PostgreSQL Source Code git master
dependency.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * dependency.c
4 * Routines to support inter-object dependencies.
5 *
6 *
7 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
9 *
10 * IDENTIFICATION
11 * src/backend/catalog/dependency.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include "access/genam.h"
18#include "access/htup_details.h"
19#include "access/table.h"
20#include "access/xact.h"
21#include "catalog/catalog.h"
22#include "catalog/dependency.h"
23#include "catalog/heap.h"
24#include "catalog/index.h"
25#include "catalog/namespace.h"
27#include "catalog/pg_am.h"
28#include "catalog/pg_amop.h"
29#include "catalog/pg_amproc.h"
30#include "catalog/pg_attrdef.h"
31#include "catalog/pg_authid.h"
33#include "catalog/pg_cast.h"
37#include "catalog/pg_database.h"
39#include "catalog/pg_depend.h"
45#include "catalog/pg_language.h"
48#include "catalog/pg_opclass.h"
49#include "catalog/pg_operator.h"
50#include "catalog/pg_opfamily.h"
52#include "catalog/pg_policy.h"
53#include "catalog/pg_proc.h"
57#include "catalog/pg_rewrite.h"
62#include "catalog/pg_trigger.h"
64#include "catalog/pg_ts_dict.h"
67#include "catalog/pg_type.h"
69#include "commands/comment.h"
70#include "commands/defrem.h"
72#include "commands/extension.h"
73#include "commands/policy.h"
75#include "commands/seclabel.h"
76#include "commands/sequence.h"
77#include "commands/trigger.h"
78#include "commands/typecmds.h"
79#include "funcapi.h"
80#include "miscadmin.h"
81#include "nodes/nodeFuncs.h"
82#include "parser/parsetree.h"
84#include "storage/lmgr.h"
85#include "utils/fmgroids.h"
86#include "utils/lsyscache.h"
87#include "utils/syscache.h"
88
89
90/*
91 * Deletion processing requires additional state for each ObjectAddress that
92 * it's planning to delete. For simplicity and code-sharing we make the
93 * ObjectAddresses code support arrays with or without this extra state.
94 */
95typedef struct
96{
97 int flags; /* bitmask, see bit definitions below */
98 ObjectAddress dependee; /* object whose deletion forced this one */
100
101/* ObjectAddressExtra flag bits */
102#define DEPFLAG_ORIGINAL 0x0001 /* an original deletion target */
103#define DEPFLAG_NORMAL 0x0002 /* reached via normal dependency */
104#define DEPFLAG_AUTO 0x0004 /* reached via auto dependency */
105#define DEPFLAG_INTERNAL 0x0008 /* reached via internal dependency */
106#define DEPFLAG_PARTITION 0x0010 /* reached via partition dependency */
107#define DEPFLAG_EXTENSION 0x0020 /* reached via extension dependency */
108#define DEPFLAG_REVERSE 0x0040 /* reverse internal/extension link */
109#define DEPFLAG_IS_PART 0x0080 /* has a partition dependency */
110#define DEPFLAG_SUBOBJECT 0x0100 /* subobject of another deletable object */
111
112
113/* expansible list of ObjectAddresses */
115{
116 ObjectAddress *refs; /* => palloc'd array */
117 ObjectAddressExtra *extras; /* => palloc'd array, or NULL if not used */
118 int numrefs; /* current number of references */
119 int maxrefs; /* current size of palloc'd array(s) */
120};
121
122/* typedef ObjectAddresses appears in dependency.h */
123
124/* threaded list of ObjectAddresses, for recursion detection */
125typedef struct ObjectAddressStack
126{
127 const ObjectAddress *object; /* object being visited */
128 int flags; /* its current flag bits */
129 struct ObjectAddressStack *next; /* next outer stack level */
131
132/* temporary storage in findDependentObjects */
133typedef struct
134{
135 ObjectAddress obj; /* object to be deleted --- MUST BE FIRST */
136 int subflags; /* flags to pass down when recursing to obj */
138
139/* for find_expr_references_walker */
140typedef struct
141{
142 ObjectAddresses *addrs; /* addresses being accumulated */
143 List *rtables; /* list of rangetables to resolve Vars */
145
146
147static void findDependentObjects(const ObjectAddress *object,
148 int objflags,
149 int flags,
150 ObjectAddressStack *stack,
151 ObjectAddresses *targetObjects,
152 const ObjectAddresses *pendingObjects,
153 Relation *depRel);
154static void reportDependentObjects(const ObjectAddresses *targetObjects,
155 DropBehavior behavior,
156 int flags,
157 const ObjectAddress *origObject);
158static void deleteOneObject(const ObjectAddress *object,
159 Relation *depRel, int32 flags);
160static void doDeletion(const ObjectAddress *object, int flags);
161static bool find_expr_references_walker(Node *node,
166static int object_address_comparator(const void *a, const void *b);
167static void add_object_address(Oid classId, Oid objectId, int32 subId,
168 ObjectAddresses *addrs);
169static void add_exact_object_address_extra(const ObjectAddress *object,
170 const ObjectAddressExtra *extra,
171 ObjectAddresses *addrs);
172static bool object_address_present_add_flags(const ObjectAddress *object,
173 int flags,
174 ObjectAddresses *addrs);
175static bool stack_address_present_add_flags(const ObjectAddress *object,
176 int flags,
177 ObjectAddressStack *stack);
178static void DeleteInitPrivs(const ObjectAddress *object);
179
180
181/*
182 * Go through the objects given running the final actions on them, and execute
183 * the actual deletion.
184 */
185static void
187 int flags)
188{
189 int i;
190
191 /*
192 * Keep track of objects for event triggers, if necessary.
193 */
195 {
196 for (i = 0; i < targetObjects->numrefs; i++)
197 {
198 const ObjectAddress *thisobj = &targetObjects->refs[i];
199 const ObjectAddressExtra *extra = &targetObjects->extras[i];
200 bool original = false;
201 bool normal = false;
202
203 if (extra->flags & DEPFLAG_ORIGINAL)
204 original = true;
205 if (extra->flags & DEPFLAG_NORMAL)
206 normal = true;
207 if (extra->flags & DEPFLAG_REVERSE)
208 normal = true;
209
210 if (EventTriggerSupportsObject(thisobj))
211 {
212 EventTriggerSQLDropAddObject(thisobj, original, normal);
213 }
214 }
215 }
216
217 /*
218 * Delete all the objects in the proper order, except that if told to, we
219 * should skip the original object(s).
220 */
221 for (i = 0; i < targetObjects->numrefs; i++)
222 {
223 ObjectAddress *thisobj = targetObjects->refs + i;
224 ObjectAddressExtra *thisextra = targetObjects->extras + i;
225
227 (thisextra->flags & DEPFLAG_ORIGINAL))
228 continue;
229
230 deleteOneObject(thisobj, depRel, flags);
231 }
232}
233
234/*
235 * performDeletion: attempt to drop the specified object. If CASCADE
236 * behavior is specified, also drop any dependent objects (recursively).
237 * If RESTRICT behavior is specified, error out if there are any dependent
238 * objects, except for those that should be implicitly dropped anyway
239 * according to the dependency type.
240 *
241 * This is the outer control routine for all forms of DROP that drop objects
242 * that can participate in dependencies. Note that performMultipleDeletions
243 * is a variant on the same theme; if you change anything here you'll likely
244 * need to fix that too.
245 *
246 * Bits in the flags argument can include:
247 *
248 * PERFORM_DELETION_INTERNAL: indicates that the drop operation is not the
249 * direct result of a user-initiated action. For example, when a temporary
250 * schema is cleaned out so that a new backend can use it, or when a column
251 * default is dropped as an intermediate step while adding a new one, that's
252 * an internal operation. On the other hand, when we drop something because
253 * the user issued a DROP statement against it, that's not internal. Currently
254 * this suppresses calling event triggers and making some permissions checks.
255 *
256 * PERFORM_DELETION_CONCURRENTLY: perform the drop concurrently. This does
257 * not currently work for anything except dropping indexes; don't set it for
258 * other object types or you may get strange results.
259 *
260 * PERFORM_DELETION_QUIETLY: reduce message level from NOTICE to DEBUG2.
261 *
262 * PERFORM_DELETION_SKIP_ORIGINAL: do not delete the specified object(s),
263 * but only what depends on it/them.
264 *
265 * PERFORM_DELETION_SKIP_EXTENSIONS: do not delete extensions, even when
266 * deleting objects that are part of an extension. This should generally
267 * be used only when dropping temporary objects.
268 *
269 * PERFORM_DELETION_CONCURRENT_LOCK: perform the drop normally but with a lock
270 * as if it were concurrent. This is used by REINDEX CONCURRENTLY.
271 *
272 */
273void
275 DropBehavior behavior, int flags)
276{
277 Relation depRel;
278 ObjectAddresses *targetObjects;
279
280 /*
281 * We save some cycles by opening pg_depend just once and passing the
282 * Relation pointer down to all the recursive deletion steps.
283 */
284 depRel = table_open(DependRelationId, RowExclusiveLock);
285
286 /*
287 * Acquire deletion lock on the target object. (Ideally the caller has
288 * done this already, but many places are sloppy about it.)
289 */
290 AcquireDeletionLock(object, 0);
291
292 /*
293 * Construct a list of objects to delete (ie, the given object plus
294 * everything directly or indirectly dependent on it).
295 */
296 targetObjects = new_object_addresses();
297
300 flags,
301 NULL, /* empty stack */
302 targetObjects,
303 NULL, /* no pendingObjects */
304 &depRel);
305
306 /*
307 * Check if deletion is allowed, and report about cascaded deletes.
308 */
309 reportDependentObjects(targetObjects,
310 behavior,
311 flags,
312 object);
313
314 /* do the deed */
315 deleteObjectsInList(targetObjects, &depRel, flags);
316
317 /* And clean up */
318 free_object_addresses(targetObjects);
319
321}
322
323/*
324 * performMultipleDeletions: Similar to performDeletion, but act on multiple
325 * objects at once.
326 *
327 * The main difference from issuing multiple performDeletion calls is that the
328 * list of objects that would be implicitly dropped, for each object to be
329 * dropped, is the union of the implicit-object list for all objects. This
330 * makes each check be more relaxed.
331 */
332void
334 DropBehavior behavior, int flags)
335{
336 Relation depRel;
337 ObjectAddresses *targetObjects;
338 int i;
339
340 /* No work if no objects... */
341 if (objects->numrefs <= 0)
342 return;
343
344 /*
345 * We save some cycles by opening pg_depend just once and passing the
346 * Relation pointer down to all the recursive deletion steps.
347 */
348 depRel = table_open(DependRelationId, RowExclusiveLock);
349
350 /*
351 * Construct a list of objects to delete (ie, the given objects plus
352 * everything directly or indirectly dependent on them). Note that
353 * because we pass the whole objects list as pendingObjects context, we
354 * won't get a failure from trying to delete an object that is internally
355 * dependent on another one in the list; we'll just skip that object and
356 * delete it when we reach its owner.
357 */
358 targetObjects = new_object_addresses();
359
360 for (i = 0; i < objects->numrefs; i++)
361 {
362 const ObjectAddress *thisobj = objects->refs + i;
363
364 /*
365 * Acquire deletion lock on each target object. (Ideally the caller
366 * has done this already, but many places are sloppy about it.)
367 */
368 AcquireDeletionLock(thisobj, flags);
369
370 findDependentObjects(thisobj,
372 flags,
373 NULL, /* empty stack */
374 targetObjects,
375 objects,
376 &depRel);
377 }
378
379 /*
380 * Check if deletion is allowed, and report about cascaded deletes.
381 *
382 * If there's exactly one object being deleted, report it the same way as
383 * in performDeletion(), else we have to be vaguer.
384 */
385 reportDependentObjects(targetObjects,
386 behavior,
387 flags,
388 (objects->numrefs == 1 ? objects->refs : NULL));
389
390 /* do the deed */
391 deleteObjectsInList(targetObjects, &depRel, flags);
392
393 /* And clean up */
394 free_object_addresses(targetObjects);
395
397}
398
399/*
400 * findDependentObjects - find all objects that depend on 'object'
401 *
402 * For every object that depends on the starting object, acquire a deletion
403 * lock on the object, add it to targetObjects (if not already there),
404 * and recursively find objects that depend on it. An object's dependencies
405 * will be placed into targetObjects before the object itself; this means
406 * that the finished list's order represents a safe deletion order.
407 *
408 * The caller must already have a deletion lock on 'object' itself,
409 * but must not have added it to targetObjects. (Note: there are corner
410 * cases where we won't add the object either, and will also release the
411 * caller-taken lock. This is a bit ugly, but the API is set up this way
412 * to allow easy rechecking of an object's liveness after we lock it. See
413 * notes within the function.)
414 *
415 * When dropping a whole object (subId = 0), we find dependencies for
416 * its sub-objects too.
417 *
418 * object: the object to add to targetObjects and find dependencies on
419 * objflags: flags to be ORed into the object's targetObjects entry
420 * flags: PERFORM_DELETION_xxx flags for the deletion operation as a whole
421 * stack: list of objects being visited in current recursion; topmost item
422 * is the object that we recursed from (NULL for external callers)
423 * targetObjects: list of objects that are scheduled to be deleted
424 * pendingObjects: list of other objects slated for destruction, but
425 * not necessarily in targetObjects yet (can be NULL if none)
426 * *depRel: already opened pg_depend relation
427 *
428 * Note: objflags describes the reason for visiting this particular object
429 * at this time, and is not passed down when recursing. The flags argument
430 * is passed down, since it describes what we're doing overall.
431 */
432static void
434 int objflags,
435 int flags,
436 ObjectAddressStack *stack,
437 ObjectAddresses *targetObjects,
438 const ObjectAddresses *pendingObjects,
439 Relation *depRel)
440{
441 ScanKeyData key[3];
442 int nkeys;
443 SysScanDesc scan;
444 HeapTuple tup;
445 ObjectAddress otherObject;
446 ObjectAddress owningObject;
447 ObjectAddress partitionObject;
448 ObjectAddressAndFlags *dependentObjects;
449 int numDependentObjects;
450 int maxDependentObjects;
451 ObjectAddressStack mystack;
452 ObjectAddressExtra extra;
453
454 /*
455 * If the target object is already being visited in an outer recursion
456 * level, just report the current objflags back to that level and exit.
457 * This is needed to avoid infinite recursion in the face of circular
458 * dependencies.
459 *
460 * The stack check alone would result in dependency loops being broken at
461 * an arbitrary point, ie, the first member object of the loop to be
462 * visited is the last one to be deleted. This is obviously unworkable.
463 * However, the check for internal dependency below guarantees that we
464 * will not break a loop at an internal dependency: if we enter the loop
465 * at an "owned" object we will switch and start at the "owning" object
466 * instead. We could probably hack something up to avoid breaking at an
467 * auto dependency, too, if we had to. However there are no known cases
468 * where that would be necessary.
469 */
470 if (stack_address_present_add_flags(object, objflags, stack))
471 return;
472
473 /*
474 * since this function recurses, it could be driven to stack overflow,
475 * because of the deep dependency tree, not only due to dependency loops.
476 */
478
479 /*
480 * It's also possible that the target object has already been completely
481 * processed and put into targetObjects. If so, again we just add the
482 * specified objflags to its entry and return.
483 *
484 * (Note: in these early-exit cases we could release the caller-taken
485 * lock, since the object is presumably now locked multiple times; but it
486 * seems not worth the cycles.)
487 */
488 if (object_address_present_add_flags(object, objflags, targetObjects))
489 return;
490
491 /*
492 * If the target object is pinned, we can just error out immediately; it
493 * won't have any objects recorded as depending on it.
494 */
497 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
498 errmsg("cannot drop %s because it is required by the database system",
499 getObjectDescription(object, false))));
500
501 /*
502 * The target object might be internally dependent on some other object
503 * (its "owner"), and/or be a member of an extension (also considered its
504 * owner). If so, and if we aren't recursing from the owning object, we
505 * have to transform this deletion request into a deletion request of the
506 * owning object. (We'll eventually recurse back to this object, but the
507 * owning object has to be visited first so it will be deleted after.) The
508 * way to find out about this is to scan the pg_depend entries that show
509 * what this object depends on.
510 */
511 ScanKeyInit(&key[0],
512 Anum_pg_depend_classid,
513 BTEqualStrategyNumber, F_OIDEQ,
515 ScanKeyInit(&key[1],
516 Anum_pg_depend_objid,
517 BTEqualStrategyNumber, F_OIDEQ,
519 if (object->objectSubId != 0)
520 {
521 /* Consider only dependencies of this sub-object */
522 ScanKeyInit(&key[2],
523 Anum_pg_depend_objsubid,
524 BTEqualStrategyNumber, F_INT4EQ,
526 nkeys = 3;
527 }
528 else
529 {
530 /* Consider dependencies of this object and any sub-objects it has */
531 nkeys = 2;
532 }
533
534 scan = systable_beginscan(*depRel, DependDependerIndexId, true,
535 NULL, nkeys, key);
536
537 /* initialize variables that loop may fill */
538 memset(&owningObject, 0, sizeof(owningObject));
539 memset(&partitionObject, 0, sizeof(partitionObject));
540
541 while (HeapTupleIsValid(tup = systable_getnext(scan)))
542 {
543 Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
544
545 otherObject.classId = foundDep->refclassid;
546 otherObject.objectId = foundDep->refobjid;
547 otherObject.objectSubId = foundDep->refobjsubid;
548
549 /*
550 * When scanning dependencies of a whole object, we may find rows
551 * linking sub-objects of the object to the object itself. (Normally,
552 * such a dependency is implicit, but we must make explicit ones in
553 * some cases involving partitioning.) We must ignore such rows to
554 * avoid infinite recursion.
555 */
556 if (otherObject.classId == object->classId &&
557 otherObject.objectId == object->objectId &&
558 object->objectSubId == 0)
559 continue;
560
561 switch (foundDep->deptype)
562 {
564 case DEPENDENCY_AUTO:
566 /* no problem */
567 break;
568
570
571 /*
572 * If told to, ignore EXTENSION dependencies altogether. This
573 * flag is normally used to prevent dropping extensions during
574 * temporary-object cleanup, even if a temp object was created
575 * during an extension script.
576 */
578 break;
579
580 /*
581 * If the other object is the extension currently being
582 * created/altered, ignore this dependency and continue with
583 * the deletion. This allows dropping of an extension's
584 * objects within the extension's scripts, as well as corner
585 * cases such as dropping a transient object created within
586 * such a script.
587 */
588 if (creating_extension &&
589 otherObject.classId == ExtensionRelationId &&
590 otherObject.objectId == CurrentExtensionObject)
591 break;
592
593 /* Otherwise, treat this like an internal dependency */
594 /* FALL THRU */
595
597
598 /*
599 * This object is part of the internal implementation of
600 * another object, or is part of the extension that is the
601 * other object. We have three cases:
602 *
603 * 1. At the outermost recursion level, we must disallow the
604 * DROP. However, if the owning object is listed in
605 * pendingObjects, just release the caller's lock and return;
606 * we'll eventually complete the DROP when we reach that entry
607 * in the pending list.
608 *
609 * Note: the above statement is true only if this pg_depend
610 * entry still exists by then; in principle, therefore, we
611 * could miss deleting an item the user told us to delete.
612 * However, no inconsistency can result: since we're at outer
613 * level, there is no object depending on this one.
614 */
615 if (stack == NULL)
616 {
617 if (pendingObjects &&
618 object_address_present(&otherObject, pendingObjects))
619 {
620 systable_endscan(scan);
621 /* need to release caller's lock; see notes below */
622 ReleaseDeletionLock(object);
623 return;
624 }
625
626 /*
627 * We postpone actually issuing the error message until
628 * after this loop, so that we can make the behavior
629 * independent of the ordering of pg_depend entries, at
630 * least if there's not more than one INTERNAL and one
631 * EXTENSION dependency. (If there's more, we'll complain
632 * about a random one of them.) Prefer to complain about
633 * EXTENSION, since that's generally a more important
634 * dependency.
635 */
636 if (!OidIsValid(owningObject.classId) ||
637 foundDep->deptype == DEPENDENCY_EXTENSION)
638 owningObject = otherObject;
639 break;
640 }
641
642 /*
643 * 2. When recursing from the other end of this dependency,
644 * it's okay to continue with the deletion. This holds when
645 * recursing from a whole object that includes the nominal
646 * other end as a component, too. Since there can be more
647 * than one "owning" object, we have to allow matches that are
648 * more than one level down in the stack.
649 */
650 if (stack_address_present_add_flags(&otherObject, 0, stack))
651 break;
652
653 /*
654 * 3. Not all the owning objects have been visited, so
655 * transform this deletion request into a delete of this
656 * owning object.
657 *
658 * First, release caller's lock on this object and get
659 * deletion lock on the owning object. (We must release
660 * caller's lock to avoid deadlock against a concurrent
661 * deletion of the owning object.)
662 */
663 ReleaseDeletionLock(object);
664 AcquireDeletionLock(&otherObject, 0);
665
666 /*
667 * The owning object might have been deleted while we waited
668 * to lock it; if so, neither it nor the current object are
669 * interesting anymore. We test this by checking the
670 * pg_depend entry (see notes below).
671 */
672 if (!systable_recheck_tuple(scan, tup))
673 {
674 systable_endscan(scan);
675 ReleaseDeletionLock(&otherObject);
676 return;
677 }
678
679 /*
680 * One way or the other, we're done with the scan; might as
681 * well close it down before recursing, to reduce peak
682 * resource consumption.
683 */
684 systable_endscan(scan);
685
686 /*
687 * Okay, recurse to the owning object instead of proceeding.
688 *
689 * We do not need to stack the current object; we want the
690 * traversal order to be as if the original reference had
691 * linked to the owning object instead of this one.
692 *
693 * The dependency type is a "reverse" dependency: we need to
694 * delete the owning object if this one is to be deleted, but
695 * this linkage is never a reason for an automatic deletion.
696 */
697 findDependentObjects(&otherObject,
699 flags,
700 stack,
701 targetObjects,
702 pendingObjects,
703 depRel);
704
705 /*
706 * The current target object should have been added to
707 * targetObjects while processing the owning object; but it
708 * probably got only the flag bits associated with the
709 * dependency we're looking at. We need to add the objflags
710 * that were passed to this recursion level, too, else we may
711 * get a bogus failure in reportDependentObjects (if, for
712 * example, we were called due to a partition dependency).
713 *
714 * If somehow the current object didn't get scheduled for
715 * deletion, bleat. (That would imply that somebody deleted
716 * this dependency record before the recursion got to it.)
717 * Another idea would be to reacquire lock on the current
718 * object and resume trying to delete it, but it seems not
719 * worth dealing with the race conditions inherent in that.
720 */
721 if (!object_address_present_add_flags(object, objflags,
722 targetObjects))
723 elog(ERROR, "deletion of owning object %s failed to delete %s",
724 getObjectDescription(&otherObject, false),
725 getObjectDescription(object, false));
726
727 /* And we're done here. */
728 return;
729
731
732 /*
733 * Remember that this object has a partition-type dependency.
734 * After the dependency scan, we'll complain if we didn't find
735 * a reason to delete one of its partition dependencies.
736 */
737 objflags |= DEPFLAG_IS_PART;
738
739 /*
740 * Also remember the primary partition owner, for error
741 * messages. If there are multiple primary owners (which
742 * there should not be), we'll report a random one of them.
743 */
744 partitionObject = otherObject;
745 break;
746
748
749 /*
750 * Only use secondary partition owners in error messages if we
751 * find no primary owner (which probably shouldn't happen).
752 */
753 if (!(objflags & DEPFLAG_IS_PART))
754 partitionObject = otherObject;
755
756 /*
757 * Remember that this object has a partition-type dependency.
758 * After the dependency scan, we'll complain if we didn't find
759 * a reason to delete one of its partition dependencies.
760 */
761 objflags |= DEPFLAG_IS_PART;
762 break;
763
764 default:
765 elog(ERROR, "unrecognized dependency type '%c' for %s",
766 foundDep->deptype, getObjectDescription(object, false));
767 break;
768 }
769 }
770
771 systable_endscan(scan);
772
773 /*
774 * If we found an INTERNAL or EXTENSION dependency when we're at outer
775 * level, complain about it now. If we also found a PARTITION dependency,
776 * we prefer to report the PARTITION dependency. This is arbitrary but
777 * seems to be more useful in practice.
778 */
779 if (OidIsValid(owningObject.classId))
780 {
781 char *otherObjDesc;
782
783 if (OidIsValid(partitionObject.classId))
784 otherObjDesc = getObjectDescription(&partitionObject, false);
785 else
786 otherObjDesc = getObjectDescription(&owningObject, false);
787
789 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
790 errmsg("cannot drop %s because %s requires it",
791 getObjectDescription(object, false), otherObjDesc),
792 errhint("You can drop %s instead.", otherObjDesc)));
793 }
794
795 /*
796 * Next, identify all objects that directly depend on the current object.
797 * To ensure predictable deletion order, we collect them up in
798 * dependentObjects and sort the list before actually recursing. (The
799 * deletion order would be valid in any case, but doing this ensures
800 * consistent output from DROP CASCADE commands, which is helpful for
801 * regression testing.)
802 */
803 maxDependentObjects = 128; /* arbitrary initial allocation */
804 dependentObjects = palloc_array(ObjectAddressAndFlags, maxDependentObjects);
805 numDependentObjects = 0;
806
807 ScanKeyInit(&key[0],
808 Anum_pg_depend_refclassid,
809 BTEqualStrategyNumber, F_OIDEQ,
811 ScanKeyInit(&key[1],
812 Anum_pg_depend_refobjid,
813 BTEqualStrategyNumber, F_OIDEQ,
815 if (object->objectSubId != 0)
816 {
817 ScanKeyInit(&key[2],
818 Anum_pg_depend_refobjsubid,
819 BTEqualStrategyNumber, F_INT4EQ,
821 nkeys = 3;
822 }
823 else
824 nkeys = 2;
825
826 scan = systable_beginscan(*depRel, DependReferenceIndexId, true,
827 NULL, nkeys, key);
828
829 while (HeapTupleIsValid(tup = systable_getnext(scan)))
830 {
831 Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
832 int subflags;
833
834 otherObject.classId = foundDep->classid;
835 otherObject.objectId = foundDep->objid;
836 otherObject.objectSubId = foundDep->objsubid;
837
838 /*
839 * If what we found is a sub-object of the current object, just ignore
840 * it. (Normally, such a dependency is implicit, but we must make
841 * explicit ones in some cases involving partitioning.)
842 */
843 if (otherObject.classId == object->classId &&
844 otherObject.objectId == object->objectId &&
845 object->objectSubId == 0)
846 continue;
847
848 /*
849 * Must lock the dependent object before recursing to it.
850 */
851 AcquireDeletionLock(&otherObject, 0);
852
853 /*
854 * The dependent object might have been deleted while we waited to
855 * lock it; if so, we don't need to do anything more with it. We can
856 * test this cheaply and independently of the object's type by seeing
857 * if the pg_depend tuple we are looking at is still live. (If the
858 * object got deleted, the tuple would have been deleted too.)
859 */
860 if (!systable_recheck_tuple(scan, tup))
861 {
862 /* release the now-useless lock */
863 ReleaseDeletionLock(&otherObject);
864 /* and continue scanning for dependencies */
865 continue;
866 }
867
868 /*
869 * We do need to delete it, so identify objflags to be passed down,
870 * which depend on the dependency type.
871 */
872 switch (foundDep->deptype)
873 {
875 subflags = DEPFLAG_NORMAL;
876 break;
877 case DEPENDENCY_AUTO:
879 subflags = DEPFLAG_AUTO;
880 break;
882 subflags = DEPFLAG_INTERNAL;
883 break;
886 subflags = DEPFLAG_PARTITION;
887 break;
889 subflags = DEPFLAG_EXTENSION;
890 break;
891 default:
892 elog(ERROR, "unrecognized dependency type '%c' for %s",
893 foundDep->deptype, getObjectDescription(object, false));
894 subflags = 0; /* keep compiler quiet */
895 break;
896 }
897
898 /* And add it to the pending-objects list */
899 if (numDependentObjects >= maxDependentObjects)
900 {
901 /* enlarge array if needed */
902 maxDependentObjects *= 2;
903 dependentObjects = (ObjectAddressAndFlags *)
904 repalloc(dependentObjects,
905 maxDependentObjects * sizeof(ObjectAddressAndFlags));
906 }
907
908 dependentObjects[numDependentObjects].obj = otherObject;
909 dependentObjects[numDependentObjects].subflags = subflags;
910 numDependentObjects++;
911 }
912
913 systable_endscan(scan);
914
915 /*
916 * Now we can sort the dependent objects into a stable visitation order.
917 * It's safe to use object_address_comparator here since the obj field is
918 * first within ObjectAddressAndFlags.
919 */
920 if (numDependentObjects > 1)
921 qsort(dependentObjects, numDependentObjects,
922 sizeof(ObjectAddressAndFlags),
924
925 /*
926 * Now recurse to the dependent objects. We must visit them first since
927 * they have to be deleted before the current object.
928 */
929 mystack.object = object; /* set up a new stack level */
930 mystack.flags = objflags;
931 mystack.next = stack;
932
933 for (int i = 0; i < numDependentObjects; i++)
934 {
935 ObjectAddressAndFlags *depObj = dependentObjects + i;
936
937 findDependentObjects(&depObj->obj,
938 depObj->subflags,
939 flags,
940 &mystack,
941 targetObjects,
942 pendingObjects,
943 depRel);
944 }
945
946 pfree(dependentObjects);
947
948 /*
949 * Finally, we can add the target object to targetObjects. Be careful to
950 * include any flags that were passed back down to us from inner recursion
951 * levels. Record the "dependee" as being either the most important
952 * partition owner if there is one, else the object we recursed from, if
953 * any. (The logic in reportDependentObjects() is such that it can only
954 * need one of those objects.)
955 */
956 extra.flags = mystack.flags;
957 if (extra.flags & DEPFLAG_IS_PART)
958 extra.dependee = partitionObject;
959 else if (stack)
960 extra.dependee = *stack->object;
961 else
962 memset(&extra.dependee, 0, sizeof(extra.dependee));
963 add_exact_object_address_extra(object, &extra, targetObjects);
964}
965
966/*
967 * reportDependentObjects - report about dependencies, and fail if RESTRICT
968 *
969 * Tell the user about dependent objects that we are going to delete
970 * (or would need to delete, but are prevented by RESTRICT mode);
971 * then error out if there are any and it's not CASCADE mode.
972 *
973 * targetObjects: list of objects that are scheduled to be deleted
974 * behavior: RESTRICT or CASCADE
975 * flags: other flags for the deletion operation
976 * origObject: base object of deletion, or NULL if not available
977 * (the latter case occurs in DROP OWNED)
978 */
979static void
981 DropBehavior behavior,
982 int flags,
983 const ObjectAddress *origObject)
984{
985 int msglevel = (flags & PERFORM_DELETION_QUIETLY) ? DEBUG2 : NOTICE;
986 bool ok = true;
987 StringInfoData clientdetail;
988 StringInfoData logdetail;
989 int numReportedClient = 0;
990 int numNotReportedClient = 0;
991 int i;
992
993 /*
994 * If we need to delete any partition-dependent objects, make sure that
995 * we're deleting at least one of their partition dependencies, too. That
996 * can be detected by checking that we reached them by a PARTITION
997 * dependency at some point.
998 *
999 * We just report the first such object, as in most cases the only way to
1000 * trigger this complaint is to explicitly try to delete one partition of
1001 * a partitioned object.
1002 */
1003 for (i = 0; i < targetObjects->numrefs; i++)
1004 {
1005 const ObjectAddressExtra *extra = &targetObjects->extras[i];
1006
1007 if ((extra->flags & DEPFLAG_IS_PART) &&
1008 !(extra->flags & DEPFLAG_PARTITION))
1009 {
1010 const ObjectAddress *object = &targetObjects->refs[i];
1011 char *otherObjDesc = getObjectDescription(&extra->dependee,
1012 false);
1013
1014 ereport(ERROR,
1015 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1016 errmsg("cannot drop %s because %s requires it",
1017 getObjectDescription(object, false), otherObjDesc),
1018 errhint("You can drop %s instead.", otherObjDesc)));
1019 }
1020 }
1021
1022 /*
1023 * If no error is to be thrown, and the msglevel is too low to be shown to
1024 * either client or server log, there's no need to do any of the rest of
1025 * the work.
1026 */
1027 if (behavior == DROP_CASCADE &&
1029 return;
1030
1031 /*
1032 * We limit the number of dependencies reported to the client to
1033 * MAX_REPORTED_DEPS, since client software may not deal well with
1034 * enormous error strings. The server log always gets a full report.
1035 */
1036#define MAX_REPORTED_DEPS 100
1037
1038 initStringInfo(&clientdetail);
1039 initStringInfo(&logdetail);
1040
1041 /*
1042 * We process the list back to front (ie, in dependency order not deletion
1043 * order), since this makes for a more understandable display.
1044 */
1045 for (i = targetObjects->numrefs - 1; i >= 0; i--)
1046 {
1047 const ObjectAddress *obj = &targetObjects->refs[i];
1048 const ObjectAddressExtra *extra = &targetObjects->extras[i];
1049 char *objDesc;
1050
1051 /* Ignore the original deletion target(s) */
1052 if (extra->flags & DEPFLAG_ORIGINAL)
1053 continue;
1054
1055 /* Also ignore sub-objects; we'll report the whole object elsewhere */
1056 if (extra->flags & DEPFLAG_SUBOBJECT)
1057 continue;
1058
1059 objDesc = getObjectDescription(obj, false);
1060
1061 /* An object being dropped concurrently doesn't need to be reported */
1062 if (objDesc == NULL)
1063 continue;
1064
1065 /*
1066 * If, at any stage of the recursive search, we reached the object via
1067 * an AUTO, INTERNAL, PARTITION, or EXTENSION dependency, then it's
1068 * okay to delete it even in RESTRICT mode.
1069 */
1070 if (extra->flags & (DEPFLAG_AUTO |
1074 {
1075 /*
1076 * auto-cascades are reported at DEBUG2, not msglevel. We don't
1077 * try to combine them with the regular message because the
1078 * results are too confusing when client_min_messages and
1079 * log_min_messages are different.
1080 */
1082 (errmsg_internal("drop auto-cascades to %s",
1083 objDesc)));
1084 }
1085 else if (behavior == DROP_RESTRICT)
1086 {
1087 char *otherDesc = getObjectDescription(&extra->dependee,
1088 false);
1089
1090 if (otherDesc)
1091 {
1092 if (numReportedClient < MAX_REPORTED_DEPS)
1093 {
1094 /* separate entries with a newline */
1095 if (clientdetail.len != 0)
1096 appendStringInfoChar(&clientdetail, '\n');
1097 appendStringInfo(&clientdetail, _("%s depends on %s"),
1098 objDesc, otherDesc);
1099 numReportedClient++;
1100 }
1101 else
1102 numNotReportedClient++;
1103 /* separate entries with a newline */
1104 if (logdetail.len != 0)
1105 appendStringInfoChar(&logdetail, '\n');
1106 appendStringInfo(&logdetail, _("%s depends on %s"),
1107 objDesc, otherDesc);
1108 pfree(otherDesc);
1109 }
1110 else
1111 numNotReportedClient++;
1112 ok = false;
1113 }
1114 else
1115 {
1116 if (numReportedClient < MAX_REPORTED_DEPS)
1117 {
1118 /* separate entries with a newline */
1119 if (clientdetail.len != 0)
1120 appendStringInfoChar(&clientdetail, '\n');
1121 appendStringInfo(&clientdetail, _("drop cascades to %s"),
1122 objDesc);
1123 numReportedClient++;
1124 }
1125 else
1126 numNotReportedClient++;
1127 /* separate entries with a newline */
1128 if (logdetail.len != 0)
1129 appendStringInfoChar(&logdetail, '\n');
1130 appendStringInfo(&logdetail, _("drop cascades to %s"),
1131 objDesc);
1132 }
1133
1134 pfree(objDesc);
1135 }
1136
1137 if (numNotReportedClient > 0)
1138 appendStringInfo(&clientdetail, ngettext("\nand %d other object "
1139 "(see server log for list)",
1140 "\nand %d other objects "
1141 "(see server log for list)",
1142 numNotReportedClient),
1143 numNotReportedClient);
1144
1145 if (!ok)
1146 {
1147 if (origObject)
1148 ereport(ERROR,
1149 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1150 errmsg("cannot drop %s because other objects depend on it",
1151 getObjectDescription(origObject, false)),
1152 errdetail_internal("%s", clientdetail.data),
1153 errdetail_log("%s", logdetail.data),
1154 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1155 else
1156 ereport(ERROR,
1157 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1158 errmsg("cannot drop desired object(s) because other objects depend on them"),
1159 errdetail_internal("%s", clientdetail.data),
1160 errdetail_log("%s", logdetail.data),
1161 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1162 }
1163 else if (numReportedClient > 1)
1164 {
1165 ereport(msglevel,
1166 (errmsg_plural("drop cascades to %d other object",
1167 "drop cascades to %d other objects",
1168 numReportedClient + numNotReportedClient,
1169 numReportedClient + numNotReportedClient),
1170 errdetail_internal("%s", clientdetail.data),
1171 errdetail_log("%s", logdetail.data)));
1172 }
1173 else if (numReportedClient == 1)
1174 {
1175 /* we just use the single item as-is */
1176 ereport(msglevel,
1177 (errmsg_internal("%s", clientdetail.data)));
1178 }
1179
1180 pfree(clientdetail.data);
1181 pfree(logdetail.data);
1182}
1183
1184/*
1185 * Drop an object by OID. Works for most catalogs, if no special processing
1186 * is needed.
1187 */
1188static void
1190{
1191 int cacheId;
1192 Relation rel;
1193 HeapTuple tup;
1194
1196
1198
1199 /*
1200 * Use the system cache for the oid column, if one exists.
1201 */
1202 if (cacheId >= 0)
1203 {
1205 if (!HeapTupleIsValid(tup))
1206 elog(ERROR, "cache lookup failed for %s %u",
1208
1209 CatalogTupleDelete(rel, &tup->t_self);
1210
1211 ReleaseSysCache(tup);
1212 }
1213 else
1214 {
1215 ScanKeyData skey[1];
1216 SysScanDesc scan;
1217
1218 ScanKeyInit(&skey[0],
1220 BTEqualStrategyNumber, F_OIDEQ,
1222
1224 NULL, 1, skey);
1225
1226 /* we expect exactly one match */
1227 tup = systable_getnext(scan);
1228 if (!HeapTupleIsValid(tup))
1229 elog(ERROR, "could not find tuple for %s %u",
1231
1232 CatalogTupleDelete(rel, &tup->t_self);
1233
1234 systable_endscan(scan);
1235 }
1236
1238}
1239
1240/*
1241 * deleteOneObject: delete a single object for performDeletion.
1242 *
1243 * *depRel is the already-open pg_depend relation.
1244 */
1245static void
1246deleteOneObject(const ObjectAddress *object, Relation *depRel, int flags)
1247{
1248 ScanKeyData key[3];
1249 int nkeys;
1250 SysScanDesc scan;
1251 HeapTuple tup;
1252
1253 /* DROP hook of the objects being removed */
1256
1257 /*
1258 * Close depRel if we are doing a drop concurrently. The object deletion
1259 * subroutine will commit the current transaction, so we can't keep the
1260 * relation open across doDeletion().
1261 */
1263 table_close(*depRel, RowExclusiveLock);
1264
1265 /*
1266 * Delete the object itself, in an object-type-dependent way.
1267 *
1268 * We used to do this after removing the outgoing dependency links, but it
1269 * seems just as reasonable to do it beforehand. In the concurrent case
1270 * we *must* do it in this order, because we can't make any transactional
1271 * updates before calling doDeletion() --- they'd get committed right
1272 * away, which is not cool if the deletion then fails.
1273 */
1274 doDeletion(object, flags);
1275
1276 /*
1277 * Reopen depRel if we closed it above
1278 */
1280 *depRel = table_open(DependRelationId, RowExclusiveLock);
1281
1282 /*
1283 * Now remove any pg_depend records that link from this object to others.
1284 * (Any records linking to this object should be gone already.)
1285 *
1286 * When dropping a whole object (subId = 0), remove all pg_depend records
1287 * for its sub-objects too.
1288 */
1289 ScanKeyInit(&key[0],
1290 Anum_pg_depend_classid,
1291 BTEqualStrategyNumber, F_OIDEQ,
1293 ScanKeyInit(&key[1],
1294 Anum_pg_depend_objid,
1295 BTEqualStrategyNumber, F_OIDEQ,
1297 if (object->objectSubId != 0)
1298 {
1299 ScanKeyInit(&key[2],
1300 Anum_pg_depend_objsubid,
1301 BTEqualStrategyNumber, F_INT4EQ,
1303 nkeys = 3;
1304 }
1305 else
1306 nkeys = 2;
1307
1308 scan = systable_beginscan(*depRel, DependDependerIndexId, true,
1309 NULL, nkeys, key);
1310
1311 while (HeapTupleIsValid(tup = systable_getnext(scan)))
1312 {
1313 CatalogTupleDelete(*depRel, &tup->t_self);
1314 }
1315
1316 systable_endscan(scan);
1317
1318 /*
1319 * Delete shared dependency references related to this object. Again, if
1320 * subId = 0, remove records for sub-objects too.
1321 */
1324
1325
1326 /*
1327 * Delete any comments, security labels, or initial privileges associated
1328 * with this object. (This is a convenient place to do these things,
1329 * rather than having every object type know to do it.) As above, all
1330 * these functions must remove records for sub-objects too if the subid is
1331 * zero.
1332 */
1334 DeleteSecurityLabel(object);
1335 DeleteInitPrivs(object);
1336
1337 /*
1338 * CommandCounterIncrement here to ensure that preceding changes are all
1339 * visible to the next deletion step.
1340 */
1342
1343 /*
1344 * And we're done!
1345 */
1346}
1347
1348/*
1349 * doDeletion: actually delete a single object
1350 */
1351static void
1352doDeletion(const ObjectAddress *object, int flags)
1353{
1354 switch (object->classId)
1355 {
1356 case RelationRelationId:
1357 {
1358 char relKind = get_rel_relkind(object->objectId);
1359
1360 if (relKind == RELKIND_INDEX ||
1361 relKind == RELKIND_PARTITIONED_INDEX)
1362 {
1363 bool concurrent = ((flags & PERFORM_DELETION_CONCURRENTLY) != 0);
1364 bool concurrent_lock_mode = ((flags & PERFORM_DELETION_CONCURRENT_LOCK) != 0);
1365
1366 Assert(object->objectSubId == 0);
1367 index_drop(object->objectId, concurrent, concurrent_lock_mode);
1368 }
1369 else
1370 {
1371 if (object->objectSubId != 0)
1374 else
1376 }
1377
1378 /*
1379 * for a sequence, in addition to dropping the heap, also
1380 * delete pg_sequence tuple
1381 */
1382 if (relKind == RELKIND_SEQUENCE)
1384 break;
1385 }
1386
1387 case ProcedureRelationId:
1389 break;
1390
1391 case TypeRelationId:
1393 break;
1394
1395 case ConstraintRelationId:
1397 break;
1398
1399 case AttrDefaultRelationId:
1401 break;
1402
1403 case LargeObjectRelationId:
1405 break;
1406
1407 case OperatorRelationId:
1409 break;
1410
1411 case RewriteRelationId:
1413 break;
1414
1415 case TriggerRelationId:
1417 break;
1418
1419 case StatisticExtRelationId:
1421 break;
1422
1423 case TSConfigRelationId:
1425 break;
1426
1427 case ExtensionRelationId:
1429 break;
1430
1431 case PolicyRelationId:
1433 break;
1434
1435 case PublicationNamespaceRelationId:
1437 break;
1438
1439 case PublicationRelRelationId:
1441 break;
1442
1443 case PublicationRelationId:
1445 break;
1446
1447 case CastRelationId:
1448 case CollationRelationId:
1449 case ConversionRelationId:
1450 case LanguageRelationId:
1451 case OperatorClassRelationId:
1452 case OperatorFamilyRelationId:
1453 case AccessMethodRelationId:
1454 case AccessMethodOperatorRelationId:
1455 case AccessMethodProcedureRelationId:
1456 case NamespaceRelationId:
1457 case TSParserRelationId:
1458 case TSDictionaryRelationId:
1459 case TSTemplateRelationId:
1460 case ForeignDataWrapperRelationId:
1461 case ForeignServerRelationId:
1462 case UserMappingRelationId:
1463 case DefaultAclRelationId:
1464 case EventTriggerRelationId:
1465 case TransformRelationId:
1466 case AuthMemRelationId:
1467 DropObjectById(object);
1468 break;
1469
1470 /*
1471 * These global object types are not supported here.
1472 */
1473 case AuthIdRelationId:
1474 case DatabaseRelationId:
1475 case TableSpaceRelationId:
1476 case SubscriptionRelationId:
1477 case ParameterAclRelationId:
1478 elog(ERROR, "global objects cannot be deleted by doDeletion");
1479 break;
1480
1481 default:
1482 elog(ERROR, "unsupported object class: %u", object->classId);
1483 }
1484}
1485
1486/*
1487 * AcquireDeletionLock - acquire a suitable lock for deleting an object
1488 *
1489 * Accepts the same flags as performDeletion (though currently only
1490 * PERFORM_DELETION_CONCURRENTLY does anything).
1491 *
1492 * We use LockRelation for relations, and otherwise LockSharedObject or
1493 * LockDatabaseObject as appropriate for the object type.
1494 */
1495void
1497{
1498 if (object->classId == RelationRelationId)
1499 {
1500 /*
1501 * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1502 * the index for the moment. index_drop() will promote the lock once
1503 * it's safe to do so. In all other cases we need full exclusive
1504 * lock.
1505 */
1508 else
1510 }
1511 else if (object->classId == AuthMemRelationId)
1514 else
1515 {
1516 /* assume we should lock the whole object not a sub-object */
1519 }
1520}
1521
1522/*
1523 * ReleaseDeletionLock - release an object deletion lock
1524 *
1525 * Companion to AcquireDeletionLock.
1526 */
1527void
1529{
1530 if (object->classId == RelationRelationId)
1532 else
1533 /* assume we should lock the whole object not a sub-object */
1536}
1537
1538/*
1539 * recordDependencyOnExpr - find expression dependencies
1540 *
1541 * This is used to find the dependencies of rules, constraint expressions,
1542 * etc.
1543 *
1544 * Given an expression or query in node-tree form, find all the objects
1545 * it refers to (tables, columns, operators, functions, etc). Record
1546 * a dependency of the specified type from the given depender object
1547 * to each object mentioned in the expression.
1548 *
1549 * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1550 * It can be NIL if no such variables are expected.
1551 */
1552void
1554 Node *expr, List *rtable,
1555 DependencyType behavior)
1556{
1557 ObjectAddresses *addrs;
1558
1559 addrs = new_object_addresses();
1560
1561 /* Collect all dependencies from the expression */
1562 collectDependenciesOfExpr(addrs, expr, rtable);
1563
1564 /* Remove duplicates */
1566
1567 /* And record 'em */
1569 addrs->refs, addrs->numrefs,
1570 behavior);
1571
1572 free_object_addresses(addrs);
1573}
1574
1575/*
1576 * collectDependenciesOfExpr - collect expression dependencies
1577 *
1578 * This function analyzes an expression or query in node-tree form to
1579 * find all the objects it refers to (tables, columns, operators,
1580 * functions, etc.) and adds them to the provided ObjectAddresses
1581 * structure. Unlike recordDependencyOnExpr, this function does not
1582 * immediately record the dependencies, allowing the caller to add to,
1583 * filter, or modify the collected dependencies before recording them.
1584 *
1585 * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1586 * It can be NIL if no such variables are expected.
1587 *
1588 * Note: the returned list may well contain duplicates. The caller should
1589 * de-duplicate before recording the dependencies. Within this file, callers
1590 * must call eliminate_duplicate_dependencies(). External callers typically
1591 * go through record_object_address_dependencies() which will see to that.
1592 * This choice allows collecting dependencies from multiple sources without
1593 * redundant de-duplication work.
1594 */
1595void
1597 Node *expr, List *rtable)
1598{
1600
1601 context.addrs = addrs;
1602
1603 /* Set up interpretation for Vars at varlevelsup = 0 */
1604 context.rtables = list_make1(rtable);
1605
1606 /* Scan the expression tree for referenceable objects */
1607 find_expr_references_walker(expr, &context);
1608}
1609
1610/*
1611 * recordDependencyOnSingleRelExpr - find expression dependencies
1612 *
1613 * As above, but only one relation is expected to be referenced (with
1614 * varno = 1 and varlevelsup = 0). Pass the relation OID instead of a
1615 * range table. An additional frammish is that dependencies on that
1616 * relation's component columns will be marked with 'self_behavior',
1617 * whereas 'behavior' is used for everything else; also, if 'reverse_self'
1618 * is true, those dependencies are reversed so that the columns are made
1619 * to depend on the table not vice versa.
1620 *
1621 * NOTE: the caller should ensure that a whole-table dependency on the
1622 * specified relation is created separately, if one is needed. In particular,
1623 * a whole-row Var "relation.*" will not cause this routine to emit any
1624 * dependency item. This is appropriate behavior for subexpressions of an
1625 * ordinary query, so other cases need to cope as necessary.
1626 */
1627void
1629 Node *expr, Oid relId,
1630 DependencyType behavior,
1631 DependencyType self_behavior,
1632 bool reverse_self)
1633{
1635 RangeTblEntry rte = {0};
1636
1637 context.addrs = new_object_addresses();
1638
1639 /* We gin up a rather bogus rangetable list to handle Vars */
1640 rte.type = T_RangeTblEntry;
1641 rte.rtekind = RTE_RELATION;
1642 rte.relid = relId;
1643 rte.relkind = RELKIND_RELATION; /* no need for exactness here */
1644 rte.rellockmode = AccessShareLock;
1645
1646 context.rtables = list_make1(list_make1(&rte));
1647
1648 /* Scan the expression tree for referenceable objects */
1649 find_expr_references_walker(expr, &context);
1650
1651 /* Remove any duplicates */
1653
1654 /* Separate self-dependencies if necessary */
1655 if ((behavior != self_behavior || reverse_self) &&
1656 context.addrs->numrefs > 0)
1657 {
1658 ObjectAddresses *self_addrs;
1659 ObjectAddress *outobj;
1660 int oldref,
1661 outrefs;
1662
1663 self_addrs = new_object_addresses();
1664
1665 outobj = context.addrs->refs;
1666 outrefs = 0;
1667 for (oldref = 0; oldref < context.addrs->numrefs; oldref++)
1668 {
1669 ObjectAddress *thisobj = context.addrs->refs + oldref;
1670
1671 if (thisobj->classId == RelationRelationId &&
1672 thisobj->objectId == relId)
1673 {
1674 /* Move this ref into self_addrs */
1675 add_exact_object_address(thisobj, self_addrs);
1676 }
1677 else
1678 {
1679 /* Keep it in context.addrs */
1680 *outobj = *thisobj;
1681 outobj++;
1682 outrefs++;
1683 }
1684 }
1685 context.addrs->numrefs = outrefs;
1686
1687 /* Record the self-dependencies with the appropriate direction */
1688 if (!reverse_self)
1690 self_addrs->refs, self_addrs->numrefs,
1691 self_behavior);
1692 else
1693 {
1694 /* Can't use recordMultipleDependencies, so do it the hard way */
1695 int selfref;
1696
1697 for (selfref = 0; selfref < self_addrs->numrefs; selfref++)
1698 {
1699 ObjectAddress *thisobj = self_addrs->refs + selfref;
1700
1701 recordDependencyOn(thisobj, depender, self_behavior);
1702 }
1703 }
1704
1705 free_object_addresses(self_addrs);
1706 }
1707
1708 /* Record the external dependencies */
1710 context.addrs->refs, context.addrs->numrefs,
1711 behavior);
1712
1714}
1715
1716/*
1717 * Recursively search an expression tree for object references.
1718 *
1719 * Note: in many cases we do not need to create dependencies on the datatypes
1720 * involved in an expression, because we'll have an indirect dependency via
1721 * some other object. For instance Var nodes depend on a column which depends
1722 * on the datatype, and OpExpr nodes depend on the operator which depends on
1723 * the datatype. However we do need a type dependency if there is no such
1724 * indirect dependency, as for example in Const and CoerceToDomain nodes.
1725 *
1726 * Similarly, we don't need to create dependencies on collations except where
1727 * the collation is being freshly introduced to the expression.
1728 */
1729static bool
1732{
1733 if (node == NULL)
1734 return false;
1735 if (IsA(node, Var))
1736 {
1737 Var *var = (Var *) node;
1738 List *rtable;
1739 RangeTblEntry *rte;
1740
1741 /* Find matching rtable entry, or complain if not found */
1742 if (var->varlevelsup >= list_length(context->rtables))
1743 elog(ERROR, "invalid varlevelsup %d", var->varlevelsup);
1744 rtable = (List *) list_nth(context->rtables, var->varlevelsup);
1745 if (var->varno <= 0 || var->varno > list_length(rtable))
1746 elog(ERROR, "invalid varno %d", var->varno);
1747 rte = rt_fetch(var->varno, rtable);
1748
1749 /*
1750 * A whole-row Var references no specific columns, so adds no new
1751 * dependency. (We assume that there is a whole-table dependency
1752 * arising from each underlying rangetable entry. While we could
1753 * record such a dependency when finding a whole-row Var that
1754 * references a relation directly, it's quite unclear how to extend
1755 * that to whole-row Vars for JOINs, so it seems better to leave the
1756 * responsibility with the range table. Note that this poses some
1757 * risks for identifying dependencies of stand-alone expressions:
1758 * whole-table references may need to be created separately.)
1759 */
1760 if (var->varattno == InvalidAttrNumber)
1761 return false;
1762 if (rte->rtekind == RTE_RELATION)
1763 {
1764 /* If it's a plain relation, reference this column */
1765 add_object_address(RelationRelationId, rte->relid, var->varattno,
1766 context->addrs);
1767 }
1768 else if (rte->rtekind == RTE_FUNCTION)
1769 {
1770 /* Might need to add a dependency on a composite type's column */
1771 /* (done out of line, because it's a bit bulky) */
1772 process_function_rte_ref(rte, var->varattno, context);
1773 }
1774
1775 /*
1776 * Vars referencing other RTE types require no additional work. In
1777 * particular, a join alias Var can be ignored, because it must
1778 * reference a merged USING column. The relevant join input columns
1779 * will also be referenced in the join qual, and any type coercion
1780 * functions involved in the alias expression will be dealt with when
1781 * we scan the RTE itself.
1782 */
1783 return false;
1784 }
1785 else if (IsA(node, Const))
1786 {
1787 Const *con = (Const *) node;
1788 Oid objoid;
1789
1790 /* A constant must depend on the constant's datatype */
1791 add_object_address(TypeRelationId, con->consttype, 0,
1792 context->addrs);
1793
1794 /*
1795 * We must also depend on the constant's collation: it could be
1796 * different from the datatype's, if a CollateExpr was const-folded to
1797 * a simple constant. However we can save work in the most common
1798 * case where the collation is "default", since we know that's pinned.
1799 */
1800 if (OidIsValid(con->constcollid) &&
1801 con->constcollid != DEFAULT_COLLATION_OID)
1802 add_object_address(CollationRelationId, con->constcollid, 0,
1803 context->addrs);
1804
1805 /*
1806 * If it's a regclass or similar literal referring to an existing
1807 * object, add a reference to that object. (Currently, only the
1808 * regclass and regconfig cases have any likely use, but we may as
1809 * well handle all the OID-alias datatypes consistently.)
1810 */
1811 if (!con->constisnull)
1812 {
1813 switch (con->consttype)
1814 {
1815 case REGPROCOID:
1816 case REGPROCEDUREOID:
1817 objoid = DatumGetObjectId(con->constvalue);
1818 if (SearchSysCacheExists1(PROCOID,
1819 ObjectIdGetDatum(objoid)))
1820 add_object_address(ProcedureRelationId, objoid, 0,
1821 context->addrs);
1822 break;
1823 case REGOPEROID:
1824 case REGOPERATOROID:
1825 objoid = DatumGetObjectId(con->constvalue);
1826 if (SearchSysCacheExists1(OPEROID,
1827 ObjectIdGetDatum(objoid)))
1828 add_object_address(OperatorRelationId, objoid, 0,
1829 context->addrs);
1830 break;
1831 case REGCLASSOID:
1832 objoid = DatumGetObjectId(con->constvalue);
1833 if (SearchSysCacheExists1(RELOID,
1834 ObjectIdGetDatum(objoid)))
1835 add_object_address(RelationRelationId, objoid, 0,
1836 context->addrs);
1837 break;
1838 case REGTYPEOID:
1839 objoid = DatumGetObjectId(con->constvalue);
1840 if (SearchSysCacheExists1(TYPEOID,
1841 ObjectIdGetDatum(objoid)))
1842 add_object_address(TypeRelationId, objoid, 0,
1843 context->addrs);
1844 break;
1845 case REGCOLLATIONOID:
1846 objoid = DatumGetObjectId(con->constvalue);
1847 if (SearchSysCacheExists1(COLLOID,
1848 ObjectIdGetDatum(objoid)))
1849 add_object_address(CollationRelationId, objoid, 0,
1850 context->addrs);
1851 break;
1852 case REGCONFIGOID:
1853 objoid = DatumGetObjectId(con->constvalue);
1854 if (SearchSysCacheExists1(TSCONFIGOID,
1855 ObjectIdGetDatum(objoid)))
1856 add_object_address(TSConfigRelationId, objoid, 0,
1857 context->addrs);
1858 break;
1859 case REGDICTIONARYOID:
1860 objoid = DatumGetObjectId(con->constvalue);
1861 if (SearchSysCacheExists1(TSDICTOID,
1862 ObjectIdGetDatum(objoid)))
1863 add_object_address(TSDictionaryRelationId, objoid, 0,
1864 context->addrs);
1865 break;
1866
1867 case REGNAMESPACEOID:
1868 objoid = DatumGetObjectId(con->constvalue);
1869 if (SearchSysCacheExists1(NAMESPACEOID,
1870 ObjectIdGetDatum(objoid)))
1871 add_object_address(NamespaceRelationId, objoid, 0,
1872 context->addrs);
1873 break;
1874
1875 /*
1876 * Dependencies for regrole should be shared among all
1877 * databases, so explicitly inhibit to have dependencies.
1878 */
1879 case REGROLEOID:
1880 ereport(ERROR,
1881 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1882 errmsg("constant of the type %s cannot be used here",
1883 "regrole")));
1884 break;
1885
1886 /*
1887 * Dependencies for regdatabase should be shared among all
1888 * databases, so explicitly inhibit to have dependencies.
1889 */
1890 case REGDATABASEOID:
1891 ereport(ERROR,
1892 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1893 errmsg("constant of the type %s cannot be used here",
1894 "regdatabase")));
1895 break;
1896 }
1897 }
1898 return false;
1899 }
1900 else if (IsA(node, Param))
1901 {
1902 Param *param = (Param *) node;
1903
1904 /* A parameter must depend on the parameter's datatype */
1905 add_object_address(TypeRelationId, param->paramtype, 0,
1906 context->addrs);
1907 /* and its collation, just as for Consts */
1908 if (OidIsValid(param->paramcollid) &&
1909 param->paramcollid != DEFAULT_COLLATION_OID)
1910 add_object_address(CollationRelationId, param->paramcollid, 0,
1911 context->addrs);
1912 }
1913 else if (IsA(node, FuncExpr))
1914 {
1915 FuncExpr *funcexpr = (FuncExpr *) node;
1916
1917 add_object_address(ProcedureRelationId, funcexpr->funcid, 0,
1918 context->addrs);
1919 /* fall through to examine arguments */
1920 }
1921 else if (IsA(node, OpExpr))
1922 {
1923 OpExpr *opexpr = (OpExpr *) node;
1924
1925 add_object_address(OperatorRelationId, opexpr->opno, 0,
1926 context->addrs);
1927 /* fall through to examine arguments */
1928 }
1929 else if (IsA(node, DistinctExpr))
1930 {
1931 DistinctExpr *distinctexpr = (DistinctExpr *) node;
1932
1933 add_object_address(OperatorRelationId, distinctexpr->opno, 0,
1934 context->addrs);
1935 /* fall through to examine arguments */
1936 }
1937 else if (IsA(node, NullIfExpr))
1938 {
1939 NullIfExpr *nullifexpr = (NullIfExpr *) node;
1940
1941 add_object_address(OperatorRelationId, nullifexpr->opno, 0,
1942 context->addrs);
1943 /* fall through to examine arguments */
1944 }
1945 else if (IsA(node, ScalarArrayOpExpr))
1946 {
1947 ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1948
1949 add_object_address(OperatorRelationId, opexpr->opno, 0,
1950 context->addrs);
1951 /* fall through to examine arguments */
1952 }
1953 else if (IsA(node, Aggref))
1954 {
1955 Aggref *aggref = (Aggref *) node;
1956
1957 add_object_address(ProcedureRelationId, aggref->aggfnoid, 0,
1958 context->addrs);
1959 /* fall through to examine arguments */
1960 }
1961 else if (IsA(node, WindowFunc))
1962 {
1963 WindowFunc *wfunc = (WindowFunc *) node;
1964
1965 add_object_address(ProcedureRelationId, wfunc->winfnoid, 0,
1966 context->addrs);
1967 /* fall through to examine arguments */
1968 }
1969 else if (IsA(node, SubscriptingRef))
1970 {
1971 SubscriptingRef *sbsref = (SubscriptingRef *) node;
1972
1973 /*
1974 * The refexpr should provide adequate dependency on refcontainertype,
1975 * and that type in turn depends on refelemtype. However, a custom
1976 * subscripting handler might set refrestype to something different
1977 * from either of those, in which case we'd better record it.
1978 */
1979 if (sbsref->refrestype != sbsref->refcontainertype &&
1980 sbsref->refrestype != sbsref->refelemtype)
1981 add_object_address(TypeRelationId, sbsref->refrestype, 0,
1982 context->addrs);
1983 /* fall through to examine arguments */
1984 }
1985 else if (IsA(node, SubPlan))
1986 {
1987 /* Extra work needed here if we ever need this case */
1988 elog(ERROR, "already-planned subqueries not supported");
1989 }
1990 else if (IsA(node, FieldSelect))
1991 {
1992 FieldSelect *fselect = (FieldSelect *) node;
1993 Oid argtype = getBaseType(exprType((Node *) fselect->arg));
1994 Oid reltype = get_typ_typrelid(argtype);
1995
1996 /*
1997 * We need a dependency on the specific column named in FieldSelect,
1998 * assuming we can identify the pg_class OID for it. (Probably we
1999 * always can at the moment, but in future it might be possible for
2000 * argtype to be RECORDOID.) If we can make a column dependency then
2001 * we shouldn't need a dependency on the column's type; but if we
2002 * can't, make a dependency on the type, as it might not appear
2003 * anywhere else in the expression.
2004 */
2005 if (OidIsValid(reltype))
2006 add_object_address(RelationRelationId, reltype, fselect->fieldnum,
2007 context->addrs);
2008 else
2009 add_object_address(TypeRelationId, fselect->resulttype, 0,
2010 context->addrs);
2011 /* the collation might not be referenced anywhere else, either */
2012 if (OidIsValid(fselect->resultcollid) &&
2013 fselect->resultcollid != DEFAULT_COLLATION_OID)
2014 add_object_address(CollationRelationId, fselect->resultcollid, 0,
2015 context->addrs);
2016 }
2017 else if (IsA(node, FieldStore))
2018 {
2019 FieldStore *fstore = (FieldStore *) node;
2020 Oid reltype = get_typ_typrelid(fstore->resulttype);
2021
2022 /* similar considerations to FieldSelect, but multiple column(s) */
2023 if (OidIsValid(reltype))
2024 {
2025 ListCell *l;
2026
2027 foreach(l, fstore->fieldnums)
2028 add_object_address(RelationRelationId, reltype, lfirst_int(l),
2029 context->addrs);
2030 }
2031 else
2032 add_object_address(TypeRelationId, fstore->resulttype, 0,
2033 context->addrs);
2034 }
2035 else if (IsA(node, RelabelType))
2036 {
2037 RelabelType *relab = (RelabelType *) node;
2038
2039 /* since there is no function dependency, need to depend on type */
2040 add_object_address(TypeRelationId, relab->resulttype, 0,
2041 context->addrs);
2042 /* the collation might not be referenced anywhere else, either */
2043 if (OidIsValid(relab->resultcollid) &&
2044 relab->resultcollid != DEFAULT_COLLATION_OID)
2045 add_object_address(CollationRelationId, relab->resultcollid, 0,
2046 context->addrs);
2047 }
2048 else if (IsA(node, CoerceViaIO))
2049 {
2050 CoerceViaIO *iocoerce = (CoerceViaIO *) node;
2051
2052 /* since there is no exposed function, need to depend on type */
2053 add_object_address(TypeRelationId, iocoerce->resulttype, 0,
2054 context->addrs);
2055 /* the collation might not be referenced anywhere else, either */
2056 if (OidIsValid(iocoerce->resultcollid) &&
2057 iocoerce->resultcollid != DEFAULT_COLLATION_OID)
2058 add_object_address(CollationRelationId, iocoerce->resultcollid, 0,
2059 context->addrs);
2060 }
2061 else if (IsA(node, ArrayCoerceExpr))
2062 {
2063 ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
2064
2065 /* as above, depend on type */
2066 add_object_address(TypeRelationId, acoerce->resulttype, 0,
2067 context->addrs);
2068 /* the collation might not be referenced anywhere else, either */
2069 if (OidIsValid(acoerce->resultcollid) &&
2070 acoerce->resultcollid != DEFAULT_COLLATION_OID)
2071 add_object_address(CollationRelationId, acoerce->resultcollid, 0,
2072 context->addrs);
2073 /* fall through to examine arguments */
2074 }
2075 else if (IsA(node, ConvertRowtypeExpr))
2076 {
2077 ConvertRowtypeExpr *cvt = (ConvertRowtypeExpr *) node;
2078
2079 /* since there is no function dependency, need to depend on type */
2080 add_object_address(TypeRelationId, cvt->resulttype, 0,
2081 context->addrs);
2082 }
2083 else if (IsA(node, CollateExpr))
2084 {
2085 CollateExpr *coll = (CollateExpr *) node;
2086
2087 add_object_address(CollationRelationId, coll->collOid, 0,
2088 context->addrs);
2089 }
2090 else if (IsA(node, RowExpr))
2091 {
2092 RowExpr *rowexpr = (RowExpr *) node;
2093
2094 add_object_address(TypeRelationId, rowexpr->row_typeid, 0,
2095 context->addrs);
2096 }
2097 else if (IsA(node, RowCompareExpr))
2098 {
2099 RowCompareExpr *rcexpr = (RowCompareExpr *) node;
2100 ListCell *l;
2101
2102 foreach(l, rcexpr->opnos)
2103 {
2104 add_object_address(OperatorRelationId, lfirst_oid(l), 0,
2105 context->addrs);
2106 }
2107 foreach(l, rcexpr->opfamilies)
2108 {
2109 add_object_address(OperatorFamilyRelationId, lfirst_oid(l), 0,
2110 context->addrs);
2111 }
2112 /* fall through to examine arguments */
2113 }
2114 else if (IsA(node, CoerceToDomain))
2115 {
2116 CoerceToDomain *cd = (CoerceToDomain *) node;
2117
2118 add_object_address(TypeRelationId, cd->resulttype, 0,
2119 context->addrs);
2120 }
2121 else if (IsA(node, NextValueExpr))
2122 {
2123 NextValueExpr *nve = (NextValueExpr *) node;
2124
2125 add_object_address(RelationRelationId, nve->seqid, 0,
2126 context->addrs);
2127 }
2128 else if (IsA(node, OnConflictExpr))
2129 {
2130 OnConflictExpr *onconflict = (OnConflictExpr *) node;
2131
2132 if (OidIsValid(onconflict->constraint))
2133 add_object_address(ConstraintRelationId, onconflict->constraint, 0,
2134 context->addrs);
2135 /* fall through to examine arguments */
2136 }
2137 else if (IsA(node, SortGroupClause))
2138 {
2139 SortGroupClause *sgc = (SortGroupClause *) node;
2140
2141 add_object_address(OperatorRelationId, sgc->eqop, 0,
2142 context->addrs);
2143 if (OidIsValid(sgc->sortop))
2144 add_object_address(OperatorRelationId, sgc->sortop, 0,
2145 context->addrs);
2146 return false;
2147 }
2148 else if (IsA(node, WindowClause))
2149 {
2150 WindowClause *wc = (WindowClause *) node;
2151
2152 if (OidIsValid(wc->startInRangeFunc))
2153 add_object_address(ProcedureRelationId, wc->startInRangeFunc, 0,
2154 context->addrs);
2155 if (OidIsValid(wc->endInRangeFunc))
2156 add_object_address(ProcedureRelationId, wc->endInRangeFunc, 0,
2157 context->addrs);
2158 if (OidIsValid(wc->inRangeColl) &&
2159 wc->inRangeColl != DEFAULT_COLLATION_OID)
2160 add_object_address(CollationRelationId, wc->inRangeColl, 0,
2161 context->addrs);
2162 /* fall through to examine substructure */
2163 }
2164 else if (IsA(node, CTECycleClause))
2165 {
2166 CTECycleClause *cc = (CTECycleClause *) node;
2167
2168 if (OidIsValid(cc->cycle_mark_type))
2169 add_object_address(TypeRelationId, cc->cycle_mark_type, 0,
2170 context->addrs);
2172 add_object_address(CollationRelationId, cc->cycle_mark_collation, 0,
2173 context->addrs);
2174 if (OidIsValid(cc->cycle_mark_neop))
2175 add_object_address(OperatorRelationId, cc->cycle_mark_neop, 0,
2176 context->addrs);
2177 /* fall through to examine substructure */
2178 }
2179 else if (IsA(node, Query))
2180 {
2181 /* Recurse into RTE subquery or not-yet-planned sublink subquery */
2182 Query *query = (Query *) node;
2183 ListCell *lc;
2184 bool result;
2185
2186 /*
2187 * Add whole-relation refs for each plain relation mentioned in the
2188 * subquery's rtable, and ensure we add refs for any type-coercion
2189 * functions used in join alias lists.
2190 *
2191 * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
2192 * RTEs, subqueries, etc, so no need to do that here. But we must
2193 * tell it not to visit join alias lists, or we'll add refs for join
2194 * input columns whether or not they are actually used in our query.
2195 *
2196 * Note: we don't need to worry about collations mentioned in
2197 * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
2198 * collations referenced in other parts of the Query. We do have to
2199 * worry about collations mentioned in RTE_FUNCTION, but we take care
2200 * of those when we recurse to the RangeTblFunction node(s).
2201 */
2202 foreach(lc, query->rtable)
2203 {
2204 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
2205
2206 switch (rte->rtekind)
2207 {
2208 case RTE_RELATION:
2209 add_object_address(RelationRelationId, rte->relid, 0,
2210 context->addrs);
2211 break;
2212 case RTE_JOIN:
2213
2214 /*
2215 * Examine joinaliasvars entries only for merged JOIN
2216 * USING columns. Only those entries could contain
2217 * type-coercion functions. Also, their join input
2218 * columns must be referenced in the join quals, so this
2219 * won't accidentally add refs to otherwise-unused join
2220 * input columns. (We want to ref the type coercion
2221 * functions even if the merged column isn't explicitly
2222 * used anywhere, to protect possible expansion of the
2223 * join RTE as a whole-row var, and because it seems like
2224 * a bad idea to allow dropping a function that's present
2225 * in our query tree, whether or not it could get called.)
2226 */
2227 context->rtables = lcons(query->rtable, context->rtables);
2228 for (int i = 0; i < rte->joinmergedcols; i++)
2229 {
2230 Node *aliasvar = list_nth(rte->joinaliasvars, i);
2231
2232 if (!IsA(aliasvar, Var))
2233 find_expr_references_walker(aliasvar, context);
2234 }
2235 context->rtables = list_delete_first(context->rtables);
2236 break;
2238
2239 /*
2240 * Cataloged objects cannot depend on tuplestores, because
2241 * those have no cataloged representation. For now we can
2242 * call the tuplestore a "transition table" because that's
2243 * the only kind exposed to SQL, but someday we might have
2244 * to work harder.
2245 */
2246 ereport(ERROR,
2247 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2248 errmsg("transition table \"%s\" cannot be referenced in a persistent object",
2249 rte->eref->aliasname)));
2250 break;
2251 default:
2252 /* Other RTE types can be ignored here */
2253 break;
2254 }
2255 }
2256
2257 /*
2258 * If the query is an INSERT or UPDATE, we should create a dependency
2259 * on each target column, to prevent the specific target column from
2260 * being dropped. Although we will visit the TargetEntry nodes again
2261 * during query_tree_walker, we won't have enough context to do this
2262 * conveniently, so do it here.
2263 */
2264 if (query->commandType == CMD_INSERT ||
2265 query->commandType == CMD_UPDATE)
2266 {
2267 RangeTblEntry *rte;
2268
2269 if (query->resultRelation <= 0 ||
2270 query->resultRelation > list_length(query->rtable))
2271 elog(ERROR, "invalid resultRelation %d",
2272 query->resultRelation);
2273 rte = rt_fetch(query->resultRelation, query->rtable);
2274 if (rte->rtekind == RTE_RELATION)
2275 {
2276 foreach(lc, query->targetList)
2277 {
2278 TargetEntry *tle = (TargetEntry *) lfirst(lc);
2279
2280 if (tle->resjunk)
2281 continue; /* ignore junk tlist items */
2282 add_object_address(RelationRelationId, rte->relid, tle->resno,
2283 context->addrs);
2284 }
2285 }
2286 }
2287
2288 /*
2289 * Add dependencies on constraints listed in query's constraintDeps
2290 */
2291 foreach(lc, query->constraintDeps)
2292 {
2293 add_object_address(ConstraintRelationId, lfirst_oid(lc), 0,
2294 context->addrs);
2295 }
2296
2297 /* Examine substructure of query */
2298 context->rtables = lcons(query->rtable, context->rtables);
2299 result = query_tree_walker(query,
2301 context,
2304 context->rtables = list_delete_first(context->rtables);
2305 return result;
2306 }
2307 else if (IsA(node, SetOperationStmt))
2308 {
2309 SetOperationStmt *setop = (SetOperationStmt *) node;
2310
2311 /* we need to look at the groupClauses for operator references */
2312 find_expr_references_walker((Node *) setop->groupClauses, context);
2313 /* fall through to examine child nodes */
2314 }
2315 else if (IsA(node, RangeTblFunction))
2316 {
2317 RangeTblFunction *rtfunc = (RangeTblFunction *) node;
2318 ListCell *ct;
2319
2320 /*
2321 * Add refs for any datatypes and collations used in a column
2322 * definition list for a RECORD function. (For other cases, it should
2323 * be enough to depend on the function itself.)
2324 */
2325 foreach(ct, rtfunc->funccoltypes)
2326 {
2327 add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2328 context->addrs);
2329 }
2330 foreach(ct, rtfunc->funccolcollations)
2331 {
2332 Oid collid = lfirst_oid(ct);
2333
2334 if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2335 add_object_address(CollationRelationId, collid, 0,
2336 context->addrs);
2337 }
2338 }
2339 else if (IsA(node, TableFunc))
2340 {
2341 TableFunc *tf = (TableFunc *) node;
2342 ListCell *ct;
2343
2344 /*
2345 * Add refs for the datatypes and collations used in the TableFunc.
2346 */
2347 foreach(ct, tf->coltypes)
2348 {
2349 add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2350 context->addrs);
2351 }
2352 foreach(ct, tf->colcollations)
2353 {
2354 Oid collid = lfirst_oid(ct);
2355
2356 if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2357 add_object_address(CollationRelationId, collid, 0,
2358 context->addrs);
2359 }
2360 }
2361 else if (IsA(node, TableSampleClause))
2362 {
2363 TableSampleClause *tsc = (TableSampleClause *) node;
2364
2365 add_object_address(ProcedureRelationId, tsc->tsmhandler, 0,
2366 context->addrs);
2367 /* fall through to examine arguments */
2368 }
2369
2371 context);
2372}
2373
2374/*
2375 * find_expr_references_walker subroutine: handle a Var reference
2376 * to an RTE_FUNCTION RTE
2377 */
2378static void
2381{
2382 int atts_done = 0;
2383 ListCell *lc;
2384
2385 /*
2386 * Identify which RangeTblFunction produces this attnum, and see if it
2387 * returns a composite type. If so, we'd better make a dependency on the
2388 * referenced column of the composite type (or actually, of its associated
2389 * relation).
2390 */
2391 foreach(lc, rte->functions)
2392 {
2393 RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
2394
2395 if (attnum > atts_done &&
2396 attnum <= atts_done + rtfunc->funccolcount)
2397 {
2398 TupleDesc tupdesc;
2399
2400 /* If it has a coldeflist, it certainly returns RECORD */
2401 if (rtfunc->funccolnames != NIL)
2402 tupdesc = NULL; /* no need to work hard */
2403 else
2404 tupdesc = get_expr_result_tupdesc(rtfunc->funcexpr, true);
2405 if (tupdesc && tupdesc->tdtypeid != RECORDOID)
2406 {
2407 /*
2408 * Named composite type, so individual columns could get
2409 * dropped. Make a dependency on this specific column.
2410 */
2411 Oid reltype = get_typ_typrelid(tupdesc->tdtypeid);
2412
2413 Assert(attnum - atts_done <= tupdesc->natts);
2414 if (OidIsValid(reltype)) /* can this fail? */
2415 add_object_address(RelationRelationId, reltype,
2416 attnum - atts_done,
2417 context->addrs);
2418 return;
2419 }
2420 /* Nothing to do; function's result type is handled elsewhere */
2421 return;
2422 }
2423 atts_done += rtfunc->funccolcount;
2424 }
2425
2426 /* If we get here, must be looking for the ordinality column */
2427 if (rte->funcordinality && attnum == atts_done + 1)
2428 return;
2429
2430 /* this probably can't happen ... */
2431 ereport(ERROR,
2432 (errcode(ERRCODE_UNDEFINED_COLUMN),
2433 errmsg("column %d of relation \"%s\" does not exist",
2434 attnum, rte->eref->aliasname)));
2435}
2436
2437/*
2438 * find_temp_object - search an array of dependency references for temp objects
2439 *
2440 * Scan an ObjectAddresses array for references to temporary objects (objects
2441 * in temporary namespaces), ignoring those in our own temp namespace if
2442 * local_temp_okay is true. If one is found, return true after storing its
2443 * address in *foundobj.
2444 *
2445 * Current callers only use this to deliver helpful notices, so reporting
2446 * one such object seems sufficient. We return the first one, which should
2447 * be a stable result for a given query since it depends only on the order
2448 * in which this module searches query trees. (However, it's important to
2449 * call this before de-duplicating the objects, else OID order would affect
2450 * the result.)
2451 */
2452bool
2453find_temp_object(const ObjectAddresses *addrs, bool local_temp_okay,
2454 ObjectAddress *foundobj)
2455{
2456 for (int i = 0; i < addrs->numrefs; i++)
2457 {
2458 const ObjectAddress *thisobj = addrs->refs + i;
2459 Oid objnamespace;
2460
2461 /*
2462 * Use get_object_namespace() to see if this object belongs to a
2463 * schema. If not, we can skip it.
2464 */
2465 objnamespace = get_object_namespace(thisobj);
2466
2467 /*
2468 * If the object is in a temporary namespace, complain, except if
2469 * local_temp_okay and it's our own temp namespace.
2470 */
2471 if (OidIsValid(objnamespace) && isAnyTempNamespace(objnamespace) &&
2472 !(local_temp_okay && isTempNamespace(objnamespace)))
2473 {
2474 *foundobj = *thisobj;
2475 return true;
2476 }
2477 }
2478 return false;
2479}
2480
2481/*
2482 * query_uses_temp_object - convenience wrapper for find_temp_object
2483 *
2484 * If the Query includes any use of a temporary object, fill *temp_object
2485 * with the address of one such object and return true.
2486 */
2487bool
2489{
2490 bool result;
2491 ObjectAddresses *addrs;
2492
2493 addrs = new_object_addresses();
2494
2495 /* Collect all dependencies from the Query */
2496 collectDependenciesOfExpr(addrs, (Node *) query, NIL);
2497
2498 /* Look for one that is temp */
2499 result = find_temp_object(addrs, false, temp_object);
2500
2501 free_object_addresses(addrs);
2502
2503 return result;
2504}
2505
2506/*
2507 * Given an array of dependency references, eliminate any duplicates.
2508 */
2509static void
2511{
2512 ObjectAddress *priorobj;
2513 int oldref,
2514 newrefs;
2515
2516 /*
2517 * We can't sort if the array has "extra" data, because there's no way to
2518 * keep it in sync. Fortunately that combination of features is not
2519 * needed.
2520 */
2521 Assert(!addrs->extras);
2522
2523 if (addrs->numrefs <= 1)
2524 return; /* nothing to do */
2525
2526 /* Sort the refs so that duplicates are adjacent */
2527 qsort(addrs->refs, addrs->numrefs, sizeof(ObjectAddress),
2529
2530 /* Remove dups */
2531 priorobj = addrs->refs;
2532 newrefs = 1;
2533 for (oldref = 1; oldref < addrs->numrefs; oldref++)
2534 {
2535 ObjectAddress *thisobj = addrs->refs + oldref;
2536
2537 if (priorobj->classId == thisobj->classId &&
2538 priorobj->objectId == thisobj->objectId)
2539 {
2540 if (priorobj->objectSubId == thisobj->objectSubId)
2541 continue; /* identical, so drop thisobj */
2542
2543 /*
2544 * If we have a whole-object reference and a reference to a part
2545 * of the same object, we don't need the whole-object reference
2546 * (for example, we don't need to reference both table foo and
2547 * column foo.bar). The whole-object reference will always appear
2548 * first in the sorted list.
2549 */
2550 if (priorobj->objectSubId == 0)
2551 {
2552 /* replace whole ref with partial */
2553 priorobj->objectSubId = thisobj->objectSubId;
2554 continue;
2555 }
2556 }
2557 /* Not identical, so add thisobj to output set */
2558 priorobj++;
2559 *priorobj = *thisobj;
2560 newrefs++;
2561 }
2562
2563 addrs->numrefs = newrefs;
2564}
2565
2566/*
2567 * qsort comparator for ObjectAddress items
2568 */
2569static int
2570object_address_comparator(const void *a, const void *b)
2571{
2572 const ObjectAddress *obja = (const ObjectAddress *) a;
2573 const ObjectAddress *objb = (const ObjectAddress *) b;
2574
2575 /*
2576 * Primary sort key is OID descending. Most of the time, this will result
2577 * in putting newer objects before older ones, which is likely to be the
2578 * right order to delete in.
2579 */
2580 if (obja->objectId > objb->objectId)
2581 return -1;
2582 if (obja->objectId < objb->objectId)
2583 return 1;
2584
2585 /*
2586 * Next sort on catalog ID, in case identical OIDs appear in different
2587 * catalogs. Sort direction is pretty arbitrary here.
2588 */
2589 if (obja->classId < objb->classId)
2590 return -1;
2591 if (obja->classId > objb->classId)
2592 return 1;
2593
2594 /*
2595 * Last, sort on object subId.
2596 *
2597 * We sort the subId as an unsigned int so that 0 (the whole object) will
2598 * come first. This is essential for eliminate_duplicate_dependencies,
2599 * and is also the best order for findDependentObjects.
2600 */
2601 if ((unsigned int) obja->objectSubId < (unsigned int) objb->objectSubId)
2602 return -1;
2603 if ((unsigned int) obja->objectSubId > (unsigned int) objb->objectSubId)
2604 return 1;
2605 return 0;
2606}
2607
2608/*
2609 * Routines for handling an expansible array of ObjectAddress items.
2610 *
2611 * new_object_addresses: create a new ObjectAddresses array.
2612 */
2615{
2616 ObjectAddresses *addrs;
2617
2619
2620 addrs->numrefs = 0;
2621 addrs->maxrefs = 32;
2622 addrs->refs = palloc_array(ObjectAddress, addrs->maxrefs);
2623 addrs->extras = NULL; /* until/unless needed */
2624
2625 return addrs;
2626}
2627
2628/*
2629 * Add an entry to an ObjectAddresses array.
2630 */
2631static void
2632add_object_address(Oid classId, Oid objectId, int32 subId,
2633 ObjectAddresses *addrs)
2634{
2635 ObjectAddress *item;
2636
2637 /* enlarge array if needed */
2638 if (addrs->numrefs >= addrs->maxrefs)
2639 {
2640 addrs->maxrefs *= 2;
2641 addrs->refs = (ObjectAddress *)
2642 repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2643 Assert(!addrs->extras);
2644 }
2645 /* record this item */
2646 item = addrs->refs + addrs->numrefs;
2647 item->classId = classId;
2648 item->objectId = objectId;
2649 item->objectSubId = subId;
2650 addrs->numrefs++;
2651}
2652
2653/*
2654 * Add an entry to an ObjectAddresses array.
2655 *
2656 * As above, but specify entry exactly.
2657 */
2658void
2660 ObjectAddresses *addrs)
2661{
2662 ObjectAddress *item;
2663
2664 /* enlarge array if needed */
2665 if (addrs->numrefs >= addrs->maxrefs)
2666 {
2667 addrs->maxrefs *= 2;
2668 addrs->refs = (ObjectAddress *)
2669 repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2670 Assert(!addrs->extras);
2671 }
2672 /* record this item */
2673 item = addrs->refs + addrs->numrefs;
2674 *item = *object;
2675 addrs->numrefs++;
2676}
2677
2678/*
2679 * Add an entry to an ObjectAddresses array.
2680 *
2681 * As above, but specify entry exactly and provide some "extra" data too.
2682 */
2683static void
2685 const ObjectAddressExtra *extra,
2686 ObjectAddresses *addrs)
2687{
2688 ObjectAddress *item;
2689 ObjectAddressExtra *itemextra;
2690
2691 /* allocate extra space if first time */
2692 if (!addrs->extras)
2693 addrs->extras = (ObjectAddressExtra *)
2694 palloc(addrs->maxrefs * sizeof(ObjectAddressExtra));
2695
2696 /* enlarge array if needed */
2697 if (addrs->numrefs >= addrs->maxrefs)
2698 {
2699 addrs->maxrefs *= 2;
2700 addrs->refs = (ObjectAddress *)
2701 repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2702 addrs->extras = (ObjectAddressExtra *)
2703 repalloc(addrs->extras, addrs->maxrefs * sizeof(ObjectAddressExtra));
2704 }
2705 /* record this item */
2706 item = addrs->refs + addrs->numrefs;
2707 *item = *object;
2708 itemextra = addrs->extras + addrs->numrefs;
2709 *itemextra = *extra;
2710 addrs->numrefs++;
2711}
2712
2713/*
2714 * Test whether an object is present in an ObjectAddresses array.
2715 *
2716 * We return "true" if object is a subobject of something in the array, too.
2717 */
2718bool
2720 const ObjectAddresses *addrs)
2721{
2722 int i;
2723
2724 for (i = addrs->numrefs - 1; i >= 0; i--)
2725 {
2726 const ObjectAddress *thisobj = addrs->refs + i;
2727
2728 if (object->classId == thisobj->classId &&
2729 object->objectId == thisobj->objectId)
2730 {
2731 if (object->objectSubId == thisobj->objectSubId ||
2732 thisobj->objectSubId == 0)
2733 return true;
2734 }
2735 }
2736
2737 return false;
2738}
2739
2740/*
2741 * As above, except that if the object is present then also OR the given
2742 * flags into its associated extra data (which must exist).
2743 */
2744static bool
2746 int flags,
2747 ObjectAddresses *addrs)
2748{
2749 bool result = false;
2750 int i;
2751
2752 for (i = addrs->numrefs - 1; i >= 0; i--)
2753 {
2754 ObjectAddress *thisobj = addrs->refs + i;
2755
2756 if (object->classId == thisobj->classId &&
2757 object->objectId == thisobj->objectId)
2758 {
2759 if (object->objectSubId == thisobj->objectSubId)
2760 {
2761 ObjectAddressExtra *thisextra = addrs->extras + i;
2762
2763 thisextra->flags |= flags;
2764 result = true;
2765 }
2766 else if (thisobj->objectSubId == 0)
2767 {
2768 /*
2769 * We get here if we find a need to delete a column after
2770 * having already decided to drop its whole table. Obviously
2771 * we no longer need to drop the subobject, so report that we
2772 * found the subobject in the array. But don't plaster its
2773 * flags on the whole object.
2774 */
2775 result = true;
2776 }
2777 else if (object->objectSubId == 0)
2778 {
2779 /*
2780 * We get here if we find a need to delete a whole table after
2781 * having already decided to drop one of its columns. We
2782 * can't report that the whole object is in the array, but we
2783 * should mark the subobject with the whole object's flags.
2784 *
2785 * It might seem attractive to physically delete the column's
2786 * array entry, or at least mark it as no longer needing
2787 * separate deletion. But that could lead to, e.g., dropping
2788 * the column's datatype before we drop the table, which does
2789 * not seem like a good idea. This is a very rare situation
2790 * in practice, so we just take the hit of doing a separate
2791 * DROP COLUMN action even though we know we're gonna delete
2792 * the table later.
2793 *
2794 * What we can do, though, is mark this as a subobject so that
2795 * we don't report it separately, which is confusing because
2796 * it's unpredictable whether it happens or not. But do so
2797 * only if flags != 0 (flags == 0 is a read-only probe).
2798 *
2799 * Because there could be other subobjects of this object in
2800 * the array, this case means we always have to loop through
2801 * the whole array; we cannot exit early on a match.
2802 */
2803 ObjectAddressExtra *thisextra = addrs->extras + i;
2804
2805 if (flags)
2806 thisextra->flags |= (flags | DEPFLAG_SUBOBJECT);
2807 }
2808 }
2809 }
2810
2811 return result;
2812}
2813
2814/*
2815 * Similar to above, except we search an ObjectAddressStack.
2816 */
2817static bool
2819 int flags,
2820 ObjectAddressStack *stack)
2821{
2822 bool result = false;
2823 ObjectAddressStack *stackptr;
2824
2825 for (stackptr = stack; stackptr; stackptr = stackptr->next)
2826 {
2827 const ObjectAddress *thisobj = stackptr->object;
2828
2829 if (object->classId == thisobj->classId &&
2830 object->objectId == thisobj->objectId)
2831 {
2832 if (object->objectSubId == thisobj->objectSubId)
2833 {
2834 stackptr->flags |= flags;
2835 result = true;
2836 }
2837 else if (thisobj->objectSubId == 0)
2838 {
2839 /*
2840 * We're visiting a column with whole table already on stack.
2841 * As in object_address_present_add_flags(), we can skip
2842 * further processing of the subobject, but we don't want to
2843 * propagate flags for the subobject to the whole object.
2844 */
2845 result = true;
2846 }
2847 else if (object->objectSubId == 0)
2848 {
2849 /*
2850 * We're visiting a table with column already on stack. As in
2851 * object_address_present_add_flags(), we should propagate
2852 * flags for the whole object to each of its subobjects.
2853 */
2854 if (flags)
2855 stackptr->flags |= (flags | DEPFLAG_SUBOBJECT);
2856 }
2857 }
2858 }
2859
2860 return result;
2861}
2862
2863/*
2864 * Record multiple dependencies from an ObjectAddresses array, after first
2865 * removing any duplicates.
2866 */
2867void
2869 ObjectAddresses *referenced,
2870 DependencyType behavior)
2871{
2874 referenced->refs, referenced->numrefs,
2875 behavior);
2876}
2877
2878/*
2879 * Sort the items in an ObjectAddresses array.
2880 *
2881 * The major sort key is OID-descending, so that newer objects will be listed
2882 * first in most cases. This is primarily useful for ensuring stable outputs
2883 * from regression tests; it's not recommended if the order of the objects is
2884 * determined by user input, such as the order of targets in a DROP command.
2885 */
2886void
2888{
2889 if (addrs->numrefs > 1)
2890 qsort(addrs->refs, addrs->numrefs,
2891 sizeof(ObjectAddress),
2893}
2894
2895/*
2896 * Clean up when done with an ObjectAddresses array.
2897 */
2898void
2900{
2901 pfree(addrs->refs);
2902 if (addrs->extras)
2903 pfree(addrs->extras);
2904 pfree(addrs);
2905}
2906
2907/*
2908 * delete initial ACL for extension objects
2909 */
2910static void
2912{
2913 Relation relation;
2914 ScanKeyData key[3];
2915 int nkeys;
2916 SysScanDesc scan;
2917 HeapTuple oldtuple;
2918
2919 relation = table_open(InitPrivsRelationId, RowExclusiveLock);
2920
2921 ScanKeyInit(&key[0],
2922 Anum_pg_init_privs_objoid,
2923 BTEqualStrategyNumber, F_OIDEQ,
2925 ScanKeyInit(&key[1],
2926 Anum_pg_init_privs_classoid,
2927 BTEqualStrategyNumber, F_OIDEQ,
2929 if (object->objectSubId != 0)
2930 {
2931 ScanKeyInit(&key[2],
2932 Anum_pg_init_privs_objsubid,
2933 BTEqualStrategyNumber, F_INT4EQ,
2935 nkeys = 3;
2936 }
2937 else
2938 nkeys = 2;
2939
2940 scan = systable_beginscan(relation, InitPrivsObjIndexId, true,
2941 NULL, nkeys, key);
2942
2943 while (HeapTupleIsValid(oldtuple = systable_getnext(scan)))
2944 CatalogTupleDelete(relation, &oldtuple->t_self);
2945
2946 systable_endscan(scan);
2947
2948 table_close(relation, RowExclusiveLock);
2949}
int16 AttrNumber
Definition: attnum.h:21
#define InvalidAttrNumber
Definition: attnum.h:23
#define ngettext(s, p, n)
Definition: c.h:1179
int32_t int32
Definition: c.h:548
#define OidIsValid(objectId)
Definition: c.h:788
bool IsPinnedObject(Oid classId, Oid objectId)
Definition: catalog.c:370
Oid collid
void DeleteSequenceTuple(Oid relid)
Definition: sequence.c:571
void DeleteComments(Oid oid, Oid classoid, int32 subid)
Definition: comment.c:326
static bool object_address_present_add_flags(const ObjectAddress *object, int flags, ObjectAddresses *addrs)
Definition: dependency.c:2745
#define DEPFLAG_PARTITION
Definition: dependency.c:106
void performMultipleDeletions(const ObjectAddresses *objects, DropBehavior behavior, int flags)
Definition: dependency.c:333
struct ObjectAddressStack ObjectAddressStack
static void add_exact_object_address_extra(const ObjectAddress *object, const ObjectAddressExtra *extra, ObjectAddresses *addrs)
Definition: dependency.c:2684
void record_object_address_dependencies(const ObjectAddress *depender, ObjectAddresses *referenced, DependencyType behavior)
Definition: dependency.c:2868
static void DropObjectById(const ObjectAddress *object)
Definition: dependency.c:1189
static int object_address_comparator(const void *a, const void *b)
Definition: dependency.c:2570
void sort_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2887
static void doDeletion(const ObjectAddress *object, int flags)
Definition: dependency.c:1352
static bool stack_address_present_add_flags(const ObjectAddress *object, int flags, ObjectAddressStack *stack)
Definition: dependency.c:2818
#define DEPFLAG_IS_PART
Definition: dependency.c:109
static void add_object_address(Oid classId, Oid objectId, int32 subId, ObjectAddresses *addrs)
Definition: dependency.c:2632
static bool find_expr_references_walker(Node *node, find_expr_references_context *context)
Definition: dependency.c:1730
static void eliminate_duplicate_dependencies(ObjectAddresses *addrs)
Definition: dependency.c:2510
void AcquireDeletionLock(const ObjectAddress *object, int flags)
Definition: dependency.c:1496
void performDeletion(const ObjectAddress *object, DropBehavior behavior, int flags)
Definition: dependency.c:274
bool query_uses_temp_object(Query *query, ObjectAddress *temp_object)
Definition: dependency.c:2488
static void deleteOneObject(const ObjectAddress *object, Relation *depRel, int32 flags)
static void DeleteInitPrivs(const ObjectAddress *object)
Definition: dependency.c:2911
#define MAX_REPORTED_DEPS
#define DEPFLAG_ORIGINAL
Definition: dependency.c:102
static void process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum, find_expr_references_context *context)
Definition: dependency.c:2379
static void reportDependentObjects(const ObjectAddresses *targetObjects, DropBehavior behavior, int flags, const ObjectAddress *origObject)
Definition: dependency.c:980
void ReleaseDeletionLock(const ObjectAddress *object)
Definition: dependency.c:1528
#define DEPFLAG_AUTO
Definition: dependency.c:104
void recordDependencyOnSingleRelExpr(const ObjectAddress *depender, Node *expr, Oid relId, DependencyType behavior, DependencyType self_behavior, bool reverse_self)
Definition: dependency.c:1628
void recordDependencyOnExpr(const ObjectAddress *depender, Node *expr, List *rtable, DependencyType behavior)
Definition: dependency.c:1553
static void findDependentObjects(const ObjectAddress *object, int objflags, int flags, ObjectAddressStack *stack, ObjectAddresses *targetObjects, const ObjectAddresses *pendingObjects, Relation *depRel)
Definition: dependency.c:433
#define DEPFLAG_REVERSE
Definition: dependency.c:108
void collectDependenciesOfExpr(ObjectAddresses *addrs, Node *expr, List *rtable)
Definition: dependency.c:1596
bool object_address_present(const ObjectAddress *object, const ObjectAddresses *addrs)
Definition: dependency.c:2719
bool find_temp_object(const ObjectAddresses *addrs, bool local_temp_okay, ObjectAddress *foundobj)
Definition: dependency.c:2453
void add_exact_object_address(const ObjectAddress *object, ObjectAddresses *addrs)
Definition: dependency.c:2659
#define DEPFLAG_NORMAL
Definition: dependency.c:103
ObjectAddresses * new_object_addresses(void)
Definition: dependency.c:2614
#define DEPFLAG_SUBOBJECT
Definition: dependency.c:110
#define DEPFLAG_EXTENSION
Definition: dependency.c:107
#define DEPFLAG_INTERNAL
Definition: dependency.c:105
static void deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel, int flags)
Definition: dependency.c:186
void free_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2899
#define PERFORM_DELETION_CONCURRENTLY
Definition: dependency.h:93
#define PERFORM_DELETION_SKIP_EXTENSIONS
Definition: dependency.h:96
DependencyType
Definition: dependency.h:32
@ DEPENDENCY_AUTO
Definition: dependency.h:34
@ DEPENDENCY_AUTO_EXTENSION
Definition: dependency.h:39
@ DEPENDENCY_INTERNAL
Definition: dependency.h:35
@ DEPENDENCY_PARTITION_PRI
Definition: dependency.h:36
@ DEPENDENCY_PARTITION_SEC
Definition: dependency.h:37
@ DEPENDENCY_EXTENSION
Definition: dependency.h:38
@ DEPENDENCY_NORMAL
Definition: dependency.h:33
#define PERFORM_DELETION_CONCURRENT_LOCK
Definition: dependency.h:97
#define PERFORM_DELETION_QUIETLY
Definition: dependency.h:94
#define PERFORM_DELETION_SKIP_ORIGINAL
Definition: dependency.h:95
#define PERFORM_DELETION_INTERNAL
Definition: dependency.h:92
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1193
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1243
int errhint(const char *fmt,...)
Definition: elog.c:1330
bool message_level_is_interesting(int elevel)
Definition: elog.c:273
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
int errdetail_log(const char *fmt,...)
Definition: elog.c:1264
#define _(x)
Definition: elog.c:91
#define DEBUG2
Definition: elog.h:29
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define NOTICE
Definition: elog.h:35
#define ereport(elevel,...)
Definition: elog.h:150
void EventTriggerSQLDropAddObject(const ObjectAddress *object, bool original, bool normal)
bool trackDroppedObjectsNeeded(void)
bool EventTriggerSupportsObject(const ObjectAddress *object)
bool creating_extension
Definition: extension.c:77
Oid CurrentExtensionObject
Definition: extension.c:78
void RemoveExtensionById(Oid extId)
Definition: extension.c:2151
#define palloc_object(type)
Definition: fe_memutils.h:74
#define palloc_array(type, count)
Definition: fe_memutils.h:76
TupleDesc get_expr_result_tupdesc(Node *expr, bool noError)
Definition: funcapi.c:551
void RemoveFunctionById(Oid funcOid)
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:603
bool systable_recheck_tuple(SysScanDesc sysscan, HeapTuple tup)
Definition: genam.c:573
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:514
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:388
Assert(PointerIsAligned(start, uint64))
void RemoveAttributeById(Oid relid, AttrNumber attnum)
Definition: heap.c:1683
void heap_drop_with_catalog(Oid relid)
Definition: heap.c:1784
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
void index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
Definition: index.c:2122
void CatalogTupleDelete(Relation heapRel, const ItemPointerData *tid)
Definition: indexing.c:365
int b
Definition: isn.c:74
int a
Definition: isn.c:73
int i
Definition: isn.c:77
List * list_delete_first(List *list)
Definition: list.c:943
List * lcons(void *datum, List *list)
Definition: list.c:495
void LockSharedObject(Oid classid, Oid objid, uint16 objsubid, LOCKMODE lockmode)
Definition: lmgr.c:1088
void UnlockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:229
void LockDatabaseObject(Oid classid, Oid objid, uint16 objsubid, LOCKMODE lockmode)
Definition: lmgr.c:1008
void LockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:107
void UnlockDatabaseObject(Oid classid, Oid objid, uint16 objsubid, LOCKMODE lockmode)
Definition: lmgr.c:1068
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define AccessShareLock
Definition: lockdefs.h:36
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define RowExclusiveLock
Definition: lockdefs.h:38
char get_rel_relkind(Oid relid)
Definition: lsyscache.c:2168
Oid get_typ_typrelid(Oid typid)
Definition: lsyscache.c:2896
Oid getBaseType(Oid typid)
Definition: lsyscache.c:2686
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1610
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc(Size size)
Definition: mcxt.c:1365
bool isTempNamespace(Oid namespaceId)
Definition: namespace.c:3719
bool isAnyTempNamespace(Oid namespaceId)
Definition: namespace.c:3757
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define QTW_EXAMINE_SORTGROUP
Definition: nodeFuncs.h:30
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
#define QTW_IGNORE_JOINALIASES
Definition: nodeFuncs.h:25
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
@ CMD_INSERT
Definition: nodes.h:277
@ CMD_UPDATE
Definition: nodes.h:276
#define InvokeObjectDropHookArg(classId, objectId, subId, dropflags)
Definition: objectaccess.h:184
AttrNumber get_object_attnum_oid(Oid class_id)
const char * get_object_class_descr(Oid class_id)
char * getObjectDescription(const ObjectAddress *object, bool missing_ok)
int get_object_catcache_oid(Oid class_id)
Oid get_object_oid_index(Oid class_id)
Oid get_object_namespace(const ObjectAddress *address)
void RemoveOperatorById(Oid operOid)
Definition: operatorcmds.c:413
@ RTE_JOIN
Definition: parsenodes.h:1045
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1050
@ RTE_FUNCTION
Definition: parsenodes.h:1046
@ RTE_RELATION
Definition: parsenodes.h:1043
DropBehavior
Definition: parsenodes.h:2397
@ DROP_CASCADE
Definition: parsenodes.h:2399
@ DROP_RESTRICT
Definition: parsenodes.h:2398
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
void RemoveAttrDefaultById(Oid attrdefId)
Definition: pg_attrdef.c:208
int16 attnum
Definition: pg_attribute.h:74
void RemoveConstraintById(Oid conId)
void recordMultipleDependencies(const ObjectAddress *depender, const ObjectAddress *referenced, int nreferenced, DependencyType behavior)
Definition: pg_depend.c:57
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition: pg_depend.c:45
FormData_pg_depend * Form_pg_depend
Definition: pg_depend.h:72
void LargeObjectDrop(Oid loid)
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define lfirst_int(lc)
Definition: pg_list.h:173
#define list_make1(x1)
Definition: pg_list.h:212
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
#define lfirst_oid(lc)
Definition: pg_list.h:174
void deleteSharedDependencyRecordsFor(Oid classId, Oid objectId, int32 objectSubId)
Definition: pg_shdepend.c:1047
void RemovePolicyById(Oid policy_id)
Definition: policy.c:332
#define qsort(a, b, c, d)
Definition: port.h:499
static Oid DatumGetObjectId(Datum X)
Definition: postgres.h:252
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:262
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:222
unsigned int Oid
Definition: postgres_ext.h:32
void RemovePublicationSchemaById(Oid psoid)
void RemovePublicationById(Oid pubid)
void RemovePublicationRelById(Oid proid)
void RemoveRewriteRuleById(Oid ruleOid)
Definition: rewriteRemove.c:33
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
void DeleteSecurityLabel(const ObjectAddress *object)
Definition: seclabel.c:523
void check_stack_depth(void)
Definition: stack_depth.c:95
void RemoveStatisticsById(Oid statsOid)
Definition: statscmds.c:787
#define BTEqualStrategyNumber
Definition: stratnum.h:31
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:145
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:242
void initStringInfo(StringInfo str)
Definition: stringinfo.c:97
Oid aggfnoid
Definition: primnodes.h:463
Oid cycle_mark_collation
Definition: parsenodes.h:1695
Oid resulttype
Definition: primnodes.h:1241
Oid consttype
Definition: primnodes.h:329
AttrNumber fieldnum
Definition: primnodes.h:1162
Expr * arg
Definition: primnodes.h:1161
Oid funcid
Definition: primnodes.h:782
ItemPointerData t_self
Definition: htup.h:65
Definition: pg_list.h:54
Definition: nodes.h:135
ObjectAddress obj
Definition: dependency.c:135
ObjectAddress dependee
Definition: dependency.c:98
const ObjectAddress * object
Definition: dependency.c:127
struct ObjectAddressStack * next
Definition: dependency.c:129
ObjectAddressExtra * extras
Definition: dependency.c:117
ObjectAddress * refs
Definition: dependency.c:116
Oid opno
Definition: primnodes.h:850
Oid paramtype
Definition: primnodes.h:397
Oid paramcollid
Definition: primnodes.h:401
List * rtable
Definition: parsenodes.h:175
CmdType commandType
Definition: parsenodes.h:121
List * targetList
Definition: parsenodes.h:198
bool funcordinality
Definition: parsenodes.h:1210
List * functions
Definition: parsenodes.h:1208
RTEKind rtekind
Definition: parsenodes.h:1078
Oid resulttype
Definition: primnodes.h:1218
AttrNumber resno
Definition: primnodes.h:2241
Oid tdtypeid
Definition: tupdesc.h:138
Definition: primnodes.h:262
AttrNumber varattno
Definition: primnodes.h:274
int varno
Definition: primnodes.h:269
Index varlevelsup
Definition: primnodes.h:294
Oid winfnoid
Definition: primnodes.h:597
ObjectAddresses * addrs
Definition: dependency.c:142
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:264
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:220
#define SearchSysCacheExists1(cacheId, key1)
Definition: syscache.h:100
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
void RemoveTriggerById(Oid trigOid)
Definition: trigger.c:1291
void RemoveTSConfigurationById(Oid cfgId)
Definition: tsearchcmds.c:1108
void RemoveTypeById(Oid typeOid)
Definition: typecmds.c:657
void CommandCounterIncrement(void)
Definition: xact.c:1101