PostgreSQL Source Code  git master
dependency.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * dependency.c
4  * Routines to support inter-object dependencies.
5  *
6  *
7  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * IDENTIFICATION
11  * src/backend/catalog/dependency.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include "access/genam.h"
18 #include "access/htup_details.h"
19 #include "access/table.h"
20 #include "access/xact.h"
21 #include "catalog/catalog.h"
22 #include "catalog/dependency.h"
23 #include "catalog/heap.h"
24 #include "catalog/index.h"
25 #include "catalog/objectaccess.h"
26 #include "catalog/pg_am.h"
27 #include "catalog/pg_amop.h"
28 #include "catalog/pg_amproc.h"
29 #include "catalog/pg_attrdef.h"
30 #include "catalog/pg_authid.h"
32 #include "catalog/pg_cast.h"
33 #include "catalog/pg_collation.h"
34 #include "catalog/pg_constraint.h"
35 #include "catalog/pg_conversion.h"
36 #include "catalog/pg_database.h"
37 #include "catalog/pg_default_acl.h"
38 #include "catalog/pg_depend.h"
40 #include "catalog/pg_extension.h"
43 #include "catalog/pg_init_privs.h"
44 #include "catalog/pg_language.h"
45 #include "catalog/pg_largeobject.h"
46 #include "catalog/pg_namespace.h"
47 #include "catalog/pg_opclass.h"
48 #include "catalog/pg_operator.h"
49 #include "catalog/pg_opfamily.h"
51 #include "catalog/pg_policy.h"
52 #include "catalog/pg_proc.h"
53 #include "catalog/pg_publication.h"
56 #include "catalog/pg_rewrite.h"
59 #include "catalog/pg_tablespace.h"
60 #include "catalog/pg_transform.h"
61 #include "catalog/pg_trigger.h"
62 #include "catalog/pg_ts_config.h"
63 #include "catalog/pg_ts_dict.h"
64 #include "catalog/pg_ts_parser.h"
65 #include "catalog/pg_ts_template.h"
66 #include "catalog/pg_type.h"
68 #include "commands/comment.h"
69 #include "commands/defrem.h"
70 #include "commands/event_trigger.h"
71 #include "commands/extension.h"
72 #include "commands/policy.h"
74 #include "commands/seclabel.h"
75 #include "commands/sequence.h"
76 #include "commands/trigger.h"
77 #include "commands/typecmds.h"
78 #include "funcapi.h"
79 #include "miscadmin.h"
80 #include "nodes/nodeFuncs.h"
81 #include "parser/parsetree.h"
82 #include "rewrite/rewriteRemove.h"
83 #include "storage/lmgr.h"
84 #include "utils/fmgroids.h"
85 #include "utils/lsyscache.h"
86 #include "utils/syscache.h"
87 
88 
89 /*
90  * Deletion processing requires additional state for each ObjectAddress that
91  * it's planning to delete. For simplicity and code-sharing we make the
92  * ObjectAddresses code support arrays with or without this extra state.
93  */
94 typedef struct
95 {
96  int flags; /* bitmask, see bit definitions below */
97  ObjectAddress dependee; /* object whose deletion forced this one */
99 
100 /* ObjectAddressExtra flag bits */
101 #define DEPFLAG_ORIGINAL 0x0001 /* an original deletion target */
102 #define DEPFLAG_NORMAL 0x0002 /* reached via normal dependency */
103 #define DEPFLAG_AUTO 0x0004 /* reached via auto dependency */
104 #define DEPFLAG_INTERNAL 0x0008 /* reached via internal dependency */
105 #define DEPFLAG_PARTITION 0x0010 /* reached via partition dependency */
106 #define DEPFLAG_EXTENSION 0x0020 /* reached via extension dependency */
107 #define DEPFLAG_REVERSE 0x0040 /* reverse internal/extension link */
108 #define DEPFLAG_IS_PART 0x0080 /* has a partition dependency */
109 #define DEPFLAG_SUBOBJECT 0x0100 /* subobject of another deletable object */
110 
111 
112 /* expansible list of ObjectAddresses */
114 {
115  ObjectAddress *refs; /* => palloc'd array */
116  ObjectAddressExtra *extras; /* => palloc'd array, or NULL if not used */
117  int numrefs; /* current number of references */
118  int maxrefs; /* current size of palloc'd array(s) */
119 };
120 
121 /* typedef ObjectAddresses appears in dependency.h */
122 
123 /* threaded list of ObjectAddresses, for recursion detection */
124 typedef struct ObjectAddressStack
125 {
126  const ObjectAddress *object; /* object being visited */
127  int flags; /* its current flag bits */
128  struct ObjectAddressStack *next; /* next outer stack level */
130 
131 /* temporary storage in findDependentObjects */
132 typedef struct
133 {
134  ObjectAddress obj; /* object to be deleted --- MUST BE FIRST */
135  int subflags; /* flags to pass down when recursing to obj */
137 
138 /* for find_expr_references_walker */
139 typedef struct
140 {
141  ObjectAddresses *addrs; /* addresses being accumulated */
142  List *rtables; /* list of rangetables to resolve Vars */
144 
145 
146 static void findDependentObjects(const ObjectAddress *object,
147  int objflags,
148  int flags,
149  ObjectAddressStack *stack,
150  ObjectAddresses *targetObjects,
151  const ObjectAddresses *pendingObjects,
152  Relation *depRel);
153 static void reportDependentObjects(const ObjectAddresses *targetObjects,
154  DropBehavior behavior,
155  int flags,
156  const ObjectAddress *origObject);
157 static void deleteOneObject(const ObjectAddress *object,
158  Relation *depRel, int32 flags);
159 static void doDeletion(const ObjectAddress *object, int flags);
160 static bool find_expr_references_walker(Node *node,
165 static int object_address_comparator(const void *a, const void *b);
166 static void add_object_address(Oid classId, Oid objectId, int32 subId,
167  ObjectAddresses *addrs);
168 static void add_exact_object_address_extra(const ObjectAddress *object,
169  const ObjectAddressExtra *extra,
170  ObjectAddresses *addrs);
171 static bool object_address_present_add_flags(const ObjectAddress *object,
172  int flags,
173  ObjectAddresses *addrs);
174 static bool stack_address_present_add_flags(const ObjectAddress *object,
175  int flags,
176  ObjectAddressStack *stack);
177 static void DeleteInitPrivs(const ObjectAddress *object);
178 
179 
180 /*
181  * Go through the objects given running the final actions on them, and execute
182  * the actual deletion.
183  */
184 static void
186  int flags)
187 {
188  int i;
189 
190  /*
191  * Keep track of objects for event triggers, if necessary.
192  */
194  {
195  for (i = 0; i < targetObjects->numrefs; i++)
196  {
197  const ObjectAddress *thisobj = &targetObjects->refs[i];
198  const ObjectAddressExtra *extra = &targetObjects->extras[i];
199  bool original = false;
200  bool normal = false;
201 
202  if (extra->flags & DEPFLAG_ORIGINAL)
203  original = true;
204  if (extra->flags & DEPFLAG_NORMAL)
205  normal = true;
206  if (extra->flags & DEPFLAG_REVERSE)
207  normal = true;
208 
209  if (EventTriggerSupportsObject(thisobj))
210  {
211  EventTriggerSQLDropAddObject(thisobj, original, normal);
212  }
213  }
214  }
215 
216  /*
217  * Delete all the objects in the proper order, except that if told to, we
218  * should skip the original object(s).
219  */
220  for (i = 0; i < targetObjects->numrefs; i++)
221  {
222  ObjectAddress *thisobj = targetObjects->refs + i;
223  ObjectAddressExtra *thisextra = targetObjects->extras + i;
224 
226  (thisextra->flags & DEPFLAG_ORIGINAL))
227  continue;
228 
229  deleteOneObject(thisobj, depRel, flags);
230  }
231 }
232 
233 /*
234  * performDeletion: attempt to drop the specified object. If CASCADE
235  * behavior is specified, also drop any dependent objects (recursively).
236  * If RESTRICT behavior is specified, error out if there are any dependent
237  * objects, except for those that should be implicitly dropped anyway
238  * according to the dependency type.
239  *
240  * This is the outer control routine for all forms of DROP that drop objects
241  * that can participate in dependencies. Note that performMultipleDeletions
242  * is a variant on the same theme; if you change anything here you'll likely
243  * need to fix that too.
244  *
245  * Bits in the flags argument can include:
246  *
247  * PERFORM_DELETION_INTERNAL: indicates that the drop operation is not the
248  * direct result of a user-initiated action. For example, when a temporary
249  * schema is cleaned out so that a new backend can use it, or when a column
250  * default is dropped as an intermediate step while adding a new one, that's
251  * an internal operation. On the other hand, when we drop something because
252  * the user issued a DROP statement against it, that's not internal. Currently
253  * this suppresses calling event triggers and making some permissions checks.
254  *
255  * PERFORM_DELETION_CONCURRENTLY: perform the drop concurrently. This does
256  * not currently work for anything except dropping indexes; don't set it for
257  * other object types or you may get strange results.
258  *
259  * PERFORM_DELETION_QUIETLY: reduce message level from NOTICE to DEBUG2.
260  *
261  * PERFORM_DELETION_SKIP_ORIGINAL: do not delete the specified object(s),
262  * but only what depends on it/them.
263  *
264  * PERFORM_DELETION_SKIP_EXTENSIONS: do not delete extensions, even when
265  * deleting objects that are part of an extension. This should generally
266  * be used only when dropping temporary objects.
267  *
268  * PERFORM_DELETION_CONCURRENT_LOCK: perform the drop normally but with a lock
269  * as if it were concurrent. This is used by REINDEX CONCURRENTLY.
270  *
271  */
272 void
274  DropBehavior behavior, int flags)
275 {
276  Relation depRel;
277  ObjectAddresses *targetObjects;
278 
279  /*
280  * We save some cycles by opening pg_depend just once and passing the
281  * Relation pointer down to all the recursive deletion steps.
282  */
283  depRel = table_open(DependRelationId, RowExclusiveLock);
284 
285  /*
286  * Acquire deletion lock on the target object. (Ideally the caller has
287  * done this already, but many places are sloppy about it.)
288  */
289  AcquireDeletionLock(object, 0);
290 
291  /*
292  * Construct a list of objects to delete (ie, the given object plus
293  * everything directly or indirectly dependent on it).
294  */
295  targetObjects = new_object_addresses();
296 
297  findDependentObjects(object,
299  flags,
300  NULL, /* empty stack */
301  targetObjects,
302  NULL, /* no pendingObjects */
303  &depRel);
304 
305  /*
306  * Check if deletion is allowed, and report about cascaded deletes.
307  */
308  reportDependentObjects(targetObjects,
309  behavior,
310  flags,
311  object);
312 
313  /* do the deed */
314  deleteObjectsInList(targetObjects, &depRel, flags);
315 
316  /* And clean up */
317  free_object_addresses(targetObjects);
318 
319  table_close(depRel, RowExclusiveLock);
320 }
321 
322 /*
323  * performMultipleDeletions: Similar to performDeletion, but act on multiple
324  * objects at once.
325  *
326  * The main difference from issuing multiple performDeletion calls is that the
327  * list of objects that would be implicitly dropped, for each object to be
328  * dropped, is the union of the implicit-object list for all objects. This
329  * makes each check be more relaxed.
330  */
331 void
333  DropBehavior behavior, int flags)
334 {
335  Relation depRel;
336  ObjectAddresses *targetObjects;
337  int i;
338 
339  /* No work if no objects... */
340  if (objects->numrefs <= 0)
341  return;
342 
343  /*
344  * We save some cycles by opening pg_depend just once and passing the
345  * Relation pointer down to all the recursive deletion steps.
346  */
347  depRel = table_open(DependRelationId, RowExclusiveLock);
348 
349  /*
350  * Construct a list of objects to delete (ie, the given objects plus
351  * everything directly or indirectly dependent on them). Note that
352  * because we pass the whole objects list as pendingObjects context, we
353  * won't get a failure from trying to delete an object that is internally
354  * dependent on another one in the list; we'll just skip that object and
355  * delete it when we reach its owner.
356  */
357  targetObjects = new_object_addresses();
358 
359  for (i = 0; i < objects->numrefs; i++)
360  {
361  const ObjectAddress *thisobj = objects->refs + i;
362 
363  /*
364  * Acquire deletion lock on each target object. (Ideally the caller
365  * has done this already, but many places are sloppy about it.)
366  */
367  AcquireDeletionLock(thisobj, flags);
368 
369  findDependentObjects(thisobj,
371  flags,
372  NULL, /* empty stack */
373  targetObjects,
374  objects,
375  &depRel);
376  }
377 
378  /*
379  * Check if deletion is allowed, and report about cascaded deletes.
380  *
381  * If there's exactly one object being deleted, report it the same way as
382  * in performDeletion(), else we have to be vaguer.
383  */
384  reportDependentObjects(targetObjects,
385  behavior,
386  flags,
387  (objects->numrefs == 1 ? objects->refs : NULL));
388 
389  /* do the deed */
390  deleteObjectsInList(targetObjects, &depRel, flags);
391 
392  /* And clean up */
393  free_object_addresses(targetObjects);
394 
395  table_close(depRel, RowExclusiveLock);
396 }
397 
398 /*
399  * findDependentObjects - find all objects that depend on 'object'
400  *
401  * For every object that depends on the starting object, acquire a deletion
402  * lock on the object, add it to targetObjects (if not already there),
403  * and recursively find objects that depend on it. An object's dependencies
404  * will be placed into targetObjects before the object itself; this means
405  * that the finished list's order represents a safe deletion order.
406  *
407  * The caller must already have a deletion lock on 'object' itself,
408  * but must not have added it to targetObjects. (Note: there are corner
409  * cases where we won't add the object either, and will also release the
410  * caller-taken lock. This is a bit ugly, but the API is set up this way
411  * to allow easy rechecking of an object's liveness after we lock it. See
412  * notes within the function.)
413  *
414  * When dropping a whole object (subId = 0), we find dependencies for
415  * its sub-objects too.
416  *
417  * object: the object to add to targetObjects and find dependencies on
418  * objflags: flags to be ORed into the object's targetObjects entry
419  * flags: PERFORM_DELETION_xxx flags for the deletion operation as a whole
420  * stack: list of objects being visited in current recursion; topmost item
421  * is the object that we recursed from (NULL for external callers)
422  * targetObjects: list of objects that are scheduled to be deleted
423  * pendingObjects: list of other objects slated for destruction, but
424  * not necessarily in targetObjects yet (can be NULL if none)
425  * *depRel: already opened pg_depend relation
426  *
427  * Note: objflags describes the reason for visiting this particular object
428  * at this time, and is not passed down when recursing. The flags argument
429  * is passed down, since it describes what we're doing overall.
430  */
431 static void
433  int objflags,
434  int flags,
435  ObjectAddressStack *stack,
436  ObjectAddresses *targetObjects,
437  const ObjectAddresses *pendingObjects,
438  Relation *depRel)
439 {
440  ScanKeyData key[3];
441  int nkeys;
442  SysScanDesc scan;
443  HeapTuple tup;
444  ObjectAddress otherObject;
445  ObjectAddress owningObject;
446  ObjectAddress partitionObject;
447  ObjectAddressAndFlags *dependentObjects;
448  int numDependentObjects;
449  int maxDependentObjects;
450  ObjectAddressStack mystack;
451  ObjectAddressExtra extra;
452 
453  /*
454  * If the target object is already being visited in an outer recursion
455  * level, just report the current objflags back to that level and exit.
456  * This is needed to avoid infinite recursion in the face of circular
457  * dependencies.
458  *
459  * The stack check alone would result in dependency loops being broken at
460  * an arbitrary point, ie, the first member object of the loop to be
461  * visited is the last one to be deleted. This is obviously unworkable.
462  * However, the check for internal dependency below guarantees that we
463  * will not break a loop at an internal dependency: if we enter the loop
464  * at an "owned" object we will switch and start at the "owning" object
465  * instead. We could probably hack something up to avoid breaking at an
466  * auto dependency, too, if we had to. However there are no known cases
467  * where that would be necessary.
468  */
469  if (stack_address_present_add_flags(object, objflags, stack))
470  return;
471 
472  /*
473  * since this function recurses, it could be driven to stack overflow,
474  * because of the deep dependency tree, not only due to dependency loops.
475  */
477 
478  /*
479  * It's also possible that the target object has already been completely
480  * processed and put into targetObjects. If so, again we just add the
481  * specified objflags to its entry and return.
482  *
483  * (Note: in these early-exit cases we could release the caller-taken
484  * lock, since the object is presumably now locked multiple times; but it
485  * seems not worth the cycles.)
486  */
487  if (object_address_present_add_flags(object, objflags, targetObjects))
488  return;
489 
490  /*
491  * If the target object is pinned, we can just error out immediately; it
492  * won't have any objects recorded as depending on it.
493  */
495  ereport(ERROR,
496  (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
497  errmsg("cannot drop %s because it is required by the database system",
498  getObjectDescription(object, false))));
499 
500  /*
501  * The target object might be internally dependent on some other object
502  * (its "owner"), and/or be a member of an extension (also considered its
503  * owner). If so, and if we aren't recursing from the owning object, we
504  * have to transform this deletion request into a deletion request of the
505  * owning object. (We'll eventually recurse back to this object, but the
506  * owning object has to be visited first so it will be deleted after.) The
507  * way to find out about this is to scan the pg_depend entries that show
508  * what this object depends on.
509  */
510  ScanKeyInit(&key[0],
511  Anum_pg_depend_classid,
512  BTEqualStrategyNumber, F_OIDEQ,
514  ScanKeyInit(&key[1],
515  Anum_pg_depend_objid,
516  BTEqualStrategyNumber, F_OIDEQ,
518  if (object->objectSubId != 0)
519  {
520  /* Consider only dependencies of this sub-object */
521  ScanKeyInit(&key[2],
522  Anum_pg_depend_objsubid,
523  BTEqualStrategyNumber, F_INT4EQ,
525  nkeys = 3;
526  }
527  else
528  {
529  /* Consider dependencies of this object and any sub-objects it has */
530  nkeys = 2;
531  }
532 
533  scan = systable_beginscan(*depRel, DependDependerIndexId, true,
534  NULL, nkeys, key);
535 
536  /* initialize variables that loop may fill */
537  memset(&owningObject, 0, sizeof(owningObject));
538  memset(&partitionObject, 0, sizeof(partitionObject));
539 
540  while (HeapTupleIsValid(tup = systable_getnext(scan)))
541  {
542  Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
543 
544  otherObject.classId = foundDep->refclassid;
545  otherObject.objectId = foundDep->refobjid;
546  otherObject.objectSubId = foundDep->refobjsubid;
547 
548  /*
549  * When scanning dependencies of a whole object, we may find rows
550  * linking sub-objects of the object to the object itself. (Normally,
551  * such a dependency is implicit, but we must make explicit ones in
552  * some cases involving partitioning.) We must ignore such rows to
553  * avoid infinite recursion.
554  */
555  if (otherObject.classId == object->classId &&
556  otherObject.objectId == object->objectId &&
557  object->objectSubId == 0)
558  continue;
559 
560  switch (foundDep->deptype)
561  {
562  case DEPENDENCY_NORMAL:
563  case DEPENDENCY_AUTO:
565  /* no problem */
566  break;
567 
569 
570  /*
571  * If told to, ignore EXTENSION dependencies altogether. This
572  * flag is normally used to prevent dropping extensions during
573  * temporary-object cleanup, even if a temp object was created
574  * during an extension script.
575  */
577  break;
578 
579  /*
580  * If the other object is the extension currently being
581  * created/altered, ignore this dependency and continue with
582  * the deletion. This allows dropping of an extension's
583  * objects within the extension's scripts, as well as corner
584  * cases such as dropping a transient object created within
585  * such a script.
586  */
587  if (creating_extension &&
588  otherObject.classId == ExtensionRelationId &&
589  otherObject.objectId == CurrentExtensionObject)
590  break;
591 
592  /* Otherwise, treat this like an internal dependency */
593  /* FALL THRU */
594 
595  case DEPENDENCY_INTERNAL:
596 
597  /*
598  * This object is part of the internal implementation of
599  * another object, or is part of the extension that is the
600  * other object. We have three cases:
601  *
602  * 1. At the outermost recursion level, we must disallow the
603  * DROP. However, if the owning object is listed in
604  * pendingObjects, just release the caller's lock and return;
605  * we'll eventually complete the DROP when we reach that entry
606  * in the pending list.
607  *
608  * Note: the above statement is true only if this pg_depend
609  * entry still exists by then; in principle, therefore, we
610  * could miss deleting an item the user told us to delete.
611  * However, no inconsistency can result: since we're at outer
612  * level, there is no object depending on this one.
613  */
614  if (stack == NULL)
615  {
616  if (pendingObjects &&
617  object_address_present(&otherObject, pendingObjects))
618  {
619  systable_endscan(scan);
620  /* need to release caller's lock; see notes below */
621  ReleaseDeletionLock(object);
622  return;
623  }
624 
625  /*
626  * We postpone actually issuing the error message until
627  * after this loop, so that we can make the behavior
628  * independent of the ordering of pg_depend entries, at
629  * least if there's not more than one INTERNAL and one
630  * EXTENSION dependency. (If there's more, we'll complain
631  * about a random one of them.) Prefer to complain about
632  * EXTENSION, since that's generally a more important
633  * dependency.
634  */
635  if (!OidIsValid(owningObject.classId) ||
636  foundDep->deptype == DEPENDENCY_EXTENSION)
637  owningObject = otherObject;
638  break;
639  }
640 
641  /*
642  * 2. When recursing from the other end of this dependency,
643  * it's okay to continue with the deletion. This holds when
644  * recursing from a whole object that includes the nominal
645  * other end as a component, too. Since there can be more
646  * than one "owning" object, we have to allow matches that are
647  * more than one level down in the stack.
648  */
649  if (stack_address_present_add_flags(&otherObject, 0, stack))
650  break;
651 
652  /*
653  * 3. Not all the owning objects have been visited, so
654  * transform this deletion request into a delete of this
655  * owning object.
656  *
657  * First, release caller's lock on this object and get
658  * deletion lock on the owning object. (We must release
659  * caller's lock to avoid deadlock against a concurrent
660  * deletion of the owning object.)
661  */
662  ReleaseDeletionLock(object);
663  AcquireDeletionLock(&otherObject, 0);
664 
665  /*
666  * The owning object might have been deleted while we waited
667  * to lock it; if so, neither it nor the current object are
668  * interesting anymore. We test this by checking the
669  * pg_depend entry (see notes below).
670  */
671  if (!systable_recheck_tuple(scan, tup))
672  {
673  systable_endscan(scan);
674  ReleaseDeletionLock(&otherObject);
675  return;
676  }
677 
678  /*
679  * One way or the other, we're done with the scan; might as
680  * well close it down before recursing, to reduce peak
681  * resource consumption.
682  */
683  systable_endscan(scan);
684 
685  /*
686  * Okay, recurse to the owning object instead of proceeding.
687  *
688  * We do not need to stack the current object; we want the
689  * traversal order to be as if the original reference had
690  * linked to the owning object instead of this one.
691  *
692  * The dependency type is a "reverse" dependency: we need to
693  * delete the owning object if this one is to be deleted, but
694  * this linkage is never a reason for an automatic deletion.
695  */
696  findDependentObjects(&otherObject,
698  flags,
699  stack,
700  targetObjects,
701  pendingObjects,
702  depRel);
703 
704  /*
705  * The current target object should have been added to
706  * targetObjects while processing the owning object; but it
707  * probably got only the flag bits associated with the
708  * dependency we're looking at. We need to add the objflags
709  * that were passed to this recursion level, too, else we may
710  * get a bogus failure in reportDependentObjects (if, for
711  * example, we were called due to a partition dependency).
712  *
713  * If somehow the current object didn't get scheduled for
714  * deletion, bleat. (That would imply that somebody deleted
715  * this dependency record before the recursion got to it.)
716  * Another idea would be to reacquire lock on the current
717  * object and resume trying to delete it, but it seems not
718  * worth dealing with the race conditions inherent in that.
719  */
720  if (!object_address_present_add_flags(object, objflags,
721  targetObjects))
722  elog(ERROR, "deletion of owning object %s failed to delete %s",
723  getObjectDescription(&otherObject, false),
724  getObjectDescription(object, false));
725 
726  /* And we're done here. */
727  return;
728 
730 
731  /*
732  * Remember that this object has a partition-type dependency.
733  * After the dependency scan, we'll complain if we didn't find
734  * a reason to delete one of its partition dependencies.
735  */
736  objflags |= DEPFLAG_IS_PART;
737 
738  /*
739  * Also remember the primary partition owner, for error
740  * messages. If there are multiple primary owners (which
741  * there should not be), we'll report a random one of them.
742  */
743  partitionObject = otherObject;
744  break;
745 
747 
748  /*
749  * Only use secondary partition owners in error messages if we
750  * find no primary owner (which probably shouldn't happen).
751  */
752  if (!(objflags & DEPFLAG_IS_PART))
753  partitionObject = otherObject;
754 
755  /*
756  * Remember that this object has a partition-type dependency.
757  * After the dependency scan, we'll complain if we didn't find
758  * a reason to delete one of its partition dependencies.
759  */
760  objflags |= DEPFLAG_IS_PART;
761  break;
762 
763  default:
764  elog(ERROR, "unrecognized dependency type '%c' for %s",
765  foundDep->deptype, getObjectDescription(object, false));
766  break;
767  }
768  }
769 
770  systable_endscan(scan);
771 
772  /*
773  * If we found an INTERNAL or EXTENSION dependency when we're at outer
774  * level, complain about it now. If we also found a PARTITION dependency,
775  * we prefer to report the PARTITION dependency. This is arbitrary but
776  * seems to be more useful in practice.
777  */
778  if (OidIsValid(owningObject.classId))
779  {
780  char *otherObjDesc;
781 
782  if (OidIsValid(partitionObject.classId))
783  otherObjDesc = getObjectDescription(&partitionObject, false);
784  else
785  otherObjDesc = getObjectDescription(&owningObject, false);
786 
787  ereport(ERROR,
788  (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
789  errmsg("cannot drop %s because %s requires it",
790  getObjectDescription(object, false), otherObjDesc),
791  errhint("You can drop %s instead.", otherObjDesc)));
792  }
793 
794  /*
795  * Next, identify all objects that directly depend on the current object.
796  * To ensure predictable deletion order, we collect them up in
797  * dependentObjects and sort the list before actually recursing. (The
798  * deletion order would be valid in any case, but doing this ensures
799  * consistent output from DROP CASCADE commands, which is helpful for
800  * regression testing.)
801  */
802  maxDependentObjects = 128; /* arbitrary initial allocation */
803  dependentObjects = (ObjectAddressAndFlags *)
804  palloc(maxDependentObjects * sizeof(ObjectAddressAndFlags));
805  numDependentObjects = 0;
806 
807  ScanKeyInit(&key[0],
808  Anum_pg_depend_refclassid,
809  BTEqualStrategyNumber, F_OIDEQ,
811  ScanKeyInit(&key[1],
812  Anum_pg_depend_refobjid,
813  BTEqualStrategyNumber, F_OIDEQ,
815  if (object->objectSubId != 0)
816  {
817  ScanKeyInit(&key[2],
818  Anum_pg_depend_refobjsubid,
819  BTEqualStrategyNumber, F_INT4EQ,
821  nkeys = 3;
822  }
823  else
824  nkeys = 2;
825 
826  scan = systable_beginscan(*depRel, DependReferenceIndexId, true,
827  NULL, nkeys, key);
828 
829  while (HeapTupleIsValid(tup = systable_getnext(scan)))
830  {
831  Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
832  int subflags;
833 
834  otherObject.classId = foundDep->classid;
835  otherObject.objectId = foundDep->objid;
836  otherObject.objectSubId = foundDep->objsubid;
837 
838  /*
839  * If what we found is a sub-object of the current object, just ignore
840  * it. (Normally, such a dependency is implicit, but we must make
841  * explicit ones in some cases involving partitioning.)
842  */
843  if (otherObject.classId == object->classId &&
844  otherObject.objectId == object->objectId &&
845  object->objectSubId == 0)
846  continue;
847 
848  /*
849  * Must lock the dependent object before recursing to it.
850  */
851  AcquireDeletionLock(&otherObject, 0);
852 
853  /*
854  * The dependent object might have been deleted while we waited to
855  * lock it; if so, we don't need to do anything more with it. We can
856  * test this cheaply and independently of the object's type by seeing
857  * if the pg_depend tuple we are looking at is still live. (If the
858  * object got deleted, the tuple would have been deleted too.)
859  */
860  if (!systable_recheck_tuple(scan, tup))
861  {
862  /* release the now-useless lock */
863  ReleaseDeletionLock(&otherObject);
864  /* and continue scanning for dependencies */
865  continue;
866  }
867 
868  /*
869  * We do need to delete it, so identify objflags to be passed down,
870  * which depend on the dependency type.
871  */
872  switch (foundDep->deptype)
873  {
874  case DEPENDENCY_NORMAL:
875  subflags = DEPFLAG_NORMAL;
876  break;
877  case DEPENDENCY_AUTO:
879  subflags = DEPFLAG_AUTO;
880  break;
881  case DEPENDENCY_INTERNAL:
882  subflags = DEPFLAG_INTERNAL;
883  break;
886  subflags = DEPFLAG_PARTITION;
887  break;
889  subflags = DEPFLAG_EXTENSION;
890  break;
891  default:
892  elog(ERROR, "unrecognized dependency type '%c' for %s",
893  foundDep->deptype, getObjectDescription(object, false));
894  subflags = 0; /* keep compiler quiet */
895  break;
896  }
897 
898  /* And add it to the pending-objects list */
899  if (numDependentObjects >= maxDependentObjects)
900  {
901  /* enlarge array if needed */
902  maxDependentObjects *= 2;
903  dependentObjects = (ObjectAddressAndFlags *)
904  repalloc(dependentObjects,
905  maxDependentObjects * sizeof(ObjectAddressAndFlags));
906  }
907 
908  dependentObjects[numDependentObjects].obj = otherObject;
909  dependentObjects[numDependentObjects].subflags = subflags;
910  numDependentObjects++;
911  }
912 
913  systable_endscan(scan);
914 
915  /*
916  * Now we can sort the dependent objects into a stable visitation order.
917  * It's safe to use object_address_comparator here since the obj field is
918  * first within ObjectAddressAndFlags.
919  */
920  if (numDependentObjects > 1)
921  qsort(dependentObjects, numDependentObjects,
922  sizeof(ObjectAddressAndFlags),
924 
925  /*
926  * Now recurse to the dependent objects. We must visit them first since
927  * they have to be deleted before the current object.
928  */
929  mystack.object = object; /* set up a new stack level */
930  mystack.flags = objflags;
931  mystack.next = stack;
932 
933  for (int i = 0; i < numDependentObjects; i++)
934  {
935  ObjectAddressAndFlags *depObj = dependentObjects + i;
936 
937  findDependentObjects(&depObj->obj,
938  depObj->subflags,
939  flags,
940  &mystack,
941  targetObjects,
942  pendingObjects,
943  depRel);
944  }
945 
946  pfree(dependentObjects);
947 
948  /*
949  * Finally, we can add the target object to targetObjects. Be careful to
950  * include any flags that were passed back down to us from inner recursion
951  * levels. Record the "dependee" as being either the most important
952  * partition owner if there is one, else the object we recursed from, if
953  * any. (The logic in reportDependentObjects() is such that it can only
954  * need one of those objects.)
955  */
956  extra.flags = mystack.flags;
957  if (extra.flags & DEPFLAG_IS_PART)
958  extra.dependee = partitionObject;
959  else if (stack)
960  extra.dependee = *stack->object;
961  else
962  memset(&extra.dependee, 0, sizeof(extra.dependee));
963  add_exact_object_address_extra(object, &extra, targetObjects);
964 }
965 
966 /*
967  * reportDependentObjects - report about dependencies, and fail if RESTRICT
968  *
969  * Tell the user about dependent objects that we are going to delete
970  * (or would need to delete, but are prevented by RESTRICT mode);
971  * then error out if there are any and it's not CASCADE mode.
972  *
973  * targetObjects: list of objects that are scheduled to be deleted
974  * behavior: RESTRICT or CASCADE
975  * flags: other flags for the deletion operation
976  * origObject: base object of deletion, or NULL if not available
977  * (the latter case occurs in DROP OWNED)
978  */
979 static void
981  DropBehavior behavior,
982  int flags,
983  const ObjectAddress *origObject)
984 {
985  int msglevel = (flags & PERFORM_DELETION_QUIETLY) ? DEBUG2 : NOTICE;
986  bool ok = true;
987  StringInfoData clientdetail;
988  StringInfoData logdetail;
989  int numReportedClient = 0;
990  int numNotReportedClient = 0;
991  int i;
992 
993  /*
994  * If we need to delete any partition-dependent objects, make sure that
995  * we're deleting at least one of their partition dependencies, too. That
996  * can be detected by checking that we reached them by a PARTITION
997  * dependency at some point.
998  *
999  * We just report the first such object, as in most cases the only way to
1000  * trigger this complaint is to explicitly try to delete one partition of
1001  * a partitioned object.
1002  */
1003  for (i = 0; i < targetObjects->numrefs; i++)
1004  {
1005  const ObjectAddressExtra *extra = &targetObjects->extras[i];
1006 
1007  if ((extra->flags & DEPFLAG_IS_PART) &&
1008  !(extra->flags & DEPFLAG_PARTITION))
1009  {
1010  const ObjectAddress *object = &targetObjects->refs[i];
1011  char *otherObjDesc = getObjectDescription(&extra->dependee,
1012  false);
1013 
1014  ereport(ERROR,
1015  (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1016  errmsg("cannot drop %s because %s requires it",
1017  getObjectDescription(object, false), otherObjDesc),
1018  errhint("You can drop %s instead.", otherObjDesc)));
1019  }
1020  }
1021 
1022  /*
1023  * If no error is to be thrown, and the msglevel is too low to be shown to
1024  * either client or server log, there's no need to do any of the rest of
1025  * the work.
1026  */
1027  if (behavior == DROP_CASCADE &&
1028  !message_level_is_interesting(msglevel))
1029  return;
1030 
1031  /*
1032  * We limit the number of dependencies reported to the client to
1033  * MAX_REPORTED_DEPS, since client software may not deal well with
1034  * enormous error strings. The server log always gets a full report.
1035  */
1036 #define MAX_REPORTED_DEPS 100
1037 
1038  initStringInfo(&clientdetail);
1039  initStringInfo(&logdetail);
1040 
1041  /*
1042  * We process the list back to front (ie, in dependency order not deletion
1043  * order), since this makes for a more understandable display.
1044  */
1045  for (i = targetObjects->numrefs - 1; i >= 0; i--)
1046  {
1047  const ObjectAddress *obj = &targetObjects->refs[i];
1048  const ObjectAddressExtra *extra = &targetObjects->extras[i];
1049  char *objDesc;
1050 
1051  /* Ignore the original deletion target(s) */
1052  if (extra->flags & DEPFLAG_ORIGINAL)
1053  continue;
1054 
1055  /* Also ignore sub-objects; we'll report the whole object elsewhere */
1056  if (extra->flags & DEPFLAG_SUBOBJECT)
1057  continue;
1058 
1059  objDesc = getObjectDescription(obj, false);
1060 
1061  /* An object being dropped concurrently doesn't need to be reported */
1062  if (objDesc == NULL)
1063  continue;
1064 
1065  /*
1066  * If, at any stage of the recursive search, we reached the object via
1067  * an AUTO, INTERNAL, PARTITION, or EXTENSION dependency, then it's
1068  * okay to delete it even in RESTRICT mode.
1069  */
1070  if (extra->flags & (DEPFLAG_AUTO |
1074  {
1075  /*
1076  * auto-cascades are reported at DEBUG2, not msglevel. We don't
1077  * try to combine them with the regular message because the
1078  * results are too confusing when client_min_messages and
1079  * log_min_messages are different.
1080  */
1081  ereport(DEBUG2,
1082  (errmsg_internal("drop auto-cascades to %s",
1083  objDesc)));
1084  }
1085  else if (behavior == DROP_RESTRICT)
1086  {
1087  char *otherDesc = getObjectDescription(&extra->dependee,
1088  false);
1089 
1090  if (otherDesc)
1091  {
1092  if (numReportedClient < MAX_REPORTED_DEPS)
1093  {
1094  /* separate entries with a newline */
1095  if (clientdetail.len != 0)
1096  appendStringInfoChar(&clientdetail, '\n');
1097  appendStringInfo(&clientdetail, _("%s depends on %s"),
1098  objDesc, otherDesc);
1099  numReportedClient++;
1100  }
1101  else
1102  numNotReportedClient++;
1103  /* separate entries with a newline */
1104  if (logdetail.len != 0)
1105  appendStringInfoChar(&logdetail, '\n');
1106  appendStringInfo(&logdetail, _("%s depends on %s"),
1107  objDesc, otherDesc);
1108  pfree(otherDesc);
1109  }
1110  else
1111  numNotReportedClient++;
1112  ok = false;
1113  }
1114  else
1115  {
1116  if (numReportedClient < MAX_REPORTED_DEPS)
1117  {
1118  /* separate entries with a newline */
1119  if (clientdetail.len != 0)
1120  appendStringInfoChar(&clientdetail, '\n');
1121  appendStringInfo(&clientdetail, _("drop cascades to %s"),
1122  objDesc);
1123  numReportedClient++;
1124  }
1125  else
1126  numNotReportedClient++;
1127  /* separate entries with a newline */
1128  if (logdetail.len != 0)
1129  appendStringInfoChar(&logdetail, '\n');
1130  appendStringInfo(&logdetail, _("drop cascades to %s"),
1131  objDesc);
1132  }
1133 
1134  pfree(objDesc);
1135  }
1136 
1137  if (numNotReportedClient > 0)
1138  appendStringInfo(&clientdetail, ngettext("\nand %d other object "
1139  "(see server log for list)",
1140  "\nand %d other objects "
1141  "(see server log for list)",
1142  numNotReportedClient),
1143  numNotReportedClient);
1144 
1145  if (!ok)
1146  {
1147  if (origObject)
1148  ereport(ERROR,
1149  (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1150  errmsg("cannot drop %s because other objects depend on it",
1151  getObjectDescription(origObject, false)),
1152  errdetail_internal("%s", clientdetail.data),
1153  errdetail_log("%s", logdetail.data),
1154  errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1155  else
1156  ereport(ERROR,
1157  (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1158  errmsg("cannot drop desired object(s) because other objects depend on them"),
1159  errdetail_internal("%s", clientdetail.data),
1160  errdetail_log("%s", logdetail.data),
1161  errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1162  }
1163  else if (numReportedClient > 1)
1164  {
1165  ereport(msglevel,
1166  (errmsg_plural("drop cascades to %d other object",
1167  "drop cascades to %d other objects",
1168  numReportedClient + numNotReportedClient,
1169  numReportedClient + numNotReportedClient),
1170  errdetail_internal("%s", clientdetail.data),
1171  errdetail_log("%s", logdetail.data)));
1172  }
1173  else if (numReportedClient == 1)
1174  {
1175  /* we just use the single item as-is */
1176  ereport(msglevel,
1177  (errmsg_internal("%s", clientdetail.data)));
1178  }
1179 
1180  pfree(clientdetail.data);
1181  pfree(logdetail.data);
1182 }
1183 
1184 /*
1185  * Drop an object by OID. Works for most catalogs, if no special processing
1186  * is needed.
1187  */
1188 static void
1190 {
1191  int cacheId;
1192  Relation rel;
1193  HeapTuple tup;
1194 
1196 
1198 
1199  /*
1200  * Use the system cache for the oid column, if one exists.
1201  */
1202  if (cacheId >= 0)
1203  {
1204  tup = SearchSysCache1(cacheId, ObjectIdGetDatum(object->objectId));
1205  if (!HeapTupleIsValid(tup))
1206  elog(ERROR, "cache lookup failed for %s %u",
1208 
1209  CatalogTupleDelete(rel, &tup->t_self);
1210 
1211  ReleaseSysCache(tup);
1212  }
1213  else
1214  {
1215  ScanKeyData skey[1];
1216  SysScanDesc scan;
1217 
1218  ScanKeyInit(&skey[0],
1220  BTEqualStrategyNumber, F_OIDEQ,
1222 
1224  NULL, 1, skey);
1225 
1226  /* we expect exactly one match */
1227  tup = systable_getnext(scan);
1228  if (!HeapTupleIsValid(tup))
1229  elog(ERROR, "could not find tuple for %s %u",
1231 
1232  CatalogTupleDelete(rel, &tup->t_self);
1233 
1234  systable_endscan(scan);
1235  }
1236 
1238 }
1239 
1240 /*
1241  * deleteOneObject: delete a single object for performDeletion.
1242  *
1243  * *depRel is the already-open pg_depend relation.
1244  */
1245 static void
1246 deleteOneObject(const ObjectAddress *object, Relation *depRel, int flags)
1247 {
1248  ScanKeyData key[3];
1249  int nkeys;
1250  SysScanDesc scan;
1251  HeapTuple tup;
1252 
1253  /* DROP hook of the objects being removed */
1256 
1257  /*
1258  * Close depRel if we are doing a drop concurrently. The object deletion
1259  * subroutine will commit the current transaction, so we can't keep the
1260  * relation open across doDeletion().
1261  */
1263  table_close(*depRel, RowExclusiveLock);
1264 
1265  /*
1266  * Delete the object itself, in an object-type-dependent way.
1267  *
1268  * We used to do this after removing the outgoing dependency links, but it
1269  * seems just as reasonable to do it beforehand. In the concurrent case
1270  * we *must* do it in this order, because we can't make any transactional
1271  * updates before calling doDeletion() --- they'd get committed right
1272  * away, which is not cool if the deletion then fails.
1273  */
1274  doDeletion(object, flags);
1275 
1276  /*
1277  * Reopen depRel if we closed it above
1278  */
1280  *depRel = table_open(DependRelationId, RowExclusiveLock);
1281 
1282  /*
1283  * Now remove any pg_depend records that link from this object to others.
1284  * (Any records linking to this object should be gone already.)
1285  *
1286  * When dropping a whole object (subId = 0), remove all pg_depend records
1287  * for its sub-objects too.
1288  */
1289  ScanKeyInit(&key[0],
1290  Anum_pg_depend_classid,
1291  BTEqualStrategyNumber, F_OIDEQ,
1293  ScanKeyInit(&key[1],
1294  Anum_pg_depend_objid,
1295  BTEqualStrategyNumber, F_OIDEQ,
1297  if (object->objectSubId != 0)
1298  {
1299  ScanKeyInit(&key[2],
1300  Anum_pg_depend_objsubid,
1301  BTEqualStrategyNumber, F_INT4EQ,
1303  nkeys = 3;
1304  }
1305  else
1306  nkeys = 2;
1307 
1308  scan = systable_beginscan(*depRel, DependDependerIndexId, true,
1309  NULL, nkeys, key);
1310 
1311  while (HeapTupleIsValid(tup = systable_getnext(scan)))
1312  {
1313  CatalogTupleDelete(*depRel, &tup->t_self);
1314  }
1315 
1316  systable_endscan(scan);
1317 
1318  /*
1319  * Delete shared dependency references related to this object. Again, if
1320  * subId = 0, remove records for sub-objects too.
1321  */
1323  object->objectSubId);
1324 
1325 
1326  /*
1327  * Delete any comments, security labels, or initial privileges associated
1328  * with this object. (This is a convenient place to do these things,
1329  * rather than having every object type know to do it.) As above, all
1330  * these functions must remove records for sub-objects too if the subid is
1331  * zero.
1332  */
1334  DeleteSecurityLabel(object);
1335  DeleteInitPrivs(object);
1336 
1337  /*
1338  * CommandCounterIncrement here to ensure that preceding changes are all
1339  * visible to the next deletion step.
1340  */
1342 
1343  /*
1344  * And we're done!
1345  */
1346 }
1347 
1348 /*
1349  * doDeletion: actually delete a single object
1350  */
1351 static void
1352 doDeletion(const ObjectAddress *object, int flags)
1353 {
1354  switch (object->classId)
1355  {
1356  case RelationRelationId:
1357  {
1358  char relKind = get_rel_relkind(object->objectId);
1359 
1360  if (relKind == RELKIND_INDEX ||
1361  relKind == RELKIND_PARTITIONED_INDEX)
1362  {
1363  bool concurrent = ((flags & PERFORM_DELETION_CONCURRENTLY) != 0);
1364  bool concurrent_lock_mode = ((flags & PERFORM_DELETION_CONCURRENT_LOCK) != 0);
1365 
1366  Assert(object->objectSubId == 0);
1367  index_drop(object->objectId, concurrent, concurrent_lock_mode);
1368  }
1369  else
1370  {
1371  if (object->objectSubId != 0)
1373  object->objectSubId);
1374  else
1376  }
1377 
1378  /*
1379  * for a sequence, in addition to dropping the heap, also
1380  * delete pg_sequence tuple
1381  */
1382  if (relKind == RELKIND_SEQUENCE)
1384  break;
1385  }
1386 
1387  case ProcedureRelationId:
1389  break;
1390 
1391  case TypeRelationId:
1393  break;
1394 
1395  case ConstraintRelationId:
1397  break;
1398 
1399  case AttrDefaultRelationId:
1401  break;
1402 
1403  case LargeObjectRelationId:
1405  break;
1406 
1407  case OperatorRelationId:
1409  break;
1410 
1411  case RewriteRelationId:
1413  break;
1414 
1415  case TriggerRelationId:
1417  break;
1418 
1419  case StatisticExtRelationId:
1421  break;
1422 
1423  case TSConfigRelationId:
1425  break;
1426 
1427  case ExtensionRelationId:
1429  break;
1430 
1431  case PolicyRelationId:
1433  break;
1434 
1435  case PublicationNamespaceRelationId:
1437  break;
1438 
1439  case PublicationRelRelationId:
1441  break;
1442 
1443  case PublicationRelationId:
1445  break;
1446 
1447  case CastRelationId:
1448  case CollationRelationId:
1449  case ConversionRelationId:
1450  case LanguageRelationId:
1451  case OperatorClassRelationId:
1452  case OperatorFamilyRelationId:
1453  case AccessMethodRelationId:
1454  case AccessMethodOperatorRelationId:
1455  case AccessMethodProcedureRelationId:
1456  case NamespaceRelationId:
1457  case TSParserRelationId:
1458  case TSDictionaryRelationId:
1459  case TSTemplateRelationId:
1460  case ForeignDataWrapperRelationId:
1461  case ForeignServerRelationId:
1462  case UserMappingRelationId:
1463  case DefaultAclRelationId:
1464  case EventTriggerRelationId:
1465  case TransformRelationId:
1466  case AuthMemRelationId:
1467  DropObjectById(object);
1468  break;
1469 
1470  /*
1471  * These global object types are not supported here.
1472  */
1473  case AuthIdRelationId:
1474  case DatabaseRelationId:
1475  case TableSpaceRelationId:
1476  case SubscriptionRelationId:
1477  case ParameterAclRelationId:
1478  elog(ERROR, "global objects cannot be deleted by doDeletion");
1479  break;
1480 
1481  default:
1482  elog(ERROR, "unsupported object class: %u", object->classId);
1483  }
1484 }
1485 
1486 /*
1487  * AcquireDeletionLock - acquire a suitable lock for deleting an object
1488  *
1489  * Accepts the same flags as performDeletion (though currently only
1490  * PERFORM_DELETION_CONCURRENTLY does anything).
1491  *
1492  * We use LockRelation for relations, and otherwise LockSharedObject or
1493  * LockDatabaseObject as appropriate for the object type.
1494  */
1495 void
1497 {
1498  if (object->classId == RelationRelationId)
1499  {
1500  /*
1501  * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1502  * the index for the moment. index_drop() will promote the lock once
1503  * it's safe to do so. In all other cases we need full exclusive
1504  * lock.
1505  */
1508  else
1510  }
1511  else if (object->classId == AuthMemRelationId)
1514  else
1515  {
1516  /* assume we should lock the whole object not a sub-object */
1519  }
1520 }
1521 
1522 /*
1523  * ReleaseDeletionLock - release an object deletion lock
1524  *
1525  * Companion to AcquireDeletionLock.
1526  */
1527 void
1529 {
1530  if (object->classId == RelationRelationId)
1532  else
1533  /* assume we should lock the whole object not a sub-object */
1536 }
1537 
1538 /*
1539  * recordDependencyOnExpr - find expression dependencies
1540  *
1541  * This is used to find the dependencies of rules, constraint expressions,
1542  * etc.
1543  *
1544  * Given an expression or query in node-tree form, find all the objects
1545  * it refers to (tables, columns, operators, functions, etc). Record
1546  * a dependency of the specified type from the given depender object
1547  * to each object mentioned in the expression.
1548  *
1549  * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1550  * It can be NIL if no such variables are expected.
1551  */
1552 void
1554  Node *expr, List *rtable,
1555  DependencyType behavior)
1556 {
1558 
1559  context.addrs = new_object_addresses();
1560 
1561  /* Set up interpretation for Vars at varlevelsup = 0 */
1562  context.rtables = list_make1(rtable);
1563 
1564  /* Scan the expression tree for referenceable objects */
1566 
1567  /* Remove any duplicates */
1569 
1570  /* And record 'em */
1571  recordMultipleDependencies(depender,
1572  context.addrs->refs, context.addrs->numrefs,
1573  behavior);
1574 
1576 }
1577 
1578 /*
1579  * recordDependencyOnSingleRelExpr - find expression dependencies
1580  *
1581  * As above, but only one relation is expected to be referenced (with
1582  * varno = 1 and varlevelsup = 0). Pass the relation OID instead of a
1583  * range table. An additional frammish is that dependencies on that
1584  * relation's component columns will be marked with 'self_behavior',
1585  * whereas 'behavior' is used for everything else; also, if 'reverse_self'
1586  * is true, those dependencies are reversed so that the columns are made
1587  * to depend on the table not vice versa.
1588  *
1589  * NOTE: the caller should ensure that a whole-table dependency on the
1590  * specified relation is created separately, if one is needed. In particular,
1591  * a whole-row Var "relation.*" will not cause this routine to emit any
1592  * dependency item. This is appropriate behavior for subexpressions of an
1593  * ordinary query, so other cases need to cope as necessary.
1594  */
1595 void
1597  Node *expr, Oid relId,
1598  DependencyType behavior,
1599  DependencyType self_behavior,
1600  bool reverse_self)
1601 {
1603  RangeTblEntry rte = {0};
1604 
1605  context.addrs = new_object_addresses();
1606 
1607  /* We gin up a rather bogus rangetable list to handle Vars */
1608  rte.type = T_RangeTblEntry;
1609  rte.rtekind = RTE_RELATION;
1610  rte.relid = relId;
1611  rte.relkind = RELKIND_RELATION; /* no need for exactness here */
1612  rte.rellockmode = AccessShareLock;
1613 
1614  context.rtables = list_make1(list_make1(&rte));
1615 
1616  /* Scan the expression tree for referenceable objects */
1618 
1619  /* Remove any duplicates */
1621 
1622  /* Separate self-dependencies if necessary */
1623  if ((behavior != self_behavior || reverse_self) &&
1624  context.addrs->numrefs > 0)
1625  {
1626  ObjectAddresses *self_addrs;
1627  ObjectAddress *outobj;
1628  int oldref,
1629  outrefs;
1630 
1631  self_addrs = new_object_addresses();
1632 
1633  outobj = context.addrs->refs;
1634  outrefs = 0;
1635  for (oldref = 0; oldref < context.addrs->numrefs; oldref++)
1636  {
1637  ObjectAddress *thisobj = context.addrs->refs + oldref;
1638 
1639  if (thisobj->classId == RelationRelationId &&
1640  thisobj->objectId == relId)
1641  {
1642  /* Move this ref into self_addrs */
1643  add_exact_object_address(thisobj, self_addrs);
1644  }
1645  else
1646  {
1647  /* Keep it in context.addrs */
1648  *outobj = *thisobj;
1649  outobj++;
1650  outrefs++;
1651  }
1652  }
1653  context.addrs->numrefs = outrefs;
1654 
1655  /* Record the self-dependencies with the appropriate direction */
1656  if (!reverse_self)
1657  recordMultipleDependencies(depender,
1658  self_addrs->refs, self_addrs->numrefs,
1659  self_behavior);
1660  else
1661  {
1662  /* Can't use recordMultipleDependencies, so do it the hard way */
1663  int selfref;
1664 
1665  for (selfref = 0; selfref < self_addrs->numrefs; selfref++)
1666  {
1667  ObjectAddress *thisobj = self_addrs->refs + selfref;
1668 
1669  recordDependencyOn(thisobj, depender, self_behavior);
1670  }
1671  }
1672 
1673  free_object_addresses(self_addrs);
1674  }
1675 
1676  /* Record the external dependencies */
1677  recordMultipleDependencies(depender,
1678  context.addrs->refs, context.addrs->numrefs,
1679  behavior);
1680 
1682 }
1683 
1684 /*
1685  * Recursively search an expression tree for object references.
1686  *
1687  * Note: in many cases we do not need to create dependencies on the datatypes
1688  * involved in an expression, because we'll have an indirect dependency via
1689  * some other object. For instance Var nodes depend on a column which depends
1690  * on the datatype, and OpExpr nodes depend on the operator which depends on
1691  * the datatype. However we do need a type dependency if there is no such
1692  * indirect dependency, as for example in Const and CoerceToDomain nodes.
1693  *
1694  * Similarly, we don't need to create dependencies on collations except where
1695  * the collation is being freshly introduced to the expression.
1696  */
1697 static bool
1700 {
1701  if (node == NULL)
1702  return false;
1703  if (IsA(node, Var))
1704  {
1705  Var *var = (Var *) node;
1706  List *rtable;
1707  RangeTblEntry *rte;
1708 
1709  /* Find matching rtable entry, or complain if not found */
1710  if (var->varlevelsup >= list_length(context->rtables))
1711  elog(ERROR, "invalid varlevelsup %d", var->varlevelsup);
1712  rtable = (List *) list_nth(context->rtables, var->varlevelsup);
1713  if (var->varno <= 0 || var->varno > list_length(rtable))
1714  elog(ERROR, "invalid varno %d", var->varno);
1715  rte = rt_fetch(var->varno, rtable);
1716 
1717  /*
1718  * A whole-row Var references no specific columns, so adds no new
1719  * dependency. (We assume that there is a whole-table dependency
1720  * arising from each underlying rangetable entry. While we could
1721  * record such a dependency when finding a whole-row Var that
1722  * references a relation directly, it's quite unclear how to extend
1723  * that to whole-row Vars for JOINs, so it seems better to leave the
1724  * responsibility with the range table. Note that this poses some
1725  * risks for identifying dependencies of stand-alone expressions:
1726  * whole-table references may need to be created separately.)
1727  */
1728  if (var->varattno == InvalidAttrNumber)
1729  return false;
1730  if (rte->rtekind == RTE_RELATION)
1731  {
1732  /* If it's a plain relation, reference this column */
1733  add_object_address(RelationRelationId, rte->relid, var->varattno,
1734  context->addrs);
1735  }
1736  else if (rte->rtekind == RTE_FUNCTION)
1737  {
1738  /* Might need to add a dependency on a composite type's column */
1739  /* (done out of line, because it's a bit bulky) */
1741  }
1742 
1743  /*
1744  * Vars referencing other RTE types require no additional work. In
1745  * particular, a join alias Var can be ignored, because it must
1746  * reference a merged USING column. The relevant join input columns
1747  * will also be referenced in the join qual, and any type coercion
1748  * functions involved in the alias expression will be dealt with when
1749  * we scan the RTE itself.
1750  */
1751  return false;
1752  }
1753  else if (IsA(node, Const))
1754  {
1755  Const *con = (Const *) node;
1756  Oid objoid;
1757 
1758  /* A constant must depend on the constant's datatype */
1759  add_object_address(TypeRelationId, con->consttype, 0,
1760  context->addrs);
1761 
1762  /*
1763  * We must also depend on the constant's collation: it could be
1764  * different from the datatype's, if a CollateExpr was const-folded to
1765  * a simple constant. However we can save work in the most common
1766  * case where the collation is "default", since we know that's pinned.
1767  */
1768  if (OidIsValid(con->constcollid) &&
1769  con->constcollid != DEFAULT_COLLATION_OID)
1770  add_object_address(CollationRelationId, con->constcollid, 0,
1771  context->addrs);
1772 
1773  /*
1774  * If it's a regclass or similar literal referring to an existing
1775  * object, add a reference to that object. (Currently, only the
1776  * regclass and regconfig cases have any likely use, but we may as
1777  * well handle all the OID-alias datatypes consistently.)
1778  */
1779  if (!con->constisnull)
1780  {
1781  switch (con->consttype)
1782  {
1783  case REGPROCOID:
1784  case REGPROCEDUREOID:
1785  objoid = DatumGetObjectId(con->constvalue);
1786  if (SearchSysCacheExists1(PROCOID,
1787  ObjectIdGetDatum(objoid)))
1788  add_object_address(ProcedureRelationId, objoid, 0,
1789  context->addrs);
1790  break;
1791  case REGOPEROID:
1792  case REGOPERATOROID:
1793  objoid = DatumGetObjectId(con->constvalue);
1794  if (SearchSysCacheExists1(OPEROID,
1795  ObjectIdGetDatum(objoid)))
1796  add_object_address(OperatorRelationId, objoid, 0,
1797  context->addrs);
1798  break;
1799  case REGCLASSOID:
1800  objoid = DatumGetObjectId(con->constvalue);
1801  if (SearchSysCacheExists1(RELOID,
1802  ObjectIdGetDatum(objoid)))
1803  add_object_address(RelationRelationId, objoid, 0,
1804  context->addrs);
1805  break;
1806  case REGTYPEOID:
1807  objoid = DatumGetObjectId(con->constvalue);
1808  if (SearchSysCacheExists1(TYPEOID,
1809  ObjectIdGetDatum(objoid)))
1810  add_object_address(TypeRelationId, objoid, 0,
1811  context->addrs);
1812  break;
1813  case REGCOLLATIONOID:
1814  objoid = DatumGetObjectId(con->constvalue);
1815  if (SearchSysCacheExists1(COLLOID,
1816  ObjectIdGetDatum(objoid)))
1817  add_object_address(CollationRelationId, objoid, 0,
1818  context->addrs);
1819  break;
1820  case REGCONFIGOID:
1821  objoid = DatumGetObjectId(con->constvalue);
1822  if (SearchSysCacheExists1(TSCONFIGOID,
1823  ObjectIdGetDatum(objoid)))
1824  add_object_address(TSConfigRelationId, objoid, 0,
1825  context->addrs);
1826  break;
1827  case REGDICTIONARYOID:
1828  objoid = DatumGetObjectId(con->constvalue);
1829  if (SearchSysCacheExists1(TSDICTOID,
1830  ObjectIdGetDatum(objoid)))
1831  add_object_address(TSDictionaryRelationId, objoid, 0,
1832  context->addrs);
1833  break;
1834 
1835  case REGNAMESPACEOID:
1836  objoid = DatumGetObjectId(con->constvalue);
1837  if (SearchSysCacheExists1(NAMESPACEOID,
1838  ObjectIdGetDatum(objoid)))
1839  add_object_address(NamespaceRelationId, objoid, 0,
1840  context->addrs);
1841  break;
1842 
1843  /*
1844  * Dependencies for regrole should be shared among all
1845  * databases, so explicitly inhibit to have dependencies.
1846  */
1847  case REGROLEOID:
1848  ereport(ERROR,
1849  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1850  errmsg("constant of the type %s cannot be used here",
1851  "regrole")));
1852  break;
1853  }
1854  }
1855  return false;
1856  }
1857  else if (IsA(node, Param))
1858  {
1859  Param *param = (Param *) node;
1860 
1861  /* A parameter must depend on the parameter's datatype */
1862  add_object_address(TypeRelationId, param->paramtype, 0,
1863  context->addrs);
1864  /* and its collation, just as for Consts */
1865  if (OidIsValid(param->paramcollid) &&
1866  param->paramcollid != DEFAULT_COLLATION_OID)
1867  add_object_address(CollationRelationId, param->paramcollid, 0,
1868  context->addrs);
1869  }
1870  else if (IsA(node, FuncExpr))
1871  {
1872  FuncExpr *funcexpr = (FuncExpr *) node;
1873 
1874  add_object_address(ProcedureRelationId, funcexpr->funcid, 0,
1875  context->addrs);
1876  /* fall through to examine arguments */
1877  }
1878  else if (IsA(node, OpExpr))
1879  {
1880  OpExpr *opexpr = (OpExpr *) node;
1881 
1882  add_object_address(OperatorRelationId, opexpr->opno, 0,
1883  context->addrs);
1884  /* fall through to examine arguments */
1885  }
1886  else if (IsA(node, DistinctExpr))
1887  {
1888  DistinctExpr *distinctexpr = (DistinctExpr *) node;
1889 
1890  add_object_address(OperatorRelationId, distinctexpr->opno, 0,
1891  context->addrs);
1892  /* fall through to examine arguments */
1893  }
1894  else if (IsA(node, NullIfExpr))
1895  {
1896  NullIfExpr *nullifexpr = (NullIfExpr *) node;
1897 
1898  add_object_address(OperatorRelationId, nullifexpr->opno, 0,
1899  context->addrs);
1900  /* fall through to examine arguments */
1901  }
1902  else if (IsA(node, ScalarArrayOpExpr))
1903  {
1904  ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1905 
1906  add_object_address(OperatorRelationId, opexpr->opno, 0,
1907  context->addrs);
1908  /* fall through to examine arguments */
1909  }
1910  else if (IsA(node, Aggref))
1911  {
1912  Aggref *aggref = (Aggref *) node;
1913 
1914  add_object_address(ProcedureRelationId, aggref->aggfnoid, 0,
1915  context->addrs);
1916  /* fall through to examine arguments */
1917  }
1918  else if (IsA(node, WindowFunc))
1919  {
1920  WindowFunc *wfunc = (WindowFunc *) node;
1921 
1922  add_object_address(ProcedureRelationId, wfunc->winfnoid, 0,
1923  context->addrs);
1924  /* fall through to examine arguments */
1925  }
1926  else if (IsA(node, SubscriptingRef))
1927  {
1928  SubscriptingRef *sbsref = (SubscriptingRef *) node;
1929 
1930  /*
1931  * The refexpr should provide adequate dependency on refcontainertype,
1932  * and that type in turn depends on refelemtype. However, a custom
1933  * subscripting handler might set refrestype to something different
1934  * from either of those, in which case we'd better record it.
1935  */
1936  if (sbsref->refrestype != sbsref->refcontainertype &&
1937  sbsref->refrestype != sbsref->refelemtype)
1938  add_object_address(TypeRelationId, sbsref->refrestype, 0,
1939  context->addrs);
1940  /* fall through to examine arguments */
1941  }
1942  else if (IsA(node, SubPlan))
1943  {
1944  /* Extra work needed here if we ever need this case */
1945  elog(ERROR, "already-planned subqueries not supported");
1946  }
1947  else if (IsA(node, FieldSelect))
1948  {
1949  FieldSelect *fselect = (FieldSelect *) node;
1950  Oid argtype = getBaseType(exprType((Node *) fselect->arg));
1951  Oid reltype = get_typ_typrelid(argtype);
1952 
1953  /*
1954  * We need a dependency on the specific column named in FieldSelect,
1955  * assuming we can identify the pg_class OID for it. (Probably we
1956  * always can at the moment, but in future it might be possible for
1957  * argtype to be RECORDOID.) If we can make a column dependency then
1958  * we shouldn't need a dependency on the column's type; but if we
1959  * can't, make a dependency on the type, as it might not appear
1960  * anywhere else in the expression.
1961  */
1962  if (OidIsValid(reltype))
1963  add_object_address(RelationRelationId, reltype, fselect->fieldnum,
1964  context->addrs);
1965  else
1966  add_object_address(TypeRelationId, fselect->resulttype, 0,
1967  context->addrs);
1968  /* the collation might not be referenced anywhere else, either */
1969  if (OidIsValid(fselect->resultcollid) &&
1970  fselect->resultcollid != DEFAULT_COLLATION_OID)
1971  add_object_address(CollationRelationId, fselect->resultcollid, 0,
1972  context->addrs);
1973  }
1974  else if (IsA(node, FieldStore))
1975  {
1976  FieldStore *fstore = (FieldStore *) node;
1977  Oid reltype = get_typ_typrelid(fstore->resulttype);
1978 
1979  /* similar considerations to FieldSelect, but multiple column(s) */
1980  if (OidIsValid(reltype))
1981  {
1982  ListCell *l;
1983 
1984  foreach(l, fstore->fieldnums)
1985  add_object_address(RelationRelationId, reltype, lfirst_int(l),
1986  context->addrs);
1987  }
1988  else
1989  add_object_address(TypeRelationId, fstore->resulttype, 0,
1990  context->addrs);
1991  }
1992  else if (IsA(node, RelabelType))
1993  {
1994  RelabelType *relab = (RelabelType *) node;
1995 
1996  /* since there is no function dependency, need to depend on type */
1997  add_object_address(TypeRelationId, relab->resulttype, 0,
1998  context->addrs);
1999  /* the collation might not be referenced anywhere else, either */
2000  if (OidIsValid(relab->resultcollid) &&
2001  relab->resultcollid != DEFAULT_COLLATION_OID)
2002  add_object_address(CollationRelationId, relab->resultcollid, 0,
2003  context->addrs);
2004  }
2005  else if (IsA(node, CoerceViaIO))
2006  {
2007  CoerceViaIO *iocoerce = (CoerceViaIO *) node;
2008 
2009  /* since there is no exposed function, need to depend on type */
2010  add_object_address(TypeRelationId, iocoerce->resulttype, 0,
2011  context->addrs);
2012  /* the collation might not be referenced anywhere else, either */
2013  if (OidIsValid(iocoerce->resultcollid) &&
2014  iocoerce->resultcollid != DEFAULT_COLLATION_OID)
2015  add_object_address(CollationRelationId, iocoerce->resultcollid, 0,
2016  context->addrs);
2017  }
2018  else if (IsA(node, ArrayCoerceExpr))
2019  {
2020  ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
2021 
2022  /* as above, depend on type */
2023  add_object_address(TypeRelationId, acoerce->resulttype, 0,
2024  context->addrs);
2025  /* the collation might not be referenced anywhere else, either */
2026  if (OidIsValid(acoerce->resultcollid) &&
2027  acoerce->resultcollid != DEFAULT_COLLATION_OID)
2028  add_object_address(CollationRelationId, acoerce->resultcollid, 0,
2029  context->addrs);
2030  /* fall through to examine arguments */
2031  }
2032  else if (IsA(node, ConvertRowtypeExpr))
2033  {
2034  ConvertRowtypeExpr *cvt = (ConvertRowtypeExpr *) node;
2035 
2036  /* since there is no function dependency, need to depend on type */
2037  add_object_address(TypeRelationId, cvt->resulttype, 0,
2038  context->addrs);
2039  }
2040  else if (IsA(node, CollateExpr))
2041  {
2042  CollateExpr *coll = (CollateExpr *) node;
2043 
2044  add_object_address(CollationRelationId, coll->collOid, 0,
2045  context->addrs);
2046  }
2047  else if (IsA(node, RowExpr))
2048  {
2049  RowExpr *rowexpr = (RowExpr *) node;
2050 
2051  add_object_address(TypeRelationId, rowexpr->row_typeid, 0,
2052  context->addrs);
2053  }
2054  else if (IsA(node, RowCompareExpr))
2055  {
2056  RowCompareExpr *rcexpr = (RowCompareExpr *) node;
2057  ListCell *l;
2058 
2059  foreach(l, rcexpr->opnos)
2060  {
2061  add_object_address(OperatorRelationId, lfirst_oid(l), 0,
2062  context->addrs);
2063  }
2064  foreach(l, rcexpr->opfamilies)
2065  {
2066  add_object_address(OperatorFamilyRelationId, lfirst_oid(l), 0,
2067  context->addrs);
2068  }
2069  /* fall through to examine arguments */
2070  }
2071  else if (IsA(node, CoerceToDomain))
2072  {
2073  CoerceToDomain *cd = (CoerceToDomain *) node;
2074 
2075  add_object_address(TypeRelationId, cd->resulttype, 0,
2076  context->addrs);
2077  }
2078  else if (IsA(node, NextValueExpr))
2079  {
2080  NextValueExpr *nve = (NextValueExpr *) node;
2081 
2082  add_object_address(RelationRelationId, nve->seqid, 0,
2083  context->addrs);
2084  }
2085  else if (IsA(node, OnConflictExpr))
2086  {
2087  OnConflictExpr *onconflict = (OnConflictExpr *) node;
2088 
2089  if (OidIsValid(onconflict->constraint))
2090  add_object_address(ConstraintRelationId, onconflict->constraint, 0,
2091  context->addrs);
2092  /* fall through to examine arguments */
2093  }
2094  else if (IsA(node, SortGroupClause))
2095  {
2096  SortGroupClause *sgc = (SortGroupClause *) node;
2097 
2098  add_object_address(OperatorRelationId, sgc->eqop, 0,
2099  context->addrs);
2100  if (OidIsValid(sgc->sortop))
2101  add_object_address(OperatorRelationId, sgc->sortop, 0,
2102  context->addrs);
2103  return false;
2104  }
2105  else if (IsA(node, WindowClause))
2106  {
2107  WindowClause *wc = (WindowClause *) node;
2108 
2109  if (OidIsValid(wc->startInRangeFunc))
2110  add_object_address(ProcedureRelationId, wc->startInRangeFunc, 0,
2111  context->addrs);
2112  if (OidIsValid(wc->endInRangeFunc))
2113  add_object_address(ProcedureRelationId, wc->endInRangeFunc, 0,
2114  context->addrs);
2115  if (OidIsValid(wc->inRangeColl) &&
2116  wc->inRangeColl != DEFAULT_COLLATION_OID)
2117  add_object_address(CollationRelationId, wc->inRangeColl, 0,
2118  context->addrs);
2119  /* fall through to examine substructure */
2120  }
2121  else if (IsA(node, CTECycleClause))
2122  {
2123  CTECycleClause *cc = (CTECycleClause *) node;
2124 
2125  if (OidIsValid(cc->cycle_mark_type))
2126  add_object_address(TypeRelationId, cc->cycle_mark_type, 0,
2127  context->addrs);
2129  add_object_address(CollationRelationId, cc->cycle_mark_collation, 0,
2130  context->addrs);
2131  if (OidIsValid(cc->cycle_mark_neop))
2132  add_object_address(OperatorRelationId, cc->cycle_mark_neop, 0,
2133  context->addrs);
2134  /* fall through to examine substructure */
2135  }
2136  else if (IsA(node, Query))
2137  {
2138  /* Recurse into RTE subquery or not-yet-planned sublink subquery */
2139  Query *query = (Query *) node;
2140  ListCell *lc;
2141  bool result;
2142 
2143  /*
2144  * Add whole-relation refs for each plain relation mentioned in the
2145  * subquery's rtable, and ensure we add refs for any type-coercion
2146  * functions used in join alias lists.
2147  *
2148  * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
2149  * RTEs, subqueries, etc, so no need to do that here. But we must
2150  * tell it not to visit join alias lists, or we'll add refs for join
2151  * input columns whether or not they are actually used in our query.
2152  *
2153  * Note: we don't need to worry about collations mentioned in
2154  * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
2155  * collations referenced in other parts of the Query. We do have to
2156  * worry about collations mentioned in RTE_FUNCTION, but we take care
2157  * of those when we recurse to the RangeTblFunction node(s).
2158  */
2159  foreach(lc, query->rtable)
2160  {
2161  RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
2162 
2163  switch (rte->rtekind)
2164  {
2165  case RTE_RELATION:
2166  add_object_address(RelationRelationId, rte->relid, 0,
2167  context->addrs);
2168  break;
2169  case RTE_JOIN:
2170 
2171  /*
2172  * Examine joinaliasvars entries only for merged JOIN
2173  * USING columns. Only those entries could contain
2174  * type-coercion functions. Also, their join input
2175  * columns must be referenced in the join quals, so this
2176  * won't accidentally add refs to otherwise-unused join
2177  * input columns. (We want to ref the type coercion
2178  * functions even if the merged column isn't explicitly
2179  * used anywhere, to protect possible expansion of the
2180  * join RTE as a whole-row var, and because it seems like
2181  * a bad idea to allow dropping a function that's present
2182  * in our query tree, whether or not it could get called.)
2183  */
2184  context->rtables = lcons(query->rtable, context->rtables);
2185  for (int i = 0; i < rte->joinmergedcols; i++)
2186  {
2187  Node *aliasvar = list_nth(rte->joinaliasvars, i);
2188 
2189  if (!IsA(aliasvar, Var))
2191  }
2192  context->rtables = list_delete_first(context->rtables);
2193  break;
2194  default:
2195  break;
2196  }
2197  }
2198 
2199  /*
2200  * If the query is an INSERT or UPDATE, we should create a dependency
2201  * on each target column, to prevent the specific target column from
2202  * being dropped. Although we will visit the TargetEntry nodes again
2203  * during query_tree_walker, we won't have enough context to do this
2204  * conveniently, so do it here.
2205  */
2206  if (query->commandType == CMD_INSERT ||
2207  query->commandType == CMD_UPDATE)
2208  {
2209  RangeTblEntry *rte;
2210 
2211  if (query->resultRelation <= 0 ||
2212  query->resultRelation > list_length(query->rtable))
2213  elog(ERROR, "invalid resultRelation %d",
2214  query->resultRelation);
2215  rte = rt_fetch(query->resultRelation, query->rtable);
2216  if (rte->rtekind == RTE_RELATION)
2217  {
2218  foreach(lc, query->targetList)
2219  {
2220  TargetEntry *tle = (TargetEntry *) lfirst(lc);
2221 
2222  if (tle->resjunk)
2223  continue; /* ignore junk tlist items */
2224  add_object_address(RelationRelationId, rte->relid, tle->resno,
2225  context->addrs);
2226  }
2227  }
2228  }
2229 
2230  /*
2231  * Add dependencies on constraints listed in query's constraintDeps
2232  */
2233  foreach(lc, query->constraintDeps)
2234  {
2235  add_object_address(ConstraintRelationId, lfirst_oid(lc), 0,
2236  context->addrs);
2237  }
2238 
2239  /* Examine substructure of query */
2240  context->rtables = lcons(query->rtable, context->rtables);
2241  result = query_tree_walker(query,
2243  (void *) context,
2246  context->rtables = list_delete_first(context->rtables);
2247  return result;
2248  }
2249  else if (IsA(node, SetOperationStmt))
2250  {
2251  SetOperationStmt *setop = (SetOperationStmt *) node;
2252 
2253  /* we need to look at the groupClauses for operator references */
2254  find_expr_references_walker((Node *) setop->groupClauses, context);
2255  /* fall through to examine child nodes */
2256  }
2257  else if (IsA(node, RangeTblFunction))
2258  {
2259  RangeTblFunction *rtfunc = (RangeTblFunction *) node;
2260  ListCell *ct;
2261 
2262  /*
2263  * Add refs for any datatypes and collations used in a column
2264  * definition list for a RECORD function. (For other cases, it should
2265  * be enough to depend on the function itself.)
2266  */
2267  foreach(ct, rtfunc->funccoltypes)
2268  {
2269  add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2270  context->addrs);
2271  }
2272  foreach(ct, rtfunc->funccolcollations)
2273  {
2274  Oid collid = lfirst_oid(ct);
2275 
2276  if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2277  add_object_address(CollationRelationId, collid, 0,
2278  context->addrs);
2279  }
2280  }
2281  else if (IsA(node, TableFunc))
2282  {
2283  TableFunc *tf = (TableFunc *) node;
2284  ListCell *ct;
2285 
2286  /*
2287  * Add refs for the datatypes and collations used in the TableFunc.
2288  */
2289  foreach(ct, tf->coltypes)
2290  {
2291  add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2292  context->addrs);
2293  }
2294  foreach(ct, tf->colcollations)
2295  {
2296  Oid collid = lfirst_oid(ct);
2297 
2298  if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2299  add_object_address(CollationRelationId, collid, 0,
2300  context->addrs);
2301  }
2302  }
2303  else if (IsA(node, TableSampleClause))
2304  {
2305  TableSampleClause *tsc = (TableSampleClause *) node;
2306 
2307  add_object_address(ProcedureRelationId, tsc->tsmhandler, 0,
2308  context->addrs);
2309  /* fall through to examine arguments */
2310  }
2311 
2313  (void *) context);
2314 }
2315 
2316 /*
2317  * find_expr_references_walker subroutine: handle a Var reference
2318  * to an RTE_FUNCTION RTE
2319  */
2320 static void
2323 {
2324  int atts_done = 0;
2325  ListCell *lc;
2326 
2327  /*
2328  * Identify which RangeTblFunction produces this attnum, and see if it
2329  * returns a composite type. If so, we'd better make a dependency on the
2330  * referenced column of the composite type (or actually, of its associated
2331  * relation).
2332  */
2333  foreach(lc, rte->functions)
2334  {
2335  RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
2336 
2337  if (attnum > atts_done &&
2338  attnum <= atts_done + rtfunc->funccolcount)
2339  {
2340  TupleDesc tupdesc;
2341 
2342  /* If it has a coldeflist, it certainly returns RECORD */
2343  if (rtfunc->funccolnames != NIL)
2344  tupdesc = NULL; /* no need to work hard */
2345  else
2346  tupdesc = get_expr_result_tupdesc(rtfunc->funcexpr, true);
2347  if (tupdesc && tupdesc->tdtypeid != RECORDOID)
2348  {
2349  /*
2350  * Named composite type, so individual columns could get
2351  * dropped. Make a dependency on this specific column.
2352  */
2353  Oid reltype = get_typ_typrelid(tupdesc->tdtypeid);
2354 
2355  Assert(attnum - atts_done <= tupdesc->natts);
2356  if (OidIsValid(reltype)) /* can this fail? */
2357  add_object_address(RelationRelationId, reltype,
2358  attnum - atts_done,
2359  context->addrs);
2360  return;
2361  }
2362  /* Nothing to do; function's result type is handled elsewhere */
2363  return;
2364  }
2365  atts_done += rtfunc->funccolcount;
2366  }
2367 
2368  /* If we get here, must be looking for the ordinality column */
2369  if (rte->funcordinality && attnum == atts_done + 1)
2370  return;
2371 
2372  /* this probably can't happen ... */
2373  ereport(ERROR,
2374  (errcode(ERRCODE_UNDEFINED_COLUMN),
2375  errmsg("column %d of relation \"%s\" does not exist",
2376  attnum, rte->eref->aliasname)));
2377 }
2378 
2379 /*
2380  * Given an array of dependency references, eliminate any duplicates.
2381  */
2382 static void
2384 {
2385  ObjectAddress *priorobj;
2386  int oldref,
2387  newrefs;
2388 
2389  /*
2390  * We can't sort if the array has "extra" data, because there's no way to
2391  * keep it in sync. Fortunately that combination of features is not
2392  * needed.
2393  */
2394  Assert(!addrs->extras);
2395 
2396  if (addrs->numrefs <= 1)
2397  return; /* nothing to do */
2398 
2399  /* Sort the refs so that duplicates are adjacent */
2400  qsort(addrs->refs, addrs->numrefs, sizeof(ObjectAddress),
2402 
2403  /* Remove dups */
2404  priorobj = addrs->refs;
2405  newrefs = 1;
2406  for (oldref = 1; oldref < addrs->numrefs; oldref++)
2407  {
2408  ObjectAddress *thisobj = addrs->refs + oldref;
2409 
2410  if (priorobj->classId == thisobj->classId &&
2411  priorobj->objectId == thisobj->objectId)
2412  {
2413  if (priorobj->objectSubId == thisobj->objectSubId)
2414  continue; /* identical, so drop thisobj */
2415 
2416  /*
2417  * If we have a whole-object reference and a reference to a part
2418  * of the same object, we don't need the whole-object reference
2419  * (for example, we don't need to reference both table foo and
2420  * column foo.bar). The whole-object reference will always appear
2421  * first in the sorted list.
2422  */
2423  if (priorobj->objectSubId == 0)
2424  {
2425  /* replace whole ref with partial */
2426  priorobj->objectSubId = thisobj->objectSubId;
2427  continue;
2428  }
2429  }
2430  /* Not identical, so add thisobj to output set */
2431  priorobj++;
2432  *priorobj = *thisobj;
2433  newrefs++;
2434  }
2435 
2436  addrs->numrefs = newrefs;
2437 }
2438 
2439 /*
2440  * qsort comparator for ObjectAddress items
2441  */
2442 static int
2443 object_address_comparator(const void *a, const void *b)
2444 {
2445  const ObjectAddress *obja = (const ObjectAddress *) a;
2446  const ObjectAddress *objb = (const ObjectAddress *) b;
2447 
2448  /*
2449  * Primary sort key is OID descending. Most of the time, this will result
2450  * in putting newer objects before older ones, which is likely to be the
2451  * right order to delete in.
2452  */
2453  if (obja->objectId > objb->objectId)
2454  return -1;
2455  if (obja->objectId < objb->objectId)
2456  return 1;
2457 
2458  /*
2459  * Next sort on catalog ID, in case identical OIDs appear in different
2460  * catalogs. Sort direction is pretty arbitrary here.
2461  */
2462  if (obja->classId < objb->classId)
2463  return -1;
2464  if (obja->classId > objb->classId)
2465  return 1;
2466 
2467  /*
2468  * Last, sort on object subId.
2469  *
2470  * We sort the subId as an unsigned int so that 0 (the whole object) will
2471  * come first. This is essential for eliminate_duplicate_dependencies,
2472  * and is also the best order for findDependentObjects.
2473  */
2474  if ((unsigned int) obja->objectSubId < (unsigned int) objb->objectSubId)
2475  return -1;
2476  if ((unsigned int) obja->objectSubId > (unsigned int) objb->objectSubId)
2477  return 1;
2478  return 0;
2479 }
2480 
2481 /*
2482  * Routines for handling an expansible array of ObjectAddress items.
2483  *
2484  * new_object_addresses: create a new ObjectAddresses array.
2485  */
2488 {
2489  ObjectAddresses *addrs;
2490 
2491  addrs = palloc(sizeof(ObjectAddresses));
2492 
2493  addrs->numrefs = 0;
2494  addrs->maxrefs = 32;
2495  addrs->refs = (ObjectAddress *)
2496  palloc(addrs->maxrefs * sizeof(ObjectAddress));
2497  addrs->extras = NULL; /* until/unless needed */
2498 
2499  return addrs;
2500 }
2501 
2502 /*
2503  * Add an entry to an ObjectAddresses array.
2504  */
2505 static void
2506 add_object_address(Oid classId, Oid objectId, int32 subId,
2507  ObjectAddresses *addrs)
2508 {
2509  ObjectAddress *item;
2510 
2511  /* enlarge array if needed */
2512  if (addrs->numrefs >= addrs->maxrefs)
2513  {
2514  addrs->maxrefs *= 2;
2515  addrs->refs = (ObjectAddress *)
2516  repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2517  Assert(!addrs->extras);
2518  }
2519  /* record this item */
2520  item = addrs->refs + addrs->numrefs;
2521  item->classId = classId;
2522  item->objectId = objectId;
2523  item->objectSubId = subId;
2524  addrs->numrefs++;
2525 }
2526 
2527 /*
2528  * Add an entry to an ObjectAddresses array.
2529  *
2530  * As above, but specify entry exactly.
2531  */
2532 void
2534  ObjectAddresses *addrs)
2535 {
2536  ObjectAddress *item;
2537 
2538  /* enlarge array if needed */
2539  if (addrs->numrefs >= addrs->maxrefs)
2540  {
2541  addrs->maxrefs *= 2;
2542  addrs->refs = (ObjectAddress *)
2543  repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2544  Assert(!addrs->extras);
2545  }
2546  /* record this item */
2547  item = addrs->refs + addrs->numrefs;
2548  *item = *object;
2549  addrs->numrefs++;
2550 }
2551 
2552 /*
2553  * Add an entry to an ObjectAddresses array.
2554  *
2555  * As above, but specify entry exactly and provide some "extra" data too.
2556  */
2557 static void
2559  const ObjectAddressExtra *extra,
2560  ObjectAddresses *addrs)
2561 {
2562  ObjectAddress *item;
2563  ObjectAddressExtra *itemextra;
2564 
2565  /* allocate extra space if first time */
2566  if (!addrs->extras)
2567  addrs->extras = (ObjectAddressExtra *)
2568  palloc(addrs->maxrefs * sizeof(ObjectAddressExtra));
2569 
2570  /* enlarge array if needed */
2571  if (addrs->numrefs >= addrs->maxrefs)
2572  {
2573  addrs->maxrefs *= 2;
2574  addrs->refs = (ObjectAddress *)
2575  repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2576  addrs->extras = (ObjectAddressExtra *)
2577  repalloc(addrs->extras, addrs->maxrefs * sizeof(ObjectAddressExtra));
2578  }
2579  /* record this item */
2580  item = addrs->refs + addrs->numrefs;
2581  *item = *object;
2582  itemextra = addrs->extras + addrs->numrefs;
2583  *itemextra = *extra;
2584  addrs->numrefs++;
2585 }
2586 
2587 /*
2588  * Test whether an object is present in an ObjectAddresses array.
2589  *
2590  * We return "true" if object is a subobject of something in the array, too.
2591  */
2592 bool
2594  const ObjectAddresses *addrs)
2595 {
2596  int i;
2597 
2598  for (i = addrs->numrefs - 1; i >= 0; i--)
2599  {
2600  const ObjectAddress *thisobj = addrs->refs + i;
2601 
2602  if (object->classId == thisobj->classId &&
2603  object->objectId == thisobj->objectId)
2604  {
2605  if (object->objectSubId == thisobj->objectSubId ||
2606  thisobj->objectSubId == 0)
2607  return true;
2608  }
2609  }
2610 
2611  return false;
2612 }
2613 
2614 /*
2615  * As above, except that if the object is present then also OR the given
2616  * flags into its associated extra data (which must exist).
2617  */
2618 static bool
2620  int flags,
2621  ObjectAddresses *addrs)
2622 {
2623  bool result = false;
2624  int i;
2625 
2626  for (i = addrs->numrefs - 1; i >= 0; i--)
2627  {
2628  ObjectAddress *thisobj = addrs->refs + i;
2629 
2630  if (object->classId == thisobj->classId &&
2631  object->objectId == thisobj->objectId)
2632  {
2633  if (object->objectSubId == thisobj->objectSubId)
2634  {
2635  ObjectAddressExtra *thisextra = addrs->extras + i;
2636 
2637  thisextra->flags |= flags;
2638  result = true;
2639  }
2640  else if (thisobj->objectSubId == 0)
2641  {
2642  /*
2643  * We get here if we find a need to delete a column after
2644  * having already decided to drop its whole table. Obviously
2645  * we no longer need to drop the subobject, so report that we
2646  * found the subobject in the array. But don't plaster its
2647  * flags on the whole object.
2648  */
2649  result = true;
2650  }
2651  else if (object->objectSubId == 0)
2652  {
2653  /*
2654  * We get here if we find a need to delete a whole table after
2655  * having already decided to drop one of its columns. We
2656  * can't report that the whole object is in the array, but we
2657  * should mark the subobject with the whole object's flags.
2658  *
2659  * It might seem attractive to physically delete the column's
2660  * array entry, or at least mark it as no longer needing
2661  * separate deletion. But that could lead to, e.g., dropping
2662  * the column's datatype before we drop the table, which does
2663  * not seem like a good idea. This is a very rare situation
2664  * in practice, so we just take the hit of doing a separate
2665  * DROP COLUMN action even though we know we're gonna delete
2666  * the table later.
2667  *
2668  * What we can do, though, is mark this as a subobject so that
2669  * we don't report it separately, which is confusing because
2670  * it's unpredictable whether it happens or not. But do so
2671  * only if flags != 0 (flags == 0 is a read-only probe).
2672  *
2673  * Because there could be other subobjects of this object in
2674  * the array, this case means we always have to loop through
2675  * the whole array; we cannot exit early on a match.
2676  */
2677  ObjectAddressExtra *thisextra = addrs->extras + i;
2678 
2679  if (flags)
2680  thisextra->flags |= (flags | DEPFLAG_SUBOBJECT);
2681  }
2682  }
2683  }
2684 
2685  return result;
2686 }
2687 
2688 /*
2689  * Similar to above, except we search an ObjectAddressStack.
2690  */
2691 static bool
2693  int flags,
2694  ObjectAddressStack *stack)
2695 {
2696  bool result = false;
2697  ObjectAddressStack *stackptr;
2698 
2699  for (stackptr = stack; stackptr; stackptr = stackptr->next)
2700  {
2701  const ObjectAddress *thisobj = stackptr->object;
2702 
2703  if (object->classId == thisobj->classId &&
2704  object->objectId == thisobj->objectId)
2705  {
2706  if (object->objectSubId == thisobj->objectSubId)
2707  {
2708  stackptr->flags |= flags;
2709  result = true;
2710  }
2711  else if (thisobj->objectSubId == 0)
2712  {
2713  /*
2714  * We're visiting a column with whole table already on stack.
2715  * As in object_address_present_add_flags(), we can skip
2716  * further processing of the subobject, but we don't want to
2717  * propagate flags for the subobject to the whole object.
2718  */
2719  result = true;
2720  }
2721  else if (object->objectSubId == 0)
2722  {
2723  /*
2724  * We're visiting a table with column already on stack. As in
2725  * object_address_present_add_flags(), we should propagate
2726  * flags for the whole object to each of its subobjects.
2727  */
2728  if (flags)
2729  stackptr->flags |= (flags | DEPFLAG_SUBOBJECT);
2730  }
2731  }
2732  }
2733 
2734  return result;
2735 }
2736 
2737 /*
2738  * Record multiple dependencies from an ObjectAddresses array, after first
2739  * removing any duplicates.
2740  */
2741 void
2743  ObjectAddresses *referenced,
2744  DependencyType behavior)
2745 {
2747  recordMultipleDependencies(depender,
2748  referenced->refs, referenced->numrefs,
2749  behavior);
2750 }
2751 
2752 /*
2753  * Sort the items in an ObjectAddresses array.
2754  *
2755  * The major sort key is OID-descending, so that newer objects will be listed
2756  * first in most cases. This is primarily useful for ensuring stable outputs
2757  * from regression tests; it's not recommended if the order of the objects is
2758  * determined by user input, such as the order of targets in a DROP command.
2759  */
2760 void
2762 {
2763  if (addrs->numrefs > 1)
2764  qsort(addrs->refs, addrs->numrefs,
2765  sizeof(ObjectAddress),
2767 }
2768 
2769 /*
2770  * Clean up when done with an ObjectAddresses array.
2771  */
2772 void
2774 {
2775  pfree(addrs->refs);
2776  if (addrs->extras)
2777  pfree(addrs->extras);
2778  pfree(addrs);
2779 }
2780 
2781 /*
2782  * delete initial ACL for extension objects
2783  */
2784 static void
2786 {
2787  Relation relation;
2788  ScanKeyData key[3];
2789  int nkeys;
2790  SysScanDesc scan;
2791  HeapTuple oldtuple;
2792 
2793  relation = table_open(InitPrivsRelationId, RowExclusiveLock);
2794 
2795  ScanKeyInit(&key[0],
2796  Anum_pg_init_privs_objoid,
2797  BTEqualStrategyNumber, F_OIDEQ,
2799  ScanKeyInit(&key[1],
2800  Anum_pg_init_privs_classoid,
2801  BTEqualStrategyNumber, F_OIDEQ,
2803  if (object->objectSubId != 0)
2804  {
2805  ScanKeyInit(&key[2],
2806  Anum_pg_init_privs_objsubid,
2807  BTEqualStrategyNumber, F_INT4EQ,
2809  nkeys = 3;
2810  }
2811  else
2812  nkeys = 2;
2813 
2814  scan = systable_beginscan(relation, InitPrivsObjIndexId, true,
2815  NULL, nkeys, key);
2816 
2817  while (HeapTupleIsValid(oldtuple = systable_getnext(scan)))
2818  CatalogTupleDelete(relation, &oldtuple->t_self);
2819 
2820  systable_endscan(scan);
2821 
2822  table_close(relation, RowExclusiveLock);
2823 }
int16 AttrNumber
Definition: attnum.h:21
#define InvalidAttrNumber
Definition: attnum.h:23
signed int int32
Definition: c.h:494
#define ngettext(s, p, n)
Definition: c.h:1181
#define Assert(condition)
Definition: c.h:858
#define OidIsValid(objectId)
Definition: c.h:775
bool IsPinnedObject(Oid classId, Oid objectId)
Definition: catalog.c:313
Oid collid
void DeleteSequenceTuple(Oid relid)
Definition: sequence.c:563
void DeleteComments(Oid oid, Oid classoid, int32 subid)
Definition: comment.c:326
static bool object_address_present_add_flags(const ObjectAddress *object, int flags, ObjectAddresses *addrs)
Definition: dependency.c:2619
#define DEPFLAG_PARTITION
Definition: dependency.c:105
void performMultipleDeletions(const ObjectAddresses *objects, DropBehavior behavior, int flags)
Definition: dependency.c:332
struct ObjectAddressStack ObjectAddressStack
static void add_exact_object_address_extra(const ObjectAddress *object, const ObjectAddressExtra *extra, ObjectAddresses *addrs)
Definition: dependency.c:2558
void record_object_address_dependencies(const ObjectAddress *depender, ObjectAddresses *referenced, DependencyType behavior)
Definition: dependency.c:2742
static void DropObjectById(const ObjectAddress *object)
Definition: dependency.c:1189
static int object_address_comparator(const void *a, const void *b)
Definition: dependency.c:2443
void sort_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2761
static void doDeletion(const ObjectAddress *object, int flags)
Definition: dependency.c:1352
static bool stack_address_present_add_flags(const ObjectAddress *object, int flags, ObjectAddressStack *stack)
Definition: dependency.c:2692
#define DEPFLAG_IS_PART
Definition: dependency.c:108
static void add_object_address(Oid classId, Oid objectId, int32 subId, ObjectAddresses *addrs)
Definition: dependency.c:2506
static bool find_expr_references_walker(Node *node, find_expr_references_context *context)
Definition: dependency.c:1698
static void eliminate_duplicate_dependencies(ObjectAddresses *addrs)
Definition: dependency.c:2383
void AcquireDeletionLock(const ObjectAddress *object, int flags)
Definition: dependency.c:1496
void performDeletion(const ObjectAddress *object, DropBehavior behavior, int flags)
Definition: dependency.c:273
static void deleteOneObject(const ObjectAddress *object, Relation *depRel, int32 flags)
static void DeleteInitPrivs(const ObjectAddress *object)
Definition: dependency.c:2785
#define MAX_REPORTED_DEPS
#define DEPFLAG_ORIGINAL
Definition: dependency.c:101
static void process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum, find_expr_references_context *context)
Definition: dependency.c:2321
static void reportDependentObjects(const ObjectAddresses *targetObjects, DropBehavior behavior, int flags, const ObjectAddress *origObject)
Definition: dependency.c:980
void ReleaseDeletionLock(const ObjectAddress *object)
Definition: dependency.c:1528
#define DEPFLAG_AUTO
Definition: dependency.c:103
void recordDependencyOnSingleRelExpr(const ObjectAddress *depender, Node *expr, Oid relId, DependencyType behavior, DependencyType self_behavior, bool reverse_self)
Definition: dependency.c:1596
void recordDependencyOnExpr(const ObjectAddress *depender, Node *expr, List *rtable, DependencyType behavior)
Definition: dependency.c:1553
static void findDependentObjects(const ObjectAddress *object, int objflags, int flags, ObjectAddressStack *stack, ObjectAddresses *targetObjects, const ObjectAddresses *pendingObjects, Relation *depRel)
Definition: dependency.c:432
#define DEPFLAG_REVERSE
Definition: dependency.c:107
bool object_address_present(const ObjectAddress *object, const ObjectAddresses *addrs)
Definition: dependency.c:2593
ObjectAddresses * new_object_addresses(void)
Definition: dependency.c:2487
void add_exact_object_address(const ObjectAddress *object, ObjectAddresses *addrs)
Definition: dependency.c:2533
#define DEPFLAG_NORMAL
Definition: dependency.c:102
#define DEPFLAG_SUBOBJECT
Definition: dependency.c:109
#define DEPFLAG_EXTENSION
Definition: dependency.c:106
#define DEPFLAG_INTERNAL
Definition: dependency.c:104
static void deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel, int flags)
Definition: dependency.c:185
void free_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2773
#define PERFORM_DELETION_CONCURRENTLY
Definition: dependency.h:93
#define PERFORM_DELETION_SKIP_EXTENSIONS
Definition: dependency.h:96
DependencyType
Definition: dependency.h:32
@ DEPENDENCY_AUTO
Definition: dependency.h:34
@ DEPENDENCY_AUTO_EXTENSION
Definition: dependency.h:39
@ DEPENDENCY_INTERNAL
Definition: dependency.h:35
@ DEPENDENCY_PARTITION_PRI
Definition: dependency.h:36
@ DEPENDENCY_PARTITION_SEC
Definition: dependency.h:37
@ DEPENDENCY_EXTENSION
Definition: dependency.h:38
@ DEPENDENCY_NORMAL
Definition: dependency.h:33
#define PERFORM_DELETION_CONCURRENT_LOCK
Definition: dependency.h:97
#define PERFORM_DELETION_QUIETLY
Definition: dependency.h:94
#define PERFORM_DELETION_SKIP_ORIGINAL
Definition: dependency.h:95
#define PERFORM_DELETION_INTERNAL
Definition: dependency.h:92
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1180
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1157
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1230
int errhint(const char *fmt,...)
Definition: elog.c:1317
bool message_level_is_interesting(int elevel)
Definition: elog.c:276
int errcode(int sqlerrcode)
Definition: elog.c:857
int errmsg(const char *fmt,...)
Definition: elog.c:1070
int errdetail_log(const char *fmt,...)
Definition: elog.c:1251
#define _(x)
Definition: elog.c:90
#define DEBUG2
Definition: elog.h:29
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define NOTICE
Definition: elog.h:35
#define ereport(elevel,...)
Definition: elog.h:149
void EventTriggerSQLDropAddObject(const ObjectAddress *object, bool original, bool normal)
bool trackDroppedObjectsNeeded(void)
bool EventTriggerSupportsObject(const ObjectAddress *object)
bool creating_extension
Definition: extension.c:71
Oid CurrentExtensionObject
Definition: extension.c:72
void RemoveExtensionById(Oid extId)
Definition: extension.c:1954
TupleDesc get_expr_result_tupdesc(Node *expr, bool noError)
Definition: funcapi.c:551
void RemoveFunctionById(Oid funcOid)
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:596
bool systable_recheck_tuple(SysScanDesc sysscan, HeapTuple tup)
Definition: genam.c:562
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:503
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:384
void RemoveAttributeById(Oid relid, AttrNumber attnum)
Definition: heap.c:1656
void heap_drop_with_catalog(Oid relid)
Definition: heap.c:1757
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
void index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
Definition: index.c:2113
void CatalogTupleDelete(Relation heapRel, ItemPointer tid)
Definition: indexing.c:365
int b
Definition: isn.c:70
int a
Definition: isn.c:69
int i
Definition: isn.c:73
List * list_delete_first(List *list)
Definition: list.c:943
List * lcons(void *datum, List *list)
Definition: list.c:495
void LockSharedObject(Oid classid, Oid objid, uint16 objsubid, LOCKMODE lockmode)
Definition: lmgr.c:1083
void UnlockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:227
void LockDatabaseObject(Oid classid, Oid objid, uint16 objsubid, LOCKMODE lockmode)
Definition: lmgr.c:1004
void LockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:108
void UnlockDatabaseObject(Oid classid, Oid objid, uint16 objsubid, LOCKMODE lockmode)
Definition: lmgr.c:1063
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define AccessShareLock
Definition: lockdefs.h:36
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define RowExclusiveLock
Definition: lockdefs.h:38
char get_rel_relkind(Oid relid)
Definition: lsyscache.c:2003
Oid get_typ_typrelid(Oid typid)
Definition: lsyscache.c:2731
Oid getBaseType(Oid typid)
Definition: lsyscache.c:2521
void pfree(void *pointer)
Definition: mcxt.c:1520
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1540
void * palloc(Size size)
Definition: mcxt.c:1316
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:156
#define QTW_EXAMINE_SORTGROUP
Definition: nodeFuncs.h:30
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:151
#define QTW_IGNORE_JOINALIASES
Definition: nodeFuncs.h:25
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
@ CMD_INSERT
Definition: nodes.h:267
@ CMD_UPDATE
Definition: nodes.h:266
#define InvokeObjectDropHookArg(classId, objectId, subId, dropflags)
Definition: objectaccess.h:184
AttrNumber get_object_attnum_oid(Oid class_id)
char * getObjectDescription(const ObjectAddress *object, bool missing_ok)
int get_object_catcache_oid(Oid class_id)
Oid get_object_oid_index(Oid class_id)
const char * get_object_class_descr(Oid class_id)
void RemoveOperatorById(Oid operOid)
Definition: operatorcmds.c:413
@ RTE_JOIN
Definition: parsenodes.h:1030
@ RTE_FUNCTION
Definition: parsenodes.h:1031
@ RTE_RELATION
Definition: parsenodes.h:1028
DropBehavior
Definition: parsenodes.h:2333
@ DROP_CASCADE
Definition: parsenodes.h:2335
@ DROP_RESTRICT
Definition: parsenodes.h:2334
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
void RemoveAttrDefaultById(Oid attrdefId)
Definition: pg_attrdef.c:268
int16 attnum
Definition: pg_attribute.h:74
void RemoveConstraintById(Oid conId)
void recordMultipleDependencies(const ObjectAddress *depender, const ObjectAddress *referenced, int nreferenced, DependencyType behavior)
Definition: pg_depend.c:58
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition: pg_depend.c:46
FormData_pg_depend * Form_pg_depend
Definition: pg_depend.h:72
void LargeObjectDrop(Oid loid)
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define lfirst_int(lc)
Definition: pg_list.h:173
#define list_make1(x1)
Definition: pg_list.h:212
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
#define lfirst_oid(lc)
Definition: pg_list.h:174
void deleteSharedDependencyRecordsFor(Oid classId, Oid objectId, int32 objectSubId)
Definition: pg_shdepend.c:1047
void RemovePolicyById(Oid policy_id)
Definition: policy.c:332
#define qsort(a, b, c, d)
Definition: port.h:449
void check_stack_depth(void)
Definition: postgres.c:3531
static Oid DatumGetObjectId(Datum X)
Definition: postgres.h:242
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:212
unsigned int Oid
Definition: postgres_ext.h:31
void RemovePublicationSchemaById(Oid psoid)
void RemovePublicationById(Oid pubid)
void RemovePublicationRelById(Oid proid)
tree context
Definition: radixtree.h:1835
void RemoveRewriteRuleById(Oid ruleOid)
Definition: rewriteRemove.c:33
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
void DeleteSecurityLabel(const ObjectAddress *object)
Definition: seclabel.c:523
void RemoveStatisticsById(Oid statsOid)
Definition: statscmds.c:747
#define BTEqualStrategyNumber
Definition: stratnum.h:31
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:97
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:194
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
Oid aggfnoid
Definition: primnodes.h:444
Oid cycle_mark_collation
Definition: parsenodes.h:1667
Oid resulttype
Definition: primnodes.h:1208
Oid consttype
Definition: primnodes.h:312
AttrNumber fieldnum
Definition: primnodes.h:1129
Expr * arg
Definition: primnodes.h:1128
Oid funcid
Definition: primnodes.h:750
ItemPointerData t_self
Definition: htup.h:65
Definition: pg_list.h:54
Definition: nodes.h:129
ObjectAddress obj
Definition: dependency.c:134
ObjectAddress dependee
Definition: dependency.c:97
const ObjectAddress * object
Definition: dependency.c:126
struct ObjectAddressStack * next
Definition: dependency.c:128
ObjectAddressExtra * extras
Definition: dependency.c:116
ObjectAddress * refs
Definition: dependency.c:115
Oid opno
Definition: primnodes.h:818
Oid paramtype
Definition: primnodes.h:378
List * rtable
Definition: parsenodes.h:168
CmdType commandType
Definition: parsenodes.h:121
List * targetList
Definition: parsenodes.h:191
bool funcordinality
Definition: parsenodes.h:1189
List * functions
Definition: parsenodes.h:1187
RTEKind rtekind
Definition: parsenodes.h:1057
Oid resulttype
Definition: primnodes.h:1185
AttrNumber resno
Definition: primnodes.h:2194
Oid tdtypeid
Definition: tupdesc.h:82
Definition: primnodes.h:248
AttrNumber varattno
Definition: primnodes.h:260
int varno
Definition: primnodes.h:255
Index varlevelsup
Definition: primnodes.h:280
Oid winfnoid
Definition: primnodes.h:567
ObjectAddresses * addrs
Definition: dependency.c:141
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:266
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:218
#define SearchSysCacheExists1(cacheId, key1)
Definition: syscache.h:95
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
void RemoveTriggerById(Oid trigOid)
Definition: trigger.c:1286
void RemoveTSConfigurationById(Oid cfgId)
Definition: tsearchcmds.c:1108
void RemoveTypeById(Oid typeOid)
Definition: typecmds.c:657
void CommandCounterIncrement(void)
Definition: xact.c:1097