PostgreSQL Source Code  git master
ri_triggers.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * ri_triggers.c
4  *
5  * Generic trigger procedures for referential integrity constraint
6  * checks.
7  *
8  * Note about memory management: the private hashtables kept here live
9  * across query and transaction boundaries, in fact they live as long as
10  * the backend does. This works because the hashtable structures
11  * themselves are allocated by dynahash.c in its permanent DynaHashCxt,
12  * and the SPI plans they point to are saved using SPI_keepplan().
13  * There is not currently any provision for throwing away a no-longer-needed
14  * plan --- consider improving this someday.
15  *
16  *
17  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
18  *
19  * src/backend/utils/adt/ri_triggers.c
20  *
21  *-------------------------------------------------------------------------
22  */
23 
24 #include "postgres.h"
25 
26 #include "access/htup_details.h"
27 #include "access/sysattr.h"
28 #include "access/table.h"
29 #include "access/tableam.h"
30 #include "access/xact.h"
31 #include "catalog/pg_collation.h"
32 #include "catalog/pg_constraint.h"
33 #include "catalog/pg_operator.h"
34 #include "catalog/pg_type.h"
35 #include "commands/trigger.h"
36 #include "executor/executor.h"
37 #include "executor/spi.h"
38 #include "lib/ilist.h"
39 #include "miscadmin.h"
40 #include "parser/parse_coerce.h"
41 #include "parser/parse_relation.h"
42 #include "storage/bufmgr.h"
43 #include "utils/acl.h"
44 #include "utils/builtins.h"
45 #include "utils/datum.h"
46 #include "utils/fmgroids.h"
47 #include "utils/guc.h"
48 #include "utils/inval.h"
49 #include "utils/lsyscache.h"
50 #include "utils/memutils.h"
51 #include "utils/rel.h"
52 #include "utils/rls.h"
53 #include "utils/ruleutils.h"
54 #include "utils/snapmgr.h"
55 #include "utils/syscache.h"
56 
57 /*
58  * Local definitions
59  */
60 
61 #define RI_MAX_NUMKEYS INDEX_MAX_KEYS
62 
63 #define RI_INIT_CONSTRAINTHASHSIZE 64
64 #define RI_INIT_QUERYHASHSIZE (RI_INIT_CONSTRAINTHASHSIZE * 4)
65 
66 #define RI_KEYS_ALL_NULL 0
67 #define RI_KEYS_SOME_NULL 1
68 #define RI_KEYS_NONE_NULL 2
69 
70 /* RI query type codes */
71 /* these queries are executed against the PK (referenced) table: */
72 #define RI_PLAN_CHECK_LOOKUPPK 1
73 #define RI_PLAN_CHECK_LOOKUPPK_FROM_PK 2
74 #define RI_PLAN_LAST_ON_PK RI_PLAN_CHECK_LOOKUPPK_FROM_PK
75 /* these queries are executed against the FK (referencing) table: */
76 #define RI_PLAN_CASCADE_DEL_DODELETE 3
77 #define RI_PLAN_CASCADE_UPD_DOUPDATE 4
78 #define RI_PLAN_RESTRICT_CHECKREF 5
79 #define RI_PLAN_SETNULL_DOUPDATE 6
80 #define RI_PLAN_SETDEFAULT_DOUPDATE 7
81 
82 #define MAX_QUOTED_NAME_LEN (NAMEDATALEN*2+3)
83 #define MAX_QUOTED_REL_NAME_LEN (MAX_QUOTED_NAME_LEN*2)
84 
85 #define RIAttName(rel, attnum) NameStr(*attnumAttName(rel, attnum))
86 #define RIAttType(rel, attnum) attnumTypeId(rel, attnum)
87 #define RIAttCollation(rel, attnum) attnumCollationId(rel, attnum)
88 
89 #define RI_TRIGTYPE_INSERT 1
90 #define RI_TRIGTYPE_UPDATE 2
91 #define RI_TRIGTYPE_DELETE 3
92 
93 
94 /*
95  * RI_ConstraintInfo
96  *
97  * Information extracted from an FK pg_constraint entry. This is cached in
98  * ri_constraint_cache.
99  */
100 typedef struct RI_ConstraintInfo
101 {
102  Oid constraint_id; /* OID of pg_constraint entry (hash key) */
103  bool valid; /* successfully initialized? */
104  uint32 oidHashValue; /* hash value of pg_constraint OID */
105  NameData conname; /* name of the FK constraint */
106  Oid pk_relid; /* referenced relation */
107  Oid fk_relid; /* referencing relation */
108  char confupdtype; /* foreign key's ON UPDATE action */
109  char confdeltype; /* foreign key's ON DELETE action */
110  char confmatchtype; /* foreign key's match type */
111  int nkeys; /* number of key columns */
112  int16 pk_attnums[RI_MAX_NUMKEYS]; /* attnums of referenced cols */
113  int16 fk_attnums[RI_MAX_NUMKEYS]; /* attnums of referencing cols */
114  Oid pf_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = FK) */
115  Oid pp_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = PK) */
116  Oid ff_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (FK = FK) */
117  dlist_node valid_link; /* Link in list of valid entries */
119 
120 /*
121  * RI_QueryKey
122  *
123  * The key identifying a prepared SPI plan in our query hashtable
124  */
125 typedef struct RI_QueryKey
126 {
127  Oid constr_id; /* OID of pg_constraint entry */
128  int32 constr_queryno; /* query type ID, see RI_PLAN_XXX above */
129 } RI_QueryKey;
130 
131 /*
132  * RI_QueryHashEntry
133  */
134 typedef struct RI_QueryHashEntry
135 {
139 
140 /*
141  * RI_CompareKey
142  *
143  * The key identifying an entry showing how to compare two values
144  */
145 typedef struct RI_CompareKey
146 {
147  Oid eq_opr; /* the equality operator to apply */
148  Oid typeid; /* the data type to apply it to */
149 } RI_CompareKey;
150 
151 /*
152  * RI_CompareHashEntry
153  */
154 typedef struct RI_CompareHashEntry
155 {
157  bool valid; /* successfully initialized? */
158  FmgrInfo eq_opr_finfo; /* call info for equality fn */
159  FmgrInfo cast_func_finfo; /* in case we must coerce input */
161 
162 
163 /*
164  * Local data
165  */
166 static HTAB *ri_constraint_cache = NULL;
167 static HTAB *ri_query_cache = NULL;
168 static HTAB *ri_compare_cache = NULL;
171 
172 
173 /*
174  * Local function prototypes
175  */
176 static bool ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel,
177  TupleTableSlot *oldslot,
178  const RI_ConstraintInfo *riinfo);
179 static Datum ri_restrict(TriggerData *trigdata, bool is_no_action);
180 static Datum ri_set(TriggerData *trigdata, bool is_set_null);
181 static void quoteOneName(char *buffer, const char *name);
182 static void quoteRelationName(char *buffer, Relation rel);
183 static void ri_GenerateQual(StringInfo buf,
184  const char *sep,
185  const char *leftop, Oid leftoptype,
186  Oid opoid,
187  const char *rightop, Oid rightoptype);
188 static void ri_GenerateQualCollation(StringInfo buf, Oid collation);
189 static int ri_NullCheck(TupleDesc tupdesc, TupleTableSlot *slot,
190  const RI_ConstraintInfo *riinfo, bool rel_is_pk);
191 static void ri_BuildQueryKey(RI_QueryKey *key,
192  const RI_ConstraintInfo *riinfo,
193  int32 constr_queryno);
194 static bool ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot,
195  const RI_ConstraintInfo *riinfo, bool rel_is_pk);
196 static bool ri_AttributesEqual(Oid eq_opr, Oid typeid,
197  Datum oldvalue, Datum newvalue);
198 
199 static void ri_InitHashTables(void);
200 static void InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue);
202 static void ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan);
203 static RI_CompareHashEntry *ri_HashCompareOp(Oid eq_opr, Oid typeid);
204 
205 static void ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname,
206  int tgkind);
207 static const RI_ConstraintInfo *ri_FetchConstraintInfo(Trigger *trigger,
208  Relation trig_rel, bool rel_is_pk);
209 static const RI_ConstraintInfo *ri_LoadConstraintInfo(Oid constraintOid);
210 static SPIPlanPtr ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes,
211  RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel);
212 static bool ri_PerformCheck(const RI_ConstraintInfo *riinfo,
213  RI_QueryKey *qkey, SPIPlanPtr qplan,
214  Relation fk_rel, Relation pk_rel,
215  TupleTableSlot *oldslot, TupleTableSlot *newslot,
216  bool detectNewRows, int expect_OK);
217 static void ri_ExtractValues(Relation rel, TupleTableSlot *slot,
218  const RI_ConstraintInfo *riinfo, bool rel_is_pk,
219  Datum *vals, char *nulls);
220 static void ri_ReportViolation(const RI_ConstraintInfo *riinfo,
221  Relation pk_rel, Relation fk_rel,
222  TupleTableSlot *violatorslot, TupleDesc tupdesc,
223  int queryno, bool partgone) pg_attribute_noreturn();
224 
225 
226 /*
227  * RI_FKey_check -
228  *
229  * Check foreign key existence (combined for INSERT and UPDATE).
230  */
231 static Datum
233 {
234  const RI_ConstraintInfo *riinfo;
235  Relation fk_rel;
236  Relation pk_rel;
237  TupleTableSlot *newslot;
238  RI_QueryKey qkey;
239  SPIPlanPtr qplan;
240 
241  riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
242  trigdata->tg_relation, false);
243 
244  if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
245  newslot = trigdata->tg_newslot;
246  else
247  newslot = trigdata->tg_trigslot;
248 
249  /*
250  * We should not even consider checking the row if it is no longer valid,
251  * since it was either deleted (so the deferred check should be skipped)
252  * or updated (in which case only the latest version of the row should be
253  * checked). Test its liveness according to SnapshotSelf. We need pin
254  * and lock on the buffer to call HeapTupleSatisfiesVisibility. Caller
255  * should be holding pin, but not lock.
256  */
257  if (!table_tuple_satisfies_snapshot(trigdata->tg_relation, newslot, SnapshotSelf))
258  return PointerGetDatum(NULL);
259 
260  /*
261  * Get the relation descriptors of the FK and PK tables.
262  *
263  * pk_rel is opened in RowShareLock mode since that's what our eventual
264  * SELECT FOR KEY SHARE will get on it.
265  */
266  fk_rel = trigdata->tg_relation;
267  pk_rel = table_open(riinfo->pk_relid, RowShareLock);
268 
269  switch (ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false))
270  {
271  case RI_KEYS_ALL_NULL:
272 
273  /*
274  * No further check needed - an all-NULL key passes every type of
275  * foreign key constraint.
276  */
277  table_close(pk_rel, RowShareLock);
278  return PointerGetDatum(NULL);
279 
280  case RI_KEYS_SOME_NULL:
281 
282  /*
283  * This is the only case that differs between the three kinds of
284  * MATCH.
285  */
286  switch (riinfo->confmatchtype)
287  {
288  case FKCONSTR_MATCH_FULL:
289 
290  /*
291  * Not allowed - MATCH FULL says either all or none of the
292  * attributes can be NULLs
293  */
294  ereport(ERROR,
295  (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
296  errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
297  RelationGetRelationName(fk_rel),
298  NameStr(riinfo->conname)),
299  errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
300  errtableconstraint(fk_rel,
301  NameStr(riinfo->conname))));
302  table_close(pk_rel, RowShareLock);
303  return PointerGetDatum(NULL);
304 
306 
307  /*
308  * MATCH SIMPLE - if ANY column is null, the key passes
309  * the constraint.
310  */
311  table_close(pk_rel, RowShareLock);
312  return PointerGetDatum(NULL);
313 
314 #ifdef NOT_USED
316 
317  /*
318  * MATCH PARTIAL - all non-null columns must match. (not
319  * implemented, can be done by modifying the query below
320  * to only include non-null columns, or by writing a
321  * special version here)
322  */
323  break;
324 #endif
325  }
326 
327  case RI_KEYS_NONE_NULL:
328 
329  /*
330  * Have a full qualified key - continue below for all three kinds
331  * of MATCH.
332  */
333  break;
334  }
335 
336  if (SPI_connect() != SPI_OK_CONNECT)
337  elog(ERROR, "SPI_connect failed");
338 
339  /* Fetch or prepare a saved plan for the real check */
341 
342  if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
343  {
344  StringInfoData querybuf;
345  char pkrelname[MAX_QUOTED_REL_NAME_LEN];
347  char paramname[16];
348  const char *querysep;
349  Oid queryoids[RI_MAX_NUMKEYS];
350  const char *pk_only;
351 
352  /* ----------
353  * The query string built is
354  * SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
355  * FOR KEY SHARE OF x
356  * The type id's for the $ parameters are those of the
357  * corresponding FK attributes.
358  * ----------
359  */
360  initStringInfo(&querybuf);
361  pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
362  "" : "ONLY ";
363  quoteRelationName(pkrelname, pk_rel);
364  appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
365  pk_only, pkrelname);
366  querysep = "WHERE";
367  for (int i = 0; i < riinfo->nkeys; i++)
368  {
369  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
370  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
371 
372  quoteOneName(attname,
373  RIAttName(pk_rel, riinfo->pk_attnums[i]));
374  sprintf(paramname, "$%d", i + 1);
375  ri_GenerateQual(&querybuf, querysep,
376  attname, pk_type,
377  riinfo->pf_eq_oprs[i],
378  paramname, fk_type);
379  querysep = "AND";
380  queryoids[i] = fk_type;
381  }
382  appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
383 
384  /* Prepare and save the plan */
385  qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
386  &qkey, fk_rel, pk_rel);
387  }
388 
389  /*
390  * Now check that foreign key exists in PK table
391  */
392  ri_PerformCheck(riinfo, &qkey, qplan,
393  fk_rel, pk_rel,
394  NULL, newslot,
395  false,
396  SPI_OK_SELECT);
397 
398  if (SPI_finish() != SPI_OK_FINISH)
399  elog(ERROR, "SPI_finish failed");
400 
401  table_close(pk_rel, RowShareLock);
402 
403  return PointerGetDatum(NULL);
404 }
405 
406 
407 /*
408  * RI_FKey_check_ins -
409  *
410  * Check foreign key existence at insert event on FK table.
411  */
412 Datum
414 {
415  /* Check that this is a valid trigger call on the right time and event. */
416  ri_CheckTrigger(fcinfo, "RI_FKey_check_ins", RI_TRIGTYPE_INSERT);
417 
418  /* Share code with UPDATE case. */
419  return RI_FKey_check((TriggerData *) fcinfo->context);
420 }
421 
422 
423 /*
424  * RI_FKey_check_upd -
425  *
426  * Check foreign key existence at update event on FK table.
427  */
428 Datum
430 {
431  /* Check that this is a valid trigger call on the right time and event. */
432  ri_CheckTrigger(fcinfo, "RI_FKey_check_upd", RI_TRIGTYPE_UPDATE);
433 
434  /* Share code with INSERT case. */
435  return RI_FKey_check((TriggerData *) fcinfo->context);
436 }
437 
438 
439 /*
440  * ri_Check_Pk_Match
441  *
442  * Check to see if another PK row has been created that provides the same
443  * key values as the "oldslot" that's been modified or deleted in our trigger
444  * event. Returns true if a match is found in the PK table.
445  *
446  * We assume the caller checked that the oldslot contains no NULL key values,
447  * since otherwise a match is impossible.
448  */
449 static bool
451  TupleTableSlot *oldslot,
452  const RI_ConstraintInfo *riinfo)
453 {
454  SPIPlanPtr qplan;
455  RI_QueryKey qkey;
456  bool result;
457 
458  /* Only called for non-null rows */
459  Assert(ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) == RI_KEYS_NONE_NULL);
460 
461  if (SPI_connect() != SPI_OK_CONNECT)
462  elog(ERROR, "SPI_connect failed");
463 
464  /*
465  * Fetch or prepare a saved plan for checking PK table with values coming
466  * from a PK row
467  */
469 
470  if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
471  {
472  StringInfoData querybuf;
473  char pkrelname[MAX_QUOTED_REL_NAME_LEN];
475  char paramname[16];
476  const char *querysep;
477  const char *pk_only;
478  Oid queryoids[RI_MAX_NUMKEYS];
479 
480  /* ----------
481  * The query string built is
482  * SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
483  * FOR KEY SHARE OF x
484  * The type id's for the $ parameters are those of the
485  * PK attributes themselves.
486  * ----------
487  */
488  initStringInfo(&querybuf);
489  pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
490  "" : "ONLY ";
491  quoteRelationName(pkrelname, pk_rel);
492  appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
493  pk_only, pkrelname);
494  querysep = "WHERE";
495  for (int i = 0; i < riinfo->nkeys; i++)
496  {
497  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
498 
499  quoteOneName(attname,
500  RIAttName(pk_rel, riinfo->pk_attnums[i]));
501  sprintf(paramname, "$%d", i + 1);
502  ri_GenerateQual(&querybuf, querysep,
503  attname, pk_type,
504  riinfo->pp_eq_oprs[i],
505  paramname, pk_type);
506  querysep = "AND";
507  queryoids[i] = pk_type;
508  }
509  appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
510 
511  /* Prepare and save the plan */
512  qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
513  &qkey, fk_rel, pk_rel);
514  }
515 
516  /*
517  * We have a plan now. Run it.
518  */
519  result = ri_PerformCheck(riinfo, &qkey, qplan,
520  fk_rel, pk_rel,
521  oldslot, NULL,
522  true, /* treat like update */
523  SPI_OK_SELECT);
524 
525  if (SPI_finish() != SPI_OK_FINISH)
526  elog(ERROR, "SPI_finish failed");
527 
528  return result;
529 }
530 
531 
532 /*
533  * RI_FKey_noaction_del -
534  *
535  * Give an error and roll back the current transaction if the
536  * delete has resulted in a violation of the given referential
537  * integrity constraint.
538  */
539 Datum
541 {
542  /* Check that this is a valid trigger call on the right time and event. */
543  ri_CheckTrigger(fcinfo, "RI_FKey_noaction_del", RI_TRIGTYPE_DELETE);
544 
545  /* Share code with RESTRICT/UPDATE cases. */
546  return ri_restrict((TriggerData *) fcinfo->context, true);
547 }
548 
549 /*
550  * RI_FKey_restrict_del -
551  *
552  * Restrict delete from PK table to rows unreferenced by foreign key.
553  *
554  * The SQL standard intends that this referential action occur exactly when
555  * the delete is performed, rather than after. This appears to be
556  * the only difference between "NO ACTION" and "RESTRICT". In Postgres
557  * we still implement this as an AFTER trigger, but it's non-deferrable.
558  */
559 Datum
561 {
562  /* Check that this is a valid trigger call on the right time and event. */
563  ri_CheckTrigger(fcinfo, "RI_FKey_restrict_del", RI_TRIGTYPE_DELETE);
564 
565  /* Share code with NO ACTION/UPDATE cases. */
566  return ri_restrict((TriggerData *) fcinfo->context, false);
567 }
568 
569 /*
570  * RI_FKey_noaction_upd -
571  *
572  * Give an error and roll back the current transaction if the
573  * update has resulted in a violation of the given referential
574  * integrity constraint.
575  */
576 Datum
578 {
579  /* Check that this is a valid trigger call on the right time and event. */
580  ri_CheckTrigger(fcinfo, "RI_FKey_noaction_upd", RI_TRIGTYPE_UPDATE);
581 
582  /* Share code with RESTRICT/DELETE cases. */
583  return ri_restrict((TriggerData *) fcinfo->context, true);
584 }
585 
586 /*
587  * RI_FKey_restrict_upd -
588  *
589  * Restrict update of PK to rows unreferenced by foreign key.
590  *
591  * The SQL standard intends that this referential action occur exactly when
592  * the update is performed, rather than after. This appears to be
593  * the only difference between "NO ACTION" and "RESTRICT". In Postgres
594  * we still implement this as an AFTER trigger, but it's non-deferrable.
595  */
596 Datum
598 {
599  /* Check that this is a valid trigger call on the right time and event. */
600  ri_CheckTrigger(fcinfo, "RI_FKey_restrict_upd", RI_TRIGTYPE_UPDATE);
601 
602  /* Share code with NO ACTION/DELETE cases. */
603  return ri_restrict((TriggerData *) fcinfo->context, false);
604 }
605 
606 /*
607  * ri_restrict -
608  *
609  * Common code for ON DELETE RESTRICT, ON DELETE NO ACTION,
610  * ON UPDATE RESTRICT, and ON UPDATE NO ACTION.
611  */
612 static Datum
613 ri_restrict(TriggerData *trigdata, bool is_no_action)
614 {
615  const RI_ConstraintInfo *riinfo;
616  Relation fk_rel;
617  Relation pk_rel;
618  TupleTableSlot *oldslot;
619  RI_QueryKey qkey;
620  SPIPlanPtr qplan;
621 
622  riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
623  trigdata->tg_relation, true);
624 
625  /*
626  * Get the relation descriptors of the FK and PK tables and the old tuple.
627  *
628  * fk_rel is opened in RowShareLock mode since that's what our eventual
629  * SELECT FOR KEY SHARE will get on it.
630  */
631  fk_rel = table_open(riinfo->fk_relid, RowShareLock);
632  pk_rel = trigdata->tg_relation;
633  oldslot = trigdata->tg_trigslot;
634 
635  /*
636  * If another PK row now exists providing the old key values, we should
637  * not do anything. However, this check should only be made in the NO
638  * ACTION case; in RESTRICT cases we don't wish to allow another row to be
639  * substituted.
640  */
641  if (is_no_action &&
642  ri_Check_Pk_Match(pk_rel, fk_rel, oldslot, riinfo))
643  {
644  table_close(fk_rel, RowShareLock);
645  return PointerGetDatum(NULL);
646  }
647 
648  if (SPI_connect() != SPI_OK_CONNECT)
649  elog(ERROR, "SPI_connect failed");
650 
651  /*
652  * Fetch or prepare a saved plan for the restrict lookup (it's the same
653  * query for delete and update cases)
654  */
656 
657  if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
658  {
659  StringInfoData querybuf;
660  char fkrelname[MAX_QUOTED_REL_NAME_LEN];
662  char paramname[16];
663  const char *querysep;
664  Oid queryoids[RI_MAX_NUMKEYS];
665  const char *fk_only;
666 
667  /* ----------
668  * The query string built is
669  * SELECT 1 FROM [ONLY] <fktable> x WHERE $1 = fkatt1 [AND ...]
670  * FOR KEY SHARE OF x
671  * The type id's for the $ parameters are those of the
672  * corresponding PK attributes.
673  * ----------
674  */
675  initStringInfo(&querybuf);
676  fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
677  "" : "ONLY ";
678  quoteRelationName(fkrelname, fk_rel);
679  appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
680  fk_only, fkrelname);
681  querysep = "WHERE";
682  for (int i = 0; i < riinfo->nkeys; i++)
683  {
684  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
685  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
686  Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
687  Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
688 
689  quoteOneName(attname,
690  RIAttName(fk_rel, riinfo->fk_attnums[i]));
691  sprintf(paramname, "$%d", i + 1);
692  ri_GenerateQual(&querybuf, querysep,
693  paramname, pk_type,
694  riinfo->pf_eq_oprs[i],
695  attname, fk_type);
696  if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
697  ri_GenerateQualCollation(&querybuf, pk_coll);
698  querysep = "AND";
699  queryoids[i] = pk_type;
700  }
701  appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
702 
703  /* Prepare and save the plan */
704  qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
705  &qkey, fk_rel, pk_rel);
706  }
707 
708  /*
709  * We have a plan now. Run it to check for existing references.
710  */
711  ri_PerformCheck(riinfo, &qkey, qplan,
712  fk_rel, pk_rel,
713  oldslot, NULL,
714  true, /* must detect new rows */
715  SPI_OK_SELECT);
716 
717  if (SPI_finish() != SPI_OK_FINISH)
718  elog(ERROR, "SPI_finish failed");
719 
720  table_close(fk_rel, RowShareLock);
721 
722  return PointerGetDatum(NULL);
723 }
724 
725 
726 /*
727  * RI_FKey_cascade_del -
728  *
729  * Cascaded delete foreign key references at delete event on PK table.
730  */
731 Datum
733 {
734  TriggerData *trigdata = (TriggerData *) fcinfo->context;
735  const RI_ConstraintInfo *riinfo;
736  Relation fk_rel;
737  Relation pk_rel;
738  TupleTableSlot *oldslot;
739  RI_QueryKey qkey;
740  SPIPlanPtr qplan;
741 
742  /* Check that this is a valid trigger call on the right time and event. */
743  ri_CheckTrigger(fcinfo, "RI_FKey_cascade_del", RI_TRIGTYPE_DELETE);
744 
745  riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
746  trigdata->tg_relation, true);
747 
748  /*
749  * Get the relation descriptors of the FK and PK tables and the old tuple.
750  *
751  * fk_rel is opened in RowExclusiveLock mode since that's what our
752  * eventual DELETE will get on it.
753  */
754  fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
755  pk_rel = trigdata->tg_relation;
756  oldslot = trigdata->tg_trigslot;
757 
758  if (SPI_connect() != SPI_OK_CONNECT)
759  elog(ERROR, "SPI_connect failed");
760 
761  /* Fetch or prepare a saved plan for the cascaded delete */
763 
764  if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
765  {
766  StringInfoData querybuf;
767  char fkrelname[MAX_QUOTED_REL_NAME_LEN];
769  char paramname[16];
770  const char *querysep;
771  Oid queryoids[RI_MAX_NUMKEYS];
772  const char *fk_only;
773 
774  /* ----------
775  * The query string built is
776  * DELETE FROM [ONLY] <fktable> WHERE $1 = fkatt1 [AND ...]
777  * The type id's for the $ parameters are those of the
778  * corresponding PK attributes.
779  * ----------
780  */
781  initStringInfo(&querybuf);
782  fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
783  "" : "ONLY ";
784  quoteRelationName(fkrelname, fk_rel);
785  appendStringInfo(&querybuf, "DELETE FROM %s%s",
786  fk_only, fkrelname);
787  querysep = "WHERE";
788  for (int i = 0; i < riinfo->nkeys; i++)
789  {
790  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
791  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
792  Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
793  Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
794 
795  quoteOneName(attname,
796  RIAttName(fk_rel, riinfo->fk_attnums[i]));
797  sprintf(paramname, "$%d", i + 1);
798  ri_GenerateQual(&querybuf, querysep,
799  paramname, pk_type,
800  riinfo->pf_eq_oprs[i],
801  attname, fk_type);
802  if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
803  ri_GenerateQualCollation(&querybuf, pk_coll);
804  querysep = "AND";
805  queryoids[i] = pk_type;
806  }
807 
808  /* Prepare and save the plan */
809  qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
810  &qkey, fk_rel, pk_rel);
811  }
812 
813  /*
814  * We have a plan now. Build up the arguments from the key values in the
815  * deleted PK tuple and delete the referencing rows
816  */
817  ri_PerformCheck(riinfo, &qkey, qplan,
818  fk_rel, pk_rel,
819  oldslot, NULL,
820  true, /* must detect new rows */
821  SPI_OK_DELETE);
822 
823  if (SPI_finish() != SPI_OK_FINISH)
824  elog(ERROR, "SPI_finish failed");
825 
826  table_close(fk_rel, RowExclusiveLock);
827 
828  return PointerGetDatum(NULL);
829 }
830 
831 
832 /*
833  * RI_FKey_cascade_upd -
834  *
835  * Cascaded update foreign key references at update event on PK table.
836  */
837 Datum
839 {
840  TriggerData *trigdata = (TriggerData *) fcinfo->context;
841  const RI_ConstraintInfo *riinfo;
842  Relation fk_rel;
843  Relation pk_rel;
844  TupleTableSlot *newslot;
845  TupleTableSlot *oldslot;
846  RI_QueryKey qkey;
847  SPIPlanPtr qplan;
848 
849  /* Check that this is a valid trigger call on the right time and event. */
850  ri_CheckTrigger(fcinfo, "RI_FKey_cascade_upd", RI_TRIGTYPE_UPDATE);
851 
852  riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
853  trigdata->tg_relation, true);
854 
855  /*
856  * Get the relation descriptors of the FK and PK tables and the new and
857  * old tuple.
858  *
859  * fk_rel is opened in RowExclusiveLock mode since that's what our
860  * eventual UPDATE will get on it.
861  */
862  fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
863  pk_rel = trigdata->tg_relation;
864  newslot = trigdata->tg_newslot;
865  oldslot = trigdata->tg_trigslot;
866 
867  if (SPI_connect() != SPI_OK_CONNECT)
868  elog(ERROR, "SPI_connect failed");
869 
870  /* Fetch or prepare a saved plan for the cascaded update */
872 
873  if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
874  {
875  StringInfoData querybuf;
876  StringInfoData qualbuf;
877  char fkrelname[MAX_QUOTED_REL_NAME_LEN];
879  char paramname[16];
880  const char *querysep;
881  const char *qualsep;
882  Oid queryoids[RI_MAX_NUMKEYS * 2];
883  const char *fk_only;
884 
885  /* ----------
886  * The query string built is
887  * UPDATE [ONLY] <fktable> SET fkatt1 = $1 [, ...]
888  * WHERE $n = fkatt1 [AND ...]
889  * The type id's for the $ parameters are those of the
890  * corresponding PK attributes. Note that we are assuming
891  * there is an assignment cast from the PK to the FK type;
892  * else the parser will fail.
893  * ----------
894  */
895  initStringInfo(&querybuf);
896  initStringInfo(&qualbuf);
897  fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
898  "" : "ONLY ";
899  quoteRelationName(fkrelname, fk_rel);
900  appendStringInfo(&querybuf, "UPDATE %s%s SET",
901  fk_only, fkrelname);
902  querysep = "";
903  qualsep = "WHERE";
904  for (int i = 0, j = riinfo->nkeys; i < riinfo->nkeys; i++, j++)
905  {
906  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
907  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
908  Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
909  Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
910 
911  quoteOneName(attname,
912  RIAttName(fk_rel, riinfo->fk_attnums[i]));
913  appendStringInfo(&querybuf,
914  "%s %s = $%d",
915  querysep, attname, i + 1);
916  sprintf(paramname, "$%d", j + 1);
917  ri_GenerateQual(&qualbuf, qualsep,
918  paramname, pk_type,
919  riinfo->pf_eq_oprs[i],
920  attname, fk_type);
921  if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
922  ri_GenerateQualCollation(&querybuf, pk_coll);
923  querysep = ",";
924  qualsep = "AND";
925  queryoids[i] = pk_type;
926  queryoids[j] = pk_type;
927  }
928  appendBinaryStringInfo(&querybuf, qualbuf.data, qualbuf.len);
929 
930  /* Prepare and save the plan */
931  qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys * 2, queryoids,
932  &qkey, fk_rel, pk_rel);
933  }
934 
935  /*
936  * We have a plan now. Run it to update the existing references.
937  */
938  ri_PerformCheck(riinfo, &qkey, qplan,
939  fk_rel, pk_rel,
940  oldslot, newslot,
941  true, /* must detect new rows */
942  SPI_OK_UPDATE);
943 
944  if (SPI_finish() != SPI_OK_FINISH)
945  elog(ERROR, "SPI_finish failed");
946 
947  table_close(fk_rel, RowExclusiveLock);
948 
949  return PointerGetDatum(NULL);
950 }
951 
952 
953 /*
954  * RI_FKey_setnull_del -
955  *
956  * Set foreign key references to NULL values at delete event on PK table.
957  */
958 Datum
960 {
961  /* Check that this is a valid trigger call on the right time and event. */
962  ri_CheckTrigger(fcinfo, "RI_FKey_setnull_del", RI_TRIGTYPE_DELETE);
963 
964  /* Share code with UPDATE case */
965  return ri_set((TriggerData *) fcinfo->context, true);
966 }
967 
968 /*
969  * RI_FKey_setnull_upd -
970  *
971  * Set foreign key references to NULL at update event on PK table.
972  */
973 Datum
975 {
976  /* Check that this is a valid trigger call on the right time and event. */
977  ri_CheckTrigger(fcinfo, "RI_FKey_setnull_upd", RI_TRIGTYPE_UPDATE);
978 
979  /* Share code with DELETE case */
980  return ri_set((TriggerData *) fcinfo->context, true);
981 }
982 
983 /*
984  * RI_FKey_setdefault_del -
985  *
986  * Set foreign key references to defaults at delete event on PK table.
987  */
988 Datum
990 {
991  /* Check that this is a valid trigger call on the right time and event. */
992  ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_del", RI_TRIGTYPE_DELETE);
993 
994  /* Share code with UPDATE case */
995  return ri_set((TriggerData *) fcinfo->context, false);
996 }
997 
998 /*
999  * RI_FKey_setdefault_upd -
1000  *
1001  * Set foreign key references to defaults at update event on PK table.
1002  */
1003 Datum
1005 {
1006  /* Check that this is a valid trigger call on the right time and event. */
1007  ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_upd", RI_TRIGTYPE_UPDATE);
1008 
1009  /* Share code with DELETE case */
1010  return ri_set((TriggerData *) fcinfo->context, false);
1011 }
1012 
1013 /*
1014  * ri_set -
1015  *
1016  * Common code for ON DELETE SET NULL, ON DELETE SET DEFAULT, ON UPDATE SET
1017  * NULL, and ON UPDATE SET DEFAULT.
1018  */
1019 static Datum
1020 ri_set(TriggerData *trigdata, bool is_set_null)
1021 {
1022  const RI_ConstraintInfo *riinfo;
1023  Relation fk_rel;
1024  Relation pk_rel;
1025  TupleTableSlot *oldslot;
1026  RI_QueryKey qkey;
1027  SPIPlanPtr qplan;
1028 
1029  riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
1030  trigdata->tg_relation, true);
1031 
1032  /*
1033  * Get the relation descriptors of the FK and PK tables and the old tuple.
1034  *
1035  * fk_rel is opened in RowExclusiveLock mode since that's what our
1036  * eventual UPDATE will get on it.
1037  */
1038  fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
1039  pk_rel = trigdata->tg_relation;
1040  oldslot = trigdata->tg_trigslot;
1041 
1042  if (SPI_connect() != SPI_OK_CONNECT)
1043  elog(ERROR, "SPI_connect failed");
1044 
1045  /*
1046  * Fetch or prepare a saved plan for the set null/default operation (it's
1047  * the same query for delete and update cases)
1048  */
1049  ri_BuildQueryKey(&qkey, riinfo,
1050  (is_set_null
1053 
1054  if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
1055  {
1056  StringInfoData querybuf;
1057  StringInfoData qualbuf;
1058  char fkrelname[MAX_QUOTED_REL_NAME_LEN];
1060  char paramname[16];
1061  const char *querysep;
1062  const char *qualsep;
1063  Oid queryoids[RI_MAX_NUMKEYS];
1064  const char *fk_only;
1065 
1066  /* ----------
1067  * The query string built is
1068  * UPDATE [ONLY] <fktable> SET fkatt1 = {NULL|DEFAULT} [, ...]
1069  * WHERE $1 = fkatt1 [AND ...]
1070  * The type id's for the $ parameters are those of the
1071  * corresponding PK attributes.
1072  * ----------
1073  */
1074  initStringInfo(&querybuf);
1075  initStringInfo(&qualbuf);
1076  fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
1077  "" : "ONLY ";
1078  quoteRelationName(fkrelname, fk_rel);
1079  appendStringInfo(&querybuf, "UPDATE %s%s SET",
1080  fk_only, fkrelname);
1081  querysep = "";
1082  qualsep = "WHERE";
1083  for (int i = 0; i < riinfo->nkeys; i++)
1084  {
1085  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
1086  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
1087  Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
1088  Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
1089 
1090  quoteOneName(attname,
1091  RIAttName(fk_rel, riinfo->fk_attnums[i]));
1092  appendStringInfo(&querybuf,
1093  "%s %s = %s",
1094  querysep, attname,
1095  is_set_null ? "NULL" : "DEFAULT");
1096  sprintf(paramname, "$%d", i + 1);
1097  ri_GenerateQual(&qualbuf, qualsep,
1098  paramname, pk_type,
1099  riinfo->pf_eq_oprs[i],
1100  attname, fk_type);
1101  if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
1102  ri_GenerateQualCollation(&querybuf, pk_coll);
1103  querysep = ",";
1104  qualsep = "AND";
1105  queryoids[i] = pk_type;
1106  }
1107  appendBinaryStringInfo(&querybuf, qualbuf.data, qualbuf.len);
1108 
1109  /* Prepare and save the plan */
1110  qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
1111  &qkey, fk_rel, pk_rel);
1112  }
1113 
1114  /*
1115  * We have a plan now. Run it to update the existing references.
1116  */
1117  ri_PerformCheck(riinfo, &qkey, qplan,
1118  fk_rel, pk_rel,
1119  oldslot, NULL,
1120  true, /* must detect new rows */
1121  SPI_OK_UPDATE);
1122 
1123  if (SPI_finish() != SPI_OK_FINISH)
1124  elog(ERROR, "SPI_finish failed");
1125 
1126  table_close(fk_rel, RowExclusiveLock);
1127 
1128  if (is_set_null)
1129  return PointerGetDatum(NULL);
1130  else
1131  {
1132  /*
1133  * If we just deleted or updated the PK row whose key was equal to the
1134  * FK columns' default values, and a referencing row exists in the FK
1135  * table, we would have updated that row to the same values it already
1136  * had --- and RI_FKey_fk_upd_check_required would hence believe no
1137  * check is necessary. So we need to do another lookup now and in
1138  * case a reference still exists, abort the operation. That is
1139  * already implemented in the NO ACTION trigger, so just run it. (This
1140  * recheck is only needed in the SET DEFAULT case, since CASCADE would
1141  * remove such rows in case of a DELETE operation or would change the
1142  * FK key values in case of an UPDATE, while SET NULL is certain to
1143  * result in rows that satisfy the FK constraint.)
1144  */
1145  return ri_restrict(trigdata, true);
1146  }
1147 }
1148 
1149 
1150 /*
1151  * RI_FKey_pk_upd_check_required -
1152  *
1153  * Check if we really need to fire the RI trigger for an update or delete to a PK
1154  * relation. This is called by the AFTER trigger queue manager to see if
1155  * it can skip queuing an instance of an RI trigger. Returns true if the
1156  * trigger must be fired, false if we can prove the constraint will still
1157  * be satisfied.
1158  *
1159  * newslot will be NULL if this is called for a delete.
1160  */
1161 bool
1163  TupleTableSlot *oldslot, TupleTableSlot *newslot)
1164 {
1165  const RI_ConstraintInfo *riinfo;
1166 
1167  riinfo = ri_FetchConstraintInfo(trigger, pk_rel, true);
1168 
1169  /*
1170  * If any old key value is NULL, the row could not have been referenced by
1171  * an FK row, so no check is needed.
1172  */
1173  if (ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) != RI_KEYS_NONE_NULL)
1174  return false;
1175 
1176  /* If all old and new key values are equal, no check is needed */
1177  if (newslot && ri_KeysEqual(pk_rel, oldslot, newslot, riinfo, true))
1178  return false;
1179 
1180  /* Else we need to fire the trigger. */
1181  return true;
1182 }
1183 
1184 /*
1185  * RI_FKey_fk_upd_check_required -
1186  *
1187  * Check if we really need to fire the RI trigger for an update to an FK
1188  * relation. This is called by the AFTER trigger queue manager to see if
1189  * it can skip queuing an instance of an RI trigger. Returns true if the
1190  * trigger must be fired, false if we can prove the constraint will still
1191  * be satisfied.
1192  */
1193 bool
1195  TupleTableSlot *oldslot, TupleTableSlot *newslot)
1196 {
1197  const RI_ConstraintInfo *riinfo;
1198  int ri_nullcheck;
1199  Datum xminDatum;
1200  TransactionId xmin;
1201  bool isnull;
1202 
1203  riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
1204 
1205  ri_nullcheck = ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false);
1206 
1207  /*
1208  * If all new key values are NULL, the row satisfies the constraint, so no
1209  * check is needed.
1210  */
1211  if (ri_nullcheck == RI_KEYS_ALL_NULL)
1212  return false;
1213 
1214  /*
1215  * If some new key values are NULL, the behavior depends on the match
1216  * type.
1217  */
1218  else if (ri_nullcheck == RI_KEYS_SOME_NULL)
1219  {
1220  switch (riinfo->confmatchtype)
1221  {
1222  case FKCONSTR_MATCH_SIMPLE:
1223 
1224  /*
1225  * If any new key value is NULL, the row must satisfy the
1226  * constraint, so no check is needed.
1227  */
1228  return false;
1229 
1231 
1232  /*
1233  * Don't know, must run full check.
1234  */
1235  break;
1236 
1237  case FKCONSTR_MATCH_FULL:
1238 
1239  /*
1240  * If some new key values are NULL, the row fails the
1241  * constraint. We must not throw error here, because the row
1242  * might get invalidated before the constraint is to be
1243  * checked, but we should queue the event to apply the check
1244  * later.
1245  */
1246  return true;
1247  }
1248  }
1249 
1250  /*
1251  * Continues here for no new key values are NULL, or we couldn't decide
1252  * yet.
1253  */
1254 
1255  /*
1256  * If the original row was inserted by our own transaction, we must fire
1257  * the trigger whether or not the keys are equal. This is because our
1258  * UPDATE will invalidate the INSERT so that the INSERT RI trigger will
1259  * not do anything; so we had better do the UPDATE check. (We could skip
1260  * this if we knew the INSERT trigger already fired, but there is no easy
1261  * way to know that.)
1262  */
1263  xminDatum = slot_getsysattr(oldslot, MinTransactionIdAttributeNumber, &isnull);
1264  Assert(!isnull);
1265  xmin = DatumGetTransactionId(xminDatum);
1267  return true;
1268 
1269  /* If all old and new key values are equal, no check is needed */
1270  if (ri_KeysEqual(fk_rel, oldslot, newslot, riinfo, false))
1271  return false;
1272 
1273  /* Else we need to fire the trigger. */
1274  return true;
1275 }
1276 
1277 /*
1278  * RI_Initial_Check -
1279  *
1280  * Check an entire table for non-matching values using a single query.
1281  * This is not a trigger procedure, but is called during ALTER TABLE
1282  * ADD FOREIGN KEY to validate the initial table contents.
1283  *
1284  * We expect that the caller has made provision to prevent any problems
1285  * caused by concurrent actions. This could be either by locking rel and
1286  * pkrel at ShareRowExclusiveLock or higher, or by otherwise ensuring
1287  * that triggers implementing the checks are already active.
1288  * Hence, we do not need to lock individual rows for the check.
1289  *
1290  * If the check fails because the current user doesn't have permissions
1291  * to read both tables, return false to let our caller know that they will
1292  * need to do something else to check the constraint.
1293  */
1294 bool
1295 RI_Initial_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
1296 {
1297  const RI_ConstraintInfo *riinfo;
1298  StringInfoData querybuf;
1299  char pkrelname[MAX_QUOTED_REL_NAME_LEN];
1300  char fkrelname[MAX_QUOTED_REL_NAME_LEN];
1301  char pkattname[MAX_QUOTED_NAME_LEN + 3];
1302  char fkattname[MAX_QUOTED_NAME_LEN + 3];
1303  RangeTblEntry *pkrte;
1304  RangeTblEntry *fkrte;
1305  const char *sep;
1306  const char *fk_only;
1307  const char *pk_only;
1308  int save_nestlevel;
1309  char workmembuf[32];
1310  int spi_result;
1311  SPIPlanPtr qplan;
1312 
1313  riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
1314 
1315  /*
1316  * Check to make sure current user has enough permissions to do the test
1317  * query. (If not, caller can fall back to the trigger method, which
1318  * works because it changes user IDs on the fly.)
1319  *
1320  * XXX are there any other show-stopper conditions to check?
1321  */
1322  pkrte = makeNode(RangeTblEntry);
1323  pkrte->rtekind = RTE_RELATION;
1324  pkrte->relid = RelationGetRelid(pk_rel);
1325  pkrte->relkind = pk_rel->rd_rel->relkind;
1326  pkrte->rellockmode = AccessShareLock;
1327  pkrte->requiredPerms = ACL_SELECT;
1328 
1329  fkrte = makeNode(RangeTblEntry);
1330  fkrte->rtekind = RTE_RELATION;
1331  fkrte->relid = RelationGetRelid(fk_rel);
1332  fkrte->relkind = fk_rel->rd_rel->relkind;
1333  fkrte->rellockmode = AccessShareLock;
1334  fkrte->requiredPerms = ACL_SELECT;
1335 
1336  for (int i = 0; i < riinfo->nkeys; i++)
1337  {
1338  int attno;
1339 
1340  attno = riinfo->pk_attnums[i] - FirstLowInvalidHeapAttributeNumber;
1341  pkrte->selectedCols = bms_add_member(pkrte->selectedCols, attno);
1342 
1343  attno = riinfo->fk_attnums[i] - FirstLowInvalidHeapAttributeNumber;
1344  fkrte->selectedCols = bms_add_member(fkrte->selectedCols, attno);
1345  }
1346 
1347  if (!ExecCheckRTPerms(list_make2(fkrte, pkrte), false))
1348  return false;
1349 
1350  /*
1351  * Also punt if RLS is enabled on either table unless this role has the
1352  * bypassrls right or is the table owner of the table(s) involved which
1353  * have RLS enabled.
1354  */
1356  ((pk_rel->rd_rel->relrowsecurity &&
1357  !pg_class_ownercheck(pkrte->relid, GetUserId())) ||
1358  (fk_rel->rd_rel->relrowsecurity &&
1359  !pg_class_ownercheck(fkrte->relid, GetUserId()))))
1360  return false;
1361 
1362  /*----------
1363  * The query string built is:
1364  * SELECT fk.keycols FROM [ONLY] relname fk
1365  * LEFT OUTER JOIN [ONLY] pkrelname pk
1366  * ON (pk.pkkeycol1=fk.keycol1 [AND ...])
1367  * WHERE pk.pkkeycol1 IS NULL AND
1368  * For MATCH SIMPLE:
1369  * (fk.keycol1 IS NOT NULL [AND ...])
1370  * For MATCH FULL:
1371  * (fk.keycol1 IS NOT NULL [OR ...])
1372  *
1373  * We attach COLLATE clauses to the operators when comparing columns
1374  * that have different collations.
1375  *----------
1376  */
1377  initStringInfo(&querybuf);
1378  appendStringInfoString(&querybuf, "SELECT ");
1379  sep = "";
1380  for (int i = 0; i < riinfo->nkeys; i++)
1381  {
1382  quoteOneName(fkattname,
1383  RIAttName(fk_rel, riinfo->fk_attnums[i]));
1384  appendStringInfo(&querybuf, "%sfk.%s", sep, fkattname);
1385  sep = ", ";
1386  }
1387 
1388  quoteRelationName(pkrelname, pk_rel);
1389  quoteRelationName(fkrelname, fk_rel);
1390  fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
1391  "" : "ONLY ";
1392  pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
1393  "" : "ONLY ";
1394  appendStringInfo(&querybuf,
1395  " FROM %s%s fk LEFT OUTER JOIN %s%s pk ON",
1396  fk_only, fkrelname, pk_only, pkrelname);
1397 
1398  strcpy(pkattname, "pk.");
1399  strcpy(fkattname, "fk.");
1400  sep = "(";
1401  for (int i = 0; i < riinfo->nkeys; i++)
1402  {
1403  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
1404  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
1405  Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
1406  Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
1407 
1408  quoteOneName(pkattname + 3,
1409  RIAttName(pk_rel, riinfo->pk_attnums[i]));
1410  quoteOneName(fkattname + 3,
1411  RIAttName(fk_rel, riinfo->fk_attnums[i]));
1412  ri_GenerateQual(&querybuf, sep,
1413  pkattname, pk_type,
1414  riinfo->pf_eq_oprs[i],
1415  fkattname, fk_type);
1416  if (pk_coll != fk_coll)
1417  ri_GenerateQualCollation(&querybuf, pk_coll);
1418  sep = "AND";
1419  }
1420 
1421  /*
1422  * It's sufficient to test any one pk attribute for null to detect a join
1423  * failure.
1424  */
1425  quoteOneName(pkattname, RIAttName(pk_rel, riinfo->pk_attnums[0]));
1426  appendStringInfo(&querybuf, ") WHERE pk.%s IS NULL AND (", pkattname);
1427 
1428  sep = "";
1429  for (int i = 0; i < riinfo->nkeys; i++)
1430  {
1431  quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i]));
1432  appendStringInfo(&querybuf,
1433  "%sfk.%s IS NOT NULL",
1434  sep, fkattname);
1435  switch (riinfo->confmatchtype)
1436  {
1437  case FKCONSTR_MATCH_SIMPLE:
1438  sep = " AND ";
1439  break;
1440  case FKCONSTR_MATCH_FULL:
1441  sep = " OR ";
1442  break;
1443  }
1444  }
1445  appendStringInfoChar(&querybuf, ')');
1446 
1447  /*
1448  * Temporarily increase work_mem so that the check query can be executed
1449  * more efficiently. It seems okay to do this because the query is simple
1450  * enough to not use a multiple of work_mem, and one typically would not
1451  * have many large foreign-key validations happening concurrently. So
1452  * this seems to meet the criteria for being considered a "maintenance"
1453  * operation, and accordingly we use maintenance_work_mem. However, we
1454  * must also set hash_mem_multiplier to 1, since it is surely not okay to
1455  * let that get applied to the maintenance_work_mem value.
1456  *
1457  * We use the equivalent of a function SET option to allow the setting to
1458  * persist for exactly the duration of the check query. guc.c also takes
1459  * care of undoing the setting on error.
1460  */
1461  save_nestlevel = NewGUCNestLevel();
1462 
1463  snprintf(workmembuf, sizeof(workmembuf), "%d", maintenance_work_mem);
1464  (void) set_config_option("work_mem", workmembuf,
1466  GUC_ACTION_SAVE, true, 0, false);
1467  (void) set_config_option("hash_mem_multiplier", "1",
1469  GUC_ACTION_SAVE, true, 0, false);
1470 
1471  if (SPI_connect() != SPI_OK_CONNECT)
1472  elog(ERROR, "SPI_connect failed");
1473 
1474  /*
1475  * Generate the plan. We don't need to cache it, and there are no
1476  * arguments to the plan.
1477  */
1478  qplan = SPI_prepare(querybuf.data, 0, NULL);
1479 
1480  if (qplan == NULL)
1481  elog(ERROR, "SPI_prepare returned %s for %s",
1483 
1484  /*
1485  * Run the plan. For safety we force a current snapshot to be used. (In
1486  * transaction-snapshot mode, this arguably violates transaction isolation
1487  * rules, but we really haven't got much choice.) We don't need to
1488  * register the snapshot, because SPI_execute_snapshot will see to it. We
1489  * need at most one tuple returned, so pass limit = 1.
1490  */
1491  spi_result = SPI_execute_snapshot(qplan,
1492  NULL, NULL,
1495  true, false, 1);
1496 
1497  /* Check result */
1498  if (spi_result != SPI_OK_SELECT)
1499  elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
1500 
1501  /* Did we find a tuple violating the constraint? */
1502  if (SPI_processed > 0)
1503  {
1504  TupleTableSlot *slot;
1505  HeapTuple tuple = SPI_tuptable->vals[0];
1506  TupleDesc tupdesc = SPI_tuptable->tupdesc;
1507  RI_ConstraintInfo fake_riinfo;
1508 
1509  slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual);
1510 
1511  heap_deform_tuple(tuple, tupdesc,
1512  slot->tts_values, slot->tts_isnull);
1513  ExecStoreVirtualTuple(slot);
1514 
1515  /*
1516  * The columns to look at in the result tuple are 1..N, not whatever
1517  * they are in the fk_rel. Hack up riinfo so that the subroutines
1518  * called here will behave properly.
1519  *
1520  * In addition to this, we have to pass the correct tupdesc to
1521  * ri_ReportViolation, overriding its normal habit of using the pk_rel
1522  * or fk_rel's tupdesc.
1523  */
1524  memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo));
1525  for (int i = 0; i < fake_riinfo.nkeys; i++)
1526  fake_riinfo.fk_attnums[i] = i + 1;
1527 
1528  /*
1529  * If it's MATCH FULL, and there are any nulls in the FK keys,
1530  * complain about that rather than the lack of a match. MATCH FULL
1531  * disallows partially-null FK rows.
1532  */
1533  if (fake_riinfo.confmatchtype == FKCONSTR_MATCH_FULL &&
1534  ri_NullCheck(tupdesc, slot, &fake_riinfo, false) != RI_KEYS_NONE_NULL)
1535  ereport(ERROR,
1536  (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
1537  errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
1538  RelationGetRelationName(fk_rel),
1539  NameStr(fake_riinfo.conname)),
1540  errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
1541  errtableconstraint(fk_rel,
1542  NameStr(fake_riinfo.conname))));
1543 
1544  /*
1545  * We tell ri_ReportViolation we were doing the RI_PLAN_CHECK_LOOKUPPK
1546  * query, which isn't true, but will cause it to use
1547  * fake_riinfo.fk_attnums as we need.
1548  */
1549  ri_ReportViolation(&fake_riinfo,
1550  pk_rel, fk_rel,
1551  slot, tupdesc,
1552  RI_PLAN_CHECK_LOOKUPPK, false);
1553 
1555  }
1556 
1557  if (SPI_finish() != SPI_OK_FINISH)
1558  elog(ERROR, "SPI_finish failed");
1559 
1560  /*
1561  * Restore work_mem and hash_mem_multiplier.
1562  */
1563  AtEOXact_GUC(true, save_nestlevel);
1564 
1565  return true;
1566 }
1567 
1568 /*
1569  * RI_PartitionRemove_Check -
1570  *
1571  * Verify no referencing values exist, when a partition is detached on
1572  * the referenced side of a foreign key constraint.
1573  */
1574 void
1576 {
1577  const RI_ConstraintInfo *riinfo;
1578  StringInfoData querybuf;
1579  char *constraintDef;
1580  char pkrelname[MAX_QUOTED_REL_NAME_LEN];
1581  char fkrelname[MAX_QUOTED_REL_NAME_LEN];
1582  char pkattname[MAX_QUOTED_NAME_LEN + 3];
1583  char fkattname[MAX_QUOTED_NAME_LEN + 3];
1584  const char *sep;
1585  const char *fk_only;
1586  int save_nestlevel;
1587  char workmembuf[32];
1588  int spi_result;
1589  SPIPlanPtr qplan;
1590  int i;
1591 
1592  riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
1593 
1594  /*
1595  * We don't check permissions before displaying the error message, on the
1596  * assumption that the user detaching the partition must have enough
1597  * privileges to examine the table contents anyhow.
1598  */
1599 
1600  /*----------
1601  * The query string built is:
1602  * SELECT fk.keycols FROM [ONLY] relname fk
1603  * JOIN pkrelname pk
1604  * ON (pk.pkkeycol1=fk.keycol1 [AND ...])
1605  * WHERE (<partition constraint>) AND
1606  * For MATCH SIMPLE:
1607  * (fk.keycol1 IS NOT NULL [AND ...])
1608  * For MATCH FULL:
1609  * (fk.keycol1 IS NOT NULL [OR ...])
1610  *
1611  * We attach COLLATE clauses to the operators when comparing columns
1612  * that have different collations.
1613  *----------
1614  */
1615  initStringInfo(&querybuf);
1616  appendStringInfoString(&querybuf, "SELECT ");
1617  sep = "";
1618  for (i = 0; i < riinfo->nkeys; i++)
1619  {
1620  quoteOneName(fkattname,
1621  RIAttName(fk_rel, riinfo->fk_attnums[i]));
1622  appendStringInfo(&querybuf, "%sfk.%s", sep, fkattname);
1623  sep = ", ";
1624  }
1625 
1626  quoteRelationName(pkrelname, pk_rel);
1627  quoteRelationName(fkrelname, fk_rel);
1628  fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
1629  "" : "ONLY ";
1630  appendStringInfo(&querybuf,
1631  " FROM %s%s fk JOIN %s pk ON",
1632  fk_only, fkrelname, pkrelname);
1633  strcpy(pkattname, "pk.");
1634  strcpy(fkattname, "fk.");
1635  sep = "(";
1636  for (i = 0; i < riinfo->nkeys; i++)
1637  {
1638  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
1639  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
1640  Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
1641  Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
1642 
1643  quoteOneName(pkattname + 3,
1644  RIAttName(pk_rel, riinfo->pk_attnums[i]));
1645  quoteOneName(fkattname + 3,
1646  RIAttName(fk_rel, riinfo->fk_attnums[i]));
1647  ri_GenerateQual(&querybuf, sep,
1648  pkattname, pk_type,
1649  riinfo->pf_eq_oprs[i],
1650  fkattname, fk_type);
1651  if (pk_coll != fk_coll)
1652  ri_GenerateQualCollation(&querybuf, pk_coll);
1653  sep = "AND";
1654  }
1655 
1656  /*
1657  * Start the WHERE clause with the partition constraint (except if this is
1658  * the default partition and there's no other partition, because the
1659  * partition constraint is the empty string in that case.)
1660  */
1661  constraintDef = pg_get_partconstrdef_string(RelationGetRelid(pk_rel), "pk");
1662  if (constraintDef && constraintDef[0] != '\0')
1663  appendStringInfo(&querybuf, ") WHERE %s AND (",
1664  constraintDef);
1665  else
1666  appendStringInfoString(&querybuf, ") WHERE (");
1667 
1668  sep = "";
1669  for (i = 0; i < riinfo->nkeys; i++)
1670  {
1671  quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i]));
1672  appendStringInfo(&querybuf,
1673  "%sfk.%s IS NOT NULL",
1674  sep, fkattname);
1675  switch (riinfo->confmatchtype)
1676  {
1677  case FKCONSTR_MATCH_SIMPLE:
1678  sep = " AND ";
1679  break;
1680  case FKCONSTR_MATCH_FULL:
1681  sep = " OR ";
1682  break;
1683  }
1684  }
1685  appendStringInfoChar(&querybuf, ')');
1686 
1687  /*
1688  * Temporarily increase work_mem so that the check query can be executed
1689  * more efficiently. It seems okay to do this because the query is simple
1690  * enough to not use a multiple of work_mem, and one typically would not
1691  * have many large foreign-key validations happening concurrently. So
1692  * this seems to meet the criteria for being considered a "maintenance"
1693  * operation, and accordingly we use maintenance_work_mem. However, we
1694  * must also set hash_mem_multiplier to 1, since it is surely not okay to
1695  * let that get applied to the maintenance_work_mem value.
1696  *
1697  * We use the equivalent of a function SET option to allow the setting to
1698  * persist for exactly the duration of the check query. guc.c also takes
1699  * care of undoing the setting on error.
1700  */
1701  save_nestlevel = NewGUCNestLevel();
1702 
1703  snprintf(workmembuf, sizeof(workmembuf), "%d", maintenance_work_mem);
1704  (void) set_config_option("work_mem", workmembuf,
1706  GUC_ACTION_SAVE, true, 0, false);
1707  (void) set_config_option("hash_mem_multiplier", "1",
1709  GUC_ACTION_SAVE, true, 0, false);
1710 
1711  if (SPI_connect() != SPI_OK_CONNECT)
1712  elog(ERROR, "SPI_connect failed");
1713 
1714  /*
1715  * Generate the plan. We don't need to cache it, and there are no
1716  * arguments to the plan.
1717  */
1718  qplan = SPI_prepare(querybuf.data, 0, NULL);
1719 
1720  if (qplan == NULL)
1721  elog(ERROR, "SPI_prepare returned %s for %s",
1723 
1724  /*
1725  * Run the plan. For safety we force a current snapshot to be used. (In
1726  * transaction-snapshot mode, this arguably violates transaction isolation
1727  * rules, but we really haven't got much choice.) We don't need to
1728  * register the snapshot, because SPI_execute_snapshot will see to it. We
1729  * need at most one tuple returned, so pass limit = 1.
1730  */
1731  spi_result = SPI_execute_snapshot(qplan,
1732  NULL, NULL,
1735  true, false, 1);
1736 
1737  /* Check result */
1738  if (spi_result != SPI_OK_SELECT)
1739  elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
1740 
1741  /* Did we find a tuple that would violate the constraint? */
1742  if (SPI_processed > 0)
1743  {
1744  TupleTableSlot *slot;
1745  HeapTuple tuple = SPI_tuptable->vals[0];
1746  TupleDesc tupdesc = SPI_tuptable->tupdesc;
1747  RI_ConstraintInfo fake_riinfo;
1748 
1749  slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual);
1750 
1751  heap_deform_tuple(tuple, tupdesc,
1752  slot->tts_values, slot->tts_isnull);
1753  ExecStoreVirtualTuple(slot);
1754 
1755  /*
1756  * The columns to look at in the result tuple are 1..N, not whatever
1757  * they are in the fk_rel. Hack up riinfo so that ri_ReportViolation
1758  * will behave properly.
1759  *
1760  * In addition to this, we have to pass the correct tupdesc to
1761  * ri_ReportViolation, overriding its normal habit of using the pk_rel
1762  * or fk_rel's tupdesc.
1763  */
1764  memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo));
1765  for (i = 0; i < fake_riinfo.nkeys; i++)
1766  fake_riinfo.pk_attnums[i] = i + 1;
1767 
1768  ri_ReportViolation(&fake_riinfo, pk_rel, fk_rel,
1769  slot, tupdesc, 0, true);
1770  }
1771 
1772  if (SPI_finish() != SPI_OK_FINISH)
1773  elog(ERROR, "SPI_finish failed");
1774 
1775  /*
1776  * Restore work_mem and hash_mem_multiplier.
1777  */
1778  AtEOXact_GUC(true, save_nestlevel);
1779 }
1780 
1781 
1782 /* ----------
1783  * Local functions below
1784  * ----------
1785  */
1786 
1787 
1788 /*
1789  * quoteOneName --- safely quote a single SQL name
1790  *
1791  * buffer must be MAX_QUOTED_NAME_LEN long (includes room for \0)
1792  */
1793 static void
1794 quoteOneName(char *buffer, const char *name)
1795 {
1796  /* Rather than trying to be smart, just always quote it. */
1797  *buffer++ = '"';
1798  while (*name)
1799  {
1800  if (*name == '"')
1801  *buffer++ = '"';
1802  *buffer++ = *name++;
1803  }
1804  *buffer++ = '"';
1805  *buffer = '\0';
1806 }
1807 
1808 /*
1809  * quoteRelationName --- safely quote a fully qualified relation name
1810  *
1811  * buffer must be MAX_QUOTED_REL_NAME_LEN long (includes room for \0)
1812  */
1813 static void
1814 quoteRelationName(char *buffer, Relation rel)
1815 {
1817  buffer += strlen(buffer);
1818  *buffer++ = '.';
1819  quoteOneName(buffer, RelationGetRelationName(rel));
1820 }
1821 
1822 /*
1823  * ri_GenerateQual --- generate a WHERE clause equating two variables
1824  *
1825  * This basically appends " sep leftop op rightop" to buf, adding casts
1826  * and schema qualification as needed to ensure that the parser will select
1827  * the operator we specify. leftop and rightop should be parenthesized
1828  * if they aren't variables or parameters.
1829  */
1830 static void
1832  const char *sep,
1833  const char *leftop, Oid leftoptype,
1834  Oid opoid,
1835  const char *rightop, Oid rightoptype)
1836 {
1837  appendStringInfo(buf, " %s ", sep);
1838  generate_operator_clause(buf, leftop, leftoptype, opoid,
1839  rightop, rightoptype);
1840 }
1841 
1842 /*
1843  * ri_GenerateQualCollation --- add a COLLATE spec to a WHERE clause
1844  *
1845  * At present, we intentionally do not use this function for RI queries that
1846  * compare a variable to a $n parameter. Since parameter symbols always have
1847  * default collation, the effect will be to use the variable's collation.
1848  * Now that is only strictly correct when testing the referenced column, since
1849  * the SQL standard specifies that RI comparisons should use the referenced
1850  * column's collation. However, so long as all collations have the same
1851  * notion of equality (which they do, because texteq reduces to bitwise
1852  * equality), there's no visible semantic impact from using the referencing
1853  * column's collation when testing it, and this is a good thing to do because
1854  * it lets us use a normal index on the referencing column. However, we do
1855  * have to use this function when directly comparing the referencing and
1856  * referenced columns, if they are of different collations; else the parser
1857  * will fail to resolve the collation to use.
1858  */
1859 static void
1861 {
1862  HeapTuple tp;
1863  Form_pg_collation colltup;
1864  char *collname;
1865  char onename[MAX_QUOTED_NAME_LEN];
1866 
1867  /* Nothing to do if it's a noncollatable data type */
1868  if (!OidIsValid(collation))
1869  return;
1870 
1871  tp = SearchSysCache1(COLLOID, ObjectIdGetDatum(collation));
1872  if (!HeapTupleIsValid(tp))
1873  elog(ERROR, "cache lookup failed for collation %u", collation);
1874  colltup = (Form_pg_collation) GETSTRUCT(tp);
1875  collname = NameStr(colltup->collname);
1876 
1877  /*
1878  * We qualify the name always, for simplicity and to ensure the query is
1879  * not search-path-dependent.
1880  */
1881  quoteOneName(onename, get_namespace_name(colltup->collnamespace));
1882  appendStringInfo(buf, " COLLATE %s", onename);
1883  quoteOneName(onename, collname);
1884  appendStringInfo(buf, ".%s", onename);
1885 
1886  ReleaseSysCache(tp);
1887 }
1888 
1889 /* ----------
1890  * ri_BuildQueryKey -
1891  *
1892  * Construct a hashtable key for a prepared SPI plan of an FK constraint.
1893  *
1894  * key: output argument, *key is filled in based on the other arguments
1895  * riinfo: info from pg_constraint entry
1896  * constr_queryno: an internal number identifying the query type
1897  * (see RI_PLAN_XXX constants at head of file)
1898  * ----------
1899  */
1900 static void
1902  int32 constr_queryno)
1903 {
1904  /*
1905  * We assume struct RI_QueryKey contains no padding bytes, else we'd need
1906  * to use memset to clear them.
1907  */
1908  key->constr_id = riinfo->constraint_id;
1909  key->constr_queryno = constr_queryno;
1910 }
1911 
1912 /*
1913  * Check that RI trigger function was called in expected context
1914  */
1915 static void
1916 ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname, int tgkind)
1917 {
1918  TriggerData *trigdata = (TriggerData *) fcinfo->context;
1919 
1920  if (!CALLED_AS_TRIGGER(fcinfo))
1921  ereport(ERROR,
1922  (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
1923  errmsg("function \"%s\" was not called by trigger manager", funcname)));
1924 
1925  /*
1926  * Check proper event
1927  */
1928  if (!TRIGGER_FIRED_AFTER(trigdata->tg_event) ||
1929  !TRIGGER_FIRED_FOR_ROW(trigdata->tg_event))
1930  ereport(ERROR,
1931  (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
1932  errmsg("function \"%s\" must be fired AFTER ROW", funcname)));
1933 
1934  switch (tgkind)
1935  {
1936  case RI_TRIGTYPE_INSERT:
1937  if (!TRIGGER_FIRED_BY_INSERT(trigdata->tg_event))
1938  ereport(ERROR,
1939  (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
1940  errmsg("function \"%s\" must be fired for INSERT", funcname)));
1941  break;
1942  case RI_TRIGTYPE_UPDATE:
1943  if (!TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
1944  ereport(ERROR,
1945  (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
1946  errmsg("function \"%s\" must be fired for UPDATE", funcname)));
1947  break;
1948  case RI_TRIGTYPE_DELETE:
1949  if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event))
1950  ereport(ERROR,
1951  (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
1952  errmsg("function \"%s\" must be fired for DELETE", funcname)));
1953  break;
1954  }
1955 }
1956 
1957 
1958 /*
1959  * Fetch the RI_ConstraintInfo struct for the trigger's FK constraint.
1960  */
1961 static const RI_ConstraintInfo *
1962 ri_FetchConstraintInfo(Trigger *trigger, Relation trig_rel, bool rel_is_pk)
1963 {
1964  Oid constraintOid = trigger->tgconstraint;
1965  const RI_ConstraintInfo *riinfo;
1966 
1967  /*
1968  * Check that the FK constraint's OID is available; it might not be if
1969  * we've been invoked via an ordinary trigger or an old-style "constraint
1970  * trigger".
1971  */
1972  if (!OidIsValid(constraintOid))
1973  ereport(ERROR,
1974  (errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
1975  errmsg("no pg_constraint entry for trigger \"%s\" on table \"%s\"",
1976  trigger->tgname, RelationGetRelationName(trig_rel)),
1977  errhint("Remove this referential integrity trigger and its mates, then do ALTER TABLE ADD CONSTRAINT.")));
1978 
1979  /* Find or create a hashtable entry for the constraint */
1980  riinfo = ri_LoadConstraintInfo(constraintOid);
1981 
1982  /* Do some easy cross-checks against the trigger call data */
1983  if (rel_is_pk)
1984  {
1985  if (riinfo->fk_relid != trigger->tgconstrrelid ||
1986  riinfo->pk_relid != RelationGetRelid(trig_rel))
1987  elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
1988  trigger->tgname, RelationGetRelationName(trig_rel));
1989  }
1990  else
1991  {
1992  if (riinfo->fk_relid != RelationGetRelid(trig_rel) ||
1993  riinfo->pk_relid != trigger->tgconstrrelid)
1994  elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
1995  trigger->tgname, RelationGetRelationName(trig_rel));
1996  }
1997 
1998  if (riinfo->confmatchtype != FKCONSTR_MATCH_FULL &&
2001  elog(ERROR, "unrecognized confmatchtype: %d",
2002  riinfo->confmatchtype);
2003 
2004  if (riinfo->confmatchtype == FKCONSTR_MATCH_PARTIAL)
2005  ereport(ERROR,
2006  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2007  errmsg("MATCH PARTIAL not yet implemented")));
2008 
2009  return riinfo;
2010 }
2011 
2012 /*
2013  * Fetch or create the RI_ConstraintInfo struct for an FK constraint.
2014  */
2015 static const RI_ConstraintInfo *
2017 {
2018  RI_ConstraintInfo *riinfo;
2019  bool found;
2020  HeapTuple tup;
2021  Form_pg_constraint conForm;
2022 
2023  /*
2024  * On the first call initialize the hashtable
2025  */
2026  if (!ri_constraint_cache)
2028 
2029  /*
2030  * Find or create a hash entry. If we find a valid one, just return it.
2031  */
2032  riinfo = (RI_ConstraintInfo *) hash_search(ri_constraint_cache,
2033  (void *) &constraintOid,
2034  HASH_ENTER, &found);
2035  if (!found)
2036  riinfo->valid = false;
2037  else if (riinfo->valid)
2038  return riinfo;
2039 
2040  /*
2041  * Fetch the pg_constraint row so we can fill in the entry.
2042  */
2043  tup = SearchSysCache1(CONSTROID, ObjectIdGetDatum(constraintOid));
2044  if (!HeapTupleIsValid(tup)) /* should not happen */
2045  elog(ERROR, "cache lookup failed for constraint %u", constraintOid);
2046  conForm = (Form_pg_constraint) GETSTRUCT(tup);
2047 
2048  if (conForm->contype != CONSTRAINT_FOREIGN) /* should not happen */
2049  elog(ERROR, "constraint %u is not a foreign key constraint",
2050  constraintOid);
2051 
2052  /* And extract data */
2053  Assert(riinfo->constraint_id == constraintOid);
2055  ObjectIdGetDatum(constraintOid));
2056  memcpy(&riinfo->conname, &conForm->conname, sizeof(NameData));
2057  riinfo->pk_relid = conForm->confrelid;
2058  riinfo->fk_relid = conForm->conrelid;
2059  riinfo->confupdtype = conForm->confupdtype;
2060  riinfo->confdeltype = conForm->confdeltype;
2061  riinfo->confmatchtype = conForm->confmatchtype;
2062 
2064  &riinfo->nkeys,
2065  riinfo->fk_attnums,
2066  riinfo->pk_attnums,
2067  riinfo->pf_eq_oprs,
2068  riinfo->pp_eq_oprs,
2069  riinfo->ff_eq_oprs);
2070 
2071  ReleaseSysCache(tup);
2072 
2073  /*
2074  * For efficient processing of invalidation messages below, we keep a
2075  * doubly-linked list, and a count, of all currently valid entries.
2076  */
2077  dlist_push_tail(&ri_constraint_cache_valid_list, &riinfo->valid_link);
2079 
2080  riinfo->valid = true;
2081 
2082  return riinfo;
2083 }
2084 
2085 /*
2086  * Callback for pg_constraint inval events
2087  *
2088  * While most syscache callbacks just flush all their entries, pg_constraint
2089  * gets enough update traffic that it's probably worth being smarter.
2090  * Invalidate any ri_constraint_cache entry associated with the syscache
2091  * entry with the specified hash value, or all entries if hashvalue == 0.
2092  *
2093  * Note: at the time a cache invalidation message is processed there may be
2094  * active references to the cache. Because of this we never remove entries
2095  * from the cache, but only mark them invalid, which is harmless to active
2096  * uses. (Any query using an entry should hold a lock sufficient to keep that
2097  * data from changing under it --- but we may get cache flushes anyway.)
2098  */
2099 static void
2101 {
2102  dlist_mutable_iter iter;
2103 
2104  Assert(ri_constraint_cache != NULL);
2105 
2106  /*
2107  * If the list of currently valid entries gets excessively large, we mark
2108  * them all invalid so we can empty the list. This arrangement avoids
2109  * O(N^2) behavior in situations where a session touches many foreign keys
2110  * and also does many ALTER TABLEs, such as a restore from pg_dump.
2111  */
2113  hashvalue = 0; /* pretend it's a cache reset */
2114 
2115  dlist_foreach_modify(iter, &ri_constraint_cache_valid_list)
2116  {
2118  valid_link, iter.cur);
2119 
2120  if (hashvalue == 0 || riinfo->oidHashValue == hashvalue)
2121  {
2122  riinfo->valid = false;
2123  /* Remove invalidated entries from the list, too */
2124  dlist_delete(iter.cur);
2126  }
2127  }
2128 }
2129 
2130 
2131 /*
2132  * Prepare execution plan for a query to enforce an RI restriction
2133  */
2134 static SPIPlanPtr
2135 ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes,
2136  RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel)
2137 {
2138  SPIPlanPtr qplan;
2139  Relation query_rel;
2140  Oid save_userid;
2141  int save_sec_context;
2142 
2143  /*
2144  * Use the query type code to determine whether the query is run against
2145  * the PK or FK table; we'll do the check as that table's owner
2146  */
2147  if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK)
2148  query_rel = pk_rel;
2149  else
2150  query_rel = fk_rel;
2151 
2152  /* Switch to proper UID to perform check as */
2153  GetUserIdAndSecContext(&save_userid, &save_sec_context);
2154  SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner,
2155  save_sec_context | SECURITY_LOCAL_USERID_CHANGE |
2157 
2158  /* Create the plan */
2159  qplan = SPI_prepare(querystr, nargs, argtypes);
2160 
2161  if (qplan == NULL)
2162  elog(ERROR, "SPI_prepare returned %s for %s", SPI_result_code_string(SPI_result), querystr);
2163 
2164  /* Restore UID and security context */
2165  SetUserIdAndSecContext(save_userid, save_sec_context);
2166 
2167  /* Save the plan */
2168  SPI_keepplan(qplan);
2169  ri_HashPreparedPlan(qkey, qplan);
2170 
2171  return qplan;
2172 }
2173 
2174 /*
2175  * Perform a query to enforce an RI restriction
2176  */
2177 static bool
2179  RI_QueryKey *qkey, SPIPlanPtr qplan,
2180  Relation fk_rel, Relation pk_rel,
2181  TupleTableSlot *oldslot, TupleTableSlot *newslot,
2182  bool detectNewRows, int expect_OK)
2183 {
2184  Relation query_rel,
2185  source_rel;
2186  bool source_is_pk;
2187  Snapshot test_snapshot;
2188  Snapshot crosscheck_snapshot;
2189  int limit;
2190  int spi_result;
2191  Oid save_userid;
2192  int save_sec_context;
2193  Datum vals[RI_MAX_NUMKEYS * 2];
2194  char nulls[RI_MAX_NUMKEYS * 2];
2195 
2196  /*
2197  * Use the query type code to determine whether the query is run against
2198  * the PK or FK table; we'll do the check as that table's owner
2199  */
2200  if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK)
2201  query_rel = pk_rel;
2202  else
2203  query_rel = fk_rel;
2204 
2205  /*
2206  * The values for the query are taken from the table on which the trigger
2207  * is called - it is normally the other one with respect to query_rel. An
2208  * exception is ri_Check_Pk_Match(), which uses the PK table for both (and
2209  * sets queryno to RI_PLAN_CHECK_LOOKUPPK_FROM_PK). We might eventually
2210  * need some less klugy way to determine this.
2211  */
2213  {
2214  source_rel = fk_rel;
2215  source_is_pk = false;
2216  }
2217  else
2218  {
2219  source_rel = pk_rel;
2220  source_is_pk = true;
2221  }
2222 
2223  /* Extract the parameters to be passed into the query */
2224  if (newslot)
2225  {
2226  ri_ExtractValues(source_rel, newslot, riinfo, source_is_pk,
2227  vals, nulls);
2228  if (oldslot)
2229  ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk,
2230  vals + riinfo->nkeys, nulls + riinfo->nkeys);
2231  }
2232  else
2233  {
2234  ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk,
2235  vals, nulls);
2236  }
2237 
2238  /*
2239  * In READ COMMITTED mode, we just need to use an up-to-date regular
2240  * snapshot, and we will see all rows that could be interesting. But in
2241  * transaction-snapshot mode, we can't change the transaction snapshot. If
2242  * the caller passes detectNewRows == false then it's okay to do the query
2243  * with the transaction snapshot; otherwise we use a current snapshot, and
2244  * tell the executor to error out if it finds any rows under the current
2245  * snapshot that wouldn't be visible per the transaction snapshot. Note
2246  * that SPI_execute_snapshot will register the snapshots, so we don't need
2247  * to bother here.
2248  */
2249  if (IsolationUsesXactSnapshot() && detectNewRows)
2250  {
2251  CommandCounterIncrement(); /* be sure all my own work is visible */
2252  test_snapshot = GetLatestSnapshot();
2253  crosscheck_snapshot = GetTransactionSnapshot();
2254  }
2255  else
2256  {
2257  /* the default SPI behavior is okay */
2258  test_snapshot = InvalidSnapshot;
2259  crosscheck_snapshot = InvalidSnapshot;
2260  }
2261 
2262  /*
2263  * If this is a select query (e.g., for a 'no action' or 'restrict'
2264  * trigger), we only need to see if there is a single row in the table,
2265  * matching the key. Otherwise, limit = 0 - because we want the query to
2266  * affect ALL the matching rows.
2267  */
2268  limit = (expect_OK == SPI_OK_SELECT) ? 1 : 0;
2269 
2270  /* Switch to proper UID to perform check as */
2271  GetUserIdAndSecContext(&save_userid, &save_sec_context);
2272  SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner,
2273  save_sec_context | SECURITY_LOCAL_USERID_CHANGE |
2275 
2276  /* Finally we can run the query. */
2277  spi_result = SPI_execute_snapshot(qplan,
2278  vals, nulls,
2279  test_snapshot, crosscheck_snapshot,
2280  false, false, limit);
2281 
2282  /* Restore UID and security context */
2283  SetUserIdAndSecContext(save_userid, save_sec_context);
2284 
2285  /* Check result */
2286  if (spi_result < 0)
2287  elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
2288 
2289  if (expect_OK >= 0 && spi_result != expect_OK)
2290  ereport(ERROR,
2291  (errcode(ERRCODE_INTERNAL_ERROR),
2292  errmsg("referential integrity query on \"%s\" from constraint \"%s\" on \"%s\" gave unexpected result",
2293  RelationGetRelationName(pk_rel),
2294  NameStr(riinfo->conname),
2295  RelationGetRelationName(fk_rel)),
2296  errhint("This is most likely due to a rule having rewritten the query.")));
2297 
2298  /* XXX wouldn't it be clearer to do this part at the caller? */
2300  expect_OK == SPI_OK_SELECT &&
2302  ri_ReportViolation(riinfo,
2303  pk_rel, fk_rel,
2304  newslot ? newslot : oldslot,
2305  NULL,
2306  qkey->constr_queryno, false);
2307 
2308  return SPI_processed != 0;
2309 }
2310 
2311 /*
2312  * Extract fields from a tuple into Datum/nulls arrays
2313  */
2314 static void
2316  const RI_ConstraintInfo *riinfo, bool rel_is_pk,
2317  Datum *vals, char *nulls)
2318 {
2319  const int16 *attnums;
2320  bool isnull;
2321 
2322  if (rel_is_pk)
2323  attnums = riinfo->pk_attnums;
2324  else
2325  attnums = riinfo->fk_attnums;
2326 
2327  for (int i = 0; i < riinfo->nkeys; i++)
2328  {
2329  vals[i] = slot_getattr(slot, attnums[i], &isnull);
2330  nulls[i] = isnull ? 'n' : ' ';
2331  }
2332 }
2333 
2334 /*
2335  * Produce an error report
2336  *
2337  * If the failed constraint was on insert/update to the FK table,
2338  * we want the key names and values extracted from there, and the error
2339  * message to look like 'key blah is not present in PK'.
2340  * Otherwise, the attr names and values come from the PK table and the
2341  * message looks like 'key blah is still referenced from FK'.
2342  */
2343 static void
2345  Relation pk_rel, Relation fk_rel,
2346  TupleTableSlot *violatorslot, TupleDesc tupdesc,
2347  int queryno, bool partgone)
2348 {
2349  StringInfoData key_names;
2350  StringInfoData key_values;
2351  bool onfk;
2352  const int16 *attnums;
2353  Oid rel_oid;
2354  AclResult aclresult;
2355  bool has_perm = true;
2356 
2357  /*
2358  * Determine which relation to complain about. If tupdesc wasn't passed
2359  * by caller, assume the violator tuple came from there.
2360  */
2361  onfk = (queryno == RI_PLAN_CHECK_LOOKUPPK);
2362  if (onfk)
2363  {
2364  attnums = riinfo->fk_attnums;
2365  rel_oid = fk_rel->rd_id;
2366  if (tupdesc == NULL)
2367  tupdesc = fk_rel->rd_att;
2368  }
2369  else
2370  {
2371  attnums = riinfo->pk_attnums;
2372  rel_oid = pk_rel->rd_id;
2373  if (tupdesc == NULL)
2374  tupdesc = pk_rel->rd_att;
2375  }
2376 
2377  /*
2378  * Check permissions- if the user does not have access to view the data in
2379  * any of the key columns then we don't include the errdetail() below.
2380  *
2381  * Check if RLS is enabled on the relation first. If so, we don't return
2382  * any specifics to avoid leaking data.
2383  *
2384  * Check table-level permissions next and, failing that, column-level
2385  * privileges.
2386  *
2387  * When a partition at the referenced side is being detached/dropped, we
2388  * needn't check, since the user must be the table owner anyway.
2389  */
2390  if (partgone)
2391  has_perm = true;
2392  else if (check_enable_rls(rel_oid, InvalidOid, true) != RLS_ENABLED)
2393  {
2394  aclresult = pg_class_aclcheck(rel_oid, GetUserId(), ACL_SELECT);
2395  if (aclresult != ACLCHECK_OK)
2396  {
2397  /* Try for column-level permissions */
2398  for (int idx = 0; idx < riinfo->nkeys; idx++)
2399  {
2400  aclresult = pg_attribute_aclcheck(rel_oid, attnums[idx],
2401  GetUserId(),
2402  ACL_SELECT);
2403 
2404  /* No access to the key */
2405  if (aclresult != ACLCHECK_OK)
2406  {
2407  has_perm = false;
2408  break;
2409  }
2410  }
2411  }
2412  }
2413  else
2414  has_perm = false;
2415 
2416  if (has_perm)
2417  {
2418  /* Get printable versions of the keys involved */
2419  initStringInfo(&key_names);
2420  initStringInfo(&key_values);
2421  for (int idx = 0; idx < riinfo->nkeys; idx++)
2422  {
2423  int fnum = attnums[idx];
2424  Form_pg_attribute att = TupleDescAttr(tupdesc, fnum - 1);
2425  char *name,
2426  *val;
2427  Datum datum;
2428  bool isnull;
2429 
2430  name = NameStr(att->attname);
2431 
2432  datum = slot_getattr(violatorslot, fnum, &isnull);
2433  if (!isnull)
2434  {
2435  Oid foutoid;
2436  bool typisvarlena;
2437 
2438  getTypeOutputInfo(att->atttypid, &foutoid, &typisvarlena);
2439  val = OidOutputFunctionCall(foutoid, datum);
2440  }
2441  else
2442  val = "null";
2443 
2444  if (idx > 0)
2445  {
2446  appendStringInfoString(&key_names, ", ");
2447  appendStringInfoString(&key_values, ", ");
2448  }
2449  appendStringInfoString(&key_names, name);
2450  appendStringInfoString(&key_values, val);
2451  }
2452  }
2453 
2454  if (partgone)
2455  ereport(ERROR,
2456  (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
2457  errmsg("removing partition \"%s\" violates foreign key constraint \"%s\"",
2458  RelationGetRelationName(pk_rel),
2459  NameStr(riinfo->conname)),
2460  errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
2461  key_names.data, key_values.data,
2462  RelationGetRelationName(fk_rel)),
2463  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
2464  else if (onfk)
2465  ereport(ERROR,
2466  (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
2467  errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
2468  RelationGetRelationName(fk_rel),
2469  NameStr(riinfo->conname)),
2470  has_perm ?
2471  errdetail("Key (%s)=(%s) is not present in table \"%s\".",
2472  key_names.data, key_values.data,
2473  RelationGetRelationName(pk_rel)) :
2474  errdetail("Key is not present in table \"%s\".",
2475  RelationGetRelationName(pk_rel)),
2476  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
2477  else
2478  ereport(ERROR,
2479  (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
2480  errmsg("update or delete on table \"%s\" violates foreign key constraint \"%s\" on table \"%s\"",
2481  RelationGetRelationName(pk_rel),
2482  NameStr(riinfo->conname),
2483  RelationGetRelationName(fk_rel)),
2484  has_perm ?
2485  errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
2486  key_names.data, key_values.data,
2487  RelationGetRelationName(fk_rel)) :
2488  errdetail("Key is still referenced from table \"%s\".",
2489  RelationGetRelationName(fk_rel)),
2490  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
2491 }
2492 
2493 
2494 /*
2495  * ri_NullCheck -
2496  *
2497  * Determine the NULL state of all key values in a tuple
2498  *
2499  * Returns one of RI_KEYS_ALL_NULL, RI_KEYS_NONE_NULL or RI_KEYS_SOME_NULL.
2500  */
2501 static int
2503  TupleTableSlot *slot,
2504  const RI_ConstraintInfo *riinfo, bool rel_is_pk)
2505 {
2506  const int16 *attnums;
2507  bool allnull = true;
2508  bool nonenull = true;
2509 
2510  if (rel_is_pk)
2511  attnums = riinfo->pk_attnums;
2512  else
2513  attnums = riinfo->fk_attnums;
2514 
2515  for (int i = 0; i < riinfo->nkeys; i++)
2516  {
2517  if (slot_attisnull(slot, attnums[i]))
2518  nonenull = false;
2519  else
2520  allnull = false;
2521  }
2522 
2523  if (allnull)
2524  return RI_KEYS_ALL_NULL;
2525 
2526  if (nonenull)
2527  return RI_KEYS_NONE_NULL;
2528 
2529  return RI_KEYS_SOME_NULL;
2530 }
2531 
2532 
2533 /*
2534  * ri_InitHashTables -
2535  *
2536  * Initialize our internal hash tables.
2537  */
2538 static void
2540 {
2541  HASHCTL ctl;
2542 
2543  ctl.keysize = sizeof(Oid);
2544  ctl.entrysize = sizeof(RI_ConstraintInfo);
2545  ri_constraint_cache = hash_create("RI constraint cache",
2547  &ctl, HASH_ELEM | HASH_BLOBS);
2548 
2549  /* Arrange to flush cache on pg_constraint changes */
2552  (Datum) 0);
2553 
2554  ctl.keysize = sizeof(RI_QueryKey);
2555  ctl.entrysize = sizeof(RI_QueryHashEntry);
2556  ri_query_cache = hash_create("RI query cache",
2558  &ctl, HASH_ELEM | HASH_BLOBS);
2559 
2560  ctl.keysize = sizeof(RI_CompareKey);
2561  ctl.entrysize = sizeof(RI_CompareHashEntry);
2562  ri_compare_cache = hash_create("RI compare cache",
2564  &ctl, HASH_ELEM | HASH_BLOBS);
2565 }
2566 
2567 
2568 /*
2569  * ri_FetchPreparedPlan -
2570  *
2571  * Lookup for a query key in our private hash table of prepared
2572  * and saved SPI execution plans. Return the plan if found or NULL.
2573  */
2574 static SPIPlanPtr
2576 {
2577  RI_QueryHashEntry *entry;
2578  SPIPlanPtr plan;
2579 
2580  /*
2581  * On the first call initialize the hashtable
2582  */
2583  if (!ri_query_cache)
2585 
2586  /*
2587  * Lookup for the key
2588  */
2589  entry = (RI_QueryHashEntry *) hash_search(ri_query_cache,
2590  (void *) key,
2591  HASH_FIND, NULL);
2592  if (entry == NULL)
2593  return NULL;
2594 
2595  /*
2596  * Check whether the plan is still valid. If it isn't, we don't want to
2597  * simply rely on plancache.c to regenerate it; rather we should start
2598  * from scratch and rebuild the query text too. This is to cover cases
2599  * such as table/column renames. We depend on the plancache machinery to
2600  * detect possible invalidations, though.
2601  *
2602  * CAUTION: this check is only trustworthy if the caller has already
2603  * locked both FK and PK rels.
2604  */
2605  plan = entry->plan;
2606  if (plan && SPI_plan_is_valid(plan))
2607  return plan;
2608 
2609  /*
2610  * Otherwise we might as well flush the cached plan now, to free a little
2611  * memory space before we make a new one.
2612  */
2613  entry->plan = NULL;
2614  if (plan)
2615  SPI_freeplan(plan);
2616 
2617  return NULL;
2618 }
2619 
2620 
2621 /*
2622  * ri_HashPreparedPlan -
2623  *
2624  * Add another plan to our private SPI query plan hashtable.
2625  */
2626 static void
2628 {
2629  RI_QueryHashEntry *entry;
2630  bool found;
2631 
2632  /*
2633  * On the first call initialize the hashtable
2634  */
2635  if (!ri_query_cache)
2637 
2638  /*
2639  * Add the new plan. We might be overwriting an entry previously found
2640  * invalid by ri_FetchPreparedPlan.
2641  */
2642  entry = (RI_QueryHashEntry *) hash_search(ri_query_cache,
2643  (void *) key,
2644  HASH_ENTER, &found);
2645  Assert(!found || entry->plan == NULL);
2646  entry->plan = plan;
2647 }
2648 
2649 
2650 /*
2651  * ri_KeysEqual -
2652  *
2653  * Check if all key values in OLD and NEW are equal.
2654  *
2655  * Note: at some point we might wish to redefine this as checking for
2656  * "IS NOT DISTINCT" rather than "=", that is, allow two nulls to be
2657  * considered equal. Currently there is no need since all callers have
2658  * previously found at least one of the rows to contain no nulls.
2659  */
2660 static bool
2662  const RI_ConstraintInfo *riinfo, bool rel_is_pk)
2663 {
2664  const int16 *attnums;
2665 
2666  if (rel_is_pk)
2667  attnums = riinfo->pk_attnums;
2668  else
2669  attnums = riinfo->fk_attnums;
2670 
2671  /* XXX: could be worthwhile to fetch all necessary attrs at once */
2672  for (int i = 0; i < riinfo->nkeys; i++)
2673  {
2674  Datum oldvalue;
2675  Datum newvalue;
2676  bool isnull;
2677 
2678  /*
2679  * Get one attribute's oldvalue. If it is NULL - they're not equal.
2680  */
2681  oldvalue = slot_getattr(oldslot, attnums[i], &isnull);
2682  if (isnull)
2683  return false;
2684 
2685  /*
2686  * Get one attribute's newvalue. If it is NULL - they're not equal.
2687  */
2688  newvalue = slot_getattr(newslot, attnums[i], &isnull);
2689  if (isnull)
2690  return false;
2691 
2692  if (rel_is_pk)
2693  {
2694  /*
2695  * If we are looking at the PK table, then do a bytewise
2696  * comparison. We must propagate PK changes if the value is
2697  * changed to one that "looks" different but would compare as
2698  * equal using the equality operator. This only makes a
2699  * difference for ON UPDATE CASCADE, but for consistency we treat
2700  * all changes to the PK the same.
2701  */
2702  Form_pg_attribute att = TupleDescAttr(oldslot->tts_tupleDescriptor, attnums[i] - 1);
2703 
2704  if (!datum_image_eq(oldvalue, newvalue, att->attbyval, att->attlen))
2705  return false;
2706  }
2707  else
2708  {
2709  /*
2710  * For the FK table, compare with the appropriate equality
2711  * operator. Changes that compare equal will still satisfy the
2712  * constraint after the update.
2713  */
2714  if (!ri_AttributesEqual(riinfo->ff_eq_oprs[i], RIAttType(rel, attnums[i]),
2715  oldvalue, newvalue))
2716  return false;
2717  }
2718  }
2719 
2720  return true;
2721 }
2722 
2723 
2724 /*
2725  * ri_AttributesEqual -
2726  *
2727  * Call the appropriate equality comparison operator for two values.
2728  *
2729  * NB: we have already checked that neither value is null.
2730  */
2731 static bool
2732 ri_AttributesEqual(Oid eq_opr, Oid typeid,
2733  Datum oldvalue, Datum newvalue)
2734 {
2735  RI_CompareHashEntry *entry = ri_HashCompareOp(eq_opr, typeid);
2736 
2737  /* Do we need to cast the values? */
2738  if (OidIsValid(entry->cast_func_finfo.fn_oid))
2739  {
2740  oldvalue = FunctionCall3(&entry->cast_func_finfo,
2741  oldvalue,
2742  Int32GetDatum(-1), /* typmod */
2743  BoolGetDatum(false)); /* implicit coercion */
2744  newvalue = FunctionCall3(&entry->cast_func_finfo,
2745  newvalue,
2746  Int32GetDatum(-1), /* typmod */
2747  BoolGetDatum(false)); /* implicit coercion */
2748  }
2749 
2750  /*
2751  * Apply the comparison operator.
2752  *
2753  * Note: This function is part of a call stack that determines whether an
2754  * update to a row is significant enough that it needs checking or action
2755  * on the other side of a foreign-key constraint. Therefore, the
2756  * comparison here would need to be done with the collation of the *other*
2757  * table. For simplicity (e.g., we might not even have the other table
2758  * open), we'll just use the default collation here, which could lead to
2759  * some false negatives. All this would break if we ever allow
2760  * database-wide collations to be nondeterministic.
2761  */
2763  DEFAULT_COLLATION_OID,
2764  oldvalue, newvalue));
2765 }
2766 
2767 /*
2768  * ri_HashCompareOp -
2769  *
2770  * See if we know how to compare two values, and create a new hash entry
2771  * if not.
2772  */
2773 static RI_CompareHashEntry *
2774 ri_HashCompareOp(Oid eq_opr, Oid typeid)
2775 {
2777  RI_CompareHashEntry *entry;
2778  bool found;
2779 
2780  /*
2781  * On the first call initialize the hashtable
2782  */
2783  if (!ri_compare_cache)
2785 
2786  /*
2787  * Find or create a hash entry. Note we're assuming RI_CompareKey
2788  * contains no struct padding.
2789  */
2790  key.eq_opr = eq_opr;
2791  key.typeid = typeid;
2792  entry = (RI_CompareHashEntry *) hash_search(ri_compare_cache,
2793  (void *) &key,
2794  HASH_ENTER, &found);
2795  if (!found)
2796  entry->valid = false;
2797 
2798  /*
2799  * If not already initialized, do so. Since we'll keep this hash entry
2800  * for the life of the backend, put any subsidiary info for the function
2801  * cache structs into TopMemoryContext.
2802  */
2803  if (!entry->valid)
2804  {
2805  Oid lefttype,
2806  righttype,
2807  castfunc;
2808  CoercionPathType pathtype;
2809 
2810  /* We always need to know how to call the equality operator */
2811  fmgr_info_cxt(get_opcode(eq_opr), &entry->eq_opr_finfo,
2813 
2814  /*
2815  * If we chose to use a cast from FK to PK type, we may have to apply
2816  * the cast function to get to the operator's input type.
2817  *
2818  * XXX eventually it would be good to support array-coercion cases
2819  * here and in ri_AttributesEqual(). At the moment there is no point
2820  * because cases involving nonidentical array types will be rejected
2821  * at constraint creation time.
2822  *
2823  * XXX perhaps also consider supporting CoerceViaIO? No need at the
2824  * moment since that will never be generated for implicit coercions.
2825  */
2826  op_input_types(eq_opr, &lefttype, &righttype);
2827  Assert(lefttype == righttype);
2828  if (typeid == lefttype)
2829  castfunc = InvalidOid; /* simplest case */
2830  else
2831  {
2832  pathtype = find_coercion_pathway(lefttype, typeid,
2834  &castfunc);
2835  if (pathtype != COERCION_PATH_FUNC &&
2836  pathtype != COERCION_PATH_RELABELTYPE)
2837  {
2838  /*
2839  * The declared input type of the eq_opr might be a
2840  * polymorphic type such as ANYARRAY or ANYENUM, or other
2841  * special cases such as RECORD; find_coercion_pathway
2842  * currently doesn't subsume these special cases.
2843  */
2844  if (!IsBinaryCoercible(typeid, lefttype))
2845  elog(ERROR, "no conversion function from %s to %s",
2846  format_type_be(typeid),
2847  format_type_be(lefttype));
2848  }
2849  }
2850  if (OidIsValid(castfunc))
2851  fmgr_info_cxt(castfunc, &entry->cast_func_finfo,
2853  else
2855  entry->valid = true;
2856  }
2857 
2858  return entry;
2859 }
2860 
2861 
2862 /*
2863  * Given a trigger function OID, determine whether it is an RI trigger,
2864  * and if so whether it is attached to PK or FK relation.
2865  */
2866 int
2868 {
2869  switch (tgfoid)
2870  {
2871  case F_RI_FKEY_CASCADE_DEL:
2872  case F_RI_FKEY_CASCADE_UPD:
2873  case F_RI_FKEY_RESTRICT_DEL:
2874  case F_RI_FKEY_RESTRICT_UPD:
2875  case F_RI_FKEY_SETNULL_DEL:
2876  case F_RI_FKEY_SETNULL_UPD:
2877  case F_RI_FKEY_SETDEFAULT_DEL:
2878  case F_RI_FKEY_SETDEFAULT_UPD:
2879  case F_RI_FKEY_NOACTION_DEL:
2880  case F_RI_FKEY_NOACTION_UPD:
2881  return RI_TRIGGER_PK;
2882 
2883  case F_RI_FKEY_CHECK_INS:
2884  case F_RI_FKEY_CHECK_UPD:
2885  return RI_TRIGGER_FK;
2886  }
2887 
2888  return RI_TRIGGER_NONE;
2889 }
static void ri_GenerateQualCollation(StringInfo buf, Oid collation)
Definition: ri_triggers.c:1860
static HTAB * ri_query_cache
Definition: ri_triggers.c:167
#define list_make2(x1, x2)
Definition: pg_list.h:208
signed short int16
Definition: c.h:416
static void ri_GenerateQual(StringInfo buf, const char *sep, const char *leftop, Oid leftoptype, Oid opoid, const char *rightop, Oid rightoptype)
Definition: ri_triggers.c:1831
#define SPI_OK_CONNECT
Definition: spi.h:62
#define FKCONSTR_MATCH_SIMPLE
Definition: parsenodes.h:2163
TupleTableSlot * tg_trigslot
Definition: trigger.h:38
#define pg_attribute_noreturn()
Definition: c.h:167
Definition: fmgr.h:56
int RI_FKey_trigger_type(Oid tgfoid)
Definition: ri_triggers.c:2867
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:167
dlist_node * cur
Definition: ilist.h:180
int errhint(const char *fmt,...)
Definition: elog.c:1162
struct RI_CompareKey RI_CompareKey
static void quoteRelationName(char *buffer, Relation rel)
Definition: ri_triggers.c:1814
void getTypeOutputInfo(Oid type, Oid *typOutput, bool *typIsVarlena)
Definition: lsyscache.c:2827
#define GETSTRUCT(TUP)
Definition: htup_details.h:655
static bool ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot, const RI_ConstraintInfo *riinfo, bool rel_is_pk)
Definition: ri_triggers.c:2661
#define HASH_ELEM
Definition: hsearch.h:95
#define dlist_foreach_modify(iter, lhead)
Definition: ilist.h:524
uint32 TransactionId
Definition: c.h:575
AclResult pg_attribute_aclcheck(Oid table_oid, AttrNumber attnum, Oid roleid, AclMode mode)
Definition: aclchk.c:4452
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:588
#define RelationGetDescr(relation)
Definition: rel.h:483
TupleTableSlot * MakeSingleTupleTableSlot(TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1208
bool TransactionIdIsCurrentTransactionId(TransactionId xid)
Definition: xact.c:869
Oid GetUserId(void)
Definition: miscinit.c:476
int SPI_connect(void)
Definition: spi.c:96
void DeconstructFkConstraintRow(HeapTuple tuple, int *numfks, AttrNumber *conkey, AttrNumber *confkey, Oid *pf_eq_oprs, Oid *pp_eq_oprs, Oid *ff_eq_oprs)
static Datum RI_FKey_check(TriggerData *trigdata)
Definition: ri_triggers.c:232
#define PointerGetDatum(X)
Definition: postgres.h:556
static void ri_ReportViolation(const RI_ConstraintInfo *riinfo, Relation pk_rel, Relation fk_rel, TupleTableSlot *violatorslot, TupleDesc tupdesc, int queryno, bool partgone) pg_attribute_noreturn()
Definition: ri_triggers.c:2344
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
#define SPI_OK_DELETE
Definition: spi.h:69
#define RI_PLAN_LAST_ON_PK
Definition: ri_triggers.c:74
#define RelationGetForm(relation)
Definition: rel.h:451
SPIPlanPtr SPI_prepare(const char *src, int nargs, Oid *argtypes)
Definition: spi.c:756
static Datum ri_set(TriggerData *trigdata, bool is_set_null)
Definition: ri_triggers.c:1020
int SPI_finish(void)
Definition: spi.c:183
static void dlist_push_tail(dlist_head *head, dlist_node *node)
Definition: ilist.h:317
const TupleTableSlotOps TTSOpsVirtual
Definition: execTuples.c:83
int32 constr_queryno
Definition: ri_triggers.c:128
#define IsolationUsesXactSnapshot()
Definition: xact.h:51
static HTAB * ri_constraint_cache
Definition: ri_triggers.c:166
#define AccessShareLock
Definition: lockdefs.h:36
Size entrysize
Definition: hsearch.h:76
SPITupleTable * SPI_tuptable
Definition: spi.c:46
bool get_collation_isdeterministic(Oid colloid)
Definition: lsyscache.c:1052
static Datum ri_restrict(TriggerData *trigdata, bool is_no_action)
Definition: ri_triggers.c:613
int errcode(int sqlerrcode)
Definition: elog.c:704
static bool ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel, TupleTableSlot *oldslot, const RI_ConstraintInfo *riinfo)
Definition: ri_triggers.c:450
#define RIAttType(rel, attnum)
Definition: ri_triggers.c:86
#define RIAttName(rel, attnum)
Definition: ri_triggers.c:85
char * format_type_be(Oid type_oid)
Definition: format_type.c:339
fmNodePtr context
Definition: fmgr.h:88
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:259
Datum * tts_values
Definition: tuptable.h:126
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27
#define GetSysCacheHashValue1(cacheId, key1)
Definition: syscache.h:202
AclMode requiredPerms
Definition: parsenodes.h:1124
dlist_node valid_link
Definition: ri_triggers.c:117
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:954
Datum FunctionCall2Coll(FmgrInfo *flinfo, Oid collation, Datum arg1, Datum arg2)
Definition: fmgr.c:1151
Form_pg_class rd_rel
Definition: rel.h:110
static bool ri_AttributesEqual(Oid eq_opr, Oid typeid, Datum oldvalue, Datum newvalue)
Definition: ri_triggers.c:2732
unsigned int Oid
Definition: postgres_ext.h:31
HeapTuple * vals
Definition: spi.h:26
#define TRIGGER_FIRED_AFTER(event)
Definition: trigger.h:130
Snapshot GetTransactionSnapshot(void)
Definition: snapmgr.c:250
#define OidIsValid(objectId)
Definition: c.h:698
struct RI_ConstraintInfo RI_ConstraintInfo
uint64 SPI_processed
Definition: spi.c:45
CoercionPathType
Definition: parse_coerce.h:24
static SPIPlanPtr ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes, RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel)
Definition: ri_triggers.c:2135
signed int int32
Definition: c.h:417
bool has_bypassrls_privilege(Oid roleid)
Definition: aclchk.c:5334
#define FunctionCall3(flinfo, arg1, arg2, arg3)
Definition: fmgr.h:648
int SPI_result
Definition: spi.c:47
#define sprintf
Definition: port.h:217
int errtableconstraint(Relation rel, const char *conname)
Definition: relcache.c:5563
Definition: dynahash.c:219
#define dlist_container(type, membername, ptr)
Definition: ilist.h:477
#define RIAttCollation(rel, attnum)
Definition: ri_triggers.c:87
Bitmapset * selectedCols
Definition: parsenodes.h:1126
static void quoteOneName(char *buffer, const char *name)
Definition: ri_triggers.c:1794
Datum RI_FKey_check_upd(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:429
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:91
#define ObjectIdGetDatum(X)
Definition: postgres.h:507
#define ERROR
Definition: elog.h:45
NameData attname
Definition: pg_attribute.h:40
Oid tgconstraint
Definition: reltrigger.h:35
Datum RI_FKey_restrict_upd(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:597
char * tgname
Definition: reltrigger.h:27
void RI_PartitionRemove_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
Definition: ri_triggers.c:1575
#define MAX_QUOTED_NAME_LEN
Definition: ri_triggers.c:82
#define RI_PLAN_CASCADE_DEL_DODELETE
Definition: ri_triggers.c:76
#define RI_PLAN_SETDEFAULT_DOUPDATE
Definition: ri_triggers.c:80
#define MAX_QUOTED_REL_NAME_LEN
Definition: ri_triggers.c:83
int16 pk_attnums[RI_MAX_NUMKEYS]
Definition: ri_triggers.c:112
#define RI_INIT_QUERYHASHSIZE
Definition: ri_triggers.c:64
static void ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname, int tgkind)
Definition: ri_triggers.c:1916
const char * SPI_result_code_string(int code)
Definition: spi.c:1867
Definition: c.h:663
void appendStringInfoString(StringInfo str, const char *s)
Definition: stringinfo.c:176
static void InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue)
Definition: ri_triggers.c:2100
Datum RI_FKey_cascade_upd(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:838
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3289
static void ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan)
Definition: ri_triggers.c:2627
#define SnapshotSelf
Definition: snapmgr.h:67
int SPI_keepplan(SPIPlanPtr plan)
Definition: spi.c:872
static char * buf
Definition: pg_test_fsync.c:68
static SPIPlanPtr ri_FetchPreparedPlan(RI_QueryKey *key)
Definition: ri_triggers.c:2575
bool * tts_isnull
Definition: tuptable.h:128
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1224
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:581
struct RI_CompareHashEntry RI_CompareHashEntry
#define RowExclusiveLock
Definition: lockdefs.h:38
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:6008
int errdetail(const char *fmt,...)
Definition: elog.c:1048
Oid pf_eq_oprs[RI_MAX_NUMKEYS]
Definition: ri_triggers.c:114
#define DatumGetBool(X)
Definition: postgres.h:393
#define RI_PLAN_SETNULL_DOUPDATE
Definition: ri_triggers.c:79
#define RelationGetRelationName(relation)
Definition: rel.h:491
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:349
Oid tgconstrrelid
Definition: reltrigger.h:33
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:193
unsigned int uint32
Definition: c.h:429
static const RI_ConstraintInfo * ri_FetchConstraintInfo(Trigger *trigger, Relation trig_rel, bool rel_is_pk)
Definition: ri_triggers.c:1962
void op_input_types(Oid opno, Oid *lefttype, Oid *righttype)
Definition: lsyscache.c:1302
static void dlist_delete(dlist_node *node)
Definition: ilist.h:358
#define RI_PLAN_CASCADE_UPD_DOUPDATE
Definition: ri_triggers.c:77
#define RI_PLAN_CHECK_LOOKUPPK
Definition: ri_triggers.c:72
void fmgr_info_cxt(Oid functionId, FmgrInfo *finfo, MemoryContext mcxt)
Definition: fmgr.c:136
Oid pp_eq_oprs[RI_MAX_NUMKEYS]
Definition: ri_triggers.c:115
TupleTableSlot * tg_newslot
Definition: trigger.h:39
MemoryContext TopMemoryContext
Definition: mcxt.c:44
Oid rd_id
Definition: rel.h:112
Oid ff_eq_oprs[RI_MAX_NUMKEYS]
Definition: ri_triggers.c:116
int SPI_execute_snapshot(SPIPlanPtr plan, Datum *Values, const char *Nulls, Snapshot snapshot, Snapshot crosscheck_snapshot, bool read_only, bool fire_triggers, long tcount)
Definition: spi.c:636
bool IsBinaryCoercible(Oid srctype, Oid targettype)
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:188
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
Datum RI_FKey_setdefault_upd(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:1004
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:1127
#define InvalidSnapshot
Definition: snapshot.h:123
TupleDesc tts_tupleDescriptor
Definition: tuptable.h:124
#define TRIGGER_FIRED_BY_DELETE(event)
Definition: trigger.h:112
#define RI_TRIGTYPE_DELETE
Definition: ri_triggers.c:91
#define HASH_BLOBS
Definition: hsearch.h:97
#define FKCONSTR_MATCH_FULL
Definition: parsenodes.h:2161
static const RI_ConstraintInfo * ri_LoadConstraintInfo(Oid constraintOid)
Definition: ri_triggers.c:2016
struct RI_QueryKey RI_QueryKey
static RI_CompareHashEntry * ri_HashCompareOp(Oid eq_opr, Oid typeid)
Definition: ri_triggers.c:2774
#define RowShareLock
Definition: lockdefs.h:37
void CacheRegisterSyscacheCallback(int cacheid, SyscacheCallbackFunction func, Datum arg)
Definition: inval.c:1434
AclResult
Definition: acl.h:177
uintptr_t Datum
Definition: postgres.h:367
void CommandCounterIncrement(void)
Definition: xact.c:1021
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:1175
#define ACL_SELECT
Definition: parsenodes.h:75
#define RI_PLAN_RESTRICT_CHECKREF
Definition: ri_triggers.c:78
Size keysize
Definition: hsearch.h:75
SPIPlanPtr plan
Definition: ri_triggers.c:137
static bool ri_PerformCheck(const RI_ConstraintInfo *riinfo, RI_QueryKey *qkey, SPIPlanPtr qplan, Relation fk_rel, Relation pk_rel, TupleTableSlot *oldslot, TupleTableSlot *newslot, bool detectNewRows, int expect_OK)
Definition: ri_triggers.c:2178
#define SECURITY_LOCAL_USERID_CHANGE
Definition: miscadmin.h:299
TupleDesc tupdesc
Definition: spi.h:25
#define RI_KEYS_ALL_NULL
Definition: ri_triggers.c:66
Trigger * tg_trigger
Definition: trigger.h:37
TupleDesc rd_att
Definition: rel.h:111
#define BoolGetDatum(X)
Definition: postgres.h:402
#define SPI_OK_SELECT
Definition: spi.h:66
#define InvalidOid
Definition: postgres_ext.h:36
static Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:381
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1229
bool RI_FKey_pk_upd_check_required(Trigger *trigger, Relation pk_rel, TupleTableSlot *oldslot, TupleTableSlot *newslot)
Definition: ri_triggers.c:1162
static int ri_constraint_cache_valid_count
Definition: ri_triggers.c:170
Oid fn_oid
Definition: fmgr.h:59
#define ereport(elevel,...)
Definition: elog.h:155
#define RI_PLAN_CHECK_LOOKUPPK_FROM_PK
Definition: ri_triggers.c:73
int maintenance_work_mem
Definition: globals.c:124
int check_enable_rls(Oid relid, Oid checkAsUser, bool noError)
Definition: rls.c:52
#define RI_TRIGGER_FK
Definition: trigger.h:264
#define makeNode(_type_)
Definition: nodes.h:576
FormData_pg_constraint * Form_pg_constraint
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define CALLED_AS_TRIGGER(fcinfo)
Definition: trigger.h:25
#define Assert(condition)
Definition: c.h:792
static bool table_tuple_satisfies_snapshot(Relation rel, TupleTableSlot *slot, Snapshot snapshot)
Definition: tableam.h:1217
RI_QueryKey key
Definition: ri_triggers.c:136
#define RI_INIT_CONSTRAINTHASHSIZE
Definition: ri_triggers.c:63
#define RI_TRIGTYPE_UPDATE
Definition: ri_triggers.c:90
static int ri_NullCheck(TupleDesc tupdesc, TupleTableSlot *slot, const RI_ConstraintInfo *riinfo, bool rel_is_pk)
Definition: ri_triggers.c:2502
TriggerEvent tg_event
Definition: trigger.h:33
bool pg_class_ownercheck(Oid class_oid, Oid roleid)
Definition: aclchk.c:4690
Datum RI_FKey_check_ins(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:413
#define SPI_OK_FINISH
Definition: spi.h:63
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:736
Snapshot GetLatestSnapshot(void)
Definition: snapmgr.c:325
const char * name
Definition: encode.c:515
FormData_pg_collation * Form_pg_collation
Definition: pg_collation.h:47
bool RI_FKey_fk_upd_check_required(Trigger *trigger, Relation fk_rel, TupleTableSlot *oldslot, TupleTableSlot *newslot)
Definition: ri_triggers.c:1194
AclResult pg_class_aclcheck(Oid table_oid, Oid roleid, AclMode mode)
Definition: aclchk.c:4566
Datum RI_FKey_setnull_del(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:959
void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc, Datum *values, bool *isnull)
Definition: heaptuple.c:1249
RTEKind rtekind
Definition: parsenodes.h:981
int SPI_freeplan(SPIPlanPtr plan)
Definition: spi.c:921
#define RI_KEYS_SOME_NULL
Definition: ri_triggers.c:67
#define DatumGetTransactionId(X)
Definition: postgres.h:514
Datum RI_FKey_restrict_del(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:560
#define Int32GetDatum(X)
Definition: postgres.h:479
int NewGUCNestLevel(void)
Definition: guc.c:5994
#define RI_TRIGGER_PK
Definition: trigger.h:263
#define TRIGGER_FIRED_BY_INSERT(event)
Definition: trigger.h:109
bool SPI_plan_is_valid(SPIPlanPtr plan)
Definition: spi.c:1843
bool RI_Initial_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
Definition: ri_triggers.c:1295
char * OidOutputFunctionCall(Oid functionId, Datum val)
Definition: fmgr.c:1656
RI_CompareKey key
Definition: ri_triggers.c:156
int errmsg(const char *fmt,...)
Definition: elog.c:915
#define SPI_OK_UPDATE
Definition: spi.h:70
CoercionPathType find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId, CoercionContext ccontext, Oid *funcid)
Datum RI_FKey_noaction_del(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:540
Datum RI_FKey_setdefault_del(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:989
static dlist_head ri_constraint_cache_valid_list
Definition: ri_triggers.c:169
#define elog(elevel,...)
Definition: elog.h:228
int i
bool ExecCheckRTPerms(List *rangeTable, bool ereport_on_violation)
Definition: execMain.c:571
#define NameStr(name)
Definition: c.h:669
static void ri_InitHashTables(void)
Definition: ri_triggers.c:2539
void * arg
static void ri_BuildQueryKey(RI_QueryKey *key, const RI_ConstraintInfo *riinfo, int32 constr_queryno)
Definition: ri_triggers.c:1901
bool datum_image_eq(Datum value1, Datum value2, bool typByVal, int typLen)
Definition: datum.c:265
char * pg_get_partconstrdef_string(Oid partitionId, char *aliasname)
Definition: ruleutils.c:1869
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
#define SECURITY_NOFORCE_RLS
Definition: miscadmin.h:301
static Datum slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:402
int16 fk_attnums[RI_MAX_NUMKEYS]
Definition: ri_triggers.c:113
#define RI_MAX_NUMKEYS
Definition: ri_triggers.c:61
static bool slot_attisnull(TupleTableSlot *slot, int attnum)
Definition: tuptable.h:367
Datum RI_FKey_noaction_upd(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:577
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:39
#define TRIGGER_FIRED_FOR_ROW(event)
Definition: trigger.h:121
#define MinTransactionIdAttributeNumber
Definition: sysattr.h:22
#define RI_TRIGGER_NONE
Definition: trigger.h:265
static void ri_ExtractValues(Relation rel, TupleTableSlot *slot, const RI_ConstraintInfo *riinfo, bool rel_is_pk, Datum *vals, char *nulls)
Definition: ri_triggers.c:2315
FmgrInfo cast_func_finfo
Definition: ri_triggers.c:159
int set_config_option(const char *name, const char *value, GucContext context, GucSource source, GucAction action, bool changeVal, int elevel, bool is_reload)
Definition: guc.c:7083
#define snprintf
Definition: port.h:215
Datum RI_FKey_cascade_del(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:732
#define TRIGGER_FIRED_BY_UPDATE(event)
Definition: trigger.h:115
#define FKCONSTR_MATCH_PARTIAL
Definition: parsenodes.h:2162
#define RI_KEYS_NONE_NULL
Definition: ri_triggers.c:68
#define RelationGetRelid(relation)
Definition: rel.h:457
void appendBinaryStringInfo(StringInfo str, const char *data, int datalen)
Definition: stringinfo.c:227
long val
Definition: informix.c:664
static HTAB * ri_compare_cache
Definition: ri_triggers.c:168
void generate_operator_clause(StringInfo buf, const char *leftop, Oid leftoptype, Oid opoid, const char *rightop, Oid rightoptype)
Definition: ruleutils.c:11343
TupleTableSlot * ExecStoreVirtualTuple(TupleTableSlot *slot)
Definition: execTuples.c:1522
#define RI_TRIGTYPE_INSERT
Definition: ri_triggers.c:89
struct RI_QueryHashEntry RI_QueryHashEntry
Datum RI_FKey_setnull_upd(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:974
Relation tg_relation
Definition: trigger.h:34
#define RelationGetNamespace(relation)
Definition: rel.h:498