
4044  * or should be treated as invalid because it is awaiting reindex.
4045  */
4046 bool
4048 {
4049  return indexOid == currentlyReindexedIndex ||
4051 }
4052 
4053 /*
4054  * SetReindexProcessing
4055  * Set flag that specified heap/index are being reindexed.
4056  */
4057 static void
4058 SetReindexProcessing(Oid heapOid, Oid indexOid)
4059 {
4060  Assert(OidIsValid(heapOid) && OidIsValid(indexOid));
4061  /* Reindexing is not re-entrant. */
4063  elog(ERROR, "cannot reindex while reindexing");
4064  currentlyReindexedHeap = heapOid;
4065  currentlyReindexedIndex = indexOid;
4066  /* Index is no longer "pending" reindex. */
4067  RemoveReindexPending(indexOid);
4068  /* This may have been set already, but in case it isn't, do so now. */
4070 }
4071 
4072 /*
4073  * ResetReindexProcessing
4074  * Unset reindexing status.
4075  */
4076 static void
4078 {
4081  /* reindexingNestLevel remains set till end of (sub)transaction */
4082 }
4083 
4084 /*
4085  * SetReindexPending
4086  * Mark the given indexes as pending reindex.
4087  *
4088  * NB: we assume that the current memory context stays valid throughout.
4089  */
4090 static void
4092 {
4093  /* Reindexing is not re-entrant. */
4095  elog(ERROR, "cannot reindex while reindexing");
4096  if (IsInParallelMode())
4097  elog(ERROR, "cannot modify reindex state during a parallel operation");
4100 }
4101 
4102 /*
4103  * RemoveReindexPending
4104  * Remove the given index from the pending list.
4105  */
4106 static void
4108 {
4109  if (IsInParallelMode())
4110  elog(ERROR, "cannot modify reindex state during a parallel operation");
4112  indexOid);
4113 }
4114 
4115 /*
4116  * ResetReindexState
4117  * Clear all reindexing state during (sub)transaction abort.
4118  */
4119 void
4120 ResetReindexState(int nestLevel)
4121 {
4122  /*
4123  * Because reindexing is not re-entrant, we don't need to cope with nested
4124  * reindexing states. We just need to avoid messing up the outer-level
4125  * state in case a subtransaction fails within a REINDEX. So checking the
4126  * current nest level against that of the reindex operation is sufficient.
4127  */
4128  if (reindexingNestLevel >= nestLevel)
4129  {
4132 
4133  /*
4134  * We needn't try to release the contents of pendingReindexedIndexes;
4135  * that list should be in a transaction-lifespan context, so it will
4136  * go away automatically.
4137  */
4139 
4140  reindexingNestLevel = 0;
4141  }
4142 }
4143 
4144 /*
4145  * EstimateReindexStateSpace
4146  * Estimate space needed to pass reindex state to parallel workers.
4147  */
4148 Size
4150 {
4153 }
4154 
4155 /*
4156  * SerializeReindexState
4157  * Serialize reindex state for parallel workers.
4158  */
4159 void
4160 SerializeReindexState(Size maxsize, char *start_address)
4161 {
4162  SerializedReindexState *sistate = (SerializedReindexState *) start_address;
4163  int c = 0;
4164  ListCell *lc;
4165 
4169  foreach(lc, pendingReindexedIndexes)
4170  sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc);
4171 }
4172 
4173 /*
4174  * RestoreReindexState
4175  * Restore reindex state in a parallel worker.
4176  */
4177 void
4178 RestoreReindexState(void *reindexstate)
4179 {
4180  SerializedReindexState *sistate = (SerializedReindexState *) reindexstate;
4181  int c = 0;
4182  MemoryContext oldcontext;
4183 
4186 
4189  for (c = 0; c < sistate->numPendingReindexedIndexes; ++c)
4192  sistate->pendingReindexedIndexes[c]);
4193  MemoryContextSwitchTo(oldcontext);
4194 
4195  /* Note the worker has its own transaction nesting level */
4197 }
IndexAmRoutine * GetIndexAmRoutineByAmId(Oid amoid, bool noerror)
Definition: amapi.c:56
int16 AttrNumber
Definition: attnum.h:21
#define AttrNumberGetAttrOffset(attNum)
Definition: attnum.h:51
#define InvalidAttrNumber
Definition: attnum.h:23
void pgstat_progress_start_command(ProgressCommandType cmdtype, Oid relid)
void pgstat_progress_update_param(int index, int64 val)
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
void pgstat_progress_end_command(void)
@ PROGRESS_COMMAND_CREATE_INDEX
uint32 BlockNumber
Definition: block.h:31
static Datum values[MAXATTR]
Definition: bootstrap.c:156
void index_register(Oid heap, Oid ind, IndexInfo *indexInfo)
Definition: bootstrap.c:915
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:227
#define CStringGetTextDatum(s)
Definition: builtins.h:94
#define TextDatumGetCString(d)
Definition: builtins.h:95
#define NameStr(name)
Definition: c.h:730
unsigned short uint16
Definition: c.h:489
uint16 bits16
Definition: c.h:498
signed short int16
Definition: c.h:477
signed int int32
Definition: c.h:478
TransactionId MultiXactId
Definition: c.h:646
#define PointerIsValid(pointer)
Definition: c.h:747
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:382
float float4
Definition: c.h:613
#define MemSet(start, val, len)
Definition: c.h:1004
uint32 TransactionId
Definition: c.h:636
#define OidIsValid(objectId)
Definition: c.h:759
size_t Size
Definition: c.h:589
bool IsToastNamespace(Oid namespaceId)
Definition: catalog.c:202
bool IsSystemRelation(Relation relation)
Definition: catalog.c:75
RelFileNumber GetNewRelFileNumber(Oid reltablespace, Relation pg_class, char relpersistence)
Definition: catalog.c:502
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:105
void record_object_address_dependencies(const ObjectAddress *depender, ObjectAddresses *referenced, DependencyType behavior)
Definition: dependency.c:2790
void recordDependencyOnSingleRelExpr(const ObjectAddress *depender, Node *expr, Oid relId, DependencyType behavior, DependencyType self_behavior, bool reverse_self)
Definition: dependency.c:1645
ObjectAddresses * new_object_addresses(void)
Definition: dependency.c:2532
void add_exact_object_address(const ObjectAddress *object, ObjectAddresses *addrs)
Definition: dependency.c:2581
void free_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2821
@ DEPENDENCY_AUTO
Definition: dependency.h:34
@ DEPENDENCY_INTERNAL
Definition: dependency.h:35
@ DEPENDENCY_PARTITION_PRI
Definition: dependency.h:36
@ DEPENDENCY_PARTITION_SEC
Definition: dependency.h:37
@ DEPENDENCY_NORMAL
Definition: dependency.h:33
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1156
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1229
int errcode(int sqlerrcode)
Definition: elog.c:858
int errmsg(const char *fmt,...)
Definition: elog.c:1069
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define NOTICE
Definition: elog.h:35
#define INFO
Definition: elog.h:34
#define ereport(elevel,...)
Definition: elog.h:149
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
ExprState * ExecPrepareQual(List *qual, EState *estate)
Definition: execExpr.c:763
List * ExecPrepareExprList(List *nodes, EState *estate)
Definition: execExpr.c:809
void check_exclusion_constraint(Relation heap, Relation index, IndexInfo *indexInfo, ItemPointer tupleid, Datum *values, bool *isnull, EState *estate, bool newIndex)
Definition: execIndexing.c:910
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1255
EState * CreateExecutorState(void)
Definition: execUtils.c:93
void FreeExecutorState(EState *estate)
Definition: execUtils.c:194
#define GetPerTupleExprContext(estate)
Definition: executor.h:549
static bool ExecQual(ExprState *state, ExprContext *econtext)
Definition: executor.h:412
static Datum ExecEvalExprSwitchContext(ExprState *state, ExprContext *econtext, bool *isNull)
Definition: executor.h:347
Datum Int64GetDatum(int64 X)
Definition: fmgr.c:1778
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:599
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:506
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:387
bool IsBinaryUpgrade
Definition: globals.c:114
int maintenance_work_mem
Definition: globals.c:127
int NewGUCNestLevel(void)
Definition: guc.c:2201
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:2215
void InsertPgAttributeTuples(Relation pg_attribute_rel, TupleDesc tupdesc, Oid new_rel_oid, Datum *attoptions, CatalogIndexState indstate)
Definition: heap.c:697
void DeleteRelationTuple(Oid relid)
Definition: heap.c:1536
void DeleteAttributeTuples(Oid relid)
Definition: heap.c:1565
void RemoveStatistics(Oid relid, AttrNumber attnum)
Definition: heap.c:2911
void CheckAttributeType(const char *attname, Oid atttypid, Oid attcollation, List *containing_rowtypes, int flags)
Definition: heap.c:547
void CopyStatistics(Oid fromrelid, Oid torelid)
Definition: heap.c:2858
void InsertPgClassTuple(Relation pg_class_desc, Relation new_rel_desc, Oid new_rel_oid, Datum relacl, Datum reloptions)
Definition: heap.c:882
Relation heap_create(const char *relname, Oid relnamespace, Oid reltablespace, Oid relid, RelFileNumber relfilenumber, Oid accessmtd, TupleDesc tupDesc, char relkind, char relpersistence, bool shared_relation, bool mapped_relation, bool allow_system_table_mods, TransactionId *relfrozenxid, MultiXactId *relminmxid, bool create_storage)
Definition: heap.c:288
void heap_inplace_update(Relation relation, HeapTuple tuple)
Definition: heapam.c:5883
HeapTuple heap_getnext(TableScanDesc sscan, ScanDirection direction)
Definition: heapam.c:1093
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:680
HeapTuple heap_modify_tuple(HeapTuple tuple, TupleDesc tupleDesc, Datum *replValues, bool *replIsnull, bool *doReplace)
Definition: heaptuple.c:1113
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition: heaptuple.c:359
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1338
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
#define stmt
Definition: indent_codes.h:59
bool ReindexIsProcessingIndex(Oid indexOid)
Definition: index.c:4047
static bool validate_index_callback(ItemPointer itemptr, void *opaque)
Definition: index.c:3434
ObjectAddress index_constraint_create(Relation heapRelation, Oid indexRelationId, Oid parentConstraintId, IndexInfo *indexInfo, const char *constraintName, char constraintType, bits16 constr_flags, bool allow_system_table_mods, bool is_internal)
Definition: index.c:1907
void validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
Definition: index.c:3305
void index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
Definition: index.c:2140
void ResetReindexState(int nestLevel)
Definition: index.c:4120
Oid IndexGetRelation(Oid indexId, bool missing_ok)
Definition: index.c:3534
static int reindexingNestLevel
Definition: index.c:4019
void index_concurrently_set_dead(Oid heapId, Oid indexId)
Definition: index.c:1846
static Oid currentlyReindexedHeap
Definition: index.c:4016
static void ResetReindexProcessing(void)
Definition: index.c:4077
void index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
Definition: index.c:1519
void RestoreReindexState(void *reindexstate)
Definition: index.c:4178
static void RemoveReindexPending(Oid indexOid)
Definition: index.c:4107
bool CompareIndexInfo(IndexInfo *info1, IndexInfo *info2, Oid *collations1, Oid *collations2, Oid *opfamilies1, Oid *opfamilies2, AttrMap *attmap)
Definition: index.c:2539
static List * pendingReindexedIndexes
Definition: index.c:4018
void index_set_state_flags(Oid indexId, IndexStateFlagsAction action)
Definition: index.c:3454
RelFileNumber binary_upgrade_next_index_pg_class_relfilenumber
Definition: index.c:90
IndexInfo * BuildDummyIndexInfo(Relation index)
Definition: index.c:2491
static void AppendAttributeTuples(Relation indexRelation, Datum *attopts)
Definition: index.c:518
static void UpdateIndexRelation(Oid indexoid, Oid heapoid, Oid parentIndexId, IndexInfo *indexInfo, Oid *collationOids, Oid *classOids, int16 *coloptions, bool primary, bool isexclusion, bool immediate, bool isvalid, bool isready)
Definition: index.c:550
Oid index_create(Relation heapRelation, const char *indexRelationName, Oid indexRelationId, Oid parentIndexRelid, Oid parentConstraintId, RelFileNumber relFileNumber, IndexInfo *indexInfo, List *indexColNames, Oid accessMethodObjectId, Oid tableSpaceId, Oid *collationObjectId, Oid *classObjectId, int16 *coloptions, Datum reloptions, bits16 flags, bits16 constr_flags, bool allow_system_table_mods, bool is_internal, Oid *constraintId)
Definition: index.c:713
void SerializeReindexState(Size maxsize, char *start_address)
Definition: index.c:4160
static void index_update_stats(Relation rel, bool hasindex, double reltuples)
Definition: index.c:2800
static bool relationHasPrimaryKey(Relation rel)
Definition: index.c:152
static void SetReindexProcessing(Oid heapOid, Oid indexOid)
Definition: index.c:4058
static void IndexCheckExclusion(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo)
Definition: index.c:3149
static void InitializeAttributeOids(Relation indexRelation, int numatts, Oid indexoid)
Definition: index.c:500
Oid index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, Oid tablespaceOid, const char *newName)
Definition: index.c:1286
Oid binary_upgrade_next_index_pg_class_oid
Definition: index.c:89
void BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii)
Definition: index.c:2661
void reindex_index(Oid indexId, bool skip_constraint_checks, char persistence, ReindexParams *params)
Definition: index.c:3559
bool ReindexIsProcessingHeap(Oid heapOid)
Definition: index.c:4026
static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid)
Definition: index.c:4036
bool reindex_relation(Oid relid, int flags, ReindexParams *params)
Definition: index.c:3873
void index_check_primary_key(Relation heapRel, IndexInfo *indexInfo, bool is_alter_table, IndexStmt *stmt)
Definition: index.c:206
static TupleDesc ConstructTupleDescriptor(Relation heapRelation, IndexInfo *indexInfo, List *indexColNames, Oid accessMethodObjectId, Oid *collationObjectId, Oid *classObjectId)
Definition: index.c:285
void index_build(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo, bool isreindex, bool parallel)
Definition: index.c:2957
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2721
static void SetReindexPending(List *indexes)
Definition: index.c:4091
void index_concurrently_build(Oid heapRelationId, Oid indexRelationId)
Definition: index.c:1453
static Oid currentlyReindexedIndex
Definition: index.c:4017
Size EstimateReindexStateSpace(void)
Definition: index.c:4149
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2430
#define INDEX_CREATE_IS_PRIMARY
Definition: index.h:61
#define INDEX_CREATE_IF_NOT_EXISTS
Definition: index.h:65
#define REINDEX_REL_PROCESS_TOAST
Definition: index.h:155
#define INDEX_CREATE_PARTITIONED
Definition: index.h:66
#define REINDEXOPT_MISSING_OK
Definition: index.h:43
#define INDEX_CREATE_INVALID
Definition: index.h:67
static int64 itemptr_encode(ItemPointer itemptr)
Definition: index.h:185
#define INDEX_CREATE_ADD_CONSTRAINT
Definition: index.h:62
#define INDEX_CREATE_SKIP_BUILD
Definition: index.h:63
#define INDEX_CONSTR_CREATE_UPDATE_INDEX
Definition: index.h:92
#define REINDEX_REL_FORCE_INDEXES_UNLOGGED
Definition: index.h:158
#define INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS
Definition: index.h:93
#define INDEX_CONSTR_CREATE_DEFERRABLE
Definition: index.h:90
#define REINDEXOPT_REPORT_PROGRESS
Definition: index.h:42
#define INDEX_CONSTR_CREATE_MARK_AS_PRIMARY
Definition: index.h:89
#define REINDEX_REL_SUPPRESS_INDEX_USE
Definition: index.h:156
IndexStateFlagsAction
Definition: index.h:25
@ INDEX_CREATE_SET_VALID
Definition: index.h:27
@ INDEX_DROP_CLEAR_VALID
Definition: index.h:28
@ INDEX_DROP_SET_DEAD
Definition: index.h:29
@ INDEX_CREATE_SET_READY
Definition: index.h:26
#define REINDEX_REL_FORCE_INDEXES_PERMANENT
Definition: index.h:159
#define INDEX_CONSTR_CREATE_INIT_DEFERRED
Definition: index.h:91
#define INDEX_CREATE_CONCURRENT
Definition: index.h:64
#define REINDEXOPT_VERBOSE
Definition: index.h:41
#define REINDEX_REL_CHECK_CONSTRAINTS
Definition: index.h:157
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:158
IndexBulkDeleteResult * index_bulk_delete(IndexVacuumInfo *info, IndexBulkDeleteResult *istat, IndexBulkDeleteCallback callback, void *callback_state)
Definition: indexam.c:699
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:132
bytea * index_opclass_options(Relation indrel, AttrNumber attnum, Datum attoptions, bool validate)
Definition: indexam.c:947
void CatalogTupleUpdate(Relation heapRel, ItemPointer otid, HeapTuple tup)
Definition: indexing.c:313
void CatalogCloseIndexes(CatalogIndexState indstate)
Definition: indexing.c:61
void CatalogTupleInsert(Relation heapRel, HeapTuple tup)
Definition: indexing.c:233
CatalogIndexState CatalogOpenIndexes(Relation heapRel)
Definition: indexing.c:43
void CatalogTupleDelete(Relation heapRel, ItemPointer tid)
Definition: indexing.c:365
int2vector * buildint2vector(const int16 *int2s, int n)
Definition: int.c:114
void CacheInvalidateRelcache(Relation relation)
Definition: inval.c:1363
void CacheInvalidateRelcacheByTuple(HeapTuple classTuple)
Definition: inval.c:1399
invalidindex index d is invalid
Definition: isn.c:134
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
Assert(fmt[strlen(fmt) - 1] !='\n')
List * lappend(List *list, void *datum)
Definition: list.c:338
List * lappend_oid(List *list, Oid datum)
Definition: list.c:374
List * list_copy(const List *oldlist)
Definition: list.c:1572
List * list_delete_oid(List *list, Oid datum)
Definition: list.c:909
void list_free(List *list)
Definition: list.c:1545
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:721
void LockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:398
void LockRelation(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:245
void WaitForLockers(LOCKTAG heaplocktag, LOCKMODE lockmode, bool progress)
Definition: lmgr.c:986
void UnlockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:411
#define SET_LOCKTAG_RELATION(locktag, dboid, reloid)
Definition: lock.h:181
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define ShareLock
Definition: lockdefs.h:40
#define RowExclusiveLock
Definition: lockdefs.h:38
bool get_rel_relispartition(Oid relid)
Definition: lsyscache.c:2009
char get_rel_persistence(Oid relid)
Definition: lsyscache.c:2060
bool get_index_isvalid(Oid index_oid)
Definition: lsyscache.c:3536
int get_attstattarget(Oid relid, AttrNumber attnum)
Definition: lsyscache.c:884
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3324
Datum get_attoptions(Oid relid, int16 attnum)
Definition: lsyscache.c:996
Oid get_rel_namespace(Oid relid)
Definition: lsyscache.c:1934
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1267
char * get_rel_name(Oid relid)
Definition: lsyscache.c:1910
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:165
bool get_collation_isdeterministic(Oid colloid)
Definition: lsyscache.c:1080
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2790
Oid get_relname_relid(const char *relname, Oid relnamespace)
Definition: lsyscache.c:1867
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:722
Expr * make_ands_explicit(List *andclauses)
Definition: makefuncs.c:711
IndexInfo * makeIndexInfo(int numattrs, int numkeyattrs, Oid amoid, List *expressions, List *predicates, bool unique, bool nulls_not_distinct, bool isready, bool concurrent, bool summarizing)
Definition: makefuncs.c:746
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:330
void pfree(void *pointer)
Definition: mcxt.c:1456
MemoryContext TopMemoryContext
Definition: mcxt.c:141
void * palloc0(Size size)
Definition: mcxt.c:1257
void * palloc(Size size)
Definition: mcxt.c:1226
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:414
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:314
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:121
#define IsNormalProcessingMode()
Definition: miscadmin.h:416
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:631
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:638
#define InvalidMultiXactId
Definition: multixact.h:24
void namestrcpy(Name name, const char *str)
Definition: name.c:233
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:43
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:284
#define makeNode(_type_)
Definition: nodes.h:176
#define InvokeObjectPostAlterHookArg(classId, objectId, subId, auxiliaryId, is_internal)
Definition: objectaccess.h:200
#define InvokeObjectPostCreateHookArg(classId, objectId, subId, is_internal)
Definition: objectaccess.h:175
#define ObjectAddressSet(addr, class_id, object_id)
Definition: objectaddress.h:40
#define ObjectAddressSubSet(addr, class_id, object_id, object_sub_id)
Definition: objectaddress.h:33
oidvector * buildoidvector(const Oid *oids, int n)
Definition: oid.c:86
char * nodeToString(const void *obj)
Definition: outfuncs.c:877
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:138
List * SystemFuncName(char *name)
List * get_partition_ancestors(Oid relid)
Definition: partition.c:133
FormData_pg_attribute
Definition: pg_attribute.h:193
#define ATTRIBUTE_FIXED_PART_SIZE
Definition: pg_attribute.h:201
int16 attnum
Definition: pg_attribute.h:74
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:209
FormData_pg_class * Form_pg_class
Definition: pg_class.h:153
#define INDEX_MAX_KEYS
bool ConstraintNameIsUsed(ConstraintCategory conCat, Oid objId, const char *conname)
Oid CreateConstraintEntry(const char *constraintName, Oid constraintNamespace, char constraintType, bool isDeferrable, bool isDeferred, bool isValidated, Oid parentConstrId, Oid relId, const int16 *constraintKey, int constraintNKeys, int constraintNTotalKeys, Oid domainId, Oid indexRelId, Oid foreignRelId, const int16 *foreignKey, const Oid *pfEqOp, const Oid *ppEqOp, const Oid *ffEqOp, int foreignNKeys, char foreignUpdateType, char foreignDeleteType, const int16 *fkDeleteSetCols, int numFkDeleteSetCols, char foreignMatchType, const Oid *exclOp, Node *conExpr, const char *conBin, bool conIsLocal, int conInhCount, bool conNoInherit, bool is_internal)
Definition: pg_constraint.c:50
FormData_pg_constraint * Form_pg_constraint
@ CONSTRAINT_RELATION
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition: pg_depend.c:44
long deleteDependencyRecordsForClass(Oid classId, Oid objectId, Oid refclassId, char deptype)
Definition: pg_depend.c:350
long changeDependenciesOf(Oid classId, Oid oldObjectId, Oid newObjectId)
Definition: pg_depend.c:564
long changeDependenciesOn(Oid refClassId, Oid oldRefObjectId, Oid newRefObjectId)
Definition: pg_depend.c:620
Oid get_index_constraint(Oid indexId)
Definition: pg_depend.c:968
List * get_index_ref_constraints(Oid indexId)
Definition: pg_depend.c:1024
FormData_pg_index * Form_pg_index
Definition: pg_index.h:70
bool DeleteInheritsTuple(Oid inhrelid, Oid inhparent, bool expect_detach_pending, const char *childname)
Definition: pg_inherits.c:553
void StoreSingleInheritance(Oid relationId, Oid parentOid, int32 seqNumber)
Definition: pg_inherits.c:509
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define linitial_oid(l)
Definition: pg_list.h:180
#define lfirst_oid(lc)
Definition: pg_list.h:174
FormData_pg_opclass * Form_pg_opclass
Definition: pg_opclass.h:83
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
FormData_pg_trigger * Form_pg_trigger
Definition: pg_trigger.h:80
FormData_pg_type * Form_pg_type
Definition: pg_type.h:261
int progress
Definition: pgbench.c:271
void pgstat_copy_relation_stats(Relation dst, Relation src)
void pgstat_drop_relation(Relation rel)
int plan_create_index_workers(Oid tableOid, Oid indexOid)
Definition: planner.c:6631
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:172
static Datum BoolGetDatum(bool X)
Definition: postgres.h:102
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:212
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
void TransferPredicateLocksToHeapRelation(Relation relation)
Definition: predicate.c:3057
char * c
#define PROGRESS_CREATEIDX_PHASE_BUILD
Definition: progress.h:92
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN
Definition: progress.h:96
#define PROGRESS_CREATEIDX_ACCESS_METHOD_OID
Definition: progress.h:81
#define PROGRESS_CREATEIDX_TUPLES_TOTAL
Definition: progress.h:84
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT
Definition: progress.h:95
#define PROGRESS_SCAN_BLOCKS_DONE
Definition: progress.h:120
#define PROGRESS_CREATEIDX_TUPLES_DONE
Definition: progress.h:85
#define PROGRESS_CREATEIDX_SUBPHASE
Definition: progress.h:83
#define PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE
Definition: progress.h:104
#define PROGRESS_CREATEIDX_PHASE
Definition: progress.h:82
#define PROGRESS_CREATEIDX_COMMAND_REINDEX
Definition: progress.h:110
#define PROGRESS_CLUSTER_INDEX_REBUILD_COUNT
Definition: progress.h:62
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN
Definition: progress.h:94
#define PROGRESS_SCAN_BLOCKS_TOTAL
Definition: progress.h:119
#define PROGRESS_CREATEIDX_INDEX_OID
Definition: progress.h:80
#define PROGRESS_CREATEIDX_COMMAND
Definition: progress.h:79
void * stringToNode(const char *str)
Definition: read.c:90
#define RelationGetForm(relation)
Definition: rel.h:498
#define RelationGetRelid(relation)
Definition: rel.h:504
static SMgrRelation RelationGetSmgr(Relation rel)
Definition: rel.h:572
#define RelationGetDescr(relation)
Definition: rel.h:530
#define RelationIsMapped(relation)
Definition: rel.h:553
#define RelationGetRelationName(relation)
Definition: rel.h:538
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:659
#define RelationIsValid(relation)
Definition: rel.h:477
#define RelationGetNamespace(relation)
Definition: rel.h:545
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:523
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4739
void RelationInitIndexAccessInfo(Relation relation)
Definition: relcache.c:1417
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:5086
List * RelationGetDummyIndexExpressions(Relation relation)
Definition: relcache.c:5032
void RelationSetNewRelfilenumber(Relation relation, char persistence)
Definition: relcache.c:3709
void RelationForgetRelation(Oid rid)
Definition: relcache.c:2833
void RelationAssumeNewRelfilelocator(Relation relation)
Definition: relcache.c:3908
Datum * RelationGetIndexRawAttOptions(Relation indexrel)
Definition: relcache.c:5799
void RelationGetExclusionInfo(Relation indexRelation, Oid **operators, Oid **procs, uint16 **strategies)
Definition: relcache.c:5516
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:4973
Oid RelFileNumber
Definition: relpath.h:25
@ INIT_FORKNUM
Definition: relpath.h:53
#define InvalidRelFileNumber
Definition: relpath.h:26
#define RelFileNumberIsValid(relnumber)
Definition: relpath.h:27
Node * map_variable_attnos(Node *node, int target_varno, int sublevels_up, const AttrMap *attno_map, Oid to_rowtype, bool *found_whole_row)
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
@ ForwardScanDirection
Definition: sdir.h:28
Size mul_size(Size s1, Size s2)
Definition: shmem.c:519
void smgrcreate(SMgrRelation reln, ForkNumber forknum, bool isRedo)
Definition: smgr.c:373
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:251
Snapshot GetLatestSnapshot(void)
Definition: snapmgr.c:326
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:871
bool ActiveSnapshotSet(void)
Definition: snapmgr.c:817
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:829
void PopActiveSnapshot(void)
Definition: snapmgr.c:778
#define EarlyPruningEnabled(rel)
Definition: snapmgr.h:44
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:206
Relation relation_open(Oid relationId, LOCKMODE lockmode)
Definition: relation.c:48
void RelationDropStorage(Relation rel)
Definition: storage.c:205
#define BTEqualStrategyNumber
Definition: stratnum.h:31
#define ERRCODE_DUPLICATE_OBJECT
Definition: streamutil.c:32
Definition: attmap.h:35
int maplen
Definition: attmap.h:37
AttrNumber * attnums
Definition: attmap.h:36
Node * whenClause
Definition: parsenodes.h:2848
List * transitionRels
Definition: parsenodes.h:2850
RangeVar * constrrel
Definition: parsenodes.h:2854
RangeVar * relation
Definition: parsenodes.h:2839
MemoryContext ecxt_per_tuple_memory
Definition: execnodes.h:257
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:249
ItemPointerData t_self
Definition: htup.h:65
ambuildempty_function ambuildempty
Definition: amapi.h:262
Oid amkeytype
Definition: amapi.h:252
ambuild_function ambuild
Definition: amapi.h:261
bool amsummarizing
Definition: amapi.h:248
double heap_tuples
Definition: genam.h:32
double index_tuples
Definition: genam.h:33
bool ii_Unique
Definition: execnodes.h:191
uint16 * ii_ExclusionStrats
Definition: execnodes.h:186
bool ii_BrokenHotChain
Definition: execnodes.h:197
int ii_NumIndexAttrs
Definition: execnodes.h:177
Datum * ii_OpclassOptions
Definition: execnodes.h:190
Oid * ii_UniqueOps
Definition: execnodes.h:187
ExprState * ii_PredicateState
Definition: execnodes.h:183
Oid * ii_ExclusionOps
Definition: execnodes.h:184
bool ii_NullsNotDistinct
Definition: execnodes.h:192
int ii_ParallelWorkers
Definition: execnodes.h:199
bool ii_Concurrent
Definition: execnodes.h:196
uint16 * ii_UniqueStrats
Definition: execnodes.h:189
int ii_NumIndexKeyAttrs
Definition: execnodes.h:178
List * ii_ExpressionsState
Definition: execnodes.h:181
List * ii_Expressions
Definition: execnodes.h:180
Oid * ii_ExclusionProcs
Definition: execnodes.h:185
Oid ii_Am
Definition: execnodes.h:200
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:179
Oid * ii_UniqueProcs
Definition: execnodes.h:188
bool ii_ReadyForInserts
Definition: execnodes.h:193
List * ii_Predicate
Definition: execnodes.h:182
Relation index
Definition: genam.h:46
double num_heap_tuples
Definition: genam.h:52
bool analyze_only
Definition: genam.h:48
BufferAccessStrategy strategy
Definition: genam.h:53
Relation heaprel
Definition: genam.h:47
bool report_progress
Definition: genam.h:49
int message_level
Definition: genam.h:51
bool estimated_count
Definition: genam.h:50
Definition: lock.h:165
Definition: pg_list.h:54
LockRelId lockRelId
Definition: rel.h:46
Definition: rel.h:39
Oid relId
Definition: rel.h:40
Oid dbId
Definition: rel.h:41
Definition: nodes.h:129
Oid tablespaceOid
Definition: index.h:36
bits32 options
Definition: index.h:35
struct IndexAmRoutine * rd_indam
Definition: rel.h:205
LockInfoData rd_lockInfo
Definition: rel.h:114
Form_pg_index rd_index
Definition: rel.h:191
MemoryContext rd_indexcxt
Definition: rel.h:203
Oid * rd_indcollation
Definition: rel.h:216
Form_pg_class rd_rel
Definition: rel.h:111
Oid currentlyReindexedHeap
Definition: index.c:99
Oid currentlyReindexedIndex
Definition: index.c:100
int numPendingReindexedIndexes
Definition: index.c:101
Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER]
Definition: index.c:102
ItemPointerData tts_tid
Definition: tuptable.h:130
Definition: type.h:95
Definition: c.h:699
int16 values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:706
Definition: c.h:710
Oid values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:717
Definition: regguts.h:323
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:866
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:818
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:1079
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:829
Datum SysCacheGetAttrNotNull(int cacheId, HeapTuple tup, AttrNumber attributeNumber)
Definition: syscache.c:1110
#define SearchSysCacheCopy1(cacheId, key1)
Definition: syscache.h:182
@ TYPEOID
Definition: syscache.h:114
@ INDEXRELID
Definition: syscache.h:66
@ ATTNUM
Definition: syscache.h:41
@ RELOID
Definition: syscache.h:89
@ CLAOID
Definition: syscache.h:48
@ CONSTROID
Definition: syscache.h:53
Relation try_table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:60
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
TableScanDesc table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
Definition: tableam.c:112
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:91
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:1009
static void table_index_validate_scan(Relation table_rel, Relation index_rel, struct IndexInfo *index_info, Snapshot snapshot, struct ValidateIndexState *state)
Definition: tableam.h:1836
static TableScanDesc table_beginscan_strat(Relation rel, Snapshot snapshot, int nkeys, struct ScanKeyData *key, bool allow_strat, bool allow_sync)
Definition: tableam.h:925
static bool table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:1050
void CheckTableNotInUse(Relation rel, const char *stmt)
Definition: tablecmds.c:4096
bool CheckRelationTableSpaceMove(Relation rel, Oid newTableSpaceId)
Definition: tablecmds.c:3382
void SetRelationHasSubclass(Oid relationId, bool relhassubclass)
Definition: tablecmds.c:3341
void SetRelationTableSpace(Relation rel, Oid newTableSpaceId, RelFileNumber newRelFilenumber)
Definition: tablecmds.c:3439
#define InvalidCompressionMethod
#define InvalidTransactionId
Definition: transam.h:31
ObjectAddress CreateTrigger(CreateTrigStmt *stmt, const char *queryString, Oid relOid, Oid refRelOid, Oid constraintOid, Oid indexOid, Oid funcoid, Oid parentTriggerOid, Node *whenClause, bool isInternal, bool in_partition)
Definition: trigger.c:165
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:45
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
void tuplesort_performsort(Tuplesortstate *state)
Definition: tuplesort.c:1385
void tuplesort_end(Tuplesortstate *state)
Definition: tuplesort.c:972
#define TUPLESORT_NONE
Definition: tuplesort.h:92
void tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull)
Tuplesortstate * tuplesort_begin_datum(Oid datumType, Oid sortOperator, Oid sortCollation, bool nullsFirstFlag, int workMem, SortCoordinate coordinate, int sortopt)
static Datum slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:410
static Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:389
void visibilitymap_count(Relation rel, BlockNumber *all_visible, BlockNumber *all_frozen)
int GetCurrentTransactionNestLevel(void)
Definition: xact.c:914
void CommandCounterIncrement(void)
Definition: xact.c:1078
TransactionId GetTopTransactionIdIfAny(void)
Definition: xact.c:432
void StartTransactionCommand(void)
Definition: xact.c:2937
bool IsInParallelMode(void)
Definition: xact.c:1069
void CommitTransactionCommand(void)
Definition: xact.c:3034