PostgreSQL Source Code  git master
dependency.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * dependency.c
4  * Routines to support inter-object dependencies.
5  *
6  *
7  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * IDENTIFICATION
11  * src/backend/catalog/dependency.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include "access/genam.h"
18 #include "access/htup_details.h"
19 #include "access/table.h"
20 #include "access/xact.h"
21 #include "catalog/dependency.h"
22 #include "catalog/heap.h"
23 #include "catalog/index.h"
24 #include "catalog/objectaccess.h"
25 #include "catalog/pg_am.h"
26 #include "catalog/pg_amop.h"
27 #include "catalog/pg_amproc.h"
28 #include "catalog/pg_attrdef.h"
29 #include "catalog/pg_authid.h"
30 #include "catalog/pg_cast.h"
31 #include "catalog/pg_collation.h"
32 #include "catalog/pg_constraint.h"
33 #include "catalog/pg_conversion.h"
34 #include "catalog/pg_database.h"
35 #include "catalog/pg_default_acl.h"
36 #include "catalog/pg_depend.h"
38 #include "catalog/pg_extension.h"
41 #include "catalog/pg_init_privs.h"
42 #include "catalog/pg_language.h"
43 #include "catalog/pg_largeobject.h"
44 #include "catalog/pg_namespace.h"
45 #include "catalog/pg_opclass.h"
46 #include "catalog/pg_operator.h"
47 #include "catalog/pg_opfamily.h"
48 #include "catalog/pg_policy.h"
49 #include "catalog/pg_proc.h"
50 #include "catalog/pg_publication.h"
52 #include "catalog/pg_rewrite.h"
55 #include "catalog/pg_tablespace.h"
56 #include "catalog/pg_transform.h"
57 #include "catalog/pg_trigger.h"
58 #include "catalog/pg_ts_config.h"
59 #include "catalog/pg_ts_dict.h"
60 #include "catalog/pg_ts_parser.h"
61 #include "catalog/pg_ts_template.h"
62 #include "catalog/pg_type.h"
64 #include "commands/comment.h"
65 #include "commands/defrem.h"
66 #include "commands/event_trigger.h"
67 #include "commands/extension.h"
68 #include "commands/policy.h"
69 #include "commands/proclang.h"
71 #include "commands/schemacmds.h"
72 #include "commands/seclabel.h"
73 #include "commands/sequence.h"
74 #include "commands/trigger.h"
75 #include "commands/typecmds.h"
76 #include "nodes/nodeFuncs.h"
77 #include "parser/parsetree.h"
78 #include "rewrite/rewriteRemove.h"
79 #include "storage/lmgr.h"
80 #include "utils/acl.h"
81 #include "utils/fmgroids.h"
82 #include "utils/guc.h"
83 #include "utils/lsyscache.h"
84 #include "utils/syscache.h"
85 
86 
87 /*
88  * Deletion processing requires additional state for each ObjectAddress that
89  * it's planning to delete. For simplicity and code-sharing we make the
90  * ObjectAddresses code support arrays with or without this extra state.
91  */
92 typedef struct
93 {
94  int flags; /* bitmask, see bit definitions below */
95  ObjectAddress dependee; /* object whose deletion forced this one */
97 
98 /* ObjectAddressExtra flag bits */
99 #define DEPFLAG_ORIGINAL 0x0001 /* an original deletion target */
100 #define DEPFLAG_NORMAL 0x0002 /* reached via normal dependency */
101 #define DEPFLAG_AUTO 0x0004 /* reached via auto dependency */
102 #define DEPFLAG_INTERNAL 0x0008 /* reached via internal dependency */
103 #define DEPFLAG_PARTITION 0x0010 /* reached via partition dependency */
104 #define DEPFLAG_EXTENSION 0x0020 /* reached via extension dependency */
105 #define DEPFLAG_REVERSE 0x0040 /* reverse internal/extension link */
106 #define DEPFLAG_IS_PART 0x0080 /* has a partition dependency */
107 #define DEPFLAG_SUBOBJECT 0x0100 /* subobject of another deletable object */
108 
109 
110 /* expansible list of ObjectAddresses */
112 {
113  ObjectAddress *refs; /* => palloc'd array */
114  ObjectAddressExtra *extras; /* => palloc'd array, or NULL if not used */
115  int numrefs; /* current number of references */
116  int maxrefs; /* current size of palloc'd array(s) */
117 };
118 
119 /* typedef ObjectAddresses appears in dependency.h */
120 
121 /* threaded list of ObjectAddresses, for recursion detection */
122 typedef struct ObjectAddressStack
123 {
124  const ObjectAddress *object; /* object being visited */
125  int flags; /* its current flag bits */
126  struct ObjectAddressStack *next; /* next outer stack level */
128 
129 /* temporary storage in findDependentObjects */
130 typedef struct
131 {
132  ObjectAddress obj; /* object to be deleted --- MUST BE FIRST */
133  int subflags; /* flags to pass down when recursing to obj */
135 
136 /* for find_expr_references_walker */
137 typedef struct
138 {
139  ObjectAddresses *addrs; /* addresses being accumulated */
140  List *rtables; /* list of rangetables to resolve Vars */
142 
143 /*
144  * This constant table maps ObjectClasses to the corresponding catalog OIDs.
145  * See also getObjectClass().
146  */
147 static const Oid object_classes[] = {
148  RelationRelationId, /* OCLASS_CLASS */
149  ProcedureRelationId, /* OCLASS_PROC */
150  TypeRelationId, /* OCLASS_TYPE */
151  CastRelationId, /* OCLASS_CAST */
152  CollationRelationId, /* OCLASS_COLLATION */
153  ConstraintRelationId, /* OCLASS_CONSTRAINT */
154  ConversionRelationId, /* OCLASS_CONVERSION */
155  AttrDefaultRelationId, /* OCLASS_DEFAULT */
156  LanguageRelationId, /* OCLASS_LANGUAGE */
157  LargeObjectRelationId, /* OCLASS_LARGEOBJECT */
158  OperatorRelationId, /* OCLASS_OPERATOR */
159  OperatorClassRelationId, /* OCLASS_OPCLASS */
160  OperatorFamilyRelationId, /* OCLASS_OPFAMILY */
161  AccessMethodRelationId, /* OCLASS_AM */
162  AccessMethodOperatorRelationId, /* OCLASS_AMOP */
163  AccessMethodProcedureRelationId, /* OCLASS_AMPROC */
164  RewriteRelationId, /* OCLASS_REWRITE */
165  TriggerRelationId, /* OCLASS_TRIGGER */
166  NamespaceRelationId, /* OCLASS_SCHEMA */
167  StatisticExtRelationId, /* OCLASS_STATISTIC_EXT */
168  TSParserRelationId, /* OCLASS_TSPARSER */
169  TSDictionaryRelationId, /* OCLASS_TSDICT */
170  TSTemplateRelationId, /* OCLASS_TSTEMPLATE */
171  TSConfigRelationId, /* OCLASS_TSCONFIG */
172  AuthIdRelationId, /* OCLASS_ROLE */
173  DatabaseRelationId, /* OCLASS_DATABASE */
174  TableSpaceRelationId, /* OCLASS_TBLSPACE */
175  ForeignDataWrapperRelationId, /* OCLASS_FDW */
176  ForeignServerRelationId, /* OCLASS_FOREIGN_SERVER */
177  UserMappingRelationId, /* OCLASS_USER_MAPPING */
178  DefaultAclRelationId, /* OCLASS_DEFACL */
179  ExtensionRelationId, /* OCLASS_EXTENSION */
180  EventTriggerRelationId, /* OCLASS_EVENT_TRIGGER */
181  PolicyRelationId, /* OCLASS_POLICY */
182  PublicationRelationId, /* OCLASS_PUBLICATION */
183  PublicationRelRelationId, /* OCLASS_PUBLICATION_REL */
184  SubscriptionRelationId, /* OCLASS_SUBSCRIPTION */
185  TransformRelationId /* OCLASS_TRANSFORM */
186 };
187 
188 
189 static void findDependentObjects(const ObjectAddress *object,
190  int objflags,
191  int flags,
192  ObjectAddressStack *stack,
193  ObjectAddresses *targetObjects,
194  const ObjectAddresses *pendingObjects,
195  Relation *depRel);
196 static void reportDependentObjects(const ObjectAddresses *targetObjects,
197  DropBehavior behavior,
198  int flags,
199  const ObjectAddress *origObject);
200 static void deleteOneObject(const ObjectAddress *object,
201  Relation *depRel, int32 flags);
202 static void doDeletion(const ObjectAddress *object, int flags);
203 static bool find_expr_references_walker(Node *node,
206 static int object_address_comparator(const void *a, const void *b);
207 static void add_object_address(ObjectClass oclass, Oid objectId, int32 subId,
208  ObjectAddresses *addrs);
209 static void add_exact_object_address_extra(const ObjectAddress *object,
210  const ObjectAddressExtra *extra,
211  ObjectAddresses *addrs);
212 static bool object_address_present_add_flags(const ObjectAddress *object,
213  int flags,
214  ObjectAddresses *addrs);
215 static bool stack_address_present_add_flags(const ObjectAddress *object,
216  int flags,
217  ObjectAddressStack *stack);
218 static void DeleteInitPrivs(const ObjectAddress *object);
219 
220 
221 /*
222  * Go through the objects given running the final actions on them, and execute
223  * the actual deletion.
224  */
225 static void
227  int flags)
228 {
229  int i;
230 
231  /*
232  * Keep track of objects for event triggers, if necessary.
233  */
235  {
236  for (i = 0; i < targetObjects->numrefs; i++)
237  {
238  const ObjectAddress *thisobj = &targetObjects->refs[i];
239  const ObjectAddressExtra *extra = &targetObjects->extras[i];
240  bool original = false;
241  bool normal = false;
242 
243  if (extra->flags & DEPFLAG_ORIGINAL)
244  original = true;
245  if (extra->flags & DEPFLAG_NORMAL)
246  normal = true;
247  if (extra->flags & DEPFLAG_REVERSE)
248  normal = true;
249 
251  {
252  EventTriggerSQLDropAddObject(thisobj, original, normal);
253  }
254  }
255  }
256 
257  /*
258  * Delete all the objects in the proper order, except that if told to, we
259  * should skip the original object(s).
260  */
261  for (i = 0; i < targetObjects->numrefs; i++)
262  {
263  ObjectAddress *thisobj = targetObjects->refs + i;
264  ObjectAddressExtra *thisextra = targetObjects->extras + i;
265 
266  if ((flags & PERFORM_DELETION_SKIP_ORIGINAL) &&
267  (thisextra->flags & DEPFLAG_ORIGINAL))
268  continue;
269 
270  deleteOneObject(thisobj, depRel, flags);
271  }
272 }
273 
274 /*
275  * performDeletion: attempt to drop the specified object. If CASCADE
276  * behavior is specified, also drop any dependent objects (recursively).
277  * If RESTRICT behavior is specified, error out if there are any dependent
278  * objects, except for those that should be implicitly dropped anyway
279  * according to the dependency type.
280  *
281  * This is the outer control routine for all forms of DROP that drop objects
282  * that can participate in dependencies. Note that performMultipleDeletions
283  * is a variant on the same theme; if you change anything here you'll likely
284  * need to fix that too.
285  *
286  * Bits in the flags argument can include:
287  *
288  * PERFORM_DELETION_INTERNAL: indicates that the drop operation is not the
289  * direct result of a user-initiated action. For example, when a temporary
290  * schema is cleaned out so that a new backend can use it, or when a column
291  * default is dropped as an intermediate step while adding a new one, that's
292  * an internal operation. On the other hand, when we drop something because
293  * the user issued a DROP statement against it, that's not internal. Currently
294  * this suppresses calling event triggers and making some permissions checks.
295  *
296  * PERFORM_DELETION_CONCURRENTLY: perform the drop concurrently. This does
297  * not currently work for anything except dropping indexes; don't set it for
298  * other object types or you may get strange results.
299  *
300  * PERFORM_DELETION_QUIETLY: reduce message level from NOTICE to DEBUG2.
301  *
302  * PERFORM_DELETION_SKIP_ORIGINAL: do not delete the specified object(s),
303  * but only what depends on it/them.
304  *
305  * PERFORM_DELETION_SKIP_EXTENSIONS: do not delete extensions, even when
306  * deleting objects that are part of an extension. This should generally
307  * be used only when dropping temporary objects.
308  *
309  * PERFORM_DELETION_CONCURRENT_LOCK: perform the drop normally but with a lock
310  * as if it were concurrent. This is used by REINDEX CONCURRENTLY.
311  *
312  */
313 void
315  DropBehavior behavior, int flags)
316 {
317  Relation depRel;
318  ObjectAddresses *targetObjects;
319 
320  /*
321  * We save some cycles by opening pg_depend just once and passing the
322  * Relation pointer down to all the recursive deletion steps.
323  */
324  depRel = table_open(DependRelationId, RowExclusiveLock);
325 
326  /*
327  * Acquire deletion lock on the target object. (Ideally the caller has
328  * done this already, but many places are sloppy about it.)
329  */
330  AcquireDeletionLock(object, 0);
331 
332  /*
333  * Construct a list of objects to delete (ie, the given object plus
334  * everything directly or indirectly dependent on it).
335  */
336  targetObjects = new_object_addresses();
337 
338  findDependentObjects(object,
340  flags,
341  NULL, /* empty stack */
342  targetObjects,
343  NULL, /* no pendingObjects */
344  &depRel);
345 
346  /*
347  * Check if deletion is allowed, and report about cascaded deletes.
348  */
349  reportDependentObjects(targetObjects,
350  behavior,
351  flags,
352  object);
353 
354  /* do the deed */
355  deleteObjectsInList(targetObjects, &depRel, flags);
356 
357  /* And clean up */
358  free_object_addresses(targetObjects);
359 
360  table_close(depRel, RowExclusiveLock);
361 }
362 
363 /*
364  * performMultipleDeletions: Similar to performDeletion, but act on multiple
365  * objects at once.
366  *
367  * The main difference from issuing multiple performDeletion calls is that the
368  * list of objects that would be implicitly dropped, for each object to be
369  * dropped, is the union of the implicit-object list for all objects. This
370  * makes each check be more relaxed.
371  */
372 void
374  DropBehavior behavior, int flags)
375 {
376  Relation depRel;
377  ObjectAddresses *targetObjects;
378  int i;
379 
380  /* No work if no objects... */
381  if (objects->numrefs <= 0)
382  return;
383 
384  /*
385  * We save some cycles by opening pg_depend just once and passing the
386  * Relation pointer down to all the recursive deletion steps.
387  */
388  depRel = table_open(DependRelationId, RowExclusiveLock);
389 
390  /*
391  * Construct a list of objects to delete (ie, the given objects plus
392  * everything directly or indirectly dependent on them). Note that
393  * because we pass the whole objects list as pendingObjects context, we
394  * won't get a failure from trying to delete an object that is internally
395  * dependent on another one in the list; we'll just skip that object and
396  * delete it when we reach its owner.
397  */
398  targetObjects = new_object_addresses();
399 
400  for (i = 0; i < objects->numrefs; i++)
401  {
402  const ObjectAddress *thisobj = objects->refs + i;
403 
404  /*
405  * Acquire deletion lock on each target object. (Ideally the caller
406  * has done this already, but many places are sloppy about it.)
407  */
408  AcquireDeletionLock(thisobj, flags);
409 
410  findDependentObjects(thisobj,
412  flags,
413  NULL, /* empty stack */
414  targetObjects,
415  objects,
416  &depRel);
417  }
418 
419  /*
420  * Check if deletion is allowed, and report about cascaded deletes.
421  *
422  * If there's exactly one object being deleted, report it the same way as
423  * in performDeletion(), else we have to be vaguer.
424  */
425  reportDependentObjects(targetObjects,
426  behavior,
427  flags,
428  (objects->numrefs == 1 ? objects->refs : NULL));
429 
430  /* do the deed */
431  deleteObjectsInList(targetObjects, &depRel, flags);
432 
433  /* And clean up */
434  free_object_addresses(targetObjects);
435 
436  table_close(depRel, RowExclusiveLock);
437 }
438 
439 /*
440  * findDependentObjects - find all objects that depend on 'object'
441  *
442  * For every object that depends on the starting object, acquire a deletion
443  * lock on the object, add it to targetObjects (if not already there),
444  * and recursively find objects that depend on it. An object's dependencies
445  * will be placed into targetObjects before the object itself; this means
446  * that the finished list's order represents a safe deletion order.
447  *
448  * The caller must already have a deletion lock on 'object' itself,
449  * but must not have added it to targetObjects. (Note: there are corner
450  * cases where we won't add the object either, and will also release the
451  * caller-taken lock. This is a bit ugly, but the API is set up this way
452  * to allow easy rechecking of an object's liveness after we lock it. See
453  * notes within the function.)
454  *
455  * When dropping a whole object (subId = 0), we find dependencies for
456  * its sub-objects too.
457  *
458  * object: the object to add to targetObjects and find dependencies on
459  * objflags: flags to be ORed into the object's targetObjects entry
460  * flags: PERFORM_DELETION_xxx flags for the deletion operation as a whole
461  * stack: list of objects being visited in current recursion; topmost item
462  * is the object that we recursed from (NULL for external callers)
463  * targetObjects: list of objects that are scheduled to be deleted
464  * pendingObjects: list of other objects slated for destruction, but
465  * not necessarily in targetObjects yet (can be NULL if none)
466  * *depRel: already opened pg_depend relation
467  *
468  * Note: objflags describes the reason for visiting this particular object
469  * at this time, and is not passed down when recursing. The flags argument
470  * is passed down, since it describes what we're doing overall.
471  */
472 static void
474  int objflags,
475  int flags,
476  ObjectAddressStack *stack,
477  ObjectAddresses *targetObjects,
478  const ObjectAddresses *pendingObjects,
479  Relation *depRel)
480 {
481  ScanKeyData key[3];
482  int nkeys;
483  SysScanDesc scan;
484  HeapTuple tup;
485  ObjectAddress otherObject;
486  ObjectAddress owningObject;
487  ObjectAddress partitionObject;
488  ObjectAddressAndFlags *dependentObjects;
489  int numDependentObjects;
490  int maxDependentObjects;
491  ObjectAddressStack mystack;
492  ObjectAddressExtra extra;
493 
494  /*
495  * If the target object is already being visited in an outer recursion
496  * level, just report the current objflags back to that level and exit.
497  * This is needed to avoid infinite recursion in the face of circular
498  * dependencies.
499  *
500  * The stack check alone would result in dependency loops being broken at
501  * an arbitrary point, ie, the first member object of the loop to be
502  * visited is the last one to be deleted. This is obviously unworkable.
503  * However, the check for internal dependency below guarantees that we
504  * will not break a loop at an internal dependency: if we enter the loop
505  * at an "owned" object we will switch and start at the "owning" object
506  * instead. We could probably hack something up to avoid breaking at an
507  * auto dependency, too, if we had to. However there are no known cases
508  * where that would be necessary.
509  */
510  if (stack_address_present_add_flags(object, objflags, stack))
511  return;
512 
513  /*
514  * It's also possible that the target object has already been completely
515  * processed and put into targetObjects. If so, again we just add the
516  * specified objflags to its entry and return.
517  *
518  * (Note: in these early-exit cases we could release the caller-taken
519  * lock, since the object is presumably now locked multiple times; but it
520  * seems not worth the cycles.)
521  */
522  if (object_address_present_add_flags(object, objflags, targetObjects))
523  return;
524 
525  /*
526  * The target object might be internally dependent on some other object
527  * (its "owner"), and/or be a member of an extension (also considered its
528  * owner). If so, and if we aren't recursing from the owning object, we
529  * have to transform this deletion request into a deletion request of the
530  * owning object. (We'll eventually recurse back to this object, but the
531  * owning object has to be visited first so it will be deleted after.) The
532  * way to find out about this is to scan the pg_depend entries that show
533  * what this object depends on.
534  */
535  ScanKeyInit(&key[0],
536  Anum_pg_depend_classid,
537  BTEqualStrategyNumber, F_OIDEQ,
538  ObjectIdGetDatum(object->classId));
539  ScanKeyInit(&key[1],
540  Anum_pg_depend_objid,
541  BTEqualStrategyNumber, F_OIDEQ,
542  ObjectIdGetDatum(object->objectId));
543  if (object->objectSubId != 0)
544  {
545  /* Consider only dependencies of this sub-object */
546  ScanKeyInit(&key[2],
547  Anum_pg_depend_objsubid,
548  BTEqualStrategyNumber, F_INT4EQ,
549  Int32GetDatum(object->objectSubId));
550  nkeys = 3;
551  }
552  else
553  {
554  /* Consider dependencies of this object and any sub-objects it has */
555  nkeys = 2;
556  }
557 
558  scan = systable_beginscan(*depRel, DependDependerIndexId, true,
559  NULL, nkeys, key);
560 
561  /* initialize variables that loop may fill */
562  memset(&owningObject, 0, sizeof(owningObject));
563  memset(&partitionObject, 0, sizeof(partitionObject));
564 
565  while (HeapTupleIsValid(tup = systable_getnext(scan)))
566  {
567  Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
568 
569  otherObject.classId = foundDep->refclassid;
570  otherObject.objectId = foundDep->refobjid;
571  otherObject.objectSubId = foundDep->refobjsubid;
572 
573  /*
574  * When scanning dependencies of a whole object, we may find rows
575  * linking sub-objects of the object to the object itself. (Normally,
576  * such a dependency is implicit, but we must make explicit ones in
577  * some cases involving partitioning.) We must ignore such rows to
578  * avoid infinite recursion.
579  */
580  if (otherObject.classId == object->classId &&
581  otherObject.objectId == object->objectId &&
582  object->objectSubId == 0)
583  continue;
584 
585  switch (foundDep->deptype)
586  {
587  case DEPENDENCY_NORMAL:
588  case DEPENDENCY_AUTO:
590  /* no problem */
591  break;
592 
594 
595  /*
596  * If told to, ignore EXTENSION dependencies altogether. This
597  * flag is normally used to prevent dropping extensions during
598  * temporary-object cleanup, even if a temp object was created
599  * during an extension script.
600  */
602  break;
603 
604  /*
605  * If the other object is the extension currently being
606  * created/altered, ignore this dependency and continue with
607  * the deletion. This allows dropping of an extension's
608  * objects within the extension's scripts, as well as corner
609  * cases such as dropping a transient object created within
610  * such a script.
611  */
612  if (creating_extension &&
613  otherObject.classId == ExtensionRelationId &&
614  otherObject.objectId == CurrentExtensionObject)
615  break;
616 
617  /* Otherwise, treat this like an internal dependency */
618  /* FALL THRU */
619 
620  case DEPENDENCY_INTERNAL:
621 
622  /*
623  * This object is part of the internal implementation of
624  * another object, or is part of the extension that is the
625  * other object. We have three cases:
626  *
627  * 1. At the outermost recursion level, we must disallow the
628  * DROP. However, if the owning object is listed in
629  * pendingObjects, just release the caller's lock and return;
630  * we'll eventually complete the DROP when we reach that entry
631  * in the pending list.
632  *
633  * Note: the above statement is true only if this pg_depend
634  * entry still exists by then; in principle, therefore, we
635  * could miss deleting an item the user told us to delete.
636  * However, no inconsistency can result: since we're at outer
637  * level, there is no object depending on this one.
638  */
639  if (stack == NULL)
640  {
641  if (pendingObjects &&
642  object_address_present(&otherObject, pendingObjects))
643  {
644  systable_endscan(scan);
645  /* need to release caller's lock; see notes below */
646  ReleaseDeletionLock(object);
647  return;
648  }
649 
650  /*
651  * We postpone actually issuing the error message until
652  * after this loop, so that we can make the behavior
653  * independent of the ordering of pg_depend entries, at
654  * least if there's not more than one INTERNAL and one
655  * EXTENSION dependency. (If there's more, we'll complain
656  * about a random one of them.) Prefer to complain about
657  * EXTENSION, since that's generally a more important
658  * dependency.
659  */
660  if (!OidIsValid(owningObject.classId) ||
661  foundDep->deptype == DEPENDENCY_EXTENSION)
662  owningObject = otherObject;
663  break;
664  }
665 
666  /*
667  * 2. When recursing from the other end of this dependency,
668  * it's okay to continue with the deletion. This holds when
669  * recursing from a whole object that includes the nominal
670  * other end as a component, too. Since there can be more
671  * than one "owning" object, we have to allow matches that are
672  * more than one level down in the stack.
673  */
674  if (stack_address_present_add_flags(&otherObject, 0, stack))
675  break;
676 
677  /*
678  * 3. Not all the owning objects have been visited, so
679  * transform this deletion request into a delete of this
680  * owning object.
681  *
682  * First, release caller's lock on this object and get
683  * deletion lock on the owning object. (We must release
684  * caller's lock to avoid deadlock against a concurrent
685  * deletion of the owning object.)
686  */
687  ReleaseDeletionLock(object);
688  AcquireDeletionLock(&otherObject, 0);
689 
690  /*
691  * The owning object might have been deleted while we waited
692  * to lock it; if so, neither it nor the current object are
693  * interesting anymore. We test this by checking the
694  * pg_depend entry (see notes below).
695  */
696  if (!systable_recheck_tuple(scan, tup))
697  {
698  systable_endscan(scan);
699  ReleaseDeletionLock(&otherObject);
700  return;
701  }
702 
703  /*
704  * One way or the other, we're done with the scan; might as
705  * well close it down before recursing, to reduce peak
706  * resource consumption.
707  */
708  systable_endscan(scan);
709 
710  /*
711  * Okay, recurse to the owning object instead of proceeding.
712  *
713  * We do not need to stack the current object; we want the
714  * traversal order to be as if the original reference had
715  * linked to the owning object instead of this one.
716  *
717  * The dependency type is a "reverse" dependency: we need to
718  * delete the owning object if this one is to be deleted, but
719  * this linkage is never a reason for an automatic deletion.
720  */
721  findDependentObjects(&otherObject,
723  flags,
724  stack,
725  targetObjects,
726  pendingObjects,
727  depRel);
728 
729  /*
730  * The current target object should have been added to
731  * targetObjects while processing the owning object; but it
732  * probably got only the flag bits associated with the
733  * dependency we're looking at. We need to add the objflags
734  * that were passed to this recursion level, too, else we may
735  * get a bogus failure in reportDependentObjects (if, for
736  * example, we were called due to a partition dependency).
737  *
738  * If somehow the current object didn't get scheduled for
739  * deletion, bleat. (That would imply that somebody deleted
740  * this dependency record before the recursion got to it.)
741  * Another idea would be to reacquire lock on the current
742  * object and resume trying to delete it, but it seems not
743  * worth dealing with the race conditions inherent in that.
744  */
745  if (!object_address_present_add_flags(object, objflags,
746  targetObjects))
747  elog(ERROR, "deletion of owning object %s failed to delete %s",
748  getObjectDescription(&otherObject),
749  getObjectDescription(object));
750 
751  /* And we're done here. */
752  return;
753 
755 
756  /*
757  * Remember that this object has a partition-type dependency.
758  * After the dependency scan, we'll complain if we didn't find
759  * a reason to delete one of its partition dependencies.
760  */
761  objflags |= DEPFLAG_IS_PART;
762 
763  /*
764  * Also remember the primary partition owner, for error
765  * messages. If there are multiple primary owners (which
766  * there should not be), we'll report a random one of them.
767  */
768  partitionObject = otherObject;
769  break;
770 
772 
773  /*
774  * Only use secondary partition owners in error messages if we
775  * find no primary owner (which probably shouldn't happen).
776  */
777  if (!(objflags & DEPFLAG_IS_PART))
778  partitionObject = otherObject;
779 
780  /*
781  * Remember that this object has a partition-type dependency.
782  * After the dependency scan, we'll complain if we didn't find
783  * a reason to delete one of its partition dependencies.
784  */
785  objflags |= DEPFLAG_IS_PART;
786  break;
787 
788  case DEPENDENCY_PIN:
789 
790  /*
791  * Should not happen; PIN dependencies should have zeroes in
792  * the depender fields...
793  */
794  elog(ERROR, "incorrect use of PIN dependency with %s",
795  getObjectDescription(object));
796  break;
797  default:
798  elog(ERROR, "unrecognized dependency type '%c' for %s",
799  foundDep->deptype, getObjectDescription(object));
800  break;
801  }
802  }
803 
804  systable_endscan(scan);
805 
806  /*
807  * If we found an INTERNAL or EXTENSION dependency when we're at outer
808  * level, complain about it now. If we also found a PARTITION dependency,
809  * we prefer to report the PARTITION dependency. This is arbitrary but
810  * seems to be more useful in practice.
811  */
812  if (OidIsValid(owningObject.classId))
813  {
814  char *otherObjDesc;
815 
816  if (OidIsValid(partitionObject.classId))
817  otherObjDesc = getObjectDescription(&partitionObject);
818  else
819  otherObjDesc = getObjectDescription(&owningObject);
820 
821  ereport(ERROR,
822  (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
823  errmsg("cannot drop %s because %s requires it",
824  getObjectDescription(object), otherObjDesc),
825  errhint("You can drop %s instead.", otherObjDesc)));
826  }
827 
828  /*
829  * Next, identify all objects that directly depend on the current object.
830  * To ensure predictable deletion order, we collect them up in
831  * dependentObjects and sort the list before actually recursing. (The
832  * deletion order would be valid in any case, but doing this ensures
833  * consistent output from DROP CASCADE commands, which is helpful for
834  * regression testing.)
835  */
836  maxDependentObjects = 128; /* arbitrary initial allocation */
837  dependentObjects = (ObjectAddressAndFlags *)
838  palloc(maxDependentObjects * sizeof(ObjectAddressAndFlags));
839  numDependentObjects = 0;
840 
841  ScanKeyInit(&key[0],
842  Anum_pg_depend_refclassid,
843  BTEqualStrategyNumber, F_OIDEQ,
844  ObjectIdGetDatum(object->classId));
845  ScanKeyInit(&key[1],
846  Anum_pg_depend_refobjid,
847  BTEqualStrategyNumber, F_OIDEQ,
848  ObjectIdGetDatum(object->objectId));
849  if (object->objectSubId != 0)
850  {
851  ScanKeyInit(&key[2],
852  Anum_pg_depend_refobjsubid,
853  BTEqualStrategyNumber, F_INT4EQ,
854  Int32GetDatum(object->objectSubId));
855  nkeys = 3;
856  }
857  else
858  nkeys = 2;
859 
860  scan = systable_beginscan(*depRel, DependReferenceIndexId, true,
861  NULL, nkeys, key);
862 
863  while (HeapTupleIsValid(tup = systable_getnext(scan)))
864  {
865  Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
866  int subflags;
867 
868  otherObject.classId = foundDep->classid;
869  otherObject.objectId = foundDep->objid;
870  otherObject.objectSubId = foundDep->objsubid;
871 
872  /*
873  * If what we found is a sub-object of the current object, just ignore
874  * it. (Normally, such a dependency is implicit, but we must make
875  * explicit ones in some cases involving partitioning.)
876  */
877  if (otherObject.classId == object->classId &&
878  otherObject.objectId == object->objectId &&
879  object->objectSubId == 0)
880  continue;
881 
882  /*
883  * Must lock the dependent object before recursing to it.
884  */
885  AcquireDeletionLock(&otherObject, 0);
886 
887  /*
888  * The dependent object might have been deleted while we waited to
889  * lock it; if so, we don't need to do anything more with it. We can
890  * test this cheaply and independently of the object's type by seeing
891  * if the pg_depend tuple we are looking at is still live. (If the
892  * object got deleted, the tuple would have been deleted too.)
893  */
894  if (!systable_recheck_tuple(scan, tup))
895  {
896  /* release the now-useless lock */
897  ReleaseDeletionLock(&otherObject);
898  /* and continue scanning for dependencies */
899  continue;
900  }
901 
902  /*
903  * We do need to delete it, so identify objflags to be passed down,
904  * which depend on the dependency type.
905  */
906  switch (foundDep->deptype)
907  {
908  case DEPENDENCY_NORMAL:
909  subflags = DEPFLAG_NORMAL;
910  break;
911  case DEPENDENCY_AUTO:
913  subflags = DEPFLAG_AUTO;
914  break;
915  case DEPENDENCY_INTERNAL:
916  subflags = DEPFLAG_INTERNAL;
917  break;
920  subflags = DEPFLAG_PARTITION;
921  break;
923  subflags = DEPFLAG_EXTENSION;
924  break;
925  case DEPENDENCY_PIN:
926 
927  /*
928  * For a PIN dependency we just ereport immediately; there
929  * won't be any others to report.
930  */
931  ereport(ERROR,
932  (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
933  errmsg("cannot drop %s because it is required by the database system",
934  getObjectDescription(object))));
935  subflags = 0; /* keep compiler quiet */
936  break;
937  default:
938  elog(ERROR, "unrecognized dependency type '%c' for %s",
939  foundDep->deptype, getObjectDescription(object));
940  subflags = 0; /* keep compiler quiet */
941  break;
942  }
943 
944  /* And add it to the pending-objects list */
945  if (numDependentObjects >= maxDependentObjects)
946  {
947  /* enlarge array if needed */
948  maxDependentObjects *= 2;
949  dependentObjects = (ObjectAddressAndFlags *)
950  repalloc(dependentObjects,
951  maxDependentObjects * sizeof(ObjectAddressAndFlags));
952  }
953 
954  dependentObjects[numDependentObjects].obj = otherObject;
955  dependentObjects[numDependentObjects].subflags = subflags;
956  numDependentObjects++;
957  }
958 
959  systable_endscan(scan);
960 
961  /*
962  * Now we can sort the dependent objects into a stable visitation order.
963  * It's safe to use object_address_comparator here since the obj field is
964  * first within ObjectAddressAndFlags.
965  */
966  if (numDependentObjects > 1)
967  qsort((void *) dependentObjects, numDependentObjects,
968  sizeof(ObjectAddressAndFlags),
970 
971  /*
972  * Now recurse to the dependent objects. We must visit them first since
973  * they have to be deleted before the current object.
974  */
975  mystack.object = object; /* set up a new stack level */
976  mystack.flags = objflags;
977  mystack.next = stack;
978 
979  for (int i = 0; i < numDependentObjects; i++)
980  {
981  ObjectAddressAndFlags *depObj = dependentObjects + i;
982 
983  findDependentObjects(&depObj->obj,
984  depObj->subflags,
985  flags,
986  &mystack,
987  targetObjects,
988  pendingObjects,
989  depRel);
990  }
991 
992  pfree(dependentObjects);
993 
994  /*
995  * Finally, we can add the target object to targetObjects. Be careful to
996  * include any flags that were passed back down to us from inner recursion
997  * levels. Record the "dependee" as being either the most important
998  * partition owner if there is one, else the object we recursed from, if
999  * any. (The logic in reportDependentObjects() is such that it can only
1000  * need one of those objects.)
1001  */
1002  extra.flags = mystack.flags;
1003  if (extra.flags & DEPFLAG_IS_PART)
1004  extra.dependee = partitionObject;
1005  else if (stack)
1006  extra.dependee = *stack->object;
1007  else
1008  memset(&extra.dependee, 0, sizeof(extra.dependee));
1009  add_exact_object_address_extra(object, &extra, targetObjects);
1010 }
1011 
1012 /*
1013  * reportDependentObjects - report about dependencies, and fail if RESTRICT
1014  *
1015  * Tell the user about dependent objects that we are going to delete
1016  * (or would need to delete, but are prevented by RESTRICT mode);
1017  * then error out if there are any and it's not CASCADE mode.
1018  *
1019  * targetObjects: list of objects that are scheduled to be deleted
1020  * behavior: RESTRICT or CASCADE
1021  * flags: other flags for the deletion operation
1022  * origObject: base object of deletion, or NULL if not available
1023  * (the latter case occurs in DROP OWNED)
1024  */
1025 static void
1027  DropBehavior behavior,
1028  int flags,
1029  const ObjectAddress *origObject)
1030 {
1031  int msglevel = (flags & PERFORM_DELETION_QUIETLY) ? DEBUG2 : NOTICE;
1032  bool ok = true;
1033  StringInfoData clientdetail;
1034  StringInfoData logdetail;
1035  int numReportedClient = 0;
1036  int numNotReportedClient = 0;
1037  int i;
1038 
1039  /*
1040  * If we need to delete any partition-dependent objects, make sure that
1041  * we're deleting at least one of their partition dependencies, too. That
1042  * can be detected by checking that we reached them by a PARTITION
1043  * dependency at some point.
1044  *
1045  * We just report the first such object, as in most cases the only way to
1046  * trigger this complaint is to explicitly try to delete one partition of
1047  * a partitioned object.
1048  */
1049  for (i = 0; i < targetObjects->numrefs; i++)
1050  {
1051  const ObjectAddressExtra *extra = &targetObjects->extras[i];
1052 
1053  if ((extra->flags & DEPFLAG_IS_PART) &&
1054  !(extra->flags & DEPFLAG_PARTITION))
1055  {
1056  const ObjectAddress *object = &targetObjects->refs[i];
1057  char *otherObjDesc = getObjectDescription(&extra->dependee);
1058 
1059  ereport(ERROR,
1060  (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1061  errmsg("cannot drop %s because %s requires it",
1062  getObjectDescription(object), otherObjDesc),
1063  errhint("You can drop %s instead.", otherObjDesc)));
1064  }
1065  }
1066 
1067  /*
1068  * If no error is to be thrown, and the msglevel is too low to be shown to
1069  * either client or server log, there's no need to do any of the rest of
1070  * the work.
1071  *
1072  * Note: this code doesn't know all there is to be known about elog
1073  * levels, but it works for NOTICE and DEBUG2, which are the only values
1074  * msglevel can currently have. We also assume we are running in a normal
1075  * operating environment.
1076  */
1077  if (behavior == DROP_CASCADE &&
1078  msglevel < client_min_messages &&
1079  (msglevel < log_min_messages || log_min_messages == LOG))
1080  return;
1081 
1082  /*
1083  * We limit the number of dependencies reported to the client to
1084  * MAX_REPORTED_DEPS, since client software may not deal well with
1085  * enormous error strings. The server log always gets a full report.
1086  */
1087 #define MAX_REPORTED_DEPS 100
1088 
1089  initStringInfo(&clientdetail);
1090  initStringInfo(&logdetail);
1091 
1092  /*
1093  * We process the list back to front (ie, in dependency order not deletion
1094  * order), since this makes for a more understandable display.
1095  */
1096  for (i = targetObjects->numrefs - 1; i >= 0; i--)
1097  {
1098  const ObjectAddress *obj = &targetObjects->refs[i];
1099  const ObjectAddressExtra *extra = &targetObjects->extras[i];
1100  char *objDesc;
1101 
1102  /* Ignore the original deletion target(s) */
1103  if (extra->flags & DEPFLAG_ORIGINAL)
1104  continue;
1105 
1106  /* Also ignore sub-objects; we'll report the whole object elsewhere */
1107  if (extra->flags & DEPFLAG_SUBOBJECT)
1108  continue;
1109 
1110  objDesc = getObjectDescription(obj);
1111 
1112  /*
1113  * If, at any stage of the recursive search, we reached the object via
1114  * an AUTO, INTERNAL, PARTITION, or EXTENSION dependency, then it's
1115  * okay to delete it even in RESTRICT mode.
1116  */
1117  if (extra->flags & (DEPFLAG_AUTO |
1121  {
1122  /*
1123  * auto-cascades are reported at DEBUG2, not msglevel. We don't
1124  * try to combine them with the regular message because the
1125  * results are too confusing when client_min_messages and
1126  * log_min_messages are different.
1127  */
1128  ereport(DEBUG2,
1129  (errmsg("drop auto-cascades to %s",
1130  objDesc)));
1131  }
1132  else if (behavior == DROP_RESTRICT)
1133  {
1134  char *otherDesc = getObjectDescription(&extra->dependee);
1135 
1136  if (numReportedClient < MAX_REPORTED_DEPS)
1137  {
1138  /* separate entries with a newline */
1139  if (clientdetail.len != 0)
1140  appendStringInfoChar(&clientdetail, '\n');
1141  appendStringInfo(&clientdetail, _("%s depends on %s"),
1142  objDesc, otherDesc);
1143  numReportedClient++;
1144  }
1145  else
1146  numNotReportedClient++;
1147  /* separate entries with a newline */
1148  if (logdetail.len != 0)
1149  appendStringInfoChar(&logdetail, '\n');
1150  appendStringInfo(&logdetail, _("%s depends on %s"),
1151  objDesc, otherDesc);
1152  pfree(otherDesc);
1153  ok = false;
1154  }
1155  else
1156  {
1157  if (numReportedClient < MAX_REPORTED_DEPS)
1158  {
1159  /* separate entries with a newline */
1160  if (clientdetail.len != 0)
1161  appendStringInfoChar(&clientdetail, '\n');
1162  appendStringInfo(&clientdetail, _("drop cascades to %s"),
1163  objDesc);
1164  numReportedClient++;
1165  }
1166  else
1167  numNotReportedClient++;
1168  /* separate entries with a newline */
1169  if (logdetail.len != 0)
1170  appendStringInfoChar(&logdetail, '\n');
1171  appendStringInfo(&logdetail, _("drop cascades to %s"),
1172  objDesc);
1173  }
1174 
1175  pfree(objDesc);
1176  }
1177 
1178  if (numNotReportedClient > 0)
1179  appendStringInfo(&clientdetail, ngettext("\nand %d other object "
1180  "(see server log for list)",
1181  "\nand %d other objects "
1182  "(see server log for list)",
1183  numNotReportedClient),
1184  numNotReportedClient);
1185 
1186  if (!ok)
1187  {
1188  if (origObject)
1189  ereport(ERROR,
1190  (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1191  errmsg("cannot drop %s because other objects depend on it",
1192  getObjectDescription(origObject)),
1193  errdetail("%s", clientdetail.data),
1194  errdetail_log("%s", logdetail.data),
1195  errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1196  else
1197  ereport(ERROR,
1198  (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1199  errmsg("cannot drop desired object(s) because other objects depend on them"),
1200  errdetail("%s", clientdetail.data),
1201  errdetail_log("%s", logdetail.data),
1202  errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1203  }
1204  else if (numReportedClient > 1)
1205  {
1206  ereport(msglevel,
1207  /* translator: %d always has a value larger than 1 */
1208  (errmsg_plural("drop cascades to %d other object",
1209  "drop cascades to %d other objects",
1210  numReportedClient + numNotReportedClient,
1211  numReportedClient + numNotReportedClient),
1212  errdetail("%s", clientdetail.data),
1213  errdetail_log("%s", logdetail.data)));
1214  }
1215  else if (numReportedClient == 1)
1216  {
1217  /* we just use the single item as-is */
1218  ereport(msglevel,
1219  (errmsg_internal("%s", clientdetail.data)));
1220  }
1221 
1222  pfree(clientdetail.data);
1223  pfree(logdetail.data);
1224 }
1225 
1226 /*
1227  * deleteOneObject: delete a single object for performDeletion.
1228  *
1229  * *depRel is the already-open pg_depend relation.
1230  */
1231 static void
1232 deleteOneObject(const ObjectAddress *object, Relation *depRel, int flags)
1233 {
1234  ScanKeyData key[3];
1235  int nkeys;
1236  SysScanDesc scan;
1237  HeapTuple tup;
1238 
1239  /* DROP hook of the objects being removed */
1240  InvokeObjectDropHookArg(object->classId, object->objectId,
1241  object->objectSubId, flags);
1242 
1243  /*
1244  * Close depRel if we are doing a drop concurrently. The object deletion
1245  * subroutine will commit the current transaction, so we can't keep the
1246  * relation open across doDeletion().
1247  */
1248  if (flags & PERFORM_DELETION_CONCURRENTLY)
1249  table_close(*depRel, RowExclusiveLock);
1250 
1251  /*
1252  * Delete the object itself, in an object-type-dependent way.
1253  *
1254  * We used to do this after removing the outgoing dependency links, but it
1255  * seems just as reasonable to do it beforehand. In the concurrent case
1256  * we *must* do it in this order, because we can't make any transactional
1257  * updates before calling doDeletion() --- they'd get committed right
1258  * away, which is not cool if the deletion then fails.
1259  */
1260  doDeletion(object, flags);
1261 
1262  /*
1263  * Reopen depRel if we closed it above
1264  */
1265  if (flags & PERFORM_DELETION_CONCURRENTLY)
1266  *depRel = table_open(DependRelationId, RowExclusiveLock);
1267 
1268  /*
1269  * Now remove any pg_depend records that link from this object to others.
1270  * (Any records linking to this object should be gone already.)
1271  *
1272  * When dropping a whole object (subId = 0), remove all pg_depend records
1273  * for its sub-objects too.
1274  */
1275  ScanKeyInit(&key[0],
1276  Anum_pg_depend_classid,
1277  BTEqualStrategyNumber, F_OIDEQ,
1278  ObjectIdGetDatum(object->classId));
1279  ScanKeyInit(&key[1],
1280  Anum_pg_depend_objid,
1281  BTEqualStrategyNumber, F_OIDEQ,
1282  ObjectIdGetDatum(object->objectId));
1283  if (object->objectSubId != 0)
1284  {
1285  ScanKeyInit(&key[2],
1286  Anum_pg_depend_objsubid,
1287  BTEqualStrategyNumber, F_INT4EQ,
1288  Int32GetDatum(object->objectSubId));
1289  nkeys = 3;
1290  }
1291  else
1292  nkeys = 2;
1293 
1294  scan = systable_beginscan(*depRel, DependDependerIndexId, true,
1295  NULL, nkeys, key);
1296 
1297  while (HeapTupleIsValid(tup = systable_getnext(scan)))
1298  {
1299  CatalogTupleDelete(*depRel, &tup->t_self);
1300  }
1301 
1302  systable_endscan(scan);
1303 
1304  /*
1305  * Delete shared dependency references related to this object. Again, if
1306  * subId = 0, remove records for sub-objects too.
1307  */
1309  object->objectSubId);
1310 
1311 
1312  /*
1313  * Delete any comments, security labels, or initial privileges associated
1314  * with this object. (This is a convenient place to do these things,
1315  * rather than having every object type know to do it.)
1316  */
1317  DeleteComments(object->objectId, object->classId, object->objectSubId);
1318  DeleteSecurityLabel(object);
1319  DeleteInitPrivs(object);
1320 
1321  /*
1322  * CommandCounterIncrement here to ensure that preceding changes are all
1323  * visible to the next deletion step.
1324  */
1326 
1327  /*
1328  * And we're done!
1329  */
1330 }
1331 
1332 /*
1333  * doDeletion: actually delete a single object
1334  */
1335 static void
1336 doDeletion(const ObjectAddress *object, int flags)
1337 {
1338  switch (getObjectClass(object))
1339  {
1340  case OCLASS_CLASS:
1341  {
1342  char relKind = get_rel_relkind(object->objectId);
1343 
1344  if (relKind == RELKIND_INDEX ||
1345  relKind == RELKIND_PARTITIONED_INDEX)
1346  {
1347  bool concurrent = ((flags & PERFORM_DELETION_CONCURRENTLY) != 0);
1348  bool concurrent_lock_mode = ((flags & PERFORM_DELETION_CONCURRENT_LOCK) != 0);
1349 
1350  Assert(object->objectSubId == 0);
1351  index_drop(object->objectId, concurrent, concurrent_lock_mode);
1352  }
1353  else
1354  {
1355  if (object->objectSubId != 0)
1356  RemoveAttributeById(object->objectId,
1357  object->objectSubId);
1358  else
1360  }
1361 
1362  /*
1363  * for a sequence, in addition to dropping the heap, also
1364  * delete pg_sequence tuple
1365  */
1366  if (relKind == RELKIND_SEQUENCE)
1367  DeleteSequenceTuple(object->objectId);
1368  break;
1369  }
1370 
1371  case OCLASS_PROC:
1372  RemoveFunctionById(object->objectId);
1373  break;
1374 
1375  case OCLASS_TYPE:
1376  RemoveTypeById(object->objectId);
1377  break;
1378 
1379  case OCLASS_CAST:
1380  DropCastById(object->objectId);
1381  break;
1382 
1383  case OCLASS_COLLATION:
1384  RemoveCollationById(object->objectId);
1385  break;
1386 
1387  case OCLASS_CONSTRAINT:
1388  RemoveConstraintById(object->objectId);
1389  break;
1390 
1391  case OCLASS_CONVERSION:
1392  RemoveConversionById(object->objectId);
1393  break;
1394 
1395  case OCLASS_DEFAULT:
1397  break;
1398 
1399  case OCLASS_LANGUAGE:
1401  break;
1402 
1403  case OCLASS_LARGEOBJECT:
1404  LargeObjectDrop(object->objectId);
1405  break;
1406 
1407  case OCLASS_OPERATOR:
1408  RemoveOperatorById(object->objectId);
1409  break;
1410 
1411  case OCLASS_OPCLASS:
1412  RemoveOpClassById(object->objectId);
1413  break;
1414 
1415  case OCLASS_OPFAMILY:
1416  RemoveOpFamilyById(object->objectId);
1417  break;
1418 
1419  case OCLASS_AM:
1421  break;
1422 
1423  case OCLASS_AMOP:
1424  RemoveAmOpEntryById(object->objectId);
1425  break;
1426 
1427  case OCLASS_AMPROC:
1429  break;
1430 
1431  case OCLASS_REWRITE:
1433  break;
1434 
1435  case OCLASS_TRIGGER:
1436  RemoveTriggerById(object->objectId);
1437  break;
1438 
1439  case OCLASS_SCHEMA:
1440  RemoveSchemaById(object->objectId);
1441  break;
1442 
1443  case OCLASS_STATISTIC_EXT:
1444  RemoveStatisticsById(object->objectId);
1445  break;
1446 
1447  case OCLASS_TSPARSER:
1448  RemoveTSParserById(object->objectId);
1449  break;
1450 
1451  case OCLASS_TSDICT:
1453  break;
1454 
1455  case OCLASS_TSTEMPLATE:
1456  RemoveTSTemplateById(object->objectId);
1457  break;
1458 
1459  case OCLASS_TSCONFIG:
1461  break;
1462 
1463  /*
1464  * OCLASS_ROLE, OCLASS_DATABASE, OCLASS_TBLSPACE intentionally not
1465  * handled here
1466  */
1467 
1468  case OCLASS_FDW:
1470  break;
1471 
1472  case OCLASS_FOREIGN_SERVER:
1474  break;
1475 
1476  case OCLASS_USER_MAPPING:
1478  break;
1479 
1480  case OCLASS_DEFACL:
1481  RemoveDefaultACLById(object->objectId);
1482  break;
1483 
1484  case OCLASS_EXTENSION:
1485  RemoveExtensionById(object->objectId);
1486  break;
1487 
1488  case OCLASS_EVENT_TRIGGER:
1490  break;
1491 
1492  case OCLASS_POLICY:
1493  RemovePolicyById(object->objectId);
1494  break;
1495 
1496  case OCLASS_PUBLICATION:
1498  break;
1499 
1502  break;
1503 
1504  case OCLASS_TRANSFORM:
1505  DropTransformById(object->objectId);
1506  break;
1507 
1508  /*
1509  * These global object types are not supported here.
1510  */
1511  case OCLASS_ROLE:
1512  case OCLASS_DATABASE:
1513  case OCLASS_TBLSPACE:
1514  case OCLASS_SUBSCRIPTION:
1515  elog(ERROR, "global objects cannot be deleted by doDeletion");
1516  break;
1517 
1518  /*
1519  * There's intentionally no default: case here; we want the
1520  * compiler to warn if a new OCLASS hasn't been handled above.
1521  */
1522  }
1523 }
1524 
1525 /*
1526  * AcquireDeletionLock - acquire a suitable lock for deleting an object
1527  *
1528  * Accepts the same flags as performDeletion (though currently only
1529  * PERFORM_DELETION_CONCURRENTLY does anything).
1530  *
1531  * We use LockRelation for relations, LockDatabaseObject for everything
1532  * else. Shared-across-databases objects are not currently supported
1533  * because no caller cares, but could be modified to use LockSharedObject.
1534  */
1535 void
1537 {
1538  if (object->classId == RelationRelationId)
1539  {
1540  /*
1541  * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1542  * the index for the moment. index_drop() will promote the lock once
1543  * it's safe to do so. In all other cases we need full exclusive
1544  * lock.
1545  */
1546  if (flags & PERFORM_DELETION_CONCURRENTLY)
1548  else
1550  }
1551  else
1552  {
1553  /* assume we should lock the whole object not a sub-object */
1554  LockDatabaseObject(object->classId, object->objectId, 0,
1556  }
1557 }
1558 
1559 /*
1560  * ReleaseDeletionLock - release an object deletion lock
1561  *
1562  * Companion to AcquireDeletionLock.
1563  */
1564 void
1566 {
1567  if (object->classId == RelationRelationId)
1569  else
1570  /* assume we should lock the whole object not a sub-object */
1571  UnlockDatabaseObject(object->classId, object->objectId, 0,
1573 }
1574 
1575 /*
1576  * recordDependencyOnExpr - find expression dependencies
1577  *
1578  * This is used to find the dependencies of rules, constraint expressions,
1579  * etc.
1580  *
1581  * Given an expression or query in node-tree form, find all the objects
1582  * it refers to (tables, columns, operators, functions, etc). Record
1583  * a dependency of the specified type from the given depender object
1584  * to each object mentioned in the expression.
1585  *
1586  * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1587  * It can be NIL if no such variables are expected.
1588  */
1589 void
1591  Node *expr, List *rtable,
1592  DependencyType behavior)
1593 {
1595 
1596  context.addrs = new_object_addresses();
1597 
1598  /* Set up interpretation for Vars at varlevelsup = 0 */
1599  context.rtables = list_make1(rtable);
1600 
1601  /* Scan the expression tree for referenceable objects */
1602  find_expr_references_walker(expr, &context);
1603 
1604  /* Remove any duplicates */
1606 
1607  /* And record 'em */
1608  recordMultipleDependencies(depender,
1609  context.addrs->refs, context.addrs->numrefs,
1610  behavior);
1611 
1612  free_object_addresses(context.addrs);
1613 }
1614 
1615 /*
1616  * recordDependencyOnSingleRelExpr - find expression dependencies
1617  *
1618  * As above, but only one relation is expected to be referenced (with
1619  * varno = 1 and varlevelsup = 0). Pass the relation OID instead of a
1620  * range table. An additional frammish is that dependencies on that
1621  * relation's component columns will be marked with 'self_behavior',
1622  * whereas 'behavior' is used for everything else; also, if 'reverse_self'
1623  * is true, those dependencies are reversed so that the columns are made
1624  * to depend on the table not vice versa.
1625  *
1626  * NOTE: the caller should ensure that a whole-table dependency on the
1627  * specified relation is created separately, if one is needed. In particular,
1628  * a whole-row Var "relation.*" will not cause this routine to emit any
1629  * dependency item. This is appropriate behavior for subexpressions of an
1630  * ordinary query, so other cases need to cope as necessary.
1631  */
1632 void
1634  Node *expr, Oid relId,
1635  DependencyType behavior,
1636  DependencyType self_behavior,
1637  bool reverse_self)
1638 {
1640  RangeTblEntry rte;
1641 
1642  context.addrs = new_object_addresses();
1643 
1644  /* We gin up a rather bogus rangetable list to handle Vars */
1645  MemSet(&rte, 0, sizeof(rte));
1646  rte.type = T_RangeTblEntry;
1647  rte.rtekind = RTE_RELATION;
1648  rte.relid = relId;
1649  rte.relkind = RELKIND_RELATION; /* no need for exactness here */
1651 
1652  context.rtables = list_make1(list_make1(&rte));
1653 
1654  /* Scan the expression tree for referenceable objects */
1655  find_expr_references_walker(expr, &context);
1656 
1657  /* Remove any duplicates */
1659 
1660  /* Separate self-dependencies if necessary */
1661  if ((behavior != self_behavior || reverse_self) &&
1662  context.addrs->numrefs > 0)
1663  {
1664  ObjectAddresses *self_addrs;
1665  ObjectAddress *outobj;
1666  int oldref,
1667  outrefs;
1668 
1669  self_addrs = new_object_addresses();
1670 
1671  outobj = context.addrs->refs;
1672  outrefs = 0;
1673  for (oldref = 0; oldref < context.addrs->numrefs; oldref++)
1674  {
1675  ObjectAddress *thisobj = context.addrs->refs + oldref;
1676 
1677  if (thisobj->classId == RelationRelationId &&
1678  thisobj->objectId == relId)
1679  {
1680  /* Move this ref into self_addrs */
1681  add_exact_object_address(thisobj, self_addrs);
1682  }
1683  else
1684  {
1685  /* Keep it in context.addrs */
1686  *outobj = *thisobj;
1687  outobj++;
1688  outrefs++;
1689  }
1690  }
1691  context.addrs->numrefs = outrefs;
1692 
1693  /* Record the self-dependencies with the appropriate direction */
1694  if (!reverse_self)
1695  recordMultipleDependencies(depender,
1696  self_addrs->refs, self_addrs->numrefs,
1697  self_behavior);
1698  else
1699  {
1700  /* Can't use recordMultipleDependencies, so do it the hard way */
1701  int selfref;
1702 
1703  for (selfref = 0; selfref < self_addrs->numrefs; selfref++)
1704  {
1705  ObjectAddress *thisobj = self_addrs->refs + selfref;
1706 
1707  recordDependencyOn(thisobj, depender, self_behavior);
1708  }
1709  }
1710 
1711  free_object_addresses(self_addrs);
1712  }
1713 
1714  /* Record the external dependencies */
1715  recordMultipleDependencies(depender,
1716  context.addrs->refs, context.addrs->numrefs,
1717  behavior);
1718 
1719  free_object_addresses(context.addrs);
1720 }
1721 
1722 /*
1723  * Recursively search an expression tree for object references.
1724  *
1725  * Note: in many cases we do not need to create dependencies on the datatypes
1726  * involved in an expression, because we'll have an indirect dependency via
1727  * some other object. For instance Var nodes depend on a column which depends
1728  * on the datatype, and OpExpr nodes depend on the operator which depends on
1729  * the datatype. However we do need a type dependency if there is no such
1730  * indirect dependency, as for example in Const and CoerceToDomain nodes.
1731  *
1732  * Similarly, we don't need to create dependencies on collations except where
1733  * the collation is being freshly introduced to the expression.
1734  */
1735 static bool
1738 {
1739  if (node == NULL)
1740  return false;
1741  if (IsA(node, Var))
1742  {
1743  Var *var = (Var *) node;
1744  List *rtable;
1745  RangeTblEntry *rte;
1746 
1747  /* Find matching rtable entry, or complain if not found */
1748  if (var->varlevelsup >= list_length(context->rtables))
1749  elog(ERROR, "invalid varlevelsup %d", var->varlevelsup);
1750  rtable = (List *) list_nth(context->rtables, var->varlevelsup);
1751  if (var->varno <= 0 || var->varno > list_length(rtable))
1752  elog(ERROR, "invalid varno %d", var->varno);
1753  rte = rt_fetch(var->varno, rtable);
1754 
1755  /*
1756  * A whole-row Var references no specific columns, so adds no new
1757  * dependency. (We assume that there is a whole-table dependency
1758  * arising from each underlying rangetable entry. While we could
1759  * record such a dependency when finding a whole-row Var that
1760  * references a relation directly, it's quite unclear how to extend
1761  * that to whole-row Vars for JOINs, so it seems better to leave the
1762  * responsibility with the range table. Note that this poses some
1763  * risks for identifying dependencies of stand-alone expressions:
1764  * whole-table references may need to be created separately.)
1765  */
1766  if (var->varattno == InvalidAttrNumber)
1767  return false;
1768  if (rte->rtekind == RTE_RELATION)
1769  {
1770  /* If it's a plain relation, reference this column */
1772  context->addrs);
1773  }
1774 
1775  /*
1776  * Vars referencing other RTE types require no additional work. In
1777  * particular, a join alias Var can be ignored, because it must
1778  * reference a merged USING column. The relevant join input columns
1779  * will also be referenced in the join qual, and any type coercion
1780  * functions involved in the alias expression will be dealt with when
1781  * we scan the RTE itself.
1782  */
1783  return false;
1784  }
1785  else if (IsA(node, Const))
1786  {
1787  Const *con = (Const *) node;
1788  Oid objoid;
1789 
1790  /* A constant must depend on the constant's datatype */
1792  context->addrs);
1793 
1794  /*
1795  * We must also depend on the constant's collation: it could be
1796  * different from the datatype's, if a CollateExpr was const-folded to
1797  * a simple constant. However we can save work in the most common
1798  * case where the collation is "default", since we know that's pinned.
1799  */
1800  if (OidIsValid(con->constcollid) &&
1801  con->constcollid != DEFAULT_COLLATION_OID)
1803  context->addrs);
1804 
1805  /*
1806  * If it's a regclass or similar literal referring to an existing
1807  * object, add a reference to that object. (Currently, only the
1808  * regclass and regconfig cases have any likely use, but we may as
1809  * well handle all the OID-alias datatypes consistently.)
1810  */
1811  if (!con->constisnull)
1812  {
1813  switch (con->consttype)
1814  {
1815  case REGPROCOID:
1816  case REGPROCEDUREOID:
1817  objoid = DatumGetObjectId(con->constvalue);
1819  ObjectIdGetDatum(objoid)))
1820  add_object_address(OCLASS_PROC, objoid, 0,
1821  context->addrs);
1822  break;
1823  case REGOPEROID:
1824  case REGOPERATOROID:
1825  objoid = DatumGetObjectId(con->constvalue);
1827  ObjectIdGetDatum(objoid)))
1829  context->addrs);
1830  break;
1831  case REGCLASSOID:
1832  objoid = DatumGetObjectId(con->constvalue);
1834  ObjectIdGetDatum(objoid)))
1835  add_object_address(OCLASS_CLASS, objoid, 0,
1836  context->addrs);
1837  break;
1838  case REGTYPEOID:
1839  objoid = DatumGetObjectId(con->constvalue);
1841  ObjectIdGetDatum(objoid)))
1842  add_object_address(OCLASS_TYPE, objoid, 0,
1843  context->addrs);
1844  break;
1845  case REGCONFIGOID:
1846  objoid = DatumGetObjectId(con->constvalue);
1848  ObjectIdGetDatum(objoid)))
1850  context->addrs);
1851  break;
1852  case REGDICTIONARYOID:
1853  objoid = DatumGetObjectId(con->constvalue);
1855  ObjectIdGetDatum(objoid)))
1856  add_object_address(OCLASS_TSDICT, objoid, 0,
1857  context->addrs);
1858  break;
1859 
1860  case REGNAMESPACEOID:
1861  objoid = DatumGetObjectId(con->constvalue);
1863  ObjectIdGetDatum(objoid)))
1864  add_object_address(OCLASS_SCHEMA, objoid, 0,
1865  context->addrs);
1866  break;
1867 
1868  /*
1869  * Dependencies for regrole should be shared among all
1870  * databases, so explicitly inhibit to have dependencies.
1871  */
1872  case REGROLEOID:
1873  ereport(ERROR,
1874  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1875  errmsg("constant of the type %s cannot be used here",
1876  "regrole")));
1877  break;
1878  }
1879  }
1880  return false;
1881  }
1882  else if (IsA(node, Param))
1883  {
1884  Param *param = (Param *) node;
1885 
1886  /* A parameter must depend on the parameter's datatype */
1888  context->addrs);
1889  /* and its collation, just as for Consts */
1890  if (OidIsValid(param->paramcollid) &&
1891  param->paramcollid != DEFAULT_COLLATION_OID)
1893  context->addrs);
1894  }
1895  else if (IsA(node, FuncExpr))
1896  {
1897  FuncExpr *funcexpr = (FuncExpr *) node;
1898 
1899  add_object_address(OCLASS_PROC, funcexpr->funcid, 0,
1900  context->addrs);
1901  /* fall through to examine arguments */
1902  }
1903  else if (IsA(node, OpExpr))
1904  {
1905  OpExpr *opexpr = (OpExpr *) node;
1906 
1908  context->addrs);
1909  /* fall through to examine arguments */
1910  }
1911  else if (IsA(node, DistinctExpr))
1912  {
1913  DistinctExpr *distinctexpr = (DistinctExpr *) node;
1914 
1915  add_object_address(OCLASS_OPERATOR, distinctexpr->opno, 0,
1916  context->addrs);
1917  /* fall through to examine arguments */
1918  }
1919  else if (IsA(node, NullIfExpr))
1920  {
1921  NullIfExpr *nullifexpr = (NullIfExpr *) node;
1922 
1923  add_object_address(OCLASS_OPERATOR, nullifexpr->opno, 0,
1924  context->addrs);
1925  /* fall through to examine arguments */
1926  }
1927  else if (IsA(node, ScalarArrayOpExpr))
1928  {
1929  ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1930 
1932  context->addrs);
1933  /* fall through to examine arguments */
1934  }
1935  else if (IsA(node, Aggref))
1936  {
1937  Aggref *aggref = (Aggref *) node;
1938 
1940  context->addrs);
1941  /* fall through to examine arguments */
1942  }
1943  else if (IsA(node, WindowFunc))
1944  {
1945  WindowFunc *wfunc = (WindowFunc *) node;
1946 
1948  context->addrs);
1949  /* fall through to examine arguments */
1950  }
1951  else if (IsA(node, SubPlan))
1952  {
1953  /* Extra work needed here if we ever need this case */
1954  elog(ERROR, "already-planned subqueries not supported");
1955  }
1956  else if (IsA(node, FieldSelect))
1957  {
1958  FieldSelect *fselect = (FieldSelect *) node;
1959  Oid argtype = getBaseType(exprType((Node *) fselect->arg));
1960  Oid reltype = get_typ_typrelid(argtype);
1961 
1962  /*
1963  * We need a dependency on the specific column named in FieldSelect,
1964  * assuming we can identify the pg_class OID for it. (Probably we
1965  * always can at the moment, but in future it might be possible for
1966  * argtype to be RECORDOID.) If we can make a column dependency then
1967  * we shouldn't need a dependency on the column's type; but if we
1968  * can't, make a dependency on the type, as it might not appear
1969  * anywhere else in the expression.
1970  */
1971  if (OidIsValid(reltype))
1972  add_object_address(OCLASS_CLASS, reltype, fselect->fieldnum,
1973  context->addrs);
1974  else
1976  context->addrs);
1977  /* the collation might not be referenced anywhere else, either */
1978  if (OidIsValid(fselect->resultcollid) &&
1979  fselect->resultcollid != DEFAULT_COLLATION_OID)
1981  context->addrs);
1982  }
1983  else if (IsA(node, FieldStore))
1984  {
1985  FieldStore *fstore = (FieldStore *) node;
1986  Oid reltype = get_typ_typrelid(fstore->resulttype);
1987 
1988  /* similar considerations to FieldSelect, but multiple column(s) */
1989  if (OidIsValid(reltype))
1990  {
1991  ListCell *l;
1992 
1993  foreach(l, fstore->fieldnums)
1995  context->addrs);
1996  }
1997  else
1999  context->addrs);
2000  }
2001  else if (IsA(node, RelabelType))
2002  {
2003  RelabelType *relab = (RelabelType *) node;
2004 
2005  /* since there is no function dependency, need to depend on type */
2007  context->addrs);
2008  /* the collation might not be referenced anywhere else, either */
2009  if (OidIsValid(relab->resultcollid) &&
2010  relab->resultcollid != DEFAULT_COLLATION_OID)
2012  context->addrs);
2013  }
2014  else if (IsA(node, CoerceViaIO))
2015  {
2016  CoerceViaIO *iocoerce = (CoerceViaIO *) node;
2017 
2018  /* since there is no exposed function, need to depend on type */
2020  context->addrs);
2021  /* the collation might not be referenced anywhere else, either */
2022  if (OidIsValid(iocoerce->resultcollid) &&
2023  iocoerce->resultcollid != DEFAULT_COLLATION_OID)
2025  context->addrs);
2026  }
2027  else if (IsA(node, ArrayCoerceExpr))
2028  {
2029  ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
2030 
2031  /* as above, depend on type */
2033  context->addrs);
2034  /* the collation might not be referenced anywhere else, either */
2035  if (OidIsValid(acoerce->resultcollid) &&
2036  acoerce->resultcollid != DEFAULT_COLLATION_OID)
2038  context->addrs);
2039  /* fall through to examine arguments */
2040  }
2041  else if (IsA(node, ConvertRowtypeExpr))
2042  {
2043  ConvertRowtypeExpr *cvt = (ConvertRowtypeExpr *) node;
2044 
2045  /* since there is no function dependency, need to depend on type */
2047  context->addrs);
2048  }
2049  else if (IsA(node, CollateExpr))
2050  {
2051  CollateExpr *coll = (CollateExpr *) node;
2052 
2054  context->addrs);
2055  }
2056  else if (IsA(node, RowExpr))
2057  {
2058  RowExpr *rowexpr = (RowExpr *) node;
2059 
2061  context->addrs);
2062  }
2063  else if (IsA(node, RowCompareExpr))
2064  {
2065  RowCompareExpr *rcexpr = (RowCompareExpr *) node;
2066  ListCell *l;
2067 
2068  foreach(l, rcexpr->opnos)
2069  {
2071  context->addrs);
2072  }
2073  foreach(l, rcexpr->opfamilies)
2074  {
2076  context->addrs);
2077  }
2078  /* fall through to examine arguments */
2079  }
2080  else if (IsA(node, CoerceToDomain))
2081  {
2082  CoerceToDomain *cd = (CoerceToDomain *) node;
2083 
2085  context->addrs);
2086  }
2087  else if (IsA(node, NextValueExpr))
2088  {
2089  NextValueExpr *nve = (NextValueExpr *) node;
2090 
2092  context->addrs);
2093  }
2094  else if (IsA(node, OnConflictExpr))
2095  {
2096  OnConflictExpr *onconflict = (OnConflictExpr *) node;
2097 
2098  if (OidIsValid(onconflict->constraint))
2100  context->addrs);
2101  /* fall through to examine arguments */
2102  }
2103  else if (IsA(node, SortGroupClause))
2104  {
2105  SortGroupClause *sgc = (SortGroupClause *) node;
2106 
2108  context->addrs);
2109  if (OidIsValid(sgc->sortop))
2111  context->addrs);
2112  return false;
2113  }
2114  else if (IsA(node, WindowClause))
2115  {
2116  WindowClause *wc = (WindowClause *) node;
2117 
2118  if (OidIsValid(wc->startInRangeFunc))
2120  context->addrs);
2121  if (OidIsValid(wc->endInRangeFunc))
2123  context->addrs);
2124  if (OidIsValid(wc->inRangeColl) &&
2125  wc->inRangeColl != DEFAULT_COLLATION_OID)
2127  context->addrs);
2128  /* fall through to examine substructure */
2129  }
2130  else if (IsA(node, Query))
2131  {
2132  /* Recurse into RTE subquery or not-yet-planned sublink subquery */
2133  Query *query = (Query *) node;
2134  ListCell *lc;
2135  bool result;
2136 
2137  /*
2138  * Add whole-relation refs for each plain relation mentioned in the
2139  * subquery's rtable, and ensure we add refs for any type-coercion
2140  * functions used in join alias lists.
2141  *
2142  * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
2143  * RTEs, subqueries, etc, so no need to do that here. But we must
2144  * tell it not to visit join alias lists, or we'll add refs for join
2145  * input columns whether or not they are actually used in our query.
2146  *
2147  * Note: we don't need to worry about collations mentioned in
2148  * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
2149  * collations referenced in other parts of the Query. We do have to
2150  * worry about collations mentioned in RTE_FUNCTION, but we take care
2151  * of those when we recurse to the RangeTblFunction node(s).
2152  */
2153  foreach(lc, query->rtable)
2154  {
2155  RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
2156 
2157  switch (rte->rtekind)
2158  {
2159  case RTE_RELATION:
2161  context->addrs);
2162  break;
2163  case RTE_JOIN:
2164 
2165  /*
2166  * Examine joinaliasvars entries only for merged JOIN
2167  * USING columns. Only those entries could contain
2168  * type-coercion functions. Also, their join input
2169  * columns must be referenced in the join quals, so this
2170  * won't accidentally add refs to otherwise-unused join
2171  * input columns. (We want to ref the type coercion
2172  * functions even if the merged column isn't explicitly
2173  * used anywhere, to protect possible expansion of the
2174  * join RTE as a whole-row var, and because it seems like
2175  * a bad idea to allow dropping a function that's present
2176  * in our query tree, whether or not it could get called.)
2177  */
2178  context->rtables = lcons(query->rtable, context->rtables);
2179  for (int i = 0; i < rte->joinmergedcols; i++)
2180  {
2181  Node *aliasvar = list_nth(rte->joinaliasvars, i);
2182 
2183  if (!IsA(aliasvar, Var))
2184  find_expr_references_walker(aliasvar, context);
2185  }
2186  context->rtables = list_delete_first(context->rtables);
2187  break;
2188  default:
2189  break;
2190  }
2191  }
2192 
2193  /*
2194  * If the query is an INSERT or UPDATE, we should create a dependency
2195  * on each target column, to prevent the specific target column from
2196  * being dropped. Although we will visit the TargetEntry nodes again
2197  * during query_tree_walker, we won't have enough context to do this
2198  * conveniently, so do it here.
2199  */
2200  if (query->commandType == CMD_INSERT ||
2201  query->commandType == CMD_UPDATE)
2202  {
2203  RangeTblEntry *rte;
2204 
2205  if (query->resultRelation <= 0 ||
2206  query->resultRelation > list_length(query->rtable))
2207  elog(ERROR, "invalid resultRelation %d",
2208  query->resultRelation);
2209  rte = rt_fetch(query->resultRelation, query->rtable);
2210  if (rte->rtekind == RTE_RELATION)
2211  {
2212  foreach(lc, query->targetList)
2213  {
2214  TargetEntry *tle = (TargetEntry *) lfirst(lc);
2215 
2216  if (tle->resjunk)
2217  continue; /* ignore junk tlist items */
2219  context->addrs);
2220  }
2221  }
2222  }
2223 
2224  /*
2225  * Add dependencies on constraints listed in query's constraintDeps
2226  */
2227  foreach(lc, query->constraintDeps)
2228  {
2230  context->addrs);
2231  }
2232 
2233  /* Examine substructure of query */
2234  context->rtables = lcons(query->rtable, context->rtables);
2235  result = query_tree_walker(query,
2237  (void *) context,
2240  context->rtables = list_delete_first(context->rtables);
2241  return result;
2242  }
2243  else if (IsA(node, SetOperationStmt))
2244  {
2245  SetOperationStmt *setop = (SetOperationStmt *) node;
2246 
2247  /* we need to look at the groupClauses for operator references */
2248  find_expr_references_walker((Node *) setop->groupClauses, context);
2249  /* fall through to examine child nodes */
2250  }
2251  else if (IsA(node, RangeTblFunction))
2252  {
2253  RangeTblFunction *rtfunc = (RangeTblFunction *) node;
2254  ListCell *ct;
2255 
2256  /*
2257  * Add refs for any datatypes and collations used in a column
2258  * definition list for a RECORD function. (For other cases, it should
2259  * be enough to depend on the function itself.)
2260  */
2261  foreach(ct, rtfunc->funccoltypes)
2262  {
2264  context->addrs);
2265  }
2266  foreach(ct, rtfunc->funccolcollations)
2267  {
2268  Oid collid = lfirst_oid(ct);
2269 
2270  if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2272  context->addrs);
2273  }
2274  }
2275  else if (IsA(node, TableFunc))
2276  {
2277  TableFunc *tf = (TableFunc *) node;
2278  ListCell *ct;
2279 
2280  /*
2281  * Add refs for the datatypes and collations used in the TableFunc.
2282  */
2283  foreach(ct, tf->coltypes)
2284  {
2286  context->addrs);
2287  }
2288  foreach(ct, tf->colcollations)
2289  {
2290  Oid collid = lfirst_oid(ct);
2291 
2292  if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2294  context->addrs);
2295  }
2296  }
2297  else if (IsA(node, TableSampleClause))
2298  {
2299  TableSampleClause *tsc = (TableSampleClause *) node;
2300 
2302  context->addrs);
2303  /* fall through to examine arguments */
2304  }
2305 
2307  (void *) context);
2308 }
2309 
2310 /*
2311  * Given an array of dependency references, eliminate any duplicates.
2312  */
2313 static void
2315 {
2316  ObjectAddress *priorobj;
2317  int oldref,
2318  newrefs;
2319 
2320  /*
2321  * We can't sort if the array has "extra" data, because there's no way to
2322  * keep it in sync. Fortunately that combination of features is not
2323  * needed.
2324  */
2325  Assert(!addrs->extras);
2326 
2327  if (addrs->numrefs <= 1)
2328  return; /* nothing to do */
2329 
2330  /* Sort the refs so that duplicates are adjacent */
2331  qsort((void *) addrs->refs, addrs->numrefs, sizeof(ObjectAddress),
2333 
2334  /* Remove dups */
2335  priorobj = addrs->refs;
2336  newrefs = 1;
2337  for (oldref = 1; oldref < addrs->numrefs; oldref++)
2338  {
2339  ObjectAddress *thisobj = addrs->refs + oldref;
2340 
2341  if (priorobj->classId == thisobj->classId &&
2342  priorobj->objectId == thisobj->objectId)
2343  {
2344  if (priorobj->objectSubId == thisobj->objectSubId)
2345  continue; /* identical, so drop thisobj */
2346 
2347  /*
2348  * If we have a whole-object reference and a reference to a part
2349  * of the same object, we don't need the whole-object reference
2350  * (for example, we don't need to reference both table foo and
2351  * column foo.bar). The whole-object reference will always appear
2352  * first in the sorted list.
2353  */
2354  if (priorobj->objectSubId == 0)
2355  {
2356  /* replace whole ref with partial */
2357  priorobj->objectSubId = thisobj->objectSubId;
2358  continue;
2359  }
2360  }
2361  /* Not identical, so add thisobj to output set */
2362  priorobj++;
2363  *priorobj = *thisobj;
2364  newrefs++;
2365  }
2366 
2367  addrs->numrefs = newrefs;
2368 }
2369 
2370 /*
2371  * qsort comparator for ObjectAddress items
2372  */
2373 static int
2374 object_address_comparator(const void *a, const void *b)
2375 {
2376  const ObjectAddress *obja = (const ObjectAddress *) a;
2377  const ObjectAddress *objb = (const ObjectAddress *) b;
2378 
2379  /*
2380  * Primary sort key is OID descending. Most of the time, this will result
2381  * in putting newer objects before older ones, which is likely to be the
2382  * right order to delete in.
2383  */
2384  if (obja->objectId > objb->objectId)
2385  return -1;
2386  if (obja->objectId < objb->objectId)
2387  return 1;
2388 
2389  /*
2390  * Next sort on catalog ID, in case identical OIDs appear in different
2391  * catalogs. Sort direction is pretty arbitrary here.
2392  */
2393  if (obja->classId < objb->classId)
2394  return -1;
2395  if (obja->classId > objb->classId)
2396  return 1;
2397 
2398  /*
2399  * Last, sort on object subId.
2400  *
2401  * We sort the subId as an unsigned int so that 0 (the whole object) will
2402  * come first. This is essential for eliminate_duplicate_dependencies,
2403  * and is also the best order for findDependentObjects.
2404  */
2405  if ((unsigned int) obja->objectSubId < (unsigned int) objb->objectSubId)
2406  return -1;
2407  if ((unsigned int) obja->objectSubId > (unsigned int) objb->objectSubId)
2408  return 1;
2409  return 0;
2410 }
2411 
2412 /*
2413  * Routines for handling an expansible array of ObjectAddress items.
2414  *
2415  * new_object_addresses: create a new ObjectAddresses array.
2416  */
2419 {
2420  ObjectAddresses *addrs;
2421 
2422  addrs = palloc(sizeof(ObjectAddresses));
2423 
2424  addrs->numrefs = 0;
2425  addrs->maxrefs = 32;
2426  addrs->refs = (ObjectAddress *)
2427  palloc(addrs->maxrefs * sizeof(ObjectAddress));
2428  addrs->extras = NULL; /* until/unless needed */
2429 
2430  return addrs;
2431 }
2432 
2433 /*
2434  * Add an entry to an ObjectAddresses array.
2435  *
2436  * It is convenient to specify the class by ObjectClass rather than directly
2437  * by catalog OID.
2438  */
2439 static void
2440 add_object_address(ObjectClass oclass, Oid objectId, int32 subId,
2441  ObjectAddresses *addrs)
2442 {
2443  ObjectAddress *item;
2444 
2445  /*
2446  * Make sure object_classes is kept up to date with the ObjectClass enum.
2447  */
2449  "object_classes[] must cover all ObjectClasses");
2450 
2451  /* enlarge array if needed */
2452  if (addrs->numrefs >= addrs->maxrefs)
2453  {
2454  addrs->maxrefs *= 2;
2455  addrs->refs = (ObjectAddress *)
2456  repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2457  Assert(!addrs->extras);
2458  }
2459  /* record this item */
2460  item = addrs->refs + addrs->numrefs;
2461  item->classId = object_classes[oclass];
2462  item->objectId = objectId;
2463  item->objectSubId = subId;
2464  addrs->numrefs++;
2465 }
2466 
2467 /*
2468  * Add an entry to an ObjectAddresses array.
2469  *
2470  * As above, but specify entry exactly.
2471  */
2472 void
2474  ObjectAddresses *addrs)
2475 {
2476  ObjectAddress *item;
2477 
2478  /* enlarge array if needed */
2479  if (addrs->numrefs >= addrs->maxrefs)
2480  {
2481  addrs->maxrefs *= 2;
2482  addrs->refs = (ObjectAddress *)
2483  repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2484  Assert(!addrs->extras);
2485  }
2486  /* record this item */
2487  item = addrs->refs + addrs->numrefs;
2488  *item = *object;
2489  addrs->numrefs++;
2490 }
2491 
2492 /*
2493  * Add an entry to an ObjectAddresses array.
2494  *
2495  * As above, but specify entry exactly and provide some "extra" data too.
2496  */
2497 static void
2499  const ObjectAddressExtra *extra,
2500  ObjectAddresses *addrs)
2501 {
2502  ObjectAddress *item;
2503  ObjectAddressExtra *itemextra;
2504 
2505  /* allocate extra space if first time */
2506  if (!addrs->extras)
2507  addrs->extras = (ObjectAddressExtra *)
2508  palloc(addrs->maxrefs * sizeof(ObjectAddressExtra));
2509 
2510  /* enlarge array if needed */
2511  if (addrs->numrefs >= addrs->maxrefs)
2512  {
2513  addrs->maxrefs *= 2;
2514  addrs->refs = (ObjectAddress *)
2515  repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2516  addrs->extras = (ObjectAddressExtra *)
2517  repalloc(addrs->extras, addrs->maxrefs * sizeof(ObjectAddressExtra));
2518  }
2519  /* record this item */
2520  item = addrs->refs + addrs->numrefs;
2521  *item = *object;
2522  itemextra = addrs->extras + addrs->numrefs;
2523  *itemextra = *extra;
2524  addrs->numrefs++;
2525 }
2526 
2527 /*
2528  * Test whether an object is present in an ObjectAddresses array.
2529  *
2530  * We return "true" if object is a subobject of something in the array, too.
2531  */
2532 bool
2534  const ObjectAddresses *addrs)
2535 {
2536  int i;
2537 
2538  for (i = addrs->numrefs - 1; i >= 0; i--)
2539  {
2540  const ObjectAddress *thisobj = addrs->refs + i;
2541 
2542  if (object->classId == thisobj->classId &&
2543  object->objectId == thisobj->objectId)
2544  {
2545  if (object->objectSubId == thisobj->objectSubId ||
2546  thisobj->objectSubId == 0)
2547  return true;
2548  }
2549  }
2550 
2551  return false;
2552 }
2553 
2554 /*
2555  * As above, except that if the object is present then also OR the given
2556  * flags into its associated extra data (which must exist).
2557  */
2558 static bool
2560  int flags,
2561  ObjectAddresses *addrs)
2562 {
2563  bool result = false;
2564  int i;
2565 
2566  for (i = addrs->numrefs - 1; i >= 0; i--)
2567  {
2568  ObjectAddress *thisobj = addrs->refs + i;
2569 
2570  if (object->classId == thisobj->classId &&
2571  object->objectId == thisobj->objectId)
2572  {
2573  if (object->objectSubId == thisobj->objectSubId)
2574  {
2575  ObjectAddressExtra *thisextra = addrs->extras + i;
2576 
2577  thisextra->flags |= flags;
2578  result = true;
2579  }
2580  else if (thisobj->objectSubId == 0)
2581  {
2582  /*
2583  * We get here if we find a need to delete a column after
2584  * having already decided to drop its whole table. Obviously
2585  * we no longer need to drop the subobject, so report that we
2586  * found the subobject in the array. But don't plaster its
2587  * flags on the whole object.
2588  */
2589  result = true;
2590  }
2591  else if (object->objectSubId == 0)
2592  {
2593  /*
2594  * We get here if we find a need to delete a whole table after
2595  * having already decided to drop one of its columns. We
2596  * can't report that the whole object is in the array, but we
2597  * should mark the subobject with the whole object's flags.
2598  *
2599  * It might seem attractive to physically delete the column's
2600  * array entry, or at least mark it as no longer needing
2601  * separate deletion. But that could lead to, e.g., dropping
2602  * the column's datatype before we drop the table, which does
2603  * not seem like a good idea. This is a very rare situation
2604  * in practice, so we just take the hit of doing a separate
2605  * DROP COLUMN action even though we know we're gonna delete
2606  * the table later.
2607  *
2608  * What we can do, though, is mark this as a subobject so that
2609  * we don't report it separately, which is confusing because
2610  * it's unpredictable whether it happens or not. But do so
2611  * only if flags != 0 (flags == 0 is a read-only probe).
2612  *
2613  * Because there could be other subobjects of this object in
2614  * the array, this case means we always have to loop through
2615  * the whole array; we cannot exit early on a match.
2616  */
2617  ObjectAddressExtra *thisextra = addrs->extras + i;
2618 
2619  if (flags)
2620  thisextra->flags |= (flags | DEPFLAG_SUBOBJECT);
2621  }
2622  }
2623  }
2624 
2625  return result;
2626 }
2627 
2628 /*
2629  * Similar to above, except we search an ObjectAddressStack.
2630  */
2631 static bool
2633  int flags,
2634  ObjectAddressStack *stack)
2635 {
2636  bool result = false;
2637  ObjectAddressStack *stackptr;
2638 
2639  for (stackptr = stack; stackptr; stackptr = stackptr->next)
2640  {
2641  const ObjectAddress *thisobj = stackptr->object;
2642 
2643  if (object->classId == thisobj->classId &&
2644  object->objectId == thisobj->objectId)
2645  {
2646  if (object->objectSubId == thisobj->objectSubId)
2647  {
2648  stackptr->flags |= flags;
2649  result = true;
2650  }
2651  else if (thisobj->objectSubId == 0)
2652  {
2653  /*
2654  * We're visiting a column with whole table already on stack.
2655  * As in object_address_present_add_flags(), we can skip
2656  * further processing of the subobject, but we don't want to
2657  * propagate flags for the subobject to the whole object.
2658  */
2659  result = true;
2660  }
2661  else if (object->objectSubId == 0)
2662  {
2663  /*
2664  * We're visiting a table with column already on stack. As in
2665  * object_address_present_add_flags(), we should propagate
2666  * flags for the whole object to each of its subobjects.
2667  */
2668  if (flags)
2669  stackptr->flags |= (flags | DEPFLAG_SUBOBJECT);
2670  }
2671  }
2672  }
2673 
2674  return result;
2675 }
2676 
2677 /*
2678  * Record multiple dependencies from an ObjectAddresses array, after first
2679  * removing any duplicates.
2680  */
2681 void
2683  ObjectAddresses *referenced,
2684  DependencyType behavior)
2685 {
2687  recordMultipleDependencies(depender,
2688  referenced->refs, referenced->numrefs,
2689  behavior);
2690 }
2691 
2692 /*
2693  * Sort the items in an ObjectAddresses array.
2694  *
2695  * The major sort key is OID-descending, so that newer objects will be listed
2696  * first in most cases. This is primarily useful for ensuring stable outputs
2697  * from regression tests; it's not recommended if the order of the objects is
2698  * determined by user input, such as the order of targets in a DROP command.
2699  */
2700 void
2702 {
2703  if (addrs->numrefs > 1)
2704  qsort((void *) addrs->refs, addrs->numrefs,
2705  sizeof(ObjectAddress),
2707 }
2708 
2709 /*
2710  * Clean up when done with an ObjectAddresses array.
2711  */
2712 void
2714 {
2715  pfree(addrs->refs);
2716  if (addrs->extras)
2717  pfree(addrs->extras);
2718  pfree(addrs);
2719 }
2720 
2721 /*
2722  * Determine the class of a given object identified by objectAddress.
2723  *
2724  * This function is essentially the reverse mapping for the object_classes[]
2725  * table. We implement it as a function because the OIDs aren't consecutive.
2726  */
2729 {
2730  /* only pg_class entries can have nonzero objectSubId */
2731  if (object->classId != RelationRelationId &&
2732  object->objectSubId != 0)
2733  elog(ERROR, "invalid non-zero objectSubId for object class %u",
2734  object->classId);
2735 
2736  switch (object->classId)
2737  {
2738  case RelationRelationId:
2739  /* caller must check objectSubId */
2740  return OCLASS_CLASS;
2741 
2742  case ProcedureRelationId:
2743  return OCLASS_PROC;
2744 
2745  case TypeRelationId:
2746  return OCLASS_TYPE;
2747 
2748  case CastRelationId:
2749  return OCLASS_CAST;
2750 
2751  case CollationRelationId:
2752  return OCLASS_COLLATION;
2753 
2754  case ConstraintRelationId:
2755  return OCLASS_CONSTRAINT;
2756 
2757  case ConversionRelationId:
2758  return OCLASS_CONVERSION;
2759 
2760  case AttrDefaultRelationId:
2761  return OCLASS_DEFAULT;
2762 
2763  case LanguageRelationId:
2764  return OCLASS_LANGUAGE;
2765 
2766  case LargeObjectRelationId:
2767  return OCLASS_LARGEOBJECT;
2768 
2769  case OperatorRelationId:
2770  return OCLASS_OPERATOR;
2771 
2772  case OperatorClassRelationId:
2773  return OCLASS_OPCLASS;
2774 
2775  case OperatorFamilyRelationId:
2776  return OCLASS_OPFAMILY;
2777 
2778  case AccessMethodRelationId:
2779  return OCLASS_AM;
2780 
2781  case AccessMethodOperatorRelationId:
2782  return OCLASS_AMOP;
2783 
2784  case AccessMethodProcedureRelationId:
2785  return OCLASS_AMPROC;
2786 
2787  case RewriteRelationId:
2788  return OCLASS_REWRITE;
2789 
2790  case TriggerRelationId:
2791  return OCLASS_TRIGGER;
2792 
2793  case NamespaceRelationId:
2794  return OCLASS_SCHEMA;
2795 
2796  case StatisticExtRelationId:
2797  return OCLASS_STATISTIC_EXT;
2798 
2799  case TSParserRelationId:
2800  return OCLASS_TSPARSER;
2801 
2802  case TSDictionaryRelationId:
2803  return OCLASS_TSDICT;
2804 
2805  case TSTemplateRelationId:
2806  return OCLASS_TSTEMPLATE;
2807 
2808  case TSConfigRelationId:
2809  return OCLASS_TSCONFIG;
2810 
2811  case AuthIdRelationId:
2812  return OCLASS_ROLE;
2813 
2814  case DatabaseRelationId:
2815  return OCLASS_DATABASE;
2816 
2817  case TableSpaceRelationId:
2818  return OCLASS_TBLSPACE;
2819 
2820  case ForeignDataWrapperRelationId:
2821  return OCLASS_FDW;
2822 
2823  case ForeignServerRelationId:
2824  return OCLASS_FOREIGN_SERVER;
2825 
2826  case UserMappingRelationId:
2827  return OCLASS_USER_MAPPING;
2828 
2829  case DefaultAclRelationId:
2830  return OCLASS_DEFACL;
2831 
2832  case ExtensionRelationId:
2833  return OCLASS_EXTENSION;
2834 
2835  case EventTriggerRelationId:
2836  return OCLASS_EVENT_TRIGGER;
2837 
2838  case PolicyRelationId:
2839  return OCLASS_POLICY;
2840 
2841  case PublicationRelationId:
2842  return OCLASS_PUBLICATION;
2843 
2844  case PublicationRelRelationId:
2845  return OCLASS_PUBLICATION_REL;
2846 
2847  case SubscriptionRelationId:
2848  return OCLASS_SUBSCRIPTION;
2849 
2850  case TransformRelationId:
2851  return OCLASS_TRANSFORM;
2852  }
2853 
2854  /* shouldn't get here */
2855  elog(ERROR, "unrecognized object class: %u", object->classId);
2856  return OCLASS_CLASS; /* keep compiler quiet */
2857 }
2858 
2859 /*
2860  * delete initial ACL for extension objects
2861  */
2862 static void
2864 {
2865  Relation relation;
2866  ScanKeyData key[3];
2867  SysScanDesc scan;
2868  HeapTuple oldtuple;
2869 
2870  relation = table_open(InitPrivsRelationId, RowExclusiveLock);
2871 
2872  ScanKeyInit(&key[0],
2873  Anum_pg_init_privs_objoid,
2874  BTEqualStrategyNumber, F_OIDEQ,
2875  ObjectIdGetDatum(object->objectId));
2876  ScanKeyInit(&key[1],
2877  Anum_pg_init_privs_classoid,
2878  BTEqualStrategyNumber, F_OIDEQ,
2879  ObjectIdGetDatum(object->classId));
2880  ScanKeyInit(&key[2],
2881  Anum_pg_init_privs_objsubid,
2882  BTEqualStrategyNumber, F_INT4EQ,
2883  Int32GetDatum(object->objectSubId));
2884 
2885  scan = systable_beginscan(relation, InitPrivsObjIndexId, true,
2886  NULL, 3, key);
2887 
2888  while (HeapTupleIsValid(oldtuple = systable_getnext(scan)))
2889  CatalogTupleDelete(relation, &oldtuple->t_self);
2890 
2891  systable_endscan(scan);
2892 
2893  table_close(relation, RowExclusiveLock);
2894 }
Datum constvalue
Definition: primnodes.h:214
static void findDependentObjects(const ObjectAddress *object, int objflags, int flags, ObjectAddressStack *stack, ObjectAddresses *targetObjects, const ObjectAddresses *pendingObjects, Relation *depRel)
Definition: dependency.c:473
void RemoveTriggerById(Oid trigOid)
Definition: trigger.c:1161
#define DEPFLAG_SUBOBJECT
Definition: dependency.c:107
Oid CurrentExtensionObject
Definition: extension.c:72
DependencyType
Definition: dependency.h:31
bool query_tree_walker(Query *query, bool(*walker)(), void *context, int flags)
Definition: nodeFuncs.c:2273
static int object_address_comparator(const void *a, const void *b)
Definition: dependency.c:2374
#define DEPFLAG_PARTITION
Definition: dependency.c:103
#define IsA(nodeptr, _type_)
Definition: nodes.h:580
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:133
List * joinaliasvars
Definition: parsenodes.h:1051
Index varlevelsup
Definition: primnodes.h:191
int errhint(const char *fmt,...)
Definition: elog.c:1071
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:529
#define GETSTRUCT(TUP)
Definition: htup_details.h:655
void index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
Definition: index.c:2028
static void add_exact_object_address_extra(const ObjectAddress *object, const ObjectAddressExtra *extra, ObjectAddresses *addrs)
Definition: dependency.c:2498
static bool find_expr_references_walker(Node *node, find_expr_references_context *context)
Definition: dependency.c:1736
void RemoveStatisticsById(Oid statsOid)
Definition: statscmds.c:531
static void deleteOneObject(const ObjectAddress *object, Relation *depRel, int32 flags)
void RemoveOpClassById(Oid opclassOid)
Definition: opclasscmds.c:1683
Oid resulttype
Definition: primnodes.h:764
void DropTransformById(Oid transformOid)
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:934
void UnlockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:199
bool trackDroppedObjectsNeeded(void)
void sort_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2701
void RemoveExtensionById(Oid extId)
Definition: extension.c:1862
ObjectAddresses * addrs
Definition: dependency.c:139
List * constraintDeps
Definition: parsenodes.h:169
void DropProceduralLanguageById(Oid langOid)
Definition: proclang.c:225
char get_rel_relkind(Oid relid)
Definition: lsyscache.c:1915
void RemoveForeignDataWrapperById(Oid fdwId)
Definition: foreigncmds.c:842
#define DatumGetObjectId(X)
Definition: postgres.h:500
void record_object_address_dependencies(const ObjectAddress *depender, ObjectAddresses *referenced, DependencyType behavior)
Definition: dependency.c:2682
bool object_address_present(const ObjectAddress *object, const ObjectAddresses *addrs)
Definition: dependency.c:2533
#define DependReferenceIndexId
Definition: indexing.h:151
Oid resulttype
Definition: primnodes.h:835
#define QTW_EXAMINE_SORTGROUP
Definition: nodeFuncs.h:30
List * opfamilies
Definition: primnodes.h:1072
#define DependDependerIndexId
Definition: indexing.h:149
#define PERFORM_DELETION_SKIP_ORIGINAL
Definition: dependency.h:137
void ReleaseDeletionLock(const ObjectAddress *object)
Definition: dependency.c:1565
int resultRelation
Definition: parsenodes.h:122
void DeleteSecurityLabel(const ObjectAddress *object)
Definition: seclabel.c:446
#define LAST_OCLASS
Definition: dependency.h:131
Oid endInRangeFunc
Definition: parsenodes.h:1359
#define AccessShareLock
Definition: lockdefs.h:36
void RemoveSchemaById(Oid schemaOid)
Definition: schemacmds.c:217
Definition: nodes.h:529
int errcode(int sqlerrcode)
Definition: elog.c:610
#define MemSet(start, val, len)
Definition: c.h:971
AttrNumber varattno
Definition: primnodes.h:186
Expr * arg
Definition: primnodes.h:762
void RemovePublicationById(Oid pubid)
void CatalogTupleDelete(Relation heapRel, ItemPointer tid)
Definition: indexing.c:269
void RemovePublicationRelById(Oid proid)
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition: pg_depend.c:43
void add_exact_object_address(const ObjectAddress *object, ObjectAddresses *addrs)
Definition: dependency.c:2473
#define lengthof(array)
Definition: c.h:668
#define DEPFLAG_REVERSE
Definition: dependency.c:105
ObjectAddresses * new_object_addresses(void)
Definition: dependency.c:2418
void RemoveAmProcEntryById(Oid entryOid)
Definition: opclasscmds.c:1731
#define LOG
Definition: elog.h:26
void free_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2713
unsigned int Oid
Definition: postgres_ext.h:31
Definition: primnodes.h:181
#define InitPrivsObjIndexId
Definition: indexing.h:176
void RemoveTypeById(Oid typeOid)
Definition: typecmds.c:617
ObjectClass getObjectClass(const ObjectAddress *object)
Definition: dependency.c:2728
#define OidIsValid(objectId)
Definition: c.h:644
void RemoveCollationById(Oid collationOid)
Definition: pg_collation.c:214
void RemoveUserMappingById(Oid umId)
Definition: foreigncmds.c:1442
struct ObjectAddressStack * next
Definition: dependency.c:126
static void eliminate_duplicate_dependencies(ObjectAddresses *addrs)
Definition: dependency.c:2314
void RemoveConversionById(Oid conversionOid)
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:356
void RemoveAccessMethodById(Oid amOid)
Definition: amcmds.c:122
char * getObjectDescription(const ObjectAddress *object)
List * colcollations
Definition: primnodes.h:92
signed int int32
Definition: c.h:355
List * targetList
Definition: parsenodes.h:140
bool systable_recheck_tuple(SysScanDesc sysscan, HeapTuple tup)
Definition: genam.c:501
void RemoveOperatorById(Oid operOid)
Definition: operatorcmds.c:340
#define PERFORM_DELETION_CONCURRENTLY
Definition: dependency.h:135
#define list_make1(x1)
Definition: pg_list.h:227
ObjectAddress obj
Definition: dependency.c:132
Oid consttype
Definition: primnodes.h:210
#define StaticAssertStmt(condition, errmessage)
Definition: c.h:852
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:448
#define SearchSysCacheExists1(cacheId, key1)
Definition: syscache.h:183
Oid get_typ_typrelid(Oid typid)
Definition: lsyscache.c:2609
void pfree(void *pointer)
Definition: mcxt.c:1056
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:91
bool resjunk
Definition: primnodes.h:1414
void RemoveDefaultACLById(Oid defaclOid)
Definition: aclchk.c:1505
List * rtable
Definition: parsenodes.h:137
Oid funcid
Definition: primnodes.h:469
#define ObjectIdGetDatum(X)
Definition: postgres.h:507
#define ERROR
Definition: elog.h:43
#define DEPFLAG_ORIGINAL
Definition: dependency.c:99
#define DEPFLAG_IS_PART
Definition: dependency.c:106
static const Oid object_classes[]
Definition: dependency.c:147
Oid paramcollid
Definition: primnodes.h:266
#define DEPFLAG_AUTO
Definition: dependency.c:101
#define lfirst_int(lc)
Definition: pg_list.h:191
void RemoveTSConfigurationById(Oid cfgId)
Definition: tsearchcmds.c:1134
static void * list_nth(const List *list, int n)
Definition: pg_list.h:277
ItemPointerData t_self
Definition: htup.h:65
const ObjectAddress * object
Definition: dependency.c:124
#define DEPFLAG_INTERNAL
Definition: dependency.c:102
Oid constcollid
Definition: primnodes.h:212
Oid resultcollid
Definition: primnodes.h:767
#define DEBUG2
Definition: elog.h:24
void RemoveOpFamilyById(Oid opfamilyOid)
Definition: opclasscmds.c:1664
void RemovePolicyById(Oid policy_id)
Definition: policy.c:354
static bool object_address_present_add_flags(const ObjectAddress *object, int flags, ObjectAddresses *addrs)
Definition: dependency.c:2559
struct ObjectAddressStack ObjectAddressStack
ObjectAddress * refs
Definition: dependency.c:113
ObjectClass
Definition: dependency.h:89
#define RowExclusiveLock
Definition: lockdefs.h:38
void RemoveTSParserById(Oid prsId)
Definition: tsearchcmds.c:298
int errdetail(const char *fmt,...)
Definition: elog.c:957
AttrNumber resno
Definition: primnodes.h:1408
void recordDependencyOnExpr(const ObjectAddress *depender, Node *expr, List *rtable, DependencyType behavior)
Definition: dependency.c:1590
void LockDatabaseObject(Oid classid, Oid objid, uint16 objsubid, LOCKMODE lockmode)
Definition: lmgr.c:961
void RemoveAttributeById(Oid relid, AttrNumber attnum)
Definition: heap.c:1613
void performDeletion(const ObjectAddress *object, DropBehavior behavior, int flags)
Definition: dependency.c:314
void RemoveTSTemplateById(Oid tmplId)
Definition: tsearchcmds.c:827
static void reportDependentObjects(const ObjectAddresses *targetObjects, DropBehavior behavior, int flags, const ObjectAddress *origObject)
Definition: dependency.c:1026
int errdetail_log(const char *fmt,...)
Definition: elog.c:1005
Oid resulttype
Definition: primnodes.h:794
Oid winfnoid
Definition: primnodes.h:373
FormData_pg_depend * Form_pg_depend
Definition: pg_depend.h:71
void DeleteSequenceTuple(Oid relid)
Definition: sequence.c:526
void RemoveEventTriggerById(Oid trigOid)
void RemoveAttrDefaultById(Oid attrdefId)
Definition: heap.c:1781
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
void LargeObjectDrop(Oid loid)
void deleteSharedDependencyRecordsFor(Oid classId, Oid objectId, int32 objectSubId)
Definition: pg_shdepend.c:907
void UnlockDatabaseObject(Oid classid, Oid objid, uint16 objsubid, LOCKMODE lockmode)
Definition: lmgr.c:982
bool EventTriggerSupportsObjectClass(ObjectClass objclass)
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:188
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
Index varno
Definition: primnodes.h:184
#define ngettext(s, p, n)
Definition: c.h:1146
void RemoveAmOpEntryById(Oid entryOid)
Definition: opclasscmds.c:1702
void AcquireDeletionLock(const ObjectAddress *object, int flags)
Definition: dependency.c:1536
DropBehavior
Definition: parsenodes.h:1764
void CommandCounterIncrement(void)
Definition: xact.c:1006
void DeleteComments(Oid oid, Oid classoid, int32 subid)
Definition: comment.c:325
Oid resultcollid
Definition: primnodes.h:837
Oid resulttype
Definition: primnodes.h:815
List * coltypes
Definition: primnodes.h:90
int log_min_messages
Definition: guc.c:543
Oid resultcollid
Definition: primnodes.h:817
void RemoveForeignServerById(Oid srvId)
Definition: foreigncmds.c:1092
bool creating_extension
Definition: extension.c:71
Oid aggfnoid
Definition: primnodes.h:312
#define ereport(elevel,...)
Definition: elog.h:144
#define DEPFLAG_EXTENSION
Definition: dependency.c:104
#define NOTICE
Definition: elog.h:37
CmdType commandType
Definition: parsenodes.h:112
List * lcons(void *datum, List *list)
Definition: list.c:453
int errmsg_internal(const char *fmt,...)
Definition: elog.c:911
List * funccolcollations
Definition: parsenodes.h:1154
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define Assert(condition)
Definition: c.h:738
#define lfirst(lc)
Definition: pg_list.h:190
void recordMultipleDependencies(const ObjectAddress *depender, const ObjectAddress *referenced, int nreferenced, DependencyType behavior)
Definition: pg_depend.c:55
#define PERFORM_DELETION_QUIETLY
Definition: dependency.h:136
void recordDependencyOnSingleRelExpr(const ObjectAddress *depender, Node *expr, Oid relId, DependencyType behavior, DependencyType self_behavior, bool reverse_self)
Definition: dependency.c:1633
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
bool expression_tree_walker(Node *node, bool(*walker)(), void *context)
Definition: nodeFuncs.c:1839
Oid row_typeid
Definition: primnodes.h:1023
static int list_length(const List *l)
Definition: pg_list.h:169
void EventTriggerSQLDropAddObject(const ObjectAddress *object, bool original, bool normal)
static void doDeletion(const ObjectAddress *object, int flags)
Definition: dependency.c:1336
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1069
#define InvalidAttrNumber
Definition: attnum.h:23
void RemoveFunctionById(Oid funcOid)
RTEKind rtekind
Definition: parsenodes.h:976
ObjectAddressExtra * extras
Definition: dependency.c:114
#define AccessExclusiveLock
Definition: lockdefs.h:45
#define Int32GetDatum(X)
Definition: postgres.h:479
void * palloc(Size size)
Definition: mcxt.c:949
int errmsg(const char *fmt,...)
Definition: elog.c:824
#define DEPFLAG_NORMAL
Definition: dependency.c:100
NodeTag type
Definition: parsenodes.h:974
List * fieldnums
Definition: primnodes.h:793
void RemoveRewriteRuleById(Oid ruleOid)
Definition: rewriteRemove.c:39
#define elog(elevel,...)
Definition: elog.h:214
int i
#define PERFORM_DELETION_CONCURRENT_LOCK
Definition: dependency.h:139
static void DeleteInitPrivs(const ObjectAddress *object)
Definition: dependency.c:2863
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
int client_min_messages
Definition: guc.c:544
static void deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel, int flags)
Definition: dependency.c:226
Oid opno
Definition: primnodes.h:516
void DropCastById(Oid castOid)
void performMultipleDeletions(const ObjectAddresses *objects, DropBehavior behavior, int flags)
Definition: dependency.c:373
#define MAX_REPORTED_DEPS
#define qsort(a, b, c, d)
Definition: port.h:479
void LockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:108
static bool stack_address_present_add_flags(const ObjectAddress *object, int flags, ObjectAddressStack *stack)
Definition: dependency.c:2632
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:39
Oid getBaseType(Oid typid)
Definition: lsyscache.c:2409
#define PERFORM_DELETION_SKIP_EXTENSIONS
Definition: dependency.h:138
void heap_drop_with_catalog(Oid relid)
Definition: heap.c:1854
Definition: pg_list.h:50
static void add_object_address(ObjectClass oclass, Oid objectId, int32 subId, ObjectAddresses *addrs)
Definition: dependency.c:2440
ObjectAddress dependee
Definition: dependency.c:95
Oid startInRangeFunc
Definition: parsenodes.h:1358
void RemoveConstraintById(Oid conId)
#define _(x)
Definition: elog.c:88
Oid paramtype
Definition: primnodes.h:264
#define InvokeObjectDropHookArg(classId, objectId, subId, dropflags)
Definition: objectaccess.h:162
bool constisnull
Definition: primnodes.h:215
#define BTEqualStrategyNumber
Definition: stratnum.h:31
#define lfirst_oid(lc)
Definition: pg_list.h:192
List * list_delete_first(List *list)
Definition: list.c:860
#define PERFORM_DELETION_INTERNAL
Definition: dependency.h:134
#define QTW_IGNORE_JOINALIASES
Definition: nodeFuncs.h:23
void RemoveTSDictionaryById(Oid dictId)
Definition: tsearchcmds.c:511
AttrNumber fieldnum
Definition: primnodes.h:763