PostgreSQL Source Code git master
Loading...
Searching...
No Matches
trigger.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * trigger.c
4 * PostgreSQL TRIGGERs support code.
5 *
6 * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 * IDENTIFICATION
10 * src/backend/commands/trigger.c
11 *
12 *-------------------------------------------------------------------------
13 */
14#include "postgres.h"
15
16#include "access/genam.h"
17#include "access/htup_details.h"
18#include "access/relation.h"
19#include "access/sysattr.h"
20#include "access/table.h"
21#include "access/tableam.h"
22#include "access/xact.h"
23#include "catalog/catalog.h"
24#include "catalog/dependency.h"
25#include "catalog/indexing.h"
27#include "catalog/partition.h"
29#include "catalog/pg_inherits.h"
30#include "catalog/pg_proc.h"
31#include "catalog/pg_trigger.h"
32#include "catalog/pg_type.h"
33#include "commands/trigger.h"
34#include "executor/executor.h"
35#include "miscadmin.h"
36#include "nodes/bitmapset.h"
37#include "nodes/makefuncs.h"
38#include "optimizer/optimizer.h"
39#include "parser/parse_clause.h"
41#include "parser/parse_func.h"
44#include "pgstat.h"
47#include "storage/lmgr.h"
48#include "utils/acl.h"
49#include "utils/builtins.h"
50#include "utils/fmgroids.h"
51#include "utils/guc_hooks.h"
52#include "utils/inval.h"
53#include "utils/lsyscache.h"
54#include "utils/memutils.h"
55#include "utils/plancache.h"
56#include "utils/rel.h"
57#include "utils/snapmgr.h"
58#include "utils/syscache.h"
59#include "utils/tuplestore.h"
60
61
62/* GUC variables */
64
65/* How many levels deep into trigger execution are we? */
66static int MyTriggerDepth = 0;
67
68/* Local function prototypes */
70 HeapTuple trigtup, const char *newname,
71 const char *expected_name);
73 Oid parentTriggerOid, const char *newname,
74 const char *expected_name);
75static void SetTriggerFlags(TriggerDesc *trigdesc, Trigger *trigger);
76static bool GetTupleForTrigger(EState *estate,
77 EPQState *epqstate,
79 ItemPointer tid,
80 LockTupleMode lockmode,
82 bool do_epq_recheck,
86static bool TriggerEnabled(EState *estate, ResultRelInfo *relinfo,
91 int tgindx,
92 FmgrInfo *finfo,
93 Instrumentation *instr,
98 int event, bool row_trigger,
101 TransitionCaptureState *transition_capture,
103static void AfterTriggerEnlargeQueryState(void);
104static bool before_stmt_triggers_fired(Oid relid, CmdType cmdType);
106
107
108/*
109 * Create a trigger. Returns the address of the created trigger.
110 *
111 * queryString is the source text of the CREATE TRIGGER command.
112 * This must be supplied if a whenClause is specified, else it can be NULL.
113 *
114 * relOid, if nonzero, is the relation on which the trigger should be
115 * created. If zero, the name provided in the statement will be looked up.
116 *
117 * refRelOid, if nonzero, is the relation to which the constraint trigger
118 * refers. If zero, the constraint relation name provided in the statement
119 * will be looked up as needed.
120 *
121 * constraintOid, if nonzero, says that this trigger is being created
122 * internally to implement that constraint. A suitable pg_depend entry will
123 * be made to link the trigger to that constraint. constraintOid is zero when
124 * executing a user-entered CREATE TRIGGER command. (For CREATE CONSTRAINT
125 * TRIGGER, we build a pg_constraint entry internally.)
126 *
127 * indexOid, if nonzero, is the OID of an index associated with the constraint.
128 * We do nothing with this except store it into pg_trigger.tgconstrindid;
129 * but when creating a trigger for a deferrable unique constraint on a
130 * partitioned table, its children are looked up. Note we don't cope with
131 * invalid indexes in that case.
132 *
133 * funcoid, if nonzero, is the OID of the function to invoke. When this is
134 * given, stmt->funcname is ignored.
135 *
136 * parentTriggerOid, if nonzero, is a trigger that begets this one; so that
137 * if that trigger is dropped, this one should be too. There are two cases
138 * when a nonzero value is passed for this: 1) when this function recurses to
139 * create the trigger on partitions, 2) when creating child foreign key
140 * triggers; see CreateFKCheckTrigger() and createForeignKeyActionTriggers().
141 *
142 * If whenClause is passed, it is an already-transformed expression for
143 * WHEN. In this case, we ignore any that may come in stmt->whenClause.
144 *
145 * If isInternal is true then this is an internally-generated trigger.
146 * This argument sets the tgisinternal field of the pg_trigger entry, and
147 * if true causes us to modify the given trigger name to ensure uniqueness.
148 *
149 * When isInternal is not true we require ACL_TRIGGER permissions on the
150 * relation, as well as ACL_EXECUTE on the trigger function. For internal
151 * triggers the caller must apply any required permission checks.
152 *
153 * When called on partitioned tables, this function recurses to create the
154 * trigger on all the partitions, except if isInternal is true, in which
155 * case caller is expected to execute recursion on its own. in_partition
156 * indicates such a recursive call; outside callers should pass "false"
157 * (but see CloneRowTriggersToPartition).
158 */
160CreateTrigger(CreateTrigStmt *stmt, const char *queryString,
161 Oid relOid, Oid refRelOid, Oid constraintOid, Oid indexOid,
162 Oid funcoid, Oid parentTriggerOid, Node *whenClause,
163 bool isInternal, bool in_partition)
164{
165 return
166 CreateTriggerFiringOn(stmt, queryString, relOid, refRelOid,
167 constraintOid, indexOid, funcoid,
168 parentTriggerOid, whenClause, isInternal,
170}
171
172/*
173 * Like the above; additionally the firing condition
174 * (always/origin/replica/disabled) can be specified.
175 */
177CreateTriggerFiringOn(CreateTrigStmt *stmt, const char *queryString,
180 Node *whenClause, bool isInternal, bool in_partition,
182{
183 int16 tgtype;
184 int ncolumns;
185 int16 *columns;
186 int2vector *tgattr;
188 char *qual;
190 bool nulls[Natts_pg_trigger];
191 Relation rel;
195 HeapTuple tuple = NULL;
199 char *trigname;
203 char *oldtablename = NULL;
204 char *newtablename = NULL;
206 bool trigger_exists = false;
208 bool existing_isInternal = false;
209 bool existing_isClone = false;
210
211 if (OidIsValid(relOid))
212 rel = table_open(relOid, ShareRowExclusiveLock);
213 else
214 rel = table_openrv(stmt->relation, ShareRowExclusiveLock);
215
216 /*
217 * Triggers must be on tables or views, and there are additional
218 * relation-type-specific restrictions.
219 */
220 if (rel->rd_rel->relkind == RELKIND_RELATION)
221 {
222 /* Tables can't have INSTEAD OF triggers */
223 if (stmt->timing != TRIGGER_TYPE_BEFORE &&
224 stmt->timing != TRIGGER_TYPE_AFTER)
227 errmsg("\"%s\" is a table",
229 errdetail("Tables cannot have INSTEAD OF triggers.")));
230 }
231 else if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
232 {
233 /* Partitioned tables can't have INSTEAD OF triggers */
234 if (stmt->timing != TRIGGER_TYPE_BEFORE &&
235 stmt->timing != TRIGGER_TYPE_AFTER)
238 errmsg("\"%s\" is a table",
240 errdetail("Tables cannot have INSTEAD OF triggers.")));
241
242 /*
243 * FOR EACH ROW triggers have further restrictions
244 */
245 if (stmt->row)
246 {
247 /*
248 * Disallow use of transition tables.
249 *
250 * Note that we have another restriction about transition tables
251 * in partitions; search for 'has_superclass' below for an
252 * explanation. The check here is just to protect from the fact
253 * that if we allowed it here, the creation would succeed for a
254 * partitioned table with no partitions, but would be blocked by
255 * the other restriction when the first partition was created,
256 * which is very unfriendly behavior.
257 */
258 if (stmt->transitionRels != NIL)
261 errmsg("\"%s\" is a partitioned table",
263 errdetail("ROW triggers with transition tables are not supported on partitioned tables.")));
264 }
265 }
266 else if (rel->rd_rel->relkind == RELKIND_VIEW)
267 {
268 /*
269 * Views can have INSTEAD OF triggers (which we check below are
270 * row-level), or statement-level BEFORE/AFTER triggers.
271 */
272 if (stmt->timing != TRIGGER_TYPE_INSTEAD && stmt->row)
275 errmsg("\"%s\" is a view",
277 errdetail("Views cannot have row-level BEFORE or AFTER triggers.")));
278 /* Disallow TRUNCATE triggers on VIEWs */
279 if (TRIGGER_FOR_TRUNCATE(stmt->events))
282 errmsg("\"%s\" is a view",
284 errdetail("Views cannot have TRUNCATE triggers.")));
285 }
286 else if (rel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
287 {
288 if (stmt->timing != TRIGGER_TYPE_BEFORE &&
289 stmt->timing != TRIGGER_TYPE_AFTER)
292 errmsg("\"%s\" is a foreign table",
294 errdetail("Foreign tables cannot have INSTEAD OF triggers.")));
295
296 /*
297 * We disallow constraint triggers to protect the assumption that
298 * triggers on FKs can't be deferred. See notes with AfterTriggers
299 * data structures, below.
300 */
301 if (stmt->isconstraint)
304 errmsg("\"%s\" is a foreign table",
306 errdetail("Foreign tables cannot have constraint triggers.")));
307 }
308 else
311 errmsg("relation \"%s\" cannot have triggers",
314
318 errmsg("permission denied: \"%s\" is a system catalog",
320
321 if (stmt->isconstraint)
322 {
323 /*
324 * We must take a lock on the target relation to protect against
325 * concurrent drop. It's not clear that AccessShareLock is strong
326 * enough, but we certainly need at least that much... otherwise, we
327 * might end up creating a pg_constraint entry referencing a
328 * nonexistent table.
329 */
331 {
334 }
335 else if (stmt->constrrel != NULL)
337 false);
338 }
339
340 /* permission checks */
341 if (!isInternal)
342 {
345 if (aclresult != ACLCHECK_OK)
348
350 {
353 if (aclresult != ACLCHECK_OK)
356 }
357 }
358
359 /*
360 * When called on a partitioned table to create a FOR EACH ROW trigger
361 * that's not internal, we create one trigger for each partition, too.
362 *
363 * For that, we'd better hold lock on all of them ahead of time.
364 */
365 partition_recurse = !isInternal && stmt->row &&
366 rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE;
370
371 /* Compute tgtype */
372 TRIGGER_CLEAR_TYPE(tgtype);
373 if (stmt->row)
374 TRIGGER_SETT_ROW(tgtype);
375 tgtype |= stmt->timing;
376 tgtype |= stmt->events;
377
378 /* Disallow ROW-level TRUNCATE triggers */
379 if (TRIGGER_FOR_ROW(tgtype) && TRIGGER_FOR_TRUNCATE(tgtype))
382 errmsg("TRUNCATE FOR EACH ROW triggers are not supported")));
383
384 /* INSTEAD triggers must be row-level, and can't have WHEN or columns */
385 if (TRIGGER_FOR_INSTEAD(tgtype))
386 {
387 if (!TRIGGER_FOR_ROW(tgtype))
390 errmsg("INSTEAD OF triggers must be FOR EACH ROW")));
391 if (stmt->whenClause)
394 errmsg("INSTEAD OF triggers cannot have WHEN conditions")));
395 if (stmt->columns != NIL)
398 errmsg("INSTEAD OF triggers cannot have column lists")));
399 }
400
401 /*
402 * We don't yet support naming ROW transition variables, but the parser
403 * recognizes the syntax so we can give a nicer message here.
404 *
405 * Per standard, REFERENCING TABLE names are only allowed on AFTER
406 * triggers. Per standard, REFERENCING ROW names are not allowed with FOR
407 * EACH STATEMENT. Per standard, each OLD/NEW, ROW/TABLE permutation is
408 * only allowed once. Per standard, OLD may not be specified when
409 * creating a trigger only for INSERT, and NEW may not be specified when
410 * creating a trigger only for DELETE.
411 *
412 * Notice that the standard allows an AFTER ... FOR EACH ROW trigger to
413 * reference both ROW and TABLE transition data.
414 */
415 if (stmt->transitionRels != NIL)
416 {
417 List *varList = stmt->transitionRels;
418 ListCell *lc;
419
420 foreach(lc, varList)
421 {
423
424 if (!(tt->isTable))
427 errmsg("ROW variable naming in the REFERENCING clause is not supported"),
428 errhint("Use OLD TABLE or NEW TABLE for naming transition tables.")));
429
430 /*
431 * Because of the above test, we omit further ROW-related testing
432 * below. If we later allow naming OLD and NEW ROW variables,
433 * adjustments will be needed below.
434 */
435
436 if (rel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
439 errmsg("\"%s\" is a foreign table",
441 errdetail("Triggers on foreign tables cannot have transition tables.")));
442
443 if (rel->rd_rel->relkind == RELKIND_VIEW)
446 errmsg("\"%s\" is a view",
448 errdetail("Triggers on views cannot have transition tables.")));
449
450 /*
451 * We currently don't allow row-level triggers with transition
452 * tables on partition or inheritance children. Such triggers
453 * would somehow need to see tuples converted to the format of the
454 * table they're attached to, and it's not clear which subset of
455 * tuples each child should see. See also the prohibitions in
456 * ATExecAttachPartition() and ATExecAddInherit().
457 */
458 if (TRIGGER_FOR_ROW(tgtype) && has_superclass(rel->rd_id))
459 {
460 /* Use appropriate error message. */
461 if (rel->rd_rel->relispartition)
464 errmsg("ROW triggers with transition tables are not supported on partitions")));
465 else
468 errmsg("ROW triggers with transition tables are not supported on inheritance children")));
469 }
470
471 if (stmt->timing != TRIGGER_TYPE_AFTER)
474 errmsg("transition table name can only be specified for an AFTER trigger")));
475
476 if (TRIGGER_FOR_TRUNCATE(tgtype))
479 errmsg("TRUNCATE triggers with transition tables are not supported")));
480
481 /*
482 * We currently don't allow multi-event triggers ("INSERT OR
483 * UPDATE") with transition tables, because it's not clear how to
484 * handle INSERT ... ON CONFLICT statements which can fire both
485 * INSERT and UPDATE triggers. We show the inserted tuples to
486 * INSERT triggers and the updated tuples to UPDATE triggers, but
487 * it's not yet clear what INSERT OR UPDATE trigger should see.
488 * This restriction could be lifted if we can decide on the right
489 * semantics in a later release.
490 */
491 if (((TRIGGER_FOR_INSERT(tgtype) ? 1 : 0) +
492 (TRIGGER_FOR_UPDATE(tgtype) ? 1 : 0) +
493 (TRIGGER_FOR_DELETE(tgtype) ? 1 : 0)) != 1)
496 errmsg("transition tables cannot be specified for triggers with more than one event")));
497
498 /*
499 * We currently don't allow column-specific triggers with
500 * transition tables. Per spec, that seems to require
501 * accumulating separate transition tables for each combination of
502 * columns, which is a lot of work for a rather marginal feature.
503 */
504 if (stmt->columns != NIL)
507 errmsg("transition tables cannot be specified for triggers with column lists")));
508
509 /*
510 * We disallow constraint triggers with transition tables, to
511 * protect the assumption that such triggers can't be deferred.
512 * See notes with AfterTriggers data structures, below.
513 *
514 * Currently this is enforced by the grammar, so just Assert here.
515 */
516 Assert(!stmt->isconstraint);
517
518 if (tt->isNew)
519 {
520 if (!(TRIGGER_FOR_INSERT(tgtype) ||
521 TRIGGER_FOR_UPDATE(tgtype)))
524 errmsg("NEW TABLE can only be specified for an INSERT or UPDATE trigger")));
525
526 if (newtablename != NULL)
529 errmsg("NEW TABLE cannot be specified multiple times")));
530
531 newtablename = tt->name;
532 }
533 else
534 {
535 if (!(TRIGGER_FOR_DELETE(tgtype) ||
536 TRIGGER_FOR_UPDATE(tgtype)))
539 errmsg("OLD TABLE can only be specified for a DELETE or UPDATE trigger")));
540
541 if (oldtablename != NULL)
544 errmsg("OLD TABLE cannot be specified multiple times")));
545
546 oldtablename = tt->name;
547 }
548 }
549
550 if (newtablename != NULL && oldtablename != NULL &&
554 errmsg("OLD TABLE name and NEW TABLE name cannot be the same")));
555 }
556
557 /*
558 * Parse the WHEN clause, if any and we weren't passed an already
559 * transformed one.
560 *
561 * Note that as a side effect, we fill whenRtable when parsing. If we got
562 * an already parsed clause, this does not occur, which is what we want --
563 * no point in adding redundant dependencies below.
564 */
565 if (!whenClause && stmt->whenClause)
566 {
567 ParseState *pstate;
569 List *varList;
570 ListCell *lc;
571
572 /* Set up a pstate to parse with */
573 pstate = make_parsestate(NULL);
574 pstate->p_sourcetext = queryString;
575
576 /*
577 * Set up nsitems for OLD and NEW references.
578 *
579 * 'OLD' must always have varno equal to 1 and 'NEW' equal to 2.
580 */
583 makeAlias("old", NIL),
584 false, false);
585 addNSItemToQuery(pstate, nsitem, false, true, true);
588 makeAlias("new", NIL),
589 false, false);
590 addNSItemToQuery(pstate, nsitem, false, true, true);
591
592 /* Transform expression. Copy to be sure we don't modify original */
593 whenClause = transformWhereClause(pstate,
594 copyObject(stmt->whenClause),
596 "WHEN");
597 /* we have to fix its collations too */
598 assign_expr_collations(pstate, whenClause);
599
600 /*
601 * Check for disallowed references to OLD/NEW.
602 *
603 * NB: pull_var_clause is okay here only because we don't allow
604 * subselects in WHEN clauses; it would fail to examine the contents
605 * of subselects.
606 */
607 varList = pull_var_clause(whenClause, 0);
608 foreach(lc, varList)
609 {
610 Var *var = (Var *) lfirst(lc);
611
612 switch (var->varno)
613 {
614 case PRS2_OLD_VARNO:
615 if (!TRIGGER_FOR_ROW(tgtype))
618 errmsg("statement trigger's WHEN condition cannot reference column values"),
619 parser_errposition(pstate, var->location)));
620 if (TRIGGER_FOR_INSERT(tgtype))
623 errmsg("INSERT trigger's WHEN condition cannot reference OLD values"),
624 parser_errposition(pstate, var->location)));
625 /* system columns are okay here */
626 break;
627 case PRS2_NEW_VARNO:
628 if (!TRIGGER_FOR_ROW(tgtype))
631 errmsg("statement trigger's WHEN condition cannot reference column values"),
632 parser_errposition(pstate, var->location)));
633 if (TRIGGER_FOR_DELETE(tgtype))
636 errmsg("DELETE trigger's WHEN condition cannot reference NEW values"),
637 parser_errposition(pstate, var->location)));
638 if (var->varattno < 0 && TRIGGER_FOR_BEFORE(tgtype))
641 errmsg("BEFORE trigger's WHEN condition cannot reference NEW system columns"),
642 parser_errposition(pstate, var->location)));
643 if (TRIGGER_FOR_BEFORE(tgtype) &&
644 var->varattno == 0 &&
645 RelationGetDescr(rel)->constr &&
646 (RelationGetDescr(rel)->constr->has_generated_stored ||
647 RelationGetDescr(rel)->constr->has_generated_virtual))
650 errmsg("BEFORE trigger's WHEN condition cannot reference NEW generated columns"),
651 errdetail("A whole-row reference is used and the table contains generated columns."),
652 parser_errposition(pstate, var->location)));
653 if (TRIGGER_FOR_BEFORE(tgtype) &&
654 var->varattno > 0 &&
655 TupleDescAttr(RelationGetDescr(rel), var->varattno - 1)->attgenerated)
658 errmsg("BEFORE trigger's WHEN condition cannot reference NEW generated columns"),
659 errdetail("Column \"%s\" is a generated column.",
660 NameStr(TupleDescAttr(RelationGetDescr(rel), var->varattno - 1)->attname)),
661 parser_errposition(pstate, var->location)));
662 break;
663 default:
664 /* can't happen without add_missing_from, so just elog */
665 elog(ERROR, "trigger WHEN condition cannot contain references to other relations");
666 break;
667 }
668 }
669
670 /* we'll need the rtable for recordDependencyOnExpr */
671 whenRtable = pstate->p_rtable;
672
673 qual = nodeToString(whenClause);
674
675 free_parsestate(pstate);
676 }
677 else if (!whenClause)
678 {
679 whenClause = NULL;
680 whenRtable = NIL;
681 qual = NULL;
682 }
683 else
684 {
685 qual = nodeToString(whenClause);
686 whenRtable = NIL;
687 }
688
689 /*
690 * Find and validate the trigger function.
691 */
692 if (!OidIsValid(funcoid))
693 funcoid = LookupFuncName(stmt->funcname, 0, NULL, false);
694 if (!isInternal)
695 {
697 if (aclresult != ACLCHECK_OK)
699 NameListToString(stmt->funcname));
700 }
702 if (funcrettype != TRIGGEROID)
705 errmsg("function %s must return type %s",
706 NameListToString(stmt->funcname), "trigger")));
707
708 /*
709 * Scan pg_trigger to see if there is already a trigger of the same name.
710 * Skip this for internally generated triggers, since we'll modify the
711 * name to be unique below.
712 *
713 * NOTE that this is cool only because we have ShareRowExclusiveLock on
714 * the relation, so the trigger set won't be changing underneath us.
715 */
717 if (!isInternal)
718 {
721
722 ScanKeyInit(&skeys[0],
726
727 ScanKeyInit(&skeys[1],
730 CStringGetDatum(stmt->trigname));
731
733 NULL, 2, skeys);
734
735 /* There should be at most one matching tuple */
737 {
739
740 trigoid = oldtrigger->oid;
741 existing_constraint_oid = oldtrigger->tgconstraint;
742 existing_isInternal = oldtrigger->tgisinternal;
744 trigger_exists = true;
745 /* copy the tuple to use in CatalogTupleUpdate() */
746 tuple = heap_copytuple(tuple);
747 }
749 }
750
751 if (!trigger_exists)
752 {
753 /* Generate the OID for the new trigger. */
756 }
757 else
758 {
759 /*
760 * If OR REPLACE was specified, we'll replace the old trigger;
761 * otherwise complain about the duplicate name.
762 */
763 if (!stmt->replace)
766 errmsg("trigger \"%s\" for relation \"%s\" already exists",
767 stmt->trigname, RelationGetRelationName(rel))));
768
769 /*
770 * An internal trigger or a child trigger (isClone) cannot be replaced
771 * by a user-defined trigger. However, skip this test when
772 * in_partition, because then we're recursing from a partitioned table
773 * and the check was made at the parent level.
774 */
779 errmsg("trigger \"%s\" for relation \"%s\" is an internal or a child trigger",
780 stmt->trigname, RelationGetRelationName(rel))));
781
782 /*
783 * It is not allowed to replace with a constraint trigger; gram.y
784 * should have enforced this already.
785 */
786 Assert(!stmt->isconstraint);
787
788 /*
789 * It is not allowed to replace an existing constraint trigger,
790 * either. (The reason for these restrictions is partly that it seems
791 * difficult to deal with pending trigger events in such cases, and
792 * partly that the command might imply changing the constraint's
793 * properties as well, which doesn't seem nice.)
794 */
798 errmsg("trigger \"%s\" for relation \"%s\" is a constraint trigger",
799 stmt->trigname, RelationGetRelationName(rel))));
800 }
801
802 /*
803 * If it's a user-entered CREATE CONSTRAINT TRIGGER command, make a
804 * corresponding pg_constraint entry.
805 */
806 if (stmt->isconstraint && !OidIsValid(constraintOid))
807 {
808 /* Internal callers should have made their own constraints */
813 stmt->deferrable,
814 stmt->initdeferred,
815 true, /* Is Enforced */
816 true,
817 InvalidOid, /* no parent */
818 RelationGetRelid(rel),
819 NULL, /* no conkey */
820 0,
821 0,
822 InvalidOid, /* no domain */
823 InvalidOid, /* no index */
824 InvalidOid, /* no foreign key */
825 NULL,
826 NULL,
827 NULL,
828 NULL,
829 0,
830 ' ',
831 ' ',
832 NULL,
833 0,
834 ' ',
835 NULL, /* no exclusion */
836 NULL, /* no check constraint */
837 NULL,
838 true, /* islocal */
839 0, /* inhcount */
840 true, /* noinherit */
841 false, /* conperiod */
842 isInternal); /* is_internal */
843 }
844
845 /*
846 * If trigger is internally generated, modify the provided trigger name to
847 * ensure uniqueness by appending the trigger OID. (Callers will usually
848 * supply a simple constant trigger name in these cases.)
849 */
850 if (isInternal)
851 {
853 "%s_%u", stmt->trigname, trigoid);
854 trigname = internaltrigname;
855 }
856 else
857 {
858 /* user-defined trigger; use the specified trigger name as-is */
859 trigname = stmt->trigname;
860 }
861
862 /*
863 * Build the new pg_trigger tuple.
864 */
865 memset(nulls, false, sizeof(nulls));
866
871 CStringGetDatum(trigname));
881
882 if (stmt->args)
883 {
884 ListCell *le;
885 char *args;
886 int16 nargs = list_length(stmt->args);
887 int len = 0;
888
889 foreach(le, stmt->args)
890 {
891 char *ar = strVal(lfirst(le));
892
893 len += strlen(ar) + 4;
894 for (; *ar; ar++)
895 {
896 if (*ar == '\\')
897 len++;
898 }
899 }
900 args = (char *) palloc(len + 1);
901 args[0] = '\0';
902 foreach(le, stmt->args)
903 {
904 char *s = strVal(lfirst(le));
905 char *d = args + strlen(args);
906
907 while (*s)
908 {
909 if (*s == '\\')
910 *d++ = '\\';
911 *d++ = *s++;
912 }
913 strcpy(d, "\\000");
914 }
917 CStringGetDatum(args));
918 }
919 else
920 {
923 CStringGetDatum(""));
924 }
925
926 /* build column number array if it's a column-specific trigger */
927 ncolumns = list_length(stmt->columns);
928 if (ncolumns == 0)
929 columns = NULL;
930 else
931 {
932 ListCell *cell;
933 int i = 0;
934
935 columns = (int16 *) palloc(ncolumns * sizeof(int16));
936 foreach(cell, stmt->columns)
937 {
938 char *name = strVal(lfirst(cell));
940 int j;
941
942 /* Lookup column name. System columns are not allowed */
943 attnum = attnameAttNum(rel, name, false);
947 errmsg("column \"%s\" of relation \"%s\" does not exist",
949
950 /* Check for duplicates */
951 for (j = i - 1; j >= 0; j--)
952 {
953 if (columns[j] == attnum)
956 errmsg("column \"%s\" specified more than once",
957 name)));
958 }
959
960 columns[i++] = attnum;
961 }
962 }
963 tgattr = buildint2vector(columns, ncolumns);
965
966 /* set tgqual if trigger has WHEN clause */
967 if (qual)
969 else
970 nulls[Anum_pg_trigger_tgqual - 1] = true;
971
972 if (oldtablename)
975 else
976 nulls[Anum_pg_trigger_tgoldtable - 1] = true;
977 if (newtablename)
980 else
981 nulls[Anum_pg_trigger_tgnewtable - 1] = true;
982
983 /*
984 * Insert or replace tuple in pg_trigger.
985 */
986 if (!trigger_exists)
987 {
988 tuple = heap_form_tuple(tgrel->rd_att, values, nulls);
990 }
991 else
992 {
994
995 newtup = heap_form_tuple(tgrel->rd_att, values, nulls);
998 }
999
1000 heap_freetuple(tuple); /* free either original or new tuple */
1002
1006 if (oldtablename)
1008 if (newtablename)
1010
1011 /*
1012 * Update relation's pg_class entry; if necessary; and if not, send an SI
1013 * message to make other backends (and this one) rebuild relcache entries.
1014 */
1018 if (!HeapTupleIsValid(tuple))
1019 elog(ERROR, "cache lookup failed for relation %u",
1020 RelationGetRelid(rel));
1021 if (!((Form_pg_class) GETSTRUCT(tuple))->relhastriggers)
1022 {
1023 ((Form_pg_class) GETSTRUCT(tuple))->relhastriggers = true;
1024
1025 CatalogTupleUpdate(pgrel, &tuple->t_self, tuple);
1026
1028 }
1029 else
1031
1032 heap_freetuple(tuple);
1034
1035 /*
1036 * If we're replacing a trigger, flush all the old dependencies before
1037 * recording new ones.
1038 */
1039 if (trigger_exists)
1041
1042 /*
1043 * Record dependencies for trigger. Always place a normal dependency on
1044 * the function.
1045 */
1046 myself.classId = TriggerRelationId;
1047 myself.objectId = trigoid;
1048 myself.objectSubId = 0;
1049
1051 referenced.objectId = funcoid;
1052 referenced.objectSubId = 0;
1054
1056 {
1057 /*
1058 * Internally-generated trigger for a constraint, so make it an
1059 * internal dependency of the constraint. We can skip depending on
1060 * the relation(s), as there'll be an indirect dependency via the
1061 * constraint.
1062 */
1064 referenced.objectId = constraintOid;
1065 referenced.objectSubId = 0;
1067 }
1068 else
1069 {
1070 /*
1071 * User CREATE TRIGGER, so place dependencies. We make trigger be
1072 * auto-dropped if its relation is dropped or if the FK relation is
1073 * dropped. (Auto drop is compatible with our pre-7.3 behavior.)
1074 */
1076 referenced.objectId = RelationGetRelid(rel);
1077 referenced.objectSubId = 0;
1079
1081 {
1083 referenced.objectId = constrrelid;
1084 referenced.objectSubId = 0;
1086 }
1087 /* Not possible to have an index dependency in this case */
1088 Assert(!OidIsValid(indexOid));
1089
1090 /*
1091 * If it's a user-specified constraint trigger, make the constraint
1092 * internally dependent on the trigger instead of vice versa.
1093 */
1095 {
1097 referenced.objectId = constraintOid;
1098 referenced.objectSubId = 0;
1100 }
1101
1102 /*
1103 * If it's a partition trigger, create the partition dependencies.
1104 */
1106 {
1111 }
1112 }
1113
1114 /* If column-specific trigger, add normal dependencies on columns */
1115 if (columns != NULL)
1116 {
1117 int i;
1118
1120 referenced.objectId = RelationGetRelid(rel);
1121 for (i = 0; i < ncolumns; i++)
1122 {
1123 referenced.objectSubId = columns[i];
1125 }
1126 }
1127
1128 /*
1129 * If it has a WHEN clause, add dependencies on objects mentioned in the
1130 * expression (eg, functions, as well as any columns used).
1131 */
1132 if (whenRtable != NIL)
1135
1136 /* Post creation hook for new trigger */
1138 isInternal);
1139
1140 /*
1141 * Lastly, create the trigger on child relations, if needed.
1142 */
1144 {
1145 PartitionDesc partdesc = RelationGetPartitionDesc(rel, true);
1146 int i;
1149
1151 "part trig clone",
1153
1154 /*
1155 * We don't currently expect to be called with a valid indexOid. If
1156 * that ever changes then we'll need to write code here to find the
1157 * corresponding child index.
1158 */
1159 Assert(!OidIsValid(indexOid));
1160
1162
1163 /* Iterate to create the trigger on each existing partition */
1164 for (i = 0; i < partdesc->nparts; i++)
1165 {
1168 Node *qual;
1169
1171
1172 /*
1173 * Initialize our fabricated parse node by copying the original
1174 * one, then resetting fields that we pass separately.
1175 */
1177 childStmt->funcname = NIL;
1178 childStmt->whenClause = NULL;
1179
1180 /* If there is a WHEN clause, create a modified copy of it */
1181 qual = copyObject(whenClause);
1182 qual = (Node *)
1184 childTbl, rel);
1185 qual = (Node *)
1187 childTbl, rel);
1188
1189 CreateTriggerFiringOn(childStmt, queryString,
1190 partdesc->oids[i], refRelOid,
1192 funcoid, trigoid, qual,
1194
1196
1198 }
1199
1202 }
1203
1204 /* Keep lock on target rel until end of xact */
1205 table_close(rel, NoLock);
1206
1207 return myself;
1208}
1209
1210/*
1211 * TriggerSetParentTrigger
1212 * Set a partition's trigger as child of its parent trigger,
1213 * or remove the linkage if parentTrigId is InvalidOid.
1214 *
1215 * This updates the constraint's pg_trigger row to show it as inherited, and
1216 * adds PARTITION dependencies to prevent the trigger from being deleted
1217 * on its own. Alternatively, reverse that.
1218 */
1219void
1224{
1226 ScanKeyData skey[1];
1228 HeapTuple tuple,
1229 newtup;
1232
1233 /*
1234 * Find the trigger to delete.
1235 */
1236 ScanKeyInit(&skey[0],
1240
1242 NULL, 1, skey);
1243
1244 tuple = systable_getnext(tgscan);
1245 if (!HeapTupleIsValid(tuple))
1246 elog(ERROR, "could not find tuple for trigger %u", childTrigId);
1247 newtup = heap_copytuple(tuple);
1250 {
1251 /* don't allow setting parent for a constraint that already has one */
1252 if (OidIsValid(trigForm->tgparentid))
1253 elog(ERROR, "trigger %u already has a parent trigger",
1254 childTrigId);
1255
1256 trigForm->tgparentid = parentTrigId;
1257
1259
1261
1264
1267 }
1268 else
1269 {
1270 trigForm->tgparentid = InvalidOid;
1271
1273
1280 }
1281
1284}
1285
1286
1287/*
1288 * Guts of trigger deletion.
1289 */
1290void
1292{
1295 ScanKeyData skey[1];
1296 HeapTuple tup;
1297 Oid relid;
1298 Relation rel;
1299
1301
1302 /*
1303 * Find the trigger to delete.
1304 */
1305 ScanKeyInit(&skey[0],
1308 ObjectIdGetDatum(trigOid));
1309
1311 NULL, 1, skey);
1312
1314 if (!HeapTupleIsValid(tup))
1315 elog(ERROR, "could not find tuple for trigger %u", trigOid);
1316
1317 /*
1318 * Open and exclusive-lock the relation the trigger belongs to.
1319 */
1320 relid = ((Form_pg_trigger) GETSTRUCT(tup))->tgrelid;
1321
1322 rel = table_open(relid, AccessExclusiveLock);
1323
1324 if (rel->rd_rel->relkind != RELKIND_RELATION &&
1325 rel->rd_rel->relkind != RELKIND_VIEW &&
1326 rel->rd_rel->relkind != RELKIND_FOREIGN_TABLE &&
1327 rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
1328 ereport(ERROR,
1330 errmsg("relation \"%s\" cannot have triggers",
1332 errdetail_relkind_not_supported(rel->rd_rel->relkind)));
1333
1335 ereport(ERROR,
1337 errmsg("permission denied: \"%s\" is a system catalog",
1339
1340 /*
1341 * Delete the pg_trigger tuple.
1342 */
1343 CatalogTupleDelete(tgrel, &tup->t_self);
1344
1347
1348 /*
1349 * We do not bother to try to determine whether any other triggers remain,
1350 * which would be needed in order to decide whether it's safe to clear the
1351 * relation's relhastriggers. (In any case, there might be a concurrent
1352 * process adding new triggers.) Instead, just force a relcache inval to
1353 * make other backends (and this one too!) rebuild their relcache entries.
1354 * There's no great harm in leaving relhastriggers true even if there are
1355 * no triggers left.
1356 */
1358
1359 /* Keep lock on trigger's rel until end of xact */
1360 table_close(rel, NoLock);
1361}
1362
1363/*
1364 * get_trigger_oid - Look up a trigger by name to find its OID.
1365 *
1366 * If missing_ok is false, throw an error if trigger not found. If
1367 * true, just return InvalidOid.
1368 */
1369Oid
1370get_trigger_oid(Oid relid, const char *trigname, bool missing_ok)
1371{
1373 ScanKeyData skey[2];
1375 HeapTuple tup;
1376 Oid oid;
1377
1378 /*
1379 * Find the trigger, verify permissions, set up object address
1380 */
1382
1383 ScanKeyInit(&skey[0],
1386 ObjectIdGetDatum(relid));
1387 ScanKeyInit(&skey[1],
1390 CStringGetDatum(trigname));
1391
1393 NULL, 2, skey);
1394
1396
1397 if (!HeapTupleIsValid(tup))
1398 {
1399 if (!missing_ok)
1400 ereport(ERROR,
1402 errmsg("trigger \"%s\" for table \"%s\" does not exist",
1403 trigname, get_rel_name(relid))));
1404 oid = InvalidOid;
1405 }
1406 else
1407 {
1408 oid = ((Form_pg_trigger) GETSTRUCT(tup))->oid;
1409 }
1410
1413 return oid;
1414}
1415
1416/*
1417 * Perform permissions and integrity checks before acquiring a relation lock.
1418 */
1419static void
1421 void *arg)
1422{
1423 HeapTuple tuple;
1425
1426 tuple = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
1427 if (!HeapTupleIsValid(tuple))
1428 return; /* concurrently dropped */
1429 form = (Form_pg_class) GETSTRUCT(tuple);
1430
1431 /* only tables and views can have triggers */
1432 if (form->relkind != RELKIND_RELATION && form->relkind != RELKIND_VIEW &&
1433 form->relkind != RELKIND_FOREIGN_TABLE &&
1434 form->relkind != RELKIND_PARTITIONED_TABLE)
1435 ereport(ERROR,
1437 errmsg("relation \"%s\" cannot have triggers",
1438 rv->relname),
1440
1441 /* you must own the table to rename one of its triggers */
1444 if (!allowSystemTableMods && IsSystemClass(relid, form))
1445 ereport(ERROR,
1447 errmsg("permission denied: \"%s\" is a system catalog",
1448 rv->relname)));
1449
1450 ReleaseSysCache(tuple);
1451}
1452
1453/*
1454 * renametrig - changes the name of a trigger on a relation
1455 *
1456 * trigger name is changed in trigger catalog.
1457 * No record of the previous name is kept.
1458 *
1459 * get proper relrelation from relation catalog (if not arg)
1460 * scan trigger catalog
1461 * for name conflict (within rel)
1462 * for original trigger (if not arg)
1463 * modify tgname in trigger tuple
1464 * update row in catalog
1465 */
1468{
1469 Oid tgoid;
1472 HeapTuple tuple;
1474 ScanKeyData key[2];
1475 Oid relid;
1476 ObjectAddress address;
1477
1478 /*
1479 * Look up name, check permissions, and acquire lock (which we will NOT
1480 * release until end of transaction).
1481 */
1483 0,
1485 NULL);
1486
1487 /* Have lock already, so just need to build relcache entry. */
1488 targetrel = relation_open(relid, NoLock);
1489
1490 /*
1491 * On partitioned tables, this operation recurses to partitions. Lock all
1492 * tables upfront.
1493 */
1494 if (targetrel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
1496
1498
1499 /*
1500 * Search for the trigger to modify.
1501 */
1502 ScanKeyInit(&key[0],
1505 ObjectIdGetDatum(relid));
1506 ScanKeyInit(&key[1],
1509 PointerGetDatum(stmt->subname));
1511 NULL, 2, key);
1513 {
1515
1517 tgoid = trigform->oid;
1518
1519 /*
1520 * If the trigger descends from a trigger on a parent partitioned
1521 * table, reject the rename. We don't allow a trigger in a partition
1522 * to differ in name from that of its parent: that would lead to an
1523 * inconsistency that pg_dump would not reproduce.
1524 */
1525 if (OidIsValid(trigform->tgparentid))
1526 ereport(ERROR,
1528 errmsg("cannot rename trigger \"%s\" on table \"%s\"",
1530 errhint("Rename the trigger on the partitioned table \"%s\" instead.",
1531 get_rel_name(get_partition_parent(relid, false))));
1532
1533
1534 /* Rename the trigger on this relation ... */
1535 renametrig_internal(tgrel, targetrel, tuple, stmt->newname,
1536 stmt->subname);
1537
1538 /* ... and if it is partitioned, recurse to its partitions */
1539 if (targetrel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
1540 {
1542
1543 for (int i = 0; i < partdesc->nparts; i++)
1544 {
1545 Oid partitionId = partdesc->oids[i];
1546
1548 stmt->newname, stmt->subname);
1549 }
1550 }
1551 }
1552 else
1553 {
1554 ereport(ERROR,
1556 errmsg("trigger \"%s\" for table \"%s\" does not exist",
1558 }
1559
1560 ObjectAddressSet(address, TriggerRelationId, tgoid);
1561
1563
1565
1566 /*
1567 * Close rel, but keep exclusive lock!
1568 */
1570
1571 return address;
1572}
1573
1574/*
1575 * Subroutine for renametrig -- perform the actual work of renaming one
1576 * trigger on one table.
1577 *
1578 * If the trigger has a name different from the expected one, raise a
1579 * NOTICE about it.
1580 */
1581static void
1583 const char *newname, const char *expected_name)
1584{
1585 HeapTuple tuple;
1587 ScanKeyData key[2];
1589
1590 /* If the trigger already has the new name, nothing to do. */
1592 if (strcmp(NameStr(tgform->tgname), newname) == 0)
1593 return;
1594
1595 /*
1596 * Before actually trying the rename, search for triggers with the same
1597 * name. The update would fail with an ugly message in that case, and it
1598 * is better to throw a nicer error.
1599 */
1600 ScanKeyInit(&key[0],
1604 ScanKeyInit(&key[1],
1607 PointerGetDatum(newname));
1609 NULL, 2, key);
1611 ereport(ERROR,
1613 errmsg("trigger \"%s\" for relation \"%s\" already exists",
1616
1617 /*
1618 * The target name is free; update the existing pg_trigger tuple with it.
1619 */
1620 tuple = heap_copytuple(trigtup); /* need a modifiable copy */
1621 tgform = (Form_pg_trigger) GETSTRUCT(tuple);
1622
1623 /*
1624 * If the trigger has a name different from what we expected, let the user
1625 * know. (We can proceed anyway, since we must have reached here following
1626 * a tgparentid link.)
1627 */
1628 if (strcmp(NameStr(tgform->tgname), expected_name) != 0)
1630 errmsg("renamed trigger \"%s\" on relation \"%s\"",
1631 NameStr(tgform->tgname),
1633
1634 namestrcpy(&tgform->tgname, newname);
1635
1636 CatalogTupleUpdate(tgrel, &tuple->t_self, tuple);
1637
1639
1640 /*
1641 * Invalidate relation's relcache entry so that other backends (and this
1642 * one too!) are sent SI message to make them rebuild relcache entries.
1643 * (Ideally this should happen automatically...)
1644 */
1646}
1647
1648/*
1649 * Subroutine for renametrig -- Helper for recursing to partitions when
1650 * renaming triggers on a partitioned table.
1651 */
1652static void
1654 const char *newname, const char *expected_name)
1655{
1657 ScanKeyData key;
1658 HeapTuple tuple;
1659
1660 /*
1661 * Given a relation and the OID of a trigger on parent relation, find the
1662 * corresponding trigger in the child and rename that trigger to the given
1663 * name.
1664 */
1665 ScanKeyInit(&key,
1670 NULL, 1, &key);
1671 while (HeapTupleIsValid(tuple = systable_getnext(tgscan)))
1672 {
1675
1676 if (tgform->tgparentid != parentTriggerOid)
1677 continue; /* not our trigger */
1678
1680
1681 /* Rename the trigger on this partition */
1683
1684 /* And if this relation is partitioned, recurse to its partitions */
1685 if (partitionRel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
1686 {
1688 true);
1689
1690 for (int i = 0; i < partdesc->nparts; i++)
1691 {
1692 Oid partoid = partdesc->oids[i];
1693
1694 renametrig_partition(tgrel, partoid, tgform->oid, newname,
1695 NameStr(tgform->tgname));
1696 }
1697 }
1699
1700 /* There should be at most one matching tuple */
1701 break;
1702 }
1704}
1705
1706/*
1707 * EnableDisableTrigger()
1708 *
1709 * Called by ALTER TABLE ENABLE/DISABLE [ REPLICA | ALWAYS ] TRIGGER
1710 * to change 'tgenabled' field for the specified trigger(s)
1711 *
1712 * rel: relation to process (caller must hold suitable lock on it)
1713 * tgname: name of trigger to process, or NULL to scan all triggers
1714 * tgparent: if not zero, process only triggers with this tgparentid
1715 * fires_when: new value for tgenabled field. In addition to generic
1716 * enablement/disablement, this also defines when the trigger
1717 * should be fired in session replication roles.
1718 * skip_system: if true, skip "system" triggers (constraint triggers)
1719 * recurse: if true, recurse to partitions
1720 *
1721 * Caller should have checked permissions for the table; here we also
1722 * enforce that superuser privilege is required to alter the state of
1723 * system triggers
1724 */
1725void
1727 char fires_when, bool skip_system, bool recurse,
1728 LOCKMODE lockmode)
1729{
1731 int nkeys;
1732 ScanKeyData keys[2];
1734 HeapTuple tuple;
1735 bool found;
1736 bool changed;
1737
1738 /* Scan the relevant entries in pg_triggers */
1740
1741 ScanKeyInit(&keys[0],
1745 if (tgname)
1746 {
1747 ScanKeyInit(&keys[1],
1750 CStringGetDatum(tgname));
1751 nkeys = 2;
1752 }
1753 else
1754 nkeys = 1;
1755
1757 NULL, nkeys, keys);
1758
1759 found = changed = false;
1760
1761 while (HeapTupleIsValid(tuple = systable_getnext(tgscan)))
1762 {
1764
1765 if (OidIsValid(tgparent) && tgparent != oldtrig->tgparentid)
1766 continue;
1767
1768 if (oldtrig->tgisinternal)
1769 {
1770 /* system trigger ... ok to process? */
1771 if (skip_system)
1772 continue;
1773 if (!superuser())
1774 ereport(ERROR,
1776 errmsg("permission denied: \"%s\" is a system trigger",
1777 NameStr(oldtrig->tgname))));
1778 }
1779
1780 found = true;
1781
1782 if (oldtrig->tgenabled != fires_when)
1783 {
1784 /* need to change this one ... make a copy to scribble on */
1787
1788 newtrig->tgenabled = fires_when;
1789
1791
1793
1794 changed = true;
1795 }
1796
1797 /*
1798 * When altering FOR EACH ROW triggers on a partitioned table, do the
1799 * same on the partitions as well, unless ONLY is specified.
1800 *
1801 * Note that we recurse even if we didn't change the trigger above,
1802 * because the partitions' copy of the trigger may have a different
1803 * value of tgenabled than the parent's trigger and thus might need to
1804 * be changed.
1805 */
1806 if (recurse &&
1807 rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE &&
1808 (TRIGGER_FOR_ROW(oldtrig->tgtype)))
1809 {
1810 PartitionDesc partdesc = RelationGetPartitionDesc(rel, true);
1811 int i;
1812
1813 for (i = 0; i < partdesc->nparts; i++)
1814 {
1815 Relation part;
1816
1817 part = relation_open(partdesc->oids[i], lockmode);
1818 /* Match on child triggers' tgparentid, not their name */
1820 fires_when, skip_system, recurse,
1821 lockmode);
1822 table_close(part, NoLock); /* keep lock till commit */
1823 }
1824 }
1825
1827 oldtrig->oid, 0);
1828 }
1829
1831
1833
1834 if (tgname && !found)
1835 ereport(ERROR,
1837 errmsg("trigger \"%s\" for table \"%s\" does not exist",
1838 tgname, RelationGetRelationName(rel))));
1839
1840 /*
1841 * If we changed anything, broadcast a SI inval message to force each
1842 * backend (including our own!) to rebuild relation's relcache entry.
1843 * Otherwise they will fail to apply the change promptly.
1844 */
1845 if (changed)
1847}
1848
1849
1850/*
1851 * Build trigger data to attach to the given relcache entry.
1852 *
1853 * Note that trigger data attached to a relcache entry must be stored in
1854 * CacheMemoryContext to ensure it survives as long as the relcache entry.
1855 * But we should be running in a less long-lived working context. To avoid
1856 * leaking cache memory if this routine fails partway through, we build a
1857 * temporary TriggerDesc in working memory and then copy the completed
1858 * structure into cache memory.
1859 */
1860void
1862{
1863 TriggerDesc *trigdesc;
1864 int numtrigs;
1865 int maxtrigs;
1866 Trigger *triggers;
1870 HeapTuple htup;
1872 int i;
1873
1874 /*
1875 * Allocate a working array to hold the triggers (the array is extended if
1876 * necessary)
1877 */
1878 maxtrigs = 16;
1879 triggers = (Trigger *) palloc(maxtrigs * sizeof(Trigger));
1880 numtrigs = 0;
1881
1882 /*
1883 * Note: since we scan the triggers using TriggerRelidNameIndexId, we will
1884 * be reading the triggers in name order, except possibly during
1885 * emergency-recovery operations (ie, IgnoreSystemIndexes). This in turn
1886 * ensures that triggers will be fired in name order.
1887 */
1892
1895 NULL, 1, &skey);
1896
1898 {
1900 Trigger *build;
1901 Datum datum;
1902 bool isnull;
1903
1904 if (numtrigs >= maxtrigs)
1905 {
1906 maxtrigs *= 2;
1907 triggers = (Trigger *) repalloc(triggers, maxtrigs * sizeof(Trigger));
1908 }
1909 build = &(triggers[numtrigs]);
1910
1911 build->tgoid = pg_trigger->oid;
1913 NameGetDatum(&pg_trigger->tgname)));
1914 build->tgfoid = pg_trigger->tgfoid;
1915 build->tgtype = pg_trigger->tgtype;
1916 build->tgenabled = pg_trigger->tgenabled;
1917 build->tgisinternal = pg_trigger->tgisinternal;
1918 build->tgisclone = OidIsValid(pg_trigger->tgparentid);
1919 build->tgconstrrelid = pg_trigger->tgconstrrelid;
1920 build->tgconstrindid = pg_trigger->tgconstrindid;
1921 build->tgconstraint = pg_trigger->tgconstraint;
1922 build->tgdeferrable = pg_trigger->tgdeferrable;
1923 build->tginitdeferred = pg_trigger->tginitdeferred;
1924 build->tgnargs = pg_trigger->tgnargs;
1925 /* tgattr is first var-width field, so OK to access directly */
1926 build->tgnattr = pg_trigger->tgattr.dim1;
1927 if (build->tgnattr > 0)
1928 {
1929 build->tgattr = (int16 *) palloc(build->tgnattr * sizeof(int16));
1930 memcpy(build->tgattr, &(pg_trigger->tgattr.values),
1931 build->tgnattr * sizeof(int16));
1932 }
1933 else
1934 build->tgattr = NULL;
1935 if (build->tgnargs > 0)
1936 {
1937 bytea *val;
1938 char *p;
1939
1942 tgrel->rd_att, &isnull));
1943 if (isnull)
1944 elog(ERROR, "tgargs is null in trigger for relation \"%s\"",
1945 RelationGetRelationName(relation));
1946 p = (char *) VARDATA_ANY(val);
1947 build->tgargs = (char **) palloc(build->tgnargs * sizeof(char *));
1948 for (i = 0; i < build->tgnargs; i++)
1949 {
1950 build->tgargs[i] = pstrdup(p);
1951 p += strlen(p) + 1;
1952 }
1953 }
1954 else
1955 build->tgargs = NULL;
1956
1958 tgrel->rd_att, &isnull);
1959 if (!isnull)
1960 build->tgoldtable =
1962 else
1963 build->tgoldtable = NULL;
1964
1966 tgrel->rd_att, &isnull);
1967 if (!isnull)
1968 build->tgnewtable =
1970 else
1971 build->tgnewtable = NULL;
1972
1973 datum = fastgetattr(htup, Anum_pg_trigger_tgqual,
1974 tgrel->rd_att, &isnull);
1975 if (!isnull)
1976 build->tgqual = TextDatumGetCString(datum);
1977 else
1978 build->tgqual = NULL;
1979
1980 numtrigs++;
1981 }
1982
1985
1986 /* There might not be any triggers */
1987 if (numtrigs == 0)
1988 {
1989 pfree(triggers);
1990 return;
1991 }
1992
1993 /* Build trigdesc */
1994 trigdesc = palloc0_object(TriggerDesc);
1995 trigdesc->triggers = triggers;
1996 trigdesc->numtriggers = numtrigs;
1997 for (i = 0; i < numtrigs; i++)
1998 SetTriggerFlags(trigdesc, &(triggers[i]));
1999
2000 /* Copy completed trigdesc into cache storage */
2002 relation->trigdesc = CopyTriggerDesc(trigdesc);
2004
2005 /* Release working memory */
2006 FreeTriggerDesc(trigdesc);
2007}
2008
2009/*
2010 * Update the TriggerDesc's hint flags to include the specified trigger
2011 */
2012static void
2014{
2015 int16 tgtype = trigger->tgtype;
2016
2017 trigdesc->trig_insert_before_row |=
2020 trigdesc->trig_insert_after_row |=
2023 trigdesc->trig_insert_instead_row |=
2026 trigdesc->trig_insert_before_statement |=
2029 trigdesc->trig_insert_after_statement |=
2032 trigdesc->trig_update_before_row |=
2035 trigdesc->trig_update_after_row |=
2038 trigdesc->trig_update_instead_row |=
2041 trigdesc->trig_update_before_statement |=
2044 trigdesc->trig_update_after_statement |=
2047 trigdesc->trig_delete_before_row |=
2050 trigdesc->trig_delete_after_row |=
2053 trigdesc->trig_delete_instead_row |=
2056 trigdesc->trig_delete_before_statement |=
2059 trigdesc->trig_delete_after_statement |=
2062 /* there are no row-level truncate triggers */
2069
2070 trigdesc->trig_insert_new_table |=
2071 (TRIGGER_FOR_INSERT(tgtype) &&
2073 trigdesc->trig_update_old_table |=
2074 (TRIGGER_FOR_UPDATE(tgtype) &&
2076 trigdesc->trig_update_new_table |=
2077 (TRIGGER_FOR_UPDATE(tgtype) &&
2079 trigdesc->trig_delete_old_table |=
2080 (TRIGGER_FOR_DELETE(tgtype) &&
2082}
2083
2084/*
2085 * Copy a TriggerDesc data structure.
2086 *
2087 * The copy is allocated in the current memory context.
2088 */
2091{
2094 int i;
2095
2096 if (trigdesc == NULL || trigdesc->numtriggers <= 0)
2097 return NULL;
2098
2100 memcpy(newdesc, trigdesc, sizeof(TriggerDesc));
2101
2102 trigger = (Trigger *) palloc(trigdesc->numtriggers * sizeof(Trigger));
2103 memcpy(trigger, trigdesc->triggers,
2104 trigdesc->numtriggers * sizeof(Trigger));
2105 newdesc->triggers = trigger;
2106
2107 for (i = 0; i < trigdesc->numtriggers; i++)
2108 {
2109 trigger->tgname = pstrdup(trigger->tgname);
2110 if (trigger->tgnattr > 0)
2111 {
2112 int16 *newattr;
2113
2114 newattr = (int16 *) palloc(trigger->tgnattr * sizeof(int16));
2115 memcpy(newattr, trigger->tgattr,
2116 trigger->tgnattr * sizeof(int16));
2117 trigger->tgattr = newattr;
2118 }
2119 if (trigger->tgnargs > 0)
2120 {
2121 char **newargs;
2122 int16 j;
2123
2124 newargs = (char **) palloc(trigger->tgnargs * sizeof(char *));
2125 for (j = 0; j < trigger->tgnargs; j++)
2126 newargs[j] = pstrdup(trigger->tgargs[j]);
2127 trigger->tgargs = newargs;
2128 }
2129 if (trigger->tgqual)
2130 trigger->tgqual = pstrdup(trigger->tgqual);
2131 if (trigger->tgoldtable)
2132 trigger->tgoldtable = pstrdup(trigger->tgoldtable);
2133 if (trigger->tgnewtable)
2134 trigger->tgnewtable = pstrdup(trigger->tgnewtable);
2135 trigger++;
2136 }
2137
2138 return newdesc;
2139}
2140
2141/*
2142 * Free a TriggerDesc data structure.
2143 */
2144void
2146{
2148 int i;
2149
2150 if (trigdesc == NULL)
2151 return;
2152
2153 trigger = trigdesc->triggers;
2154 for (i = 0; i < trigdesc->numtriggers; i++)
2155 {
2156 pfree(trigger->tgname);
2157 if (trigger->tgnattr > 0)
2158 pfree(trigger->tgattr);
2159 if (trigger->tgnargs > 0)
2160 {
2161 while (--(trigger->tgnargs) >= 0)
2162 pfree(trigger->tgargs[trigger->tgnargs]);
2163 pfree(trigger->tgargs);
2164 }
2165 if (trigger->tgqual)
2166 pfree(trigger->tgqual);
2167 if (trigger->tgoldtable)
2168 pfree(trigger->tgoldtable);
2169 if (trigger->tgnewtable)
2170 pfree(trigger->tgnewtable);
2171 trigger++;
2172 }
2173 pfree(trigdesc->triggers);
2174 pfree(trigdesc);
2175}
2176
2177/*
2178 * Compare two TriggerDesc structures for logical equality.
2179 */
2180#ifdef NOT_USED
2181bool
2183{
2184 int i,
2185 j;
2186
2187 /*
2188 * We need not examine the hint flags, just the trigger array itself; if
2189 * we have the same triggers with the same types, the flags should match.
2190 *
2191 * As of 7.3 we assume trigger set ordering is significant in the
2192 * comparison; so we just compare corresponding slots of the two sets.
2193 *
2194 * Note: comparing the stringToNode forms of the WHEN clauses means that
2195 * parse column locations will affect the result. This is okay as long as
2196 * this function is only used for detecting exact equality, as for example
2197 * in checking for staleness of a cache entry.
2198 */
2199 if (trigdesc1 != NULL)
2200 {
2201 if (trigdesc2 == NULL)
2202 return false;
2203 if (trigdesc1->numtriggers != trigdesc2->numtriggers)
2204 return false;
2205 for (i = 0; i < trigdesc1->numtriggers; i++)
2206 {
2207 Trigger *trig1 = trigdesc1->triggers + i;
2208 Trigger *trig2 = trigdesc2->triggers + i;
2209
2210 if (trig1->tgoid != trig2->tgoid)
2211 return false;
2212 if (strcmp(trig1->tgname, trig2->tgname) != 0)
2213 return false;
2214 if (trig1->tgfoid != trig2->tgfoid)
2215 return false;
2216 if (trig1->tgtype != trig2->tgtype)
2217 return false;
2218 if (trig1->tgenabled != trig2->tgenabled)
2219 return false;
2220 if (trig1->tgisinternal != trig2->tgisinternal)
2221 return false;
2222 if (trig1->tgisclone != trig2->tgisclone)
2223 return false;
2224 if (trig1->tgconstrrelid != trig2->tgconstrrelid)
2225 return false;
2226 if (trig1->tgconstrindid != trig2->tgconstrindid)
2227 return false;
2228 if (trig1->tgconstraint != trig2->tgconstraint)
2229 return false;
2230 if (trig1->tgdeferrable != trig2->tgdeferrable)
2231 return false;
2232 if (trig1->tginitdeferred != trig2->tginitdeferred)
2233 return false;
2234 if (trig1->tgnargs != trig2->tgnargs)
2235 return false;
2236 if (trig1->tgnattr != trig2->tgnattr)
2237 return false;
2238 if (trig1->tgnattr > 0 &&
2239 memcmp(trig1->tgattr, trig2->tgattr,
2240 trig1->tgnattr * sizeof(int16)) != 0)
2241 return false;
2242 for (j = 0; j < trig1->tgnargs; j++)
2243 if (strcmp(trig1->tgargs[j], trig2->tgargs[j]) != 0)
2244 return false;
2245 if (trig1->tgqual == NULL && trig2->tgqual == NULL)
2246 /* ok */ ;
2247 else if (trig1->tgqual == NULL || trig2->tgqual == NULL)
2248 return false;
2249 else if (strcmp(trig1->tgqual, trig2->tgqual) != 0)
2250 return false;
2251 if (trig1->tgoldtable == NULL && trig2->tgoldtable == NULL)
2252 /* ok */ ;
2253 else if (trig1->tgoldtable == NULL || trig2->tgoldtable == NULL)
2254 return false;
2255 else if (strcmp(trig1->tgoldtable, trig2->tgoldtable) != 0)
2256 return false;
2257 if (trig1->tgnewtable == NULL && trig2->tgnewtable == NULL)
2258 /* ok */ ;
2259 else if (trig1->tgnewtable == NULL || trig2->tgnewtable == NULL)
2260 return false;
2261 else if (strcmp(trig1->tgnewtable, trig2->tgnewtable) != 0)
2262 return false;
2263 }
2264 }
2265 else if (trigdesc2 != NULL)
2266 return false;
2267 return true;
2268}
2269#endif /* NOT_USED */
2270
2271/*
2272 * Check if there is a row-level trigger with transition tables that prevents
2273 * a table from becoming an inheritance child or partition. Return the name
2274 * of the first such incompatible trigger, or NULL if there is none.
2275 */
2276const char *
2278{
2279 if (trigdesc != NULL)
2280 {
2281 int i;
2282
2283 for (i = 0; i < trigdesc->numtriggers; ++i)
2284 {
2285 Trigger *trigger = &trigdesc->triggers[i];
2286
2287 if (!TRIGGER_FOR_ROW(trigger->tgtype))
2288 continue;
2289 if (trigger->tgoldtable != NULL || trigger->tgnewtable != NULL)
2290 return trigger->tgname;
2291 }
2292 }
2293
2294 return NULL;
2295}
2296
2297/*
2298 * Call a trigger function.
2299 *
2300 * trigdata: trigger descriptor.
2301 * tgindx: trigger's index in finfo and instr arrays.
2302 * finfo: array of cached trigger function call information.
2303 * instr: optional array of EXPLAIN ANALYZE instrumentation state.
2304 * per_tuple_context: memory context to execute the function in.
2305 *
2306 * Returns the tuple (or NULL) as returned by the function.
2307 */
2308static HeapTuple
2310 int tgindx,
2311 FmgrInfo *finfo,
2312 Instrumentation *instr,
2314{
2315 LOCAL_FCINFO(fcinfo, 0);
2317 Datum result;
2319
2320 /*
2321 * Protect against code paths that may fail to initialize transition table
2322 * info.
2323 */
2325 TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event) ||
2326 TRIGGER_FIRED_BY_DELETE(trigdata->tg_event)) &&
2327 TRIGGER_FIRED_AFTER(trigdata->tg_event) &&
2328 !(trigdata->tg_event & AFTER_TRIGGER_DEFERRABLE) &&
2329 !(trigdata->tg_event & AFTER_TRIGGER_INITDEFERRED)) ||
2330 (trigdata->tg_oldtable == NULL && trigdata->tg_newtable == NULL));
2331
2332 finfo += tgindx;
2333
2334 /*
2335 * We cache fmgr lookup info, to avoid making the lookup again on each
2336 * call.
2337 */
2338 if (finfo->fn_oid == InvalidOid)
2339 fmgr_info(trigdata->tg_trigger->tgfoid, finfo);
2340
2341 Assert(finfo->fn_oid == trigdata->tg_trigger->tgfoid);
2342
2343 /*
2344 * If doing EXPLAIN ANALYZE, start charging time to this trigger.
2345 */
2346 if (instr)
2347 InstrStartNode(instr + tgindx);
2348
2349 /*
2350 * Do the function evaluation in the per-tuple memory context, so that
2351 * leaked memory will be reclaimed once per tuple. Note in particular that
2352 * any new tuple created by the trigger function will live till the end of
2353 * the tuple cycle.
2354 */
2356
2357 /*
2358 * Call the function, passing no arguments but setting a context.
2359 */
2360 InitFunctionCallInfoData(*fcinfo, finfo, 0,
2361 InvalidOid, (Node *) trigdata, NULL);
2362
2364
2366 PG_TRY();
2367 {
2368 result = FunctionCallInvoke(fcinfo);
2369 }
2370 PG_FINALLY();
2371 {
2373 }
2374 PG_END_TRY();
2375
2377
2379
2380 /*
2381 * Trigger protocol allows function to return a null pointer, but NOT to
2382 * set the isnull result flag.
2383 */
2384 if (fcinfo->isnull)
2385 ereport(ERROR,
2387 errmsg("trigger function %u returned null value",
2388 fcinfo->flinfo->fn_oid)));
2389
2390 /*
2391 * If doing EXPLAIN ANALYZE, stop charging time to this trigger, and count
2392 * one "tuple returned" (really the number of firings).
2393 */
2394 if (instr)
2395 InstrStopNode(instr + tgindx, 1);
2396
2397 return (HeapTuple) DatumGetPointer(result);
2398}
2399
2400void
2402{
2403 TriggerDesc *trigdesc;
2404 int i;
2406
2407 trigdesc = relinfo->ri_TrigDesc;
2408
2409 if (trigdesc == NULL)
2410 return;
2411 if (!trigdesc->trig_insert_before_statement)
2412 return;
2413
2414 /* no-op if we already fired BS triggers in this context */
2416 CMD_INSERT))
2417 return;
2418
2422 LocTriggerData.tg_relation = relinfo->ri_RelationDesc;
2423 for (i = 0; i < trigdesc->numtriggers; i++)
2424 {
2425 Trigger *trigger = &trigdesc->triggers[i];
2426 HeapTuple newtuple;
2427
2428 if (!TRIGGER_TYPE_MATCHES(trigger->tgtype,
2432 continue;
2433 if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event,
2434 NULL, NULL, NULL))
2435 continue;
2436
2437 LocTriggerData.tg_trigger = trigger;
2439 i,
2440 relinfo->ri_TrigFunctions,
2441 relinfo->ri_TrigInstrument,
2442 GetPerTupleMemoryContext(estate));
2443
2444 if (newtuple)
2445 ereport(ERROR,
2447 errmsg("BEFORE STATEMENT trigger cannot return a value")));
2448 }
2449}
2450
2451void
2453 TransitionCaptureState *transition_capture)
2454{
2455 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
2456
2457 if (trigdesc && trigdesc->trig_insert_after_statement)
2460 false, NULL, NULL, NIL, NULL, transition_capture,
2461 false);
2462}
2463
2464bool
2466 TupleTableSlot *slot)
2467{
2468 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
2469 HeapTuple newtuple = NULL;
2470 bool should_free;
2472 int i;
2473
2478 LocTriggerData.tg_relation = relinfo->ri_RelationDesc;
2479 for (i = 0; i < trigdesc->numtriggers; i++)
2480 {
2481 Trigger *trigger = &trigdesc->triggers[i];
2482 HeapTuple oldtuple;
2483
2484 if (!TRIGGER_TYPE_MATCHES(trigger->tgtype,
2488 continue;
2489 if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event,
2490 NULL, NULL, slot))
2491 continue;
2492
2493 if (!newtuple)
2494 newtuple = ExecFetchSlotHeapTuple(slot, true, &should_free);
2495
2496 LocTriggerData.tg_trigslot = slot;
2497 LocTriggerData.tg_trigtuple = oldtuple = newtuple;
2498 LocTriggerData.tg_trigger = trigger;
2500 i,
2501 relinfo->ri_TrigFunctions,
2502 relinfo->ri_TrigInstrument,
2503 GetPerTupleMemoryContext(estate));
2504 if (newtuple == NULL)
2505 {
2506 if (should_free)
2507 heap_freetuple(oldtuple);
2508 return false; /* "do nothing" */
2509 }
2510 else if (newtuple != oldtuple)
2511 {
2512 newtuple = check_modified_virtual_generated(RelationGetDescr(relinfo->ri_RelationDesc), newtuple);
2513
2514 ExecForceStoreHeapTuple(newtuple, slot, false);
2515
2516 /*
2517 * After a tuple in a partition goes through a trigger, the user
2518 * could have changed the partition key enough that the tuple no
2519 * longer fits the partition. Verify that.
2520 */
2521 if (trigger->tgisclone &&
2522 !ExecPartitionCheck(relinfo, slot, estate, false))
2523 ereport(ERROR,
2525 errmsg("moving row to another partition during a BEFORE FOR EACH ROW trigger is not supported"),
2526 errdetail("Before executing trigger \"%s\", the row was to be in partition \"%s.%s\".",
2527 trigger->tgname,
2529 RelationGetRelationName(relinfo->ri_RelationDesc))));
2530
2531 if (should_free)
2532 heap_freetuple(oldtuple);
2533
2534 /* signal tuple should be re-fetched if used */
2535 newtuple = NULL;
2536 }
2537 }
2538
2539 return true;
2540}
2541
2542void
2545 TransitionCaptureState *transition_capture)
2546{
2547 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
2548
2549 if (relinfo->ri_FdwRoutine && transition_capture &&
2550 transition_capture->tcs_insert_new_table)
2551 {
2552 Assert(relinfo->ri_RootResultRelInfo);
2553 ereport(ERROR,
2555 errmsg("cannot collect transition tuples from child foreign tables")));
2556 }
2557
2558 if ((trigdesc && trigdesc->trig_insert_after_row) ||
2559 (transition_capture && transition_capture->tcs_insert_new_table))
2562 true, NULL, slot,
2564 transition_capture,
2565 false);
2566}
2567
2568bool
2570 TupleTableSlot *slot)
2571{
2572 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
2573 HeapTuple newtuple = NULL;
2574 bool should_free;
2576 int i;
2577
2582 LocTriggerData.tg_relation = relinfo->ri_RelationDesc;
2583 for (i = 0; i < trigdesc->numtriggers; i++)
2584 {
2585 Trigger *trigger = &trigdesc->triggers[i];
2586 HeapTuple oldtuple;
2587
2588 if (!TRIGGER_TYPE_MATCHES(trigger->tgtype,
2592 continue;
2593 if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event,
2594 NULL, NULL, slot))
2595 continue;
2596
2597 if (!newtuple)
2598 newtuple = ExecFetchSlotHeapTuple(slot, true, &should_free);
2599
2600 LocTriggerData.tg_trigslot = slot;
2601 LocTriggerData.tg_trigtuple = oldtuple = newtuple;
2602 LocTriggerData.tg_trigger = trigger;
2604 i,
2605 relinfo->ri_TrigFunctions,
2606 relinfo->ri_TrigInstrument,
2607 GetPerTupleMemoryContext(estate));
2608 if (newtuple == NULL)
2609 {
2610 if (should_free)
2611 heap_freetuple(oldtuple);
2612 return false; /* "do nothing" */
2613 }
2614 else if (newtuple != oldtuple)
2615 {
2616 ExecForceStoreHeapTuple(newtuple, slot, false);
2617
2618 if (should_free)
2619 heap_freetuple(oldtuple);
2620
2621 /* signal tuple should be re-fetched if used */
2622 newtuple = NULL;
2623 }
2624 }
2625
2626 return true;
2627}
2628
2629void
2631{
2632 TriggerDesc *trigdesc;
2633 int i;
2635
2636 trigdesc = relinfo->ri_TrigDesc;
2637
2638 if (trigdesc == NULL)
2639 return;
2640 if (!trigdesc->trig_delete_before_statement)
2641 return;
2642
2643 /* no-op if we already fired BS triggers in this context */
2645 CMD_DELETE))
2646 return;
2647
2651 LocTriggerData.tg_relation = relinfo->ri_RelationDesc;
2652 for (i = 0; i < trigdesc->numtriggers; i++)
2653 {
2654 Trigger *trigger = &trigdesc->triggers[i];
2655 HeapTuple newtuple;
2656
2657 if (!TRIGGER_TYPE_MATCHES(trigger->tgtype,
2661 continue;
2662 if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event,
2663 NULL, NULL, NULL))
2664 continue;
2665
2666 LocTriggerData.tg_trigger = trigger;
2668 i,
2669 relinfo->ri_TrigFunctions,
2670 relinfo->ri_TrigInstrument,
2671 GetPerTupleMemoryContext(estate));
2672
2673 if (newtuple)
2674 ereport(ERROR,
2676 errmsg("BEFORE STATEMENT trigger cannot return a value")));
2677 }
2678}
2679
2680void
2682 TransitionCaptureState *transition_capture)
2683{
2684 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
2685
2686 if (trigdesc && trigdesc->trig_delete_after_statement)
2689 false, NULL, NULL, NIL, NULL, transition_capture,
2690 false);
2691}
2692
2693/*
2694 * Execute BEFORE ROW DELETE triggers.
2695 *
2696 * True indicates caller can proceed with the delete. False indicates caller
2697 * need to suppress the delete and additionally if requested, we need to pass
2698 * back the concurrently updated tuple if any.
2699 */
2700bool
2707 TM_FailureData *tmfd,
2708 bool is_merge_delete)
2709{
2711 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
2712 bool result = true;
2715 bool should_free = false;
2716 int i;
2717
2719 if (fdw_trigtuple == NULL)
2720 {
2722
2723 /*
2724 * Get a copy of the on-disk tuple we are planning to delete. In
2725 * general, if the tuple has been concurrently updated, we should
2726 * recheck it using EPQ. However, if this is a MERGE DELETE action,
2727 * we skip this EPQ recheck and leave it to the caller (it must do
2728 * additional rechecking, and might end up executing a different
2729 * action entirely).
2730 */
2731 if (!GetTupleForTrigger(estate, epqstate, relinfo, tupleid,
2733 &epqslot_candidate, tmresult, tmfd))
2734 return false;
2735
2736 /*
2737 * If the tuple was concurrently updated and the caller of this
2738 * function requested for the updated tuple, skip the trigger
2739 * execution.
2740 */
2741 if (epqslot_candidate != NULL && epqslot != NULL)
2742 {
2744 return false;
2745 }
2746
2748 }
2749 else
2750 {
2752 ExecForceStoreHeapTuple(trigtuple, slot, false);
2753 }
2754
2759 LocTriggerData.tg_relation = relinfo->ri_RelationDesc;
2760 for (i = 0; i < trigdesc->numtriggers; i++)
2761 {
2762 HeapTuple newtuple;
2763 Trigger *trigger = &trigdesc->triggers[i];
2764
2765 if (!TRIGGER_TYPE_MATCHES(trigger->tgtype,
2769 continue;
2770 if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event,
2771 NULL, slot, NULL))
2772 continue;
2773
2774 LocTriggerData.tg_trigslot = slot;
2775 LocTriggerData.tg_trigtuple = trigtuple;
2776 LocTriggerData.tg_trigger = trigger;
2778 i,
2779 relinfo->ri_TrigFunctions,
2780 relinfo->ri_TrigInstrument,
2781 GetPerTupleMemoryContext(estate));
2782 if (newtuple == NULL)
2783 {
2784 result = false; /* tell caller to suppress delete */
2785 break;
2786 }
2787 if (newtuple != trigtuple)
2788 heap_freetuple(newtuple);
2789 }
2790 if (should_free)
2792
2793 return result;
2794}
2795
2796/*
2797 * Note: is_crosspart_update must be true if the DELETE is being performed
2798 * as part of a cross-partition update.
2799 */
2800void
2805 TransitionCaptureState *transition_capture,
2807{
2808 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
2809
2810 if (relinfo->ri_FdwRoutine && transition_capture &&
2811 transition_capture->tcs_delete_old_table)
2812 {
2813 Assert(relinfo->ri_RootResultRelInfo);
2814 ereport(ERROR,
2816 errmsg("cannot collect transition tuples from child foreign tables")));
2817 }
2818
2819 if ((trigdesc && trigdesc->trig_delete_after_row) ||
2820 (transition_capture && transition_capture->tcs_delete_old_table))
2821 {
2823
2825 if (fdw_trigtuple == NULL)
2826 GetTupleForTrigger(estate,
2827 NULL,
2828 relinfo,
2829 tupleid,
2831 slot,
2832 false,
2833 NULL,
2834 NULL,
2835 NULL);
2836 else
2838
2841 true, slot, NULL, NIL, NULL,
2842 transition_capture,
2844 }
2845}
2846
2847bool
2850{
2851 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
2854 int i;
2855
2860 LocTriggerData.tg_relation = relinfo->ri_RelationDesc;
2861
2862 ExecForceStoreHeapTuple(trigtuple, slot, false);
2863
2864 for (i = 0; i < trigdesc->numtriggers; i++)
2865 {
2867 Trigger *trigger = &trigdesc->triggers[i];
2868
2869 if (!TRIGGER_TYPE_MATCHES(trigger->tgtype,
2873 continue;
2874 if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event,
2875 NULL, slot, NULL))
2876 continue;
2877
2878 LocTriggerData.tg_trigslot = slot;
2879 LocTriggerData.tg_trigtuple = trigtuple;
2880 LocTriggerData.tg_trigger = trigger;
2882 i,
2883 relinfo->ri_TrigFunctions,
2884 relinfo->ri_TrigInstrument,
2885 GetPerTupleMemoryContext(estate));
2886 if (rettuple == NULL)
2887 return false; /* Delete was suppressed */
2888 if (rettuple != trigtuple)
2890 }
2891 return true;
2892}
2893
2894void
2896{
2897 TriggerDesc *trigdesc;
2898 int i;
2900 Bitmapset *updatedCols;
2901
2902 trigdesc = relinfo->ri_TrigDesc;
2903
2904 if (trigdesc == NULL)
2905 return;
2906 if (!trigdesc->trig_update_before_statement)
2907 return;
2908
2909 /* no-op if we already fired BS triggers in this context */
2911 CMD_UPDATE))
2912 return;
2913
2914 /* statement-level triggers operate on the parent table */
2915 Assert(relinfo->ri_RootResultRelInfo == NULL);
2916
2917 updatedCols = ExecGetAllUpdatedCols(relinfo, estate);
2918
2922 LocTriggerData.tg_relation = relinfo->ri_RelationDesc;
2923 LocTriggerData.tg_updatedcols = updatedCols;
2924 for (i = 0; i < trigdesc->numtriggers; i++)
2925 {
2926 Trigger *trigger = &trigdesc->triggers[i];
2927 HeapTuple newtuple;
2928
2929 if (!TRIGGER_TYPE_MATCHES(trigger->tgtype,
2933 continue;
2934 if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event,
2935 updatedCols, NULL, NULL))
2936 continue;
2937
2938 LocTriggerData.tg_trigger = trigger;
2940 i,
2941 relinfo->ri_TrigFunctions,
2942 relinfo->ri_TrigInstrument,
2943 GetPerTupleMemoryContext(estate));
2944
2945 if (newtuple)
2946 ereport(ERROR,
2948 errmsg("BEFORE STATEMENT trigger cannot return a value")));
2949 }
2950}
2951
2952void
2954 TransitionCaptureState *transition_capture)
2955{
2956 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
2957
2958 /* statement-level triggers operate on the parent table */
2959 Assert(relinfo->ri_RootResultRelInfo == NULL);
2960
2961 if (trigdesc && trigdesc->trig_update_after_statement)
2964 false, NULL, NULL, NIL,
2966 transition_capture,
2967 false);
2968}
2969
2970bool
2977 TM_FailureData *tmfd,
2978 bool is_merge_update)
2979{
2980 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
2982 HeapTuple newtuple = NULL;
2984 bool should_free_trig = false;
2985 bool should_free_new = false;
2987 int i;
2988 Bitmapset *updatedCols;
2989 LockTupleMode lockmode;
2990
2991 /* Determine lock mode to use */
2992 lockmode = ExecUpdateLockMode(estate, relinfo);
2993
2995 if (fdw_trigtuple == NULL)
2996 {
2998
2999 /*
3000 * Get a copy of the on-disk tuple we are planning to update. In
3001 * general, if the tuple has been concurrently updated, we should
3002 * recheck it using EPQ. However, if this is a MERGE UPDATE action,
3003 * we skip this EPQ recheck and leave it to the caller (it must do
3004 * additional rechecking, and might end up executing a different
3005 * action entirely).
3006 */
3007 if (!GetTupleForTrigger(estate, epqstate, relinfo, tupleid,
3008 lockmode, oldslot, !is_merge_update,
3009 &epqslot_candidate, tmresult, tmfd))
3010 return false; /* cancel the update action */
3011
3012 /*
3013 * In READ COMMITTED isolation level it's possible that target tuple
3014 * was changed due to concurrent update. In that case we have a raw
3015 * subplan output tuple in epqslot_candidate, and need to form a new
3016 * insertable tuple using ExecGetUpdateNewTuple to replace the one we
3017 * received in newslot. Neither we nor our callers have any further
3018 * interest in the passed-in tuple, so it's okay to overwrite newslot
3019 * with the newer data.
3020 */
3021 if (epqslot_candidate != NULL)
3022 {
3024
3026 oldslot);
3027
3028 /*
3029 * Typically, the caller's newslot was also generated by
3030 * ExecGetUpdateNewTuple, so that epqslot_clean will be the same
3031 * slot and copying is not needed. But do the right thing if it
3032 * isn't.
3033 */
3036
3037 /*
3038 * At this point newslot contains a virtual tuple that may
3039 * reference some fields of oldslot's tuple in some disk buffer.
3040 * If that tuple is in a different page than the original target
3041 * tuple, then our only pin on that buffer is oldslot's, and we're
3042 * about to release it. Hence we'd better materialize newslot to
3043 * ensure it doesn't contain references into an unpinned buffer.
3044 * (We'd materialize it below anyway, but too late for safety.)
3045 */
3047 }
3048
3049 /*
3050 * Here we convert oldslot to a materialized slot holding trigtuple.
3051 * Neither slot passed to the triggers will hold any buffer pin.
3052 */
3054 }
3055 else
3056 {
3057 /* Put the FDW-supplied tuple into oldslot to unify the cases */
3060 }
3061
3066 LocTriggerData.tg_relation = relinfo->ri_RelationDesc;
3067 updatedCols = ExecGetAllUpdatedCols(relinfo, estate);
3068 LocTriggerData.tg_updatedcols = updatedCols;
3069 for (i = 0; i < trigdesc->numtriggers; i++)
3070 {
3071 Trigger *trigger = &trigdesc->triggers[i];
3072 HeapTuple oldtuple;
3073
3074 if (!TRIGGER_TYPE_MATCHES(trigger->tgtype,
3078 continue;
3079 if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event,
3080 updatedCols, oldslot, newslot))
3081 continue;
3082
3083 if (!newtuple)
3085
3086 LocTriggerData.tg_trigslot = oldslot;
3087 LocTriggerData.tg_trigtuple = trigtuple;
3088 LocTriggerData.tg_newtuple = oldtuple = newtuple;
3089 LocTriggerData.tg_newslot = newslot;
3090 LocTriggerData.tg_trigger = trigger;
3092 i,
3093 relinfo->ri_TrigFunctions,
3094 relinfo->ri_TrigInstrument,
3095 GetPerTupleMemoryContext(estate));
3096
3097 if (newtuple == NULL)
3098 {
3099 if (should_free_trig)
3101 if (should_free_new)
3102 heap_freetuple(oldtuple);
3103 return false; /* "do nothing" */
3104 }
3105 else if (newtuple != oldtuple)
3106 {
3107 newtuple = check_modified_virtual_generated(RelationGetDescr(relinfo->ri_RelationDesc), newtuple);
3108
3109 ExecForceStoreHeapTuple(newtuple, newslot, false);
3110
3111 /*
3112 * If the tuple returned by the trigger / being stored, is the old
3113 * row version, and the heap tuple passed to the trigger was
3114 * allocated locally, materialize the slot. Otherwise we might
3115 * free it while still referenced by the slot.
3116 */
3117 if (should_free_trig && newtuple == trigtuple)
3119
3120 if (should_free_new)
3121 heap_freetuple(oldtuple);
3122
3123 /* signal tuple should be re-fetched if used */
3124 newtuple = NULL;
3125 }
3126 }
3127 if (should_free_trig)
3129
3130 return true;
3131}
3132
3133/*
3134 * Note: 'src_partinfo' and 'dst_partinfo', when non-NULL, refer to the source
3135 * and destination partitions, respectively, of a cross-partition update of
3136 * the root partitioned table mentioned in the query, given by 'relinfo'.
3137 * 'tupleid' in that case refers to the ctid of the "old" tuple in the source
3138 * partition, and 'newslot' contains the "new" tuple in the destination
3139 * partition. This interface allows to support the requirements of
3140 * ExecCrossPartitionUpdateForeignKey(); is_crosspart_update must be true in
3141 * that case.
3142 */
3143void
3151 TransitionCaptureState *transition_capture,
3153{
3154 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
3155
3156 if (relinfo->ri_FdwRoutine && transition_capture &&
3157 (transition_capture->tcs_update_old_table ||
3158 transition_capture->tcs_update_new_table))
3159 {
3160 Assert(relinfo->ri_RootResultRelInfo);
3161 ereport(ERROR,
3163 errmsg("cannot collect transition tuples from child foreign tables")));
3164 }
3165
3166 if ((trigdesc && trigdesc->trig_update_after_row) ||
3167 (transition_capture &&
3168 (transition_capture->tcs_update_old_table ||
3169 transition_capture->tcs_update_new_table)))
3170 {
3171 /*
3172 * Note: if the UPDATE is converted into a DELETE+INSERT as part of
3173 * update-partition-key operation, then this function is also called
3174 * separately for DELETE and INSERT to capture transition table rows.
3175 * In such case, either old tuple or new tuple can be NULL.
3176 */
3179
3182
3185
3187 GetTupleForTrigger(estate,
3188 NULL,
3189 tupsrc,
3190 tupleid,
3192 oldslot,
3193 false,
3194 NULL,
3195 NULL,
3196 NULL);
3197 else if (fdw_trigtuple != NULL)
3199 else
3201
3205 true,
3208 transition_capture,
3210 }
3211}
3212
3213bool
3216{
3217 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
3219 HeapTuple newtuple = NULL;
3220 bool should_free;
3222 int i;
3223
3228 LocTriggerData.tg_relation = relinfo->ri_RelationDesc;
3229
3231
3232 for (i = 0; i < trigdesc->numtriggers; i++)
3233 {
3234 Trigger *trigger = &trigdesc->triggers[i];
3235 HeapTuple oldtuple;
3236
3237 if (!TRIGGER_TYPE_MATCHES(trigger->tgtype,
3241 continue;
3242 if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event,
3243 NULL, oldslot, newslot))
3244 continue;
3245
3246 if (!newtuple)
3247 newtuple = ExecFetchSlotHeapTuple(newslot, true, &should_free);
3248
3249 LocTriggerData.tg_trigslot = oldslot;
3250 LocTriggerData.tg_trigtuple = trigtuple;
3251 LocTriggerData.tg_newslot = newslot;
3252 LocTriggerData.tg_newtuple = oldtuple = newtuple;
3253
3254 LocTriggerData.tg_trigger = trigger;
3256 i,
3257 relinfo->ri_TrigFunctions,
3258 relinfo->ri_TrigInstrument,
3259 GetPerTupleMemoryContext(estate));
3260 if (newtuple == NULL)
3261 {
3262 return false; /* "do nothing" */
3263 }
3264 else if (newtuple != oldtuple)
3265 {
3266 ExecForceStoreHeapTuple(newtuple, newslot, false);
3267
3268 if (should_free)
3269 heap_freetuple(oldtuple);
3270
3271 /* signal tuple should be re-fetched if used */
3272 newtuple = NULL;
3273 }
3274 }
3275
3276 return true;
3277}
3278
3279void
3281{
3282 TriggerDesc *trigdesc;
3283 int i;
3285
3286 trigdesc = relinfo->ri_TrigDesc;
3287
3288 if (trigdesc == NULL)
3289 return;
3290 if (!trigdesc->trig_truncate_before_statement)
3291 return;
3292
3296 LocTriggerData.tg_relation = relinfo->ri_RelationDesc;
3297
3298 for (i = 0; i < trigdesc->numtriggers; i++)
3299 {
3300 Trigger *trigger = &trigdesc->triggers[i];
3301 HeapTuple newtuple;
3302
3303 if (!TRIGGER_TYPE_MATCHES(trigger->tgtype,
3307 continue;
3308 if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event,
3309 NULL, NULL, NULL))
3310 continue;
3311
3312 LocTriggerData.tg_trigger = trigger;
3314 i,
3315 relinfo->ri_TrigFunctions,
3316 relinfo->ri_TrigInstrument,
3317 GetPerTupleMemoryContext(estate));
3318
3319 if (newtuple)
3320 ereport(ERROR,
3322 errmsg("BEFORE STATEMENT trigger cannot return a value")));
3323 }
3324}
3325
3326void
3328{
3329 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
3330
3331 if (trigdesc && trigdesc->trig_truncate_after_statement)
3333 NULL, NULL,
3335 false, NULL, NULL, NIL, NULL, NULL,
3336 false);
3337}
3338
3339
3340/*
3341 * Fetch tuple into "oldslot", dealing with locking and EPQ if necessary
3342 */
3343static bool
3345 EPQState *epqstate,
3347 ItemPointer tid,
3348 LockTupleMode lockmode,
3350 bool do_epq_recheck,
3354{
3355 Relation relation = relinfo->ri_RelationDesc;
3356
3357 if (epqslot != NULL)
3358 {
3360 TM_FailureData tmfd;
3361 int lockflags = 0;
3362
3363 *epqslot = NULL;
3364
3365 /* caller must pass an epqstate if EvalPlanQual is possible */
3366 Assert(epqstate != NULL);
3367
3368 /*
3369 * lock tuple for update
3370 */
3373 test = table_tuple_lock(relation, tid, estate->es_snapshot, oldslot,
3374 estate->es_output_cid,
3375 lockmode, LockWaitBlock,
3376 lockflags,
3377 &tmfd);
3378
3379 /* Let the caller know about the status of this operation */
3380 if (tmresultp)
3381 *tmresultp = test;
3382 if (tmfdp)
3383 *tmfdp = tmfd;
3384
3385 switch (test)
3386 {
3387 case TM_SelfModified:
3388
3389 /*
3390 * The target tuple was already updated or deleted by the
3391 * current command, or by a later command in the current
3392 * transaction. We ignore the tuple in the former case, and
3393 * throw error in the latter case, for the same reasons
3394 * enumerated in ExecUpdate and ExecDelete in
3395 * nodeModifyTable.c.
3396 */
3397 if (tmfd.cmax != estate->es_output_cid)
3398 ereport(ERROR,
3400 errmsg("tuple to be updated was already modified by an operation triggered by the current command"),
3401 errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
3402
3403 /* treat it as deleted; do not process */
3404 return false;
3405
3406 case TM_Ok:
3407 if (tmfd.traversed)
3408 {
3409 /*
3410 * Recheck the tuple using EPQ, if requested. Otherwise,
3411 * just return that it was concurrently updated.
3412 */
3413 if (do_epq_recheck)
3414 {
3415 *epqslot = EvalPlanQual(epqstate,
3416 relation,
3417 relinfo->ri_RangeTableIndex,
3418 oldslot);
3419
3420 /*
3421 * If PlanQual failed for updated tuple - we must not
3422 * process this tuple!
3423 */
3424 if (TupIsNull(*epqslot))
3425 {
3426 *epqslot = NULL;
3427 return false;
3428 }
3429 }
3430 else
3431 {
3432 if (tmresultp)
3434 return false;
3435 }
3436 }
3437 break;
3438
3439 case TM_Updated:
3441 ereport(ERROR,
3443 errmsg("could not serialize access due to concurrent update")));
3444 elog(ERROR, "unexpected table_tuple_lock status: %u", test);
3445 break;
3446
3447 case TM_Deleted:
3449 ereport(ERROR,
3451 errmsg("could not serialize access due to concurrent delete")));
3452 /* tuple was deleted */
3453 return false;
3454
3455 case TM_Invisible:
3456 elog(ERROR, "attempted to lock invisible tuple");
3457 break;
3458
3459 default:
3460 elog(ERROR, "unrecognized table_tuple_lock status: %u", test);
3461 return false; /* keep compiler quiet */
3462 }
3463 }
3464 else
3465 {
3466 /*
3467 * We expect the tuple to be present, thus very simple error handling
3468 * suffices.
3469 */
3470 if (!table_tuple_fetch_row_version(relation, tid, SnapshotAny,
3471 oldslot))
3472 elog(ERROR, "failed to fetch tuple for trigger");
3473 }
3474
3475 return true;
3476}
3477
3478/*
3479 * Is trigger enabled to fire?
3480 */
3481static bool
3486{
3487 /* Check replication-role-dependent enable state */
3489 {
3490 if (trigger->tgenabled == TRIGGER_FIRES_ON_ORIGIN ||
3491 trigger->tgenabled == TRIGGER_DISABLED)
3492 return false;
3493 }
3494 else /* ORIGIN or LOCAL role */
3495 {
3496 if (trigger->tgenabled == TRIGGER_FIRES_ON_REPLICA ||
3497 trigger->tgenabled == TRIGGER_DISABLED)
3498 return false;
3499 }
3500
3501 /*
3502 * Check for column-specific trigger (only possible for UPDATE, and in
3503 * fact we *must* ignore tgattr for other event types)
3504 */
3505 if (trigger->tgnattr > 0 && TRIGGER_FIRED_BY_UPDATE(event))
3506 {
3507 int i;
3508 bool modified;
3509
3510 modified = false;
3511 for (i = 0; i < trigger->tgnattr; i++)
3512 {
3514 modifiedCols))
3515 {
3516 modified = true;
3517 break;
3518 }
3519 }
3520 if (!modified)
3521 return false;
3522 }
3523
3524 /* Check for WHEN clause */
3525 if (trigger->tgqual)
3526 {
3528 ExprContext *econtext;
3530 int i;
3531
3532 Assert(estate != NULL);
3533
3534 /*
3535 * trigger is an element of relinfo->ri_TrigDesc->triggers[]; find the
3536 * matching element of relinfo->ri_TrigWhenExprs[]
3537 */
3538 i = trigger - relinfo->ri_TrigDesc->triggers;
3539 predicate = &relinfo->ri_TrigWhenExprs[i];
3540
3541 /*
3542 * If first time through for this WHEN expression, build expression
3543 * nodetrees for it. Keep them in the per-query memory context so
3544 * they'll survive throughout the query.
3545 */
3546 if (*predicate == NULL)
3547 {
3548 Node *tgqual;
3549
3551 tgqual = stringToNode(trigger->tgqual);
3552 tgqual = expand_generated_columns_in_expr(tgqual, relinfo->ri_RelationDesc, PRS2_OLD_VARNO);
3553 tgqual = expand_generated_columns_in_expr(tgqual, relinfo->ri_RelationDesc, PRS2_NEW_VARNO);
3554 /* Change references to OLD and NEW to INNER_VAR and OUTER_VAR */
3557 /* ExecPrepareQual wants implicit-AND form */
3558 tgqual = (Node *) make_ands_implicit((Expr *) tgqual);
3559 *predicate = ExecPrepareQual((List *) tgqual, estate);
3561 }
3562
3563 /*
3564 * We will use the EState's per-tuple context for evaluating WHEN
3565 * expressions (creating it if it's not already there).
3566 */
3567 econtext = GetPerTupleExprContext(estate);
3568
3569 /*
3570 * Finally evaluate the expression, making the old and/or new tuples
3571 * available as INNER_VAR/OUTER_VAR respectively.
3572 */
3573 econtext->ecxt_innertuple = oldslot;
3574 econtext->ecxt_outertuple = newslot;
3575 if (!ExecQual(*predicate, econtext))
3576 return false;
3577 }
3578
3579 return true;
3580}
3581
3582
3583/* ----------
3584 * After-trigger stuff
3585 *
3586 * The AfterTriggersData struct holds data about pending AFTER trigger events
3587 * during the current transaction tree. (BEFORE triggers are fired
3588 * immediately so we don't need any persistent state about them.) The struct
3589 * and most of its subsidiary data are kept in TopTransactionContext; however
3590 * some data that can be discarded sooner appears in the CurTransactionContext
3591 * of the relevant subtransaction. Also, the individual event records are
3592 * kept in a separate sub-context of TopTransactionContext. This is done
3593 * mainly so that it's easy to tell from a memory context dump how much space
3594 * is being eaten by trigger events.
3595 *
3596 * Because the list of pending events can grow large, we go to some
3597 * considerable effort to minimize per-event memory consumption. The event
3598 * records are grouped into chunks and common data for similar events in the
3599 * same chunk is only stored once.
3600 *
3601 * XXX We need to be able to save the per-event data in a file if it grows too
3602 * large.
3603 * ----------
3604 */
3605
3606/* Per-trigger SET CONSTRAINT status */
3612
3614
3615/*
3616 * SET CONSTRAINT intra-transaction status.
3617 *
3618 * We make this a single palloc'd object so it can be copied and freed easily.
3619 *
3620 * all_isset and all_isdeferred are used to keep track
3621 * of SET CONSTRAINTS ALL {DEFERRED, IMMEDIATE}.
3622 *
3623 * trigstates[] stores per-trigger tgisdeferred settings.
3624 */
3626{
3629 int numstates; /* number of trigstates[] entries in use */
3630 int numalloc; /* allocated size of trigstates[] */
3633
3635
3636
3637/*
3638 * Per-trigger-event data
3639 *
3640 * The actual per-event data, AfterTriggerEventData, includes DONE/IN_PROGRESS
3641 * status bits, up to two tuple CTIDs, and optionally two OIDs of partitions.
3642 * Each event record also has an associated AfterTriggerSharedData that is
3643 * shared across all instances of similar events within a "chunk".
3644 *
3645 * For row-level triggers, we arrange not to waste storage on unneeded ctid
3646 * fields. Updates of regular tables use two; inserts and deletes of regular
3647 * tables use one; foreign tables always use zero and save the tuple(s) to a
3648 * tuplestore. AFTER_TRIGGER_FDW_FETCH directs AfterTriggerExecute() to
3649 * retrieve a fresh tuple or pair of tuples from that tuplestore, while
3650 * AFTER_TRIGGER_FDW_REUSE directs it to use the most-recently-retrieved
3651 * tuple(s). This permits storing tuples once regardless of the number of
3652 * row-level triggers on a foreign table.
3653 *
3654 * When updates on partitioned tables cause rows to move between partitions,
3655 * the OIDs of both partitions are stored too, so that the tuples can be
3656 * fetched; such entries are marked AFTER_TRIGGER_CP_UPDATE (for "cross-
3657 * partition update").
3658 *
3659 * Note that we need triggers on foreign tables to be fired in exactly the
3660 * order they were queued, so that the tuples come out of the tuplestore in
3661 * the right order. To ensure that, we forbid deferrable (constraint)
3662 * triggers on foreign tables. This also ensures that such triggers do not
3663 * get deferred into outer trigger query levels, meaning that it's okay to
3664 * destroy the tuplestore at the end of the query level.
3665 *
3666 * Statement-level triggers always bear AFTER_TRIGGER_1CTID, though they
3667 * require no ctid field. We lack the flag bit space to neatly represent that
3668 * distinct case, and it seems unlikely to be worth much trouble.
3669 *
3670 * Note: ats_firing_id is initially zero and is set to something else when
3671 * AFTER_TRIGGER_IN_PROGRESS is set. It indicates which trigger firing
3672 * cycle the trigger will be fired in (or was fired in, if DONE is set).
3673 * Although this is mutable state, we can keep it in AfterTriggerSharedData
3674 * because all instances of the same type of event in a given event list will
3675 * be fired at the same time, if they were queued between the same firing
3676 * cycles. So we need only ensure that ats_firing_id is zero when attaching
3677 * a new event to an existing AfterTriggerSharedData record.
3678 */
3680
3681#define AFTER_TRIGGER_OFFSET 0x07FFFFFF /* must be low-order bits */
3682#define AFTER_TRIGGER_DONE 0x80000000
3683#define AFTER_TRIGGER_IN_PROGRESS 0x40000000
3684/* bits describing the size and tuple sources of this event */
3685#define AFTER_TRIGGER_FDW_REUSE 0x00000000
3686#define AFTER_TRIGGER_FDW_FETCH 0x20000000
3687#define AFTER_TRIGGER_1CTID 0x10000000
3688#define AFTER_TRIGGER_2CTID 0x30000000
3689#define AFTER_TRIGGER_CP_UPDATE 0x08000000
3690#define AFTER_TRIGGER_TUP_BITS 0x38000000
3692
3694{
3695 TriggerEvent ats_event; /* event type indicator, see trigger.h */
3696 Oid ats_tgoid; /* the trigger's ID */
3697 Oid ats_relid; /* the relation it's on */
3698 Oid ats_rolid; /* role to execute the trigger */
3699 CommandId ats_firing_id; /* ID for firing cycle */
3700 struct AfterTriggersTableData *ats_table; /* transition table access */
3701 Bitmapset *ats_modifiedcols; /* modified columns */
3703
3705
3707{
3708 TriggerFlags ate_flags; /* status bits and offset to shared data */
3709 ItemPointerData ate_ctid1; /* inserted, deleted, or old updated tuple */
3710 ItemPointerData ate_ctid2; /* new updated tuple */
3711
3712 /*
3713 * During a cross-partition update of a partitioned table, we also store
3714 * the OIDs of source and destination partitions that are needed to fetch
3715 * the old (ctid1) and the new tuple (ctid2) from, respectively.
3716 */
3720
3721/* AfterTriggerEventData, minus ate_src_part, ate_dst_part */
3728
3729/* AfterTriggerEventData, minus ate_*_part and ate_ctid2 */
3731{
3732 TriggerFlags ate_flags; /* status bits and offset to shared data */
3733 ItemPointerData ate_ctid1; /* inserted, deleted, or old updated tuple */
3735
3736/* AfterTriggerEventData, minus ate_*_part, ate_ctid1 and ate_ctid2 */
3738{
3739 TriggerFlags ate_flags; /* status bits and offset to shared data */
3741
3742#define SizeofTriggerEvent(evt) \
3743 (((evt)->ate_flags & AFTER_TRIGGER_TUP_BITS) == AFTER_TRIGGER_CP_UPDATE ? \
3744 sizeof(AfterTriggerEventData) : \
3745 (((evt)->ate_flags & AFTER_TRIGGER_TUP_BITS) == AFTER_TRIGGER_2CTID ? \
3746 sizeof(AfterTriggerEventDataNoOids) : \
3747 (((evt)->ate_flags & AFTER_TRIGGER_TUP_BITS) == AFTER_TRIGGER_1CTID ? \
3748 sizeof(AfterTriggerEventDataOneCtid) : \
3749 sizeof(AfterTriggerEventDataZeroCtids))))
3750
3751#define GetTriggerSharedData(evt) \
3752 ((AfterTriggerShared) ((char *) (evt) + ((evt)->ate_flags & AFTER_TRIGGER_OFFSET)))
3753
3754/*
3755 * To avoid palloc overhead, we keep trigger events in arrays in successively-
3756 * larger chunks (a slightly more sophisticated version of an expansible
3757 * array). The space between CHUNK_DATA_START and freeptr is occupied by
3758 * AfterTriggerEventData records; the space between endfree and endptr is
3759 * occupied by AfterTriggerSharedData records.
3760 */
3762{
3763 struct AfterTriggerEventChunk *next; /* list link */
3764 char *freeptr; /* start of free space in chunk */
3765 char *endfree; /* end of free space in chunk */
3766 char *endptr; /* end of chunk */
3767 /* event data follows here */
3769
3770#define CHUNK_DATA_START(cptr) ((char *) (cptr) + MAXALIGN(sizeof(AfterTriggerEventChunk)))
3771
3772/* A list of events */
3779
3780/* Macros to help in iterating over a list of events */
3781#define for_each_chunk(cptr, evtlist) \
3782 for (cptr = (evtlist).head; cptr != NULL; cptr = cptr->next)
3783#define for_each_event(eptr, cptr) \
3784 for (eptr = (AfterTriggerEvent) CHUNK_DATA_START(cptr); \
3785 (char *) eptr < (cptr)->freeptr; \
3786 eptr = (AfterTriggerEvent) (((char *) eptr) + SizeofTriggerEvent(eptr)))
3787/* Use this if no special per-chunk processing is needed */
3788#define for_each_event_chunk(eptr, cptr, evtlist) \
3789 for_each_chunk(cptr, evtlist) for_each_event(eptr, cptr)
3790
3791/* Macros for iterating from a start point that might not be list start */
3792#define for_each_chunk_from(cptr) \
3793 for (; cptr != NULL; cptr = cptr->next)
3794#define for_each_event_from(eptr, cptr) \
3795 for (; \
3796 (char *) eptr < (cptr)->freeptr; \
3797 eptr = (AfterTriggerEvent) (((char *) eptr) + SizeofTriggerEvent(eptr)))
3798
3799
3800/*
3801 * All per-transaction data for the AFTER TRIGGERS module.
3802 *
3803 * AfterTriggersData has the following fields:
3804 *
3805 * firing_counter is incremented for each call of afterTriggerInvokeEvents.
3806 * We mark firable events with the current firing cycle's ID so that we can
3807 * tell which ones to work on. This ensures sane behavior if a trigger
3808 * function chooses to do SET CONSTRAINTS: the inner SET CONSTRAINTS will
3809 * only fire those events that weren't already scheduled for firing.
3810 *
3811 * state keeps track of the transaction-local effects of SET CONSTRAINTS.
3812 * This is saved and restored across failed subtransactions.
3813 *
3814 * events is the current list of deferred events. This is global across
3815 * all subtransactions of the current transaction. In a subtransaction
3816 * abort, we know that the events added by the subtransaction are at the
3817 * end of the list, so it is relatively easy to discard them. The event
3818 * list chunks themselves are stored in event_cxt.
3819 *
3820 * query_depth is the current depth of nested AfterTriggerBeginQuery calls
3821 * (-1 when the stack is empty).
3822 *
3823 * query_stack[query_depth] is the per-query-level data, including these fields:
3824 *
3825 * events is a list of AFTER trigger events queued by the current query.
3826 * None of these are valid until the matching AfterTriggerEndQuery call
3827 * occurs. At that point we fire immediate-mode triggers, and append any
3828 * deferred events to the main events list.
3829 *
3830 * fdw_tuplestore is a tuplestore containing the foreign-table tuples
3831 * needed by events queued by the current query. (Note: we use just one
3832 * tuplestore even though more than one foreign table might be involved.
3833 * This is okay because tuplestores don't really care what's in the tuples
3834 * they store; but it's possible that someday it'd break.)
3835 *
3836 * tables is a List of AfterTriggersTableData structs for target tables
3837 * of the current query (see below).
3838 *
3839 * maxquerydepth is just the allocated length of query_stack.
3840 *
3841 * trans_stack holds per-subtransaction data, including these fields:
3842 *
3843 * state is NULL or a pointer to a saved copy of the SET CONSTRAINTS
3844 * state data. Each subtransaction level that modifies that state first
3845 * saves a copy, which we use to restore the state if we abort.
3846 *
3847 * events is a copy of the events head/tail pointers,
3848 * which we use to restore those values during subtransaction abort.
3849 *
3850 * query_depth is the subtransaction-start-time value of query_depth,
3851 * which we similarly use to clean up at subtransaction abort.
3852 *
3853 * firing_counter is the subtransaction-start-time value of firing_counter.
3854 * We use this to recognize which deferred triggers were fired (or marked
3855 * for firing) within an aborted subtransaction.
3856 *
3857 * We use GetCurrentTransactionNestLevel() to determine the correct array
3858 * index in trans_stack. maxtransdepth is the number of allocated entries in
3859 * trans_stack. (By not keeping our own stack pointer, we can avoid trouble
3860 * in cases where errors during subxact abort cause multiple invocations
3861 * of AfterTriggerEndSubXact() at the same nesting depth.)
3862 *
3863 * We create an AfterTriggersTableData struct for each target table of the
3864 * current query, and each operation mode (INSERT/UPDATE/DELETE), that has
3865 * either transition tables or statement-level triggers. This is used to
3866 * hold the relevant transition tables, as well as info tracking whether
3867 * we already queued the statement triggers. (We use that info to prevent
3868 * firing the same statement triggers more than once per statement, or really
3869 * once per transition table set.) These structs, along with the transition
3870 * table tuplestores, live in the (sub)transaction's CurTransactionContext.
3871 * That's sufficient lifespan because we don't allow transition tables to be
3872 * used by deferrable triggers, so they only need to survive until
3873 * AfterTriggerEndQuery.
3874 */
3878
3879typedef struct AfterTriggersData
3880{
3881 CommandId firing_counter; /* next firing ID to assign */
3882 SetConstraintState state; /* the active S C state */
3883 AfterTriggerEventList events; /* deferred-event list */
3884 MemoryContext event_cxt; /* memory context for events, if any */
3885
3886 /* per-query-level data: */
3887 AfterTriggersQueryData *query_stack; /* array of structs shown below */
3888 int query_depth; /* current index in above array */
3889 int maxquerydepth; /* allocated len of above array */
3890
3891 /* per-subtransaction-level data: */
3892 AfterTriggersTransData *trans_stack; /* array of structs shown below */
3893 int maxtransdepth; /* allocated len of above array */
3895
3897{
3898 AfterTriggerEventList events; /* events pending from this query */
3899 Tuplestorestate *fdw_tuplestore; /* foreign tuples for said events */
3900 List *tables; /* list of AfterTriggersTableData, see below */
3901};
3902
3904{
3905 /* these fields are just for resetting at subtrans abort: */
3906 SetConstraintState state; /* saved S C state, or NULL if not yet saved */
3907 AfterTriggerEventList events; /* saved list pointer */
3908 int query_depth; /* saved query_depth */
3909 CommandId firing_counter; /* saved firing_counter */
3910};
3911
3913{
3914 /* relid + cmdType form the lookup key for these structs: */
3915 Oid relid; /* target table's OID */
3916 CmdType cmdType; /* event type, CMD_INSERT/UPDATE/DELETE */
3917 bool closed; /* true when no longer OK to add tuples */
3918 bool before_trig_done; /* did we already queue BS triggers? */
3919 bool after_trig_done; /* did we already queue AS triggers? */
3920 AfterTriggerEventList after_trig_events; /* if so, saved list pointer */
3921
3922 /* "old" transition table for UPDATE/DELETE, if any */
3924 /* "new" transition table for INSERT/UPDATE, if any */
3926
3927 TupleTableSlot *storeslot; /* for converting to tuplestore's format */
3928};
3929
3931
3932static void AfterTriggerExecute(EState *estate,
3933 AfterTriggerEvent event,
3937 TriggerDesc *trigdesc,
3938 FmgrInfo *finfo,
3939 Instrumentation *instr,
3944 CmdType cmdType);
3946 TupleDesc tupdesc);
3950 TransitionCaptureState *transition_capture);
3951static void TransitionTableAddTuple(EState *estate,
3952 int event,
3953 TransitionCaptureState *transition_capture,
3955 TupleTableSlot *slot,
3957 Tuplestorestate *tuplestore);
3959static SetConstraintState SetConstraintStateCreate(int numalloc);
3962 Oid tgoid, bool tgisdeferred);
3963static void cancel_prior_stmt_triggers(Oid relid, CmdType cmdType, int tgevent);
3964
3965
3966/*
3967 * Get the FDW tuplestore for the current trigger query level, creating it
3968 * if necessary.
3969 */
3970static Tuplestorestate *
3972{
3973 Tuplestorestate *ret;
3974
3976 if (ret == NULL)
3977 {
3980
3981 /*
3982 * Make the tuplestore valid until end of subtransaction. We really
3983 * only need it until AfterTriggerEndQuery().
3984 */
3988
3989 ret = tuplestore_begin_heap(false, false, work_mem);
3990
3993
3995 }
3996
3997 return ret;
3998}
3999
4000/* ----------
4001 * afterTriggerCheckState()
4002 *
4003 * Returns true if the trigger event is actually in state DEFERRED.
4004 * ----------
4005 */
4006static bool
4008{
4009 Oid tgoid = evtshared->ats_tgoid;
4011 int i;
4012
4013 /*
4014 * For not-deferrable triggers (i.e. normal AFTER ROW triggers and
4015 * constraints declared NOT DEFERRABLE), the state is always false.
4016 */
4017 if ((evtshared->ats_event & AFTER_TRIGGER_DEFERRABLE) == 0)
4018 return false;
4019
4020 /*
4021 * If constraint state exists, SET CONSTRAINTS might have been executed
4022 * either for this trigger or for all triggers.
4023 */
4024 if (state != NULL)
4025 {
4026 /* Check for SET CONSTRAINTS for this specific trigger. */
4027 for (i = 0; i < state->numstates; i++)
4028 {
4029 if (state->trigstates[i].sct_tgoid == tgoid)
4030 return state->trigstates[i].sct_tgisdeferred;
4031 }
4032
4033 /* Check for SET CONSTRAINTS ALL. */
4034 if (state->all_isset)
4035 return state->all_isdeferred;
4036 }
4037
4038 /*
4039 * Otherwise return the default state for the trigger.
4040 */
4041 return ((evtshared->ats_event & AFTER_TRIGGER_INITDEFERRED) != 0);
4042}
4043
4044/* ----------
4045 * afterTriggerCopyBitmap()
4046 *
4047 * Copy bitmap into AfterTriggerEvents memory context, which is where the after
4048 * trigger events are kept.
4049 * ----------
4050 */
4051static Bitmapset *
4053{
4054 Bitmapset *dst;
4056
4057 if (src == NULL)
4058 return NULL;
4059
4061
4062 dst = bms_copy(src);
4063
4065
4066 return dst;
4067}
4068
4069/* ----------
4070 * afterTriggerAddEvent()
4071 *
4072 * Add a new trigger event to the specified queue.
4073 * The passed-in event data is copied.
4074 * ----------
4075 */
4076static void
4079{
4085
4086 /*
4087 * If empty list or not enough room in the tail chunk, make a new chunk.
4088 * We assume here that a new shared record will always be needed.
4089 */
4090 chunk = events->tail;
4091 if (chunk == NULL ||
4092 chunk->endfree - chunk->freeptr < needed)
4093 {
4095
4096 /* Create event context if we didn't already */
4100 "AfterTriggerEvents",
4102
4103 /*
4104 * Chunk size starts at 1KB and is allowed to increase up to 1MB.
4105 * These numbers are fairly arbitrary, though there is a hard limit at
4106 * AFTER_TRIGGER_OFFSET; else we couldn't link event records to their
4107 * shared records using the available space in ate_flags. Another
4108 * constraint is that if the chunk size gets too huge, the search loop
4109 * below would get slow given a (not too common) usage pattern with
4110 * many distinct event types in a chunk. Therefore, we double the
4111 * preceding chunk size only if there weren't too many shared records
4112 * in the preceding chunk; otherwise we halve it. This gives us some
4113 * ability to adapt to the actual usage pattern of the current query
4114 * while still having large chunk sizes in typical usage. All chunk
4115 * sizes used should be MAXALIGN multiples, to ensure that the shared
4116 * records will be aligned safely.
4117 */
4118#define MIN_CHUNK_SIZE 1024
4119#define MAX_CHUNK_SIZE (1024*1024)
4120
4121#if MAX_CHUNK_SIZE > (AFTER_TRIGGER_OFFSET+1)
4122#error MAX_CHUNK_SIZE must not exceed AFTER_TRIGGER_OFFSET
4123#endif
4124
4125 if (chunk == NULL)
4127 else
4128 {
4129 /* preceding chunk size... */
4130 chunksize = chunk->endptr - (char *) chunk;
4131 /* check number of shared records in preceding chunk */
4132 if ((chunk->endptr - chunk->endfree) <=
4133 (100 * sizeof(AfterTriggerSharedData)))
4134 chunksize *= 2; /* okay, double it */
4135 else
4136 chunksize /= 2; /* too many shared records */
4138 }
4140 chunk->next = NULL;
4141 chunk->freeptr = CHUNK_DATA_START(chunk);
4142 chunk->endptr = chunk->endfree = (char *) chunk + chunksize;
4143 Assert(chunk->endfree - chunk->freeptr >= needed);
4144
4145 if (events->tail == NULL)
4146 {
4147 Assert(events->head == NULL);
4148 events->head = chunk;
4149 }
4150 else
4151 events->tail->next = chunk;
4152 events->tail = chunk;
4153 /* events->tailfree is now out of sync, but we'll fix it below */
4154 }
4155
4156 /*
4157 * Try to locate a matching shared-data record already in the chunk. If
4158 * none, make a new one. The search begins with the most recently added
4159 * record, since newer ones are most likely to match.
4160 */
4161 for (newshared = (AfterTriggerShared) chunk->endfree;
4162 (char *) newshared < chunk->endptr;
4163 newshared++)
4164 {
4165 /* compare fields roughly by probability of them being different */
4166 if (newshared->ats_tgoid == evtshared->ats_tgoid &&
4167 newshared->ats_event == evtshared->ats_event &&
4168 newshared->ats_firing_id == 0 &&
4169 newshared->ats_table == evtshared->ats_table &&
4170 newshared->ats_relid == evtshared->ats_relid &&
4171 newshared->ats_rolid == evtshared->ats_rolid &&
4172 bms_equal(newshared->ats_modifiedcols,
4173 evtshared->ats_modifiedcols))
4174 break;
4175 }
4176 if ((char *) newshared >= chunk->endptr)
4177 {
4178 newshared = ((AfterTriggerShared) chunk->endfree) - 1;
4179 *newshared = *evtshared;
4180 /* now we must make a suitably-long-lived copy of the bitmap */
4181 newshared->ats_modifiedcols = afterTriggerCopyBitmap(evtshared->ats_modifiedcols);
4182 newshared->ats_firing_id = 0; /* just to be sure */
4183 chunk->endfree = (char *) newshared;
4184 }
4185
4186 /* Insert the data */
4187 newevent = (AfterTriggerEvent) chunk->freeptr;
4188 memcpy(newevent, event, eventsize);
4189 /* ... and link the new event to its shared record */
4190 newevent->ate_flags &= ~AFTER_TRIGGER_OFFSET;
4191 newevent->ate_flags |= (char *) newshared - (char *) newevent;
4192
4193 chunk->freeptr += eventsize;
4194 events->tailfree = chunk->freeptr;
4195}
4196
4197/* ----------
4198 * afterTriggerFreeEventList()
4199 *
4200 * Free all the event storage in the given list.
4201 * ----------
4202 */
4203static void
4205{
4207
4208 while ((chunk = events->head) != NULL)
4209 {
4210 events->head = chunk->next;
4211 pfree(chunk);
4212 }
4213 events->tail = NULL;
4214 events->tailfree = NULL;
4215}
4216
4217/* ----------
4218 * afterTriggerRestoreEventList()
4219 *
4220 * Restore an event list to its prior length, removing all the events
4221 * added since it had the value old_events.
4222 * ----------
4223 */
4224static void
4227{
4230
4231 if (old_events->tail == NULL)
4232 {
4233 /* restoring to a completely empty state, so free everything */
4235 }
4236 else
4237 {
4238 *events = *old_events;
4239 /* free any chunks after the last one we want to keep */
4240 for (chunk = events->tail->next; chunk != NULL; chunk = next_chunk)
4241 {
4242 next_chunk = chunk->next;
4243 pfree(chunk);
4244 }
4245 /* and clean up the tail chunk to be the right length */
4246 events->tail->next = NULL;
4247 events->tail->freeptr = events->tailfree;
4248
4249 /*
4250 * We don't make any effort to remove now-unused shared data records.
4251 * They might still be useful, anyway.
4252 */
4253 }
4254}
4255
4256/* ----------
4257 * afterTriggerDeleteHeadEventChunk()
4258 *
4259 * Remove the first chunk of events from the query level's event list.
4260 * Keep any event list pointers elsewhere in the query level's data
4261 * structures in sync.
4262 * ----------
4263 */
4264static void
4266{
4267 AfterTriggerEventChunk *target = qs->events.head;
4268 ListCell *lc;
4269
4270 Assert(target && target->next);
4271
4272 /*
4273 * First, update any pointers in the per-table data, so that they won't be
4274 * dangling. Resetting obsoleted pointers to NULL will make
4275 * cancel_prior_stmt_triggers start from the list head, which is fine.
4276 */
4277 foreach(lc, qs->tables)
4278 {
4280
4281 if (table->after_trig_done &&
4282 table->after_trig_events.tail == target)
4283 {
4284 table->after_trig_events.head = NULL;
4285 table->after_trig_events.tail = NULL;
4286 table->after_trig_events.tailfree = NULL;
4287 }
4288 }
4289
4290 /* Now we can flush the head chunk */
4291 qs->events.head = target->next;
4292 pfree(target);
4293}
4294
4295
4296/* ----------
4297 * AfterTriggerExecute()
4298 *
4299 * Fetch the required tuples back from the heap and fire one
4300 * single trigger function.
4301 *
4302 * Frequently, this will be fired many times in a row for triggers of
4303 * a single relation. Therefore, we cache the open relation and provide
4304 * fmgr lookup cache space at the caller level. (For triggers fired at
4305 * the end of a query, we can even piggyback on the executor's state.)
4306 *
4307 * When fired for a cross-partition update of a partitioned table, the old
4308 * tuple is fetched using 'src_relInfo' (the source leaf partition) and
4309 * the new tuple using 'dst_relInfo' (the destination leaf partition), though
4310 * both are converted into the root partitioned table's format before passing
4311 * to the trigger function.
4312 *
4313 * event: event currently being fired.
4314 * relInfo: result relation for event.
4315 * src_relInfo: source partition of a cross-partition update
4316 * dst_relInfo: its destination partition
4317 * trigdesc: working copy of rel's trigger info.
4318 * finfo: array of fmgr lookup cache entries (one per trigger in trigdesc).
4319 * instr: array of EXPLAIN ANALYZE instrumentation nodes (one per trigger),
4320 * or NULL if no instrumentation is wanted.
4321 * per_tuple_context: memory context to call trigger function in.
4322 * trig_tuple_slot1: scratch slot for tg_trigtuple (foreign tables only)
4323 * trig_tuple_slot2: scratch slot for tg_newtuple (foreign tables only)
4324 * ----------
4325 */
4326static void
4328 AfterTriggerEvent event,
4332 TriggerDesc *trigdesc,
4333 FmgrInfo *finfo, Instrumentation *instr,
4337{
4338 Relation rel = relInfo->ri_RelationDesc;
4339 Relation src_rel = src_relInfo->ri_RelationDesc;
4340 Relation dst_rel = dst_relInfo->ri_RelationDesc;
4342 Oid tgoid = evtshared->ats_tgoid;
4345 int save_sec_context;
4347 int tgindx;
4348 bool should_free_trig = false;
4349 bool should_free_new = false;
4350
4351 /*
4352 * Locate trigger in trigdesc. It might not be present, and in fact the
4353 * trigdesc could be NULL, if the trigger was dropped since the event was
4354 * queued. In that case, silently do nothing.
4355 */
4356 if (trigdesc == NULL)
4357 return;
4358 for (tgindx = 0; tgindx < trigdesc->numtriggers; tgindx++)
4359 {
4360 if (trigdesc->triggers[tgindx].tgoid == tgoid)
4361 {
4362 LocTriggerData.tg_trigger = &(trigdesc->triggers[tgindx]);
4363 break;
4364 }
4365 }
4366 if (LocTriggerData.tg_trigger == NULL)
4367 return;
4368
4369 /*
4370 * If doing EXPLAIN ANALYZE, start charging time to this trigger. We want
4371 * to include time spent re-fetching tuples in the trigger cost.
4372 */
4373 if (instr)
4374 InstrStartNode(instr + tgindx);
4375
4376 /*
4377 * Fetch the required tuple(s).
4378 */
4379 switch (event->ate_flags & AFTER_TRIGGER_TUP_BITS)
4380 {
4382 {
4383 Tuplestorestate *fdw_tuplestore = GetCurrentFDWTuplestore();
4384
4385 if (!tuplestore_gettupleslot(fdw_tuplestore, true, false,
4387 elog(ERROR, "failed to fetch tuple1 for AFTER trigger");
4388
4389 if ((evtshared->ats_event & TRIGGER_EVENT_OPMASK) ==
4391 !tuplestore_gettupleslot(fdw_tuplestore, true, false,
4393 elog(ERROR, "failed to fetch tuple2 for AFTER trigger");
4394 }
4395 /* fall through */
4397
4398 /*
4399 * Store tuple in the slot so that tg_trigtuple does not reference
4400 * tuplestore memory. (It is formally possible for the trigger
4401 * function to queue trigger events that add to the same
4402 * tuplestore, which can push other tuples out of memory.) The
4403 * distinction is academic, because we start with a minimal tuple
4404 * that is stored as a heap tuple, constructed in different memory
4405 * context, in the slot anyway.
4406 */
4407 LocTriggerData.tg_trigslot = trig_tuple_slot1;
4408 LocTriggerData.tg_trigtuple =
4410
4411 if ((evtshared->ats_event & TRIGGER_EVENT_OPMASK) ==
4413 {
4414 LocTriggerData.tg_newslot = trig_tuple_slot2;
4415 LocTriggerData.tg_newtuple =
4417 }
4418 else
4419 {
4420 LocTriggerData.tg_newtuple = NULL;
4421 }
4422 break;
4423
4424 default:
4425 if (ItemPointerIsValid(&(event->ate_ctid1)))
4426 {
4428 src_relInfo);
4429
4431 &(event->ate_ctid1),
4433 src_slot))
4434 elog(ERROR, "failed to fetch tuple1 for AFTER trigger");
4435
4436 /*
4437 * Store the tuple fetched from the source partition into the
4438 * target (root partitioned) table slot, converting if needed.
4439 */
4440 if (src_relInfo != relInfo)
4441 {
4443
4444 LocTriggerData.tg_trigslot = ExecGetTriggerOldSlot(estate, relInfo);
4445 if (map)
4446 {
4448 src_slot,
4449 LocTriggerData.tg_trigslot);
4450 }
4451 else
4452 ExecCopySlot(LocTriggerData.tg_trigslot, src_slot);
4453 }
4454 else
4455 LocTriggerData.tg_trigslot = src_slot;
4456 LocTriggerData.tg_trigtuple =
4458 }
4459 else
4460 {
4461 LocTriggerData.tg_trigtuple = NULL;
4462 }
4463
4464 /* don't touch ctid2 if not there */
4466 (event->ate_flags & AFTER_TRIGGER_CP_UPDATE)) &&
4467 ItemPointerIsValid(&(event->ate_ctid2)))
4468 {
4470 dst_relInfo);
4471
4473 &(event->ate_ctid2),
4475 dst_slot))
4476 elog(ERROR, "failed to fetch tuple2 for AFTER trigger");
4477
4478 /*
4479 * Store the tuple fetched from the destination partition into
4480 * the target (root partitioned) table slot, converting if
4481 * needed.
4482 */
4483 if (dst_relInfo != relInfo)
4484 {
4486
4487 LocTriggerData.tg_newslot = ExecGetTriggerNewSlot(estate, relInfo);
4488 if (map)
4489 {
4491 dst_slot,
4492 LocTriggerData.tg_newslot);
4493 }
4494 else
4496 }
4497 else
4498 LocTriggerData.tg_newslot = dst_slot;
4499 LocTriggerData.tg_newtuple =
4501 }
4502 else
4503 {
4504 LocTriggerData.tg_newtuple = NULL;
4505 }
4506 }
4507
4508 /*
4509 * Set up the tuplestore information to let the trigger have access to
4510 * transition tables. When we first make a transition table available to
4511 * a trigger, mark it "closed" so that it cannot change anymore. If any
4512 * additional events of the same type get queued in the current trigger
4513 * query level, they'll go into new transition tables.
4514 */
4515 LocTriggerData.tg_oldtable = LocTriggerData.tg_newtable = NULL;
4516 if (evtshared->ats_table)
4517 {
4518 if (LocTriggerData.tg_trigger->tgoldtable)
4519 {
4520 LocTriggerData.tg_oldtable = evtshared->ats_table->old_tuplestore;
4521 evtshared->ats_table->closed = true;
4522 }
4523
4524 if (LocTriggerData.tg_trigger->tgnewtable)
4525 {
4526 LocTriggerData.tg_newtable = evtshared->ats_table->new_tuplestore;
4527 evtshared->ats_table->closed = true;
4528 }
4529 }
4530
4531 /*
4532 * Setup the remaining trigger information
4533 */
4535 LocTriggerData.tg_event =
4537 LocTriggerData.tg_relation = rel;
4538 if (TRIGGER_FOR_UPDATE(LocTriggerData.tg_trigger->tgtype))
4539 LocTriggerData.tg_updatedcols = evtshared->ats_modifiedcols;
4540
4542
4543 /*
4544 * If necessary, become the role that was active when the trigger got
4545 * queued. Note that the role might have been dropped since the trigger
4546 * was queued, but if that is a problem, we will get an error later.
4547 * Checking here would still leave a race condition.
4548 */
4549 GetUserIdAndSecContext(&save_rolid, &save_sec_context);
4550 if (save_rolid != evtshared->ats_rolid)
4552 save_sec_context | SECURITY_LOCAL_USERID_CHANGE);
4553
4554 /*
4555 * Call the trigger and throw away any possibly returned updated tuple.
4556 * (Don't let ExecCallTriggerFunc measure EXPLAIN time.)
4557 */
4559 tgindx,
4560 finfo,
4561 NULL,
4563 if (rettuple != NULL &&
4564 rettuple != LocTriggerData.tg_trigtuple &&
4565 rettuple != LocTriggerData.tg_newtuple)
4567
4568 /* Restore the current role if necessary */
4569 if (save_rolid != evtshared->ats_rolid)
4570 SetUserIdAndSecContext(save_rolid, save_sec_context);
4571
4572 /*
4573 * Release resources
4574 */
4575 if (should_free_trig)
4576 heap_freetuple(LocTriggerData.tg_trigtuple);
4577 if (should_free_new)
4578 heap_freetuple(LocTriggerData.tg_newtuple);
4579
4580 /* don't clear slots' contents if foreign table */
4581 if (trig_tuple_slot1 == NULL)
4582 {
4583 if (LocTriggerData.tg_trigslot)
4584 ExecClearTuple(LocTriggerData.tg_trigslot);
4585 if (LocTriggerData.tg_newslot)
4586 ExecClearTuple(LocTriggerData.tg_newslot);
4587 }
4588
4589 /*
4590 * If doing EXPLAIN ANALYZE, stop charging time to this trigger, and count
4591 * one "tuple returned" (really the number of firings).
4592 */
4593 if (instr)
4594 InstrStopNode(instr + tgindx, 1);
4595}
4596
4597
4598/*
4599 * afterTriggerMarkEvents()
4600 *
4601 * Scan the given event list for not yet invoked events. Mark the ones
4602 * that can be invoked now with the current firing ID.
4603 *
4604 * If move_list isn't NULL, events that are not to be invoked now are
4605 * transferred to move_list.
4606 *
4607 * When immediate_only is true, do not invoke currently-deferred triggers.
4608 * (This will be false only at main transaction exit.)
4609 *
4610 * Returns true if any invokable events were found.
4611 */
4612static bool
4615 bool immediate_only)
4616{
4617 bool found = false;
4618 bool deferred_found = false;
4619 AfterTriggerEvent event;
4621
4622 for_each_event_chunk(event, chunk, *events)
4623 {
4625 bool defer_it = false;
4626
4627 if (!(event->ate_flags &
4629 {
4630 /*
4631 * This trigger hasn't been called or scheduled yet. Check if we
4632 * should call it now.
4633 */
4635 {
4636 defer_it = true;
4637 }
4638 else
4639 {
4640 /*
4641 * Mark it as to be fired in this firing cycle.
4642 */
4643 evtshared->ats_firing_id = afterTriggers.firing_counter;
4644 event->ate_flags |= AFTER_TRIGGER_IN_PROGRESS;
4645 found = true;
4646 }
4647 }
4648
4649 /*
4650 * If it's deferred, move it to move_list, if requested.
4651 */
4652 if (defer_it && move_list != NULL)
4653 {
4654 deferred_found = true;
4655 /* add it to move_list */
4657 /* mark original copy "done" so we don't do it again */
4658 event->ate_flags |= AFTER_TRIGGER_DONE;
4659 }
4660 }
4661
4662 /*
4663 * We could allow deferred triggers if, before the end of the
4664 * security-restricted operation, we were to verify that a SET CONSTRAINTS
4665 * ... IMMEDIATE has fired all such triggers. For now, don't bother.
4666 */
4668 ereport(ERROR,
4670 errmsg("cannot fire deferred trigger within security-restricted operation")));
4671
4672 return found;
4673}
4674
4675/*
4676 * afterTriggerInvokeEvents()
4677 *
4678 * Scan the given event list for events that are marked as to be fired
4679 * in the current firing cycle, and fire them.
4680 *
4681 * If estate isn't NULL, we use its result relation info to avoid repeated
4682 * openings and closing of trigger target relations. If it is NULL, we
4683 * make one locally to cache the info in case there are multiple trigger
4684 * events per rel.
4685 *
4686 * When delete_ok is true, it's safe to delete fully-processed events.
4687 * (We are not very tense about that: we simply reset a chunk to be empty
4688 * if all its events got fired. The objective here is just to avoid useless
4689 * rescanning of events when a trigger queues new events during transaction
4690 * end, so it's not necessary to worry much about the case where only
4691 * some events are fired.)
4692 *
4693 * Returns true if no unfired events remain in the list (this allows us
4694 * to avoid repeating afterTriggerMarkEvents).
4695 */
4696static bool
4699 EState *estate,
4700 bool delete_ok)
4701{
4702 bool all_fired = true;
4705 bool local_estate = false;
4707 Relation rel = NULL;
4708 TriggerDesc *trigdesc = NULL;
4709 FmgrInfo *finfo = NULL;
4710 Instrumentation *instr = NULL;
4712 *slot2 = NULL;
4713
4714 /* Make a local EState if need be */
4715 if (estate == NULL)
4716 {
4717 estate = CreateExecutorState();
4718 local_estate = true;
4719 }
4720
4721 /* Make a per-tuple memory context for trigger function calls */
4724 "AfterTriggerTupleContext",
4726
4727 for_each_chunk(chunk, *events)
4728 {
4729 AfterTriggerEvent event;
4730 bool all_fired_in_chunk = true;
4731
4732 for_each_event(event, chunk)
4733 {
4735
4736 /*
4737 * Is it one for me to fire?
4738 */
4739 if ((event->ate_flags & AFTER_TRIGGER_IN_PROGRESS) &&
4740 evtshared->ats_firing_id == firing_id)
4741 {
4743 *dst_rInfo;
4744
4745 /*
4746 * So let's fire it... but first, find the correct relation if
4747 * this is not the same relation as before.
4748 */
4749 if (rel == NULL || RelationGetRelid(rel) != evtshared->ats_relid)
4750 {
4751 rInfo = ExecGetTriggerResultRel(estate, evtshared->ats_relid,
4752 NULL);
4753 rel = rInfo->ri_RelationDesc;
4754 /* Catch calls with insufficient relcache refcounting */
4756 trigdesc = rInfo->ri_TrigDesc;
4757 /* caution: trigdesc could be NULL here */
4758 finfo = rInfo->ri_TrigFunctions;
4759 instr = rInfo->ri_TrigInstrument;
4760 if (slot1 != NULL)
4761 {
4764 slot1 = slot2 = NULL;
4765 }
4766 if (rel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
4767 {
4772 }
4773 }
4774
4775 /*
4776 * Look up source and destination partition result rels of a
4777 * cross-partition update event.
4778 */
4779 if ((event->ate_flags & AFTER_TRIGGER_TUP_BITS) ==
4781 {
4782 Assert(OidIsValid(event->ate_src_part) &&
4783 OidIsValid(event->ate_dst_part));
4785 event->ate_src_part,
4786 rInfo);
4788 event->ate_dst_part,
4789 rInfo);
4790 }
4791 else
4793
4794 /*
4795 * Fire it. Note that the AFTER_TRIGGER_IN_PROGRESS flag is
4796 * still set, so recursive examinations of the event list
4797 * won't try to re-fire it.
4798 */
4799 AfterTriggerExecute(estate, event, rInfo,
4801 trigdesc, finfo, instr,
4803
4804 /*
4805 * Mark the event as done.
4806 */
4807 event->ate_flags &= ~AFTER_TRIGGER_IN_PROGRESS;
4808 event->ate_flags |= AFTER_TRIGGER_DONE;
4809 }
4810 else if (!(event->ate_flags & AFTER_TRIGGER_DONE))
4811 {
4812 /* something remains to be done */
4813 all_fired = all_fired_in_chunk = false;
4814 }
4815 }
4816
4817 /* Clear the chunk if delete_ok and nothing left of interest */
4819 {
4820 chunk->freeptr = CHUNK_DATA_START(chunk);
4821 chunk->endfree = chunk->endptr;
4822
4823 /*
4824 * If it's last chunk, must sync event list's tailfree too. Note
4825 * that delete_ok must NOT be passed as true if there could be
4826 * additional AfterTriggerEventList values pointing at this event
4827 * list, since we'd fail to fix their copies of tailfree.
4828 */
4829 if (chunk == events->tail)
4830 events->tailfree = chunk->freeptr;
4831 }
4832 }
4833 if (slot1 != NULL)
4834 {
4837 }
4838
4839 /* Release working resources */
4841
4842 if (local_estate)
4843 {
4845 ExecResetTupleTable(estate->es_tupleTable, false);
4846 FreeExecutorState(estate);
4847 }
4848
4849 return all_fired;
4850}
4851
4852
4853/*
4854 * GetAfterTriggersTableData
4855 *
4856 * Find or create an AfterTriggersTableData struct for the specified
4857 * trigger event (relation + operation type). Ignore existing structs
4858 * marked "closed"; we don't want to put any additional tuples into them,
4859 * nor change their stmt-triggers-fired state.
4860 *
4861 * Note: the AfterTriggersTableData list is allocated in the current
4862 * (sub)transaction's CurTransactionContext. This is OK because
4863 * we don't need it to live past AfterTriggerEndQuery.
4864 */
4867{
4871 ListCell *lc;
4872
4873 /* At this level, cmdType should not be, eg, CMD_MERGE */
4874 Assert(cmdType == CMD_INSERT ||
4875 cmdType == CMD_UPDATE ||
4876 cmdType == CMD_DELETE);
4877
4878 /* Caller should have ensured query_depth is OK. */
4882
4883 foreach(lc, qs->tables)
4884 {
4886 if (table->relid == relid && table->cmdType == cmdType &&
4887 !table->closed)
4888 return table;
4889 }
4890
4892
4894 table->relid = relid;
4895 table->cmdType = cmdType;
4896 qs->tables = lappend(qs->tables, table);
4897
4899
4900 return table;
4901}
4902
4903/*
4904 * Returns a TupleTableSlot suitable for holding the tuples to be put
4905 * into AfterTriggersTableData's transition table tuplestores.
4906 */
4907static TupleTableSlot *
4909 TupleDesc tupdesc)
4910{
4911 /* Create it if not already done. */
4912 if (!table->storeslot)
4913 {
4915
4916 /*
4917 * We need this slot only until AfterTriggerEndQuery, but making it
4918 * last till end-of-subxact is good enough. It'll be freed by
4919 * AfterTriggerFreeQuery(). However, the passed-in tupdesc might have
4920 * a different lifespan, so we'd better make a copy of that.
4921 */
4923 tupdesc = CreateTupleDescCopy(tupdesc);
4924 table->storeslot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual);
4926 }
4927
4928 return table->storeslot;
4929}
4930
4931/*
4932 * MakeTransitionCaptureState
4933 *
4934 * Make a TransitionCaptureState object for the given TriggerDesc, target
4935 * relation, and operation type. The TCS object holds all the state needed
4936 * to decide whether to capture tuples in transition tables.
4937 *
4938 * If there are no triggers in 'trigdesc' that request relevant transition
4939 * tables, then return NULL.
4940 *
4941 * The resulting object can be passed to the ExecAR* functions. When
4942 * dealing with child tables, the caller can set tcs_original_insert_tuple
4943 * to avoid having to reconstruct the original tuple in the root table's
4944 * format.
4945 *
4946 * Note that we copy the flags from a parent table into this struct (rather
4947 * than subsequently using the relation's TriggerDesc directly) so that we can
4948 * use it to control collection of transition tuples from child tables.
4949 *
4950 * Per SQL spec, all operations of the same kind (INSERT/UPDATE/DELETE)
4951 * on the same table during one query should share one transition table.
4952 * Therefore, the Tuplestores are owned by an AfterTriggersTableData struct
4953 * looked up using the table OID + CmdType, and are merely referenced by
4954 * the TransitionCaptureState objects we hand out to callers.
4955 */
4958{
4960 bool need_old_upd,
4969
4970 if (trigdesc == NULL)
4971 return NULL;
4972
4973 /* Detect which table(s) we need. */
4974 switch (cmdType)
4975 {
4976 case CMD_INSERT:
4979 break;
4980 case CMD_UPDATE:
4983 need_old_del = need_new_ins = false;
4984 break;
4985 case CMD_DELETE:
4988 break;
4989 case CMD_MERGE:
4994 break;
4995 default:
4996 elog(ERROR, "unexpected CmdType: %d", (int) cmdType);
4997 /* keep compiler quiet */
4999 break;
5000 }
5002 return NULL;
5003
5004 /* Check state, like AfterTriggerSaveEvent. */
5005 if (afterTriggers.query_depth < 0)
5006 elog(ERROR, "MakeTransitionCaptureState() called outside of query");
5007
5008 /* Be sure we have enough space to record events at this query depth. */
5011
5012 /*
5013 * Find or create AfterTriggersTableData struct(s) to hold the
5014 * tuplestore(s). If there's a matching struct but it's marked closed,
5015 * ignore it; we need a newer one.
5016 *
5017 * Note: MERGE must use the same AfterTriggersTableData structs as INSERT,
5018 * UPDATE, and DELETE, so that any MERGE'd tuples are added to the same
5019 * tuplestores as tuples from any INSERT, UPDATE, or DELETE commands
5020 * running in the same top-level command (e.g., in a writable CTE).
5021 *
5022 * Note: the AfterTriggersTableData list, as well as the tuplestores, are
5023 * allocated in the current (sub)transaction's CurTransactionContext, and
5024 * the tuplestores are managed by the (sub)transaction's resource owner.
5025 * This is sufficient lifespan because we do not allow triggers using
5026 * transition tables to be deferrable; they will be fired during
5027 * AfterTriggerEndQuery, after which it's okay to delete the data.
5028 */
5029 if (need_new_ins)
5031 else
5032 ins_table = NULL;
5033
5036 else
5037 upd_table = NULL;
5038
5039 if (need_old_del)
5041 else
5042 del_table = NULL;
5043
5044 /* Now create required tuplestore(s), if we don't have them already. */
5048
5049 if (need_old_upd && upd_table->old_tuplestore == NULL)
5050 upd_table->old_tuplestore = tuplestore_begin_heap(false, false, work_mem);
5051 if (need_new_upd && upd_table->new_tuplestore == NULL)
5052 upd_table->new_tuplestore = tuplestore_begin_heap(false, false, work_mem);
5053 if (need_old_del && del_table->old_tuplestore == NULL)
5054 del_table->old_tuplestore = tuplestore_begin_heap(false, false, work_mem);
5055 if (need_new_ins && ins_table->new_tuplestore == NULL)
5056 ins_table->new_tuplestore = tuplestore_begin_heap(false, false, work_mem);
5057
5060
5061 /* Now build the TransitionCaptureState struct, in caller's context */
5063 state->tcs_delete_old_table = need_old_del;
5064 state->tcs_update_old_table = need_old_upd;
5065 state->tcs_update_new_table = need_new_upd;
5066 state->tcs_insert_new_table = need_new_ins;
5067 state->tcs_insert_private = ins_table;
5068 state->tcs_update_private = upd_table;
5069 state->tcs_delete_private = del_table;
5070
5071 return state;
5072}
5073
5074
5075/* ----------
5076 * AfterTriggerBeginXact()
5077 *
5078 * Called at transaction start (either BEGIN or implicit for single
5079 * statement outside of transaction block).
5080 * ----------
5081 */
5082void
5084{
5085 /*
5086 * Initialize after-trigger state structure to empty
5087 */
5088 afterTriggers.firing_counter = (CommandId) 1; /* mustn't be 0 */
5090
5091 /*
5092 * Verify that there is no leftover state remaining. If these assertions
5093 * trip, it means that AfterTriggerEndXact wasn't called or didn't clean
5094 * up properly.
5095 */
5103}
5104
5105
5106/* ----------
5107 * AfterTriggerBeginQuery()
5108 *
5109 * Called just before we start processing a single query within a
5110 * transaction (or subtransaction). Most of the real work gets deferred
5111 * until somebody actually tries to queue a trigger event.
5112 * ----------
5113 */
5114void
5116{
5117 /* Increase the query stack depth */
5119}
5120
5121
5122/* ----------
5123 * AfterTriggerEndQuery()
5124 *
5125 * Called after one query has been completely processed. At this time
5126 * we invoke all AFTER IMMEDIATE trigger events queued by the query, and
5127 * transfer deferred trigger events to the global deferred-trigger list.
5128 *
5129 * Note that this must be called BEFORE closing down the executor
5130 * with ExecutorEnd, because we make use of the EState's info about
5131 * target relations. Normally it is called from ExecutorFinish.
5132 * ----------
5133 */
5134void
5136{
5138
5139 /* Must be inside a query, too */
5141
5142 /*
5143 * If we never even got as far as initializing the event stack, there
5144 * certainly won't be any events, so exit quickly.
5145 */
5147 {
5149 return;
5150 }
5151
5152 /*
5153 * Process all immediate-mode triggers queued by the query, and move the
5154 * deferred ones to the main list of deferred events.
5155 *
5156 * Notice that we decide which ones will be fired, and put the deferred
5157 * ones on the main list, before anything is actually fired. This ensures
5158 * reasonably sane behavior if a trigger function does SET CONSTRAINTS ...
5159 * IMMEDIATE: all events we have decided to defer will be available for it
5160 * to fire.
5161 *
5162 * We loop in case a trigger queues more events at the same query level.
5163 * Ordinary trigger functions, including all PL/pgSQL trigger functions,
5164 * will instead fire any triggers in a dedicated query level. Foreign key
5165 * enforcement triggers do add to the current query level, thanks to their
5166 * passing fire_triggers = false to SPI_execute_snapshot(). Other
5167 * C-language triggers might do likewise.
5168 *
5169 * If we find no firable events, we don't have to increment
5170 * firing_counter.
5171 */
5173
5174 for (;;)
5175 {
5176 if (afterTriggerMarkEvents(&qs->events, &afterTriggers.events, true))
5177 {
5179 AfterTriggerEventChunk *oldtail = qs->events.tail;
5180
5181 if (afterTriggerInvokeEvents(&qs->events, firing_id, estate, false))
5182 break; /* all fired */
5183
5184 /*
5185 * Firing a trigger could result in query_stack being repalloc'd,
5186 * so we must recalculate qs after each afterTriggerInvokeEvents
5187 * call. Furthermore, it's unsafe to pass delete_ok = true here,
5188 * because that could cause afterTriggerInvokeEvents to try to
5189 * access qs->events after the stack has been repalloc'd.
5190 */
5192
5193 /*
5194 * We'll need to scan the events list again. To reduce the cost
5195 * of doing so, get rid of completely-fired chunks. We know that
5196 * all events were marked IN_PROGRESS or DONE at the conclusion of
5197 * afterTriggerMarkEvents, so any still-interesting events must
5198 * have been added after that, and so must be in the chunk that
5199 * was then the tail chunk, or in later chunks. So, zap all
5200 * chunks before oldtail. This is approximately the same set of
5201 * events we would have gotten rid of by passing delete_ok = true.
5202 */
5203 Assert(oldtail != NULL);
5204 while (qs->events.head != oldtail)
5206 }
5207 else
5208 break;
5209 }
5210
5211 /* Release query-level-local storage, including tuplestores if any */
5213
5215}
5216
5217
5218/*
5219 * AfterTriggerFreeQuery
5220 * Release subsidiary storage for a trigger query level.
5221 * This includes closing down tuplestores.
5222 * Note: it's important for this to be safe if interrupted by an error
5223 * and then called again for the same query level.
5224 */
5225static void
5227{
5228 Tuplestorestate *ts;
5229 List *tables;
5230 ListCell *lc;
5231
5232 /* Drop the trigger events */
5233 afterTriggerFreeEventList(&qs->events);
5234
5235 /* Drop FDW tuplestore if any */
5236 ts = qs->fdw_tuplestore;
5237 qs->fdw_tuplestore = NULL;
5238 if (ts)
5239 tuplestore_end(ts);
5240
5241 /* Release per-table subsidiary storage */
5242 tables = qs->tables;
5243 foreach(lc, tables)
5244 {
5246
5247 ts = table->old_tuplestore;
5248 table->old_tuplestore = NULL;
5249 if (ts)
5250 tuplestore_end(ts);
5251 ts = table->new_tuplestore;
5252 table->new_tuplestore = NULL;
5253 if (ts)
5254 tuplestore_end(ts);
5255 if (table->storeslot)
5256 {
5257 TupleTableSlot *slot = table->storeslot;
5258
5259 table->storeslot = NULL;
5261 }
5262 }
5263
5264 /*
5265 * Now free the AfterTriggersTableData structs and list cells. Reset list
5266 * pointer first; if list_free_deep somehow gets an error, better to leak
5267 * that storage than have an infinite loop.
5268 */
5269 qs->tables = NIL;
5270 list_free_deep(tables);
5271}
5272
5273
5274/* ----------
5275 * AfterTriggerFireDeferred()
5276 *
5277 * Called just before the current transaction is committed. At this
5278 * time we invoke all pending DEFERRED triggers.
5279 *
5280 * It is possible for other modules to queue additional deferred triggers
5281 * during pre-commit processing; therefore xact.c may have to call this
5282 * multiple times.
5283 * ----------
5284 */
5285void
5287{
5288 AfterTriggerEventList *events;
5289 bool snap_pushed = false;
5290
5291 /* Must not be inside a query */
5293
5294 /*
5295 * If there are any triggers to fire, make sure we have set a snapshot for
5296 * them to use. (Since PortalRunUtility doesn't set a snap for COMMIT, we
5297 * can't assume ActiveSnapshot is valid on entry.)
5298 */
5299 events = &afterTriggers.events;
5300 if (events->head != NULL)
5301 {
5303 snap_pushed = true;
5304 }
5305
5306 /*
5307 * Run all the remaining triggers. Loop until they are all gone, in case
5308 * some trigger queues more for us to do.
5309 */
5310 while (afterTriggerMarkEvents(events, NULL, false))
5311 {
5313
5314 if (afterTriggerInvokeEvents(events, firing_id, NULL, true))
5315 break; /* all fired */
5316 }
5317
5318 /*
5319 * We don't bother freeing the event list, since it will go away anyway
5320 * (and more efficiently than via pfree) in AfterTriggerEndXact.
5321 */
5322
5323 if (snap_pushed)
5325}
5326
5327
5328/* ----------
5329 * AfterTriggerEndXact()
5330 *
5331 * The current transaction is finishing.
5332 *
5333 * Any unfired triggers are canceled so we simply throw
5334 * away anything we know.
5335 *
5336 * Note: it is possible for this to be called repeatedly in case of
5337 * error during transaction abort; therefore, do not complain if
5338 * already closed down.
5339 * ----------
5340 */
5341void
5343{
5344 /*
5345 * Forget the pending-events list.
5346 *
5347 * Since all the info is in TopTransactionContext or children thereof, we
5348 * don't really need to do anything to reclaim memory. However, the
5349 * pending-events list could be large, and so it's useful to discard it as
5350 * soon as possible --- especially if we are aborting because we ran out
5351 * of memory for the list!
5352 */
5354 {
5360 }
5361
5362 /*
5363 * Forget any subtransaction state as well. Since this can't be very
5364 * large, we let the eventual reset of TopTransactionContext free the
5365 * memory instead of doing it here.
5366 */
5369
5370
5371 /*
5372 * Forget the query stack and constraint-related state information. As
5373 * with the subtransaction state information, we don't bother freeing the
5374 * memory here.
5375 */
5379
5380 /* No more afterTriggers manipulation until next transaction starts. */
5382}
5383
5384/*
5385 * AfterTriggerBeginSubXact()
5386 *
5387 * Start a subtransaction.
5388 */
5389void
5391{
5392 int my_level = GetCurrentTransactionNestLevel();
5393
5394 /*
5395 * Allocate more space in the trans_stack if needed. (Note: because the
5396 * minimum nest level of a subtransaction is 2, we waste the first couple
5397 * entries of the array; not worth the notational effort to avoid it.)
5398 */
5399 while (my_level >= afterTriggers.maxtransdepth)
5400 {
5402 {
5403 /* Arbitrarily initialize for max of 8 subtransaction levels */
5406 8 * sizeof(AfterTriggersTransData));
5408 }
5409 else
5410 {
5411 /* repalloc will keep the stack in the same context */
5413
5418 }
5419 }
5420
5421 /*
5422 * Push the current information into the stack. The SET CONSTRAINTS state
5423 * is not saved until/unless changed. Likewise, we don't make a
5424 * per-subtransaction event context until needed.
5425 */
5426 afterTriggers.trans_stack[my_level].state = NULL;
5430}
5431
5432/*
5433 * AfterTriggerEndSubXact()
5434 *
5435 * The current subtransaction is ending.
5436 */
5437void
5439{
5440 int my_level = GetCurrentTransactionNestLevel();
5442 AfterTriggerEvent event;
5445
5446 /*
5447 * Pop the prior state if needed.
5448 */
5449 if (isCommit)
5450 {
5452 /* If we saved a prior state, we don't need it anymore */
5454 if (state != NULL)
5455 pfree(state);
5456 /* this avoids double pfree if error later: */
5457 afterTriggers.trans_stack[my_level].state = NULL;
5460 }
5461 else
5462 {
5463 /*
5464 * Aborting. It is possible subxact start failed before calling
5465 * AfterTriggerBeginSubXact, in which case we mustn't risk touching
5466 * trans_stack levels that aren't there.
5467 */
5468 if (my_level >= afterTriggers.maxtransdepth)
5469 return;
5470
5471 /*
5472 * Release query-level storage for queries being aborted, and restore
5473 * query_depth to its pre-subxact value. This assumes that a
5474 * subtransaction will not add events to query levels started in a
5475 * earlier transaction state.
5476 */
5478 {
5482 }
5485
5486 /*
5487 * Restore the global deferred-event list to its former length,
5488 * discarding any events queued by the subxact.
5489 */
5491 &afterTriggers.trans_stack[my_level].events);
5492
5493 /*
5494 * Restore the trigger state. If the saved state is NULL, then this
5495 * subxact didn't save it, so it doesn't need restoring.
5496 */
5498 if (state != NULL)
5499 {
5502 }
5503 /* this avoids double pfree if error later: */
5504 afterTriggers.trans_stack[my_level].state = NULL;
5505
5506 /*
5507 * Scan for any remaining deferred events that were marked DONE or IN
5508 * PROGRESS by this subxact or a child, and un-mark them. We can
5509 * recognize such events because they have a firing ID greater than or
5510 * equal to the firing_counter value we saved at subtransaction start.
5511 * (This essentially assumes that the current subxact includes all
5512 * subxacts started after it.)
5513 */
5516 {
5518
5519 if (event->ate_flags &
5521 {
5522 if (evtshared->ats_firing_id >= subxact_firing_id)
5523 event->ate_flags &=
5525 }
5526 }
5527 }
5528}
5529
5530/*
5531 * Get the transition table for the given event and depending on whether we are
5532 * processing the old or the new tuple.
5533 */
5534static Tuplestorestate *
5538 TransitionCaptureState *transition_capture)
5539{
5540 Tuplestorestate *tuplestore = NULL;
5541 bool delete_old_table = transition_capture->tcs_delete_old_table;
5542 bool update_old_table = transition_capture->tcs_update_old_table;
5543 bool update_new_table = transition_capture->tcs_update_new_table;
5544 bool insert_new_table = transition_capture->tcs_insert_new_table;
5545
5546 /*
5547 * For INSERT events NEW should be non-NULL, for DELETE events OLD should
5548 * be non-NULL, whereas for UPDATE events normally both OLD and NEW are
5549 * non-NULL. But for UPDATE events fired for capturing transition tuples
5550 * during UPDATE partition-key row movement, OLD is NULL when the event is
5551 * for a row being inserted, whereas NEW is NULL when the event is for a
5552 * row being deleted.
5553 */
5555 TupIsNull(oldslot)));
5557 TupIsNull(newslot)));
5558
5559 if (!TupIsNull(oldslot))
5560 {
5562 if (event == TRIGGER_EVENT_DELETE && delete_old_table)
5563 tuplestore = transition_capture->tcs_delete_private->old_tuplestore;
5564 else if (event == TRIGGER_EVENT_UPDATE && update_old_table)
5565 tuplestore = transition_capture->tcs_update_private->old_tuplestore;
5566 }
5567 else if (!TupIsNull(newslot))
5568 {
5570 if (event == TRIGGER_EVENT_INSERT && insert_new_table)
5571 tuplestore = transition_capture->tcs_insert_private->new_tuplestore;
5572 else if (event == TRIGGER_EVENT_UPDATE && update_new_table)
5573 tuplestore = transition_capture->tcs_update_private->new_tuplestore;
5574 }
5575
5576 return tuplestore;
5577}
5578
5579/*
5580 * Add the given heap tuple to the given tuplestore, applying the conversion
5581 * map if necessary.
5582 *
5583 * If original_insert_tuple is given, we can add that tuple without conversion.
5584 */
5585static void
5587 int event,
5588 TransitionCaptureState *transition_capture,
5590 TupleTableSlot *slot,
5592 Tuplestorestate *tuplestore)
5593{
5594 TupleConversionMap *map;
5595
5596 /*
5597 * Nothing needs to be done if we don't have a tuplestore.
5598 */
5599 if (tuplestore == NULL)
5600 return;
5601
5604 else if ((map = ExecGetChildToRootMap(relinfo)) != NULL)
5605 {
5607 TupleTableSlot *storeslot;
5608
5609 switch (event)
5610 {
5612 table = transition_capture->tcs_insert_private;
5613 break;
5615 table = transition_capture->tcs_update_private;
5616 break;
5618 table = transition_capture->tcs_delete_private;
5619 break;
5620 default:
5621 elog(ERROR, "invalid after-trigger event code: %d", event);
5622 table = NULL; /* keep compiler quiet */
5623 break;
5624 }
5625
5626 storeslot = GetAfterTriggersStoreSlot(table, map->outdesc);
5627 execute_attr_map_slot(map->attrMap, slot, storeslot);
5628 tuplestore_puttupleslot(tuplestore, storeslot);
5629 }
5630 else
5631 tuplestore_puttupleslot(tuplestore, slot);
5632}
5633
5634/* ----------
5635 * AfterTriggerEnlargeQueryState()
5636 *
5637 * Prepare the necessary state so that we can record AFTER trigger events
5638 * queued by a query. It is allowed to have nested queries within a
5639 * (sub)transaction, so we need to have separate state for each query
5640 * nesting level.
5641 * ----------
5642 */
5643static void
5645{
5647
5649
5651 {
5652 int new_alloc = Max(afterTriggers.query_depth + 1, 8);
5653
5658 }
5659 else
5660 {
5661 /* repalloc will keep the stack in the same context */
5664 old_alloc * 2);
5665
5670 }
5671
5672 /* Initialize new array entries to empty */
5674 {
5676
5677 qs->events.head = NULL;
5678 qs->events.tail = NULL;
5679 qs->events.tailfree = NULL;
5680 qs->fdw_tuplestore = NULL;
5681 qs->tables = NIL;
5682
5683 ++init_depth;
5684 }
5685}
5686
5687/*
5688 * Create an empty SetConstraintState with room for numalloc trigstates
5689 */
5690static SetConstraintState
5692{
5694
5695 /* Behave sanely with numalloc == 0 */
5696 if (numalloc <= 0)
5697 numalloc = 1;
5698
5699 /*
5700 * We assume that zeroing will correctly initialize the state values.
5701 */
5704 offsetof(SetConstraintStateData, trigstates) +
5705 numalloc * sizeof(SetConstraintTriggerData));
5706
5707 state->numalloc = numalloc;
5708
5709 return state;
5710}
5711
5712/*
5713 * Copy a SetConstraintState
5714 */
5715static SetConstraintState
5717{
5719
5721
5722 state->all_isset = origstate->all_isset;
5723 state->all_isdeferred = origstate->all_isdeferred;
5724 state->numstates = origstate->numstates;
5725 memcpy(state->trigstates, origstate->trigstates,
5726 origstate->numstates * sizeof(SetConstraintTriggerData));
5727
5728 return state;
5729}
5730
5731/*
5732 * Add a per-trigger item to a SetConstraintState. Returns possibly-changed
5733 * pointer to the state object (it will change if we have to repalloc).
5734 */
5735static SetConstraintState
5737 Oid tgoid, bool tgisdeferred)
5738{
5739 if (state->numstates >= state->numalloc)
5740 {
5741 int newalloc = state->numalloc * 2;
5742
5743 newalloc = Max(newalloc, 8); /* in case original has size 0 */
5746 offsetof(SetConstraintStateData, trigstates) +
5748 state->numalloc = newalloc;
5749 Assert(state->numstates < state->numalloc);
5750 }
5751
5752 state->trigstates[state->numstates].sct_tgoid = tgoid;
5753 state->trigstates[state->numstates].sct_tgisdeferred = tgisdeferred;
5754 state->numstates++;
5755
5756 return state;
5757}
5758
5759/* ----------
5760 * AfterTriggerSetState()
5761 *
5762 * Execute the SET CONSTRAINTS ... utility command.
5763 * ----------
5764 */
5765void
5767{
5768 int my_level = GetCurrentTransactionNestLevel();
5769
5770 /* If we haven't already done so, initialize our state. */
5771 if (afterTriggers.state == NULL)
5773
5774 /*
5775 * If in a subtransaction, and we didn't save the current state already,
5776 * save it so it can be restored if the subtransaction aborts.
5777 */
5778 if (my_level > 1 &&
5779 afterTriggers.trans_stack[my_level].state == NULL)
5780 {
5781 afterTriggers.trans_stack[my_level].state =
5783 }
5784
5785 /*
5786 * Handle SET CONSTRAINTS ALL ...
5787 */
5788 if (stmt->constraints == NIL)
5789 {
5790 /*
5791 * Forget any previous SET CONSTRAINTS commands in this transaction.
5792 */
5794
5795 /*
5796 * Set the per-transaction ALL state to known.
5797 */
5800 }
5801 else
5802 {
5805 List *conoidlist = NIL;
5806 List *tgoidlist = NIL;
5807 ListCell *lc;
5808
5809 /*
5810 * Handle SET CONSTRAINTS constraint-name [, ...]
5811 *
5812 * First, identify all the named constraints and make a list of their
5813 * OIDs. Since, unlike the SQL spec, we allow multiple constraints of
5814 * the same name within a schema, the specifications are not
5815 * necessarily unique. Our strategy is to target all matching
5816 * constraints within the first search-path schema that has any
5817 * matches, but disregard matches in schemas beyond the first match.
5818 * (This is a bit odd but it's the historical behavior.)
5819 *
5820 * A constraint in a partitioned table may have corresponding
5821 * constraints in the partitions. Grab those too.
5822 */
5824
5825 foreach(lc, stmt->constraints)
5826 {
5827 RangeVar *constraint = lfirst(lc);
5828 bool found;
5830 ListCell *nslc;
5831
5832 if (constraint->catalogname)
5833 {
5834 if (strcmp(constraint->catalogname, get_database_name(MyDatabaseId)) != 0)
5835 ereport(ERROR,
5837 errmsg("cross-database references are not implemented: \"%s.%s.%s\"",
5838 constraint->catalogname, constraint->schemaname,
5839 constraint->relname)));
5840 }
5841
5842 /*
5843 * If we're given the schema name with the constraint, look only
5844 * in that schema. If given a bare constraint name, use the
5845 * search path to find the first matching constraint.
5846 */
5847 if (constraint->schemaname)
5848 {
5850 false);
5851
5853 }
5854 else
5855 {
5857 }
5858
5859 found = false;
5860 foreach(nslc, namespacelist)
5861 {
5864 ScanKeyData skey[2];
5865 HeapTuple tup;
5866
5867 ScanKeyInit(&skey[0],
5870 CStringGetDatum(constraint->relname));
5871 ScanKeyInit(&skey[1],
5875
5877 true, NULL, 2, skey);
5878
5880 {
5882
5883 if (con->condeferrable)
5884 conoidlist = lappend_oid(conoidlist, con->oid);
5885 else if (stmt->deferred)
5886 ereport(ERROR,
5888 errmsg("constraint \"%s\" is not deferrable",
5889 constraint->relname)));
5890 found = true;
5891 }
5892
5894
5895 /*
5896 * Once we've found a matching constraint we do not search
5897 * later parts of the search path.
5898 */
5899 if (found)
5900 break;
5901 }
5902
5904
5905 /*
5906 * Not found ?
5907 */
5908 if (!found)
5909 ereport(ERROR,
5911 errmsg("constraint \"%s\" does not exist",
5912 constraint->relname)));
5913 }
5914
5915 /*
5916 * Scan for any possible descendants of the constraints. We append
5917 * whatever we find to the same list that we're scanning; this has the
5918 * effect that we create new scans for those, too, so if there are
5919 * further descendents, we'll also catch them.
5920 */
5921 foreach(lc, conoidlist)
5922 {
5923 Oid parent = lfirst_oid(lc);
5924 ScanKeyData key;
5925 SysScanDesc scan;
5926 HeapTuple tuple;
5927
5928 ScanKeyInit(&key,
5931 ObjectIdGetDatum(parent));
5932
5933 scan = systable_beginscan(conrel, ConstraintParentIndexId, true, NULL, 1, &key);
5934
5935 while (HeapTupleIsValid(tuple = systable_getnext(scan)))
5936 {
5938
5939 conoidlist = lappend_oid(conoidlist, con->oid);
5940 }
5941
5942 systable_endscan(scan);
5943 }
5944
5946
5947 /*
5948 * Now, locate the trigger(s) implementing each of these constraints,
5949 * and make a list of their OIDs.
5950 */
5952
5953 foreach(lc, conoidlist)
5954 {
5955 Oid conoid = lfirst_oid(lc);
5958 HeapTuple htup;
5959
5963 ObjectIdGetDatum(conoid));
5964
5966 NULL, 1, &skey);
5967
5969 {
5971
5972 /*
5973 * Silently skip triggers that are marked as non-deferrable in
5974 * pg_trigger. This is not an error condition, since a
5975 * deferrable RI constraint may have some non-deferrable
5976 * actions.
5977 */
5978 if (pg_trigger->tgdeferrable)
5980 }
5981
5983 }
5984
5986
5987 /*
5988 * Now we can set the trigger states of individual triggers for this
5989 * xact.
5990 */
5991 foreach(lc, tgoidlist)
5992 {
5993 Oid tgoid = lfirst_oid(lc);
5995 bool found = false;
5996 int i;
5997
5998 for (i = 0; i < state->numstates; i++)
5999 {
6000 if (state->trigstates[i].sct_tgoid == tgoid)
6001 {
6002 state->trigstates[i].sct_tgisdeferred = stmt->deferred;
6003 found = true;
6004 break;
6005 }
6006 }
6007 if (!found)
6008 {
6010 SetConstraintStateAddItem(state, tgoid, stmt->deferred);
6011 }
6012 }
6013 }
6014
6015 /*
6016 * SQL99 requires that when a constraint is set to IMMEDIATE, any deferred
6017 * checks against that constraint must be made when the SET CONSTRAINTS
6018 * command is executed -- i.e. the effects of the SET CONSTRAINTS command
6019 * apply retroactively. We've updated the constraints state, so scan the
6020 * list of previously deferred events to fire any that have now become
6021 * immediate.
6022 *
6023 * Obviously, if this was SET ... DEFERRED then it can't have converted
6024 * any unfired events to immediate, so we need do nothing in that case.
6025 */
6026 if (!stmt->deferred)
6027 {
6029 bool snapshot_set = false;
6030
6031 while (afterTriggerMarkEvents(events, NULL, true))
6032 {
6034
6035 /*
6036 * Make sure a snapshot has been established in case trigger
6037 * functions need one. Note that we avoid setting a snapshot if
6038 * we don't find at least one trigger that has to be fired now.
6039 * This is so that BEGIN; SET CONSTRAINTS ...; SET TRANSACTION
6040 * ISOLATION LEVEL SERIALIZABLE; ... works properly. (If we are
6041 * at the start of a transaction it's not possible for any trigger
6042 * events to be queued yet.)
6043 */
6044 if (!snapshot_set)
6045 {
6047 snapshot_set = true;
6048 }
6049
6050 /*
6051 * We can delete fired events if we are at top transaction level,
6052 * but we'd better not if inside a subtransaction, since the
6053 * subtransaction could later get rolled back.
6054 */
6056 !IsSubTransaction()))
6057 break; /* all fired */
6058 }
6059
6060 if (snapshot_set)
6062 }
6063}
6064
6065/* ----------
6066 * AfterTriggerPendingOnRel()
6067 * Test to see if there are any pending after-trigger events for rel.
6068 *
6069 * This is used by TRUNCATE, CLUSTER, ALTER TABLE, etc to detect whether
6070 * it is unsafe to perform major surgery on a relation. Note that only
6071 * local pending events are examined. We assume that having exclusive lock
6072 * on a rel guarantees there are no unserviced events in other backends ---
6073 * but having a lock does not prevent there being such events in our own.
6074 *
6075 * In some scenarios it'd be reasonable to remove pending events (more
6076 * specifically, mark them DONE by the current subxact) but without a lot
6077 * of knowledge of the trigger semantics we can't do this in general.
6078 * ----------
6079 */
6080bool
6082{
6083 AfterTriggerEvent event;
6085 int depth;
6086
6087 /* Scan queued events */
6089 {
6091
6092 /*
6093 * We can ignore completed events. (Even if a DONE flag is rolled
6094 * back by subxact abort, it's OK because the effects of the TRUNCATE
6095 * or whatever must get rolled back too.)
6096 */
6097 if (event->ate_flags & AFTER_TRIGGER_DONE)
6098 continue;
6099
6100 if (evtshared->ats_relid == relid)
6101 return true;
6102 }
6103
6104 /*
6105 * Also scan events queued by incomplete queries. This could only matter
6106 * if TRUNCATE/etc is executed by a function or trigger within an updating
6107 * query on the same relation, which is pretty perverse, but let's check.
6108 */
6109 for (depth = 0; depth <= afterTriggers.query_depth && depth < afterTriggers.maxquerydepth; depth++)
6110 {
6112 {
6114
6115 if (event->ate_flags & AFTER_TRIGGER_DONE)
6116 continue;
6117
6118 if (evtshared->ats_relid == relid)
6119 return true;
6120 }
6121 }
6122
6123 return false;
6124}
6125
6126/* ----------
6127 * AfterTriggerSaveEvent()
6128 *
6129 * Called by ExecA[RS]...Triggers() to queue up the triggers that should
6130 * be fired for an event.
6131 *
6132 * NOTE: this is called whenever there are any triggers associated with
6133 * the event (even if they are disabled). This function decides which
6134 * triggers actually need to be queued. It is also called after each row,
6135 * even if there are no triggers for that event, if there are any AFTER
6136 * STATEMENT triggers for the statement which use transition tables, so that
6137 * the transition tuplestores can be built. Furthermore, if the transition
6138 * capture is happening for UPDATEd rows being moved to another partition due
6139 * to the partition-key being changed, then this function is called once when
6140 * the row is deleted (to capture OLD row), and once when the row is inserted
6141 * into another partition (to capture NEW row). This is done separately because
6142 * DELETE and INSERT happen on different tables.
6143 *
6144 * Transition tuplestores are built now, rather than when events are pulled
6145 * off of the queue because AFTER ROW triggers are allowed to select from the
6146 * transition tables for the statement.
6147 *
6148 * This contains special support to queue the update events for the case where
6149 * a partitioned table undergoing a cross-partition update may have foreign
6150 * keys pointing into it. Normally, a partitioned table's row triggers are
6151 * not fired because the leaf partition(s) which are modified as a result of
6152 * the operation on the partitioned table contain the same triggers which are
6153 * fired instead. But that general scheme can cause problematic behavior with
6154 * foreign key triggers during cross-partition updates, which are implemented
6155 * as DELETE on the source partition followed by INSERT into the destination
6156 * partition. Specifically, firing DELETE triggers would lead to the wrong
6157 * foreign key action to be enforced considering that the original command is
6158 * UPDATE; in this case, this function is called with relinfo as the
6159 * partitioned table, and src_partinfo and dst_partinfo referring to the
6160 * source and target leaf partitions, respectively.
6161 *
6162 * is_crosspart_update is true either when a DELETE event is fired on the
6163 * source partition (which is to be ignored) or an UPDATE event is fired on
6164 * the root partitioned table.
6165 * ----------
6166 */
6167static void
6171 int event, bool row_trigger,
6174 TransitionCaptureState *transition_capture,
6176{
6177 Relation rel = relinfo->ri_RelationDesc;
6178 TriggerDesc *trigdesc = relinfo->ri_TrigDesc;
6181 char relkind = rel->rd_rel->relkind;
6182 int tgtype_event;
6183 int tgtype_level;
6184 int i;
6185 Tuplestorestate *fdw_tuplestore = NULL;
6186
6187 /*
6188 * Check state. We use a normal test not Assert because it is possible to
6189 * reach here in the wrong state given misconfigured RI triggers, in
6190 * particular deferring a cascade action trigger.
6191 */
6192 if (afterTriggers.query_depth < 0)
6193 elog(ERROR, "AfterTriggerSaveEvent() called outside of query");
6194
6195 /* Be sure we have enough space to record events at this query depth. */
6198
6199 /*
6200 * If the directly named relation has any triggers with transition tables,
6201 * then we need to capture transition tuples.
6202 */
6203 if (row_trigger && transition_capture != NULL)
6204 {
6206
6207 /*
6208 * Capture the old tuple in the appropriate transition table based on
6209 * the event.
6210 */
6211 if (!TupIsNull(oldslot))
6212 {
6213 Tuplestorestate *old_tuplestore;
6214
6215 old_tuplestore = GetAfterTriggersTransitionTable(event,
6216 oldslot,
6217 NULL,
6218 transition_capture);
6219 TransitionTableAddTuple(estate, event, transition_capture, relinfo,
6220 oldslot, NULL, old_tuplestore);
6221 }
6222
6223 /*
6224 * Capture the new tuple in the appropriate transition table based on
6225 * the event.
6226 */
6227 if (!TupIsNull(newslot))
6228 {
6229 Tuplestorestate *new_tuplestore;
6230
6231 new_tuplestore = GetAfterTriggersTransitionTable(event,
6232 NULL,
6233 newslot,
6234 transition_capture);
6235 TransitionTableAddTuple(estate, event, transition_capture, relinfo,
6236 newslot, original_insert_tuple, new_tuplestore);
6237 }
6238
6239 /*
6240 * If transition tables are the only reason we're here, return. As
6241 * mentioned above, we can also be here during update tuple routing in
6242 * presence of transition tables, in which case this function is
6243 * called separately for OLD and NEW, so we expect exactly one of them
6244 * to be NULL.
6245 */
6246 if (trigdesc == NULL ||
6247 (event == TRIGGER_EVENT_DELETE && !trigdesc->trig_delete_after_row) ||
6248 (event == TRIGGER_EVENT_INSERT && !trigdesc->trig_insert_after_row) ||
6249 (event == TRIGGER_EVENT_UPDATE && !trigdesc->trig_update_after_row) ||
6251 return;
6252 }
6253
6254 /*
6255 * We normally don't see partitioned tables here for row level triggers
6256 * except in the special case of a cross-partition update. In that case,
6257 * nodeModifyTable.c:ExecCrossPartitionUpdateForeignKey() calls here to
6258 * queue an update event on the root target partitioned table, also
6259 * passing the source and destination partitions and their tuples.
6260 */
6262 rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE ||
6264 TRIGGER_FIRED_BY_UPDATE(event) &&
6266
6267 /*
6268 * Validate the event code and collect the associated tuple CTIDs.
6269 *
6270 * The event code will be used both as a bitmask and an array offset, so
6271 * validation is important to make sure we don't walk off the edge of our
6272 * arrays.
6273 *
6274 * Also, if we're considering statement-level triggers, check whether we
6275 * already queued a set of them for this event, and cancel the prior set
6276 * if so. This preserves the behavior that statement-level triggers fire
6277 * just once per statement and fire after row-level triggers.
6278 */
6279 switch (event)
6280 {
6283 if (row_trigger)
6284 {
6285 Assert(oldslot == NULL);
6286 Assert(newslot != NULL);
6287 ItemPointerCopy(&(newslot->tts_tid), &(new_event.ate_ctid1));
6288 ItemPointerSetInvalid(&(new_event.ate_ctid2));
6289 }
6290 else
6291 {
6292 Assert(oldslot == NULL);
6293 Assert(newslot == NULL);
6294 ItemPointerSetInvalid(&(new_event.ate_ctid1));
6295 ItemPointerSetInvalid(&(new_event.ate_ctid2));
6297 CMD_INSERT, event);
6298 }
6299 break;
6302 if (row_trigger)
6303 {
6304 Assert(oldslot != NULL);
6305 Assert(newslot == NULL);
6306 ItemPointerCopy(&(oldslot->tts_tid), &(new_event.ate_ctid1));
6307 ItemPointerSetInvalid(&(new_event.ate_ctid2));
6308 }
6309 else
6310 {
6311 Assert(oldslot == NULL);
6312 Assert(newslot == NULL);
6313 ItemPointerSetInvalid(&(new_event.ate_ctid1));
6314 ItemPointerSetInvalid(&(new_event.ate_ctid2));
6316 CMD_DELETE, event);
6317 }
6318 break;
6321 if (row_trigger)
6322 {
6323 Assert(oldslot != NULL);
6324 Assert(newslot != NULL);
6325 ItemPointerCopy(&(oldslot->tts_tid), &(new_event.ate_ctid1));
6326 ItemPointerCopy(&(newslot->tts_tid), &(new_event.ate_ctid2));
6327
6328 /*
6329 * Also remember the OIDs of partitions to fetch these tuples
6330 * out of later in AfterTriggerExecute().
6331 */
6332 if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
6333 {
6335 new_event.ate_src_part =
6336 RelationGetRelid(src_partinfo->ri_RelationDesc);
6337 new_event.ate_dst_part =
6338 RelationGetRelid(dst_partinfo->ri_RelationDesc);
6339 }
6340 }
6341 else
6342 {
6343 Assert(oldslot == NULL);
6344 Assert(newslot == NULL);
6345 ItemPointerSetInvalid(&(new_event.ate_ctid1));
6346 ItemPointerSetInvalid(&(new_event.ate_ctid2));
6348 CMD_UPDATE, event);
6349 }
6350 break;
6353 Assert(oldslot == NULL);
6354 Assert(newslot == NULL);
6355 ItemPointerSetInvalid(&(new_event.ate_ctid1));
6356 ItemPointerSetInvalid(&(new_event.ate_ctid2));
6357 break;
6358 default:
6359 elog(ERROR, "invalid after-trigger event code: %d", event);
6360 tgtype_event = 0; /* keep compiler quiet */
6361 break;
6362 }
6363
6364 /* Determine flags */
6365 if (!(relkind == RELKIND_FOREIGN_TABLE && row_trigger))
6366 {
6367 if (row_trigger && event == TRIGGER_EVENT_UPDATE)
6368 {
6369 if (relkind == RELKIND_PARTITIONED_TABLE)
6371 else
6372 new_event.ate_flags = AFTER_TRIGGER_2CTID;
6373 }
6374 else
6375 new_event.ate_flags = AFTER_TRIGGER_1CTID;
6376 }
6377
6378 /* else, we'll initialize ate_flags for each trigger */
6379
6381
6382 /*
6383 * Must convert/copy the source and destination partition tuples into the
6384 * root partitioned table's format/slot, because the processing in the
6385 * loop below expects both oldslot and newslot tuples to be in that form.
6386 */
6387 if (row_trigger && rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
6388 {
6390 TupleConversionMap *map;
6391
6394 if (map)
6396 oldslot,
6397 rootslot);
6398 else
6400
6403 if (map)
6405 newslot,
6406 rootslot);
6407 else
6409 }
6410
6411 for (i = 0; i < trigdesc->numtriggers; i++)
6412 {
6413 Trigger *trigger = &trigdesc->triggers[i];
6414
6415 if (!TRIGGER_TYPE_MATCHES(trigger->tgtype,
6418 tgtype_event))
6419 continue;
6420 if (!TriggerEnabled(estate, relinfo, trigger, event,
6422 continue;
6423
6424 if (relkind == RELKIND_FOREIGN_TABLE && row_trigger)
6425 {
6426 if (fdw_tuplestore == NULL)
6427 {
6428 fdw_tuplestore = GetCurrentFDWTuplestore();
6430 }
6431 else
6432 /* subsequent event for the same tuple */
6434 }
6435
6436 /*
6437 * If the trigger is a foreign key enforcement trigger, there are
6438 * certain cases where we can skip queueing the event because we can
6439 * tell by inspection that the FK constraint will still pass. There
6440 * are also some cases during cross-partition updates of a partitioned
6441 * table where queuing the event can be skipped.
6442 */
6444 {
6445 switch (RI_FKey_trigger_type(trigger->tgfoid))
6446 {
6447 case RI_TRIGGER_PK:
6448
6449 /*
6450 * For cross-partitioned updates of partitioned PK table,
6451 * skip the event fired by the component delete on the
6452 * source leaf partition unless the constraint originates
6453 * in the partition itself (!tgisclone), because the
6454 * update event that will be fired on the root
6455 * (partitioned) target table will be used to perform the
6456 * necessary foreign key enforcement action.
6457 */
6458 if (is_crosspart_update &&
6459 TRIGGER_FIRED_BY_DELETE(event) &&
6460 trigger->tgisclone)
6461 continue;
6462
6463 /* Update or delete on trigger's PK table */
6465 oldslot, newslot))
6466 {
6467 /* skip queuing this event */
6468 continue;
6469 }
6470 break;
6471
6472 case RI_TRIGGER_FK:
6473
6474 /*
6475 * Update on trigger's FK table. We can skip the update
6476 * event fired on a partitioned table during a
6477 * cross-partition of that table, because the insert event
6478 * that is fired on the destination leaf partition would
6479 * suffice to perform the necessary foreign key check.
6480 * Moreover, RI_FKey_fk_upd_check_required() expects to be
6481 * passed a tuple that contains system attributes, most of
6482 * which are not present in the virtual slot belonging to
6483 * a partitioned table.
6484 */
6485 if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ||
6487 oldslot, newslot))
6488 {
6489 /* skip queuing this event */
6490 continue;
6491 }
6492 break;
6493
6494 case RI_TRIGGER_NONE:
6495
6496 /*
6497 * Not an FK trigger. No need to queue the update event
6498 * fired during a cross-partitioned update of a
6499 * partitioned table, because the same row trigger must be
6500 * present in the leaf partition(s) that are affected as
6501 * part of this update and the events fired on them are
6502 * queued instead.
6503 */
6504 if (row_trigger &&
6505 rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
6506 continue;
6507 break;
6508 }
6509 }
6510
6511 /*
6512 * If the trigger is a deferred unique constraint check trigger, only
6513 * queue it if the unique constraint was potentially violated, which
6514 * we know from index insertion time.
6515 */
6516 if (trigger->tgfoid == F_UNIQUE_KEY_RECHECK)
6517 {
6518 if (!list_member_oid(recheckIndexes, trigger->tgconstrindid))
6519 continue; /* Uniqueness definitely not violated */
6520 }
6521
6522 /*
6523 * Fill in event structure and add it to the current query's queue.
6524 * Note we set ats_table to NULL whenever this trigger doesn't use
6525 * transition tables, to improve sharability of the shared event data.
6526 */
6527 new_shared.ats_event =
6528 (event & TRIGGER_EVENT_OPMASK) |
6530 (trigger->tgdeferrable ? AFTER_TRIGGER_DEFERRABLE : 0) |
6531 (trigger->tginitdeferred ? AFTER_TRIGGER_INITDEFERRED : 0);
6532 new_shared.ats_tgoid = trigger->tgoid;
6533 new_shared.ats_relid = RelationGetRelid(rel);
6534 new_shared.ats_rolid = GetUserId();
6535 new_shared.ats_firing_id = 0;
6536 if ((trigger->tgoldtable || trigger->tgnewtable) &&
6537 transition_capture != NULL)
6538 {
6539 switch (event)
6540 {
6542 new_shared.ats_table = transition_capture->tcs_insert_private;
6543 break;
6545 new_shared.ats_table = transition_capture->tcs_update_private;
6546 break;
6548 new_shared.ats_table = transition_capture->tcs_delete_private;
6549 break;
6550 default:
6551 /* Must be TRUNCATE, see switch above */
6552 new_shared.ats_table = NULL;
6553 break;
6554 }
6555 }
6556 else
6557 new_shared.ats_table = NULL;
6558 new_shared.ats_modifiedcols = modifiedCols;
6559
6562 }
6563
6564 /*
6565 * Finally, spool any foreign tuple(s). The tuplestore squashes them to
6566 * minimal tuples, so this loses any system columns. The executor lost
6567 * those columns before us, for an unrelated reason, so this is fine.
6568 */
6569 if (fdw_tuplestore)
6570 {
6571 if (oldslot != NULL)
6572 tuplestore_puttupleslot(fdw_tuplestore, oldslot);
6573 if (newslot != NULL)
6574 tuplestore_puttupleslot(fdw_tuplestore, newslot);
6575 }
6576}
6577
6578/*
6579 * Detect whether we already queued BEFORE STATEMENT triggers for the given
6580 * relation + operation, and set the flag so the next call will report "true".
6581 */
6582static bool
6584{
6585 bool result;
6587
6588 /* Check state, like AfterTriggerSaveEvent. */
6589 if (afterTriggers.query_depth < 0)
6590 elog(ERROR, "before_stmt_triggers_fired() called outside of query");
6591
6592 /* Be sure we have enough space to record events at this query depth. */
6595
6596 /*
6597 * We keep this state in the AfterTriggersTableData that also holds
6598 * transition tables for the relation + operation. In this way, if we are
6599 * forced to make a new set of transition tables because more tuples get
6600 * entered after we've already fired triggers, we will allow a new set of
6601 * statement triggers to get queued.
6602 */
6603 table = GetAfterTriggersTableData(relid, cmdType);
6604 result = table->before_trig_done;
6605 table->before_trig_done = true;
6606 return result;
6607}
6608
6609/*
6610 * If we previously queued a set of AFTER STATEMENT triggers for the given
6611 * relation + operation, and they've not been fired yet, cancel them. The
6612 * caller will queue a fresh set that's after any row-level triggers that may
6613 * have been queued by the current sub-statement, preserving (as much as
6614 * possible) the property that AFTER ROW triggers fire before AFTER STATEMENT
6615 * triggers, and that the latter only fire once. This deals with the
6616 * situation where several FK enforcement triggers sequentially queue triggers
6617 * for the same table into the same trigger query level. We can't fully
6618 * prevent odd behavior though: if there are AFTER ROW triggers taking
6619 * transition tables, we don't want to change the transition tables once the
6620 * first such trigger has seen them. In such a case, any additional events
6621 * will result in creating new transition tables and allowing new firings of
6622 * statement triggers.
6623 *
6624 * This also saves the current event list location so that a later invocation
6625 * of this function can cheaply find the triggers we're about to queue and
6626 * cancel them.
6627 */
6628static void
6630{
6633
6634 /*
6635 * We keep this state in the AfterTriggersTableData that also holds
6636 * transition tables for the relation + operation. In this way, if we are
6637 * forced to make a new set of transition tables because more tuples get
6638 * entered after we've already fired triggers, we will allow a new set of
6639 * statement triggers to get queued without canceling the old ones.
6640 */
6641 table = GetAfterTriggersTableData(relid, cmdType);
6642
6643 if (table->after_trig_done)
6644 {
6645 /*
6646 * We want to start scanning from the tail location that existed just
6647 * before we inserted any statement triggers. But the events list
6648 * might've been entirely empty then, in which case scan from the
6649 * current head.
6650 */
6651 AfterTriggerEvent event;
6653
6654 if (table->after_trig_events.tail)
6655 {
6656 chunk = table->after_trig_events.tail;
6657 event = (AfterTriggerEvent) table->after_trig_events.tailfree;
6658 }
6659 else
6660 {
6661 chunk = qs->events.head;
6662 event = NULL;
6663 }
6664
6666 {
6667 if (event == NULL)
6670 {
6672
6673 /*
6674 * Exit loop when we reach events that aren't AS triggers for
6675 * the target relation.
6676 */
6677 if (evtshared->ats_relid != relid)
6678 goto done;
6679 if ((evtshared->ats_event & TRIGGER_EVENT_OPMASK) != tgevent)
6680 goto done;
6681 if (!TRIGGER_FIRED_FOR_STATEMENT(evtshared->ats_event))
6682 goto done;
6683 if (!TRIGGER_FIRED_AFTER(evtshared->ats_event))
6684 goto done;
6685 /* OK, mark it DONE */
6686 event->ate_flags &= ~AFTER_TRIGGER_IN_PROGRESS;
6687 event->ate_flags |= AFTER_TRIGGER_DONE;
6688 }
6689 /* signal we must reinitialize event ptr for next chunk */
6690 event = NULL;
6691 }
6692 }
6693done:
6694
6695 /* In any case, save current insertion point for next time */
6696 table->after_trig_done = true;
6697 table->after_trig_events = qs->events;
6698}
6699
6700/*
6701 * GUC assign_hook for session_replication_role
6702 */
6703void
6705{
6706 /*
6707 * Must flush the plan cache when changing replication role; but don't
6708 * flush unnecessarily.
6709 */
6712}
6713
6714/*
6715 * SQL function pg_trigger_depth()
6716 */
6717Datum
6722
6723/*
6724 * Check whether a trigger modified a virtual generated column and replace the
6725 * value with null if so.
6726 *
6727 * We need to check this so that we don't end up storing a non-null value in a
6728 * virtual generated column.
6729 *
6730 * We don't need to check for stored generated columns, since those will be
6731 * overwritten later anyway.
6732 */
6733static HeapTuple
6735{
6736 if (!(tupdesc->constr && tupdesc->constr->has_generated_virtual))
6737 return tuple;
6738
6739 for (int i = 0; i < tupdesc->natts; i++)
6740 {
6741 if (TupleDescAttr(tupdesc, i)->attgenerated == ATTRIBUTE_GENERATED_VIRTUAL)
6742 {
6743 if (!heap_attisnull(tuple, i + 1, tupdesc))
6744 {
6745 int replCol = i + 1;
6746 Datum replValue = 0;
6747 bool replIsnull = true;
6748
6749 tuple = heap_modify_tuple_by_cols(tuple, tupdesc, 1, &replCol, &replValue, &replIsnull);
6750 }
6751 }
6752 }
6753
6754 return tuple;
6755}
AclResult
Definition acl.h:182
@ ACLCHECK_OK
Definition acl.h:183
@ ACLCHECK_NOT_OWNER
Definition acl.h:185
void aclcheck_error(AclResult aclerr, ObjectType objtype, const char *objectname)
Definition aclchk.c:2654
AclResult object_aclcheck(Oid classid, Oid objectid, Oid roleid, AclMode mode)
Definition aclchk.c:3836
bool object_ownercheck(Oid classid, Oid objectid, Oid roleid)
Definition aclchk.c:4090
AclResult pg_class_aclcheck(Oid table_oid, Oid roleid, AclMode mode)
Definition aclchk.c:4039
#define InvalidAttrNumber
Definition attnum.h:23
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition bitmapset.c:142
bool bms_is_member(int x, const Bitmapset *a)
Definition bitmapset.c:510
Bitmapset * bms_copy(const Bitmapset *a)
Definition bitmapset.c:122
static Datum values[MAXATTR]
Definition bootstrap.c:155
#define CStringGetTextDatum(s)
Definition builtins.h:97
#define TextDatumGetCString(d)
Definition builtins.h:98
Datum byteain(PG_FUNCTION_ARGS)
Definition bytea.c:201
#define NameStr(name)
Definition c.h:765
#define Min(x, y)
Definition c.h:997
#define Max(x, y)
Definition c.h:991
#define Assert(condition)
Definition c.h:873
#define FLEXIBLE_ARRAY_MEMBER
Definition c.h:480
int16_t int16
Definition c.h:541
#define unlikely(x)
Definition c.h:412
uint32_t uint32
Definition c.h:546
uint32 CommandId
Definition c.h:680
#define OidIsValid(objectId)
Definition c.h:788
size_t Size
Definition c.h:619
bool IsSystemRelation(Relation relation)
Definition catalog.c:74
Oid GetNewOidWithIndex(Relation relation, Oid indexId, AttrNumber oidcolumn)
Definition catalog.c:448
bool IsSystemClass(Oid relid, Form_pg_class reltuple)
Definition catalog.c:86
void recordDependencyOnExpr(const ObjectAddress *depender, Node *expr, List *rtable, DependencyType behavior)
@ DEPENDENCY_AUTO
Definition dependency.h:34
@ DEPENDENCY_INTERNAL
Definition dependency.h:35
@ DEPENDENCY_PARTITION_PRI
Definition dependency.h:36
@ DEPENDENCY_PARTITION_SEC
Definition dependency.h:37
@ DEPENDENCY_NORMAL
Definition dependency.h:33
int errdetail(const char *fmt,...)
Definition elog.c:1216
int errhint(const char *fmt,...)
Definition elog.c:1330
int errcode(int sqlerrcode)
Definition elog.c:863
int errmsg(const char *fmt,...)
Definition elog.c:1080
#define PG_TRY(...)
Definition elog.h:372
#define PG_END_TRY(...)
Definition elog.h:397
#define ERROR
Definition elog.h:39
#define elog(elevel,...)
Definition elog.h:226
#define NOTICE
Definition elog.h:35
#define PG_FINALLY(...)
Definition elog.h:389
#define ereport(elevel,...)
Definition elog.h:150
ExprState * ExecPrepareQual(List *qual, EState *estate)
Definition execExpr.c:793
LockTupleMode ExecUpdateLockMode(EState *estate, ResultRelInfo *relinfo)
Definition execMain.c:2534
ResultRelInfo * ExecGetTriggerResultRel(EState *estate, Oid relid, ResultRelInfo *rootRelInfo)
Definition execMain.c:1347
bool ExecPartitionCheck(ResultRelInfo *resultRelInfo, TupleTableSlot *slot, EState *estate, bool emitError)
Definition execMain.c:1860
TupleTableSlot * EvalPlanQual(EPQState *epqstate, Relation relation, Index rti, TupleTableSlot *inputslot)
Definition execMain.c:2653
void ExecCloseResultRelations(EState *estate)
Definition execMain.c:1579
void ExecResetTupleTable(List *tupleTable, bool shouldFree)
TupleTableSlot * MakeSingleTupleTableSlot(TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
const TupleTableSlotOps TTSOpsVirtual
Definition execTuples.c:84
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
HeapTuple ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree)
const TupleTableSlotOps TTSOpsMinimalTuple
Definition execTuples.c:86
void ExecForceStoreHeapTuple(HeapTuple tuple, TupleTableSlot *slot, bool shouldFree)
TupleTableSlot * ExecGetTriggerNewSlot(EState *estate, ResultRelInfo *relInfo)
Definition execUtils.c:1226
TupleConversionMap * ExecGetChildToRootMap(ResultRelInfo *resultRelInfo)
Definition execUtils.c:1300
TupleTableSlot * ExecGetTriggerOldSlot(EState *estate, ResultRelInfo *relInfo)
Definition execUtils.c:1204
void FreeExecutorState(EState *estate)
Definition execUtils.c:192
Bitmapset * ExecGetAllUpdatedCols(ResultRelInfo *relinfo, EState *estate)
Definition execUtils.c:1418
EState * CreateExecutorState(void)
Definition execUtils.c:88
#define GetPerTupleExprContext(estate)
Definition executor.h:656
#define GetPerTupleMemoryContext(estate)
Definition executor.h:661
static bool ExecQual(ExprState *state, ExprContext *econtext)
Definition executor.h:519
#define palloc_object(type)
Definition fe_memutils.h:74
#define palloc0_object(type)
Definition fe_memutils.h:75
void fmgr_info(Oid functionId, FmgrInfo *finfo)
Definition fmgr.c:128
#define DatumGetByteaPP(X)
Definition fmgr.h:292
#define InitFunctionCallInfoData(Fcinfo, Flinfo, Nargs, Collation, Context, Resultinfo)
Definition fmgr.h:150
#define DirectFunctionCall1(func, arg1)
Definition fmgr.h:684
#define LOCAL_FCINFO(name, nargs)
Definition fmgr.h:110
#define FunctionCallInvoke(fcinfo)
Definition fmgr.h:172
#define PG_RETURN_INT32(x)
Definition fmgr.h:355
#define PG_FUNCTION_ARGS
Definition fmgr.h:193
void systable_endscan(SysScanDesc sysscan)
Definition genam.c:603
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition genam.c:514
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition genam.c:388
bool allowSystemTableMods
Definition globals.c:130
int work_mem
Definition globals.c:131
Oid MyDatabaseId
Definition globals.c:94
#define newval
HeapTuple heap_copytuple(HeapTuple tuple)
Definition heaptuple.c:778
HeapTuple heap_modify_tuple_by_cols(HeapTuple tuple, TupleDesc tupleDesc, int nCols, const int *replCols, const Datum *replValues, const bool *replIsnull)
Definition heaptuple.c:1278
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition heaptuple.c:1117
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition heaptuple.c:456
void heap_freetuple(HeapTuple htup)
Definition heaptuple.c:1435
#define HeapTupleIsValid(tuple)
Definition htup.h:78
static void * GETSTRUCT(const HeapTupleData *tuple)
static Datum fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
#define stmt
void CatalogTupleUpdate(Relation heapRel, const ItemPointerData *otid, HeapTuple tup)
Definition indexing.c:313
void CatalogTupleInsert(Relation heapRel, HeapTuple tup)
Definition indexing.c:233
void CatalogTupleDelete(Relation heapRel, const ItemPointerData *tid)
Definition indexing.c:365
long val
Definition informix.c:689
void InstrStartNode(Instrumentation *instr)
Definition instrument.c:68
void InstrStopNode(Instrumentation *instr, double nTuples)
Definition instrument.c:84
int2vector * buildint2vector(const int16 *int2s, int n)
Definition int.c:114
void CacheInvalidateRelcache(Relation relation)
Definition inval.c:1635
void CacheInvalidateRelcacheByTuple(HeapTuple classTuple)
Definition inval.c:1669
int j
Definition isn.c:78
int i
Definition isn.c:77
static void ItemPointerSetInvalid(ItemPointerData *pointer)
Definition itemptr.h:184
static void ItemPointerCopy(const ItemPointerData *fromPointer, ItemPointerData *toPointer)
Definition itemptr.h:172
static bool ItemPointerIsValid(const ItemPointerData *pointer)
Definition itemptr.h:83
List * lappend(List *list, void *datum)
Definition list.c:339
List * lappend_oid(List *list, Oid datum)
Definition list.c:375
void list_free(List *list)
Definition list.c:1546
bool list_member_oid(const List *list, Oid datum)
Definition list.c:722
void list_free_deep(List *list)
Definition list.c:1560
void LockRelationOid(Oid relid, LOCKMODE lockmode)
Definition lmgr.c:107
int LOCKMODE
Definition lockdefs.h:26
#define NoLock
Definition lockdefs.h:34
#define AccessExclusiveLock
Definition lockdefs.h:43
#define ShareRowExclusiveLock
Definition lockdefs.h:41
#define AccessShareLock
Definition lockdefs.h:36
#define RowExclusiveLock
Definition lockdefs.h:38
@ LockWaitBlock
Definition lockoptions.h:39
LockTupleMode
Definition lockoptions.h:50
@ LockTupleExclusive
Definition lockoptions.h:58
char * get_rel_name(Oid relid)
Definition lsyscache.c:2078
char * get_database_name(Oid dbid)
Definition lsyscache.c:1242
char get_rel_relkind(Oid relid)
Definition lsyscache.c:2153
char * get_namespace_name(Oid nspid)
Definition lsyscache.c:3516
Oid get_func_rettype(Oid funcid)
Definition lsyscache.c:1805
Alias * makeAlias(const char *aliasname, List *colnames)
Definition makefuncs.c:438
List * make_ands_implicit(Expr *clause)
Definition makefuncs.c:810
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition mcxt.c:1232
void MemoryContextReset(MemoryContext context)
Definition mcxt.c:403
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition mcxt.c:1266
MemoryContext TopTransactionContext
Definition mcxt.c:171
char * pstrdup(const char *in)
Definition mcxt.c:1781
void * repalloc(void *pointer, Size size)
Definition mcxt.c:1632
void pfree(void *pointer)
Definition mcxt.c:1616
void * palloc(Size size)
Definition mcxt.c:1387
MemoryContext CurTransactionContext
Definition mcxt.c:172
MemoryContext CurrentMemoryContext
Definition mcxt.c:160
MemoryContext CacheMemoryContext
Definition mcxt.c:169
void MemoryContextDelete(MemoryContext context)
Definition mcxt.c:472
#define AllocSetContextCreate
Definition memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition memutils.h:160
#define ALLOCSET_SMALL_SIZES
Definition memutils.h:170
#define SECURITY_LOCAL_USERID_CHANGE
Definition miscadmin.h:318
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition miscinit.c:612
bool InSecurityRestrictedOperation(void)
Definition miscinit.c:639
Oid GetUserId(void)
Definition miscinit.c:469
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition miscinit.c:619
Datum nameout(PG_FUNCTION_ARGS)
Definition name.c:71
void namestrcpy(Name name, const char *str)
Definition name.c:233
Datum namein(PG_FUNCTION_ARGS)
Definition name.c:48
char * NameListToString(const List *names)
Definition namespace.c:3664
Oid LookupExplicitNamespace(const char *nspname, bool missing_ok)
Definition namespace.c:3455
List * fetch_search_path(bool includeImplicit)
Definition namespace.c:4889
Oid RangeVarGetRelidExtended(const RangeVar *relation, LOCKMODE lockmode, uint32 flags, RangeVarGetRelidCallback callback, void *callback_arg)
Definition namespace.c:440
#define RangeVarGetRelid(relation, lockmode, missing_ok)
Definition namespace.h:98
TupleTableSlot * ExecGetUpdateNewTuple(ResultRelInfo *relinfo, TupleTableSlot *planSlot, TupleTableSlot *oldSlot)
#define copyObject(obj)
Definition nodes.h:232
CmdType
Definition nodes.h:273
@ CMD_MERGE
Definition nodes.h:279
@ CMD_INSERT
Definition nodes.h:277
@ CMD_DELETE
Definition nodes.h:278
@ CMD_UPDATE
Definition nodes.h:276
#define InvokeObjectPostAlterHook(classId, objectId, subId)
#define InvokeObjectPostCreateHookArg(classId, objectId, subId, is_internal)
ObjectType get_relkind_objtype(char relkind)
#define ObjectAddressSet(addr, class_id, object_id)
char * nodeToString(const void *obj)
Definition outfuncs.c:802
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition palloc.h:124
Node * transformWhereClause(ParseState *pstate, Node *clause, ParseExprKind exprKind, const char *constructName)
void assign_expr_collations(ParseState *pstate, Node *expr)
Oid LookupFuncName(List *funcname, int nargs, const Oid *argtypes, bool missing_ok)
void free_parsestate(ParseState *pstate)
Definition parse_node.c:72
int parser_errposition(ParseState *pstate, int location)
Definition parse_node.c:106
ParseState * make_parsestate(ParseState *parentParseState)
Definition parse_node.c:39
@ EXPR_KIND_TRIGGER_WHEN
Definition parse_node.h:77
ParseNamespaceItem * addRangeTableEntryForRelation(ParseState *pstate, Relation rel, int lockmode, Alias *alias, bool inh, bool inFromCl)
void addNSItemToQuery(ParseState *pstate, ParseNamespaceItem *nsitem, bool addToJoinList, bool addToRelNameSpace, bool addToVarNameSpace)
int attnameAttNum(Relation rd, const char *attname, bool sysColOK)
@ OBJECT_FUNCTION
#define ACL_EXECUTE
Definition parsenodes.h:83
#define ACL_TRIGGER
Definition parsenodes.h:82
PartitionDesc RelationGetPartitionDesc(Relation rel, bool omit_detached)
Definition partdesc.c:71
List * map_partition_varattnos(List *expr, int fromrel_varno, Relation to_rel, Relation from_rel)
Definition partition.c:222
Oid get_partition_parent(Oid relid, bool even_if_detached)
Definition partition.c:53
int16 attnum
void * arg
int errdetail_relkind_not_supported(char relkind)
Definition pg_class.c:24
FormData_pg_class * Form_pg_class
Definition pg_class.h:156
#define NAMEDATALEN
Oid CreateConstraintEntry(const char *constraintName, Oid constraintNamespace, char constraintType, bool isDeferrable, bool isDeferred, bool isEnforced, bool isValidated, Oid parentConstrId, Oid relId, const int16 *constraintKey, int constraintNKeys, int constraintNTotalKeys, Oid domainId, Oid indexRelId, Oid foreignRelId, const int16 *foreignKey, const Oid *pfEqOp, const Oid *ppEqOp, const Oid *ffEqOp, int foreignNKeys, char foreignUpdateType, char foreignDeleteType, const int16 *fkDeleteSetCols, int numFkDeleteSetCols, char foreignMatchType, const Oid *exclOp, Node *conExpr, const char *conBin, bool conIsLocal, int16 conInhCount, bool conNoInherit, bool conPeriod, bool is_internal)
FormData_pg_constraint * Form_pg_constraint
const void size_t len
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition pg_depend.c:45
long deleteDependencyRecordsForClass(Oid classId, Oid objectId, Oid refclassId, char deptype)
Definition pg_depend.c:351
long deleteDependencyRecordsFor(Oid classId, Oid objectId, bool skipExtensionDeps)
Definition pg_depend.c:301
List * find_all_inheritors(Oid parentrelId, LOCKMODE lockmode, List **numparents)
bool has_superclass(Oid relationId)
#define lfirst(lc)
Definition pg_list.h:172
#define lfirst_node(type, lc)
Definition pg_list.h:176
static int list_length(const List *l)
Definition pg_list.h:152
#define NIL
Definition pg_list.h:68
#define list_make1_oid(x1)
Definition pg_list.h:242
#define lfirst_oid(lc)
Definition pg_list.h:174
static const struct lconv_member_info table[]
FormData_pg_trigger * Form_pg_trigger
Definition pg_trigger.h:80
#define ERRCODE_T_R_SERIALIZATION_FAILURE
Definition pgbench.c:77
void pgstat_init_function_usage(FunctionCallInfo fcinfo, PgStat_FunctionCallUsage *fcu)
void pgstat_end_function_usage(PgStat_FunctionCallUsage *fcu, bool finalize)
void ResetPlanCache(void)
Definition plancache.c:2322
#define snprintf
Definition port.h:260
static Datum PointerGetDatum(const void *X)
Definition postgres.h:352
static Datum Int16GetDatum(int16 X)
Definition postgres.h:182
static Datum BoolGetDatum(bool X)
Definition postgres.h:112
static Datum ObjectIdGetDatum(Oid X)
Definition postgres.h:262
static char * DatumGetCString(Datum X)
Definition postgres.h:365
static Datum NameGetDatum(const NameData *X)
Definition postgres.h:403
uint64_t Datum
Definition postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition postgres.h:342
static Datum CStringGetDatum(const char *X)
Definition postgres.h:380
static Datum CharGetDatum(char X)
Definition postgres.h:132
#define InvalidOid
unsigned int Oid
static void test(void)
static int fb(int x)
#define PRS2_OLD_VARNO
Definition primnodes.h:250
#define PRS2_NEW_VARNO
Definition primnodes.h:251
#define OUTER_VAR
Definition primnodes.h:243
#define INNER_VAR
Definition primnodes.h:242
void * stringToNode(const char *str)
Definition read.c:90
#define RelationHasReferenceCountZero(relation)
Definition rel.h:498
#define RelationGetRelid(relation)
Definition rel.h:514
#define RelationGetDescr(relation)
Definition rel.h:540
#define RelationGetRelationName(relation)
Definition rel.h:548
#define RelationGetNamespace(relation)
Definition rel.h:555
ResourceOwner CurrentResourceOwner
Definition resowner.c:173
ResourceOwner CurTransactionResourceOwner
Definition resowner.c:174
Node * expand_generated_columns_in_expr(Node *node, Relation rel, int rt_index)
void ChangeVarNodes(Node *node, int rt_index, int new_index, int sublevels_up)
bool RI_FKey_pk_upd_check_required(Trigger *trigger, Relation pk_rel, TupleTableSlot *oldslot, TupleTableSlot *newslot)
bool RI_FKey_fk_upd_check_required(Trigger *trigger, Relation fk_rel, TupleTableSlot *oldslot, TupleTableSlot *newslot)
int RI_FKey_trigger_type(Oid tgfoid)
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition scankey.c:76
Snapshot GetTransactionSnapshot(void)
Definition snapmgr.c:272
void PushActiveSnapshot(Snapshot snapshot)
Definition snapmgr.c:682
void PopActiveSnapshot(void)
Definition snapmgr.c:775
#define SnapshotAny
Definition snapmgr.h:33
void relation_close(Relation relation, LOCKMODE lockmode)
Definition relation.c:205
Relation relation_open(Oid relationId, LOCKMODE lockmode)
Definition relation.c:47
#define BTEqualStrategyNumber
Definition stratnum.h:31
#define ERRCODE_DUPLICATE_OBJECT
Definition streamutil.c:30
struct AfterTriggerEventChunk * next
Definition trigger.c:3763
ItemPointerData ate_ctid1
Definition trigger.c:3725
ItemPointerData ate_ctid2
Definition trigger.c:3726
ItemPointerData ate_ctid1
Definition trigger.c:3733
ItemPointerData ate_ctid2
Definition trigger.c:3710
TriggerFlags ate_flags
Definition trigger.c:3708
ItemPointerData ate_ctid1
Definition trigger.c:3709
AfterTriggerEventChunk * head
Definition trigger.c:3775
AfterTriggerEventChunk * tail
Definition trigger.c:3776
TriggerEvent ats_event
Definition trigger.c:3695
struct AfterTriggersTableData * ats_table
Definition trigger.c:3700
CommandId ats_firing_id
Definition trigger.c:3699
Bitmapset * ats_modifiedcols
Definition trigger.c:3701
SetConstraintState state
Definition trigger.c:3882
AfterTriggersQueryData * query_stack
Definition trigger.c:3887
MemoryContext event_cxt
Definition trigger.c:3884
CommandId firing_counter
Definition trigger.c:3881
AfterTriggersTransData * trans_stack
Definition trigger.c:3892
AfterTriggerEventList events
Definition trigger.c:3883
Tuplestorestate * fdw_tuplestore
Definition trigger.c:3899
AfterTriggerEventList events
Definition trigger.c:3898
Tuplestorestate * new_tuplestore
Definition trigger.c:3925
TupleTableSlot * storeslot
Definition trigger.c:3927
Tuplestorestate * old_tuplestore
Definition trigger.c:3923
AfterTriggerEventList after_trig_events
Definition trigger.c:3920
AfterTriggerEventList events
Definition trigger.c:3907
SetConstraintState state
Definition trigger.c:3906
CommandId firing_counter
Definition trigger.c:3909
MemoryContext es_query_cxt
Definition execnodes.h:712
List * es_tupleTable
Definition execnodes.h:714
CommandId es_output_cid
Definition execnodes.h:684
Snapshot es_snapshot
Definition execnodes.h:662
TupleTableSlot * ecxt_innertuple
Definition execnodes.h:277
TupleTableSlot * ecxt_outertuple
Definition execnodes.h:279
Oid fn_oid
Definition fmgr.h:59
ItemPointerData t_self
Definition htup.h:65
Definition pg_list.h:54
Definition nodes.h:135
const char * p_sourcetext
Definition parse_node.h:195
List * p_rtable
Definition parse_node.h:196
char * relname
Definition primnodes.h:83
char * catalogname
Definition primnodes.h:77
char * schemaname
Definition primnodes.h:80
TriggerDesc * trigdesc
Definition rel.h:117
TupleDesc rd_att
Definition rel.h:112
Oid rd_id
Definition rel.h:113
Form_pg_class rd_rel
Definition rel.h:111
SetConstraintTriggerData trigstates[FLEXIBLE_ARRAY_MEMBER]
Definition trigger.c:3631
CommandId cmax
Definition tableam.h:151
TupleTableSlot * tcs_original_insert_tuple
Definition trigger.h:76
struct AfterTriggersTableData * tcs_insert_private
Definition trigger.h:81
struct AfterTriggersTableData * tcs_update_private
Definition trigger.h:82
struct AfterTriggersTableData * tcs_delete_private
Definition trigger.h:83
Tuplestorestate * tg_oldtable
Definition trigger.h:41
NodeTag type
Definition trigger.h:33
Tuplestorestate * tg_newtable
Definition trigger.h:42
TriggerEvent tg_event
Definition trigger.h:34
Trigger * tg_trigger
Definition trigger.h:38
int numtriggers
Definition reltrigger.h:50
bool trig_delete_before_row
Definition reltrigger.h:66
bool trig_update_instead_row
Definition reltrigger.h:63
Trigger * triggers
Definition reltrigger.h:49
bool trig_delete_instead_row
Definition reltrigger.h:68
bool trig_update_after_row
Definition reltrigger.h:62
bool trig_insert_instead_row
Definition reltrigger.h:58
bool trig_update_new_table
Definition reltrigger.h:77
bool trig_insert_after_row
Definition reltrigger.h:57
bool trig_update_after_statement
Definition reltrigger.h:65
bool trig_update_before_row
Definition reltrigger.h:61
bool trig_truncate_before_statement
Definition reltrigger.h:72
bool trig_insert_new_table
Definition reltrigger.h:75
bool trig_update_before_statement
Definition reltrigger.h:64
bool trig_truncate_after_statement
Definition reltrigger.h:73
bool trig_insert_before_statement
Definition reltrigger.h:59
bool trig_delete_old_table
Definition reltrigger.h:78
bool trig_delete_after_row
Definition reltrigger.h:67
bool trig_insert_before_row
Definition reltrigger.h:56
bool trig_delete_after_statement
Definition reltrigger.h:70
bool trig_delete_before_statement
Definition reltrigger.h:69
bool trig_update_old_table
Definition reltrigger.h:76
bool trig_insert_after_statement
Definition reltrigger.h:60
Oid tgoid
Definition reltrigger.h:25
char * tgname
Definition reltrigger.h:27
Oid tgfoid
Definition reltrigger.h:28
bool has_generated_virtual
Definition tupdesc.h:47
AttrMap * attrMap
Definition tupconvert.h:28
TupleDesc outdesc
Definition tupconvert.h:27
TupleConstr * constr
Definition tupdesc.h:141
ParseLoc location
Definition primnodes.h:310
AttrNumber varattno
Definition primnodes.h:274
int varno
Definition primnodes.h:269
Definition c.h:706
bool superuser(void)
Definition superuser.c:46
#define FirstLowInvalidHeapAttributeNumber
Definition sysattr.h:27
void ReleaseSysCache(HeapTuple tuple)
Definition syscache.c:264
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition syscache.c:220
#define SearchSysCacheCopy1(cacheId, key1)
Definition syscache.h:91
void table_close(Relation relation, LOCKMODE lockmode)
Definition table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition table.c:40
Relation table_openrv(const RangeVar *relation, LOCKMODE lockmode)
Definition table.c:83
TM_Result
Definition tableam.h:73
@ TM_Ok
Definition tableam.h:78
@ TM_Deleted
Definition tableam.h:93
@ TM_Updated
Definition tableam.h:90
@ TM_SelfModified
Definition tableam.h:84
@ TM_Invisible
Definition tableam.h:81
static TM_Result table_tuple_lock(Relation rel, ItemPointer tid, Snapshot snapshot, TupleTableSlot *slot, CommandId cid, LockTupleMode mode, LockWaitPolicy wait_policy, uint8 flags, TM_FailureData *tmfd)
Definition tableam.h:1559
#define TUPLE_LOCK_FLAG_FIND_LAST_VERSION
Definition tableam.h:267
static bool table_tuple_fetch_row_version(Relation rel, ItemPointer tid, Snapshot snapshot, TupleTableSlot *slot)
Definition tableam.h:1263
static SetConstraintState SetConstraintStateCopy(SetConstraintState origstate)
Definition trigger.c:5716
static void cancel_prior_stmt_triggers(Oid relid, CmdType cmdType, int tgevent)
Definition trigger.c:6629
static AfterTriggersData afterTriggers
Definition trigger.c:3930
#define AFTER_TRIGGER_FDW_FETCH
Definition trigger.c:3686
static SetConstraintState SetConstraintStateAddItem(SetConstraintState state, Oid tgoid, bool tgisdeferred)
Definition trigger.c:5736
#define AFTER_TRIGGER_IN_PROGRESS
Definition trigger.c:3683
static void renametrig_internal(Relation tgrel, Relation targetrel, HeapTuple trigtup, const char *newname, const char *expected_name)
Definition trigger.c:1582
bool ExecBRUpdateTriggers(EState *estate, EPQState *epqstate, ResultRelInfo *relinfo, ItemPointer tupleid, HeapTuple fdw_trigtuple, TupleTableSlot *newslot, TM_Result *tmresult, TM_FailureData *tmfd, bool is_merge_update)
Definition trigger.c:2971
TransitionCaptureState * MakeTransitionCaptureState(TriggerDesc *trigdesc, Oid relid, CmdType cmdType)
Definition trigger.c:4957
static bool GetTupleForTrigger(EState *estate, EPQState *epqstate, ResultRelInfo *relinfo, ItemPointer tid, LockTupleMode lockmode, TupleTableSlot *oldslot, bool do_epq_recheck, TupleTableSlot **epqslot, TM_Result *tmresultp, TM_FailureData *tmfdp)
Definition trigger.c:3344
void AfterTriggerBeginXact(void)
Definition trigger.c:5083
void ExecARDeleteTriggers(EState *estate, ResultRelInfo *relinfo, ItemPointer tupleid, HeapTuple fdw_trigtuple, TransitionCaptureState *transition_capture, bool is_crosspart_update)
Definition trigger.c:2801
void ExecBSInsertTriggers(EState *estate, ResultRelInfo *relinfo)
Definition trigger.c:2401
static void afterTriggerDeleteHeadEventChunk(AfterTriggersQueryData *qs)
Definition trigger.c:4265
static AfterTriggersTableData * GetAfterTriggersTableData(Oid relid, CmdType cmdType)
Definition trigger.c:4866
static Bitmapset * afterTriggerCopyBitmap(Bitmapset *src)
Definition trigger.c:4052
#define CHUNK_DATA_START(cptr)
Definition trigger.c:3770
static void RangeVarCallbackForRenameTrigger(const RangeVar *rv, Oid relid, Oid oldrelid, void *arg)
Definition trigger.c:1420
bool ExecBRInsertTriggers(EState *estate, ResultRelInfo *relinfo, TupleTableSlot *slot)
Definition trigger.c:2465
void AfterTriggerEndSubXact(bool isCommit)
Definition trigger.c:5438
uint32 TriggerFlags
Definition trigger.c:3679
void ExecBSTruncateTriggers(EState *estate, ResultRelInfo *relinfo)
Definition trigger.c:3280
#define AFTER_TRIGGER_TUP_BITS
Definition trigger.c:3690
static bool TriggerEnabled(EState *estate, ResultRelInfo *relinfo, Trigger *trigger, TriggerEvent event, Bitmapset *modifiedCols, TupleTableSlot *oldslot, TupleTableSlot *newslot)
Definition trigger.c:3482
void FreeTriggerDesc(TriggerDesc *trigdesc)
Definition trigger.c:2145
bool ExecIRDeleteTriggers(EState *estate, ResultRelInfo *relinfo, HeapTuple trigtuple)
Definition trigger.c:2848
#define AFTER_TRIGGER_1CTID
Definition trigger.c:3687
Datum pg_trigger_depth(PG_FUNCTION_ARGS)
Definition trigger.c:6718
void ExecBSDeleteTriggers(EState *estate, ResultRelInfo *relinfo)
Definition trigger.c:2630
#define MAX_CHUNK_SIZE
void EnableDisableTrigger(Relation rel, const char *tgname, Oid tgparent, char fires_when, bool skip_system, bool recurse, LOCKMODE lockmode)
Definition trigger.c:1726
static void AfterTriggerFreeQuery(AfterTriggersQueryData *qs)
Definition trigger.c:5226
static HeapTuple ExecCallTriggerFunc(TriggerData *trigdata, int tgindx, FmgrInfo *finfo, Instrumentation *instr, MemoryContext per_tuple_context)
Definition trigger.c:2309
static void afterTriggerFreeEventList(AfterTriggerEventList *events)
Definition trigger.c:4204
const char * FindTriggerIncompatibleWithInheritance(TriggerDesc *trigdesc)
Definition trigger.c:2277
bool ExecIRInsertTriggers(EState *estate, ResultRelInfo *relinfo, TupleTableSlot *slot)
Definition trigger.c:2569
#define GetTriggerSharedData(evt)
Definition trigger.c:3751
static int MyTriggerDepth
Definition trigger.c:66
#define for_each_chunk_from(cptr)
Definition trigger.c:3792
static bool afterTriggerMarkEvents(AfterTriggerEventList *events, AfterTriggerEventList *move_list, bool immediate_only)
Definition trigger.c:4613
static Tuplestorestate * GetAfterTriggersTransitionTable(int event, TupleTableSlot *oldslot, TupleTableSlot *newslot, TransitionCaptureState *transition_capture)
Definition trigger.c:5535
void ExecASTruncateTriggers(EState *estate, ResultRelInfo *relinfo)
Definition trigger.c:3327
static bool afterTriggerInvokeEvents(AfterTriggerEventList *events, CommandId firing_id, EState *estate, bool delete_ok)
Definition trigger.c:4697
void ExecARUpdateTriggers(EState *estate, ResultRelInfo *relinfo, ResultRelInfo *src_partinfo, ResultRelInfo *dst_partinfo, ItemPointer tupleid, HeapTuple fdw_trigtuple, TupleTableSlot *newslot, List *recheckIndexes, TransitionCaptureState *transition_capture, bool is_crosspart_update)
Definition trigger.c:3144
struct AfterTriggerSharedData * AfterTriggerShared
Definition trigger.c:3691
void AfterTriggerSetState(ConstraintsSetStmt *stmt)
Definition trigger.c:5766
bool ExecBRDeleteTriggers(EState *estate, EPQState *epqstate, ResultRelInfo *relinfo, ItemPointer tupleid, HeapTuple fdw_trigtuple, TupleTableSlot **epqslot, TM_Result *tmresult, TM_FailureData *tmfd, bool is_merge_delete)
Definition trigger.c:2701
Oid get_trigger_oid(Oid relid, const char *trigname, bool missing_ok)
Definition trigger.c:1370
ObjectAddress CreateTrigger(CreateTrigStmt *stmt, const char *queryString, Oid relOid, Oid refRelOid, Oid constraintOid, Oid indexOid, Oid funcoid, Oid parentTriggerOid, Node *whenClause, bool isInternal, bool in_partition)
Definition trigger.c:160
static bool before_stmt_triggers_fired(Oid relid, CmdType cmdType)
Definition trigger.c:6583
static void afterTriggerAddEvent(AfterTriggerEventList *events, AfterTriggerEvent event, AfterTriggerShared evtshared)
Definition trigger.c:4077
struct SetConstraintTriggerData * SetConstraintTrigger
Definition trigger.c:3613
#define AFTER_TRIGGER_2CTID
Definition trigger.c:3688
#define SizeofTriggerEvent(evt)
Definition trigger.c:3742
int SessionReplicationRole
Definition trigger.c:63
static bool afterTriggerCheckState(AfterTriggerShared evtshared)
Definition trigger.c:4007
static void AfterTriggerExecute(EState *estate, AfterTriggerEvent event, ResultRelInfo *relInfo, ResultRelInfo *src_relInfo, ResultRelInfo *dst_relInfo, TriggerDesc *trigdesc, FmgrInfo *finfo, Instrumentation *instr, MemoryContext per_tuple_context, TupleTableSlot *trig_tuple_slot1, TupleTableSlot *trig_tuple_slot2)
Definition trigger.c:4327
void ExecASUpdateTriggers(EState *estate, ResultRelInfo *relinfo, TransitionCaptureState *transition_capture)
Definition trigger.c:2953
static SetConstraintState SetConstraintStateCreate(int numalloc)
Definition trigger.c:5691
void ExecASDeleteTriggers(EState *estate, ResultRelInfo *relinfo, TransitionCaptureState *transition_capture)
Definition trigger.c:2681
ObjectAddress renametrig(RenameStmt *stmt)
Definition trigger.c:1467
void AfterTriggerFireDeferred(void)
Definition trigger.c:5286
static void TransitionTableAddTuple(EState *estate, int event, TransitionCaptureState *transition_capture, ResultRelInfo *relinfo, TupleTableSlot *slot, TupleTableSlot *original_insert_tuple, Tuplestorestate *tuplestore)
Definition trigger.c:5586
void ExecARInsertTriggers(EState *estate, ResultRelInfo *relinfo, TupleTableSlot *slot, List *recheckIndexes, TransitionCaptureState *transition_capture)
Definition trigger.c:2543
void TriggerSetParentTrigger(Relation trigRel, Oid childTrigId, Oid parentTrigId, Oid childTableId)
Definition trigger.c:1220
static void afterTriggerRestoreEventList(AfterTriggerEventList *events, const AfterTriggerEventList *old_events)
Definition trigger.c:4225
static void SetTriggerFlags(TriggerDesc *trigdesc, Trigger *trigger)
Definition trigger.c:2013
#define for_each_event_from(eptr, cptr)
Definition trigger.c:3794
#define MIN_CHUNK_SIZE
static void renametrig_partition(Relation tgrel, Oid partitionId, Oid parentTriggerOid, const char *newname, const char *expected_name)
Definition trigger.c:1653
void ExecASInsertTriggers(EState *estate, ResultRelInfo *relinfo, TransitionCaptureState *transition_capture)
Definition trigger.c:2452
static Tuplestorestate * GetCurrentFDWTuplestore(void)
Definition trigger.c:3971
ObjectAddress CreateTriggerFiringOn(CreateTrigStmt *stmt, const char *queryString, Oid relOid, Oid refRelOid, Oid constraintOid, Oid indexOid, Oid funcoid, Oid parentTriggerOid, Node *whenClause, bool isInternal, bool in_partition, char trigger_fires_when)
Definition trigger.c:177
TriggerDesc * CopyTriggerDesc(TriggerDesc *trigdesc)
Definition trigger.c:2090
void assign_session_replication_role(int newval, void *extra)
Definition trigger.c:6704
bool ExecIRUpdateTriggers(EState *estate, ResultRelInfo *relinfo, HeapTuple trigtuple, TupleTableSlot *newslot)
Definition trigger.c:3214
void AfterTriggerEndXact(bool isCommit)
Definition trigger.c:5342
bool AfterTriggerPendingOnRel(Oid relid)
Definition trigger.c:6081
#define AFTER_TRIGGER_FDW_REUSE
Definition trigger.c:3685
void RelationBuildTriggers(Relation relation)
Definition trigger.c:1861
void AfterTriggerBeginSubXact(void)
Definition trigger.c:5390
static void AfterTriggerSaveEvent(EState *estate, ResultRelInfo *relinfo, ResultRelInfo *src_partinfo, ResultRelInfo *dst_partinfo, int event, bool row_trigger, TupleTableSlot *oldslot, TupleTableSlot *newslot, List *recheckIndexes, Bitmapset *modifiedCols, TransitionCaptureState *transition_capture, bool is_crosspart_update)
Definition trigger.c:6168
static HeapTuple check_modified_virtual_generated(TupleDesc tupdesc, HeapTuple tuple)
Definition trigger.c:6734
static TupleTableSlot * GetAfterTriggersStoreSlot(AfterTriggersTableData *table, TupleDesc tupdesc)
Definition trigger.c:4908
#define AFTER_TRIGGER_CP_UPDATE
Definition trigger.c:3689
void AfterTriggerEndQuery(EState *estate)
Definition trigger.c:5135
void RemoveTriggerById(Oid trigOid)
Definition trigger.c:1291
#define AFTER_TRIGGER_DONE
Definition trigger.c:3682
#define for_each_event_chunk(eptr, cptr, evtlist)
Definition trigger.c:3788
SetConstraintStateData * SetConstraintState
Definition trigger.c:3634
static void AfterTriggerEnlargeQueryState(void)
Definition trigger.c:5644
#define for_each_event(eptr, cptr)
Definition trigger.c:3783
struct AfterTriggerEventData * AfterTriggerEvent
Definition trigger.c:3704
#define for_each_chunk(cptr, evtlist)
Definition trigger.c:3781
void ExecBSUpdateTriggers(EState *estate, ResultRelInfo *relinfo)
Definition trigger.c:2895
void AfterTriggerBeginQuery(void)
Definition trigger.c:5115
#define AFTER_TRIGGER_DEFERRABLE
Definition trigger.h:109
uint32 TriggerEvent
Definition trigger.h:29
#define TRIGGER_FIRED_FOR_STATEMENT(event)
Definition trigger.h:127
#define TRIGGER_EVENT_UPDATE
Definition trigger.h:96
#define RI_TRIGGER_FK
Definition trigger.h:287
#define TRIGGER_FIRED_BY_DELETE(event)
Definition trigger.h:115
#define SESSION_REPLICATION_ROLE_REPLICA
Definition trigger.h:143
#define TRIGGER_EVENT_DELETE
Definition trigger.h:95
#define TRIGGER_FIRES_ON_ORIGIN
Definition trigger.h:151
#define TRIGGER_EVENT_OPMASK
Definition trigger.h:98
#define TRIGGER_DISABLED
Definition trigger.h:154
#define RI_TRIGGER_NONE
Definition trigger.h:288
#define TRIGGER_FIRES_ON_REPLICA
Definition trigger.h:153
#define AFTER_TRIGGER_INITDEFERRED
Definition trigger.h:110
#define TRIGGER_EVENT_INSTEAD
Definition trigger.h:104
#define TRIGGER_EVENT_ROW
Definition trigger.h:100
#define TRIGGER_FIRED_AFTER(event)
Definition trigger.h:133
#define TRIGGER_EVENT_BEFORE
Definition trigger.h:102
#define TRIGGER_FIRED_BY_INSERT(event)
Definition trigger.h:112
#define SESSION_REPLICATION_ROLE_ORIGIN
Definition trigger.h:142
#define TRIGGER_EVENT_INSERT
Definition trigger.h:94
#define TRIGGER_FIRED_BY_UPDATE(event)
Definition trigger.h:118
#define TRIGGER_EVENT_TRUNCATE
Definition trigger.h:97
#define RI_TRIGGER_PK
Definition trigger.h:286
TupleTableSlot * execute_attr_map_slot(AttrMap *attrMap, TupleTableSlot *in_slot, TupleTableSlot *out_slot)
Definition tupconvert.c:193
TupleDesc CreateTupleDescCopy(TupleDesc tupdesc)
Definition tupdesc.c:252
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition tupdesc.h:160
bool tuplestore_gettupleslot(Tuplestorestate *state, bool forward, bool copy, TupleTableSlot *slot)
void tuplestore_puttupleslot(Tuplestorestate *state, TupleTableSlot *slot)
Definition tuplestore.c:742
Tuplestorestate * tuplestore_begin_heap(bool randomAccess, bool interXact, int maxKBytes)
Definition tuplestore.c:330
void tuplestore_end(Tuplestorestate *state)
Definition tuplestore.c:492
static TupleTableSlot * ExecClearTuple(TupleTableSlot *slot)
Definition tuptable.h:457
#define TupIsNull(slot)
Definition tuptable.h:309
static TupleTableSlot * ExecCopySlot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
Definition tuptable.h:524
static void ExecMaterializeSlot(TupleTableSlot *slot)
Definition tuptable.h:475
#define strVal(v)
Definition value.h:82
List * pull_var_clause(Node *node, int flags)
Definition var.c:653
static char * VARDATA_ANY(const void *PTR)
Definition varatt.h:486
const char * name
int GetCurrentTransactionNestLevel(void)
Definition xact.c:930
void CommandCounterIncrement(void)
Definition xact.c:1101
bool IsSubTransaction(void)
Definition xact.c:5066
#define IsolationUsesXactSnapshot()
Definition xact.h:52