PostgreSQL Source Code  git master
index.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * index.c
4  * code to create and destroy POSTGRES index relations
5  *
6  * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/catalog/index.c
12  *
13  *
14  * INTERFACE ROUTINES
15  * index_create() - Create a cataloged index relation
16  * index_drop() - Removes index relation from catalogs
17  * BuildIndexInfo() - Prepare to insert index tuples
18  * FormIndexDatum() - Construct datum vector for one index tuple
19  *
20  *-------------------------------------------------------------------------
21  */
22 #include "postgres.h"
23 
24 #include <unistd.h>
25 
26 #include "access/amapi.h"
27 #include "access/heapam.h"
28 #include "access/multixact.h"
29 #include "access/reloptions.h"
30 #include "access/relscan.h"
31 #include "access/sysattr.h"
32 #include "access/tableam.h"
34 #include "access/transam.h"
35 #include "access/visibilitymap.h"
36 #include "access/xact.h"
37 #include "bootstrap/bootstrap.h"
38 #include "catalog/binary_upgrade.h"
39 #include "catalog/catalog.h"
40 #include "catalog/dependency.h"
41 #include "catalog/heap.h"
42 #include "catalog/index.h"
43 #include "catalog/objectaccess.h"
44 #include "catalog/partition.h"
45 #include "catalog/pg_am.h"
46 #include "catalog/pg_collation.h"
47 #include "catalog/pg_constraint.h"
48 #include "catalog/pg_depend.h"
49 #include "catalog/pg_description.h"
50 #include "catalog/pg_inherits.h"
51 #include "catalog/pg_opclass.h"
52 #include "catalog/pg_operator.h"
53 #include "catalog/pg_tablespace.h"
54 #include "catalog/pg_trigger.h"
55 #include "catalog/pg_type.h"
56 #include "catalog/storage.h"
57 #include "commands/event_trigger.h"
58 #include "commands/progress.h"
59 #include "commands/tablecmds.h"
60 #include "commands/tablespace.h"
61 #include "commands/trigger.h"
62 #include "executor/executor.h"
63 #include "miscadmin.h"
64 #include "nodes/makefuncs.h"
65 #include "nodes/nodeFuncs.h"
66 #include "optimizer/optimizer.h"
67 #include "parser/parser.h"
68 #include "pgstat.h"
69 #include "rewrite/rewriteManip.h"
70 #include "storage/bufmgr.h"
71 #include "storage/lmgr.h"
72 #include "storage/predicate.h"
73 #include "storage/procarray.h"
74 #include "storage/smgr.h"
75 #include "utils/builtins.h"
76 #include "utils/datum.h"
77 #include "utils/fmgroids.h"
78 #include "utils/guc.h"
79 #include "utils/inval.h"
80 #include "utils/lsyscache.h"
81 #include "utils/memutils.h"
82 #include "utils/pg_rusage.h"
83 #include "utils/rel.h"
84 #include "utils/snapmgr.h"
85 #include "utils/syscache.h"
86 #include "utils/tuplesort.h"
87 
88 /* Potentially set by pg_upgrade_support functions */
92 
93 /*
94  * Pointer-free representation of variables used when reindexing system
95  * catalogs; we use this to propagate those values to parallel workers.
96  */
97 typedef struct
98 {
104 
105 /* non-export function prototypes */
106 static bool relationHasPrimaryKey(Relation rel);
107 static TupleDesc ConstructTupleDescriptor(Relation heapRelation,
108  IndexInfo *indexInfo,
109  List *indexColNames,
110  Oid accessMethodObjectId,
111  Oid *collationObjectId,
112  Oid *classObjectId);
113 static void InitializeAttributeOids(Relation indexRelation,
114  int numatts, Oid indexoid);
115 static void AppendAttributeTuples(Relation indexRelation, Datum *attopts);
116 static void UpdateIndexRelation(Oid indexoid, Oid heapoid,
117  Oid parentIndexId,
118  IndexInfo *indexInfo,
119  Oid *collationOids,
120  Oid *classOids,
121  int16 *coloptions,
122  bool primary,
123  bool isexclusion,
124  bool immediate,
125  bool isvalid,
126  bool isready);
127 static void index_update_stats(Relation rel,
128  bool hasindex,
129  double reltuples);
130 static void IndexCheckExclusion(Relation heapRelation,
131  Relation indexRelation,
132  IndexInfo *indexInfo);
133 static bool validate_index_callback(ItemPointer itemptr, void *opaque);
134 static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid);
135 static void SetReindexProcessing(Oid heapOid, Oid indexOid);
136 static void ResetReindexProcessing(void);
137 static void SetReindexPending(List *indexes);
138 static void RemoveReindexPending(Oid indexOid);
139 
140 
141 /*
142  * relationHasPrimaryKey
143  * See whether an existing relation has a primary key.
144  *
145  * Caller must have suitable lock on the relation.
146  *
147  * Note: we intentionally do not check indisvalid here; that's because this
148  * is used to enforce the rule that there can be only one indisprimary index,
149  * and we want that to be true even if said index is invalid.
150  */
151 static bool
153 {
154  bool result = false;
155  List *indexoidlist;
156  ListCell *indexoidscan;
157 
158  /*
159  * Get the list of index OIDs for the table from the relcache, and look up
160  * each one in the pg_index syscache until we find one marked primary key
161  * (hopefully there isn't more than one such).
162  */
163  indexoidlist = RelationGetIndexList(rel);
164 
165  foreach(indexoidscan, indexoidlist)
166  {
167  Oid indexoid = lfirst_oid(indexoidscan);
168  HeapTuple indexTuple;
169 
170  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid));
171  if (!HeapTupleIsValid(indexTuple)) /* should not happen */
172  elog(ERROR, "cache lookup failed for index %u", indexoid);
173  result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary;
174  ReleaseSysCache(indexTuple);
175  if (result)
176  break;
177  }
178 
179  list_free(indexoidlist);
180 
181  return result;
182 }
183 
184 /*
185  * index_check_primary_key
186  * Apply special checks needed before creating a PRIMARY KEY index
187  *
188  * This processing used to be in DefineIndex(), but has been split out
189  * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX.
190  *
191  * We check for a pre-existing primary key, and that all columns of the index
192  * are simple column references (not expressions), and that all those
193  * columns are marked NOT NULL. If not, fail.
194  *
195  * We used to automatically change unmarked columns to NOT NULL here by doing
196  * our own local ALTER TABLE command. But that doesn't work well if we're
197  * executing one subcommand of an ALTER TABLE: the operations may not get
198  * performed in the right order overall. Now we expect that the parser
199  * inserted any required ALTER TABLE SET NOT NULL operations before trying
200  * to create a primary-key index.
201  *
202  * Caller had better have at least ShareLock on the table, else the not-null
203  * checking isn't trustworthy.
204  */
205 void
207  IndexInfo *indexInfo,
208  bool is_alter_table,
209  IndexStmt *stmt)
210 {
211  int i;
212 
213  /*
214  * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't
215  * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we
216  * have faith that the parser rejected multiple pkey clauses; and CREATE
217  * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either.
218  */
219  if ((is_alter_table || heapRel->rd_rel->relispartition) &&
220  relationHasPrimaryKey(heapRel))
221  {
222  ereport(ERROR,
223  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
224  errmsg("multiple primary keys for table \"%s\" are not allowed",
225  RelationGetRelationName(heapRel))));
226  }
227 
228  /*
229  * Check that all of the attributes in a primary key are marked as not
230  * null. (We don't really expect to see that; it'd mean the parser messed
231  * up. But it seems wise to check anyway.)
232  */
233  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
234  {
235  AttrNumber attnum = indexInfo->ii_IndexAttrNumbers[i];
236  HeapTuple atttuple;
237  Form_pg_attribute attform;
238 
239  if (attnum == 0)
240  ereport(ERROR,
241  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
242  errmsg("primary keys cannot be expressions")));
243 
244  /* System attributes are never null, so no need to check */
245  if (attnum < 0)
246  continue;
247 
248  atttuple = SearchSysCache2(ATTNUM,
251  if (!HeapTupleIsValid(atttuple))
252  elog(ERROR, "cache lookup failed for attribute %d of relation %u",
253  attnum, RelationGetRelid(heapRel));
254  attform = (Form_pg_attribute) GETSTRUCT(atttuple);
255 
256  if (!attform->attnotnull)
257  ereport(ERROR,
258  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
259  errmsg("primary key column \"%s\" is not marked NOT NULL",
260  NameStr(attform->attname))));
261 
262  ReleaseSysCache(atttuple);
263  }
264 }
265 
266 /*
267  * ConstructTupleDescriptor
268  *
269  * Build an index tuple descriptor for a new index
270  */
271 static TupleDesc
273  IndexInfo *indexInfo,
274  List *indexColNames,
275  Oid accessMethodObjectId,
276  Oid *collationObjectId,
277  Oid *classObjectId)
278 {
279  int numatts = indexInfo->ii_NumIndexAttrs;
280  int numkeyatts = indexInfo->ii_NumIndexKeyAttrs;
281  ListCell *colnames_item = list_head(indexColNames);
282  ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
283  IndexAmRoutine *amroutine;
284  TupleDesc heapTupDesc;
285  TupleDesc indexTupDesc;
286  int natts; /* #atts in heap rel --- for error checks */
287  int i;
288 
289  /* We need access to the index AM's API struct */
290  amroutine = GetIndexAmRoutineByAmId(accessMethodObjectId, false);
291 
292  /* ... and to the table's tuple descriptor */
293  heapTupDesc = RelationGetDescr(heapRelation);
294  natts = RelationGetForm(heapRelation)->relnatts;
295 
296  /*
297  * allocate the new tuple descriptor
298  */
299  indexTupDesc = CreateTemplateTupleDesc(numatts);
300 
301  /*
302  * Fill in the pg_attribute row.
303  */
304  for (i = 0; i < numatts; i++)
305  {
306  AttrNumber atnum = indexInfo->ii_IndexAttrNumbers[i];
307  Form_pg_attribute to = TupleDescAttr(indexTupDesc, i);
308  HeapTuple tuple;
309  Form_pg_type typeTup;
310  Form_pg_opclass opclassTup;
311  Oid keyType;
312 
314  to->attnum = i + 1;
315  to->attstattarget = -1;
316  to->attcacheoff = -1;
317  to->attislocal = true;
318  to->attcollation = (i < numkeyatts) ?
319  collationObjectId[i] : InvalidOid;
320 
321  /*
322  * Set the attribute name as specified by caller.
323  */
324  if (colnames_item == NULL) /* shouldn't happen */
325  elog(ERROR, "too few entries in colnames list");
326  namestrcpy(&to->attname, (const char *) lfirst(colnames_item));
327  colnames_item = lnext(indexColNames, colnames_item);
328 
329  /*
330  * For simple index columns, we copy some pg_attribute fields from the
331  * parent relation. For expressions we have to look at the expression
332  * result.
333  */
334  if (atnum != 0)
335  {
336  /* Simple index column */
337  const FormData_pg_attribute *from;
338 
339  Assert(atnum > 0); /* should've been caught above */
340 
341  if (atnum > natts) /* safety check */
342  elog(ERROR, "invalid column number %d", atnum);
343  from = TupleDescAttr(heapTupDesc,
344  AttrNumberGetAttrOffset(atnum));
345 
346  to->atttypid = from->atttypid;
347  to->attlen = from->attlen;
348  to->attndims = from->attndims;
349  to->atttypmod = from->atttypmod;
350  to->attbyval = from->attbyval;
351  to->attalign = from->attalign;
352  to->attstorage = from->attstorage;
353  to->attcompression = from->attcompression;
354  }
355  else
356  {
357  /* Expressional index */
358  Node *indexkey;
359 
360  if (indexpr_item == NULL) /* shouldn't happen */
361  elog(ERROR, "too few entries in indexprs list");
362  indexkey = (Node *) lfirst(indexpr_item);
363  indexpr_item = lnext(indexInfo->ii_Expressions, indexpr_item);
364 
365  /*
366  * Lookup the expression type in pg_type for the type length etc.
367  */
368  keyType = exprType(indexkey);
369  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
370  if (!HeapTupleIsValid(tuple))
371  elog(ERROR, "cache lookup failed for type %u", keyType);
372  typeTup = (Form_pg_type) GETSTRUCT(tuple);
373 
374  /*
375  * Assign some of the attributes values. Leave the rest.
376  */
377  to->atttypid = keyType;
378  to->attlen = typeTup->typlen;
379  to->atttypmod = exprTypmod(indexkey);
380  to->attbyval = typeTup->typbyval;
381  to->attalign = typeTup->typalign;
382  to->attstorage = typeTup->typstorage;
383 
384  /*
385  * For expression columns, set attcompression invalid, since
386  * there's no table column from which to copy the value. Whenever
387  * we actually need to compress a value, we'll use whatever the
388  * current value of default_toast_compression is at that point in
389  * time.
390  */
391  to->attcompression = InvalidCompressionMethod;
392 
393  ReleaseSysCache(tuple);
394 
395  /*
396  * Make sure the expression yields a type that's safe to store in
397  * an index. We need this defense because we have index opclasses
398  * for pseudo-types such as "record", and the actually stored type
399  * had better be safe; eg, a named composite type is okay, an
400  * anonymous record type is not. The test is the same as for
401  * whether a table column is of a safe type (which is why we
402  * needn't check for the non-expression case).
403  */
404  CheckAttributeType(NameStr(to->attname),
405  to->atttypid, to->attcollation,
406  NIL, 0);
407  }
408 
409  /*
410  * We do not yet have the correct relation OID for the index, so just
411  * set it invalid for now. InitializeAttributeOids() will fix it
412  * later.
413  */
414  to->attrelid = InvalidOid;
415 
416  /*
417  * Check the opclass and index AM to see if either provides a keytype
418  * (overriding the attribute type). Opclass (if exists) takes
419  * precedence.
420  */
421  keyType = amroutine->amkeytype;
422 
423  if (i < indexInfo->ii_NumIndexKeyAttrs)
424  {
425  tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(classObjectId[i]));
426  if (!HeapTupleIsValid(tuple))
427  elog(ERROR, "cache lookup failed for opclass %u",
428  classObjectId[i]);
429  opclassTup = (Form_pg_opclass) GETSTRUCT(tuple);
430  if (OidIsValid(opclassTup->opckeytype))
431  keyType = opclassTup->opckeytype;
432 
433  /*
434  * If keytype is specified as ANYELEMENT, and opcintype is
435  * ANYARRAY, then the attribute type must be an array (else it'd
436  * not have matched this opclass); use its element type.
437  *
438  * We could also allow ANYCOMPATIBLE/ANYCOMPATIBLEARRAY here, but
439  * there seems no need to do so; there's no reason to declare an
440  * opclass as taking ANYCOMPATIBLEARRAY rather than ANYARRAY.
441  */
442  if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID)
443  {
444  keyType = get_base_element_type(to->atttypid);
445  if (!OidIsValid(keyType))
446  elog(ERROR, "could not get element type of array type %u",
447  to->atttypid);
448  }
449 
450  ReleaseSysCache(tuple);
451  }
452 
453  /*
454  * If a key type different from the heap value is specified, update
455  * the type-related fields in the index tupdesc.
456  */
457  if (OidIsValid(keyType) && keyType != to->atttypid)
458  {
459  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
460  if (!HeapTupleIsValid(tuple))
461  elog(ERROR, "cache lookup failed for type %u", keyType);
462  typeTup = (Form_pg_type) GETSTRUCT(tuple);
463 
464  to->atttypid = keyType;
465  to->atttypmod = -1;
466  to->attlen = typeTup->typlen;
467  to->attbyval = typeTup->typbyval;
468  to->attalign = typeTup->typalign;
469  to->attstorage = typeTup->typstorage;
470  /* As above, use the default compression method in this case */
471  to->attcompression = InvalidCompressionMethod;
472 
473  ReleaseSysCache(tuple);
474  }
475  }
476 
477  pfree(amroutine);
478 
479  return indexTupDesc;
480 }
481 
482 /* ----------------------------------------------------------------
483  * InitializeAttributeOids
484  * ----------------------------------------------------------------
485  */
486 static void
488  int numatts,
489  Oid indexoid)
490 {
491  TupleDesc tupleDescriptor;
492  int i;
493 
494  tupleDescriptor = RelationGetDescr(indexRelation);
495 
496  for (i = 0; i < numatts; i += 1)
497  TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid;
498 }
499 
500 /* ----------------------------------------------------------------
501  * AppendAttributeTuples
502  * ----------------------------------------------------------------
503  */
504 static void
505 AppendAttributeTuples(Relation indexRelation, Datum *attopts)
506 {
507  Relation pg_attribute;
508  CatalogIndexState indstate;
509  TupleDesc indexTupDesc;
510 
511  /*
512  * open the attribute relation and its indexes
513  */
514  pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
515 
516  indstate = CatalogOpenIndexes(pg_attribute);
517 
518  /*
519  * insert data from new index's tupdesc into pg_attribute
520  */
521  indexTupDesc = RelationGetDescr(indexRelation);
522 
523  InsertPgAttributeTuples(pg_attribute, indexTupDesc, InvalidOid, attopts, indstate);
524 
525  CatalogCloseIndexes(indstate);
526 
527  table_close(pg_attribute, RowExclusiveLock);
528 }
529 
530 /* ----------------------------------------------------------------
531  * UpdateIndexRelation
532  *
533  * Construct and insert a new entry in the pg_index catalog
534  * ----------------------------------------------------------------
535  */
536 static void
538  Oid heapoid,
539  Oid parentIndexId,
540  IndexInfo *indexInfo,
541  Oid *collationOids,
542  Oid *classOids,
543  int16 *coloptions,
544  bool primary,
545  bool isexclusion,
546  bool immediate,
547  bool isvalid,
548  bool isready)
549 {
550  int2vector *indkey;
551  oidvector *indcollation;
552  oidvector *indclass;
553  int2vector *indoption;
554  Datum exprsDatum;
555  Datum predDatum;
556  Datum values[Natts_pg_index];
557  bool nulls[Natts_pg_index] = {0};
558  Relation pg_index;
559  HeapTuple tuple;
560  int i;
561 
562  /*
563  * Copy the index key, opclass, and indoption info into arrays (should we
564  * make the caller pass them like this to start with?)
565  */
566  indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs);
567  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
568  indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i];
569  indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs);
570  indclass = buildoidvector(classOids, indexInfo->ii_NumIndexKeyAttrs);
571  indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs);
572 
573  /*
574  * Convert the index expressions (if any) to a text datum
575  */
576  if (indexInfo->ii_Expressions != NIL)
577  {
578  char *exprsString;
579 
580  exprsString = nodeToString(indexInfo->ii_Expressions);
581  exprsDatum = CStringGetTextDatum(exprsString);
582  pfree(exprsString);
583  }
584  else
585  exprsDatum = (Datum) 0;
586 
587  /*
588  * Convert the index predicate (if any) to a text datum. Note we convert
589  * implicit-AND format to normal explicit-AND for storage.
590  */
591  if (indexInfo->ii_Predicate != NIL)
592  {
593  char *predString;
594 
595  predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate));
596  predDatum = CStringGetTextDatum(predString);
597  pfree(predString);
598  }
599  else
600  predDatum = (Datum) 0;
601 
602 
603  /*
604  * open the system catalog index relation
605  */
606  pg_index = table_open(IndexRelationId, RowExclusiveLock);
607 
608  /*
609  * Build a pg_index tuple
610  */
611  values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid);
612  values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid);
613  values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs);
614  values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs);
615  values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique);
616  values[Anum_pg_index_indnullsnotdistinct - 1] = BoolGetDatum(indexInfo->ii_NullsNotDistinct);
617  values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary);
618  values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion);
619  values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate);
620  values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false);
621  values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid);
622  values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false);
623  values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready);
624  values[Anum_pg_index_indislive - 1] = BoolGetDatum(true);
625  values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false);
626  values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey);
627  values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation);
628  values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass);
629  values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption);
630  values[Anum_pg_index_indexprs - 1] = exprsDatum;
631  if (exprsDatum == (Datum) 0)
632  nulls[Anum_pg_index_indexprs - 1] = true;
633  values[Anum_pg_index_indpred - 1] = predDatum;
634  if (predDatum == (Datum) 0)
635  nulls[Anum_pg_index_indpred - 1] = true;
636 
637  tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls);
638 
639  /*
640  * insert the tuple into the pg_index catalog
641  */
642  CatalogTupleInsert(pg_index, tuple);
643 
644  /*
645  * close the relation and free the tuple
646  */
647  table_close(pg_index, RowExclusiveLock);
648  heap_freetuple(tuple);
649 }
650 
651 
652 /*
653  * index_create
654  *
655  * heapRelation: table to build index on (suitably locked by caller)
656  * indexRelationName: what it say
657  * indexRelationId: normally, pass InvalidOid to let this routine
658  * generate an OID for the index. During bootstrap this may be
659  * nonzero to specify a preselected OID.
660  * parentIndexRelid: if creating an index partition, the OID of the
661  * parent index; otherwise InvalidOid.
662  * parentConstraintId: if creating a constraint on a partition, the OID
663  * of the constraint in the parent; otherwise InvalidOid.
664  * relFileNumber: normally, pass InvalidRelFileNumber to get new storage.
665  * May be nonzero to attach an existing valid build.
666  * indexInfo: same info executor uses to insert into the index
667  * indexColNames: column names to use for index (List of char *)
668  * accessMethodObjectId: OID of index AM to use
669  * tableSpaceId: OID of tablespace to use
670  * collationObjectId: array of collation OIDs, one per index column
671  * classObjectId: array of index opclass OIDs, one per index column
672  * coloptions: array of per-index-column indoption settings
673  * reloptions: AM-specific options
674  * flags: bitmask that can include any combination of these bits:
675  * INDEX_CREATE_IS_PRIMARY
676  * the index is a primary key
677  * INDEX_CREATE_ADD_CONSTRAINT:
678  * invoke index_constraint_create also
679  * INDEX_CREATE_SKIP_BUILD:
680  * skip the index_build() step for the moment; caller must do it
681  * later (typically via reindex_index())
682  * INDEX_CREATE_CONCURRENT:
683  * do not lock the table against writers. The index will be
684  * marked "invalid" and the caller must take additional steps
685  * to fix it up.
686  * INDEX_CREATE_IF_NOT_EXISTS:
687  * do not throw an error if a relation with the same name
688  * already exists.
689  * INDEX_CREATE_PARTITIONED:
690  * create a partitioned index (table must be partitioned)
691  * constr_flags: flags passed to index_constraint_create
692  * (only if INDEX_CREATE_ADD_CONSTRAINT is set)
693  * allow_system_table_mods: allow table to be a system catalog
694  * is_internal: if true, post creation hook for new index
695  * constraintId: if not NULL, receives OID of created constraint
696  *
697  * Returns the OID of the created index.
698  */
699 Oid
700 index_create(Relation heapRelation,
701  const char *indexRelationName,
702  Oid indexRelationId,
703  Oid parentIndexRelid,
704  Oid parentConstraintId,
705  RelFileNumber relFileNumber,
706  IndexInfo *indexInfo,
707  List *indexColNames,
708  Oid accessMethodObjectId,
709  Oid tableSpaceId,
710  Oid *collationObjectId,
711  Oid *classObjectId,
712  int16 *coloptions,
713  Datum reloptions,
714  bits16 flags,
715  bits16 constr_flags,
716  bool allow_system_table_mods,
717  bool is_internal,
718  Oid *constraintId)
719 {
720  Oid heapRelationId = RelationGetRelid(heapRelation);
721  Relation pg_class;
722  Relation indexRelation;
723  TupleDesc indexTupDesc;
724  bool shared_relation;
725  bool mapped_relation;
726  bool is_exclusion;
727  Oid namespaceId;
728  int i;
729  char relpersistence;
730  bool isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0;
731  bool invalid = (flags & INDEX_CREATE_INVALID) != 0;
732  bool concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0;
733  bool partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0;
734  char relkind;
735  TransactionId relfrozenxid;
736  MultiXactId relminmxid;
737  bool create_storage = !RelFileNumberIsValid(relFileNumber);
738 
739  /* constraint flags can only be set when a constraint is requested */
740  Assert((constr_flags == 0) ||
741  ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0));
742  /* partitioned indexes must never be "built" by themselves */
743  Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD));
744 
745  relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX;
746  is_exclusion = (indexInfo->ii_ExclusionOps != NULL);
747 
748  pg_class = table_open(RelationRelationId, RowExclusiveLock);
749 
750  /*
751  * The index will be in the same namespace as its parent table, and is
752  * shared across databases if and only if the parent is. Likewise, it
753  * will use the relfilenumber map if and only if the parent does; and it
754  * inherits the parent's relpersistence.
755  */
756  namespaceId = RelationGetNamespace(heapRelation);
757  shared_relation = heapRelation->rd_rel->relisshared;
758  mapped_relation = RelationIsMapped(heapRelation);
759  relpersistence = heapRelation->rd_rel->relpersistence;
760 
761  /*
762  * check parameters
763  */
764  if (indexInfo->ii_NumIndexAttrs < 1)
765  elog(ERROR, "must index at least one column");
766 
767  if (!allow_system_table_mods &&
768  IsSystemRelation(heapRelation) &&
770  ereport(ERROR,
771  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
772  errmsg("user-defined indexes on system catalog tables are not supported")));
773 
774  /*
775  * Btree text_pattern_ops uses text_eq as the equality operator, which is
776  * fine as long as the collation is deterministic; text_eq then reduces to
777  * bitwise equality and so it is semantically compatible with the other
778  * operators and functions in that opclass. But with a nondeterministic
779  * collation, text_eq could yield results that are incompatible with the
780  * actual behavior of the index (which is determined by the opclass's
781  * comparison function). We prevent such problems by refusing creation of
782  * an index with that opclass and a nondeterministic collation.
783  *
784  * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we
785  * find more cases, we might decide to create a real mechanism for marking
786  * opclasses as incompatible with nondeterminism; but for now, this small
787  * hack suffices.
788  *
789  * Another solution is to use a special operator, not text_eq, as the
790  * equality opclass member; but that is undesirable because it would
791  * prevent index usage in many queries that work fine today.
792  */
793  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
794  {
795  Oid collation = collationObjectId[i];
796  Oid opclass = classObjectId[i];
797 
798  if (collation)
799  {
800  if ((opclass == TEXT_BTREE_PATTERN_OPS_OID ||
801  opclass == VARCHAR_BTREE_PATTERN_OPS_OID ||
802  opclass == BPCHAR_BTREE_PATTERN_OPS_OID) &&
803  !get_collation_isdeterministic(collation))
804  {
805  HeapTuple classtup;
806 
807  classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass));
808  if (!HeapTupleIsValid(classtup))
809  elog(ERROR, "cache lookup failed for operator class %u", opclass);
810  ereport(ERROR,
811  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
812  errmsg("nondeterministic collations are not supported for operator class \"%s\"",
813  NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname))));
814  ReleaseSysCache(classtup);
815  }
816  }
817  }
818 
819  /*
820  * Concurrent index build on a system catalog is unsafe because we tend to
821  * release locks before committing in catalogs.
822  */
823  if (concurrent &&
824  IsCatalogRelation(heapRelation))
825  ereport(ERROR,
826  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
827  errmsg("concurrent index creation on system catalog tables is not supported")));
828 
829  /*
830  * This case is currently not supported. There's no way to ask for it in
831  * the grammar with CREATE INDEX, but it can happen with REINDEX.
832  */
833  if (concurrent && is_exclusion)
834  ereport(ERROR,
835  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
836  errmsg("concurrent index creation for exclusion constraints is not supported")));
837 
838  /*
839  * We cannot allow indexing a shared relation after initdb (because
840  * there's no way to make the entry in other databases' pg_class).
841  */
842  if (shared_relation && !IsBootstrapProcessingMode())
843  ereport(ERROR,
844  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
845  errmsg("shared indexes cannot be created after initdb")));
846 
847  /*
848  * Shared relations must be in pg_global, too (last-ditch check)
849  */
850  if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID)
851  elog(ERROR, "shared relations must be placed in pg_global tablespace");
852 
853  /*
854  * Check for duplicate name (both as to the index, and as to the
855  * associated constraint if any). Such cases would fail on the relevant
856  * catalogs' unique indexes anyway, but we prefer to give a friendlier
857  * error message.
858  */
859  if (get_relname_relid(indexRelationName, namespaceId))
860  {
861  if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0)
862  {
863  ereport(NOTICE,
864  (errcode(ERRCODE_DUPLICATE_TABLE),
865  errmsg("relation \"%s\" already exists, skipping",
866  indexRelationName)));
867  table_close(pg_class, RowExclusiveLock);
868  return InvalidOid;
869  }
870 
871  ereport(ERROR,
872  (errcode(ERRCODE_DUPLICATE_TABLE),
873  errmsg("relation \"%s\" already exists",
874  indexRelationName)));
875  }
876 
877  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 &&
879  indexRelationName))
880  {
881  /*
882  * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the
883  * conflicting constraint is not an index.
884  */
885  ereport(ERROR,
887  errmsg("constraint \"%s\" for relation \"%s\" already exists",
888  indexRelationName, RelationGetRelationName(heapRelation))));
889  }
890 
891  /*
892  * construct tuple descriptor for index tuples
893  */
894  indexTupDesc = ConstructTupleDescriptor(heapRelation,
895  indexInfo,
896  indexColNames,
897  accessMethodObjectId,
898  collationObjectId,
899  classObjectId);
900 
901  /*
902  * Allocate an OID for the index, unless we were told what to use.
903  *
904  * The OID will be the relfilenumber as well, so make sure it doesn't
905  * collide with either pg_class OIDs or existing physical files.
906  */
907  if (!OidIsValid(indexRelationId))
908  {
909  /* Use binary-upgrade override for pg_class.oid and relfilenumber */
910  if (IsBinaryUpgrade)
911  {
913  ereport(ERROR,
914  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
915  errmsg("pg_class index OID value not set when in binary upgrade mode")));
916 
917  indexRelationId = binary_upgrade_next_index_pg_class_oid;
919 
920  /* Override the index relfilenumber */
921  if ((relkind == RELKIND_INDEX) &&
923  ereport(ERROR,
924  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
925  errmsg("index relfilenumber value not set when in binary upgrade mode")));
928 
929  /*
930  * Note that we want create_storage = true for binary upgrade. The
931  * storage we create here will be replaced later, but we need to
932  * have something on disk in the meanwhile.
933  */
934  Assert(create_storage);
935  }
936  else
937  {
938  indexRelationId =
939  GetNewRelFileNumber(tableSpaceId, pg_class, relpersistence);
940  }
941  }
942 
943  /*
944  * create the index relation's relcache entry and, if necessary, the
945  * physical disk file. (If we fail further down, it's the smgr's
946  * responsibility to remove the disk file again, if any.)
947  */
948  indexRelation = heap_create(indexRelationName,
949  namespaceId,
950  tableSpaceId,
951  indexRelationId,
952  relFileNumber,
953  accessMethodObjectId,
954  indexTupDesc,
955  relkind,
956  relpersistence,
957  shared_relation,
958  mapped_relation,
959  allow_system_table_mods,
960  &relfrozenxid,
961  &relminmxid,
962  create_storage);
963 
964  Assert(relfrozenxid == InvalidTransactionId);
965  Assert(relminmxid == InvalidMultiXactId);
966  Assert(indexRelationId == RelationGetRelid(indexRelation));
967 
968  /*
969  * Obtain exclusive lock on it. Although no other transactions can see it
970  * until we commit, this prevents deadlock-risk complaints from lock
971  * manager in cases such as CLUSTER.
972  */
973  LockRelation(indexRelation, AccessExclusiveLock);
974 
975  /*
976  * Fill in fields of the index's pg_class entry that are not set correctly
977  * by heap_create.
978  *
979  * XXX should have a cleaner way to create cataloged indexes
980  */
981  indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner;
982  indexRelation->rd_rel->relam = accessMethodObjectId;
983  indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid);
984 
985  /*
986  * store index's pg_class entry
987  */
988  InsertPgClassTuple(pg_class, indexRelation,
989  RelationGetRelid(indexRelation),
990  (Datum) 0,
991  reloptions);
992 
993  /* done with pg_class */
994  table_close(pg_class, RowExclusiveLock);
995 
996  /*
997  * now update the object id's of all the attribute tuple forms in the
998  * index relation's tuple descriptor
999  */
1000  InitializeAttributeOids(indexRelation,
1001  indexInfo->ii_NumIndexAttrs,
1002  indexRelationId);
1003 
1004  /*
1005  * append ATTRIBUTE tuples for the index
1006  */
1007  AppendAttributeTuples(indexRelation, indexInfo->ii_OpclassOptions);
1008 
1009  /* ----------------
1010  * update pg_index
1011  * (append INDEX tuple)
1012  *
1013  * Note that this stows away a representation of "predicate".
1014  * (Or, could define a rule to maintain the predicate) --Nels, Feb '92
1015  * ----------------
1016  */
1017  UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid,
1018  indexInfo,
1019  collationObjectId, classObjectId, coloptions,
1020  isprimary, is_exclusion,
1021  (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0,
1022  !concurrent && !invalid,
1023  !concurrent);
1024 
1025  /*
1026  * Register relcache invalidation on the indexes' heap relation, to
1027  * maintain consistency of its index list
1028  */
1029  CacheInvalidateRelcache(heapRelation);
1030 
1031  /* update pg_inherits and the parent's relhassubclass, if needed */
1032  if (OidIsValid(parentIndexRelid))
1033  {
1034  StoreSingleInheritance(indexRelationId, parentIndexRelid, 1);
1035  SetRelationHasSubclass(parentIndexRelid, true);
1036  }
1037 
1038  /*
1039  * Register constraint and dependencies for the index.
1040  *
1041  * If the index is from a CONSTRAINT clause, construct a pg_constraint
1042  * entry. The index will be linked to the constraint, which in turn is
1043  * linked to the table. If it's not a CONSTRAINT, we need to make a
1044  * dependency directly on the table.
1045  *
1046  * We don't need a dependency on the namespace, because there'll be an
1047  * indirect dependency via our parent table.
1048  *
1049  * During bootstrap we can't register any dependencies, and we don't try
1050  * to make a constraint either.
1051  */
1053  {
1054  ObjectAddress myself,
1055  referenced;
1056  ObjectAddresses *addrs;
1057 
1058  ObjectAddressSet(myself, RelationRelationId, indexRelationId);
1059 
1060  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)
1061  {
1062  char constraintType;
1063  ObjectAddress localaddr;
1064 
1065  if (isprimary)
1066  constraintType = CONSTRAINT_PRIMARY;
1067  else if (indexInfo->ii_Unique)
1068  constraintType = CONSTRAINT_UNIQUE;
1069  else if (is_exclusion)
1070  constraintType = CONSTRAINT_EXCLUSION;
1071  else
1072  {
1073  elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
1074  constraintType = 0; /* keep compiler quiet */
1075  }
1076 
1077  localaddr = index_constraint_create(heapRelation,
1078  indexRelationId,
1079  parentConstraintId,
1080  indexInfo,
1081  indexRelationName,
1082  constraintType,
1083  constr_flags,
1084  allow_system_table_mods,
1085  is_internal);
1086  if (constraintId)
1087  *constraintId = localaddr.objectId;
1088  }
1089  else
1090  {
1091  bool have_simple_col = false;
1092 
1093  addrs = new_object_addresses();
1094 
1095  /* Create auto dependencies on simply-referenced columns */
1096  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
1097  {
1098  if (indexInfo->ii_IndexAttrNumbers[i] != 0)
1099  {
1100  ObjectAddressSubSet(referenced, RelationRelationId,
1101  heapRelationId,
1102  indexInfo->ii_IndexAttrNumbers[i]);
1103  add_exact_object_address(&referenced, addrs);
1104  have_simple_col = true;
1105  }
1106  }
1107 
1108  /*
1109  * If there are no simply-referenced columns, give the index an
1110  * auto dependency on the whole table. In most cases, this will
1111  * be redundant, but it might not be if the index expressions and
1112  * predicate contain no Vars or only whole-row Vars.
1113  */
1114  if (!have_simple_col)
1115  {
1116  ObjectAddressSet(referenced, RelationRelationId,
1117  heapRelationId);
1118  add_exact_object_address(&referenced, addrs);
1119  }
1120 
1122  free_object_addresses(addrs);
1123  }
1124 
1125  /*
1126  * If this is an index partition, create partition dependencies on
1127  * both the parent index and the table. (Note: these must be *in
1128  * addition to*, not instead of, all other dependencies. Otherwise
1129  * we'll be short some dependencies after DETACH PARTITION.)
1130  */
1131  if (OidIsValid(parentIndexRelid))
1132  {
1133  ObjectAddressSet(referenced, RelationRelationId, parentIndexRelid);
1134  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1135 
1136  ObjectAddressSet(referenced, RelationRelationId, heapRelationId);
1137  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1138  }
1139 
1140  /* placeholder for normal dependencies */
1141  addrs = new_object_addresses();
1142 
1143  /* Store dependency on collations */
1144 
1145  /* The default collation is pinned, so don't bother recording it */
1146  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1147  {
1148  if (OidIsValid(collationObjectId[i]) &&
1149  collationObjectId[i] != DEFAULT_COLLATION_OID)
1150  {
1151  ObjectAddressSet(referenced, CollationRelationId,
1152  collationObjectId[i]);
1153  add_exact_object_address(&referenced, addrs);
1154  }
1155  }
1156 
1157  /* Store dependency on operator classes */
1158  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1159  {
1160  ObjectAddressSet(referenced, OperatorClassRelationId, classObjectId[i]);
1161  add_exact_object_address(&referenced, addrs);
1162  }
1163 
1165  free_object_addresses(addrs);
1166 
1167  /* Store dependencies on anything mentioned in index expressions */
1168  if (indexInfo->ii_Expressions)
1169  {
1171  (Node *) indexInfo->ii_Expressions,
1172  heapRelationId,
1174  DEPENDENCY_AUTO, false);
1175  }
1176 
1177  /* Store dependencies on anything mentioned in predicate */
1178  if (indexInfo->ii_Predicate)
1179  {
1181  (Node *) indexInfo->ii_Predicate,
1182  heapRelationId,
1184  DEPENDENCY_AUTO, false);
1185  }
1186  }
1187  else
1188  {
1189  /* Bootstrap mode - assert we weren't asked for constraint support */
1190  Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0);
1191  }
1192 
1193  /* Post creation hook for new index */
1194  InvokeObjectPostCreateHookArg(RelationRelationId,
1195  indexRelationId, 0, is_internal);
1196 
1197  /*
1198  * Advance the command counter so that we can see the newly-entered
1199  * catalog tuples for the index.
1200  */
1202 
1203  /*
1204  * In bootstrap mode, we have to fill in the index strategy structure with
1205  * information from the catalogs. If we aren't bootstrapping, then the
1206  * relcache entry has already been rebuilt thanks to sinval update during
1207  * CommandCounterIncrement.
1208  */
1210  RelationInitIndexAccessInfo(indexRelation);
1211  else
1212  Assert(indexRelation->rd_indexcxt != NULL);
1213 
1214  indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs;
1215 
1216  /* Validate opclass-specific options */
1217  if (indexInfo->ii_OpclassOptions)
1218  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1219  (void) index_opclass_options(indexRelation, i + 1,
1220  indexInfo->ii_OpclassOptions[i],
1221  true);
1222 
1223  /*
1224  * If this is bootstrap (initdb) time, then we don't actually fill in the
1225  * index yet. We'll be creating more indexes and classes later, so we
1226  * delay filling them in until just before we're done with bootstrapping.
1227  * Similarly, if the caller specified to skip the build then filling the
1228  * index is delayed till later (ALTER TABLE can save work in some cases
1229  * with this). Otherwise, we call the AM routine that constructs the
1230  * index.
1231  */
1233  {
1234  index_register(heapRelationId, indexRelationId, indexInfo);
1235  }
1236  else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0)
1237  {
1238  /*
1239  * Caller is responsible for filling the index later on. However,
1240  * we'd better make sure that the heap relation is correctly marked as
1241  * having an index.
1242  */
1243  index_update_stats(heapRelation,
1244  true,
1245  -1.0);
1246  /* Make the above update visible */
1248  }
1249  else
1250  {
1251  index_build(heapRelation, indexRelation, indexInfo, false, true);
1252  }
1253 
1254  /*
1255  * Close the index; but we keep the lock that we acquired above until end
1256  * of transaction. Closing the heap is caller's responsibility.
1257  */
1258  index_close(indexRelation, NoLock);
1259 
1260  return indexRelationId;
1261 }
1262 
1263 /*
1264  * index_concurrently_create_copy
1265  *
1266  * Create concurrently an index based on the definition of the one provided by
1267  * caller. The index is inserted into catalogs and needs to be built later
1268  * on. This is called during concurrent reindex processing.
1269  *
1270  * "tablespaceOid" is the tablespace to use for this index.
1271  */
1272 Oid
1274  Oid tablespaceOid, const char *newName)
1275 {
1276  Relation indexRelation;
1277  IndexInfo *oldInfo,
1278  *newInfo;
1279  Oid newIndexId = InvalidOid;
1280  HeapTuple indexTuple,
1281  classTuple;
1282  Datum indclassDatum,
1283  colOptionDatum,
1284  optionDatum;
1285  oidvector *indclass;
1286  int2vector *indcoloptions;
1287  bool isnull;
1288  List *indexColNames = NIL;
1289  List *indexExprs = NIL;
1290  List *indexPreds = NIL;
1291 
1292  indexRelation = index_open(oldIndexId, RowExclusiveLock);
1293 
1294  /* The new index needs some information from the old index */
1295  oldInfo = BuildIndexInfo(indexRelation);
1296 
1297  /*
1298  * Concurrent build of an index with exclusion constraints is not
1299  * supported.
1300  */
1301  if (oldInfo->ii_ExclusionOps != NULL)
1302  ereport(ERROR,
1303  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1304  errmsg("concurrent index creation for exclusion constraints is not supported")));
1305 
1306  /* Get the array of class and column options IDs from index info */
1307  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId));
1308  if (!HeapTupleIsValid(indexTuple))
1309  elog(ERROR, "cache lookup failed for index %u", oldIndexId);
1310  indclassDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1311  Anum_pg_index_indclass, &isnull);
1312  Assert(!isnull);
1313  indclass = (oidvector *) DatumGetPointer(indclassDatum);
1314 
1315  colOptionDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1316  Anum_pg_index_indoption, &isnull);
1317  Assert(!isnull);
1318  indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum);
1319 
1320  /* Fetch options of index if any */
1321  classTuple = SearchSysCache1(RELOID, oldIndexId);
1322  if (!HeapTupleIsValid(classTuple))
1323  elog(ERROR, "cache lookup failed for relation %u", oldIndexId);
1324  optionDatum = SysCacheGetAttr(RELOID, classTuple,
1325  Anum_pg_class_reloptions, &isnull);
1326 
1327  /*
1328  * Fetch the list of expressions and predicates directly from the
1329  * catalogs. This cannot rely on the information from IndexInfo of the
1330  * old index as these have been flattened for the planner.
1331  */
1332  if (oldInfo->ii_Expressions != NIL)
1333  {
1334  Datum exprDatum;
1335  char *exprString;
1336 
1337  exprDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1338  Anum_pg_index_indexprs, &isnull);
1339  Assert(!isnull);
1340  exprString = TextDatumGetCString(exprDatum);
1341  indexExprs = (List *) stringToNode(exprString);
1342  pfree(exprString);
1343  }
1344  if (oldInfo->ii_Predicate != NIL)
1345  {
1346  Datum predDatum;
1347  char *predString;
1348 
1349  predDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1350  Anum_pg_index_indpred, &isnull);
1351  Assert(!isnull);
1352  predString = TextDatumGetCString(predDatum);
1353  indexPreds = (List *) stringToNode(predString);
1354 
1355  /* Also convert to implicit-AND format */
1356  indexPreds = make_ands_implicit((Expr *) indexPreds);
1357  pfree(predString);
1358  }
1359 
1360  /*
1361  * Build the index information for the new index. Note that rebuild of
1362  * indexes with exclusion constraints is not supported, hence there is no
1363  * need to fill all the ii_Exclusion* fields.
1364  */
1365  newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs,
1366  oldInfo->ii_NumIndexKeyAttrs,
1367  oldInfo->ii_Am,
1368  indexExprs,
1369  indexPreds,
1370  oldInfo->ii_Unique,
1371  oldInfo->ii_NullsNotDistinct,
1372  false, /* not ready for inserts */
1373  true);
1374 
1375  /*
1376  * Extract the list of column names and the column numbers for the new
1377  * index information. All this information will be used for the index
1378  * creation.
1379  */
1380  for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++)
1381  {
1382  TupleDesc indexTupDesc = RelationGetDescr(indexRelation);
1383  Form_pg_attribute att = TupleDescAttr(indexTupDesc, i);
1384 
1385  indexColNames = lappend(indexColNames, NameStr(att->attname));
1386  newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i];
1387  }
1388 
1389  /* Extract opclass parameters for each attribute, if any */
1390  if (oldInfo->ii_OpclassOptions != NULL)
1391  {
1392  newInfo->ii_OpclassOptions = palloc0(sizeof(Datum) *
1393  newInfo->ii_NumIndexAttrs);
1394  for (int i = 0; i < newInfo->ii_NumIndexAttrs; i++)
1395  newInfo->ii_OpclassOptions[i] = get_attoptions(oldIndexId, i + 1);
1396  }
1397 
1398  /*
1399  * Now create the new index.
1400  *
1401  * For a partition index, we adjust the partition dependency later, to
1402  * ensure a consistent state at all times. That is why parentIndexRelid
1403  * is not set here.
1404  */
1405  newIndexId = index_create(heapRelation,
1406  newName,
1407  InvalidOid, /* indexRelationId */
1408  InvalidOid, /* parentIndexRelid */
1409  InvalidOid, /* parentConstraintId */
1410  InvalidRelFileNumber, /* relFileNumber */
1411  newInfo,
1412  indexColNames,
1413  indexRelation->rd_rel->relam,
1414  tablespaceOid,
1415  indexRelation->rd_indcollation,
1416  indclass->values,
1417  indcoloptions->values,
1418  optionDatum,
1420  0,
1421  true, /* allow table to be a system catalog? */
1422  false, /* is_internal? */
1423  NULL);
1424 
1425  /* Close the relations used and clean up */
1426  index_close(indexRelation, NoLock);
1427  ReleaseSysCache(indexTuple);
1428  ReleaseSysCache(classTuple);
1429 
1430  return newIndexId;
1431 }
1432 
1433 /*
1434  * index_concurrently_build
1435  *
1436  * Build index for a concurrent operation. Low-level locks are taken when
1437  * this operation is performed to prevent only schema changes, but they need
1438  * to be kept until the end of the transaction performing this operation.
1439  * 'indexOid' refers to an index relation OID already created as part of
1440  * previous processing, and 'heapOid' refers to its parent heap relation.
1441  */
1442 void
1444  Oid indexRelationId)
1445 {
1446  Relation heapRel;
1447  Oid save_userid;
1448  int save_sec_context;
1449  int save_nestlevel;
1450  Relation indexRelation;
1451  IndexInfo *indexInfo;
1452 
1453  /* This had better make sure that a snapshot is active */
1455 
1456  /* Open and lock the parent heap relation */
1457  heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock);
1458 
1459  /*
1460  * Switch to the table owner's userid, so that any index functions are run
1461  * as that user. Also lock down security-restricted operations and
1462  * arrange to make GUC variable changes local to this command.
1463  */
1464  GetUserIdAndSecContext(&save_userid, &save_sec_context);
1465  SetUserIdAndSecContext(heapRel->rd_rel->relowner,
1466  save_sec_context | SECURITY_RESTRICTED_OPERATION);
1467  save_nestlevel = NewGUCNestLevel();
1468 
1469  indexRelation = index_open(indexRelationId, RowExclusiveLock);
1470 
1471  /*
1472  * We have to re-build the IndexInfo struct, since it was lost in the
1473  * commit of the transaction where this concurrent index was created at
1474  * the catalog level.
1475  */
1476  indexInfo = BuildIndexInfo(indexRelation);
1477  Assert(!indexInfo->ii_ReadyForInserts);
1478  indexInfo->ii_Concurrent = true;
1479  indexInfo->ii_BrokenHotChain = false;
1480 
1481  /* Now build the index */
1482  index_build(heapRel, indexRelation, indexInfo, false, true);
1483 
1484  /* Roll back any GUC changes executed by index functions */
1485  AtEOXact_GUC(false, save_nestlevel);
1486 
1487  /* Restore userid and security context */
1488  SetUserIdAndSecContext(save_userid, save_sec_context);
1489 
1490  /* Close both the relations, but keep the locks */
1491  table_close(heapRel, NoLock);
1492  index_close(indexRelation, NoLock);
1493 
1494  /*
1495  * Update the pg_index row to mark the index as ready for inserts. Once we
1496  * commit this transaction, any new transactions that open the table must
1497  * insert new entries into the index for insertions and non-HOT updates.
1498  */
1500 }
1501 
1502 /*
1503  * index_concurrently_swap
1504  *
1505  * Swap name, dependencies, and constraints of the old index over to the new
1506  * index, while marking the old index as invalid and the new as valid.
1507  */
1508 void
1509 index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
1510 {
1511  Relation pg_class,
1512  pg_index,
1513  pg_constraint,
1514  pg_trigger;
1515  Relation oldClassRel,
1516  newClassRel;
1517  HeapTuple oldClassTuple,
1518  newClassTuple;
1519  Form_pg_class oldClassForm,
1520  newClassForm;
1521  HeapTuple oldIndexTuple,
1522  newIndexTuple;
1523  Form_pg_index oldIndexForm,
1524  newIndexForm;
1525  bool isPartition;
1526  Oid indexConstraintOid;
1527  List *constraintOids = NIL;
1528  ListCell *lc;
1529 
1530  /*
1531  * Take a necessary lock on the old and new index before swapping them.
1532  */
1533  oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock);
1534  newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock);
1535 
1536  /* Now swap names and dependencies of those indexes */
1537  pg_class = table_open(RelationRelationId, RowExclusiveLock);
1538 
1539  oldClassTuple = SearchSysCacheCopy1(RELOID,
1540  ObjectIdGetDatum(oldIndexId));
1541  if (!HeapTupleIsValid(oldClassTuple))
1542  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1543  newClassTuple = SearchSysCacheCopy1(RELOID,
1544  ObjectIdGetDatum(newIndexId));
1545  if (!HeapTupleIsValid(newClassTuple))
1546  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1547 
1548  oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple);
1549  newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple);
1550 
1551  /* Swap the names */
1552  namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname));
1553  namestrcpy(&oldClassForm->relname, oldName);
1554 
1555  /* Swap the partition flags to track inheritance properly */
1556  isPartition = newClassForm->relispartition;
1557  newClassForm->relispartition = oldClassForm->relispartition;
1558  oldClassForm->relispartition = isPartition;
1559 
1560  CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple);
1561  CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple);
1562 
1563  heap_freetuple(oldClassTuple);
1564  heap_freetuple(newClassTuple);
1565 
1566  /* Now swap index info */
1567  pg_index = table_open(IndexRelationId, RowExclusiveLock);
1568 
1569  oldIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1570  ObjectIdGetDatum(oldIndexId));
1571  if (!HeapTupleIsValid(oldIndexTuple))
1572  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1573  newIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1574  ObjectIdGetDatum(newIndexId));
1575  if (!HeapTupleIsValid(newIndexTuple))
1576  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1577 
1578  oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple);
1579  newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple);
1580 
1581  /*
1582  * Copy constraint flags from the old index. This is safe because the old
1583  * index guaranteed uniqueness.
1584  */
1585  newIndexForm->indisprimary = oldIndexForm->indisprimary;
1586  oldIndexForm->indisprimary = false;
1587  newIndexForm->indisexclusion = oldIndexForm->indisexclusion;
1588  oldIndexForm->indisexclusion = false;
1589  newIndexForm->indimmediate = oldIndexForm->indimmediate;
1590  oldIndexForm->indimmediate = true;
1591 
1592  /* Preserve indisreplident in the new index */
1593  newIndexForm->indisreplident = oldIndexForm->indisreplident;
1594 
1595  /* Preserve indisclustered in the new index */
1596  newIndexForm->indisclustered = oldIndexForm->indisclustered;
1597 
1598  /*
1599  * Mark the new index as valid, and the old index as invalid similarly to
1600  * what index_set_state_flags() does.
1601  */
1602  newIndexForm->indisvalid = true;
1603  oldIndexForm->indisvalid = false;
1604  oldIndexForm->indisclustered = false;
1605  oldIndexForm->indisreplident = false;
1606 
1607  CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple);
1608  CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple);
1609 
1610  heap_freetuple(oldIndexTuple);
1611  heap_freetuple(newIndexTuple);
1612 
1613  /*
1614  * Move constraints and triggers over to the new index
1615  */
1616 
1617  constraintOids = get_index_ref_constraints(oldIndexId);
1618 
1619  indexConstraintOid = get_index_constraint(oldIndexId);
1620 
1621  if (OidIsValid(indexConstraintOid))
1622  constraintOids = lappend_oid(constraintOids, indexConstraintOid);
1623 
1624  pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock);
1625  pg_trigger = table_open(TriggerRelationId, RowExclusiveLock);
1626 
1627  foreach(lc, constraintOids)
1628  {
1629  HeapTuple constraintTuple,
1630  triggerTuple;
1631  Form_pg_constraint conForm;
1632  ScanKeyData key[1];
1633  SysScanDesc scan;
1634  Oid constraintOid = lfirst_oid(lc);
1635 
1636  /* Move the constraint from the old to the new index */
1637  constraintTuple = SearchSysCacheCopy1(CONSTROID,
1638  ObjectIdGetDatum(constraintOid));
1639  if (!HeapTupleIsValid(constraintTuple))
1640  elog(ERROR, "could not find tuple for constraint %u", constraintOid);
1641 
1642  conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple));
1643 
1644  if (conForm->conindid == oldIndexId)
1645  {
1646  conForm->conindid = newIndexId;
1647 
1648  CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple);
1649  }
1650 
1651  heap_freetuple(constraintTuple);
1652 
1653  /* Search for trigger records */
1654  ScanKeyInit(&key[0],
1655  Anum_pg_trigger_tgconstraint,
1656  BTEqualStrategyNumber, F_OIDEQ,
1657  ObjectIdGetDatum(constraintOid));
1658 
1659  scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true,
1660  NULL, 1, key);
1661 
1662  while (HeapTupleIsValid((triggerTuple = systable_getnext(scan))))
1663  {
1664  Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1665 
1666  if (tgForm->tgconstrindid != oldIndexId)
1667  continue;
1668 
1669  /* Make a modifiable copy */
1670  triggerTuple = heap_copytuple(triggerTuple);
1671  tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1672 
1673  tgForm->tgconstrindid = newIndexId;
1674 
1675  CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple);
1676 
1677  heap_freetuple(triggerTuple);
1678  }
1679 
1680  systable_endscan(scan);
1681  }
1682 
1683  /*
1684  * Move comment if any
1685  */
1686  {
1687  Relation description;
1688  ScanKeyData skey[3];
1689  SysScanDesc sd;
1690  HeapTuple tuple;
1691  Datum values[Natts_pg_description] = {0};
1692  bool nulls[Natts_pg_description] = {0};
1693  bool replaces[Natts_pg_description] = {0};
1694 
1695  values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId);
1696  replaces[Anum_pg_description_objoid - 1] = true;
1697 
1698  ScanKeyInit(&skey[0],
1699  Anum_pg_description_objoid,
1700  BTEqualStrategyNumber, F_OIDEQ,
1701  ObjectIdGetDatum(oldIndexId));
1702  ScanKeyInit(&skey[1],
1703  Anum_pg_description_classoid,
1704  BTEqualStrategyNumber, F_OIDEQ,
1705  ObjectIdGetDatum(RelationRelationId));
1706  ScanKeyInit(&skey[2],
1707  Anum_pg_description_objsubid,
1708  BTEqualStrategyNumber, F_INT4EQ,
1709  Int32GetDatum(0));
1710 
1711  description = table_open(DescriptionRelationId, RowExclusiveLock);
1712 
1713  sd = systable_beginscan(description, DescriptionObjIndexId, true,
1714  NULL, 3, skey);
1715 
1716  while ((tuple = systable_getnext(sd)) != NULL)
1717  {
1718  tuple = heap_modify_tuple(tuple, RelationGetDescr(description),
1719  values, nulls, replaces);
1720  CatalogTupleUpdate(description, &tuple->t_self, tuple);
1721 
1722  break; /* Assume there can be only one match */
1723  }
1724 
1725  systable_endscan(sd);
1726  table_close(description, NoLock);
1727  }
1728 
1729  /*
1730  * Swap inheritance relationship with parent index
1731  */
1732  if (get_rel_relispartition(oldIndexId))
1733  {
1734  List *ancestors = get_partition_ancestors(oldIndexId);
1735  Oid parentIndexRelid = linitial_oid(ancestors);
1736 
1737  DeleteInheritsTuple(oldIndexId, parentIndexRelid, false, NULL);
1738  StoreSingleInheritance(newIndexId, parentIndexRelid, 1);
1739 
1740  list_free(ancestors);
1741  }
1742 
1743  /*
1744  * Swap all dependencies of and on the old index to the new one, and
1745  * vice-versa. Note that a call to CommandCounterIncrement() would cause
1746  * duplicate entries in pg_depend, so this should not be done.
1747  */
1748  changeDependenciesOf(RelationRelationId, newIndexId, oldIndexId);
1749  changeDependenciesOn(RelationRelationId, newIndexId, oldIndexId);
1750 
1751  changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId);
1752  changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId);
1753 
1754  /* copy over statistics from old to new index */
1755  pgstat_copy_relation_stats(newClassRel, oldClassRel);
1756 
1757  /* Copy data of pg_statistic from the old index to the new one */
1758  CopyStatistics(oldIndexId, newIndexId);
1759 
1760  /* Copy pg_attribute.attstattarget for each index attribute */
1761  {
1762  HeapTuple attrTuple;
1763  Relation pg_attribute;
1764  SysScanDesc scan;
1765  ScanKeyData key[1];
1766 
1767  pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
1768  ScanKeyInit(&key[0],
1769  Anum_pg_attribute_attrelid,
1770  BTEqualStrategyNumber, F_OIDEQ,
1771  ObjectIdGetDatum(newIndexId));
1772  scan = systable_beginscan(pg_attribute, AttributeRelidNumIndexId,
1773  true, NULL, 1, key);
1774 
1775  while (HeapTupleIsValid((attrTuple = systable_getnext(scan))))
1776  {
1777  Form_pg_attribute att = (Form_pg_attribute) GETSTRUCT(attrTuple);
1778  Datum repl_val[Natts_pg_attribute];
1779  bool repl_null[Natts_pg_attribute];
1780  bool repl_repl[Natts_pg_attribute];
1781  int attstattarget;
1782  HeapTuple newTuple;
1783 
1784  /* Ignore dropped columns */
1785  if (att->attisdropped)
1786  continue;
1787 
1788  /*
1789  * Get attstattarget from the old index and refresh the new value.
1790  */
1791  attstattarget = get_attstattarget(oldIndexId, att->attnum);
1792 
1793  /* no need for a refresh if both match */
1794  if (attstattarget == att->attstattarget)
1795  continue;
1796 
1797  memset(repl_val, 0, sizeof(repl_val));
1798  memset(repl_null, false, sizeof(repl_null));
1799  memset(repl_repl, false, sizeof(repl_repl));
1800 
1801  repl_repl[Anum_pg_attribute_attstattarget - 1] = true;
1802  repl_val[Anum_pg_attribute_attstattarget - 1] = Int32GetDatum(attstattarget);
1803 
1804  newTuple = heap_modify_tuple(attrTuple,
1805  RelationGetDescr(pg_attribute),
1806  repl_val, repl_null, repl_repl);
1807  CatalogTupleUpdate(pg_attribute, &newTuple->t_self, newTuple);
1808 
1809  heap_freetuple(newTuple);
1810  }
1811 
1812  systable_endscan(scan);
1813  table_close(pg_attribute, RowExclusiveLock);
1814  }
1815 
1816  /* Close relations */
1817  table_close(pg_class, RowExclusiveLock);
1818  table_close(pg_index, RowExclusiveLock);
1819  table_close(pg_constraint, RowExclusiveLock);
1820  table_close(pg_trigger, RowExclusiveLock);
1821 
1822  /* The lock taken previously is not released until the end of transaction */
1823  relation_close(oldClassRel, NoLock);
1824  relation_close(newClassRel, NoLock);
1825 }
1826 
1827 /*
1828  * index_concurrently_set_dead
1829  *
1830  * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX
1831  * CONCURRENTLY before actually dropping the index. After calling this
1832  * function, the index is seen by all the backends as dead. Low-level locks
1833  * taken here are kept until the end of the transaction calling this function.
1834  */
1835 void
1837 {
1838  Relation userHeapRelation;
1839  Relation userIndexRelation;
1840 
1841  /*
1842  * No more predicate locks will be acquired on this index, and we're about
1843  * to stop doing inserts into the index which could show conflicts with
1844  * existing predicate locks, so now is the time to move them to the heap
1845  * relation.
1846  */
1847  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
1848  userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock);
1849  TransferPredicateLocksToHeapRelation(userIndexRelation);
1850 
1851  /*
1852  * Now we are sure that nobody uses the index for queries; they just might
1853  * have it open for updating it. So now we can unset indisready and
1854  * indislive, then wait till nobody could be using it at all anymore.
1855  */
1857 
1858  /*
1859  * Invalidate the relcache for the table, so that after this commit all
1860  * sessions will refresh the table's index list. Forgetting just the
1861  * index's relcache entry is not enough.
1862  */
1863  CacheInvalidateRelcache(userHeapRelation);
1864 
1865  /*
1866  * Close the relations again, though still holding session lock.
1867  */
1868  table_close(userHeapRelation, NoLock);
1869  index_close(userIndexRelation, NoLock);
1870 }
1871 
1872 /*
1873  * index_constraint_create
1874  *
1875  * Set up a constraint associated with an index. Return the new constraint's
1876  * address.
1877  *
1878  * heapRelation: table owning the index (must be suitably locked by caller)
1879  * indexRelationId: OID of the index
1880  * parentConstraintId: if constraint is on a partition, the OID of the
1881  * constraint in the parent.
1882  * indexInfo: same info executor uses to insert into the index
1883  * constraintName: what it say (generally, should match name of index)
1884  * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or
1885  * CONSTRAINT_EXCLUSION
1886  * flags: bitmask that can include any combination of these bits:
1887  * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY
1888  * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE
1889  * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED
1890  * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row
1891  * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies
1892  * of index on table's columns
1893  * allow_system_table_mods: allow table to be a system catalog
1894  * is_internal: index is constructed due to internal process
1895  */
1898  Oid indexRelationId,
1899  Oid parentConstraintId,
1900  IndexInfo *indexInfo,
1901  const char *constraintName,
1902  char constraintType,
1903  bits16 constr_flags,
1904  bool allow_system_table_mods,
1905  bool is_internal)
1906 {
1907  Oid namespaceId = RelationGetNamespace(heapRelation);
1908  ObjectAddress myself,
1909  idxaddr;
1910  Oid conOid;
1911  bool deferrable;
1912  bool initdeferred;
1913  bool mark_as_primary;
1914  bool islocal;
1915  bool noinherit;
1916  int inhcount;
1917 
1918  deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0;
1919  initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0;
1920  mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0;
1921 
1922  /* constraint creation support doesn't work while bootstrapping */
1924 
1925  /* enforce system-table restriction */
1926  if (!allow_system_table_mods &&
1927  IsSystemRelation(heapRelation) &&
1929  ereport(ERROR,
1930  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1931  errmsg("user-defined indexes on system catalog tables are not supported")));
1932 
1933  /* primary/unique constraints shouldn't have any expressions */
1934  if (indexInfo->ii_Expressions &&
1935  constraintType != CONSTRAINT_EXCLUSION)
1936  elog(ERROR, "constraints cannot have index expressions");
1937 
1938  /*
1939  * If we're manufacturing a constraint for a pre-existing index, we need
1940  * to get rid of the existing auto dependencies for the index (the ones
1941  * that index_create() would have made instead of calling this function).
1942  *
1943  * Note: this code would not necessarily do the right thing if the index
1944  * has any expressions or predicate, but we'd never be turning such an
1945  * index into a UNIQUE or PRIMARY KEY constraint.
1946  */
1947  if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS)
1948  deleteDependencyRecordsForClass(RelationRelationId, indexRelationId,
1949  RelationRelationId, DEPENDENCY_AUTO);
1950 
1951  if (OidIsValid(parentConstraintId))
1952  {
1953  islocal = false;
1954  inhcount = 1;
1955  noinherit = false;
1956  }
1957  else
1958  {
1959  islocal = true;
1960  inhcount = 0;
1961  noinherit = true;
1962  }
1963 
1964  /*
1965  * Construct a pg_constraint entry.
1966  */
1967  conOid = CreateConstraintEntry(constraintName,
1968  namespaceId,
1969  constraintType,
1970  deferrable,
1971  initdeferred,
1972  true,
1973  parentConstraintId,
1974  RelationGetRelid(heapRelation),
1975  indexInfo->ii_IndexAttrNumbers,
1976  indexInfo->ii_NumIndexKeyAttrs,
1977  indexInfo->ii_NumIndexAttrs,
1978  InvalidOid, /* no domain */
1979  indexRelationId, /* index OID */
1980  InvalidOid, /* no foreign key */
1981  NULL,
1982  NULL,
1983  NULL,
1984  NULL,
1985  0,
1986  ' ',
1987  ' ',
1988  NULL,
1989  0,
1990  ' ',
1991  indexInfo->ii_ExclusionOps,
1992  NULL, /* no check constraint */
1993  NULL,
1994  islocal,
1995  inhcount,
1996  noinherit,
1997  is_internal);
1998 
1999  /*
2000  * Register the index as internally dependent on the constraint.
2001  *
2002  * Note that the constraint has a dependency on the table, so we don't
2003  * need (or want) any direct dependency from the index to the table.
2004  */
2005  ObjectAddressSet(myself, ConstraintRelationId, conOid);
2006  ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId);
2007  recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL);
2008 
2009  /*
2010  * Also, if this is a constraint on a partition, give it partition-type
2011  * dependencies on the parent constraint as well as the table.
2012  */
2013  if (OidIsValid(parentConstraintId))
2014  {
2015  ObjectAddress referenced;
2016 
2017  ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId);
2018  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
2019  ObjectAddressSet(referenced, RelationRelationId,
2020  RelationGetRelid(heapRelation));
2021  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
2022  }
2023 
2024  /*
2025  * If the constraint is deferrable, create the deferred uniqueness
2026  * checking trigger. (The trigger will be given an internal dependency on
2027  * the constraint by CreateTrigger.)
2028  */
2029  if (deferrable)
2030  {
2032 
2033  trigger->replace = false;
2034  trigger->isconstraint = true;
2035  trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ?
2036  "PK_ConstraintTrigger" :
2037  "Unique_ConstraintTrigger";
2038  trigger->relation = NULL;
2039  trigger->funcname = SystemFuncName("unique_key_recheck");
2040  trigger->args = NIL;
2041  trigger->row = true;
2042  trigger->timing = TRIGGER_TYPE_AFTER;
2043  trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE;
2044  trigger->columns = NIL;
2045  trigger->whenClause = NULL;
2046  trigger->transitionRels = NIL;
2047  trigger->deferrable = true;
2048  trigger->initdeferred = initdeferred;
2049  trigger->constrrel = NULL;
2050 
2051  (void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation),
2052  InvalidOid, conOid, indexRelationId, InvalidOid,
2053  InvalidOid, NULL, true, false);
2054  }
2055 
2056  /*
2057  * If needed, mark the index as primary and/or deferred in pg_index.
2058  *
2059  * Note: When making an existing index into a constraint, caller must have
2060  * a table lock that prevents concurrent table updates; otherwise, there
2061  * is a risk that concurrent readers of the table will miss seeing this
2062  * index at all.
2063  */
2064  if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) &&
2065  (mark_as_primary || deferrable))
2066  {
2067  Relation pg_index;
2068  HeapTuple indexTuple;
2069  Form_pg_index indexForm;
2070  bool dirty = false;
2071  bool marked_as_primary = false;
2072 
2073  pg_index = table_open(IndexRelationId, RowExclusiveLock);
2074 
2075  indexTuple = SearchSysCacheCopy1(INDEXRELID,
2076  ObjectIdGetDatum(indexRelationId));
2077  if (!HeapTupleIsValid(indexTuple))
2078  elog(ERROR, "cache lookup failed for index %u", indexRelationId);
2079  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
2080 
2081  if (mark_as_primary && !indexForm->indisprimary)
2082  {
2083  indexForm->indisprimary = true;
2084  dirty = true;
2085  marked_as_primary = true;
2086  }
2087 
2088  if (deferrable && indexForm->indimmediate)
2089  {
2090  indexForm->indimmediate = false;
2091  dirty = true;
2092  }
2093 
2094  if (dirty)
2095  {
2096  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
2097 
2098  /*
2099  * When we mark an existing index as primary, force a relcache
2100  * flush on its parent table, so that all sessions will become
2101  * aware that the table now has a primary key. This is important
2102  * because it affects some replication behaviors.
2103  */
2104  if (marked_as_primary)
2105  CacheInvalidateRelcache(heapRelation);
2106 
2107  InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0,
2108  InvalidOid, is_internal);
2109  }
2110 
2111  heap_freetuple(indexTuple);
2112  table_close(pg_index, RowExclusiveLock);
2113  }
2114 
2115  return myself;
2116 }
2117 
2118 /*
2119  * index_drop
2120  *
2121  * NOTE: this routine should now only be called through performDeletion(),
2122  * else associated dependencies won't be cleaned up.
2123  *
2124  * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is
2125  * false but concurrent_lock_mode is true, then do a normal DROP INDEX but
2126  * take a lock for CONCURRENTLY processing. That is used as part of REINDEX
2127  * CONCURRENTLY.
2128  */
2129 void
2130 index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
2131 {
2132  Oid heapId;
2133  Relation userHeapRelation;
2134  Relation userIndexRelation;
2135  Relation indexRelation;
2136  HeapTuple tuple;
2137  bool hasexprs;
2138  LockRelId heaprelid,
2139  indexrelid;
2140  LOCKTAG heaplocktag;
2141  LOCKMODE lockmode;
2142 
2143  /*
2144  * A temporary relation uses a non-concurrent DROP. Other backends can't
2145  * access a temporary relation, so there's no harm in grabbing a stronger
2146  * lock (see comments in RemoveRelations), and a non-concurrent DROP is
2147  * more efficient.
2148  */
2149  Assert(get_rel_persistence(indexId) != RELPERSISTENCE_TEMP ||
2150  (!concurrent && !concurrent_lock_mode));
2151 
2152  /*
2153  * To drop an index safely, we must grab exclusive lock on its parent
2154  * table. Exclusive lock on the index alone is insufficient because
2155  * another backend might be about to execute a query on the parent table.
2156  * If it relies on a previously cached list of index OIDs, then it could
2157  * attempt to access the just-dropped index. We must therefore take a
2158  * table lock strong enough to prevent all queries on the table from
2159  * proceeding until we commit and send out a shared-cache-inval notice
2160  * that will make them update their index lists.
2161  *
2162  * In the concurrent case we avoid this requirement by disabling index use
2163  * in multiple steps and waiting out any transactions that might be using
2164  * the index, so we don't need exclusive lock on the parent table. Instead
2165  * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't
2166  * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get
2167  * AccessExclusiveLock on the index below, once we're sure nobody else is
2168  * using it.)
2169  */
2170  heapId = IndexGetRelation(indexId, false);
2171  lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock;
2172  userHeapRelation = table_open(heapId, lockmode);
2173  userIndexRelation = index_open(indexId, lockmode);
2174 
2175  /*
2176  * We might still have open queries using it in our own session, which the
2177  * above locking won't prevent, so test explicitly.
2178  */
2179  CheckTableNotInUse(userIndexRelation, "DROP INDEX");
2180 
2181  /*
2182  * Drop Index Concurrently is more or less the reverse process of Create
2183  * Index Concurrently.
2184  *
2185  * First we unset indisvalid so queries starting afterwards don't use the
2186  * index to answer queries anymore. We have to keep indisready = true so
2187  * transactions that are still scanning the index can continue to see
2188  * valid index contents. For instance, if they are using READ COMMITTED
2189  * mode, and another transaction makes changes and commits, they need to
2190  * see those new tuples in the index.
2191  *
2192  * After all transactions that could possibly have used the index for
2193  * queries end, we can unset indisready and indislive, then wait till
2194  * nobody could be touching it anymore. (Note: we need indislive because
2195  * this state must be distinct from the initial state during CREATE INDEX
2196  * CONCURRENTLY, which has indislive true while indisready and indisvalid
2197  * are false. That's because in that state, transactions must examine the
2198  * index for HOT-safety decisions, while in this state we don't want them
2199  * to open it at all.)
2200  *
2201  * Since all predicate locks on the index are about to be made invalid, we
2202  * must promote them to predicate locks on the heap. In the
2203  * non-concurrent case we can just do that now. In the concurrent case
2204  * it's a bit trickier. The predicate locks must be moved when there are
2205  * no index scans in progress on the index and no more can subsequently
2206  * start, so that no new predicate locks can be made on the index. Also,
2207  * they must be moved before heap inserts stop maintaining the index, else
2208  * the conflict with the predicate lock on the index gap could be missed
2209  * before the lock on the heap relation is in place to detect a conflict
2210  * based on the heap tuple insert.
2211  */
2212  if (concurrent)
2213  {
2214  /*
2215  * We must commit our transaction in order to make the first pg_index
2216  * state update visible to other sessions. If the DROP machinery has
2217  * already performed any other actions (removal of other objects,
2218  * pg_depend entries, etc), the commit would make those actions
2219  * permanent, which would leave us with inconsistent catalog state if
2220  * we fail partway through the following sequence. Since DROP INDEX
2221  * CONCURRENTLY is restricted to dropping just one index that has no
2222  * dependencies, we should get here before anything's been done ---
2223  * but let's check that to be sure. We can verify that the current
2224  * transaction has not executed any transactional updates by checking
2225  * that no XID has been assigned.
2226  */
2228  ereport(ERROR,
2229  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2230  errmsg("DROP INDEX CONCURRENTLY must be first action in transaction")));
2231 
2232  /*
2233  * Mark index invalid by updating its pg_index entry
2234  */
2236 
2237  /*
2238  * Invalidate the relcache for the table, so that after this commit
2239  * all sessions will refresh any cached plans that might reference the
2240  * index.
2241  */
2242  CacheInvalidateRelcache(userHeapRelation);
2243 
2244  /* save lockrelid and locktag for below, then close but keep locks */
2245  heaprelid = userHeapRelation->rd_lockInfo.lockRelId;
2246  SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
2247  indexrelid = userIndexRelation->rd_lockInfo.lockRelId;
2248 
2249  table_close(userHeapRelation, NoLock);
2250  index_close(userIndexRelation, NoLock);
2251 
2252  /*
2253  * We must commit our current transaction so that the indisvalid
2254  * update becomes visible to other transactions; then start another.
2255  * Note that any previously-built data structures are lost in the
2256  * commit. The only data we keep past here are the relation IDs.
2257  *
2258  * Before committing, get a session-level lock on the table, to ensure
2259  * that neither it nor the index can be dropped before we finish. This
2260  * cannot block, even if someone else is waiting for access, because
2261  * we already have the same lock within our transaction.
2262  */
2265 
2269 
2270  /*
2271  * Now we must wait until no running transaction could be using the
2272  * index for a query. Use AccessExclusiveLock here to check for
2273  * running transactions that hold locks of any kind on the table. Note
2274  * we do not need to worry about xacts that open the table for reading
2275  * after this point; they will see the index as invalid when they open
2276  * the relation.
2277  *
2278  * Note: the reason we use actual lock acquisition here, rather than
2279  * just checking the ProcArray and sleeping, is that deadlock is
2280  * possible if one of the transactions in question is blocked trying
2281  * to acquire an exclusive lock on our table. The lock code will
2282  * detect deadlock and error out properly.
2283  *
2284  * Note: we report progress through WaitForLockers() unconditionally
2285  * here, even though it will only be used when we're called by REINDEX
2286  * CONCURRENTLY and not when called by DROP INDEX CONCURRENTLY.
2287  */
2288  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2289 
2290  /* Finish invalidation of index and mark it as dead */
2291  index_concurrently_set_dead(heapId, indexId);
2292 
2293  /*
2294  * Again, commit the transaction to make the pg_index update visible
2295  * to other sessions.
2296  */
2299 
2300  /*
2301  * Wait till every transaction that saw the old index state has
2302  * finished. See above about progress reporting.
2303  */
2304  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2305 
2306  /*
2307  * Re-open relations to allow us to complete our actions.
2308  *
2309  * At this point, nothing should be accessing the index, but lets
2310  * leave nothing to chance and grab AccessExclusiveLock on the index
2311  * before the physical deletion.
2312  */
2313  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
2314  userIndexRelation = index_open(indexId, AccessExclusiveLock);
2315  }
2316  else
2317  {
2318  /* Not concurrent, so just transfer predicate locks and we're good */
2319  TransferPredicateLocksToHeapRelation(userIndexRelation);
2320  }
2321 
2322  /*
2323  * Schedule physical removal of the files (if any)
2324  */
2325  if (RELKIND_HAS_STORAGE(userIndexRelation->rd_rel->relkind))
2326  RelationDropStorage(userIndexRelation);
2327 
2328  /* ensure that stats are dropped if transaction commits */
2329  pgstat_drop_relation(userIndexRelation);
2330 
2331  /*
2332  * Close and flush the index's relcache entry, to ensure relcache doesn't
2333  * try to rebuild it while we're deleting catalog entries. We keep the
2334  * lock though.
2335  */
2336  index_close(userIndexRelation, NoLock);
2337 
2338  RelationForgetRelation(indexId);
2339 
2340  /*
2341  * fix INDEX relation, and check for expressional index
2342  */
2343  indexRelation = table_open(IndexRelationId, RowExclusiveLock);
2344 
2345  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
2346  if (!HeapTupleIsValid(tuple))
2347  elog(ERROR, "cache lookup failed for index %u", indexId);
2348 
2349  hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs,
2350  RelationGetDescr(indexRelation));
2351 
2352  CatalogTupleDelete(indexRelation, &tuple->t_self);
2353 
2354  ReleaseSysCache(tuple);
2355  table_close(indexRelation, RowExclusiveLock);
2356 
2357  /*
2358  * if it has any expression columns, we might have stored statistics about
2359  * them.
2360  */
2361  if (hasexprs)
2362  RemoveStatistics(indexId, 0);
2363 
2364  /*
2365  * fix ATTRIBUTE relation
2366  */
2367  DeleteAttributeTuples(indexId);
2368 
2369  /*
2370  * fix RELATION relation
2371  */
2372  DeleteRelationTuple(indexId);
2373 
2374  /*
2375  * fix INHERITS relation
2376  */
2377  DeleteInheritsTuple(indexId, InvalidOid, false, NULL);
2378 
2379  /*
2380  * We are presently too lazy to attempt to compute the new correct value
2381  * of relhasindex (the next VACUUM will fix it if necessary). So there is
2382  * no need to update the pg_class tuple for the owning relation. But we
2383  * must send out a shared-cache-inval notice on the owning relation to
2384  * ensure other backends update their relcache lists of indexes. (In the
2385  * concurrent case, this is redundant but harmless.)
2386  */
2387  CacheInvalidateRelcache(userHeapRelation);
2388 
2389  /*
2390  * Close owning rel, but keep lock
2391  */
2392  table_close(userHeapRelation, NoLock);
2393 
2394  /*
2395  * Release the session locks before we go.
2396  */
2397  if (concurrent)
2398  {
2401  }
2402 }
2403 
2404 /* ----------------------------------------------------------------
2405  * index_build support
2406  * ----------------------------------------------------------------
2407  */
2408 
2409 /* ----------------
2410  * BuildIndexInfo
2411  * Construct an IndexInfo record for an open index
2412  *
2413  * IndexInfo stores the information about the index that's needed by
2414  * FormIndexDatum, which is used for both index_build() and later insertion
2415  * of individual index tuples. Normally we build an IndexInfo for an index
2416  * just once per command, and then use it for (potentially) many tuples.
2417  * ----------------
2418  */
2419 IndexInfo *
2421 {
2422  IndexInfo *ii;
2423  Form_pg_index indexStruct = index->rd_index;
2424  int i;
2425  int numAtts;
2426 
2427  /* check the number of keys, and copy attr numbers into the IndexInfo */
2428  numAtts = indexStruct->indnatts;
2429  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2430  elog(ERROR, "invalid indnatts %d for index %u",
2431  numAtts, RelationGetRelid(index));
2432 
2433  /*
2434  * Create the node, fetching any expressions needed for expressional
2435  * indexes and index predicate if any.
2436  */
2437  ii = makeIndexInfo(indexStruct->indnatts,
2438  indexStruct->indnkeyatts,
2439  index->rd_rel->relam,
2442  indexStruct->indisunique,
2443  indexStruct->indnullsnotdistinct,
2444  indexStruct->indisready,
2445  false);
2446 
2447  /* fill in attribute numbers */
2448  for (i = 0; i < numAtts; i++)
2449  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2450 
2451  /* fetch exclusion constraint info if any */
2452  if (indexStruct->indisexclusion)
2453  {
2455  &ii->ii_ExclusionOps,
2456  &ii->ii_ExclusionProcs,
2457  &ii->ii_ExclusionStrats);
2458  }
2459 
2461 
2462  return ii;
2463 }
2464 
2465 /* ----------------
2466  * BuildDummyIndexInfo
2467  * Construct a dummy IndexInfo record for an open index
2468  *
2469  * This differs from the real BuildIndexInfo in that it will never run any
2470  * user-defined code that might exist in index expressions or predicates.
2471  * Instead of the real index expressions, we return null constants that have
2472  * the right types/typmods/collations. Predicates and exclusion clauses are
2473  * just ignored. This is sufficient for the purpose of truncating an index,
2474  * since we will not need to actually evaluate the expressions or predicates;
2475  * the only thing that's likely to be done with the data is construction of
2476  * a tupdesc describing the index's rowtype.
2477  * ----------------
2478  */
2479 IndexInfo *
2481 {
2482  IndexInfo *ii;
2483  Form_pg_index indexStruct = index->rd_index;
2484  int i;
2485  int numAtts;
2486 
2487  /* check the number of keys, and copy attr numbers into the IndexInfo */
2488  numAtts = indexStruct->indnatts;
2489  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2490  elog(ERROR, "invalid indnatts %d for index %u",
2491  numAtts, RelationGetRelid(index));
2492 
2493  /*
2494  * Create the node, using dummy index expressions, and pretending there is
2495  * no predicate.
2496  */
2497  ii = makeIndexInfo(indexStruct->indnatts,
2498  indexStruct->indnkeyatts,
2499  index->rd_rel->relam,
2501  NIL,
2502  indexStruct->indisunique,
2503  indexStruct->indnullsnotdistinct,
2504  indexStruct->indisready,
2505  false);
2506 
2507  /* fill in attribute numbers */
2508  for (i = 0; i < numAtts; i++)
2509  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2510 
2511  /* We ignore the exclusion constraint if any */
2512 
2513  return ii;
2514 }
2515 
2516 /*
2517  * CompareIndexInfo
2518  * Return whether the properties of two indexes (in different tables)
2519  * indicate that they have the "same" definitions.
2520  *
2521  * Note: passing collations and opfamilies separately is a kludge. Adding
2522  * them to IndexInfo may result in better coding here and elsewhere.
2523  *
2524  * Use build_attrmap_by_name(index2, index1) to build the attmap.
2525  */
2526 bool
2528  Oid *collations1, Oid *collations2,
2529  Oid *opfamilies1, Oid *opfamilies2,
2530  AttrMap *attmap)
2531 {
2532  int i;
2533 
2534  if (info1->ii_Unique != info2->ii_Unique)
2535  return false;
2536 
2537  if (info1->ii_NullsNotDistinct != info2->ii_NullsNotDistinct)
2538  return false;
2539 
2540  /* indexes are only equivalent if they have the same access method */
2541  if (info1->ii_Am != info2->ii_Am)
2542  return false;
2543 
2544  /* and same number of attributes */
2545  if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs)
2546  return false;
2547 
2548  /* and same number of key attributes */
2549  if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs)
2550  return false;
2551 
2552  /*
2553  * and columns match through the attribute map (actual attribute numbers
2554  * might differ!) Note that this implies that index columns that are
2555  * expressions appear in the same positions. We will next compare the
2556  * expressions themselves.
2557  */
2558  for (i = 0; i < info1->ii_NumIndexAttrs; i++)
2559  {
2560  if (attmap->maplen < info2->ii_IndexAttrNumbers[i])
2561  elog(ERROR, "incorrect attribute map");
2562 
2563  /* ignore expressions at this stage */
2564  if ((info1->ii_IndexAttrNumbers[i] != InvalidAttrNumber) &&
2565  (attmap->attnums[info2->ii_IndexAttrNumbers[i] - 1] !=
2566  info1->ii_IndexAttrNumbers[i]))
2567  return false;
2568 
2569  /* collation and opfamily is not valid for including columns */
2570  if (i >= info1->ii_NumIndexKeyAttrs)
2571  continue;
2572 
2573  if (collations1[i] != collations2[i])
2574  return false;
2575  if (opfamilies1[i] != opfamilies2[i])
2576  return false;
2577  }
2578 
2579  /*
2580  * For expression indexes: either both are expression indexes, or neither
2581  * is; if they are, make sure the expressions match.
2582  */
2583  if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL))
2584  return false;
2585  if (info1->ii_Expressions != NIL)
2586  {
2587  bool found_whole_row;
2588  Node *mapped;
2589 
2590  mapped = map_variable_attnos((Node *) info2->ii_Expressions,
2591  1, 0, attmap,
2592  InvalidOid, &found_whole_row);
2593  if (found_whole_row)
2594  {
2595  /*
2596  * we could throw an error here, but seems out of scope for this
2597  * routine.
2598  */
2599  return false;
2600  }
2601 
2602  if (!equal(info1->ii_Expressions, mapped))
2603  return false;
2604  }
2605 
2606  /* Partial index predicates must be identical, if they exist */
2607  if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL))
2608  return false;
2609  if (info1->ii_Predicate != NULL)
2610  {
2611  bool found_whole_row;
2612  Node *mapped;
2613 
2614  mapped = map_variable_attnos((Node *) info2->ii_Predicate,
2615  1, 0, attmap,
2616  InvalidOid, &found_whole_row);
2617  if (found_whole_row)
2618  {
2619  /*
2620  * we could throw an error here, but seems out of scope for this
2621  * routine.
2622  */
2623  return false;
2624  }
2625  if (!equal(info1->ii_Predicate, mapped))
2626  return false;
2627  }
2628 
2629  /* No support currently for comparing exclusion indexes. */
2630  if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL)
2631  return false;
2632 
2633  return true;
2634 }
2635 
2636 /* ----------------
2637  * BuildSpeculativeIndexInfo
2638  * Add extra state to IndexInfo record
2639  *
2640  * For unique indexes, we usually don't want to add info to the IndexInfo for
2641  * checking uniqueness, since the B-Tree AM handles that directly. However,
2642  * in the case of speculative insertion, additional support is required.
2643  *
2644  * Do this processing here rather than in BuildIndexInfo() to not incur the
2645  * overhead in the common non-speculative cases.
2646  * ----------------
2647  */
2648 void
2650 {
2651  int indnkeyatts;
2652  int i;
2653 
2655 
2656  /*
2657  * fetch info for checking unique indexes
2658  */
2659  Assert(ii->ii_Unique);
2660 
2661  if (index->rd_rel->relam != BTREE_AM_OID)
2662  elog(ERROR, "unexpected non-btree speculative unique index");
2663 
2664  ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2665  ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2666  ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts);
2667 
2668  /*
2669  * We have to look up the operator's strategy number. This provides a
2670  * cross-check that the operator does match the index.
2671  */
2672  /* We need the func OIDs and strategy numbers too */
2673  for (i = 0; i < indnkeyatts; i++)
2674  {
2676  ii->ii_UniqueOps[i] =
2677  get_opfamily_member(index->rd_opfamily[i],
2678  index->rd_opcintype[i],
2679  index->rd_opcintype[i],
2680  ii->ii_UniqueStrats[i]);
2681  if (!OidIsValid(ii->ii_UniqueOps[i]))
2682  elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2683  ii->ii_UniqueStrats[i], index->rd_opcintype[i],
2684  index->rd_opcintype[i], index->rd_opfamily[i]);
2685  ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]);
2686  }
2687 }
2688 
2689 /* ----------------
2690  * FormIndexDatum
2691  * Construct values[] and isnull[] arrays for a new index tuple.
2692  *
2693  * indexInfo Info about the index
2694  * slot Heap tuple for which we must prepare an index entry
2695  * estate executor state for evaluating any index expressions
2696  * values Array of index Datums (output area)
2697  * isnull Array of is-null indicators (output area)
2698  *
2699  * When there are no index expressions, estate may be NULL. Otherwise it
2700  * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
2701  * context must point to the heap tuple passed in.
2702  *
2703  * Notice we don't actually call index_form_tuple() here; we just prepare
2704  * its input arrays values[] and isnull[]. This is because the index AM
2705  * may wish to alter the data before storage.
2706  * ----------------
2707  */
2708 void
2710  TupleTableSlot *slot,
2711  EState *estate,
2712  Datum *values,
2713  bool *isnull)
2714 {
2715  ListCell *indexpr_item;
2716  int i;
2717 
2718  if (indexInfo->ii_Expressions != NIL &&
2719  indexInfo->ii_ExpressionsState == NIL)
2720  {
2721  /* First time through, set up expression evaluation state */
2722  indexInfo->ii_ExpressionsState =
2723  ExecPrepareExprList(indexInfo->ii_Expressions, estate);
2724  /* Check caller has set up context correctly */
2725  Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
2726  }
2727  indexpr_item = list_head(indexInfo->ii_ExpressionsState);
2728 
2729  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
2730  {
2731  int keycol = indexInfo->ii_IndexAttrNumbers[i];
2732  Datum iDatum;
2733  bool isNull;
2734 
2735  if (keycol < 0)
2736  iDatum = slot_getsysattr(slot, keycol, &isNull);
2737  else if (keycol != 0)
2738  {
2739  /*
2740  * Plain index column; get the value we need directly from the
2741  * heap tuple.
2742  */
2743  iDatum = slot_getattr(slot, keycol, &isNull);
2744  }
2745  else
2746  {
2747  /*
2748  * Index expression --- need to evaluate it.
2749  */
2750  if (indexpr_item == NULL)
2751  elog(ERROR, "wrong number of index expressions");
2752  iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item),
2753  GetPerTupleExprContext(estate),
2754  &isNull);
2755  indexpr_item = lnext(indexInfo->ii_ExpressionsState, indexpr_item);
2756  }
2757  values[i] = iDatum;
2758  isnull[i] = isNull;
2759  }
2760 
2761  if (indexpr_item != NULL)
2762  elog(ERROR, "wrong number of index expressions");
2763 }
2764 
2765 
2766 /*
2767  * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
2768  *
2769  * This routine updates the pg_class row of either an index or its parent
2770  * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed
2771  * to ensure we can do all the necessary work in just one update.
2772  *
2773  * hasindex: set relhasindex to this value
2774  * reltuples: if >= 0, set reltuples to this value; else no change
2775  *
2776  * If reltuples >= 0, relpages and relallvisible are also updated (using
2777  * RelationGetNumberOfBlocks() and visibilitymap_count()).
2778  *
2779  * NOTE: an important side-effect of this operation is that an SI invalidation
2780  * message is sent out to all backends --- including me --- causing relcache
2781  * entries to be flushed or updated with the new data. This must happen even
2782  * if we find that no change is needed in the pg_class row. When updating
2783  * a heap entry, this ensures that other backends find out about the new
2784  * index. When updating an index, it's important because some index AMs
2785  * expect a relcache flush to occur after REINDEX.
2786  */
2787 static void
2789  bool hasindex,
2790  double reltuples)
2791 {
2792  Oid relid = RelationGetRelid(rel);
2793  Relation pg_class;
2794  HeapTuple tuple;
2795  Form_pg_class rd_rel;
2796  bool dirty;
2797 
2798  /*
2799  * We always update the pg_class row using a non-transactional,
2800  * overwrite-in-place update. There are several reasons for this:
2801  *
2802  * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
2803  *
2804  * 2. We could be reindexing pg_class itself, in which case we can't move
2805  * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might
2806  * not know about all the indexes yet (see reindex_relation).
2807  *
2808  * 3. Because we execute CREATE INDEX with just share lock on the parent
2809  * rel (to allow concurrent index creations), an ordinary update could
2810  * suffer a tuple-concurrently-updated failure against another CREATE
2811  * INDEX committing at about the same time. We can avoid that by having
2812  * them both do nontransactional updates (we assume they will both be
2813  * trying to change the pg_class row to the same thing, so it doesn't
2814  * matter which goes first).
2815  *
2816  * It is safe to use a non-transactional update even though our
2817  * transaction could still fail before committing. Setting relhasindex
2818  * true is safe even if there are no indexes (VACUUM will eventually fix
2819  * it). And of course the new relpages and reltuples counts are correct
2820  * regardless. However, we don't want to change relpages (or
2821  * relallvisible) if the caller isn't providing an updated reltuples
2822  * count, because that would bollix the reltuples/relpages ratio which is
2823  * what's really important.
2824  */
2825 
2826  pg_class = table_open(RelationRelationId, RowExclusiveLock);
2827 
2828  /*
2829  * Make a copy of the tuple to update. Normally we use the syscache, but
2830  * we can't rely on that during bootstrap or while reindexing pg_class
2831  * itself.
2832  */
2833  if (IsBootstrapProcessingMode() ||
2834  ReindexIsProcessingHeap(RelationRelationId))
2835  {
2836  /* don't assume syscache will work */
2837  TableScanDesc pg_class_scan;
2838  ScanKeyData key[1];
2839 
2840  ScanKeyInit(&key[0],
2841  Anum_pg_class_oid,
2842  BTEqualStrategyNumber, F_OIDEQ,
2843  ObjectIdGetDatum(relid));
2844 
2845  pg_class_scan = table_beginscan_catalog(pg_class, 1, key);
2846  tuple = heap_getnext(pg_class_scan, ForwardScanDirection);
2847  tuple = heap_copytuple(tuple);
2848  table_endscan(pg_class_scan);
2849  }
2850  else
2851  {
2852  /* normal case, use syscache */
2853  tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid));
2854  }
2855 
2856  if (!HeapTupleIsValid(tuple))
2857  elog(ERROR, "could not find tuple for relation %u", relid);
2858  rd_rel = (Form_pg_class) GETSTRUCT(tuple);
2859 
2860  /* Should this be a more comprehensive test? */
2861  Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX);
2862 
2863  /*
2864  * As a special hack, if we are dealing with an empty table and the
2865  * existing reltuples is -1, we leave that alone. This ensures that
2866  * creating an index as part of CREATE TABLE doesn't cause the table to
2867  * prematurely look like it's been vacuumed.
2868  */
2869  if (reltuples == 0 && rd_rel->reltuples < 0)
2870  reltuples = -1;
2871 
2872  /* Apply required updates, if any, to copied tuple */
2873 
2874  dirty = false;
2875  if (rd_rel->relhasindex != hasindex)
2876  {
2877  rd_rel->relhasindex = hasindex;
2878  dirty = true;
2879  }
2880 
2881  if (reltuples >= 0)
2882  {
2883  BlockNumber relpages = RelationGetNumberOfBlocks(rel);
2884  BlockNumber relallvisible;
2885 
2886  if (rd_rel->relkind != RELKIND_INDEX)
2887  visibilitymap_count(rel, &relallvisible, NULL);
2888  else /* don't bother for indexes */
2889  relallvisible = 0;
2890 
2891  if (rd_rel->relpages != (int32) relpages)
2892  {
2893  rd_rel->relpages = (int32) relpages;
2894  dirty = true;
2895  }
2896  if (rd_rel->reltuples != (float4) reltuples)
2897  {
2898  rd_rel->reltuples = (float4) reltuples;
2899  dirty = true;
2900  }
2901  if (rd_rel->relallvisible != (int32) relallvisible)
2902  {
2903  rd_rel->relallvisible = (int32) relallvisible;
2904  dirty = true;
2905  }
2906  }
2907 
2908  /*
2909  * If anything changed, write out the tuple
2910  */
2911  if (dirty)
2912  {
2913  heap_inplace_update(pg_class, tuple);
2914  /* the above sends a cache inval message */
2915  }
2916  else
2917  {
2918  /* no need to change tuple, but force relcache inval anyway */
2920  }
2921 
2922  heap_freetuple(tuple);
2923 
2924  table_close(pg_class, RowExclusiveLock);
2925 }
2926 
2927 
2928 /*
2929  * index_build - invoke access-method-specific index build procedure
2930  *
2931  * On entry, the index's catalog entries are valid, and its physical disk
2932  * file has been created but is empty. We call the AM-specific build
2933  * procedure to fill in the index contents. We then update the pg_class
2934  * entries of the index and heap relation as needed, using statistics
2935  * returned by ambuild as well as data passed by the caller.
2936  *
2937  * isreindex indicates we are recreating a previously-existing index.
2938  * parallel indicates if parallelism may be useful.
2939  *
2940  * Note: before Postgres 8.2, the passed-in heap and index Relations
2941  * were automatically closed by this routine. This is no longer the case.
2942  * The caller opened 'em, and the caller should close 'em.
2943  */
2944 void
2945 index_build(Relation heapRelation,
2946  Relation indexRelation,
2947  IndexInfo *indexInfo,
2948  bool isreindex,
2949  bool parallel)
2950 {
2951  IndexBuildResult *stats;
2952  Oid save_userid;
2953  int save_sec_context;
2954  int save_nestlevel;
2955 
2956  /*
2957  * sanity checks
2958  */
2959  Assert(RelationIsValid(indexRelation));
2960  Assert(PointerIsValid(indexRelation->rd_indam));
2961  Assert(PointerIsValid(indexRelation->rd_indam->ambuild));
2962  Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty));
2963 
2964  /*
2965  * Determine worker process details for parallel CREATE INDEX. Currently,
2966  * only btree has support for parallel builds.
2967  *
2968  * Note that planner considers parallel safety for us.
2969  */
2970  if (parallel && IsNormalProcessingMode() &&
2971  indexRelation->rd_rel->relam == BTREE_AM_OID)
2972  indexInfo->ii_ParallelWorkers =
2974  RelationGetRelid(indexRelation));
2975 
2976  if (indexInfo->ii_ParallelWorkers == 0)
2977  ereport(DEBUG1,
2978  (errmsg_internal("building index \"%s\" on table \"%s\" serially",
2979  RelationGetRelationName(indexRelation),
2980  RelationGetRelationName(heapRelation))));
2981  else
2982  ereport(DEBUG1,
2983  (errmsg_internal("building index \"%s\" on table \"%s\" with request for %d parallel workers",
2984  RelationGetRelationName(indexRelation),
2985  RelationGetRelationName(heapRelation),
2986  indexInfo->ii_ParallelWorkers)));
2987 
2988  /*
2989  * Switch to the table owner's userid, so that any index functions are run
2990  * as that user. Also lock down security-restricted operations and
2991  * arrange to make GUC variable changes local to this command.
2992  */
2993  GetUserIdAndSecContext(&save_userid, &save_sec_context);
2994  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
2995  save_sec_context | SECURITY_RESTRICTED_OPERATION);
2996  save_nestlevel = NewGUCNestLevel();
2997 
2998  /* Set up initial progress report status */
2999  {
3000  const int progress_index[] = {
3007  };
3008  const int64 progress_vals[] = {
3011  0, 0, 0, 0
3012  };
3013 
3014  pgstat_progress_update_multi_param(6, progress_index, progress_vals);
3015  }
3016 
3017  /*
3018  * Call the access method's build procedure
3019  */
3020  stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation,
3021  indexInfo);
3022  Assert(PointerIsValid(stats));
3023 
3024  /*
3025  * If this is an unlogged index, we may need to write out an init fork for
3026  * it -- but we must first check whether one already exists. If, for
3027  * example, an unlogged relation is truncated in the transaction that
3028  * created it, or truncated twice in a subsequent transaction, the
3029  * relfilenumber won't change, and nothing needs to be done here.
3030  */
3031  if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED &&
3032  !smgrexists(RelationGetSmgr(indexRelation), INIT_FORKNUM))
3033  {
3034  smgrcreate(RelationGetSmgr(indexRelation), INIT_FORKNUM, false);
3035  indexRelation->rd_indam->ambuildempty(indexRelation);
3036  }
3037 
3038  /*
3039  * If we found any potentially broken HOT chains, mark the index as not
3040  * being usable until the current transaction is below the event horizon.
3041  * See src/backend/access/heap/README.HOT for discussion. Also set this
3042  * if early pruning/vacuuming is enabled for the heap relation. While it
3043  * might become safe to use the index earlier based on actual cleanup
3044  * activity and other active transactions, the test for that would be much
3045  * more complex and would require some form of blocking, so keep it simple
3046  * and fast by just using the current transaction.
3047  *
3048  * However, when reindexing an existing index, we should do nothing here.
3049  * Any HOT chains that are broken with respect to the index must predate
3050  * the index's original creation, so there is no need to change the
3051  * index's usability horizon. Moreover, we *must not* try to change the
3052  * index's pg_index entry while reindexing pg_index itself, and this
3053  * optimization nicely prevents that. The more complex rules needed for a
3054  * reindex are handled separately after this function returns.
3055  *
3056  * We also need not set indcheckxmin during a concurrent index build,
3057  * because we won't set indisvalid true until all transactions that care
3058  * about the broken HOT chains or early pruning/vacuuming are gone.
3059  *
3060  * Therefore, this code path can only be taken during non-concurrent
3061  * CREATE INDEX. Thus the fact that heap_update will set the pg_index
3062  * tuple's xmin doesn't matter, because that tuple was created in the
3063  * current transaction anyway. That also means we don't need to worry
3064  * about any concurrent readers of the tuple; no other transaction can see
3065  * it yet.
3066  */
3067  if ((indexInfo->ii_BrokenHotChain || EarlyPruningEnabled(heapRelation)) &&
3068  !isreindex &&
3069  !indexInfo->ii_Concurrent)
3070  {
3071  Oid indexId = RelationGetRelid(indexRelation);
3072  Relation pg_index;
3073  HeapTuple indexTuple;
3074  Form_pg_index indexForm;
3075 
3076  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3077 
3078  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3079  ObjectIdGetDatum(indexId));
3080  if (!HeapTupleIsValid(indexTuple))
3081  elog(ERROR, "cache lookup failed for index %u", indexId);
3082  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3083 
3084  /* If it's a new index, indcheckxmin shouldn't be set ... */
3085  Assert(!indexForm->indcheckxmin);
3086 
3087  indexForm->indcheckxmin = true;
3088  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3089 
3090  heap_freetuple(indexTuple);
3091  table_close(pg_index, RowExclusiveLock);
3092  }
3093 
3094  /*
3095  * Update heap and index pg_class rows
3096  */
3097  index_update_stats(heapRelation,
3098  true,
3099  stats->heap_tuples);
3100 
3101  index_update_stats(indexRelation,
3102  false,
3103  stats->index_tuples);
3104 
3105  /* Make the updated catalog row versions visible */
3107 
3108  /*
3109  * If it's for an exclusion constraint, make a second pass over the heap
3110  * to verify that the constraint is satisfied. We must not do this until
3111  * the index is fully valid. (Broken HOT chains shouldn't matter, though;
3112  * see comments for IndexCheckExclusion.)
3113  */
3114  if (indexInfo->ii_ExclusionOps != NULL)
3115  IndexCheckExclusion(heapRelation, indexRelation, indexInfo);
3116 
3117  /* Roll back any GUC changes executed by index functions */
3118  AtEOXact_GUC(false, save_nestlevel);
3119 
3120  /* Restore userid and security context */
3121  SetUserIdAndSecContext(save_userid, save_sec_context);
3122 }
3123 
3124 /*
3125  * IndexCheckExclusion - verify that a new exclusion constraint is satisfied
3126  *
3127  * When creating an exclusion constraint, we first build the index normally
3128  * and then rescan the heap to check for conflicts. We assume that we only
3129  * need to validate tuples that are live according to an up-to-date snapshot,
3130  * and that these were correctly indexed even in the presence of broken HOT
3131  * chains. This should be OK since we are holding at least ShareLock on the
3132  * table, meaning there can be no uncommitted updates from other transactions.
3133  * (Note: that wouldn't necessarily work for system catalogs, since many
3134  * operations release write lock early on the system catalogs.)
3135  */
3136 static void
3138  Relation indexRelation,
3139  IndexInfo *indexInfo)
3140 {
3141  TableScanDesc scan;
3143  bool isnull[INDEX_MAX_KEYS];
3144  ExprState *predicate;
3145  TupleTableSlot *slot;
3146  EState *estate;
3147  ExprContext *econtext;
3148  Snapshot snapshot;
3149 
3150  /*
3151  * If we are reindexing the target index, mark it as no longer being
3152  * reindexed, to forestall an Assert in index_beginscan when we try to use
3153  * the index for probes. This is OK because the index is now fully valid.
3154  */
3157 
3158  /*
3159  * Need an EState for evaluation of index expressions and partial-index
3160  * predicates. Also a slot to hold the current tuple.
3161  */
3162  estate = CreateExecutorState();
3163  econtext = GetPerTupleExprContext(estate);
3164  slot = table_slot_create(heapRelation, NULL);
3165 
3166  /* Arrange for econtext's scan tuple to be the tuple under test */
3167  econtext->ecxt_scantuple = slot;
3168 
3169  /* Set up execution state for predicate, if any. */
3170  predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
3171 
3172  /*
3173  * Scan all live tuples in the base relation.
3174  */
3175  snapshot = RegisterSnapshot(GetLatestSnapshot());
3176  scan = table_beginscan_strat(heapRelation, /* relation */
3177  snapshot, /* snapshot */
3178  0, /* number of keys */
3179  NULL, /* scan key */
3180  true, /* buffer access strategy OK */
3181  true); /* syncscan OK */
3182 
3183  while (table_scan_getnextslot(scan, ForwardScanDirection, slot))
3184  {
3186 
3187  /*
3188  * In a partial index, ignore tuples that don't satisfy the predicate.
3189  */
3190  if (predicate != NULL)
3191  {
3192  if (!ExecQual(predicate, econtext))
3193  continue;
3194  }
3195 
3196  /*
3197  * Extract index column values, including computing expressions.
3198  */
3199  FormIndexDatum(indexInfo,
3200  slot,
3201  estate,
3202  values,
3203  isnull);
3204 
3205  /*
3206  * Check that this tuple has no conflicts.
3207  */
3208  check_exclusion_constraint(heapRelation,
3209  indexRelation, indexInfo,
3210  &(slot->tts_tid), values, isnull,
3211  estate, true);
3212 
3214  }
3215 
3216  table_endscan(scan);
3217  UnregisterSnapshot(snapshot);
3218 
3220 
3221  FreeExecutorState(estate);
3222 
3223  /* These may have been pointing to the now-gone estate */
3224  indexInfo->ii_ExpressionsState = NIL;
3225  indexInfo->ii_PredicateState = NULL;
3226 }
3227 
3228 
3229 /*
3230  * validate_index - support code for concurrent index builds
3231  *
3232  * We do a concurrent index build by first inserting the catalog entry for the
3233  * index via index_create(), marking it not indisready and not indisvalid.
3234  * Then we commit our transaction and start a new one, then we wait for all
3235  * transactions that could have been modifying the table to terminate. Now
3236  * we know that any subsequently-started transactions will see the index and
3237  * honor its constraints on HOT updates; so while existing HOT-chains might
3238  * be broken with respect to the index, no currently live tuple will have an
3239  * incompatible HOT update done to it. We now build the index normally via
3240  * index_build(), while holding a weak lock that allows concurrent
3241  * insert/update/delete. Also, we index only tuples that are valid
3242  * as of the start of the scan (see table_index_build_scan), whereas a normal
3243  * build takes care to include recently-dead tuples. This is OK because
3244  * we won't mark the index valid until all transactions that might be able
3245  * to see those tuples are gone. The reason for doing that is to avoid
3246  * bogus unique-index failures due to concurrent UPDATEs (we might see
3247  * different versions of the same row as being valid when we pass over them,
3248  * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that
3249  * does not contain any tuples added to the table while we built the index.
3250  *
3251  * Next, we mark the index "indisready" (but still not "indisvalid") and
3252  * commit the second transaction and start a third. Again we wait for all
3253  * transactions that could have been modifying the table to terminate. Now
3254  * we know that any subsequently-started transactions will see the index and
3255  * insert their new tuples into it. We then take a new reference snapshot
3256  * which is passed to validate_index(). Any tuples that are valid according
3257  * to this snap, but are not in the index, must be added to the index.
3258  * (Any tuples committed live after the snap will be inserted into the
3259  * index by their originating transaction. Any tuples committed dead before
3260  * the snap need not be indexed, because we will wait out all transactions
3261  * that might care about them before we mark the index valid.)
3262  *
3263  * validate_index() works by first gathering all the TIDs currently in the
3264  * index, using a bulkdelete callback that just stores the TIDs and doesn't
3265  * ever say "delete it". (This should be faster than a plain indexscan;
3266  * also, not all index AMs support full-index indexscan.) Then we sort the
3267  * TIDs, and finally scan the table doing a "merge join" against the TID list
3268  * to see which tuples are missing from the index. Thus we will ensure that
3269  * all tuples valid according to the reference snapshot are in the index.
3270  *
3271  * Building a unique index this way is tricky: we might try to insert a
3272  * tuple that is already dead or is in process of being deleted, and we
3273  * mustn't have a uniqueness failure against an updated version of the same
3274  * row. We could try to check the tuple to see if it's already dead and tell
3275  * index_insert() not to do the uniqueness check, but that still leaves us
3276  * with a race condition against an in-progress update. To handle that,
3277  * we expect the index AM to recheck liveness of the to-be-inserted tuple
3278  * before it declares a uniqueness error.
3279  *
3280  * After completing validate_index(), we wait until all transactions that
3281  * were alive at the time of the reference snapshot are gone; this is
3282  * necessary to be sure there are none left with a transaction snapshot
3283  * older than the reference (and hence possibly able to see tuples we did
3284  * not index). Then we mark the index "indisvalid" and commit. Subsequent
3285  * transactions will be able to use it for queries.
3286  *
3287  * Doing two full table scans is a brute-force strategy. We could try to be
3288  * cleverer, eg storing new tuples in a special area of the table (perhaps
3289  * making the table append-only by setting use_fsm). However that would
3290  * add yet more locking issues.
3291  */
3292 void
3293 validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
3294 {
3295  Relation heapRelation,
3296  indexRelation;
3297  IndexInfo *indexInfo;
3298  IndexVacuumInfo ivinfo;
3300  Oid save_userid;
3301  int save_sec_context;
3302  int save_nestlevel;
3303 
3304  {
3305  const int progress_index[] = {
3311  };
3312  const int64 progress_vals[] = {
3314  0, 0, 0, 0
3315  };
3316 
3317  pgstat_progress_update_multi_param(5, progress_index, progress_vals);
3318  }
3319 
3320  /* Open and lock the parent heap relation */
3321  heapRelation = table_open(heapId, ShareUpdateExclusiveLock);
3322 
3323  /*
3324  * Switch to the table owner's userid, so that any index functions are run
3325  * as that user. Also lock down security-restricted operations and
3326  * arrange to make GUC variable changes local to this command.
3327  */
3328  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3329  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3330  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3331  save_nestlevel = NewGUCNestLevel();
3332 
3333  indexRelation = index_open(indexId, RowExclusiveLock);
3334 
3335  /*
3336  * Fetch info needed for index_insert. (You might think this should be
3337  * passed in from DefineIndex, but its copy is long gone due to having
3338  * been built in a previous transaction.)
3339  */
3340  indexInfo = BuildIndexInfo(indexRelation);
3341 
3342  /* mark build is concurrent just for consistency */
3343  indexInfo->ii_Concurrent = true;
3344 
3345  /*
3346  * Scan the index and gather up all the TIDs into a tuplesort object.
3347  */
3348  ivinfo.index = indexRelation;
3349  ivinfo.analyze_only = false;
3350  ivinfo.report_progress = true;
3351  ivinfo.estimated_count = true;
3352  ivinfo.message_level = DEBUG2;
3353  ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples;
3354  ivinfo.strategy = NULL;
3355 
3356  /*
3357  * Encode TIDs as int8 values for the sort, rather than directly sorting
3358  * item pointers. This can be significantly faster, primarily because TID
3359  * is a pass-by-reference type on all platforms, whereas int8 is
3360  * pass-by-value on most platforms.
3361  */
3362  state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator,
3363  InvalidOid, false,
3365  NULL, TUPLESORT_NONE);
3366  state.htups = state.itups = state.tups_inserted = 0;
3367 
3368  /* ambulkdelete updates progress metrics */
3369  (void) index_bulk_delete(&ivinfo, NULL,
3370  validate_index_callback, (void *) &state);
3371 
3372  /* Execute the sort */
3373  {
3374  const int progress_index[] = {
3378  };
3379  const int64 progress_vals[] = {
3381  0, 0
3382  };
3383 
3384  pgstat_progress_update_multi_param(3, progress_index, progress_vals);
3385  }
3386  tuplesort_performsort(state.tuplesort);
3387 
3388  /*
3389  * Now scan the heap and "merge" it with the index
3390  */
3393  table_index_validate_scan(heapRelation,
3394  indexRelation,
3395  indexInfo,
3396  snapshot,
3397  &state);
3398 
3399  /* Done with tuplesort object */
3400  tuplesort_end(state.tuplesort);
3401 
3402  elog(DEBUG2,
3403  "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
3404  state.htups, state.itups, state.tups_inserted);
3405 
3406  /* Roll back any GUC changes executed by index functions */
3407  AtEOXact_GUC(false, save_nestlevel);
3408 
3409  /* Restore userid and security context */
3410  SetUserIdAndSecContext(save_userid, save_sec_context);
3411 
3412  /* Close rels, but keep locks */
3413  index_close(indexRelation, NoLock);
3414  table_close(heapRelation, NoLock);
3415 }
3416 
3417 /*
3418  * validate_index_callback - bulkdelete callback to collect the index TIDs
3419  */
3420 static bool
3421 validate_index_callback(ItemPointer itemptr, void *opaque)
3422 {
3424  int64 encoded = itemptr_encode(itemptr);
3425 
3426  tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false);
3427  state->itups += 1;
3428  return false; /* never actually delete anything */
3429 }
3430 
3431 /*
3432  * index_set_state_flags - adjust pg_index state flags
3433  *
3434  * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index
3435  * flags that denote the index's state.
3436  *
3437  * Note that CatalogTupleUpdate() sends a cache invalidation message for the
3438  * tuple, so other sessions will hear about the update as soon as we commit.
3439  */
3440 void
3442 {
3443  Relation pg_index;
3444  HeapTuple indexTuple;
3445  Form_pg_index indexForm;
3446 
3447  /* Open pg_index and fetch a writable copy of the index's tuple */
3448  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3449 
3450  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3451  ObjectIdGetDatum(indexId));
3452  if (!HeapTupleIsValid(indexTuple))
3453  elog(ERROR, "cache lookup failed for index %u", indexId);
3454  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3455 
3456  /* Perform the requested state change on the copy */
3457  switch (action)
3458  {
3460  /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */
3461  Assert(indexForm->indislive);
3462  Assert(!indexForm->indisready);
3463  Assert(!indexForm->indisvalid);
3464  indexForm->indisready = true;
3465  break;
3467  /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */
3468  Assert(indexForm->indislive);
3469  Assert(indexForm->indisready);
3470  Assert(!indexForm->indisvalid);
3471  indexForm->indisvalid = true;
3472  break;
3474 
3475  /*
3476  * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence
3477  *
3478  * If indisready == true we leave it set so the index still gets
3479  * maintained by active transactions. We only need to ensure that
3480  * indisvalid is false. (We don't assert that either is initially
3481  * true, though, since we want to be able to retry a DROP INDEX
3482  * CONCURRENTLY that failed partway through.)
3483  *
3484  * Note: the CLUSTER logic assumes that indisclustered cannot be
3485  * set on any invalid index, so clear that flag too. Similarly,
3486  * ALTER TABLE assumes that indisreplident cannot be set for
3487  * invalid indexes.
3488  */
3489  indexForm->indisvalid = false;
3490  indexForm->indisclustered = false;
3491  indexForm->indisreplident = false;
3492  break;
3493  case INDEX_DROP_SET_DEAD:
3494 
3495  /*
3496  * Clear indisready/indislive during DROP INDEX CONCURRENTLY
3497  *
3498  * We clear both indisready and indislive, because we not only
3499  * want to stop updates, we want to prevent sessions from touching
3500  * the index at all.
3501  */
3502  Assert(!indexForm->indisvalid);
3503  Assert(!indexForm->indisclustered);
3504  Assert(!indexForm->indisreplident);
3505  indexForm->indisready = false;
3506  indexForm->indislive = false;
3507  break;
3508  }
3509 
3510  /* ... and update it */
3511  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3512 
3513  table_close(pg_index, RowExclusiveLock);
3514 }
3515 
3516 
3517 /*
3518  * IndexGetRelation: given an index's relation OID, get the OID of the
3519  * relation it is an index on. Uses the system cache.
3520  */
3521 Oid
3522 IndexGetRelation(Oid indexId, bool missing_ok)
3523 {
3524  HeapTuple tuple;
3526  Oid result;
3527 
3528  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
3529  if (!HeapTupleIsValid(tuple))
3530  {
3531  if (missing_ok)
3532  return InvalidOid;
3533  elog(ERROR, "cache lookup failed for index %u", indexId);
3534  }
3535  index = (Form_pg_index) GETSTRUCT(tuple);
3536  Assert(index->indexrelid == indexId);
3537 
3538  result = index->indrelid;
3539  ReleaseSysCache(tuple);
3540  return result;
3541 }
3542 
3543 /*
3544  * reindex_index - This routine is used to recreate a single index
3545  */
3546 void
3547 reindex_index(Oid indexId, bool skip_constraint_checks, char persistence,
3548  ReindexParams *params)
3549 {
3550  Relation iRel,
3551  heapRelation;
3552  Oid heapId;
3553  Oid save_userid;
3554  int save_sec_context;
3555  int save_nestlevel;
3556  IndexInfo *indexInfo;
3557  volatile bool skipped_constraint = false;
3558  PGRUsage ru0;
3559  bool progress = ((params->options & REINDEXOPT_REPORT_PROGRESS) != 0);
3560  bool set_tablespace = false;
3561 
3562  pg_rusage_init(&ru0);
3563 
3564  /*
3565  * Open and lock the parent heap relation. ShareLock is sufficient since
3566  * we only need to be sure no schema or data changes are going on.
3567  */
3568  heapId = IndexGetRelation(indexId,
3569  (params->options & REINDEXOPT_MISSING_OK) != 0);
3570  /* if relation is missing, leave */
3571  if (!OidIsValid(heapId))
3572  return;
3573 
3574  if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3575  heapRelation = try_table_open(heapId, ShareLock);
3576  else
3577  heapRelation = table_open(heapId, ShareLock);
3578 
3579  /* if relation is gone, leave */
3580  if (!heapRelation)
3581  return;
3582 
3583  /*
3584  * Switch to the table owner's userid, so that any index functions are run
3585  * as that user. Also lock down security-restricted operations and
3586  * arrange to make GUC variable changes local to this command.
3587  */
3588  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3589  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3590  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3591  save_nestlevel = NewGUCNestLevel();
3592 
3593  if (progress)
3594  {
3595  const int progress_cols[] = {
3598  };
3599  const int64 progress_vals[] = {
3601  indexId
3602  };
3603 
3605  heapId);
3606  pgstat_progress_update_multi_param(2, progress_cols, progress_vals);
3607  }
3608 
3609  /*
3610  * Open the target index relation and get an exclusive lock on it, to
3611  * ensure that no one else is touching this particular index.
3612  */
3613  iRel = index_open(indexId, AccessExclusiveLock);
3614 
3615  if (progress)
3617  iRel->rd_rel->relam);
3618 
3619  /*
3620  * Partitioned indexes should never get processed here, as they have no
3621  * physical storage.
3622  */
3623  if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
3624  elog(ERROR, "cannot reindex partitioned index \"%s.%s\"",
3626  RelationGetRelationName(iRel));
3627 
3628  /*
3629  * Don't allow reindex on temp tables of other backends ... their local
3630  * buffer manager is not going to cope.
3631  */
3632  if (RELATION_IS_OTHER_TEMP(iRel))
3633  ereport(ERROR,
3634  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3635  errmsg("cannot reindex temporary tables of other sessions")));
3636 
3637  /*
3638  * Don't allow reindex of an invalid index on TOAST table. This is a
3639  * leftover from a failed REINDEX CONCURRENTLY, and if rebuilt it would
3640  * not be possible to drop it anymore.
3641  */
3643  !get_index_isvalid(indexId))
3644  ereport(ERROR,
3645  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3646  errmsg("cannot reindex invalid index on TOAST table")));
3647 
3648  /*
3649  * System relations cannot be moved even if allow_system_table_mods is
3650  * enabled to keep things consistent with the concurrent case where all
3651  * the indexes of a relation are processed in series, including indexes of
3652  * toast relations.
3653  *
3654  * Note that this check is not part of CheckRelationTableSpaceMove() as it
3655  * gets used for ALTER TABLE SET TABLESPACE that could cascade across
3656  * toast relations.
3657  */
3658  if (OidIsValid(params->tablespaceOid) &&
3659  IsSystemRelation(iRel))
3660  ereport(ERROR,
3661  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3662  errmsg("cannot move system relation \"%s\"",
3663  RelationGetRelationName(iRel))));
3664 
3665  /* Check if the tablespace of this index needs to be changed */
3666  if (OidIsValid(params->tablespaceOid) &&
3668  set_tablespace = true;
3669 
3670  /*
3671  * Also check for active uses of the index in the current transaction; we
3672  * don't want to reindex underneath an open indexscan.
3673  */
3674  CheckTableNotInUse(iRel, "REINDEX INDEX");
3675 
3676  /* Set new tablespace, if requested */
3677  if (set_tablespace)
3678  {
3679  /* Update its pg_class row */
3681 
3682  /*
3683  * Schedule unlinking of the old index storage at transaction commit.
3684  */
3685  RelationDropStorage(iRel);
3687 
3688  /* Make sure the reltablespace change is visible */
3690  }
3691 
3692  /*
3693  * All predicate locks on the index are about to be made invalid. Promote
3694  * them to relation locks on the heap.
3695  */
3697 
3698  /* Fetch info needed for index_build */
3699  indexInfo = BuildIndexInfo(iRel);
3700 
3701  /* If requested, skip checking uniqueness/exclusion constraints */
3702  if (skip_constraint_checks)
3703  {
3704  if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL)
3705  skipped_constraint = true;
3706  indexInfo->ii_Unique = false;
3707  indexInfo->ii_ExclusionOps = NULL;
3708  indexInfo->ii_ExclusionProcs = NULL;
3709  indexInfo->ii_ExclusionStrats = NULL;
3710  }
3711 
3712  /* Suppress use of the target index while rebuilding it */
3713  SetReindexProcessing(heapId, indexId);
3714 
3715  /* Create a new physical relation for the index */
3716  RelationSetNewRelfilenumber(iRel, persistence);
3717 
3718  /* Initialize the index and rebuild */
3719  /* Note: we do not need to re-establish pkey setting */
3720  index_build(heapRelation, iRel, indexInfo, true, true);
3721 
3722  /* Re-allow use of target index */
3724 
3725  /*
3726  * If the index is marked invalid/not-ready/dead (ie, it's from a failed
3727  * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway),
3728  * and we didn't skip a uniqueness check, we can now mark it valid. This
3729  * allows REINDEX to be used to clean up in such cases.
3730  *
3731  * We can also reset indcheckxmin, because we have now done a
3732  * non-concurrent index build, *except* in the case where index_build
3733  * found some still-broken HOT chains. If it did, and we don't have to
3734  * change any of the other flags, we just leave indcheckxmin alone (note
3735  * that index_build won't have changed it, because this is a reindex).
3736  * This is okay and desirable because not updating the tuple leaves the
3737  * index's usability horizon (recorded as the tuple's xmin value) the same
3738  * as it was.
3739  *
3740  * But, if the index was invalid/not-ready/dead and there were broken HOT
3741  * chains, we had better force indcheckxmin true, because the normal
3742  * argument that the HOT chains couldn't conflict with the index is
3743  * suspect for an invalid index. (A conflict is definitely possible if
3744  * the index was dead. It probably shouldn't happen otherwise, but let's
3745  * be conservative.) In this case advancing the usability horizon is
3746  * appropriate.
3747  *
3748  * Another reason for avoiding unnecessary updates here is that while
3749  * reindexing pg_index itself, we must not try to update tuples in it.
3750  * pg_index's indexes should always have these flags in their clean state,
3751  * so that won't happen.
3752  *
3753  * If early pruning/vacuuming is enabled for the heap relation, the
3754  * usability horizon must be advanced to the current transaction on every
3755  * build or rebuild. pg_index is OK in this regard because catalog tables
3756  * are not subject to early cleanup.
3757  */
3758  if (!skipped_constraint)
3759  {
3760  Relation pg_index;
3761  HeapTuple indexTuple;
3762  Form_pg_index indexForm;
3763  bool index_bad;
3764  bool early_pruning_enabled = EarlyPruningEnabled(heapRelation);
3765 
3766  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3767 
3768  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3769  ObjectIdGetDatum(indexId));
3770  if (!HeapTupleIsValid(indexTuple))
3771  elog(ERROR, "cache lookup failed for index %u", indexId);
3772  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3773 
3774  index_bad = (!indexForm->indisvalid ||
3775  !indexForm->indisready ||
3776  !indexForm->indislive);
3777  if (index_bad ||
3778  (indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain) ||
3779  early_pruning_enabled)
3780  {
3781  if (!indexInfo->ii_BrokenHotChain && !early_pruning_enabled)
3782  indexForm->indcheckxmin = false;
3783  else if (index_bad || early_pruning_enabled)
3784  indexForm->indcheckxmin = true;
3785  indexForm->indisvalid = true;
3786  indexForm->indisready = true;
3787  indexForm->indislive = true;
3788  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3789 
3790  /*
3791  * Invalidate the relcache for the table, so that after we commit
3792  * all sessions will refresh the table's index list. This ensures
3793  * that if anyone misses seeing the pg_index row during this
3794  * update, they'll refresh their list before attempting any update
3795  * on the table.
3796  */
3797  CacheInvalidateRelcache(heapRelation);
3798  }
3799 
3800  table_close(pg_index, RowExclusiveLock);
3801  }
3802 
3803  /* Log what we did */
3804  if ((params->options & REINDEXOPT_VERBOSE) != 0)
3805  ereport(INFO,
3806  (errmsg("index \"%s\" was reindexed",
3807  get_rel_name(indexId)),
3808  errdetail_internal("%s",
3809  pg_rusage_show(&ru0))));
3810 
3811  /* Roll back any GUC changes executed by index functions */
3812  AtEOXact_GUC(false, save_nestlevel);
3813 
3814  /* Restore userid and security context */
3815  SetUserIdAndSecContext(save_userid, save_sec_context);
3816 
3817  /* Close rels, but keep locks */
3818  index_close(iRel, NoLock);
3819  table_close(heapRelation, NoLock);
3820 
3821  if (progress)
3823 }
3824 
3825 /*
3826  * reindex_relation - This routine is used to recreate all indexes
3827  * of a relation (and optionally its toast relation too, if any).
3828  *
3829  * "flags" is a bitmask that can include any combination of these bits:
3830  *
3831  * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any).
3832  *
3833  * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely
3834  * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its
3835  * indexes are inconsistent with it. This makes things tricky if the relation
3836  * is a system catalog that we might consult during the reindexing. To deal
3837  * with that case, we mark all of the indexes as pending rebuild so that they
3838  * won't be trusted until rebuilt. The caller is required to call us *without*
3839  * having made the rebuilt table visible by doing CommandCounterIncrement;
3840  * we'll do CCI after having collected the index list. (This way we can still
3841  * use catalog indexes while collecting the list.)
3842  *
3843  * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion
3844  * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or
3845  * CLUSTER on a system catalog must omit this flag. REINDEX should be used to
3846  * rebuild an index if constraint inconsistency is suspected. For optimal
3847  * performance, other callers should include the flag only after transforming
3848  * the data in a manner that risks a change in constraint validity.
3849  *
3850  * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the
3851  * rebuilt indexes to unlogged.
3852  *
3853  * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the
3854  * rebuilt indexes to permanent.
3855  *
3856  * Returns true if any indexes were rebuilt (including toast table's index
3857  * when relevant). Note that a CommandCounterIncrement will occur after each
3858  * index rebuild.
3859  */
3860 bool
3861 reindex_relation(Oid relid, int flags, ReindexParams *params)
3862 {
3863  Relation rel;
3864  Oid toast_relid;
3865  List *indexIds;
3866  char persistence;
3867  bool result;
3868  ListCell *indexId;
3869  int i;
3870 
3871  /*
3872  * Open and lock the relation. ShareLock is sufficient since we only need
3873  * to prevent schema and data changes in it. The lock level used here
3874  * should match ReindexTable().
3875  */
3876  if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3877  rel = try_table_open(relid, ShareLock);
3878  else
3879  rel = table_open(relid, ShareLock);
3880 
3881  /* if relation is gone, leave */
3882  if (!rel)
3883  return false;
3884 
3885  /*
3886  * Partitioned tables should never get processed here, as they have no
3887  * physical storage.
3888  */
3889  if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
3890  elog(ERROR, "cannot reindex partitioned table \"%s.%s\"",
3893 
3894  toast_relid = rel->rd_rel->reltoastrelid;
3895 
3896  /*
3897  * Get the list of index OIDs for this relation. (We trust to the
3898  * relcache to get this with a sequential scan if ignoring system
3899  * indexes.)
3900  */
3901  indexIds = RelationGetIndexList(rel);
3902 
3903  if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
3904  {
3905  /* Suppress use of all the indexes until they are rebuilt */
3906  SetReindexPending(indexIds);
3907 
3908  /*
3909  * Make the new heap contents visible --- now things might be
3910  * inconsistent!
3911  */
3913  }
3914 
3915  /*
3916  * Compute persistence of indexes: same as that of owning rel, unless
3917  * caller specified otherwise.
3918  */
3920  persistence = RELPERSISTENCE_UNLOGGED;
3921  else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT)
3922  persistence = RELPERSISTENCE_PERMANENT;
3923  else
3924  persistence = rel->rd_rel->relpersistence;
3925 
3926  /* Reindex all the indexes. */
3927  i = 1;
3928  foreach(indexId, indexIds)
3929  {
3930  Oid indexOid = lfirst_oid(indexId);
3931  Oid indexNamespaceId = get_rel_namespace(indexOid);
3932 
3933  /*
3934  * Skip any invalid indexes on a TOAST table. These can only be
3935  * duplicate leftovers from a failed REINDEX CONCURRENTLY, and if
3936  * rebuilt it would not be possible to drop them anymore.
3937  */
3938  if (IsToastNamespace(indexNamespaceId) &&
3939  !get_index_isvalid(indexOid))
3940  {
3941  ereport(WARNING,
3942  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3943  errmsg("cannot reindex invalid index \"%s.%s\" on TOAST table, skipping",
3944  get_namespace_name(indexNamespaceId),
3945  get_rel_name(indexOid))));
3946  continue;
3947  }
3948 
3949  reindex_index(indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS),
3950  persistence, params);
3951 
3953 
3954  /* Index should no longer be in the pending list */
3955  Assert(!ReindexIsProcessingIndex(indexOid));
3956 
3957  /* Set index rebuild count */
3959  i);
3960  i++;
3961  }
3962 
3963  /*
3964  * Close rel, but continue to hold the lock.
3965  */
3966  table_close(rel, NoLock);
3967 
3968  result = (indexIds != NIL);
3969 
3970  /*
3971  * If the relation has a secondary toast rel, reindex that too while we
3972  * still hold the lock on the main table.
3973  */
3974  if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid))
3975  {
3976  /*
3977  * Note that this should fail if the toast relation is missing, so
3978  * reset REINDEXOPT_MISSING_OK. Even if a new tablespace is set for
3979  * the parent relation, the indexes on its toast table are not moved.
3980  * This rule is enforced by setting tablespaceOid to InvalidOid.
3981  */
3982  ReindexParams newparams = *params;
3983 
3984  newparams.options &= ~(REINDEXOPT_MISSING_OK);
3985  newparams.tablespaceOid = InvalidOid;
3986  result |= reindex_relation(toast_relid, flags, &newparams);
3987  }
3988 
3989  return result;
3990 }
3991 
3992 
3993 /* ----------------------------------------------------------------
3994  * System index reindexing support
3995  *
3996  * When we are busy reindexing a system index, this code provides support
3997  * for preventing catalog lookups from using that index. We also make use
3998  * of this to catch attempted uses of user indexes during reindexing of
3999  * those indexes. This information is propagated to parallel workers;
4000  * attempting to change it during a parallel operation is not permitted.
4001  * ----------------------------------------------------------------
4002  */
4003 
4007 static int reindexingNestLevel = 0;
4008 
4009 /*
4010  * ReindexIsProcessingHeap
4011  * True if heap specified by OID is currently being reindexed.
4012  */
4013 bool
4015 {
4016  return heapOid == currentlyReindexedHeap;
4017 }
4018 
4019 /*
4020  * ReindexIsCurrentlyProcessingIndex
4021  * True if index specified by OID is currently being reindexed.
4022  */
4023 static bool
4025 {
4026  return indexOid == currentlyReindexedIndex;
4027 }
4028 
4029 /*
4030  * ReindexIsProcessingIndex
4031  * True if index specified by OID is currently being reindexed,
4032  * or should be treated as invalid because it is awaiting reindex.
4033  */
4034 bool
4036 {
4037  return indexOid == currentlyReindexedIndex ||
4039 }
4040 
4041 /*
4042  * SetReindexProcessing
4043  * Set flag that specified heap/index are being reindexed.
4044  */
4045 static void
4046 SetReindexProcessing(Oid heapOid, Oid indexOid)
4047 {
4048  Assert(OidIsValid(heapOid) && OidIsValid(indexOid));
4049  /* Reindexing is not re-entrant. */
4051  elog(ERROR, "cannot reindex while reindexing");
4052  currentlyReindexedHeap = heapOid;
4053  currentlyReindexedIndex = indexOid;
4054  /* Index is no longer "pending" reindex. */
4055  RemoveReindexPending(indexOid);
4056  /* This may have been set already, but in case it isn't, do so now. */
4058 }
4059 
4060 /*
4061  * ResetReindexProcessing
4062  * Unset reindexing status.
4063  */
4064 static void
4066 {
4069  /* reindexingNestLevel remains set till end of (sub)transaction */
4070 }
4071 
4072 /*
4073  * SetReindexPending
4074  * Mark the given indexes as pending reindex.
4075  *
4076  * NB: we assume that the current memory context stays valid throughout.
4077  */
4078 static void
4080 {
4081  /* Reindexing is not re-entrant. */
4083  elog(ERROR, "cannot reindex while reindexing");
4084  if (IsInParallelMode())
4085  elog(ERROR, "cannot modify reindex state during a parallel operation");
4088 }
4089 
4090 /*
4091  * RemoveReindexPending
4092  * Remove the given index from the pending list.
4093  */
4094 static void
4096 {
4097  if (IsInParallelMode())
4098  elog(ERROR, "cannot modify reindex state during a parallel operation");
4100  indexOid);
4101 }
4102 
4103 /*
4104  * ResetReindexState
4105  * Clear all reindexing state during (sub)transaction abort.
4106  */
4107 void
4108 ResetReindexState(int nestLevel)
4109 {
4110  /*
4111  * Because reindexing is not re-entrant, we don't need to cope with nested
4112  * reindexing states. We just need to avoid messing up the outer-level
4113  * state in case a subtransaction fails within a REINDEX. So checking the
4114  * current nest level against that of the reindex operation is sufficient.
4115  */
4116  if (reindexingNestLevel >= nestLevel)
4117  {
4120 
4121  /*
4122  * We needn't try to release the contents of pendingReindexedIndexes;
4123  * that list should be in a transaction-lifespan context, so it will
4124  * go away automatically.
4125  */
4127 
4128  reindexingNestLevel = 0;
4129  }
4130 }
4131 
4132 /*
4133  * EstimateReindexStateSpace
4134  * Estimate space needed to pass reindex state to parallel workers.
4135  */
4136 Size
4138 {
4141 }
4142 
4143 /*
4144  * SerializeReindexState
4145  * Serialize reindex state for parallel workers.
4146  */
4147 void
4148 SerializeReindexState(Size maxsize, char *start_address)
4149 {
4150  SerializedReindexState *sistate = (SerializedReindexState *) start_address;
4151  int c = 0;
4152  ListCell *lc;
4153 
4157  foreach(lc, pendingReindexedIndexes)
4158  sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc);
4159 }
4160 
4161 /*
4162  * RestoreReindexState
4163  * Restore reindex state in a parallel worker.
4164  */
4165 void
4166 RestoreReindexState(void *reindexstate)
4167 {
4168  SerializedReindexState *sistate = (SerializedReindexState *) reindexstate;
4169  int c = 0;
4170  MemoryContext oldcontext;
4171 
4174 
4177  for (c = 0; c < sistate->numPendingReindexedIndexes; ++c)
4180  sistate->pendingReindexedIndexes[c]);
4181  MemoryContextSwitchTo(oldcontext);
4182 
4183  /* Note the worker has its own transaction nesting level */
4185 }
IndexAmRoutine * GetIndexAmRoutineByAmId(Oid amoid, bool noerror)
Definition: amapi.c:56
int16 AttrNumber
Definition: attnum.h:21
#define AttrNumberGetAttrOffset(attNum)
Definition: attnum.h:51
#define InvalidAttrNumber
Definition: attnum.h:23
void pgstat_progress_start_command(ProgressCommandType cmdtype, Oid relid)
void pgstat_progress_update_param(int index, int64 val)
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
void pgstat_progress_end_command(void)
@ PROGRESS_COMMAND_CREATE_INDEX
uint32 BlockNumber
Definition: block.h:31
static Datum values[MAXATTR]
Definition: bootstrap.c:156
void index_register(Oid heap, Oid ind, IndexInfo *indexInfo)
Definition: bootstrap.c:915
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:147
#define CStringGetTextDatum(s)
Definition: builtins.h:85
#define TextDatumGetCString(d)
Definition: builtins.h:86
#define NameStr(name)
Definition: c.h:682
unsigned short uint16
Definition: c.h:441
uint16 bits16
Definition: c.h:450
signed short int16
Definition: c.h:429
signed int int32
Definition: c.h:430
TransactionId MultiXactId
Definition: c.h:598
#define PointerIsValid(pointer)
Definition: c.h:699
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:362
float float4
Definition: c.h:565
#define MemSet(start, val, len)
Definition: c.h:998
uint32 TransactionId
Definition: c.h:588
#define OidIsValid(objectId)
Definition: c.h:711
size_t Size
Definition: c.h:541
bool IsToastNamespace(Oid namespaceId)
Definition: catalog.c:202
bool IsSystemRelation(Relation relation)
Definition: catalog.c:75
RelFileNumber GetNewRelFileNumber(Oid reltablespace, Relation pg_class, char relpersistence)
Definition: catalog.c:502
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:105
void record_object_address_dependencies(const ObjectAddress *depender, ObjectAddresses *referenced, DependencyType behavior)
Definition: dependency.c:2790
void recordDependencyOnSingleRelExpr(const ObjectAddress *depender, Node *expr, Oid relId, DependencyType behavior, DependencyType self_behavior, bool reverse_self)
Definition: dependency.c:1639
ObjectAddresses * new_object_addresses(void)
Definition: dependency.c:2526
void add_exact_object_address(const ObjectAddress *object, ObjectAddresses *addrs)
Definition: dependency.c:2581
void free_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2821
@ DEPENDENCY_AUTO
Definition: dependency.h:34
@ DEPENDENCY_INTERNAL
Definition: dependency.h:35
@ DEPENDENCY_PARTITION_PRI
Definition: dependency.h:36
@ DEPENDENCY_PARTITION_SEC
Definition: dependency.h:37
@ DEPENDENCY_NORMAL
Definition: dependency.h:33
int errmsg_internal(const char *fmt,...)
Definition: elog.c:993
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1066
int errcode(int sqlerrcode)
Definition: elog.c:695
int errmsg(const char *fmt,...)
Definition: elog.c:906
#define WARNING
Definition: elog.h:32
#define DEBUG2
Definition: elog.h:25
#define DEBUG1
Definition: elog.h:26
#define ERROR
Definition: elog.h:35
#define NOTICE
Definition: elog.h:31
#define INFO
Definition: elog.h:30
#define ereport(elevel,...)
Definition: elog.h:145
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:219
ExprState * ExecPrepareQual(List *qual, EState *estate)
Definition: execExpr.c:774
List * ExecPrepareExprList(List *nodes, EState *estate)
Definition: execExpr.c:820
void check_exclusion_constraint(Relation heap, Relation index, IndexInfo *indexInfo, ItemPointer tupleid, Datum *values, bool *isnull, EState *estate, bool newIndex)
Definition: execIndexing.c:893
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1254
EState * CreateExecutorState(void)
Definition: execUtils.c:90
void FreeExecutorState(EState *estate)
Definition: execUtils.c:186
#define GetPerTupleExprContext(estate)
Definition: executor.h:535
static bool ExecQual(ExprState *state, ExprContext *econtext)
Definition: executor.h:398
static Datum ExecEvalExprSwitchContext(ExprState *state, ExprContext *econtext, bool *isNull)
Definition: executor.h:333
Datum Int64GetDatum(int64 X)
Definition: fmgr.c:1683
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:598
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:505
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:386
bool IsBinaryUpgrade
Definition: globals.c:114
int maintenance_work_mem
Definition: globals.c:127
int NewGUCNestLevel(void)
Definition: guc.c:1883
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:1897
void InsertPgAttributeTuples(Relation pg_attribute_rel, TupleDesc tupdesc, Oid new_rel_oid, Datum *attoptions, CatalogIndexState indstate)
Definition: heap.c:697
void DeleteRelationTuple(Oid relid)
Definition: heap.c:1536
void DeleteAttributeTuples(Oid relid)
Definition: heap.c:1565
void RemoveStatistics(Oid relid, AttrNumber attnum)
Definition: heap.c:2898
void CheckAttributeType(const char *attname, Oid atttypid, Oid attcollation, List *containing_rowtypes, int flags)
Definition: heap.c:547
void CopyStatistics(Oid fromrelid, Oid torelid)
Definition: heap.c:2853
void InsertPgClassTuple(Relation pg_class_desc, Relation new_rel_desc, Oid new_rel_oid, Datum relacl, Datum reloptions)
Definition: heap.c:882
Relation heap_create(const char *relname, Oid relnamespace, Oid reltablespace, Oid relid, RelFileNumber relfilenumber, Oid accessmtd, TupleDesc tupDesc, char relkind, char relpersistence, bool shared_relation, bool mapped_relation, bool allow_system_table_mods, TransactionId *relfrozenxid, MultiXactId *relminmxid, bool create_storage)
Definition: heap.c:288
void heap_inplace_update(Relation relation, HeapTuple tuple)
Definition: heapam.c:6006
HeapTuple heap_getnext(TableScanDesc sscan, ScanDirection direction)
Definition: heapam.c:1296
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:680
HeapTuple heap_modify_tuple(HeapTuple tuple, TupleDesc tupleDesc, Datum *replValues, bool *replIsnull, bool *doReplace)
Definition: heaptuple.c:1113
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition: heaptuple.c:359
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1338
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define GETSTRUCT(TUP)
Definition: htup_details.h:649
bool ReindexIsProcessingIndex(Oid indexOid)
Definition: index.c:4035
static bool validate_index_callback(ItemPointer itemptr, void *opaque)
Definition: index.c:3421
ObjectAddress index_constraint_create(Relation heapRelation, Oid indexRelationId, Oid parentConstraintId, IndexInfo *indexInfo, const char *constraintName, char constraintType, bits16 constr_flags, bool allow_system_table_mods, bool is_internal)
Definition: index.c:1897
void validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
Definition: index.c:3293
void index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
Definition: index.c:2130
void ResetReindexState(int nestLevel)
Definition: index.c:4108
Oid IndexGetRelation(Oid indexId, bool missing_ok)
Definition: index.c:3522
static int reindexingNestLevel
Definition: index.c:4007
void index_concurrently_set_dead(Oid heapId, Oid indexId)
Definition: index.c:1836
static Oid currentlyReindexedHeap
Definition: index.c:4004
static void ResetReindexProcessing(void)
Definition: index.c:4065
void index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
Definition: index.c:1509
void RestoreReindexState(void *reindexstate)
Definition: index.c:4166
static void RemoveReindexPending(Oid indexOid)
Definition: index.c:4095
bool CompareIndexInfo(IndexInfo *info1, IndexInfo *info2, Oid *collations1, Oid *collations2, Oid *opfamilies1, Oid *opfamilies2, AttrMap *attmap)
Definition: index.c:2527
static List * pendingReindexedIndexes
Definition: index.c:4006
void index_set_state_flags(Oid indexId, IndexStateFlagsAction action)
Definition: index.c:3441
RelFileNumber binary_upgrade_next_index_pg_class_relfilenumber
Definition: index.c:90
IndexInfo * BuildDummyIndexInfo(Relation index)
Definition: index.c:2480
static void AppendAttributeTuples(Relation indexRelation, Datum *attopts)
Definition: index.c:505
static void UpdateIndexRelation(Oid indexoid, Oid heapoid, Oid parentIndexId, IndexInfo *indexInfo, Oid *collationOids, Oid *classOids, int16 *coloptions, bool primary, bool isexclusion, bool immediate, bool isvalid, bool isready)
Definition: index.c:537
Oid index_create(Relation heapRelation, const char *indexRelationName, Oid indexRelationId, Oid parentIndexRelid, Oid parentConstraintId, RelFileNumber relFileNumber, IndexInfo *indexInfo, List *indexColNames, Oid accessMethodObjectId, Oid tableSpaceId, Oid *collationObjectId, Oid *classObjectId, int16 *coloptions, Datum reloptions, bits16 flags, bits16 constr_flags, bool allow_system_table_mods, bool is_internal, Oid *constraintId)
Definition: index.c:700
void SerializeReindexState(Size maxsize, char *start_address)
Definition: index.c:4148
static void index_update_stats(Relation rel, bool hasindex, double reltuples)
Definition: index.c:2788
static bool relationHasPrimaryKey(Relation rel)
Definition: index.c:152
static void SetReindexProcessing(Oid heapOid, Oid indexOid)
Definition: index.c:4046
static void IndexCheckExclusion(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo)
Definition: index.c:3137
static void InitializeAttributeOids(Relation indexRelation, int numatts, Oid indexoid)
Definition: index.c:487
Oid index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, Oid tablespaceOid, const char *newName)
Definition: index.c:1273
Oid binary_upgrade_next_index_pg_class_oid
Definition: index.c:89
void BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii)
Definition: index.c:2649
void reindex_index(Oid indexId, bool skip_constraint_checks, char persistence, ReindexParams *params)
Definition: index.c:3547
bool ReindexIsProcessingHeap(Oid heapOid)
Definition: index.c:4014
static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid)
Definition: index.c:4024
bool reindex_relation(Oid relid, int flags, ReindexParams *params)
Definition: index.c:3861
void index_check_primary_key(Relation heapRel, IndexInfo *indexInfo, bool is_alter_table, IndexStmt *stmt)
Definition: index.c:206
static TupleDesc ConstructTupleDescriptor(Relation heapRelation, IndexInfo *indexInfo, List *indexColNames, Oid accessMethodObjectId, Oid *collationObjectId, Oid *classObjectId)
Definition: index.c:272
void index_build(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo, bool isreindex, bool parallel)
Definition: index.c:2945
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2709
static void SetReindexPending(List *indexes)
Definition: index.c:4079
void index_concurrently_build(Oid heapRelationId, Oid indexRelationId)
Definition: index.c:1443
static Oid currentlyReindexedIndex
Definition: index.c:4005
Size EstimateReindexStateSpace(void)
Definition: index.c:4137
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2420
#define INDEX_CREATE_IS_PRIMARY
Definition: index.h:61
#define INDEX_CREATE_IF_NOT_EXISTS
Definition: index.h:65
#define REINDEX_REL_PROCESS_TOAST
Definition: index.h:155
#define INDEX_CREATE_PARTITIONED
Definition: index.h:66
#define REINDEXOPT_MISSING_OK
Definition: index.h:43
#define INDEX_CREATE_INVALID
Definition: index.h:67
static int64 itemptr_encode(ItemPointer itemptr)
Definition: index.h:185
#define INDEX_CREATE_ADD_CONSTRAINT
Definition: index.h:62
#define INDEX_CREATE_SKIP_BUILD
Definition: index.h:63
#define INDEX_CONSTR_CREATE_UPDATE_INDEX
Definition: index.h:92
#define REINDEX_REL_FORCE_INDEXES_UNLOGGED
Definition: index.h:158
#define INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS
Definition: index.h:93
#define INDEX_CONSTR_CREATE_DEFERRABLE
Definition: index.h:90
#define REINDEXOPT_REPORT_PROGRESS
Definition: index.h:42
#define INDEX_CONSTR_CREATE_MARK_AS_PRIMARY
Definition: index.h:89
#define REINDEX_REL_SUPPRESS_INDEX_USE
Definition: index.h:156
IndexStateFlagsAction
Definition: index.h:25
@ INDEX_CREATE_SET_VALID
Definition: index.h:27
@ INDEX_DROP_CLEAR_VALID
Definition: index.h:28
@ INDEX_DROP_SET_DEAD
Definition: index.h:29
@ INDEX_CREATE_SET_READY
Definition: index.h:26
#define REINDEX_REL_FORCE_INDEXES_PERMANENT
Definition: index.h:159
#define INDEX_CONSTR_CREATE_INIT_DEFERRED
Definition: index.h:91
#define INDEX_CREATE_CONCURRENT
Definition: index.h:64
#define REINDEXOPT_VERBOSE
Definition: index.h:41
#define REINDEX_REL_CHECK_CONSTRAINTS
Definition: index.h:157
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:158
IndexBulkDeleteResult * index_bulk_delete(IndexVacuumInfo *info, IndexBulkDeleteResult *istat, IndexBulkDeleteCallback callback, void *callback_state)
Definition: indexam.c:691
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:132
bytea * index_opclass_options(Relation indrel, AttrNumber attnum, Datum attoptions, bool validate)
Definition: indexam.c:939
void CatalogTupleUpdate(Relation heapRel, ItemPointer otid, HeapTuple tup)
Definition: indexing.c:301
void CatalogCloseIndexes(CatalogIndexState indstate)
Definition: indexing.c:61
void CatalogTupleInsert(Relation heapRel, HeapTuple tup)
Definition: indexing.c:221
CatalogIndexState CatalogOpenIndexes(Relation heapRel)
Definition: indexing.c:43
void CatalogTupleDelete(Relation heapRel, ItemPointer tid)
Definition: indexing.c:350
int2vector * buildint2vector(const int16 *int2s, int n)
Definition: int.c:114
void CacheInvalidateRelcache(Relation relation)
Definition: inval.c:1363
void CacheInvalidateRelcacheByTuple(HeapTuple classTuple)
Definition: inval.c:1399
invalidindex index d is invalid
Definition: isn.c:134
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
Assert(fmt[strlen(fmt) - 1] !='\n')
List * lappend(List *list, void *datum)
Definition: list.c:338
List * lappend_oid(List *list, Oid datum)
Definition: list.c:374
List * list_copy(const List *oldlist)
Definition: list.c:1572
List * list_delete_oid(List *list, Oid datum)
Definition: list.c:909
void list_free(List *list)
Definition: list.c:1545
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:721
void LockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:398
void LockRelation(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:245
void WaitForLockers(LOCKTAG heaplocktag, LOCKMODE lockmode, bool progress)
Definition: lmgr.c:986
void UnlockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:411
#define SET_LOCKTAG_RELATION(locktag, dboid, reloid)
Definition: lock.h:184
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define ShareLock
Definition: lockdefs.h:40
#define RowExclusiveLock
Definition: lockdefs.h:38
bool get_rel_relispartition(Oid relid)
Definition: lsyscache.c:2009
char get_rel_persistence(Oid relid)
Definition: lsyscache.c:2060
bool get_index_isvalid(Oid index_oid)
Definition: lsyscache.c:3543
int get_attstattarget(Oid relid, AttrNumber attnum)
Definition: lsyscache.c:884
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3327
Datum get_attoptions(Oid relid, int16 attnum)
Definition: lsyscache.c:996
Oid get_rel_namespace(Oid relid)
Definition: lsyscache.c:1934
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1267
char * get_rel_name(Oid relid)
Definition: lsyscache.c:1910
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:165
bool get_collation_isdeterministic(Oid colloid)
Definition: lsyscache.c:1080
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2790
Oid get_relname_relid(const char *relname, Oid relnamespace)
Definition: lsyscache.c:1867
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:719
Expr * make_ands_explicit(List *andclauses)
Definition: makefuncs.c:708
IndexInfo * makeIndexInfo(int numattrs, int numkeyattrs, Oid amoid, List *expressions, List *predicates, bool unique, bool nulls_not_distinct, bool isready, bool concurrent)
Definition: makefuncs.c:743
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:195
void pfree(void *pointer)
Definition: mcxt.c:1252
MemoryContext TopMemoryContext
Definition: mcxt.c:93
void * palloc0(Size size)
Definition: mcxt.c:1176
void * palloc(Size size)
Definition: mcxt.c:1145
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:402
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:305
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:121
#define IsNormalProcessingMode()
Definition: miscadmin.h:404
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:618
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:625
#define InvalidMultiXactId
Definition: multixact.h:24
void namestrcpy(Name name, const char *str)
Definition: name.c:233
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:43
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:269
#define makeNode(_type_)
Definition: nodes.h:159
#define InvokeObjectPostAlterHookArg(classId, objectId, subId, auxiliaryId, is_internal)
Definition: objectaccess.h:200
#define InvokeObjectPostCreateHookArg(classId, objectId, subId, is_internal)
Definition: objectaccess.h:175
#define ObjectAddressSet(addr, class_id, object_id)
Definition: objectaddress.h:40
#define ObjectAddressSubSet(addr, class_id, object_id, object_sub_id)
Definition: objectaddress.h:33
oidvector * buildoidvector(const Oid *oids, int n)
Definition: oid.c:167
char * nodeToString(const void *obj)
Definition: outfuncs.c:873
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:131
List * SystemFuncName(char *name)
List * get_partition_ancestors(Oid relid)
Definition: partition.c:133
FormData_pg_attribute
Definition: pg_attribute.h:191
#define ATTRIBUTE_FIXED_PART_SIZE
Definition: pg_attribute.h:199
int16 attnum
Definition: pg_attribute.h:83
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:207
FormData_pg_class * Form_pg_class
Definition: pg_class.h:153
#define INDEX_MAX_KEYS
bool ConstraintNameIsUsed(ConstraintCategory conCat, Oid objId, const char *conname)
Oid CreateConstraintEntry(const char *constraintName, Oid constraintNamespace, char constraintType, bool isDeferrable, bool isDeferred, bool isValidated, Oid parentConstrId, Oid relId, const int16 *constraintKey, int constraintNKeys, int constraintNTotalKeys, Oid domainId, Oid indexRelId, Oid foreignRelId, const int16 *foreignKey, const Oid *pfEqOp, const Oid *ppEqOp, const Oid *ffEqOp, int foreignNKeys, char foreignUpdateType, char foreignDeleteType, const int16 *fkDeleteSetCols, int numFkDeleteSetCols, char foreignMatchType, const Oid *exclOp, Node *conExpr, const char *conBin, bool conIsLocal, int conInhCount, bool conNoInherit, bool is_internal)
Definition: pg_constraint.c:50
FormData_pg_constraint * Form_pg_constraint
@ CONSTRAINT_RELATION
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition: pg_depend.c:44
long deleteDependencyRecordsForClass(Oid classId, Oid objectId, Oid refclassId, char deptype)
Definition: pg_depend.c:350
long changeDependenciesOf(Oid classId, Oid oldObjectId, Oid newObjectId)
Definition: pg_depend.c:564
long changeDependenciesOn(Oid refClassId, Oid oldRefObjectId, Oid newRefObjectId)
Definition: pg_depend.c:620
Oid get_index_constraint(Oid indexId)
Definition: pg_depend.c:968
List * get_index_ref_constraints(Oid indexId)
Definition: pg_depend.c:1024
FormData_pg_index * Form_pg_index
Definition: pg_index.h:70
bool DeleteInheritsTuple(Oid inhrelid, Oid inhparent, bool expect_detach_pending, const char *childname)
Definition: pg_inherits.c:553
void StoreSingleInheritance(Oid relationId, Oid parentOid, int32 seqNumber)
Definition: pg_inherits.c:509
#define lfirst(lc)
Definition: pg_list.h:170
static int list_length(const List *l)
Definition: pg_list.h:150
#define NIL
Definition: pg_list.h:66
static ListCell * list_head(const List *l)
Definition: pg_list.h:126
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:341
#define linitial_oid(l)
Definition: pg_list.h:178
#define lfirst_oid(lc)
Definition: pg_list.h:172
FormData_pg_opclass * Form_pg_opclass
Definition: pg_opclass.h:83
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
FormData_pg_trigger * Form_pg_trigger
Definition: pg_trigger.h:80
FormData_pg_type * Form_pg_type
Definition: pg_type.h:261
int progress
Definition: pgbench.c:270
void pgstat_copy_relation_stats(Relation dst, Relation src)
void pgstat_drop_relation(Relation rel)
int plan_create_index_workers(Oid tableOid, Oid indexOid)
Definition: planner.c:6288
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:670
uintptr_t Datum
Definition: postgres.h:412
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:520
static Datum BoolGetDatum(bool X)
Definition: postgres.h:450
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:600
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:660
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:560
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
void TransferPredicateLocksToHeapRelation(Relation relation)
Definition: predicate.c:3149
char * c
#define PROGRESS_CREATEIDX_PHASE_BUILD
Definition: progress.h:92
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN
Definition: progress.h:96
#define PROGRESS_CREATEIDX_ACCESS_METHOD_OID
Definition: progress.h:81
#define PROGRESS_CREATEIDX_TUPLES_TOTAL
Definition: progress.h:84
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT
Definition: progress.h:95
#define PROGRESS_SCAN_BLOCKS_DONE
Definition: progress.h:120
#define PROGRESS_CREATEIDX_TUPLES_DONE
Definition: progress.h:85
#define PROGRESS_CREATEIDX_SUBPHASE
Definition: progress.h:83
#define PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE
Definition: progress.h:104
#define PROGRESS_CREATEIDX_PHASE
Definition: progress.h:82
#define PROGRESS_CREATEIDX_COMMAND_REINDEX
Definition: progress.h:110
#define PROGRESS_CLUSTER_INDEX_REBUILD_COUNT
Definition: progress.h:62
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN
Definition: progress.h:94
#define PROGRESS_SCAN_BLOCKS_TOTAL
Definition: progress.h:119
#define PROGRESS_CREATEIDX_INDEX_OID
Definition: progress.h:80
#define PROGRESS_CREATEIDX_COMMAND
Definition: progress.h:79
void * stringToNode(const char *str)
Definition: read.c:89
#define RelationGetForm(relation)
Definition: rel.h:495
#define RelationGetRelid(relation)
Definition: rel.h:501
static SMgrRelation RelationGetSmgr(Relation rel)
Definition: rel.h:569
#define RelationGetDescr(relation)
Definition: rel.h:527
#define RelationIsMapped(relation)
Definition: rel.h:550
#define RelationGetRelationName(relation)
Definition: rel.h:535
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:657
#define RelationIsValid(relation)
Definition: rel.h:474
#define RelationGetNamespace(relation)
Definition: rel.h:542
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:520
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4731
void RelationInitIndexAccessInfo(Relation relation)
Definition: relcache.c:1417
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:5078
List * RelationGetDummyIndexExpressions(Relation relation)
Definition: relcache.c:5024
void RelationSetNewRelfilenumber(Relation relation, char persistence)
Definition: relcache.c:3701
void RelationForgetRelation(Oid rid)
Definition: relcache.c:2825
void RelationAssumeNewRelfilelocator(Relation relation)
Definition: relcache.c:3900
Datum * RelationGetIndexRawAttOptions(Relation indexrel)
Definition: relcache.c:5762
void RelationGetExclusionInfo(Relation indexRelation, Oid **operators, Oid **procs, uint16 **strategies)
Definition: relcache.c:5479
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:4965
Oid RelFileNumber
Definition: relpath.h:25
@ INIT_FORKNUM
Definition: relpath.h:53
#define InvalidRelFileNumber
Definition: relpath.h:26
#define RelFileNumberIsValid(relnumber)
Definition: relpath.h:27
Node * map_variable_attnos(Node *node, int target_varno, int sublevels_up, const AttrMap *attno_map, Oid to_rowtype, bool *found_whole_row)
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
@ ForwardScanDirection
Definition: sdir.h:26
Size mul_size(Size s1, Size s2)
Definition: shmem.c:519
void smgrcreate(SMgrRelation reln, ForkNumber forknum, bool isRedo)
Definition: smgr.c:369
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:247
Snapshot GetLatestSnapshot(void)
Definition: snapmgr.c:326
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:871
bool ActiveSnapshotSet(void)
Definition: snapmgr.c:817
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:829
void PopActiveSnapshot(void)
Definition: snapmgr.c:778
#define EarlyPruningEnabled(rel)
Definition: snapmgr.h:44
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:206
Relation relation_open(Oid relationId, LOCKMODE lockmode)
Definition: relation.c:48
void RelationDropStorage(Relation rel)
Definition: storage.c:205
#define BTEqualStrategyNumber
Definition: stratnum.h:31
#define ERRCODE_DUPLICATE_OBJECT
Definition: streamutil.c:32
Definition: attmap.h:35
int maplen
Definition: attmap.h:37
AttrNumber * attnums
Definition: attmap.h:36
Node * whenClause
Definition: parsenodes.h:2630
List * transitionRels
Definition: parsenodes.h:2632
RangeVar * constrrel
Definition: parsenodes.h:2636
RangeVar * relation
Definition: parsenodes.h:2621
MemoryContext ecxt_per_tuple_memory
Definition: execnodes.h:255
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:247
ItemPointerData t_self
Definition: htup.h:65
ambuildempty_function ambuildempty
Definition: amapi.h:260
Oid amkeytype
Definition: amapi.h:250
ambuild_function ambuild
Definition: amapi.h:259
double heap_tuples
Definition: genam.h:32
double index_tuples
Definition: genam.h:33
bool ii_Unique
Definition: execnodes.h:190
uint16 * ii_ExclusionStrats
Definition: execnodes.h:185
bool ii_BrokenHotChain
Definition: execnodes.h:196
int ii_NumIndexAttrs
Definition: execnodes.h:176
Datum * ii_OpclassOptions
Definition: execnodes.h:189
Oid * ii_UniqueOps
Definition: execnodes.h:186
ExprState * ii_PredicateState
Definition: execnodes.h:182
Oid * ii_ExclusionOps
Definition: execnodes.h:183
bool ii_NullsNotDistinct
Definition: execnodes.h:191
int ii_ParallelWorkers
Definition: execnodes.h:197
bool ii_Concurrent
Definition: execnodes.h:195
uint16 * ii_UniqueStrats
Definition: execnodes.h:188
int ii_NumIndexKeyAttrs
Definition: execnodes.h:177
List * ii_ExpressionsState
Definition: execnodes.h:180
List * ii_Expressions
Definition: execnodes.h:179
Oid * ii_ExclusionProcs
Definition: execnodes.h:184
Oid ii_Am
Definition: execnodes.h:198
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:178
Oid * ii_UniqueProcs
Definition: execnodes.h:187
bool ii_ReadyForInserts
Definition: execnodes.h:192
List * ii_Predicate
Definition: execnodes.h:181
Relation index
Definition: genam.h:46
double num_heap_tuples
Definition: genam.h:51
bool analyze_only
Definition: genam.h:47
BufferAccessStrategy strategy
Definition: genam.h:52
bool report_progress
Definition: genam.h:48
int message_level
Definition: genam.h:50
bool estimated_count
Definition: genam.h:49
Definition: lock.h:168
Definition: pg_list.h:52
LockRelId lockRelId
Definition: rel.h:45
Definition: rel.h:38
Oid relId
Definition: rel.h:39
Oid dbId
Definition: rel.h:40
Definition: nodes.h:112
Oid tablespaceOid
Definition: index.h:36
bits32 options
Definition: index.h:35
struct IndexAmRoutine * rd_indam
Definition: rel.h:202
LockInfoData rd_lockInfo
Definition: rel.h:113
Form_pg_index rd_index
Definition: rel.h:188
MemoryContext rd_indexcxt
Definition: rel.h:200
Oid * rd_indcollation
Definition: rel.h:213
Form_pg_class rd_rel
Definition: rel.h:110
Oid currentlyReindexedHeap
Definition: index.c:99
Oid currentlyReindexedIndex
Definition: index.c:100
int numPendingReindexedIndexes
Definition: index.c:101
Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER]
Definition: index.c:102
ItemPointerData tts_tid
Definition: tuptable.h:130
Definition: type.h:95
Definition: c.h:651
int16 values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:658
Definition: c.h:662
Oid values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:669
Definition: regguts.h:318
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:1221
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:1173
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:1434
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:1184
#define SearchSysCacheCopy1(cacheId, key1)
Definition: syscache.h:179
@ TYPEOID
Definition: syscache.h:114
@ INDEXRELID
Definition: syscache.h:66
@ ATTNUM
Definition: syscache.h:41
@ RELOID
Definition: syscache.h:89
@ CLAOID
Definition: syscache.h:48
@ CONSTROID
Definition: syscache.h:53
Relation try_table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:60
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
TableScanDesc table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
Definition: tableam.c:112
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:91
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:993
static void table_index_validate_scan(Relation table_rel, Relation index_rel, struct IndexInfo *index_info, Snapshot snapshot, struct ValidateIndexState *state)
Definition: tableam.h:1812
static TableScanDesc table_beginscan_strat(Relation rel, Snapshot snapshot, int nkeys, struct ScanKeyData *key, bool allow_strat, bool allow_sync)
Definition: tableam.h:909
static bool table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:1034
void CheckTableNotInUse(Relation rel, const char *stmt)
Definition: tablecmds.c:4003
bool CheckRelationTableSpaceMove(Relation rel, Oid newTableSpaceId)
Definition: tablecmds.c:3289
void SetRelationHasSubclass(Oid relationId, bool relhassubclass)
Definition: tablecmds.c:3248
void SetRelationTableSpace(Relation rel, Oid newTableSpaceId, RelFileNumber newRelFilenumber)
Definition: tablecmds.c:3346
#define InvalidCompressionMethod
#define InvalidTransactionId
Definition: transam.h:31
ObjectAddress CreateTrigger(CreateTrigStmt *stmt, const char *queryString, Oid relOid, Oid refRelOid, Oid constraintOid, Oid indexOid, Oid funcoid, Oid parentTriggerOid, Node *whenClause, bool isInternal, bool in_partition)
Definition: trigger.c:164
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:45
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
void tuplesort_performsort(Tuplesortstate *state)
Definition: tuplesort.c:1385
void tuplesort_end(Tuplesortstate *state)
Definition: tuplesort.c:972
#define TUPLESORT_NONE
Definition: tuplesort.h:92
void tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull)
Tuplesortstate * tuplesort_begin_datum(Oid datumType, Oid sortOperator, Oid sortCollation, bool nullsFirstFlag, int workMem, SortCoordinate coordinate, int sortopt)
static Datum slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:410
static Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:389
void visibilitymap_count(Relation rel, BlockNumber *all_visible, BlockNumber *all_frozen)
int GetCurrentTransactionNestLevel(void)
Definition: xact.c:910
void CommandCounterIncrement(void)
Definition: xact.c:1074
TransactionId GetTopTransactionIdIfAny(void)
Definition: xact.c:428
void StartTransactionCommand(void)
Definition: xact.c:2925
bool IsInParallelMode(void)
Definition: xact.c:1065
void CommitTransactionCommand(void)
Definition: xact.c:3022