PostgreSQL Source Code  git master
ri_triggers.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * ri_triggers.c
4  *
5  * Generic trigger procedures for referential integrity constraint
6  * checks.
7  *
8  * Note about memory management: the private hashtables kept here live
9  * across query and transaction boundaries, in fact they live as long as
10  * the backend does. This works because the hashtable structures
11  * themselves are allocated by dynahash.c in its permanent DynaHashCxt,
12  * and the SPI plans they point to are saved using SPI_keepplan().
13  * There is not currently any provision for throwing away a no-longer-needed
14  * plan --- consider improving this someday.
15  *
16  *
17  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
18  *
19  * src/backend/utils/adt/ri_triggers.c
20  *
21  *-------------------------------------------------------------------------
22  */
23 
24 #include "postgres.h"
25 
26 #include "access/htup_details.h"
27 #include "access/sysattr.h"
28 #include "access/table.h"
29 #include "access/tableam.h"
30 #include "access/xact.h"
31 #include "catalog/pg_collation.h"
32 #include "catalog/pg_constraint.h"
33 #include "catalog/pg_operator.h"
34 #include "catalog/pg_type.h"
35 #include "commands/trigger.h"
36 #include "executor/executor.h"
37 #include "executor/spi.h"
38 #include "lib/ilist.h"
39 #include "miscadmin.h"
40 #include "parser/parse_coerce.h"
41 #include "parser/parse_relation.h"
42 #include "storage/bufmgr.h"
43 #include "utils/acl.h"
44 #include "utils/builtins.h"
45 #include "utils/datum.h"
46 #include "utils/fmgroids.h"
47 #include "utils/guc.h"
48 #include "utils/inval.h"
49 #include "utils/lsyscache.h"
50 #include "utils/memutils.h"
51 #include "utils/rel.h"
52 #include "utils/rls.h"
53 #include "utils/ruleutils.h"
54 #include "utils/snapmgr.h"
55 #include "utils/syscache.h"
56 
57 /*
58  * Local definitions
59  */
60 
61 #define RI_MAX_NUMKEYS INDEX_MAX_KEYS
62 
63 #define RI_INIT_CONSTRAINTHASHSIZE 64
64 #define RI_INIT_QUERYHASHSIZE (RI_INIT_CONSTRAINTHASHSIZE * 4)
65 
66 #define RI_KEYS_ALL_NULL 0
67 #define RI_KEYS_SOME_NULL 1
68 #define RI_KEYS_NONE_NULL 2
69 
70 /* RI query type codes */
71 /* these queries are executed against the PK (referenced) table: */
72 #define RI_PLAN_CHECK_LOOKUPPK 1
73 #define RI_PLAN_CHECK_LOOKUPPK_FROM_PK 2
74 #define RI_PLAN_LAST_ON_PK RI_PLAN_CHECK_LOOKUPPK_FROM_PK
75 /* these queries are executed against the FK (referencing) table: */
76 #define RI_PLAN_CASCADE_DEL_DODELETE 3
77 #define RI_PLAN_CASCADE_UPD_DOUPDATE 4
78 #define RI_PLAN_RESTRICT_CHECKREF 5
79 #define RI_PLAN_SETNULL_DOUPDATE 6
80 #define RI_PLAN_SETDEFAULT_DOUPDATE 7
81 
82 #define MAX_QUOTED_NAME_LEN (NAMEDATALEN*2+3)
83 #define MAX_QUOTED_REL_NAME_LEN (MAX_QUOTED_NAME_LEN*2)
84 
85 #define RIAttName(rel, attnum) NameStr(*attnumAttName(rel, attnum))
86 #define RIAttType(rel, attnum) attnumTypeId(rel, attnum)
87 #define RIAttCollation(rel, attnum) attnumCollationId(rel, attnum)
88 
89 #define RI_TRIGTYPE_INSERT 1
90 #define RI_TRIGTYPE_UPDATE 2
91 #define RI_TRIGTYPE_DELETE 3
92 
93 
94 /*
95  * RI_ConstraintInfo
96  *
97  * Information extracted from an FK pg_constraint entry. This is cached in
98  * ri_constraint_cache.
99  */
100 typedef struct RI_ConstraintInfo
101 {
102  Oid constraint_id; /* OID of pg_constraint entry (hash key) */
103  bool valid; /* successfully initialized? */
104  Oid constraint_root_id; /* OID of topmost ancestor constraint;
105  * same as constraint_id if not inherited */
106  uint32 oidHashValue; /* hash value of constraint_id */
107  uint32 rootHashValue; /* hash value of constraint_root_id */
108  NameData conname; /* name of the FK constraint */
109  Oid pk_relid; /* referenced relation */
110  Oid fk_relid; /* referencing relation */
111  char confupdtype; /* foreign key's ON UPDATE action */
112  char confdeltype; /* foreign key's ON DELETE action */
113  char confmatchtype; /* foreign key's match type */
114  int nkeys; /* number of key columns */
115  int16 pk_attnums[RI_MAX_NUMKEYS]; /* attnums of referenced cols */
116  int16 fk_attnums[RI_MAX_NUMKEYS]; /* attnums of referencing cols */
117  Oid pf_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = FK) */
118  Oid pp_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = PK) */
119  Oid ff_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (FK = FK) */
120  dlist_node valid_link; /* Link in list of valid entries */
122 
123 /*
124  * RI_QueryKey
125  *
126  * The key identifying a prepared SPI plan in our query hashtable
127  */
128 typedef struct RI_QueryKey
129 {
130  Oid constr_id; /* OID of pg_constraint entry */
131  int32 constr_queryno; /* query type ID, see RI_PLAN_XXX above */
132 } RI_QueryKey;
133 
134 /*
135  * RI_QueryHashEntry
136  */
137 typedef struct RI_QueryHashEntry
138 {
142 
143 /*
144  * RI_CompareKey
145  *
146  * The key identifying an entry showing how to compare two values
147  */
148 typedef struct RI_CompareKey
149 {
150  Oid eq_opr; /* the equality operator to apply */
151  Oid typeid; /* the data type to apply it to */
152 } RI_CompareKey;
153 
154 /*
155  * RI_CompareHashEntry
156  */
157 typedef struct RI_CompareHashEntry
158 {
160  bool valid; /* successfully initialized? */
161  FmgrInfo eq_opr_finfo; /* call info for equality fn */
162  FmgrInfo cast_func_finfo; /* in case we must coerce input */
164 
165 
166 /*
167  * Local data
168  */
169 static HTAB *ri_constraint_cache = NULL;
170 static HTAB *ri_query_cache = NULL;
171 static HTAB *ri_compare_cache = NULL;
174 
175 
176 /*
177  * Local function prototypes
178  */
179 static bool ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel,
180  TupleTableSlot *oldslot,
181  const RI_ConstraintInfo *riinfo);
182 static Datum ri_restrict(TriggerData *trigdata, bool is_no_action);
183 static Datum ri_set(TriggerData *trigdata, bool is_set_null);
184 static void quoteOneName(char *buffer, const char *name);
185 static void quoteRelationName(char *buffer, Relation rel);
186 static void ri_GenerateQual(StringInfo buf,
187  const char *sep,
188  const char *leftop, Oid leftoptype,
189  Oid opoid,
190  const char *rightop, Oid rightoptype);
191 static void ri_GenerateQualCollation(StringInfo buf, Oid collation);
192 static int ri_NullCheck(TupleDesc tupdesc, TupleTableSlot *slot,
193  const RI_ConstraintInfo *riinfo, bool rel_is_pk);
194 static void ri_BuildQueryKey(RI_QueryKey *key,
195  const RI_ConstraintInfo *riinfo,
196  int32 constr_queryno);
197 static bool ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot,
198  const RI_ConstraintInfo *riinfo, bool rel_is_pk);
199 static bool ri_AttributesEqual(Oid eq_opr, Oid typeid,
200  Datum oldvalue, Datum newvalue);
201 
202 static void ri_InitHashTables(void);
203 static void InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue);
205 static void ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan);
206 static RI_CompareHashEntry *ri_HashCompareOp(Oid eq_opr, Oid typeid);
207 
208 static void ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname,
209  int tgkind);
210 static const RI_ConstraintInfo *ri_FetchConstraintInfo(Trigger *trigger,
211  Relation trig_rel, bool rel_is_pk);
212 static const RI_ConstraintInfo *ri_LoadConstraintInfo(Oid constraintOid);
213 static Oid get_ri_constraint_root(Oid constrOid);
214 static SPIPlanPtr ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes,
215  RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel);
216 static bool ri_PerformCheck(const RI_ConstraintInfo *riinfo,
217  RI_QueryKey *qkey, SPIPlanPtr qplan,
218  Relation fk_rel, Relation pk_rel,
219  TupleTableSlot *oldslot, TupleTableSlot *newslot,
220  bool detectNewRows, int expect_OK);
221 static void ri_ExtractValues(Relation rel, TupleTableSlot *slot,
222  const RI_ConstraintInfo *riinfo, bool rel_is_pk,
223  Datum *vals, char *nulls);
224 static void ri_ReportViolation(const RI_ConstraintInfo *riinfo,
225  Relation pk_rel, Relation fk_rel,
226  TupleTableSlot *violatorslot, TupleDesc tupdesc,
227  int queryno, bool partgone) pg_attribute_noreturn();
228 
229 
230 /*
231  * RI_FKey_check -
232  *
233  * Check foreign key existence (combined for INSERT and UPDATE).
234  */
235 static Datum
237 {
238  const RI_ConstraintInfo *riinfo;
239  Relation fk_rel;
240  Relation pk_rel;
241  TupleTableSlot *newslot;
242  RI_QueryKey qkey;
243  SPIPlanPtr qplan;
244 
245  riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
246  trigdata->tg_relation, false);
247 
248  if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
249  newslot = trigdata->tg_newslot;
250  else
251  newslot = trigdata->tg_trigslot;
252 
253  /*
254  * We should not even consider checking the row if it is no longer valid,
255  * since it was either deleted (so the deferred check should be skipped)
256  * or updated (in which case only the latest version of the row should be
257  * checked). Test its liveness according to SnapshotSelf. We need pin
258  * and lock on the buffer to call HeapTupleSatisfiesVisibility. Caller
259  * should be holding pin, but not lock.
260  */
261  if (!table_tuple_satisfies_snapshot(trigdata->tg_relation, newslot, SnapshotSelf))
262  return PointerGetDatum(NULL);
263 
264  /*
265  * Get the relation descriptors of the FK and PK tables.
266  *
267  * pk_rel is opened in RowShareLock mode since that's what our eventual
268  * SELECT FOR KEY SHARE will get on it.
269  */
270  fk_rel = trigdata->tg_relation;
271  pk_rel = table_open(riinfo->pk_relid, RowShareLock);
272 
273  switch (ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false))
274  {
275  case RI_KEYS_ALL_NULL:
276 
277  /*
278  * No further check needed - an all-NULL key passes every type of
279  * foreign key constraint.
280  */
281  table_close(pk_rel, RowShareLock);
282  return PointerGetDatum(NULL);
283 
284  case RI_KEYS_SOME_NULL:
285 
286  /*
287  * This is the only case that differs between the three kinds of
288  * MATCH.
289  */
290  switch (riinfo->confmatchtype)
291  {
292  case FKCONSTR_MATCH_FULL:
293 
294  /*
295  * Not allowed - MATCH FULL says either all or none of the
296  * attributes can be NULLs
297  */
298  ereport(ERROR,
299  (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
300  errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
301  RelationGetRelationName(fk_rel),
302  NameStr(riinfo->conname)),
303  errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
304  errtableconstraint(fk_rel,
305  NameStr(riinfo->conname))));
306  table_close(pk_rel, RowShareLock);
307  return PointerGetDatum(NULL);
308 
310 
311  /*
312  * MATCH SIMPLE - if ANY column is null, the key passes
313  * the constraint.
314  */
315  table_close(pk_rel, RowShareLock);
316  return PointerGetDatum(NULL);
317 
318 #ifdef NOT_USED
320 
321  /*
322  * MATCH PARTIAL - all non-null columns must match. (not
323  * implemented, can be done by modifying the query below
324  * to only include non-null columns, or by writing a
325  * special version here)
326  */
327  break;
328 #endif
329  }
330 
331  case RI_KEYS_NONE_NULL:
332 
333  /*
334  * Have a full qualified key - continue below for all three kinds
335  * of MATCH.
336  */
337  break;
338  }
339 
340  if (SPI_connect() != SPI_OK_CONNECT)
341  elog(ERROR, "SPI_connect failed");
342 
343  /* Fetch or prepare a saved plan for the real check */
345 
346  if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
347  {
348  StringInfoData querybuf;
349  char pkrelname[MAX_QUOTED_REL_NAME_LEN];
351  char paramname[16];
352  const char *querysep;
353  Oid queryoids[RI_MAX_NUMKEYS];
354  const char *pk_only;
355 
356  /* ----------
357  * The query string built is
358  * SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
359  * FOR KEY SHARE OF x
360  * The type id's for the $ parameters are those of the
361  * corresponding FK attributes.
362  * ----------
363  */
364  initStringInfo(&querybuf);
365  pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
366  "" : "ONLY ";
367  quoteRelationName(pkrelname, pk_rel);
368  appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
369  pk_only, pkrelname);
370  querysep = "WHERE";
371  for (int i = 0; i < riinfo->nkeys; i++)
372  {
373  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
374  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
375 
376  quoteOneName(attname,
377  RIAttName(pk_rel, riinfo->pk_attnums[i]));
378  sprintf(paramname, "$%d", i + 1);
379  ri_GenerateQual(&querybuf, querysep,
380  attname, pk_type,
381  riinfo->pf_eq_oprs[i],
382  paramname, fk_type);
383  querysep = "AND";
384  queryoids[i] = fk_type;
385  }
386  appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
387 
388  /* Prepare and save the plan */
389  qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
390  &qkey, fk_rel, pk_rel);
391  }
392 
393  /*
394  * Now check that foreign key exists in PK table
395  *
396  * XXX detectNewRows must be true when a partitioned table is on the
397  * referenced side. The reason is that our snapshot must be fresh in
398  * order for the hack in find_inheritance_children() to work.
399  */
400  ri_PerformCheck(riinfo, &qkey, qplan,
401  fk_rel, pk_rel,
402  NULL, newslot,
403  pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE,
404  SPI_OK_SELECT);
405 
406  if (SPI_finish() != SPI_OK_FINISH)
407  elog(ERROR, "SPI_finish failed");
408 
409  table_close(pk_rel, RowShareLock);
410 
411  return PointerGetDatum(NULL);
412 }
413 
414 
415 /*
416  * RI_FKey_check_ins -
417  *
418  * Check foreign key existence at insert event on FK table.
419  */
420 Datum
422 {
423  /* Check that this is a valid trigger call on the right time and event. */
424  ri_CheckTrigger(fcinfo, "RI_FKey_check_ins", RI_TRIGTYPE_INSERT);
425 
426  /* Share code with UPDATE case. */
427  return RI_FKey_check((TriggerData *) fcinfo->context);
428 }
429 
430 
431 /*
432  * RI_FKey_check_upd -
433  *
434  * Check foreign key existence at update event on FK table.
435  */
436 Datum
438 {
439  /* Check that this is a valid trigger call on the right time and event. */
440  ri_CheckTrigger(fcinfo, "RI_FKey_check_upd", RI_TRIGTYPE_UPDATE);
441 
442  /* Share code with INSERT case. */
443  return RI_FKey_check((TriggerData *) fcinfo->context);
444 }
445 
446 
447 /*
448  * ri_Check_Pk_Match
449  *
450  * Check to see if another PK row has been created that provides the same
451  * key values as the "oldslot" that's been modified or deleted in our trigger
452  * event. Returns true if a match is found in the PK table.
453  *
454  * We assume the caller checked that the oldslot contains no NULL key values,
455  * since otherwise a match is impossible.
456  */
457 static bool
459  TupleTableSlot *oldslot,
460  const RI_ConstraintInfo *riinfo)
461 {
462  SPIPlanPtr qplan;
463  RI_QueryKey qkey;
464  bool result;
465 
466  /* Only called for non-null rows */
467  Assert(ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) == RI_KEYS_NONE_NULL);
468 
469  if (SPI_connect() != SPI_OK_CONNECT)
470  elog(ERROR, "SPI_connect failed");
471 
472  /*
473  * Fetch or prepare a saved plan for checking PK table with values coming
474  * from a PK row
475  */
477 
478  if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
479  {
480  StringInfoData querybuf;
481  char pkrelname[MAX_QUOTED_REL_NAME_LEN];
483  char paramname[16];
484  const char *querysep;
485  const char *pk_only;
486  Oid queryoids[RI_MAX_NUMKEYS];
487 
488  /* ----------
489  * The query string built is
490  * SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
491  * FOR KEY SHARE OF x
492  * The type id's for the $ parameters are those of the
493  * PK attributes themselves.
494  * ----------
495  */
496  initStringInfo(&querybuf);
497  pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
498  "" : "ONLY ";
499  quoteRelationName(pkrelname, pk_rel);
500  appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
501  pk_only, pkrelname);
502  querysep = "WHERE";
503  for (int i = 0; i < riinfo->nkeys; i++)
504  {
505  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
506 
507  quoteOneName(attname,
508  RIAttName(pk_rel, riinfo->pk_attnums[i]));
509  sprintf(paramname, "$%d", i + 1);
510  ri_GenerateQual(&querybuf, querysep,
511  attname, pk_type,
512  riinfo->pp_eq_oprs[i],
513  paramname, pk_type);
514  querysep = "AND";
515  queryoids[i] = pk_type;
516  }
517  appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
518 
519  /* Prepare and save the plan */
520  qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
521  &qkey, fk_rel, pk_rel);
522  }
523 
524  /*
525  * We have a plan now. Run it.
526  */
527  result = ri_PerformCheck(riinfo, &qkey, qplan,
528  fk_rel, pk_rel,
529  oldslot, NULL,
530  true, /* treat like update */
531  SPI_OK_SELECT);
532 
533  if (SPI_finish() != SPI_OK_FINISH)
534  elog(ERROR, "SPI_finish failed");
535 
536  return result;
537 }
538 
539 
540 /*
541  * RI_FKey_noaction_del -
542  *
543  * Give an error and roll back the current transaction if the
544  * delete has resulted in a violation of the given referential
545  * integrity constraint.
546  */
547 Datum
549 {
550  /* Check that this is a valid trigger call on the right time and event. */
551  ri_CheckTrigger(fcinfo, "RI_FKey_noaction_del", RI_TRIGTYPE_DELETE);
552 
553  /* Share code with RESTRICT/UPDATE cases. */
554  return ri_restrict((TriggerData *) fcinfo->context, true);
555 }
556 
557 /*
558  * RI_FKey_restrict_del -
559  *
560  * Restrict delete from PK table to rows unreferenced by foreign key.
561  *
562  * The SQL standard intends that this referential action occur exactly when
563  * the delete is performed, rather than after. This appears to be
564  * the only difference between "NO ACTION" and "RESTRICT". In Postgres
565  * we still implement this as an AFTER trigger, but it's non-deferrable.
566  */
567 Datum
569 {
570  /* Check that this is a valid trigger call on the right time and event. */
571  ri_CheckTrigger(fcinfo, "RI_FKey_restrict_del", RI_TRIGTYPE_DELETE);
572 
573  /* Share code with NO ACTION/UPDATE cases. */
574  return ri_restrict((TriggerData *) fcinfo->context, false);
575 }
576 
577 /*
578  * RI_FKey_noaction_upd -
579  *
580  * Give an error and roll back the current transaction if the
581  * update has resulted in a violation of the given referential
582  * integrity constraint.
583  */
584 Datum
586 {
587  /* Check that this is a valid trigger call on the right time and event. */
588  ri_CheckTrigger(fcinfo, "RI_FKey_noaction_upd", RI_TRIGTYPE_UPDATE);
589 
590  /* Share code with RESTRICT/DELETE cases. */
591  return ri_restrict((TriggerData *) fcinfo->context, true);
592 }
593 
594 /*
595  * RI_FKey_restrict_upd -
596  *
597  * Restrict update of PK to rows unreferenced by foreign key.
598  *
599  * The SQL standard intends that this referential action occur exactly when
600  * the update is performed, rather than after. This appears to be
601  * the only difference between "NO ACTION" and "RESTRICT". In Postgres
602  * we still implement this as an AFTER trigger, but it's non-deferrable.
603  */
604 Datum
606 {
607  /* Check that this is a valid trigger call on the right time and event. */
608  ri_CheckTrigger(fcinfo, "RI_FKey_restrict_upd", RI_TRIGTYPE_UPDATE);
609 
610  /* Share code with NO ACTION/DELETE cases. */
611  return ri_restrict((TriggerData *) fcinfo->context, false);
612 }
613 
614 /*
615  * ri_restrict -
616  *
617  * Common code for ON DELETE RESTRICT, ON DELETE NO ACTION,
618  * ON UPDATE RESTRICT, and ON UPDATE NO ACTION.
619  */
620 static Datum
621 ri_restrict(TriggerData *trigdata, bool is_no_action)
622 {
623  const RI_ConstraintInfo *riinfo;
624  Relation fk_rel;
625  Relation pk_rel;
626  TupleTableSlot *oldslot;
627  RI_QueryKey qkey;
628  SPIPlanPtr qplan;
629 
630  riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
631  trigdata->tg_relation, true);
632 
633  /*
634  * Get the relation descriptors of the FK and PK tables and the old tuple.
635  *
636  * fk_rel is opened in RowShareLock mode since that's what our eventual
637  * SELECT FOR KEY SHARE will get on it.
638  */
639  fk_rel = table_open(riinfo->fk_relid, RowShareLock);
640  pk_rel = trigdata->tg_relation;
641  oldslot = trigdata->tg_trigslot;
642 
643  /*
644  * If another PK row now exists providing the old key values, we should
645  * not do anything. However, this check should only be made in the NO
646  * ACTION case; in RESTRICT cases we don't wish to allow another row to be
647  * substituted.
648  */
649  if (is_no_action &&
650  ri_Check_Pk_Match(pk_rel, fk_rel, oldslot, riinfo))
651  {
652  table_close(fk_rel, RowShareLock);
653  return PointerGetDatum(NULL);
654  }
655 
656  if (SPI_connect() != SPI_OK_CONNECT)
657  elog(ERROR, "SPI_connect failed");
658 
659  /*
660  * Fetch or prepare a saved plan for the restrict lookup (it's the same
661  * query for delete and update cases)
662  */
664 
665  if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
666  {
667  StringInfoData querybuf;
668  char fkrelname[MAX_QUOTED_REL_NAME_LEN];
670  char paramname[16];
671  const char *querysep;
672  Oid queryoids[RI_MAX_NUMKEYS];
673  const char *fk_only;
674 
675  /* ----------
676  * The query string built is
677  * SELECT 1 FROM [ONLY] <fktable> x WHERE $1 = fkatt1 [AND ...]
678  * FOR KEY SHARE OF x
679  * The type id's for the $ parameters are those of the
680  * corresponding PK attributes.
681  * ----------
682  */
683  initStringInfo(&querybuf);
684  fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
685  "" : "ONLY ";
686  quoteRelationName(fkrelname, fk_rel);
687  appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
688  fk_only, fkrelname);
689  querysep = "WHERE";
690  for (int i = 0; i < riinfo->nkeys; i++)
691  {
692  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
693  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
694  Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
695  Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
696 
697  quoteOneName(attname,
698  RIAttName(fk_rel, riinfo->fk_attnums[i]));
699  sprintf(paramname, "$%d", i + 1);
700  ri_GenerateQual(&querybuf, querysep,
701  paramname, pk_type,
702  riinfo->pf_eq_oprs[i],
703  attname, fk_type);
704  if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
705  ri_GenerateQualCollation(&querybuf, pk_coll);
706  querysep = "AND";
707  queryoids[i] = pk_type;
708  }
709  appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
710 
711  /* Prepare and save the plan */
712  qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
713  &qkey, fk_rel, pk_rel);
714  }
715 
716  /*
717  * We have a plan now. Run it to check for existing references.
718  */
719  ri_PerformCheck(riinfo, &qkey, qplan,
720  fk_rel, pk_rel,
721  oldslot, NULL,
722  true, /* must detect new rows */
723  SPI_OK_SELECT);
724 
725  if (SPI_finish() != SPI_OK_FINISH)
726  elog(ERROR, "SPI_finish failed");
727 
728  table_close(fk_rel, RowShareLock);
729 
730  return PointerGetDatum(NULL);
731 }
732 
733 
734 /*
735  * RI_FKey_cascade_del -
736  *
737  * Cascaded delete foreign key references at delete event on PK table.
738  */
739 Datum
741 {
742  TriggerData *trigdata = (TriggerData *) fcinfo->context;
743  const RI_ConstraintInfo *riinfo;
744  Relation fk_rel;
745  Relation pk_rel;
746  TupleTableSlot *oldslot;
747  RI_QueryKey qkey;
748  SPIPlanPtr qplan;
749 
750  /* Check that this is a valid trigger call on the right time and event. */
751  ri_CheckTrigger(fcinfo, "RI_FKey_cascade_del", RI_TRIGTYPE_DELETE);
752 
753  riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
754  trigdata->tg_relation, true);
755 
756  /*
757  * Get the relation descriptors of the FK and PK tables and the old tuple.
758  *
759  * fk_rel is opened in RowExclusiveLock mode since that's what our
760  * eventual DELETE will get on it.
761  */
762  fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
763  pk_rel = trigdata->tg_relation;
764  oldslot = trigdata->tg_trigslot;
765 
766  if (SPI_connect() != SPI_OK_CONNECT)
767  elog(ERROR, "SPI_connect failed");
768 
769  /* Fetch or prepare a saved plan for the cascaded delete */
771 
772  if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
773  {
774  StringInfoData querybuf;
775  char fkrelname[MAX_QUOTED_REL_NAME_LEN];
777  char paramname[16];
778  const char *querysep;
779  Oid queryoids[RI_MAX_NUMKEYS];
780  const char *fk_only;
781 
782  /* ----------
783  * The query string built is
784  * DELETE FROM [ONLY] <fktable> WHERE $1 = fkatt1 [AND ...]
785  * The type id's for the $ parameters are those of the
786  * corresponding PK attributes.
787  * ----------
788  */
789  initStringInfo(&querybuf);
790  fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
791  "" : "ONLY ";
792  quoteRelationName(fkrelname, fk_rel);
793  appendStringInfo(&querybuf, "DELETE FROM %s%s",
794  fk_only, fkrelname);
795  querysep = "WHERE";
796  for (int i = 0; i < riinfo->nkeys; i++)
797  {
798  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
799  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
800  Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
801  Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
802 
803  quoteOneName(attname,
804  RIAttName(fk_rel, riinfo->fk_attnums[i]));
805  sprintf(paramname, "$%d", i + 1);
806  ri_GenerateQual(&querybuf, querysep,
807  paramname, pk_type,
808  riinfo->pf_eq_oprs[i],
809  attname, fk_type);
810  if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
811  ri_GenerateQualCollation(&querybuf, pk_coll);
812  querysep = "AND";
813  queryoids[i] = pk_type;
814  }
815 
816  /* Prepare and save the plan */
817  qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
818  &qkey, fk_rel, pk_rel);
819  }
820 
821  /*
822  * We have a plan now. Build up the arguments from the key values in the
823  * deleted PK tuple and delete the referencing rows
824  */
825  ri_PerformCheck(riinfo, &qkey, qplan,
826  fk_rel, pk_rel,
827  oldslot, NULL,
828  true, /* must detect new rows */
829  SPI_OK_DELETE);
830 
831  if (SPI_finish() != SPI_OK_FINISH)
832  elog(ERROR, "SPI_finish failed");
833 
834  table_close(fk_rel, RowExclusiveLock);
835 
836  return PointerGetDatum(NULL);
837 }
838 
839 
840 /*
841  * RI_FKey_cascade_upd -
842  *
843  * Cascaded update foreign key references at update event on PK table.
844  */
845 Datum
847 {
848  TriggerData *trigdata = (TriggerData *) fcinfo->context;
849  const RI_ConstraintInfo *riinfo;
850  Relation fk_rel;
851  Relation pk_rel;
852  TupleTableSlot *newslot;
853  TupleTableSlot *oldslot;
854  RI_QueryKey qkey;
855  SPIPlanPtr qplan;
856 
857  /* Check that this is a valid trigger call on the right time and event. */
858  ri_CheckTrigger(fcinfo, "RI_FKey_cascade_upd", RI_TRIGTYPE_UPDATE);
859 
860  riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
861  trigdata->tg_relation, true);
862 
863  /*
864  * Get the relation descriptors of the FK and PK tables and the new and
865  * old tuple.
866  *
867  * fk_rel is opened in RowExclusiveLock mode since that's what our
868  * eventual UPDATE will get on it.
869  */
870  fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
871  pk_rel = trigdata->tg_relation;
872  newslot = trigdata->tg_newslot;
873  oldslot = trigdata->tg_trigslot;
874 
875  if (SPI_connect() != SPI_OK_CONNECT)
876  elog(ERROR, "SPI_connect failed");
877 
878  /* Fetch or prepare a saved plan for the cascaded update */
880 
881  if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
882  {
883  StringInfoData querybuf;
884  StringInfoData qualbuf;
885  char fkrelname[MAX_QUOTED_REL_NAME_LEN];
887  char paramname[16];
888  const char *querysep;
889  const char *qualsep;
890  Oid queryoids[RI_MAX_NUMKEYS * 2];
891  const char *fk_only;
892 
893  /* ----------
894  * The query string built is
895  * UPDATE [ONLY] <fktable> SET fkatt1 = $1 [, ...]
896  * WHERE $n = fkatt1 [AND ...]
897  * The type id's for the $ parameters are those of the
898  * corresponding PK attributes. Note that we are assuming
899  * there is an assignment cast from the PK to the FK type;
900  * else the parser will fail.
901  * ----------
902  */
903  initStringInfo(&querybuf);
904  initStringInfo(&qualbuf);
905  fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
906  "" : "ONLY ";
907  quoteRelationName(fkrelname, fk_rel);
908  appendStringInfo(&querybuf, "UPDATE %s%s SET",
909  fk_only, fkrelname);
910  querysep = "";
911  qualsep = "WHERE";
912  for (int i = 0, j = riinfo->nkeys; i < riinfo->nkeys; i++, j++)
913  {
914  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
915  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
916  Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
917  Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
918 
919  quoteOneName(attname,
920  RIAttName(fk_rel, riinfo->fk_attnums[i]));
921  appendStringInfo(&querybuf,
922  "%s %s = $%d",
923  querysep, attname, i + 1);
924  sprintf(paramname, "$%d", j + 1);
925  ri_GenerateQual(&qualbuf, qualsep,
926  paramname, pk_type,
927  riinfo->pf_eq_oprs[i],
928  attname, fk_type);
929  if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
930  ri_GenerateQualCollation(&querybuf, pk_coll);
931  querysep = ",";
932  qualsep = "AND";
933  queryoids[i] = pk_type;
934  queryoids[j] = pk_type;
935  }
936  appendBinaryStringInfo(&querybuf, qualbuf.data, qualbuf.len);
937 
938  /* Prepare and save the plan */
939  qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys * 2, queryoids,
940  &qkey, fk_rel, pk_rel);
941  }
942 
943  /*
944  * We have a plan now. Run it to update the existing references.
945  */
946  ri_PerformCheck(riinfo, &qkey, qplan,
947  fk_rel, pk_rel,
948  oldslot, newslot,
949  true, /* must detect new rows */
950  SPI_OK_UPDATE);
951 
952  if (SPI_finish() != SPI_OK_FINISH)
953  elog(ERROR, "SPI_finish failed");
954 
955  table_close(fk_rel, RowExclusiveLock);
956 
957  return PointerGetDatum(NULL);
958 }
959 
960 
961 /*
962  * RI_FKey_setnull_del -
963  *
964  * Set foreign key references to NULL values at delete event on PK table.
965  */
966 Datum
968 {
969  /* Check that this is a valid trigger call on the right time and event. */
970  ri_CheckTrigger(fcinfo, "RI_FKey_setnull_del", RI_TRIGTYPE_DELETE);
971 
972  /* Share code with UPDATE case */
973  return ri_set((TriggerData *) fcinfo->context, true);
974 }
975 
976 /*
977  * RI_FKey_setnull_upd -
978  *
979  * Set foreign key references to NULL at update event on PK table.
980  */
981 Datum
983 {
984  /* Check that this is a valid trigger call on the right time and event. */
985  ri_CheckTrigger(fcinfo, "RI_FKey_setnull_upd", RI_TRIGTYPE_UPDATE);
986 
987  /* Share code with DELETE case */
988  return ri_set((TriggerData *) fcinfo->context, true);
989 }
990 
991 /*
992  * RI_FKey_setdefault_del -
993  *
994  * Set foreign key references to defaults at delete event on PK table.
995  */
996 Datum
998 {
999  /* Check that this is a valid trigger call on the right time and event. */
1000  ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_del", RI_TRIGTYPE_DELETE);
1001 
1002  /* Share code with UPDATE case */
1003  return ri_set((TriggerData *) fcinfo->context, false);
1004 }
1005 
1006 /*
1007  * RI_FKey_setdefault_upd -
1008  *
1009  * Set foreign key references to defaults at update event on PK table.
1010  */
1011 Datum
1013 {
1014  /* Check that this is a valid trigger call on the right time and event. */
1015  ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_upd", RI_TRIGTYPE_UPDATE);
1016 
1017  /* Share code with DELETE case */
1018  return ri_set((TriggerData *) fcinfo->context, false);
1019 }
1020 
1021 /*
1022  * ri_set -
1023  *
1024  * Common code for ON DELETE SET NULL, ON DELETE SET DEFAULT, ON UPDATE SET
1025  * NULL, and ON UPDATE SET DEFAULT.
1026  */
1027 static Datum
1028 ri_set(TriggerData *trigdata, bool is_set_null)
1029 {
1030  const RI_ConstraintInfo *riinfo;
1031  Relation fk_rel;
1032  Relation pk_rel;
1033  TupleTableSlot *oldslot;
1034  RI_QueryKey qkey;
1035  SPIPlanPtr qplan;
1036 
1037  riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
1038  trigdata->tg_relation, true);
1039 
1040  /*
1041  * Get the relation descriptors of the FK and PK tables and the old tuple.
1042  *
1043  * fk_rel is opened in RowExclusiveLock mode since that's what our
1044  * eventual UPDATE will get on it.
1045  */
1046  fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
1047  pk_rel = trigdata->tg_relation;
1048  oldslot = trigdata->tg_trigslot;
1049 
1050  if (SPI_connect() != SPI_OK_CONNECT)
1051  elog(ERROR, "SPI_connect failed");
1052 
1053  /*
1054  * Fetch or prepare a saved plan for the set null/default operation (it's
1055  * the same query for delete and update cases)
1056  */
1057  ri_BuildQueryKey(&qkey, riinfo,
1058  (is_set_null
1061 
1062  if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
1063  {
1064  StringInfoData querybuf;
1065  StringInfoData qualbuf;
1066  char fkrelname[MAX_QUOTED_REL_NAME_LEN];
1068  char paramname[16];
1069  const char *querysep;
1070  const char *qualsep;
1071  Oid queryoids[RI_MAX_NUMKEYS];
1072  const char *fk_only;
1073 
1074  /* ----------
1075  * The query string built is
1076  * UPDATE [ONLY] <fktable> SET fkatt1 = {NULL|DEFAULT} [, ...]
1077  * WHERE $1 = fkatt1 [AND ...]
1078  * The type id's for the $ parameters are those of the
1079  * corresponding PK attributes.
1080  * ----------
1081  */
1082  initStringInfo(&querybuf);
1083  initStringInfo(&qualbuf);
1084  fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
1085  "" : "ONLY ";
1086  quoteRelationName(fkrelname, fk_rel);
1087  appendStringInfo(&querybuf, "UPDATE %s%s SET",
1088  fk_only, fkrelname);
1089  querysep = "";
1090  qualsep = "WHERE";
1091  for (int i = 0; i < riinfo->nkeys; i++)
1092  {
1093  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
1094  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
1095  Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
1096  Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
1097 
1098  quoteOneName(attname,
1099  RIAttName(fk_rel, riinfo->fk_attnums[i]));
1100  appendStringInfo(&querybuf,
1101  "%s %s = %s",
1102  querysep, attname,
1103  is_set_null ? "NULL" : "DEFAULT");
1104  sprintf(paramname, "$%d", i + 1);
1105  ri_GenerateQual(&qualbuf, qualsep,
1106  paramname, pk_type,
1107  riinfo->pf_eq_oprs[i],
1108  attname, fk_type);
1109  if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
1110  ri_GenerateQualCollation(&querybuf, pk_coll);
1111  querysep = ",";
1112  qualsep = "AND";
1113  queryoids[i] = pk_type;
1114  }
1115  appendBinaryStringInfo(&querybuf, qualbuf.data, qualbuf.len);
1116 
1117  /* Prepare and save the plan */
1118  qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
1119  &qkey, fk_rel, pk_rel);
1120  }
1121 
1122  /*
1123  * We have a plan now. Run it to update the existing references.
1124  */
1125  ri_PerformCheck(riinfo, &qkey, qplan,
1126  fk_rel, pk_rel,
1127  oldslot, NULL,
1128  true, /* must detect new rows */
1129  SPI_OK_UPDATE);
1130 
1131  if (SPI_finish() != SPI_OK_FINISH)
1132  elog(ERROR, "SPI_finish failed");
1133 
1134  table_close(fk_rel, RowExclusiveLock);
1135 
1136  if (is_set_null)
1137  return PointerGetDatum(NULL);
1138  else
1139  {
1140  /*
1141  * If we just deleted or updated the PK row whose key was equal to the
1142  * FK columns' default values, and a referencing row exists in the FK
1143  * table, we would have updated that row to the same values it already
1144  * had --- and RI_FKey_fk_upd_check_required would hence believe no
1145  * check is necessary. So we need to do another lookup now and in
1146  * case a reference still exists, abort the operation. That is
1147  * already implemented in the NO ACTION trigger, so just run it. (This
1148  * recheck is only needed in the SET DEFAULT case, since CASCADE would
1149  * remove such rows in case of a DELETE operation or would change the
1150  * FK key values in case of an UPDATE, while SET NULL is certain to
1151  * result in rows that satisfy the FK constraint.)
1152  */
1153  return ri_restrict(trigdata, true);
1154  }
1155 }
1156 
1157 
1158 /*
1159  * RI_FKey_pk_upd_check_required -
1160  *
1161  * Check if we really need to fire the RI trigger for an update or delete to a PK
1162  * relation. This is called by the AFTER trigger queue manager to see if
1163  * it can skip queuing an instance of an RI trigger. Returns true if the
1164  * trigger must be fired, false if we can prove the constraint will still
1165  * be satisfied.
1166  *
1167  * newslot will be NULL if this is called for a delete.
1168  */
1169 bool
1171  TupleTableSlot *oldslot, TupleTableSlot *newslot)
1172 {
1173  const RI_ConstraintInfo *riinfo;
1174 
1175  riinfo = ri_FetchConstraintInfo(trigger, pk_rel, true);
1176 
1177  /*
1178  * If any old key value is NULL, the row could not have been referenced by
1179  * an FK row, so no check is needed.
1180  */
1181  if (ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) != RI_KEYS_NONE_NULL)
1182  return false;
1183 
1184  /* If all old and new key values are equal, no check is needed */
1185  if (newslot && ri_KeysEqual(pk_rel, oldslot, newslot, riinfo, true))
1186  return false;
1187 
1188  /* Else we need to fire the trigger. */
1189  return true;
1190 }
1191 
1192 /*
1193  * RI_FKey_fk_upd_check_required -
1194  *
1195  * Check if we really need to fire the RI trigger for an update to an FK
1196  * relation. This is called by the AFTER trigger queue manager to see if
1197  * it can skip queuing an instance of an RI trigger. Returns true if the
1198  * trigger must be fired, false if we can prove the constraint will still
1199  * be satisfied.
1200  */
1201 bool
1203  TupleTableSlot *oldslot, TupleTableSlot *newslot)
1204 {
1205  const RI_ConstraintInfo *riinfo;
1206  int ri_nullcheck;
1207  Datum xminDatum;
1208  TransactionId xmin;
1209  bool isnull;
1210 
1211  riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
1212 
1213  ri_nullcheck = ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false);
1214 
1215  /*
1216  * If all new key values are NULL, the row satisfies the constraint, so no
1217  * check is needed.
1218  */
1219  if (ri_nullcheck == RI_KEYS_ALL_NULL)
1220  return false;
1221 
1222  /*
1223  * If some new key values are NULL, the behavior depends on the match
1224  * type.
1225  */
1226  else if (ri_nullcheck == RI_KEYS_SOME_NULL)
1227  {
1228  switch (riinfo->confmatchtype)
1229  {
1230  case FKCONSTR_MATCH_SIMPLE:
1231 
1232  /*
1233  * If any new key value is NULL, the row must satisfy the
1234  * constraint, so no check is needed.
1235  */
1236  return false;
1237 
1239 
1240  /*
1241  * Don't know, must run full check.
1242  */
1243  break;
1244 
1245  case FKCONSTR_MATCH_FULL:
1246 
1247  /*
1248  * If some new key values are NULL, the row fails the
1249  * constraint. We must not throw error here, because the row
1250  * might get invalidated before the constraint is to be
1251  * checked, but we should queue the event to apply the check
1252  * later.
1253  */
1254  return true;
1255  }
1256  }
1257 
1258  /*
1259  * Continues here for no new key values are NULL, or we couldn't decide
1260  * yet.
1261  */
1262 
1263  /*
1264  * If the original row was inserted by our own transaction, we must fire
1265  * the trigger whether or not the keys are equal. This is because our
1266  * UPDATE will invalidate the INSERT so that the INSERT RI trigger will
1267  * not do anything; so we had better do the UPDATE check. (We could skip
1268  * this if we knew the INSERT trigger already fired, but there is no easy
1269  * way to know that.)
1270  */
1271  xminDatum = slot_getsysattr(oldslot, MinTransactionIdAttributeNumber, &isnull);
1272  Assert(!isnull);
1273  xmin = DatumGetTransactionId(xminDatum);
1275  return true;
1276 
1277  /* If all old and new key values are equal, no check is needed */
1278  if (ri_KeysEqual(fk_rel, oldslot, newslot, riinfo, false))
1279  return false;
1280 
1281  /* Else we need to fire the trigger. */
1282  return true;
1283 }
1284 
1285 /*
1286  * RI_Initial_Check -
1287  *
1288  * Check an entire table for non-matching values using a single query.
1289  * This is not a trigger procedure, but is called during ALTER TABLE
1290  * ADD FOREIGN KEY to validate the initial table contents.
1291  *
1292  * We expect that the caller has made provision to prevent any problems
1293  * caused by concurrent actions. This could be either by locking rel and
1294  * pkrel at ShareRowExclusiveLock or higher, or by otherwise ensuring
1295  * that triggers implementing the checks are already active.
1296  * Hence, we do not need to lock individual rows for the check.
1297  *
1298  * If the check fails because the current user doesn't have permissions
1299  * to read both tables, return false to let our caller know that they will
1300  * need to do something else to check the constraint.
1301  */
1302 bool
1303 RI_Initial_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
1304 {
1305  const RI_ConstraintInfo *riinfo;
1306  StringInfoData querybuf;
1307  char pkrelname[MAX_QUOTED_REL_NAME_LEN];
1308  char fkrelname[MAX_QUOTED_REL_NAME_LEN];
1309  char pkattname[MAX_QUOTED_NAME_LEN + 3];
1310  char fkattname[MAX_QUOTED_NAME_LEN + 3];
1311  RangeTblEntry *pkrte;
1312  RangeTblEntry *fkrte;
1313  const char *sep;
1314  const char *fk_only;
1315  const char *pk_only;
1316  int save_nestlevel;
1317  char workmembuf[32];
1318  int spi_result;
1319  SPIPlanPtr qplan;
1320 
1321  riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
1322 
1323  /*
1324  * Check to make sure current user has enough permissions to do the test
1325  * query. (If not, caller can fall back to the trigger method, which
1326  * works because it changes user IDs on the fly.)
1327  *
1328  * XXX are there any other show-stopper conditions to check?
1329  */
1330  pkrte = makeNode(RangeTblEntry);
1331  pkrte->rtekind = RTE_RELATION;
1332  pkrte->relid = RelationGetRelid(pk_rel);
1333  pkrte->relkind = pk_rel->rd_rel->relkind;
1334  pkrte->rellockmode = AccessShareLock;
1335  pkrte->requiredPerms = ACL_SELECT;
1336 
1337  fkrte = makeNode(RangeTblEntry);
1338  fkrte->rtekind = RTE_RELATION;
1339  fkrte->relid = RelationGetRelid(fk_rel);
1340  fkrte->relkind = fk_rel->rd_rel->relkind;
1341  fkrte->rellockmode = AccessShareLock;
1342  fkrte->requiredPerms = ACL_SELECT;
1343 
1344  for (int i = 0; i < riinfo->nkeys; i++)
1345  {
1346  int attno;
1347 
1348  attno = riinfo->pk_attnums[i] - FirstLowInvalidHeapAttributeNumber;
1349  pkrte->selectedCols = bms_add_member(pkrte->selectedCols, attno);
1350 
1351  attno = riinfo->fk_attnums[i] - FirstLowInvalidHeapAttributeNumber;
1352  fkrte->selectedCols = bms_add_member(fkrte->selectedCols, attno);
1353  }
1354 
1355  if (!ExecCheckRTPerms(list_make2(fkrte, pkrte), false))
1356  return false;
1357 
1358  /*
1359  * Also punt if RLS is enabled on either table unless this role has the
1360  * bypassrls right or is the table owner of the table(s) involved which
1361  * have RLS enabled.
1362  */
1364  ((pk_rel->rd_rel->relrowsecurity &&
1365  !pg_class_ownercheck(pkrte->relid, GetUserId())) ||
1366  (fk_rel->rd_rel->relrowsecurity &&
1367  !pg_class_ownercheck(fkrte->relid, GetUserId()))))
1368  return false;
1369 
1370  /*----------
1371  * The query string built is:
1372  * SELECT fk.keycols FROM [ONLY] relname fk
1373  * LEFT OUTER JOIN [ONLY] pkrelname pk
1374  * ON (pk.pkkeycol1=fk.keycol1 [AND ...])
1375  * WHERE pk.pkkeycol1 IS NULL AND
1376  * For MATCH SIMPLE:
1377  * (fk.keycol1 IS NOT NULL [AND ...])
1378  * For MATCH FULL:
1379  * (fk.keycol1 IS NOT NULL [OR ...])
1380  *
1381  * We attach COLLATE clauses to the operators when comparing columns
1382  * that have different collations.
1383  *----------
1384  */
1385  initStringInfo(&querybuf);
1386  appendStringInfoString(&querybuf, "SELECT ");
1387  sep = "";
1388  for (int i = 0; i < riinfo->nkeys; i++)
1389  {
1390  quoteOneName(fkattname,
1391  RIAttName(fk_rel, riinfo->fk_attnums[i]));
1392  appendStringInfo(&querybuf, "%sfk.%s", sep, fkattname);
1393  sep = ", ";
1394  }
1395 
1396  quoteRelationName(pkrelname, pk_rel);
1397  quoteRelationName(fkrelname, fk_rel);
1398  fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
1399  "" : "ONLY ";
1400  pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
1401  "" : "ONLY ";
1402  appendStringInfo(&querybuf,
1403  " FROM %s%s fk LEFT OUTER JOIN %s%s pk ON",
1404  fk_only, fkrelname, pk_only, pkrelname);
1405 
1406  strcpy(pkattname, "pk.");
1407  strcpy(fkattname, "fk.");
1408  sep = "(";
1409  for (int i = 0; i < riinfo->nkeys; i++)
1410  {
1411  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
1412  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
1413  Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
1414  Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
1415 
1416  quoteOneName(pkattname + 3,
1417  RIAttName(pk_rel, riinfo->pk_attnums[i]));
1418  quoteOneName(fkattname + 3,
1419  RIAttName(fk_rel, riinfo->fk_attnums[i]));
1420  ri_GenerateQual(&querybuf, sep,
1421  pkattname, pk_type,
1422  riinfo->pf_eq_oprs[i],
1423  fkattname, fk_type);
1424  if (pk_coll != fk_coll)
1425  ri_GenerateQualCollation(&querybuf, pk_coll);
1426  sep = "AND";
1427  }
1428 
1429  /*
1430  * It's sufficient to test any one pk attribute for null to detect a join
1431  * failure.
1432  */
1433  quoteOneName(pkattname, RIAttName(pk_rel, riinfo->pk_attnums[0]));
1434  appendStringInfo(&querybuf, ") WHERE pk.%s IS NULL AND (", pkattname);
1435 
1436  sep = "";
1437  for (int i = 0; i < riinfo->nkeys; i++)
1438  {
1439  quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i]));
1440  appendStringInfo(&querybuf,
1441  "%sfk.%s IS NOT NULL",
1442  sep, fkattname);
1443  switch (riinfo->confmatchtype)
1444  {
1445  case FKCONSTR_MATCH_SIMPLE:
1446  sep = " AND ";
1447  break;
1448  case FKCONSTR_MATCH_FULL:
1449  sep = " OR ";
1450  break;
1451  }
1452  }
1453  appendStringInfoChar(&querybuf, ')');
1454 
1455  /*
1456  * Temporarily increase work_mem so that the check query can be executed
1457  * more efficiently. It seems okay to do this because the query is simple
1458  * enough to not use a multiple of work_mem, and one typically would not
1459  * have many large foreign-key validations happening concurrently. So
1460  * this seems to meet the criteria for being considered a "maintenance"
1461  * operation, and accordingly we use maintenance_work_mem. However, we
1462  * must also set hash_mem_multiplier to 1, since it is surely not okay to
1463  * let that get applied to the maintenance_work_mem value.
1464  *
1465  * We use the equivalent of a function SET option to allow the setting to
1466  * persist for exactly the duration of the check query. guc.c also takes
1467  * care of undoing the setting on error.
1468  */
1469  save_nestlevel = NewGUCNestLevel();
1470 
1471  snprintf(workmembuf, sizeof(workmembuf), "%d", maintenance_work_mem);
1472  (void) set_config_option("work_mem", workmembuf,
1474  GUC_ACTION_SAVE, true, 0, false);
1475  (void) set_config_option("hash_mem_multiplier", "1",
1477  GUC_ACTION_SAVE, true, 0, false);
1478 
1479  if (SPI_connect() != SPI_OK_CONNECT)
1480  elog(ERROR, "SPI_connect failed");
1481 
1482  /*
1483  * Generate the plan. We don't need to cache it, and there are no
1484  * arguments to the plan.
1485  */
1486  qplan = SPI_prepare(querybuf.data, 0, NULL);
1487 
1488  if (qplan == NULL)
1489  elog(ERROR, "SPI_prepare returned %s for %s",
1491 
1492  /*
1493  * Run the plan. For safety we force a current snapshot to be used. (In
1494  * transaction-snapshot mode, this arguably violates transaction isolation
1495  * rules, but we really haven't got much choice.) We don't need to
1496  * register the snapshot, because SPI_execute_snapshot will see to it. We
1497  * need at most one tuple returned, so pass limit = 1.
1498  */
1499  spi_result = SPI_execute_snapshot(qplan,
1500  NULL, NULL,
1503  true, false, 1);
1504 
1505  /* Check result */
1506  if (spi_result != SPI_OK_SELECT)
1507  elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
1508 
1509  /* Did we find a tuple violating the constraint? */
1510  if (SPI_processed > 0)
1511  {
1512  TupleTableSlot *slot;
1513  HeapTuple tuple = SPI_tuptable->vals[0];
1514  TupleDesc tupdesc = SPI_tuptable->tupdesc;
1515  RI_ConstraintInfo fake_riinfo;
1516 
1517  slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual);
1518 
1519  heap_deform_tuple(tuple, tupdesc,
1520  slot->tts_values, slot->tts_isnull);
1521  ExecStoreVirtualTuple(slot);
1522 
1523  /*
1524  * The columns to look at in the result tuple are 1..N, not whatever
1525  * they are in the fk_rel. Hack up riinfo so that the subroutines
1526  * called here will behave properly.
1527  *
1528  * In addition to this, we have to pass the correct tupdesc to
1529  * ri_ReportViolation, overriding its normal habit of using the pk_rel
1530  * or fk_rel's tupdesc.
1531  */
1532  memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo));
1533  for (int i = 0; i < fake_riinfo.nkeys; i++)
1534  fake_riinfo.fk_attnums[i] = i + 1;
1535 
1536  /*
1537  * If it's MATCH FULL, and there are any nulls in the FK keys,
1538  * complain about that rather than the lack of a match. MATCH FULL
1539  * disallows partially-null FK rows.
1540  */
1541  if (fake_riinfo.confmatchtype == FKCONSTR_MATCH_FULL &&
1542  ri_NullCheck(tupdesc, slot, &fake_riinfo, false) != RI_KEYS_NONE_NULL)
1543  ereport(ERROR,
1544  (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
1545  errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
1546  RelationGetRelationName(fk_rel),
1547  NameStr(fake_riinfo.conname)),
1548  errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
1549  errtableconstraint(fk_rel,
1550  NameStr(fake_riinfo.conname))));
1551 
1552  /*
1553  * We tell ri_ReportViolation we were doing the RI_PLAN_CHECK_LOOKUPPK
1554  * query, which isn't true, but will cause it to use
1555  * fake_riinfo.fk_attnums as we need.
1556  */
1557  ri_ReportViolation(&fake_riinfo,
1558  pk_rel, fk_rel,
1559  slot, tupdesc,
1560  RI_PLAN_CHECK_LOOKUPPK, false);
1561 
1563  }
1564 
1565  if (SPI_finish() != SPI_OK_FINISH)
1566  elog(ERROR, "SPI_finish failed");
1567 
1568  /*
1569  * Restore work_mem and hash_mem_multiplier.
1570  */
1571  AtEOXact_GUC(true, save_nestlevel);
1572 
1573  return true;
1574 }
1575 
1576 /*
1577  * RI_PartitionRemove_Check -
1578  *
1579  * Verify no referencing values exist, when a partition is detached on
1580  * the referenced side of a foreign key constraint.
1581  */
1582 void
1584 {
1585  const RI_ConstraintInfo *riinfo;
1586  StringInfoData querybuf;
1587  char *constraintDef;
1588  char pkrelname[MAX_QUOTED_REL_NAME_LEN];
1589  char fkrelname[MAX_QUOTED_REL_NAME_LEN];
1590  char pkattname[MAX_QUOTED_NAME_LEN + 3];
1591  char fkattname[MAX_QUOTED_NAME_LEN + 3];
1592  const char *sep;
1593  const char *fk_only;
1594  int save_nestlevel;
1595  char workmembuf[32];
1596  int spi_result;
1597  SPIPlanPtr qplan;
1598  int i;
1599 
1600  riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
1601 
1602  /*
1603  * We don't check permissions before displaying the error message, on the
1604  * assumption that the user detaching the partition must have enough
1605  * privileges to examine the table contents anyhow.
1606  */
1607 
1608  /*----------
1609  * The query string built is:
1610  * SELECT fk.keycols FROM [ONLY] relname fk
1611  * JOIN pkrelname pk
1612  * ON (pk.pkkeycol1=fk.keycol1 [AND ...])
1613  * WHERE (<partition constraint>) AND
1614  * For MATCH SIMPLE:
1615  * (fk.keycol1 IS NOT NULL [AND ...])
1616  * For MATCH FULL:
1617  * (fk.keycol1 IS NOT NULL [OR ...])
1618  *
1619  * We attach COLLATE clauses to the operators when comparing columns
1620  * that have different collations.
1621  *----------
1622  */
1623  initStringInfo(&querybuf);
1624  appendStringInfoString(&querybuf, "SELECT ");
1625  sep = "";
1626  for (i = 0; i < riinfo->nkeys; i++)
1627  {
1628  quoteOneName(fkattname,
1629  RIAttName(fk_rel, riinfo->fk_attnums[i]));
1630  appendStringInfo(&querybuf, "%sfk.%s", sep, fkattname);
1631  sep = ", ";
1632  }
1633 
1634  quoteRelationName(pkrelname, pk_rel);
1635  quoteRelationName(fkrelname, fk_rel);
1636  fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
1637  "" : "ONLY ";
1638  appendStringInfo(&querybuf,
1639  " FROM %s%s fk JOIN %s pk ON",
1640  fk_only, fkrelname, pkrelname);
1641  strcpy(pkattname, "pk.");
1642  strcpy(fkattname, "fk.");
1643  sep = "(";
1644  for (i = 0; i < riinfo->nkeys; i++)
1645  {
1646  Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
1647  Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
1648  Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
1649  Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
1650 
1651  quoteOneName(pkattname + 3,
1652  RIAttName(pk_rel, riinfo->pk_attnums[i]));
1653  quoteOneName(fkattname + 3,
1654  RIAttName(fk_rel, riinfo->fk_attnums[i]));
1655  ri_GenerateQual(&querybuf, sep,
1656  pkattname, pk_type,
1657  riinfo->pf_eq_oprs[i],
1658  fkattname, fk_type);
1659  if (pk_coll != fk_coll)
1660  ri_GenerateQualCollation(&querybuf, pk_coll);
1661  sep = "AND";
1662  }
1663 
1664  /*
1665  * Start the WHERE clause with the partition constraint (except if this is
1666  * the default partition and there's no other partition, because the
1667  * partition constraint is the empty string in that case.)
1668  */
1669  constraintDef = pg_get_partconstrdef_string(RelationGetRelid(pk_rel), "pk");
1670  if (constraintDef && constraintDef[0] != '\0')
1671  appendStringInfo(&querybuf, ") WHERE %s AND (",
1672  constraintDef);
1673  else
1674  appendStringInfoString(&querybuf, ") WHERE (");
1675 
1676  sep = "";
1677  for (i = 0; i < riinfo->nkeys; i++)
1678  {
1679  quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i]));
1680  appendStringInfo(&querybuf,
1681  "%sfk.%s IS NOT NULL",
1682  sep, fkattname);
1683  switch (riinfo->confmatchtype)
1684  {
1685  case FKCONSTR_MATCH_SIMPLE:
1686  sep = " AND ";
1687  break;
1688  case FKCONSTR_MATCH_FULL:
1689  sep = " OR ";
1690  break;
1691  }
1692  }
1693  appendStringInfoChar(&querybuf, ')');
1694 
1695  /*
1696  * Temporarily increase work_mem so that the check query can be executed
1697  * more efficiently. It seems okay to do this because the query is simple
1698  * enough to not use a multiple of work_mem, and one typically would not
1699  * have many large foreign-key validations happening concurrently. So
1700  * this seems to meet the criteria for being considered a "maintenance"
1701  * operation, and accordingly we use maintenance_work_mem. However, we
1702  * must also set hash_mem_multiplier to 1, since it is surely not okay to
1703  * let that get applied to the maintenance_work_mem value.
1704  *
1705  * We use the equivalent of a function SET option to allow the setting to
1706  * persist for exactly the duration of the check query. guc.c also takes
1707  * care of undoing the setting on error.
1708  */
1709  save_nestlevel = NewGUCNestLevel();
1710 
1711  snprintf(workmembuf, sizeof(workmembuf), "%d", maintenance_work_mem);
1712  (void) set_config_option("work_mem", workmembuf,
1714  GUC_ACTION_SAVE, true, 0, false);
1715  (void) set_config_option("hash_mem_multiplier", "1",
1717  GUC_ACTION_SAVE, true, 0, false);
1718 
1719  if (SPI_connect() != SPI_OK_CONNECT)
1720  elog(ERROR, "SPI_connect failed");
1721 
1722  /*
1723  * Generate the plan. We don't need to cache it, and there are no
1724  * arguments to the plan.
1725  */
1726  qplan = SPI_prepare(querybuf.data, 0, NULL);
1727 
1728  if (qplan == NULL)
1729  elog(ERROR, "SPI_prepare returned %s for %s",
1731 
1732  /*
1733  * Run the plan. For safety we force a current snapshot to be used. (In
1734  * transaction-snapshot mode, this arguably violates transaction isolation
1735  * rules, but we really haven't got much choice.) We don't need to
1736  * register the snapshot, because SPI_execute_snapshot will see to it. We
1737  * need at most one tuple returned, so pass limit = 1.
1738  */
1739  spi_result = SPI_execute_snapshot(qplan,
1740  NULL, NULL,
1743  true, false, 1);
1744 
1745  /* Check result */
1746  if (spi_result != SPI_OK_SELECT)
1747  elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
1748 
1749  /* Did we find a tuple that would violate the constraint? */
1750  if (SPI_processed > 0)
1751  {
1752  TupleTableSlot *slot;
1753  HeapTuple tuple = SPI_tuptable->vals[0];
1754  TupleDesc tupdesc = SPI_tuptable->tupdesc;
1755  RI_ConstraintInfo fake_riinfo;
1756 
1757  slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual);
1758 
1759  heap_deform_tuple(tuple, tupdesc,
1760  slot->tts_values, slot->tts_isnull);
1761  ExecStoreVirtualTuple(slot);
1762 
1763  /*
1764  * The columns to look at in the result tuple are 1..N, not whatever
1765  * they are in the fk_rel. Hack up riinfo so that ri_ReportViolation
1766  * will behave properly.
1767  *
1768  * In addition to this, we have to pass the correct tupdesc to
1769  * ri_ReportViolation, overriding its normal habit of using the pk_rel
1770  * or fk_rel's tupdesc.
1771  */
1772  memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo));
1773  for (i = 0; i < fake_riinfo.nkeys; i++)
1774  fake_riinfo.pk_attnums[i] = i + 1;
1775 
1776  ri_ReportViolation(&fake_riinfo, pk_rel, fk_rel,
1777  slot, tupdesc, 0, true);
1778  }
1779 
1780  if (SPI_finish() != SPI_OK_FINISH)
1781  elog(ERROR, "SPI_finish failed");
1782 
1783  /*
1784  * Restore work_mem and hash_mem_multiplier.
1785  */
1786  AtEOXact_GUC(true, save_nestlevel);
1787 }
1788 
1789 
1790 /* ----------
1791  * Local functions below
1792  * ----------
1793  */
1794 
1795 
1796 /*
1797  * quoteOneName --- safely quote a single SQL name
1798  *
1799  * buffer must be MAX_QUOTED_NAME_LEN long (includes room for \0)
1800  */
1801 static void
1802 quoteOneName(char *buffer, const char *name)
1803 {
1804  /* Rather than trying to be smart, just always quote it. */
1805  *buffer++ = '"';
1806  while (*name)
1807  {
1808  if (*name == '"')
1809  *buffer++ = '"';
1810  *buffer++ = *name++;
1811  }
1812  *buffer++ = '"';
1813  *buffer = '\0';
1814 }
1815 
1816 /*
1817  * quoteRelationName --- safely quote a fully qualified relation name
1818  *
1819  * buffer must be MAX_QUOTED_REL_NAME_LEN long (includes room for \0)
1820  */
1821 static void
1822 quoteRelationName(char *buffer, Relation rel)
1823 {
1825  buffer += strlen(buffer);
1826  *buffer++ = '.';
1827  quoteOneName(buffer, RelationGetRelationName(rel));
1828 }
1829 
1830 /*
1831  * ri_GenerateQual --- generate a WHERE clause equating two variables
1832  *
1833  * This basically appends " sep leftop op rightop" to buf, adding casts
1834  * and schema qualification as needed to ensure that the parser will select
1835  * the operator we specify. leftop and rightop should be parenthesized
1836  * if they aren't variables or parameters.
1837  */
1838 static void
1840  const char *sep,
1841  const char *leftop, Oid leftoptype,
1842  Oid opoid,
1843  const char *rightop, Oid rightoptype)
1844 {
1845  appendStringInfo(buf, " %s ", sep);
1846  generate_operator_clause(buf, leftop, leftoptype, opoid,
1847  rightop, rightoptype);
1848 }
1849 
1850 /*
1851  * ri_GenerateQualCollation --- add a COLLATE spec to a WHERE clause
1852  *
1853  * At present, we intentionally do not use this function for RI queries that
1854  * compare a variable to a $n parameter. Since parameter symbols always have
1855  * default collation, the effect will be to use the variable's collation.
1856  * Now that is only strictly correct when testing the referenced column, since
1857  * the SQL standard specifies that RI comparisons should use the referenced
1858  * column's collation. However, so long as all collations have the same
1859  * notion of equality (which they do, because texteq reduces to bitwise
1860  * equality), there's no visible semantic impact from using the referencing
1861  * column's collation when testing it, and this is a good thing to do because
1862  * it lets us use a normal index on the referencing column. However, we do
1863  * have to use this function when directly comparing the referencing and
1864  * referenced columns, if they are of different collations; else the parser
1865  * will fail to resolve the collation to use.
1866  */
1867 static void
1869 {
1870  HeapTuple tp;
1871  Form_pg_collation colltup;
1872  char *collname;
1873  char onename[MAX_QUOTED_NAME_LEN];
1874 
1875  /* Nothing to do if it's a noncollatable data type */
1876  if (!OidIsValid(collation))
1877  return;
1878 
1879  tp = SearchSysCache1(COLLOID, ObjectIdGetDatum(collation));
1880  if (!HeapTupleIsValid(tp))
1881  elog(ERROR, "cache lookup failed for collation %u", collation);
1882  colltup = (Form_pg_collation) GETSTRUCT(tp);
1883  collname = NameStr(colltup->collname);
1884 
1885  /*
1886  * We qualify the name always, for simplicity and to ensure the query is
1887  * not search-path-dependent.
1888  */
1889  quoteOneName(onename, get_namespace_name(colltup->collnamespace));
1890  appendStringInfo(buf, " COLLATE %s", onename);
1891  quoteOneName(onename, collname);
1892  appendStringInfo(buf, ".%s", onename);
1893 
1894  ReleaseSysCache(tp);
1895 }
1896 
1897 /* ----------
1898  * ri_BuildQueryKey -
1899  *
1900  * Construct a hashtable key for a prepared SPI plan of an FK constraint.
1901  *
1902  * key: output argument, *key is filled in based on the other arguments
1903  * riinfo: info derived from pg_constraint entry
1904  * constr_queryno: an internal number identifying the query type
1905  * (see RI_PLAN_XXX constants at head of file)
1906  * ----------
1907  */
1908 static void
1910  int32 constr_queryno)
1911 {
1912  /*
1913  * Inherited constraints with a common ancestor can share ri_query_cache
1914  * entries for all query types except RI_PLAN_CHECK_LOOKUPPK_FROM_PK.
1915  * Except in that case, the query processes the other table involved in
1916  * the FK constraint (i.e., not the table on which the trigger has been
1917  * fired), and so it will be the same for all members of the inheritance
1918  * tree. So we may use the root constraint's OID in the hash key, rather
1919  * than the constraint's own OID. This avoids creating duplicate SPI
1920  * plans, saving lots of work and memory when there are many partitions
1921  * with similar FK constraints.
1922  *
1923  * (Note that we must still have a separate RI_ConstraintInfo for each
1924  * constraint, because partitions can have different column orders,
1925  * resulting in different pk_attnums[] or fk_attnums[] array contents.)
1926  *
1927  * We assume struct RI_QueryKey contains no padding bytes, else we'd need
1928  * to use memset to clear them.
1929  */
1930  if (constr_queryno != RI_PLAN_CHECK_LOOKUPPK_FROM_PK)
1931  key->constr_id = riinfo->constraint_root_id;
1932  else
1933  key->constr_id = riinfo->constraint_id;
1934  key->constr_queryno = constr_queryno;
1935 }
1936 
1937 /*
1938  * Check that RI trigger function was called in expected context
1939  */
1940 static void
1941 ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname, int tgkind)
1942 {
1943  TriggerData *trigdata = (TriggerData *) fcinfo->context;
1944 
1945  if (!CALLED_AS_TRIGGER(fcinfo))
1946  ereport(ERROR,
1947  (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
1948  errmsg("function \"%s\" was not called by trigger manager", funcname)));
1949 
1950  /*
1951  * Check proper event
1952  */
1953  if (!TRIGGER_FIRED_AFTER(trigdata->tg_event) ||
1954  !TRIGGER_FIRED_FOR_ROW(trigdata->tg_event))
1955  ereport(ERROR,
1956  (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
1957  errmsg("function \"%s\" must be fired AFTER ROW", funcname)));
1958 
1959  switch (tgkind)
1960  {
1961  case RI_TRIGTYPE_INSERT:
1962  if (!TRIGGER_FIRED_BY_INSERT(trigdata->tg_event))
1963  ereport(ERROR,
1964  (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
1965  errmsg("function \"%s\" must be fired for INSERT", funcname)));
1966  break;
1967  case RI_TRIGTYPE_UPDATE:
1968  if (!TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
1969  ereport(ERROR,
1970  (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
1971  errmsg("function \"%s\" must be fired for UPDATE", funcname)));
1972  break;
1973  case RI_TRIGTYPE_DELETE:
1974  if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event))
1975  ereport(ERROR,
1976  (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
1977  errmsg("function \"%s\" must be fired for DELETE", funcname)));
1978  break;
1979  }
1980 }
1981 
1982 
1983 /*
1984  * Fetch the RI_ConstraintInfo struct for the trigger's FK constraint.
1985  */
1986 static const RI_ConstraintInfo *
1987 ri_FetchConstraintInfo(Trigger *trigger, Relation trig_rel, bool rel_is_pk)
1988 {
1989  Oid constraintOid = trigger->tgconstraint;
1990  const RI_ConstraintInfo *riinfo;
1991 
1992  /*
1993  * Check that the FK constraint's OID is available; it might not be if
1994  * we've been invoked via an ordinary trigger or an old-style "constraint
1995  * trigger".
1996  */
1997  if (!OidIsValid(constraintOid))
1998  ereport(ERROR,
1999  (errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
2000  errmsg("no pg_constraint entry for trigger \"%s\" on table \"%s\"",
2001  trigger->tgname, RelationGetRelationName(trig_rel)),
2002  errhint("Remove this referential integrity trigger and its mates, then do ALTER TABLE ADD CONSTRAINT.")));
2003 
2004  /* Find or create a hashtable entry for the constraint */
2005  riinfo = ri_LoadConstraintInfo(constraintOid);
2006 
2007  /* Do some easy cross-checks against the trigger call data */
2008  if (rel_is_pk)
2009  {
2010  if (riinfo->fk_relid != trigger->tgconstrrelid ||
2011  riinfo->pk_relid != RelationGetRelid(trig_rel))
2012  elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
2013  trigger->tgname, RelationGetRelationName(trig_rel));
2014  }
2015  else
2016  {
2017  if (riinfo->fk_relid != RelationGetRelid(trig_rel) ||
2018  riinfo->pk_relid != trigger->tgconstrrelid)
2019  elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
2020  trigger->tgname, RelationGetRelationName(trig_rel));
2021  }
2022 
2023  if (riinfo->confmatchtype != FKCONSTR_MATCH_FULL &&
2026  elog(ERROR, "unrecognized confmatchtype: %d",
2027  riinfo->confmatchtype);
2028 
2029  if (riinfo->confmatchtype == FKCONSTR_MATCH_PARTIAL)
2030  ereport(ERROR,
2031  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2032  errmsg("MATCH PARTIAL not yet implemented")));
2033 
2034  return riinfo;
2035 }
2036 
2037 /*
2038  * Fetch or create the RI_ConstraintInfo struct for an FK constraint.
2039  */
2040 static const RI_ConstraintInfo *
2042 {
2043  RI_ConstraintInfo *riinfo;
2044  bool found;
2045  HeapTuple tup;
2046  Form_pg_constraint conForm;
2047 
2048  /*
2049  * On the first call initialize the hashtable
2050  */
2051  if (!ri_constraint_cache)
2053 
2054  /*
2055  * Find or create a hash entry. If we find a valid one, just return it.
2056  */
2057  riinfo = (RI_ConstraintInfo *) hash_search(ri_constraint_cache,
2058  (void *) &constraintOid,
2059  HASH_ENTER, &found);
2060  if (!found)
2061  riinfo->valid = false;
2062  else if (riinfo->valid)
2063  return riinfo;
2064 
2065  /*
2066  * Fetch the pg_constraint row so we can fill in the entry.
2067  */
2068  tup = SearchSysCache1(CONSTROID, ObjectIdGetDatum(constraintOid));
2069  if (!HeapTupleIsValid(tup)) /* should not happen */
2070  elog(ERROR, "cache lookup failed for constraint %u", constraintOid);
2071  conForm = (Form_pg_constraint) GETSTRUCT(tup);
2072 
2073  if (conForm->contype != CONSTRAINT_FOREIGN) /* should not happen */
2074  elog(ERROR, "constraint %u is not a foreign key constraint",
2075  constraintOid);
2076 
2077  /* And extract data */
2078  Assert(riinfo->constraint_id == constraintOid);
2079  if (OidIsValid(conForm->conparentid))
2080  riinfo->constraint_root_id =
2081  get_ri_constraint_root(conForm->conparentid);
2082  else
2083  riinfo->constraint_root_id = constraintOid;
2085  ObjectIdGetDatum(constraintOid));
2088  memcpy(&riinfo->conname, &conForm->conname, sizeof(NameData));
2089  riinfo->pk_relid = conForm->confrelid;
2090  riinfo->fk_relid = conForm->conrelid;
2091  riinfo->confupdtype = conForm->confupdtype;
2092  riinfo->confdeltype = conForm->confdeltype;
2093  riinfo->confmatchtype = conForm->confmatchtype;
2094 
2096  &riinfo->nkeys,
2097  riinfo->fk_attnums,
2098  riinfo->pk_attnums,
2099  riinfo->pf_eq_oprs,
2100  riinfo->pp_eq_oprs,
2101  riinfo->ff_eq_oprs);
2102 
2103  ReleaseSysCache(tup);
2104 
2105  /*
2106  * For efficient processing of invalidation messages below, we keep a
2107  * doubly-linked list, and a count, of all currently valid entries.
2108  */
2109  dlist_push_tail(&ri_constraint_cache_valid_list, &riinfo->valid_link);
2111 
2112  riinfo->valid = true;
2113 
2114  return riinfo;
2115 }
2116 
2117 /*
2118  * get_ri_constraint_root
2119  * Returns the OID of the constraint's root parent
2120  */
2121 static Oid
2123 {
2124  for (;;)
2125  {
2126  HeapTuple tuple;
2127  Oid constrParentOid;
2128 
2129  tuple = SearchSysCache1(CONSTROID, ObjectIdGetDatum(constrOid));
2130  if (!HeapTupleIsValid(tuple))
2131  elog(ERROR, "cache lookup failed for constraint %u", constrOid);
2132  constrParentOid = ((Form_pg_constraint) GETSTRUCT(tuple))->conparentid;
2133  ReleaseSysCache(tuple);
2134  if (!OidIsValid(constrParentOid))
2135  break; /* we reached the root constraint */
2136  constrOid = constrParentOid;
2137  }
2138  return constrOid;
2139 }
2140 
2141 /*
2142  * Callback for pg_constraint inval events
2143  *
2144  * While most syscache callbacks just flush all their entries, pg_constraint
2145  * gets enough update traffic that it's probably worth being smarter.
2146  * Invalidate any ri_constraint_cache entry associated with the syscache
2147  * entry with the specified hash value, or all entries if hashvalue == 0.
2148  *
2149  * Note: at the time a cache invalidation message is processed there may be
2150  * active references to the cache. Because of this we never remove entries
2151  * from the cache, but only mark them invalid, which is harmless to active
2152  * uses. (Any query using an entry should hold a lock sufficient to keep that
2153  * data from changing under it --- but we may get cache flushes anyway.)
2154  */
2155 static void
2157 {
2158  dlist_mutable_iter iter;
2159 
2160  Assert(ri_constraint_cache != NULL);
2161 
2162  /*
2163  * If the list of currently valid entries gets excessively large, we mark
2164  * them all invalid so we can empty the list. This arrangement avoids
2165  * O(N^2) behavior in situations where a session touches many foreign keys
2166  * and also does many ALTER TABLEs, such as a restore from pg_dump.
2167  */
2169  hashvalue = 0; /* pretend it's a cache reset */
2170 
2171  dlist_foreach_modify(iter, &ri_constraint_cache_valid_list)
2172  {
2174  valid_link, iter.cur);
2175 
2176  /*
2177  * We must invalidate not only entries directly matching the given
2178  * hash value, but also child entries, in case the invalidation
2179  * affects a root constraint.
2180  */
2181  if (hashvalue == 0 ||
2182  riinfo->oidHashValue == hashvalue ||
2183  riinfo->rootHashValue == hashvalue)
2184  {
2185  riinfo->valid = false;
2186  /* Remove invalidated entries from the list, too */
2187  dlist_delete(iter.cur);
2189  }
2190  }
2191 }
2192 
2193 
2194 /*
2195  * Prepare execution plan for a query to enforce an RI restriction
2196  */
2197 static SPIPlanPtr
2198 ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes,
2199  RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel)
2200 {
2201  SPIPlanPtr qplan;
2202  Relation query_rel;
2203  Oid save_userid;
2204  int save_sec_context;
2205 
2206  /*
2207  * Use the query type code to determine whether the query is run against
2208  * the PK or FK table; we'll do the check as that table's owner
2209  */
2210  if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK)
2211  query_rel = pk_rel;
2212  else
2213  query_rel = fk_rel;
2214 
2215  /* Switch to proper UID to perform check as */
2216  GetUserIdAndSecContext(&save_userid, &save_sec_context);
2217  SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner,
2218  save_sec_context | SECURITY_LOCAL_USERID_CHANGE |
2220 
2221  /* Create the plan */
2222  qplan = SPI_prepare(querystr, nargs, argtypes);
2223 
2224  if (qplan == NULL)
2225  elog(ERROR, "SPI_prepare returned %s for %s", SPI_result_code_string(SPI_result), querystr);
2226 
2227  /* Restore UID and security context */
2228  SetUserIdAndSecContext(save_userid, save_sec_context);
2229 
2230  /* Save the plan */
2231  SPI_keepplan(qplan);
2232  ri_HashPreparedPlan(qkey, qplan);
2233 
2234  return qplan;
2235 }
2236 
2237 /*
2238  * Perform a query to enforce an RI restriction
2239  */
2240 static bool
2242  RI_QueryKey *qkey, SPIPlanPtr qplan,
2243  Relation fk_rel, Relation pk_rel,
2244  TupleTableSlot *oldslot, TupleTableSlot *newslot,
2245  bool detectNewRows, int expect_OK)
2246 {
2247  Relation query_rel,
2248  source_rel;
2249  bool source_is_pk;
2250  Snapshot test_snapshot;
2251  Snapshot crosscheck_snapshot;
2252  int limit;
2253  int spi_result;
2254  Oid save_userid;
2255  int save_sec_context;
2256  Datum vals[RI_MAX_NUMKEYS * 2];
2257  char nulls[RI_MAX_NUMKEYS * 2];
2258 
2259  /*
2260  * Use the query type code to determine whether the query is run against
2261  * the PK or FK table; we'll do the check as that table's owner
2262  */
2263  if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK)
2264  query_rel = pk_rel;
2265  else
2266  query_rel = fk_rel;
2267 
2268  /*
2269  * The values for the query are taken from the table on which the trigger
2270  * is called - it is normally the other one with respect to query_rel. An
2271  * exception is ri_Check_Pk_Match(), which uses the PK table for both (and
2272  * sets queryno to RI_PLAN_CHECK_LOOKUPPK_FROM_PK). We might eventually
2273  * need some less klugy way to determine this.
2274  */
2276  {
2277  source_rel = fk_rel;
2278  source_is_pk = false;
2279  }
2280  else
2281  {
2282  source_rel = pk_rel;
2283  source_is_pk = true;
2284  }
2285 
2286  /* Extract the parameters to be passed into the query */
2287  if (newslot)
2288  {
2289  ri_ExtractValues(source_rel, newslot, riinfo, source_is_pk,
2290  vals, nulls);
2291  if (oldslot)
2292  ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk,
2293  vals + riinfo->nkeys, nulls + riinfo->nkeys);
2294  }
2295  else
2296  {
2297  ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk,
2298  vals, nulls);
2299  }
2300 
2301  /*
2302  * In READ COMMITTED mode, we just need to use an up-to-date regular
2303  * snapshot, and we will see all rows that could be interesting. But in
2304  * transaction-snapshot mode, we can't change the transaction snapshot. If
2305  * the caller passes detectNewRows == false then it's okay to do the query
2306  * with the transaction snapshot; otherwise we use a current snapshot, and
2307  * tell the executor to error out if it finds any rows under the current
2308  * snapshot that wouldn't be visible per the transaction snapshot. Note
2309  * that SPI_execute_snapshot will register the snapshots, so we don't need
2310  * to bother here.
2311  */
2312  if (IsolationUsesXactSnapshot() && detectNewRows)
2313  {
2314  CommandCounterIncrement(); /* be sure all my own work is visible */
2315  test_snapshot = GetLatestSnapshot();
2316  crosscheck_snapshot = GetTransactionSnapshot();
2317  }
2318  else
2319  {
2320  /* the default SPI behavior is okay */
2321  test_snapshot = InvalidSnapshot;
2322  crosscheck_snapshot = InvalidSnapshot;
2323  }
2324 
2325  /*
2326  * If this is a select query (e.g., for a 'no action' or 'restrict'
2327  * trigger), we only need to see if there is a single row in the table,
2328  * matching the key. Otherwise, limit = 0 - because we want the query to
2329  * affect ALL the matching rows.
2330  */
2331  limit = (expect_OK == SPI_OK_SELECT) ? 1 : 0;
2332 
2333  /* Switch to proper UID to perform check as */
2334  GetUserIdAndSecContext(&save_userid, &save_sec_context);
2335  SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner,
2336  save_sec_context | SECURITY_LOCAL_USERID_CHANGE |
2338 
2339  /* Finally we can run the query. */
2340  spi_result = SPI_execute_snapshot(qplan,
2341  vals, nulls,
2342  test_snapshot, crosscheck_snapshot,
2343  false, false, limit);
2344 
2345  /* Restore UID and security context */
2346  SetUserIdAndSecContext(save_userid, save_sec_context);
2347 
2348  /* Check result */
2349  if (spi_result < 0)
2350  elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
2351 
2352  if (expect_OK >= 0 && spi_result != expect_OK)
2353  ereport(ERROR,
2354  (errcode(ERRCODE_INTERNAL_ERROR),
2355  errmsg("referential integrity query on \"%s\" from constraint \"%s\" on \"%s\" gave unexpected result",
2356  RelationGetRelationName(pk_rel),
2357  NameStr(riinfo->conname),
2358  RelationGetRelationName(fk_rel)),
2359  errhint("This is most likely due to a rule having rewritten the query.")));
2360 
2361  /* XXX wouldn't it be clearer to do this part at the caller? */
2363  expect_OK == SPI_OK_SELECT &&
2365  ri_ReportViolation(riinfo,
2366  pk_rel, fk_rel,
2367  newslot ? newslot : oldslot,
2368  NULL,
2369  qkey->constr_queryno, false);
2370 
2371  return SPI_processed != 0;
2372 }
2373 
2374 /*
2375  * Extract fields from a tuple into Datum/nulls arrays
2376  */
2377 static void
2379  const RI_ConstraintInfo *riinfo, bool rel_is_pk,
2380  Datum *vals, char *nulls)
2381 {
2382  const int16 *attnums;
2383  bool isnull;
2384 
2385  if (rel_is_pk)
2386  attnums = riinfo->pk_attnums;
2387  else
2388  attnums = riinfo->fk_attnums;
2389 
2390  for (int i = 0; i < riinfo->nkeys; i++)
2391  {
2392  vals[i] = slot_getattr(slot, attnums[i], &isnull);
2393  nulls[i] = isnull ? 'n' : ' ';
2394  }
2395 }
2396 
2397 /*
2398  * Produce an error report
2399  *
2400  * If the failed constraint was on insert/update to the FK table,
2401  * we want the key names and values extracted from there, and the error
2402  * message to look like 'key blah is not present in PK'.
2403  * Otherwise, the attr names and values come from the PK table and the
2404  * message looks like 'key blah is still referenced from FK'.
2405  */
2406 static void
2408  Relation pk_rel, Relation fk_rel,
2409  TupleTableSlot *violatorslot, TupleDesc tupdesc,
2410  int queryno, bool partgone)
2411 {
2412  StringInfoData key_names;
2413  StringInfoData key_values;
2414  bool onfk;
2415  const int16 *attnums;
2416  Oid rel_oid;
2417  AclResult aclresult;
2418  bool has_perm = true;
2419 
2420  /*
2421  * Determine which relation to complain about. If tupdesc wasn't passed
2422  * by caller, assume the violator tuple came from there.
2423  */
2424  onfk = (queryno == RI_PLAN_CHECK_LOOKUPPK);
2425  if (onfk)
2426  {
2427  attnums = riinfo->fk_attnums;
2428  rel_oid = fk_rel->rd_id;
2429  if (tupdesc == NULL)
2430  tupdesc = fk_rel->rd_att;
2431  }
2432  else
2433  {
2434  attnums = riinfo->pk_attnums;
2435  rel_oid = pk_rel->rd_id;
2436  if (tupdesc == NULL)
2437  tupdesc = pk_rel->rd_att;
2438  }
2439 
2440  /*
2441  * Check permissions- if the user does not have access to view the data in
2442  * any of the key columns then we don't include the errdetail() below.
2443  *
2444  * Check if RLS is enabled on the relation first. If so, we don't return
2445  * any specifics to avoid leaking data.
2446  *
2447  * Check table-level permissions next and, failing that, column-level
2448  * privileges.
2449  *
2450  * When a partition at the referenced side is being detached/dropped, we
2451  * needn't check, since the user must be the table owner anyway.
2452  */
2453  if (partgone)
2454  has_perm = true;
2455  else if (check_enable_rls(rel_oid, InvalidOid, true) != RLS_ENABLED)
2456  {
2457  aclresult = pg_class_aclcheck(rel_oid, GetUserId(), ACL_SELECT);
2458  if (aclresult != ACLCHECK_OK)
2459  {
2460  /* Try for column-level permissions */
2461  for (int idx = 0; idx < riinfo->nkeys; idx++)
2462  {
2463  aclresult = pg_attribute_aclcheck(rel_oid, attnums[idx],
2464  GetUserId(),
2465  ACL_SELECT);
2466 
2467  /* No access to the key */
2468  if (aclresult != ACLCHECK_OK)
2469  {
2470  has_perm = false;
2471  break;
2472  }
2473  }
2474  }
2475  }
2476  else
2477  has_perm = false;
2478 
2479  if (has_perm)
2480  {
2481  /* Get printable versions of the keys involved */
2482  initStringInfo(&key_names);
2483  initStringInfo(&key_values);
2484  for (int idx = 0; idx < riinfo->nkeys; idx++)
2485  {
2486  int fnum = attnums[idx];
2487  Form_pg_attribute att = TupleDescAttr(tupdesc, fnum - 1);
2488  char *name,
2489  *val;
2490  Datum datum;
2491  bool isnull;
2492 
2493  name = NameStr(att->attname);
2494 
2495  datum = slot_getattr(violatorslot, fnum, &isnull);
2496  if (!isnull)
2497  {
2498  Oid foutoid;
2499  bool typisvarlena;
2500 
2501  getTypeOutputInfo(att->atttypid, &foutoid, &typisvarlena);
2502  val = OidOutputFunctionCall(foutoid, datum);
2503  }
2504  else
2505  val = "null";
2506 
2507  if (idx > 0)
2508  {
2509  appendStringInfoString(&key_names, ", ");
2510  appendStringInfoString(&key_values, ", ");
2511  }
2512  appendStringInfoString(&key_names, name);
2513  appendStringInfoString(&key_values, val);
2514  }
2515  }
2516 
2517  if (partgone)
2518  ereport(ERROR,
2519  (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
2520  errmsg("removing partition \"%s\" violates foreign key constraint \"%s\"",
2521  RelationGetRelationName(pk_rel),
2522  NameStr(riinfo->conname)),
2523  errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
2524  key_names.data, key_values.data,
2525  RelationGetRelationName(fk_rel)),
2526  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
2527  else if (onfk)
2528  ereport(ERROR,
2529  (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
2530  errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
2531  RelationGetRelationName(fk_rel),
2532  NameStr(riinfo->conname)),
2533  has_perm ?
2534  errdetail("Key (%s)=(%s) is not present in table \"%s\".",
2535  key_names.data, key_values.data,
2536  RelationGetRelationName(pk_rel)) :
2537  errdetail("Key is not present in table \"%s\".",
2538  RelationGetRelationName(pk_rel)),
2539  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
2540  else
2541  ereport(ERROR,
2542  (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
2543  errmsg("update or delete on table \"%s\" violates foreign key constraint \"%s\" on table \"%s\"",
2544  RelationGetRelationName(pk_rel),
2545  NameStr(riinfo->conname),
2546  RelationGetRelationName(fk_rel)),
2547  has_perm ?
2548  errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
2549  key_names.data, key_values.data,
2550  RelationGetRelationName(fk_rel)) :
2551  errdetail("Key is still referenced from table \"%s\".",
2552  RelationGetRelationName(fk_rel)),
2553  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
2554 }
2555 
2556 
2557 /*
2558  * ri_NullCheck -
2559  *
2560  * Determine the NULL state of all key values in a tuple
2561  *
2562  * Returns one of RI_KEYS_ALL_NULL, RI_KEYS_NONE_NULL or RI_KEYS_SOME_NULL.
2563  */
2564 static int
2566  TupleTableSlot *slot,
2567  const RI_ConstraintInfo *riinfo, bool rel_is_pk)
2568 {
2569  const int16 *attnums;
2570  bool allnull = true;
2571  bool nonenull = true;
2572 
2573  if (rel_is_pk)
2574  attnums = riinfo->pk_attnums;
2575  else
2576  attnums = riinfo->fk_attnums;
2577 
2578  for (int i = 0; i < riinfo->nkeys; i++)
2579  {
2580  if (slot_attisnull(slot, attnums[i]))
2581  nonenull = false;
2582  else
2583  allnull = false;
2584  }
2585 
2586  if (allnull)
2587  return RI_KEYS_ALL_NULL;
2588 
2589  if (nonenull)
2590  return RI_KEYS_NONE_NULL;
2591 
2592  return RI_KEYS_SOME_NULL;
2593 }
2594 
2595 
2596 /*
2597  * ri_InitHashTables -
2598  *
2599  * Initialize our internal hash tables.
2600  */
2601 static void
2603 {
2604  HASHCTL ctl;
2605 
2606  ctl.keysize = sizeof(Oid);
2607  ctl.entrysize = sizeof(RI_ConstraintInfo);
2608  ri_constraint_cache = hash_create("RI constraint cache",
2610  &ctl, HASH_ELEM | HASH_BLOBS);
2611 
2612  /* Arrange to flush cache on pg_constraint changes */
2615  (Datum) 0);
2616 
2617  ctl.keysize = sizeof(RI_QueryKey);
2618  ctl.entrysize = sizeof(RI_QueryHashEntry);
2619  ri_query_cache = hash_create("RI query cache",
2621  &ctl, HASH_ELEM | HASH_BLOBS);
2622 
2623  ctl.keysize = sizeof(RI_CompareKey);
2624  ctl.entrysize = sizeof(RI_CompareHashEntry);
2625  ri_compare_cache = hash_create("RI compare cache",
2627  &ctl, HASH_ELEM | HASH_BLOBS);
2628 }
2629 
2630 
2631 /*
2632  * ri_FetchPreparedPlan -
2633  *
2634  * Lookup for a query key in our private hash table of prepared
2635  * and saved SPI execution plans. Return the plan if found or NULL.
2636  */
2637 static SPIPlanPtr
2639 {
2640  RI_QueryHashEntry *entry;
2641  SPIPlanPtr plan;
2642 
2643  /*
2644  * On the first call initialize the hashtable
2645  */
2646  if (!ri_query_cache)
2648 
2649  /*
2650  * Lookup for the key
2651  */
2652  entry = (RI_QueryHashEntry *) hash_search(ri_query_cache,
2653  (void *) key,
2654  HASH_FIND, NULL);
2655  if (entry == NULL)
2656  return NULL;
2657 
2658  /*
2659  * Check whether the plan is still valid. If it isn't, we don't want to
2660  * simply rely on plancache.c to regenerate it; rather we should start
2661  * from scratch and rebuild the query text too. This is to cover cases
2662  * such as table/column renames. We depend on the plancache machinery to
2663  * detect possible invalidations, though.
2664  *
2665  * CAUTION: this check is only trustworthy if the caller has already
2666  * locked both FK and PK rels.
2667  */
2668  plan = entry->plan;
2669  if (plan && SPI_plan_is_valid(plan))
2670  return plan;
2671 
2672  /*
2673  * Otherwise we might as well flush the cached plan now, to free a little
2674  * memory space before we make a new one.
2675  */
2676  entry->plan = NULL;
2677  if (plan)
2678  SPI_freeplan(plan);
2679 
2680  return NULL;
2681 }
2682 
2683 
2684 /*
2685  * ri_HashPreparedPlan -
2686  *
2687  * Add another plan to our private SPI query plan hashtable.
2688  */
2689 static void
2691 {
2692  RI_QueryHashEntry *entry;
2693  bool found;
2694 
2695  /*
2696  * On the first call initialize the hashtable
2697  */
2698  if (!ri_query_cache)
2700 
2701  /*
2702  * Add the new plan. We might be overwriting an entry previously found
2703  * invalid by ri_FetchPreparedPlan.
2704  */
2705  entry = (RI_QueryHashEntry *) hash_search(ri_query_cache,
2706  (void *) key,
2707  HASH_ENTER, &found);
2708  Assert(!found || entry->plan == NULL);
2709  entry->plan = plan;
2710 }
2711 
2712 
2713 /*
2714  * ri_KeysEqual -
2715  *
2716  * Check if all key values in OLD and NEW are equal.
2717  *
2718  * Note: at some point we might wish to redefine this as checking for
2719  * "IS NOT DISTINCT" rather than "=", that is, allow two nulls to be
2720  * considered equal. Currently there is no need since all callers have
2721  * previously found at least one of the rows to contain no nulls.
2722  */
2723 static bool
2725  const RI_ConstraintInfo *riinfo, bool rel_is_pk)
2726 {
2727  const int16 *attnums;
2728 
2729  if (rel_is_pk)
2730  attnums = riinfo->pk_attnums;
2731  else
2732  attnums = riinfo->fk_attnums;
2733 
2734  /* XXX: could be worthwhile to fetch all necessary attrs at once */
2735  for (int i = 0; i < riinfo->nkeys; i++)
2736  {
2737  Datum oldvalue;
2738  Datum newvalue;
2739  bool isnull;
2740 
2741  /*
2742  * Get one attribute's oldvalue. If it is NULL - they're not equal.
2743  */
2744  oldvalue = slot_getattr(oldslot, attnums[i], &isnull);
2745  if (isnull)
2746  return false;
2747 
2748  /*
2749  * Get one attribute's newvalue. If it is NULL - they're not equal.
2750  */
2751  newvalue = slot_getattr(newslot, attnums[i], &isnull);
2752  if (isnull)
2753  return false;
2754 
2755  if (rel_is_pk)
2756  {
2757  /*
2758  * If we are looking at the PK table, then do a bytewise
2759  * comparison. We must propagate PK changes if the value is
2760  * changed to one that "looks" different but would compare as
2761  * equal using the equality operator. This only makes a
2762  * difference for ON UPDATE CASCADE, but for consistency we treat
2763  * all changes to the PK the same.
2764  */
2765  Form_pg_attribute att = TupleDescAttr(oldslot->tts_tupleDescriptor, attnums[i] - 1);
2766 
2767  if (!datum_image_eq(oldvalue, newvalue, att->attbyval, att->attlen))
2768  return false;
2769  }
2770  else
2771  {
2772  /*
2773  * For the FK table, compare with the appropriate equality
2774  * operator. Changes that compare equal will still satisfy the
2775  * constraint after the update.
2776  */
2777  if (!ri_AttributesEqual(riinfo->ff_eq_oprs[i], RIAttType(rel, attnums[i]),
2778  oldvalue, newvalue))
2779  return false;
2780  }
2781  }
2782 
2783  return true;
2784 }
2785 
2786 
2787 /*
2788  * ri_AttributesEqual -
2789  *
2790  * Call the appropriate equality comparison operator for two values.
2791  *
2792  * NB: we have already checked that neither value is null.
2793  */
2794 static bool
2795 ri_AttributesEqual(Oid eq_opr, Oid typeid,
2796  Datum oldvalue, Datum newvalue)
2797 {
2798  RI_CompareHashEntry *entry = ri_HashCompareOp(eq_opr, typeid);
2799 
2800  /* Do we need to cast the values? */
2801  if (OidIsValid(entry->cast_func_finfo.fn_oid))
2802  {
2803  oldvalue = FunctionCall3(&entry->cast_func_finfo,
2804  oldvalue,
2805  Int32GetDatum(-1), /* typmod */
2806  BoolGetDatum(false)); /* implicit coercion */
2807  newvalue = FunctionCall3(&entry->cast_func_finfo,
2808  newvalue,
2809  Int32GetDatum(-1), /* typmod */
2810  BoolGetDatum(false)); /* implicit coercion */
2811  }
2812 
2813  /*
2814  * Apply the comparison operator.
2815  *
2816  * Note: This function is part of a call stack that determines whether an
2817  * update to a row is significant enough that it needs checking or action
2818  * on the other side of a foreign-key constraint. Therefore, the
2819  * comparison here would need to be done with the collation of the *other*
2820  * table. For simplicity (e.g., we might not even have the other table
2821  * open), we'll just use the default collation here, which could lead to
2822  * some false negatives. All this would break if we ever allow
2823  * database-wide collations to be nondeterministic.
2824  */
2826  DEFAULT_COLLATION_OID,
2827  oldvalue, newvalue));
2828 }
2829 
2830 /*
2831  * ri_HashCompareOp -
2832  *
2833  * See if we know how to compare two values, and create a new hash entry
2834  * if not.
2835  */
2836 static RI_CompareHashEntry *
2837 ri_HashCompareOp(Oid eq_opr, Oid typeid)
2838 {
2840  RI_CompareHashEntry *entry;
2841  bool found;
2842 
2843  /*
2844  * On the first call initialize the hashtable
2845  */
2846  if (!ri_compare_cache)
2848 
2849  /*
2850  * Find or create a hash entry. Note we're assuming RI_CompareKey
2851  * contains no struct padding.
2852  */
2853  key.eq_opr = eq_opr;
2854  key.typeid = typeid;
2855  entry = (RI_CompareHashEntry *) hash_search(ri_compare_cache,
2856  (void *) &key,
2857  HASH_ENTER, &found);
2858  if (!found)
2859  entry->valid = false;
2860 
2861  /*
2862  * If not already initialized, do so. Since we'll keep this hash entry
2863  * for the life of the backend, put any subsidiary info for the function
2864  * cache structs into TopMemoryContext.
2865  */
2866  if (!entry->valid)
2867  {
2868  Oid lefttype,
2869  righttype,
2870  castfunc;
2871  CoercionPathType pathtype;
2872 
2873  /* We always need to know how to call the equality operator */
2874  fmgr_info_cxt(get_opcode(eq_opr), &entry->eq_opr_finfo,
2876 
2877  /*
2878  * If we chose to use a cast from FK to PK type, we may have to apply
2879  * the cast function to get to the operator's input type.
2880  *
2881  * XXX eventually it would be good to support array-coercion cases
2882  * here and in ri_AttributesEqual(). At the moment there is no point
2883  * because cases involving nonidentical array types will be rejected
2884  * at constraint creation time.
2885  *
2886  * XXX perhaps also consider supporting CoerceViaIO? No need at the
2887  * moment since that will never be generated for implicit coercions.
2888  */
2889  op_input_types(eq_opr, &lefttype, &righttype);
2890  Assert(lefttype == righttype);
2891  if (typeid == lefttype)
2892  castfunc = InvalidOid; /* simplest case */
2893  else
2894  {
2895  pathtype = find_coercion_pathway(lefttype, typeid,
2897  &castfunc);
2898  if (pathtype != COERCION_PATH_FUNC &&
2899  pathtype != COERCION_PATH_RELABELTYPE)
2900  {
2901  /*
2902  * The declared input type of the eq_opr might be a
2903  * polymorphic type such as ANYARRAY or ANYENUM, or other
2904  * special cases such as RECORD; find_coercion_pathway
2905  * currently doesn't subsume these special cases.
2906  */
2907  if (!IsBinaryCoercible(typeid, lefttype))
2908  elog(ERROR, "no conversion function from %s to %s",
2909  format_type_be(typeid),
2910  format_type_be(lefttype));
2911  }
2912  }
2913  if (OidIsValid(castfunc))
2914  fmgr_info_cxt(castfunc, &entry->cast_func_finfo,
2916  else
2918  entry->valid = true;
2919  }
2920 
2921  return entry;
2922 }
2923 
2924 
2925 /*
2926  * Given a trigger function OID, determine whether it is an RI trigger,
2927  * and if so whether it is attached to PK or FK relation.
2928  */
2929 int
2931 {
2932  switch (tgfoid)
2933  {
2934  case F_RI_FKEY_CASCADE_DEL:
2935  case F_RI_FKEY_CASCADE_UPD:
2936  case F_RI_FKEY_RESTRICT_DEL:
2937  case F_RI_FKEY_RESTRICT_UPD:
2938  case F_RI_FKEY_SETNULL_DEL:
2939  case F_RI_FKEY_SETNULL_UPD:
2940  case F_RI_FKEY_SETDEFAULT_DEL:
2941  case F_RI_FKEY_SETDEFAULT_UPD:
2942  case F_RI_FKEY_NOACTION_DEL:
2943  case F_RI_FKEY_NOACTION_UPD:
2944  return RI_TRIGGER_PK;
2945 
2946  case F_RI_FKEY_CHECK_INS:
2947  case F_RI_FKEY_CHECK_UPD:
2948  return RI_TRIGGER_FK;
2949  }
2950 
2951  return RI_TRIGGER_NONE;
2952 }
static void ri_GenerateQualCollation(StringInfo buf, Oid collation)
Definition: ri_triggers.c:1868
static HTAB * ri_query_cache
Definition: ri_triggers.c:170
#define list_make2(x1, x2)
Definition: pg_list.h:208
signed short int16
Definition: c.h:428
static void ri_GenerateQual(StringInfo buf, const char *sep, const char *leftop, Oid leftoptype, Oid opoid, const char *rightop, Oid rightoptype)
Definition: ri_triggers.c:1839
#define SPI_OK_CONNECT
Definition: spi.h:82
#define FKCONSTR_MATCH_SIMPLE
Definition: parsenodes.h:2258
TupleTableSlot * tg_trigslot
Definition: trigger.h:38
#define pg_attribute_noreturn()
Definition: c.h:179
Definition: fmgr.h:56
int RI_FKey_trigger_type(Oid tgfoid)
Definition: ri_triggers.c:2930
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:167
dlist_node * cur
Definition: ilist.h:180
int errhint(const char *fmt,...)
Definition: elog.c:1156
struct RI_CompareKey RI_CompareKey
static void quoteRelationName(char *buffer, Relation rel)
Definition: ri_triggers.c:1822
void getTypeOutputInfo(Oid type, Oid *typOutput, bool *typIsVarlena)
Definition: lsyscache.c:2854
#define GETSTRUCT(TUP)
Definition: htup_details.h:654
static bool ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot, const RI_ConstraintInfo *riinfo, bool rel_is_pk)
Definition: ri_triggers.c:2724
#define HASH_ELEM
Definition: hsearch.h:95
#define dlist_foreach_modify(iter, lhead)
Definition: ilist.h:543
uint32 TransactionId
Definition: c.h:587
AclResult pg_attribute_aclcheck(Oid table_oid, AttrNumber attnum, Oid roleid, AclMode mode)
Definition: aclchk.c:4551
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:607
#define RelationGetDescr(relation)
Definition: rel.h:503
TupleTableSlot * MakeSingleTupleTableSlot(TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1238
bool TransactionIdIsCurrentTransactionId(TransactionId xid)
Definition: xact.c:869
Oid GetUserId(void)
Definition: miscinit.c:495
int SPI_connect(void)
Definition: spi.c:95
void DeconstructFkConstraintRow(HeapTuple tuple, int *numfks, AttrNumber *conkey, AttrNumber *confkey, Oid *pf_eq_oprs, Oid *pp_eq_oprs, Oid *ff_eq_oprs)
static Datum RI_FKey_check(TriggerData *trigdata)
Definition: ri_triggers.c:236
#define PointerGetDatum(X)
Definition: postgres.h:600
static void ri_ReportViolation(const RI_ConstraintInfo *riinfo, Relation pk_rel, Relation fk_rel, TupleTableSlot *violatorslot, TupleDesc tupdesc, int queryno, bool partgone) pg_attribute_noreturn()
Definition: ri_triggers.c:2407
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
#define SPI_OK_DELETE
Definition: spi.h:89
#define RI_PLAN_LAST_ON_PK
Definition: ri_triggers.c:74
#define RelationGetForm(relation)
Definition: rel.h:471
SPIPlanPtr SPI_prepare(const char *src, int nargs, Oid *argtypes)
Definition: spi.c:765
static Datum ri_set(TriggerData *trigdata, bool is_set_null)
Definition: ri_triggers.c:1028
int SPI_finish(void)
Definition: spi.c:182
static void dlist_push_tail(dlist_head *head, dlist_node *node)
Definition: ilist.h:317
const TupleTableSlotOps TTSOpsVirtual
Definition: execTuples.c:83
int32 constr_queryno
Definition: ri_triggers.c:131
#define IsolationUsesXactSnapshot()
Definition: xact.h:51
static HTAB * ri_constraint_cache
Definition: ri_triggers.c:169
#define AccessShareLock
Definition: lockdefs.h:36
Size entrysize
Definition: hsearch.h:76
SPITupleTable * SPI_tuptable
Definition: spi.c:46
bool get_collation_isdeterministic(Oid colloid)
Definition: lsyscache.c:1079
static Datum ri_restrict(TriggerData *trigdata, bool is_no_action)
Definition: ri_triggers.c:621
int errcode(int sqlerrcode)
Definition: elog.c:698
static bool ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel, TupleTableSlot *oldslot, const RI_ConstraintInfo *riinfo)
Definition: ri_triggers.c:458
#define RIAttType(rel, attnum)
Definition: ri_triggers.c:86
#define RIAttName(rel, attnum)
Definition: ri_triggers.c:85
char * format_type_be(Oid type_oid)
Definition: format_type.c:339
fmNodePtr context
Definition: fmgr.h:88
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:259
Datum * tts_values
Definition: tuptable.h:126
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27
#define GetSysCacheHashValue1(cacheId, key1)
Definition: syscache.h:202
AclMode requiredPerms
Definition: parsenodes.h:1157
dlist_node valid_link
Definition: ri_triggers.c:120
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:954
Datum FunctionCall2Coll(FmgrInfo *flinfo, Oid collation, Datum arg1, Datum arg2)
Definition: fmgr.c:1148
Form_pg_class rd_rel
Definition: rel.h:109
static bool ri_AttributesEqual(Oid eq_opr, Oid typeid, Datum oldvalue, Datum newvalue)
Definition: ri_triggers.c:2795
unsigned int Oid
Definition: postgres_ext.h:31
HeapTuple * vals
Definition: spi.h:26
#define TRIGGER_FIRED_AFTER(event)
Definition: trigger.h:130
Snapshot GetTransactionSnapshot(void)
Definition: snapmgr.c:250
#define OidIsValid(objectId)
Definition: c.h:710
struct RI_ConstraintInfo RI_ConstraintInfo
uint64 SPI_processed
Definition: spi.c:45
CoercionPathType
Definition: parse_coerce.h:24
static SPIPlanPtr ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes, RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel)
Definition: ri_triggers.c:2198
signed int int32
Definition: c.h:429
bool has_bypassrls_privilege(Oid roleid)
Definition: aclchk.c:5462
#define FunctionCall3(flinfo, arg1, arg2, arg3)
Definition: fmgr.h:648
int SPI_result
Definition: spi.c:47
#define sprintf
Definition: port.h:219
int errtableconstraint(Relation rel, const char *conname)
Definition: relcache.c:5690
Definition: dynahash.c:219
#define dlist_container(type, membername, ptr)
Definition: ilist.h:496
#define RIAttCollation(rel, attnum)
Definition: ri_triggers.c:87
Bitmapset * selectedCols
Definition: parsenodes.h:1159
static void quoteOneName(char *buffer, const char *name)
Definition: ri_triggers.c:1802
Datum RI_FKey_check_upd(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:437
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:91
#define ObjectIdGetDatum(X)
Definition: postgres.h:551
#define ERROR
Definition: elog.h:46
NameData attname
Definition: pg_attribute.h:41
Oid tgconstraint
Definition: reltrigger.h:35
Datum RI_FKey_restrict_upd(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:605
char * tgname
Definition: reltrigger.h:27
void RI_PartitionRemove_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
Definition: ri_triggers.c:1583
#define MAX_QUOTED_NAME_LEN
Definition: ri_triggers.c:82
#define RI_PLAN_CASCADE_DEL_DODELETE
Definition: ri_triggers.c:76
#define RI_PLAN_SETDEFAULT_DOUPDATE
Definition: ri_triggers.c:80
#define MAX_QUOTED_REL_NAME_LEN
Definition: ri_triggers.c:83
int16 pk_attnums[RI_MAX_NUMKEYS]
Definition: ri_triggers.c:115
#define RI_INIT_QUERYHASHSIZE
Definition: ri_triggers.c:64
static void ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname, int tgkind)
Definition: ri_triggers.c:1941
const char * SPI_result_code_string(int code)
Definition: spi.c:1877
Definition: c.h:675
void appendStringInfoString(StringInfo str, const char *s)
Definition: stringinfo.c:176
static void InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue)
Definition: ri_triggers.c:2156
Datum RI_FKey_cascade_upd(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:846
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3316
static void ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan)
Definition: ri_triggers.c:2690
#define SnapshotSelf
Definition: snapmgr.h:66
int SPI_keepplan(SPIPlanPtr plan)
Definition: spi.c:881
static char * buf
Definition: pg_test_fsync.c:68
static SPIPlanPtr ri_FetchPreparedPlan(RI_QueryKey *key)
Definition: ri_triggers.c:2638
bool * tts_isnull
Definition: tuptable.h:128
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1254
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:600
struct RI_CompareHashEntry RI_CompareHashEntry
#define RowExclusiveLock
Definition: lockdefs.h:38
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:6242
int errdetail(const char *fmt,...)
Definition: elog.c:1042
Oid pf_eq_oprs[RI_MAX_NUMKEYS]
Definition: ri_triggers.c:117
#define DatumGetBool(X)
Definition: postgres.h:437
#define RI_PLAN_SETNULL_DOUPDATE
Definition: ri_triggers.c:79
#define RelationGetRelationName(relation)
Definition: rel.h:511
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:349
Oid tgconstrrelid
Definition: reltrigger.h:33
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:207
unsigned int uint32
Definition: c.h:441
static const RI_ConstraintInfo * ri_FetchConstraintInfo(Trigger *trigger, Relation trig_rel, bool rel_is_pk)
Definition: ri_triggers.c:1987
static Oid get_ri_constraint_root(Oid constrOid)
Definition: ri_triggers.c:2122
void op_input_types(Oid opno, Oid *lefttype, Oid *righttype)
Definition: lsyscache.c:1329
static void dlist_delete(dlist_node *node)
Definition: ilist.h:358
#define RI_PLAN_CASCADE_UPD_DOUPDATE
Definition: ri_triggers.c:77
#define RI_PLAN_CHECK_LOOKUPPK
Definition: ri_triggers.c:72
void fmgr_info_cxt(Oid functionId, FmgrInfo *finfo, MemoryContext mcxt)
Definition: fmgr.c:136
Oid pp_eq_oprs[RI_MAX_NUMKEYS]
Definition: ri_triggers.c:118
TupleTableSlot * tg_newslot
Definition: trigger.h:39
MemoryContext TopMemoryContext
Definition: mcxt.c:48
Oid rd_id
Definition: rel.h:111
Oid ff_eq_oprs[RI_MAX_NUMKEYS]
Definition: ri_triggers.c:119
int SPI_execute_snapshot(SPIPlanPtr plan, Datum *Values, const char *Nulls, Snapshot snapshot, Snapshot crosscheck_snapshot, bool read_only, bool fire_triggers, long tcount)
Definition: spi.c:678
bool IsBinaryCoercible(Oid srctype, Oid targettype)
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:188
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
Datum RI_FKey_setdefault_upd(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:1012
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:1127
#define InvalidSnapshot
Definition: snapshot.h:123
TupleDesc tts_tupleDescriptor
Definition: tuptable.h:124
#define TRIGGER_FIRED_BY_DELETE(event)
Definition: trigger.h:112
#define RI_TRIGTYPE_DELETE
Definition: ri_triggers.c:91
#define HASH_BLOBS
Definition: hsearch.h:97
#define FKCONSTR_MATCH_FULL
Definition: parsenodes.h:2256
static const RI_ConstraintInfo * ri_LoadConstraintInfo(Oid constraintOid)
Definition: ri_triggers.c:2041
struct RI_QueryKey RI_QueryKey
static RI_CompareHashEntry * ri_HashCompareOp(Oid eq_opr, Oid typeid)
Definition: ri_triggers.c:2837
#define RowShareLock
Definition: lockdefs.h:37
void CacheRegisterSyscacheCallback(int cacheid, SyscacheCallbackFunction func, Datum arg)
Definition: inval.c:1498
AclResult
Definition: acl.h:177
uintptr_t Datum
Definition: postgres.h:411
void CommandCounterIncrement(void)
Definition: xact.c:1021
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:1175
#define ACL_SELECT
Definition: parsenodes.h:83
#define RI_PLAN_RESTRICT_CHECKREF
Definition: ri_triggers.c:78
Size keysize
Definition: hsearch.h:75
SPIPlanPtr plan
Definition: ri_triggers.c:140
static bool ri_PerformCheck(const RI_ConstraintInfo *riinfo, RI_QueryKey *qkey, SPIPlanPtr qplan, Relation fk_rel, Relation pk_rel, TupleTableSlot *oldslot, TupleTableSlot *newslot, bool detectNewRows, int expect_OK)
Definition: ri_triggers.c:2241
#define SECURITY_LOCAL_USERID_CHANGE
Definition: miscadmin.h:311
TupleDesc tupdesc
Definition: spi.h:25
#define RI_KEYS_ALL_NULL
Definition: ri_triggers.c:66
Trigger * tg_trigger
Definition: trigger.h:37
TupleDesc rd_att
Definition: rel.h:110
#define BoolGetDatum(X)
Definition: postgres.h:446
#define SPI_OK_SELECT
Definition: spi.h:86
#define InvalidOid
Definition: postgres_ext.h:36
static Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:381
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1256
bool RI_FKey_pk_upd_check_required(Trigger *trigger, Relation pk_rel, TupleTableSlot *oldslot, TupleTableSlot *newslot)
Definition: ri_triggers.c:1170
static int ri_constraint_cache_valid_count
Definition: ri_triggers.c:173
Oid fn_oid
Definition: fmgr.h:59
#define ereport(elevel,...)
Definition: elog.h:157
#define RI_PLAN_CHECK_LOOKUPPK_FROM_PK
Definition: ri_triggers.c:73
int maintenance_work_mem
Definition: globals.c:126
int check_enable_rls(Oid relid, Oid checkAsUser, bool noError)
Definition: rls.c:52
#define RI_TRIGGER_FK
Definition: trigger.h:269
#define makeNode(_type_)
Definition: nodes.h:584
FormData_pg_constraint * Form_pg_constraint
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define CALLED_AS_TRIGGER(fcinfo)
Definition: trigger.h:25
#define Assert(condition)
Definition: c.h:804
static bool table_tuple_satisfies_snapshot(Relation rel, TupleTableSlot *slot, Snapshot snapshot)
Definition: tableam.h:1304
RI_QueryKey key
Definition: ri_triggers.c:139
#define RI_INIT_CONSTRAINTHASHSIZE
Definition: ri_triggers.c:63
#define RI_TRIGTYPE_UPDATE
Definition: ri_triggers.c:90
static int ri_NullCheck(TupleDesc tupdesc, TupleTableSlot *slot, const RI_ConstraintInfo *riinfo, bool rel_is_pk)
Definition: ri_triggers.c:2565
TriggerEvent tg_event
Definition: trigger.h:33
bool pg_class_ownercheck(Oid class_oid, Oid roleid)
Definition: aclchk.c:4818
Datum RI_FKey_check_ins(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:421
#define SPI_OK_FINISH
Definition: spi.h:83
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:736
Snapshot GetLatestSnapshot(void)
Definition: snapmgr.c:325
const char * name
Definition: encode.c:561
FormData_pg_collation * Form_pg_collation
Definition: pg_collation.h:56
bool RI_FKey_fk_upd_check_required(Trigger *trigger, Relation fk_rel, TupleTableSlot *oldslot, TupleTableSlot *newslot)
Definition: ri_triggers.c:1202
AclResult pg_class_aclcheck(Oid table_oid, Oid roleid, AclMode mode)
Definition: aclchk.c:4680
Datum RI_FKey_setnull_del(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:967
void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc, Datum *values, bool *isnull)
Definition: heaptuple.c:1249
RTEKind rtekind
Definition: parsenodes.h:1007
int SPI_freeplan(SPIPlanPtr plan)
Definition: spi.c:930
#define RI_KEYS_SOME_NULL
Definition: ri_triggers.c:67
#define DatumGetTransactionId(X)
Definition: postgres.h:558
Datum RI_FKey_restrict_del(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:568
#define Int32GetDatum(X)
Definition: postgres.h:523
int NewGUCNestLevel(void)
Definition: guc.c:6228
#define RI_TRIGGER_PK
Definition: trigger.h:268
#define TRIGGER_FIRED_BY_INSERT(event)
Definition: trigger.h:109
bool SPI_plan_is_valid(SPIPlanPtr plan)
Definition: spi.c:1853
bool RI_Initial_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
Definition: ri_triggers.c:1303
char * OidOutputFunctionCall(Oid functionId, Datum val)
Definition: fmgr.c:1653
RI_CompareKey key
Definition: ri_triggers.c:159
int errmsg(const char *fmt,...)
Definition: elog.c:909
#define SPI_OK_UPDATE
Definition: spi.h:90
CoercionPathType find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId, CoercionContext ccontext, Oid *funcid)
Datum RI_FKey_noaction_del(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:548
Datum RI_FKey_setdefault_del(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:997
static dlist_head ri_constraint_cache_valid_list
Definition: ri_triggers.c:172
#define elog(elevel,...)
Definition: elog.h:232
int i
bool ExecCheckRTPerms(List *rangeTable, bool ereport_on_violation)
Definition: execMain.c:568
#define NameStr(name)
Definition: c.h:681
static void ri_InitHashTables(void)
Definition: ri_triggers.c:2602
void * arg
static void ri_BuildQueryKey(RI_QueryKey *key, const RI_ConstraintInfo *riinfo, int32 constr_queryno)
Definition: ri_triggers.c:1909
bool datum_image_eq(Datum value1, Datum value2, bool typByVal, int typLen)
Definition: datum.c:265
char * pg_get_partconstrdef_string(Oid partitionId, char *aliasname)
Definition: ruleutils.c:2045
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
#define SECURITY_NOFORCE_RLS
Definition: miscadmin.h:313
static Datum slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:402
int16 fk_attnums[RI_MAX_NUMKEYS]
Definition: ri_triggers.c:116
#define RI_MAX_NUMKEYS
Definition: ri_triggers.c:61
static bool slot_attisnull(TupleTableSlot *slot, int attnum)
Definition: tuptable.h:367
Datum RI_FKey_noaction_upd(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:585
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:39
#define TRIGGER_FIRED_FOR_ROW(event)
Definition: trigger.h:121
#define MinTransactionIdAttributeNumber
Definition: sysattr.h:22
#define RI_TRIGGER_NONE
Definition: trigger.h:270
static void ri_ExtractValues(Relation rel, TupleTableSlot *slot, const RI_ConstraintInfo *riinfo, bool rel_is_pk, Datum *vals, char *nulls)
Definition: ri_triggers.c:2378
FmgrInfo cast_func_finfo
Definition: ri_triggers.c:162
int set_config_option(const char *name, const char *value, GucContext context, GucSource source, GucAction action, bool changeVal, int elevel, bool is_reload)
Definition: guc.c:7319
#define snprintf
Definition: port.h:217
Datum RI_FKey_cascade_del(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:740
#define TRIGGER_FIRED_BY_UPDATE(event)
Definition: trigger.h:115
#define FKCONSTR_MATCH_PARTIAL
Definition: parsenodes.h:2257
#define RI_KEYS_NONE_NULL
Definition: ri_triggers.c:68
#define RelationGetRelid(relation)
Definition: rel.h:477
void appendBinaryStringInfo(StringInfo str, const char *data, int datalen)
Definition: stringinfo.c:227
long val
Definition: informix.c:664
static HTAB * ri_compare_cache
Definition: ri_triggers.c:171
void generate_operator_clause(StringInfo buf, const char *leftop, Oid leftoptype, Oid opoid, const char *rightop, Oid rightoptype)
Definition: ruleutils.c:11782
TupleTableSlot * ExecStoreVirtualTuple(TupleTableSlot *slot)
Definition: execTuples.c:1552
#define RI_TRIGTYPE_INSERT
Definition: ri_triggers.c:89
struct RI_QueryHashEntry RI_QueryHashEntry
Datum RI_FKey_setnull_upd(PG_FUNCTION_ARGS)
Definition: ri_triggers.c:982
Relation tg_relation
Definition: trigger.h:34
#define RelationGetNamespace(relation)
Definition: rel.h:518