PostgreSQL Source Code  git master
tableam.c
Go to the documentation of this file.
1 /*----------------------------------------------------------------------
2  *
3  * tableam.c
4  * Table access method routines too big to be inline functions.
5  *
6  * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/access/table/tableam.c
12  *
13  * NOTES
14  * Note that most function in here are documented in tableam.h, rather than
15  * here. That's because there's a lot of inline functions in tableam.h and
16  * it'd be harder to understand if one constantly had to switch between files.
17  *
18  *----------------------------------------------------------------------
19  */
20 #include "postgres.h"
21 
22 #include <math.h>
23 
24 #include "access/syncscan.h"
25 #include "access/tableam.h"
26 #include "access/xact.h"
27 #include "optimizer/plancat.h"
28 #include "port/pg_bitutils.h"
29 #include "storage/bufmgr.h"
30 #include "storage/shmem.h"
31 #include "storage/smgr.h"
32 
33 /*
34  * Constants to control the behavior of block allocation to parallel workers
35  * during a parallel seqscan. Technically these values do not need to be
36  * powers of 2, but having them as powers of 2 makes the math more optimal
37  * and makes the ramp-down stepping more even.
38  */
39 
40 /* The number of I/O chunks we try to break a parallel seqscan down into */
41 #define PARALLEL_SEQSCAN_NCHUNKS 2048
42 /* Ramp down size of allocations when we've only this number of chunks left */
43 #define PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS 64
44 /* Cap the size of parallel I/O chunks to this number of blocks */
45 #define PARALLEL_SEQSCAN_MAX_CHUNK_SIZE 8192
46 
47 /* GUC variables */
50 
51 
52 /* ----------------------------------------------------------------------------
53  * Slot functions.
54  * ----------------------------------------------------------------------------
55  */
56 
57 const TupleTableSlotOps *
59 {
60  const TupleTableSlotOps *tts_cb;
61 
62  if (relation->rd_tableam)
63  tts_cb = relation->rd_tableam->slot_callbacks(relation);
64  else if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
65  {
66  /*
67  * Historically FDWs expect to store heap tuples in slots. Continue
68  * handing them one, to make it less painful to adapt FDWs to new
69  * versions. The cost of a heap slot over a virtual slot is pretty
70  * small.
71  */
72  tts_cb = &TTSOpsHeapTuple;
73  }
74  else
75  {
76  /*
77  * These need to be supported, as some parts of the code (like COPY)
78  * need to create slots for such relations too. It seems better to
79  * centralize the knowledge that a heap slot is the right thing in
80  * that case here.
81  */
82  Assert(relation->rd_rel->relkind == RELKIND_VIEW ||
83  relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
84  tts_cb = &TTSOpsVirtual;
85  }
86 
87  return tts_cb;
88 }
89 
91 table_slot_create(Relation relation, List **reglist)
92 {
93  const TupleTableSlotOps *tts_cb;
94  TupleTableSlot *slot;
95 
96  tts_cb = table_slot_callbacks(relation);
97  slot = MakeSingleTupleTableSlot(RelationGetDescr(relation), tts_cb);
98 
99  if (reglist)
100  *reglist = lappend(*reglist, slot);
101 
102  return slot;
103 }
104 
105 
106 /* ----------------------------------------------------------------------------
107  * Table scan functions.
108  * ----------------------------------------------------------------------------
109  */
110 
112 table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
113 {
114  uint32 flags = SO_TYPE_SEQSCAN |
116  Oid relid = RelationGetRelid(relation);
117  Snapshot snapshot = RegisterSnapshot(GetCatalogSnapshot(relid));
118 
119  return relation->rd_tableam->scan_begin(relation, snapshot, nkeys, key,
120  NULL, flags);
121 }
122 
123 void
125 {
126  Assert(IsMVCCSnapshot(snapshot));
127 
128  RegisterSnapshot(snapshot);
129  scan->rs_snapshot = snapshot;
130  scan->rs_flags |= SO_TEMP_SNAPSHOT;
131 }
132 
133 
134 /* ----------------------------------------------------------------------------
135  * Parallel table scan related functions.
136  * ----------------------------------------------------------------------------
137  */
138 
139 Size
141 {
142  Size sz = 0;
143 
144  if (IsMVCCSnapshot(snapshot))
145  sz = add_size(sz, EstimateSnapshotSpace(snapshot));
146  else
147  Assert(snapshot == SnapshotAny);
148 
149  sz = add_size(sz, rel->rd_tableam->parallelscan_estimate(rel));
150 
151  return sz;
152 }
153 
154 void
156  Snapshot snapshot)
157 {
158  Size snapshot_off = rel->rd_tableam->parallelscan_initialize(rel, pscan);
159 
160  pscan->phs_snapshot_off = snapshot_off;
161 
162  if (IsMVCCSnapshot(snapshot))
163  {
164  SerializeSnapshot(snapshot, (char *) pscan + pscan->phs_snapshot_off);
165  pscan->phs_snapshot_any = false;
166  }
167  else
168  {
169  Assert(snapshot == SnapshotAny);
170  pscan->phs_snapshot_any = true;
171  }
172 }
173 
176 {
177  Snapshot snapshot;
178  uint32 flags = SO_TYPE_SEQSCAN |
180 
181  Assert(RelationGetRelid(relation) == pscan->phs_relid);
182 
183  if (!pscan->phs_snapshot_any)
184  {
185  /* Snapshot was serialized -- restore it */
186  snapshot = RestoreSnapshot((char *) pscan + pscan->phs_snapshot_off);
187  RegisterSnapshot(snapshot);
188  flags |= SO_TEMP_SNAPSHOT;
189  }
190  else
191  {
192  /* SnapshotAny passed by caller (not serialized) */
193  snapshot = SnapshotAny;
194  }
195 
196  return relation->rd_tableam->scan_begin(relation, snapshot, 0, NULL,
197  pscan, flags);
198 }
199 
200 
201 /* ----------------------------------------------------------------------------
202  * Index scan related functions.
203  * ----------------------------------------------------------------------------
204  */
205 
206 /*
207  * To perform that check simply start an index scan, create the necessary
208  * slot, do the heap lookup, and shut everything down again. This could be
209  * optimized, but is unlikely to matter from a performance POV. If there
210  * frequently are live index pointers also matching a unique index key, the
211  * CPU overhead of this routine is unlikely to matter.
212  *
213  * Note that *tid may be modified when we return true if the AM supports
214  * storing multiple row versions reachable via a single index entry (like
215  * heap's HOT).
216  */
217 bool
219  ItemPointer tid,
220  Snapshot snapshot,
221  bool *all_dead)
222 {
223  IndexFetchTableData *scan;
224  TupleTableSlot *slot;
225  bool call_again = false;
226  bool found;
227 
228  slot = table_slot_create(rel, NULL);
229  scan = table_index_fetch_begin(rel);
230  found = table_index_fetch_tuple(scan, tid, snapshot, slot, &call_again,
231  all_dead);
232  table_index_fetch_end(scan);
234 
235  return found;
236 }
237 
238 
239 /* ------------------------------------------------------------------------
240  * Functions for non-modifying operations on individual tuples
241  * ------------------------------------------------------------------------
242  */
243 
244 void
246 {
247  Relation rel = scan->rs_rd;
248  const TableAmRoutine *tableam = rel->rd_tableam;
249 
250  /*
251  * We don't expect direct calls to table_tuple_get_latest_tid with valid
252  * CheckXidAlive for catalog or regular tables. See detailed comments in
253  * xact.c where these variables are declared.
254  */
256  elog(ERROR, "unexpected table_tuple_get_latest_tid call during logical decoding");
257 
258  /*
259  * Since this can be called with user-supplied TID, don't trust the input
260  * too much.
261  */
262  if (!tableam->tuple_tid_valid(scan, tid))
263  ereport(ERROR,
264  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
265  errmsg("tid (%u, %u) is not valid for relation \"%s\"",
268  RelationGetRelationName(rel))));
269 
270  tableam->tuple_get_latest_tid(scan, tid);
271 }
272 
273 
274 /* ----------------------------------------------------------------------------
275  * Functions to make modifications a bit simpler.
276  * ----------------------------------------------------------------------------
277  */
278 
279 /*
280  * simple_table_tuple_insert - insert a tuple
281  *
282  * Currently, this routine differs from table_tuple_insert only in supplying a
283  * default command ID and not allowing access to the speedup options.
284  */
285 void
287 {
288  table_tuple_insert(rel, slot, GetCurrentCommandId(true), 0, NULL);
289 }
290 
291 /*
292  * simple_table_tuple_delete - delete a tuple
293  *
294  * This routine may be used to delete a tuple when concurrent updates of
295  * the target tuple are not expected (for example, because we have a lock
296  * on the relation associated with the tuple). Any failure is reported
297  * via ereport().
298  */
299 void
301 {
302  TM_Result result;
303  TM_FailureData tmfd;
304 
305  result = table_tuple_delete(rel, tid,
306  GetCurrentCommandId(true),
307  snapshot, InvalidSnapshot,
308  true /* wait for commit */ ,
309  &tmfd, false /* changingPart */ );
310 
311  switch (result)
312  {
313  case TM_SelfModified:
314  /* Tuple was already updated in current command? */
315  elog(ERROR, "tuple already updated by self");
316  break;
317 
318  case TM_Ok:
319  /* done successfully */
320  break;
321 
322  case TM_Updated:
323  elog(ERROR, "tuple concurrently updated");
324  break;
325 
326  case TM_Deleted:
327  elog(ERROR, "tuple concurrently deleted");
328  break;
329 
330  default:
331  elog(ERROR, "unrecognized table_tuple_delete status: %u", result);
332  break;
333  }
334 }
335 
336 /*
337  * simple_table_tuple_update - replace a tuple
338  *
339  * This routine may be used to update a tuple when concurrent updates of
340  * the target tuple are not expected (for example, because we have a lock
341  * on the relation associated with the tuple). Any failure is reported
342  * via ereport().
343  */
344 void
346  TupleTableSlot *slot,
347  Snapshot snapshot,
348  bool *update_indexes)
349 {
350  TM_Result result;
351  TM_FailureData tmfd;
352  LockTupleMode lockmode;
353 
354  result = table_tuple_update(rel, otid, slot,
355  GetCurrentCommandId(true),
356  snapshot, InvalidSnapshot,
357  true /* wait for commit */ ,
358  &tmfd, &lockmode, update_indexes);
359 
360  switch (result)
361  {
362  case TM_SelfModified:
363  /* Tuple was already updated in current command? */
364  elog(ERROR, "tuple already updated by self");
365  break;
366 
367  case TM_Ok:
368  /* done successfully */
369  break;
370 
371  case TM_Updated:
372  elog(ERROR, "tuple concurrently updated");
373  break;
374 
375  case TM_Deleted:
376  elog(ERROR, "tuple concurrently deleted");
377  break;
378 
379  default:
380  elog(ERROR, "unrecognized table_tuple_update status: %u", result);
381  break;
382  }
383 }
384 
385 
386 /* ----------------------------------------------------------------------------
387  * Helper functions to implement parallel scans for block oriented AMs.
388  * ----------------------------------------------------------------------------
389  */
390 
391 Size
393 {
394  return sizeof(ParallelBlockTableScanDescData);
395 }
396 
397 Size
399 {
401 
402  bpscan->base.phs_relid = RelationGetRelid(rel);
403  bpscan->phs_nblocks = RelationGetNumberOfBlocks(rel);
404  /* compare phs_syncscan initialization to similar logic in initscan */
406  !RelationUsesLocalBuffers(rel) &&
407  bpscan->phs_nblocks > NBuffers / 4;
408  SpinLockInit(&bpscan->phs_mutex);
410  pg_atomic_init_u64(&bpscan->phs_nallocated, 0);
411 
412  return sizeof(ParallelBlockTableScanDescData);
413 }
414 
415 void
417 {
419 
420  pg_atomic_write_u64(&bpscan->phs_nallocated, 0);
421 }
422 
423 /*
424  * find and set the scan's startblock
425  *
426  * Determine where the parallel seq scan should start. This function may be
427  * called many times, once by each parallel worker. We must be careful only
428  * to set the startblock once.
429  */
430 void
432  ParallelBlockTableScanWorker pbscanwork,
434 {
435  BlockNumber sync_startpage = InvalidBlockNumber;
436 
437  /* Reset the state we use for controlling allocation size. */
438  memset(pbscanwork, 0, sizeof(*pbscanwork));
439 
440  StaticAssertStmt(MaxBlockNumber <= 0xFFFFFFFE,
441  "pg_nextpower2_32 may be too small for non-standard BlockNumber width");
442 
443  /*
444  * We determine the chunk size based on the size of the relation. First we
445  * split the relation into PARALLEL_SEQSCAN_NCHUNKS chunks but we then
446  * take the next highest power of 2 number of the chunk size. This means
447  * we split the relation into somewhere between PARALLEL_SEQSCAN_NCHUNKS
448  * and PARALLEL_SEQSCAN_NCHUNKS / 2 chunks.
449  */
450  pbscanwork->phsw_chunk_size = pg_nextpower2_32(Max(pbscan->phs_nblocks /
452 
453  /*
454  * Ensure we don't go over the maximum chunk size with larger tables. This
455  * means we may get much more than PARALLEL_SEQSCAN_NCHUNKS for larger
456  * tables. Too large a chunk size has been shown to be detrimental to
457  * synchronous scan performance.
458  */
459  pbscanwork->phsw_chunk_size = Min(pbscanwork->phsw_chunk_size,
461 
462 retry:
463  /* Grab the spinlock. */
464  SpinLockAcquire(&pbscan->phs_mutex);
465 
466  /*
467  * If the scan's startblock has not yet been initialized, we must do so
468  * now. If this is not a synchronized scan, we just start at block 0, but
469  * if it is a synchronized scan, we must get the starting position from
470  * the synchronized scan machinery. We can't hold the spinlock while
471  * doing that, though, so release the spinlock, get the information we
472  * need, and retry. If nobody else has initialized the scan in the
473  * meantime, we'll fill in the value we fetched on the second time
474  * through.
475  */
476  if (pbscan->phs_startblock == InvalidBlockNumber)
477  {
478  if (!pbscan->base.phs_syncscan)
479  pbscan->phs_startblock = 0;
480  else if (sync_startpage != InvalidBlockNumber)
481  pbscan->phs_startblock = sync_startpage;
482  else
483  {
484  SpinLockRelease(&pbscan->phs_mutex);
485  sync_startpage = ss_get_location(rel, pbscan->phs_nblocks);
486  goto retry;
487  }
488  }
489  SpinLockRelease(&pbscan->phs_mutex);
490 }
491 
492 /*
493  * get the next page to scan
494  *
495  * Get the next page to scan. Even if there are no pages left to scan,
496  * another backend could have grabbed a page to scan and not yet finished
497  * looking at it, so it doesn't follow that the scan is done when the first
498  * backend gets an InvalidBlockNumber return.
499  */
502  ParallelBlockTableScanWorker pbscanwork,
504 {
505  BlockNumber page;
506  uint64 nallocated;
507 
508  /*
509  * The logic below allocates block numbers out to parallel workers in a
510  * way that each worker will receive a set of consecutive block numbers to
511  * scan. Earlier versions of this would allocate the next highest block
512  * number to the next worker to call this function. This would generally
513  * result in workers never receiving consecutive block numbers. Some
514  * operating systems would not detect the sequential I/O pattern due to
515  * each backend being a different process which could result in poor
516  * performance due to inefficient or no readahead. To work around this
517  * issue, we now allocate a range of block numbers for each worker and
518  * when they come back for another block, we give them the next one in
519  * that range until the range is complete. When the worker completes the
520  * range of blocks we then allocate another range for it and return the
521  * first block number from that range.
522  *
523  * Here we name these ranges of blocks "chunks". The initial size of
524  * these chunks is determined in table_block_parallelscan_startblock_init
525  * based on the size of the relation. Towards the end of the scan, we
526  * start making reductions in the size of the chunks in order to attempt
527  * to divide the remaining work over all the workers as evenly as
528  * possible.
529  *
530  * Here pbscanwork is local worker memory. phsw_chunk_remaining tracks
531  * the number of blocks remaining in the chunk. When that reaches 0 then
532  * we must allocate a new chunk for the worker.
533  *
534  * phs_nallocated tracks how many blocks have been allocated to workers
535  * already. When phs_nallocated >= rs_nblocks, all blocks have been
536  * allocated.
537  *
538  * Because we use an atomic fetch-and-add to fetch the current value, the
539  * phs_nallocated counter will exceed rs_nblocks, because workers will
540  * still increment the value, when they try to allocate the next block but
541  * all blocks have been allocated already. The counter must be 64 bits
542  * wide because of that, to avoid wrapping around when rs_nblocks is close
543  * to 2^32.
544  *
545  * The actual block to return is calculated by adding the counter to the
546  * starting block number, modulo nblocks.
547  */
548 
549  /*
550  * First check if we have any remaining blocks in a previous chunk for
551  * this worker. We must consume all of the blocks from that before we
552  * allocate a new chunk to the worker.
553  */
554  if (pbscanwork->phsw_chunk_remaining > 0)
555  {
556  /*
557  * Give them the next block in the range and update the remaining
558  * number of blocks.
559  */
560  nallocated = ++pbscanwork->phsw_nallocated;
561  pbscanwork->phsw_chunk_remaining--;
562  }
563  else
564  {
565  /*
566  * When we've only got PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS chunks
567  * remaining in the scan, we half the chunk size. Since we reduce the
568  * chunk size here, we'll hit this again after doing
569  * PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS at the new size. After a few
570  * iterations of this, we'll end up doing the last few blocks with the
571  * chunk size set to 1.
572  */
573  if (pbscanwork->phsw_chunk_size > 1 &&
574  pbscanwork->phsw_nallocated > pbscan->phs_nblocks -
576  pbscanwork->phsw_chunk_size >>= 1;
577 
578  nallocated = pbscanwork->phsw_nallocated =
580  pbscanwork->phsw_chunk_size);
581 
582  /*
583  * Set the remaining number of blocks in this chunk so that subsequent
584  * calls from this worker continue on with this chunk until it's done.
585  */
586  pbscanwork->phsw_chunk_remaining = pbscanwork->phsw_chunk_size - 1;
587  }
588 
589  if (nallocated >= pbscan->phs_nblocks)
590  page = InvalidBlockNumber; /* all blocks have been allocated */
591  else
592  page = (nallocated + pbscan->phs_startblock) % pbscan->phs_nblocks;
593 
594  /*
595  * Report scan location. Normally, we report the current page number.
596  * When we reach the end of the scan, though, we report the starting page,
597  * not the ending page, just so the starting positions for later scans
598  * doesn't slew backwards. We only report the position at the end of the
599  * scan once, though: subsequent callers will report nothing.
600  */
601  if (pbscan->base.phs_syncscan)
602  {
603  if (page != InvalidBlockNumber)
604  ss_report_location(rel, page);
605  else if (nallocated == pbscan->phs_nblocks)
606  ss_report_location(rel, pbscan->phs_startblock);
607  }
608 
609  return page;
610 }
611 
612 /* ----------------------------------------------------------------------------
613  * Helper functions to implement relation sizing for block oriented AMs.
614  * ----------------------------------------------------------------------------
615  */
616 
617 /*
618  * table_block_relation_size
619  *
620  * If a table AM uses the various relation forks as the sole place where data
621  * is stored, and if it uses them in the expected manner (e.g. the actual data
622  * is in the main fork rather than some other), it can use this implementation
623  * of the relation_size callback rather than implementing its own.
624  */
625 uint64
627 {
628  uint64 nblocks = 0;
629 
630  /* InvalidForkNumber indicates returning the size for all forks */
631  if (forkNumber == InvalidForkNumber)
632  {
633  for (int i = 0; i < MAX_FORKNUM; i++)
634  nblocks += smgrnblocks(RelationGetSmgr(rel), i);
635  }
636  else
637  nblocks = smgrnblocks(RelationGetSmgr(rel), forkNumber);
638 
639  return nblocks * BLCKSZ;
640 }
641 
642 /*
643  * table_block_relation_estimate_size
644  *
645  * This function can't be directly used as the implementation of the
646  * relation_estimate_size callback, because it has a few additional parameters.
647  * Instead, it is intended to be used as a helper function; the caller can
648  * pass through the arguments to its relation_estimate_size function plus the
649  * additional values required here.
650  *
651  * overhead_bytes_per_tuple should contain the approximate number of bytes
652  * of storage required to store a tuple above and beyond what is required for
653  * the tuple data proper. Typically, this would include things like the
654  * size of the tuple header and item pointer. This is only used for query
655  * planning, so a table AM where the value is not constant could choose to
656  * pass a "best guess".
657  *
658  * usable_bytes_per_page should contain the approximate number of bytes per
659  * page usable for tuple data, excluding the page header and any anticipated
660  * special space.
661  */
662 void
664  BlockNumber *pages, double *tuples,
665  double *allvisfrac,
666  Size overhead_bytes_per_tuple,
667  Size usable_bytes_per_page)
668 {
669  BlockNumber curpages;
670  BlockNumber relpages;
671  double reltuples;
672  BlockNumber relallvisible;
673  double density;
674 
675  /* it should have storage, so we can call the smgr */
676  curpages = RelationGetNumberOfBlocks(rel);
677 
678  /* coerce values in pg_class to more desirable types */
679  relpages = (BlockNumber) rel->rd_rel->relpages;
680  reltuples = (double) rel->rd_rel->reltuples;
681  relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
682 
683  /*
684  * HACK: if the relation has never yet been vacuumed, use a minimum size
685  * estimate of 10 pages. The idea here is to avoid assuming a
686  * newly-created table is really small, even if it currently is, because
687  * that may not be true once some data gets loaded into it. Once a vacuum
688  * or analyze cycle has been done on it, it's more reasonable to believe
689  * the size is somewhat stable.
690  *
691  * (Note that this is only an issue if the plan gets cached and used again
692  * after the table has been filled. What we're trying to avoid is using a
693  * nestloop-type plan on a table that has grown substantially since the
694  * plan was made. Normally, autovacuum/autoanalyze will occur once enough
695  * inserts have happened and cause cached-plan invalidation; but that
696  * doesn't happen instantaneously, and it won't happen at all for cases
697  * such as temporary tables.)
698  *
699  * We test "never vacuumed" by seeing whether reltuples < 0.
700  *
701  * If the table has inheritance children, we don't apply this heuristic.
702  * Totally empty parent tables are quite common, so we should be willing
703  * to believe that they are empty.
704  */
705  if (curpages < 10 &&
706  reltuples < 0 &&
707  !rel->rd_rel->relhassubclass)
708  curpages = 10;
709 
710  /* report estimated # pages */
711  *pages = curpages;
712  /* quick exit if rel is clearly empty */
713  if (curpages == 0)
714  {
715  *tuples = 0;
716  *allvisfrac = 0;
717  return;
718  }
719 
720  /* estimate number of tuples from previous tuple density */
721  if (reltuples >= 0 && relpages > 0)
722  density = reltuples / (double) relpages;
723  else
724  {
725  /*
726  * When we have no data because the relation was never yet vacuumed,
727  * estimate tuple width from attribute datatypes. We assume here that
728  * the pages are completely full, which is OK for tables but is
729  * probably an overestimate for indexes. Fortunately
730  * get_relation_info() can clamp the overestimate to the parent
731  * table's size.
732  *
733  * Note: this code intentionally disregards alignment considerations,
734  * because (a) that would be gilding the lily considering how crude
735  * the estimate is, (b) it creates platform dependencies in the
736  * default plans which are kind of a headache for regression testing,
737  * and (c) different table AMs might use different padding schemes.
738  */
739  int32 tuple_width;
740 
741  tuple_width = get_rel_data_width(rel, attr_widths);
742  tuple_width += overhead_bytes_per_tuple;
743  /* note: integer division is intentional here */
744  density = usable_bytes_per_page / tuple_width;
745  }
746  *tuples = rint(density * (double) curpages);
747 
748  /*
749  * We use relallvisible as-is, rather than scaling it up like we do for
750  * the pages and tuples counts, on the theory that any pages added since
751  * the last VACUUM are most likely not marked all-visible. But costsize.c
752  * wants it converted to a fraction.
753  */
754  if (relallvisible == 0 || curpages <= 0)
755  *allvisfrac = 0;
756  else if ((double) relallvisible >= curpages)
757  *allvisfrac = 1;
758  else
759  *allvisfrac = (double) relallvisible / curpages;
760 }
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:433
static uint64 pg_atomic_fetch_add_u64(volatile pg_atomic_uint64 *ptr, int64 add_)
Definition: atomics.h:462
static void pg_atomic_init_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:410
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
#define MaxBlockNumber
Definition: block.h:35
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:147
unsigned int uint32
Definition: c.h:442
#define Min(x, y)
Definition: c.h:976
signed int int32
Definition: c.h:430
#define Max(x, y)
Definition: c.h:970
#define unlikely(x)
Definition: c.h:295
#define StaticAssertStmt(condition, errmessage)
Definition: c.h:908
size_t Size
Definition: c.h:541
int errcode(int sqlerrcode)
Definition: elog.c:695
int errmsg(const char *fmt,...)
Definition: elog.c:906
#define ERROR
Definition: elog.h:35
#define ereport(elevel,...)
Definition: elog.h:145
const TupleTableSlotOps TTSOpsVirtual
Definition: execTuples.c:83
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1254
const TupleTableSlotOps TTSOpsHeapTuple
Definition: execTuples.c:84
TupleTableSlot * MakeSingleTupleTableSlot(TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1238
int NBuffers
Definition: globals.c:136
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
static OffsetNumber ItemPointerGetOffsetNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:114
static BlockNumber ItemPointerGetBlockNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:93
Assert(fmt[strlen(fmt) - 1] !='\n')
List * lappend(List *list, void *datum)
Definition: list.c:338
LockTupleMode
Definition: lockoptions.h:50
static uint32 pg_nextpower2_32(uint32 num)
Definition: pg_bitutils.h:140
int32 get_rel_data_width(Relation rel, int32 *attr_widths)
Definition: plancat.c:1086
unsigned int Oid
Definition: postgres_ext.h:31
#define RelationGetRelid(relation)
Definition: rel.h:501
static SMgrRelation RelationGetSmgr(Relation rel)
Definition: rel.h:569
#define RelationGetDescr(relation)
Definition: rel.h:527
#define RelationGetRelationName(relation)
Definition: rel.h:535
#define RelationUsesLocalBuffers(relation)
Definition: rel.h:636
ForkNumber
Definition: relpath.h:48
@ InvalidForkNumber
Definition: relpath.h:49
#define MAX_FORKNUM
Definition: relpath.h:62
struct ParallelBlockTableScanDescData * ParallelBlockTableScanDesc
Definition: relscan.h:85
struct ParallelBlockTableScanDescData ParallelBlockTableScanDescData
Size add_size(Size s1, Size s2)
Definition: shmem.c:502
BlockNumber smgrnblocks(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:579
void SerializeSnapshot(Snapshot snapshot, char *start_address)
Definition: snapmgr.c:2147
Snapshot GetCatalogSnapshot(Oid relid)
Definition: snapmgr.c:387
Snapshot RestoreSnapshot(char *start_address)
Definition: snapmgr.c:2206
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:829
Size EstimateSnapshotSpace(Snapshot snapshot)
Definition: snapmgr.c:2123
#define SnapshotAny
Definition: snapmgr.h:67
#define IsMVCCSnapshot(snapshot)
Definition: snapmgr.h:96
#define InvalidSnapshot
Definition: snapshot.h:123
#define SpinLockInit(lock)
Definition: spin.h:60
#define SpinLockRelease(lock)
Definition: spin.h:64
#define SpinLockAcquire(lock)
Definition: spin.h:62
Definition: pg_list.h:52
pg_atomic_uint64 phs_nallocated
Definition: relscan.h:82
ParallelTableScanDescData base
Definition: relscan.h:77
const struct TableAmRoutine * rd_tableam
Definition: rel.h:185
Form_pg_class rd_rel
Definition: rel.h:110
Size(* parallelscan_initialize)(Relation rel, ParallelTableScanDesc pscan)
Definition: tableam.h:376
void(* tuple_get_latest_tid)(TableScanDesc scan, ItemPointer tid)
Definition: tableam.h:465
TableScanDesc(* scan_begin)(Relation rel, Snapshot snapshot, int nkeys, struct ScanKeyData *key, ParallelTableScanDesc pscan, uint32 flags)
Definition: tableam.h:304
bool(* tuple_tid_valid)(TableScanDesc scan, ItemPointer tid)
Definition: tableam.h:458
const TupleTableSlotOps *(* slot_callbacks)(Relation rel)
Definition: tableam.h:280
Size(* parallelscan_estimate)(Relation rel)
Definition: tableam.h:369
Relation rs_rd
Definition: relscan.h:34
uint32 rs_flags
Definition: relscan.h:47
struct SnapshotData * rs_snapshot
Definition: relscan.h:35
void ss_report_location(Relation rel, BlockNumber location)
Definition: syncscan.c:289
BlockNumber ss_get_location(Relation rel, BlockNumber relnblocks)
Definition: syncscan.c:254
#define PARALLEL_SEQSCAN_MAX_CHUNK_SIZE
Definition: tableam.c:45
const TupleTableSlotOps * table_slot_callbacks(Relation relation)
Definition: tableam.c:58
bool table_index_fetch_tuple_check(Relation rel, ItemPointer tid, Snapshot snapshot, bool *all_dead)
Definition: tableam.c:218
Size table_block_parallelscan_initialize(Relation rel, ParallelTableScanDesc pscan)
Definition: tableam.c:398
TableScanDesc table_beginscan_parallel(Relation relation, ParallelTableScanDesc pscan)
Definition: tableam.c:175
void simple_table_tuple_insert(Relation rel, TupleTableSlot *slot)
Definition: tableam.c:286
#define PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS
Definition: tableam.c:43
void table_block_parallelscan_startblock_init(Relation rel, ParallelBlockTableScanWorker pbscanwork, ParallelBlockTableScanDesc pbscan)
Definition: tableam.c:431
TableScanDesc table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
Definition: tableam.c:112
char * default_table_access_method
Definition: tableam.c:48
void table_tuple_get_latest_tid(TableScanDesc scan, ItemPointer tid)
Definition: tableam.c:245
void simple_table_tuple_delete(Relation rel, ItemPointer tid, Snapshot snapshot)
Definition: tableam.c:300
void table_block_parallelscan_reinitialize(Relation rel, ParallelTableScanDesc pscan)
Definition: tableam.c:416
uint64 table_block_relation_size(Relation rel, ForkNumber forkNumber)
Definition: tableam.c:626
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:91
Size table_parallelscan_estimate(Relation rel, Snapshot snapshot)
Definition: tableam.c:140
Size table_block_parallelscan_estimate(Relation rel)
Definition: tableam.c:392
#define PARALLEL_SEQSCAN_NCHUNKS
Definition: tableam.c:41
void simple_table_tuple_update(Relation rel, ItemPointer otid, TupleTableSlot *slot, Snapshot snapshot, bool *update_indexes)
Definition: tableam.c:345
void table_parallelscan_initialize(Relation rel, ParallelTableScanDesc pscan, Snapshot snapshot)
Definition: tableam.c:155
void table_scan_update_snapshot(TableScanDesc scan, Snapshot snapshot)
Definition: tableam.c:124
BlockNumber table_block_parallelscan_nextpage(Relation rel, ParallelBlockTableScanWorker pbscanwork, ParallelBlockTableScanDesc pbscan)
Definition: tableam.c:501
void table_block_relation_estimate_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac, Size overhead_bytes_per_tuple, Size usable_bytes_per_page)
Definition: tableam.c:663
bool synchronize_seqscans
Definition: tableam.c:49
#define DEFAULT_TABLE_ACCESS_METHOD
Definition: tableam.h:28
@ SO_ALLOW_STRAT
Definition: tableam.h:57
@ SO_TEMP_SNAPSHOT
Definition: tableam.h:64
@ SO_ALLOW_PAGEMODE
Definition: tableam.h:61
@ SO_ALLOW_SYNC
Definition: tableam.h:59
@ SO_TYPE_SEQSCAN
Definition: tableam.h:48
static IndexFetchTableData * table_index_fetch_begin(Relation rel)
Definition: tableam.h:1163
TM_Result
Definition: tableam.h:72
@ TM_Ok
Definition: tableam.h:77
@ TM_Deleted
Definition: tableam.h:92
@ TM_Updated
Definition: tableam.h:89
@ TM_SelfModified
Definition: tableam.h:83
static void table_index_fetch_end(struct IndexFetchTableData *scan)
Definition: tableam.h:1182
static TM_Result table_tuple_delete(Relation rel, ItemPointer tid, CommandId cid, Snapshot snapshot, Snapshot crosscheck, bool wait, TM_FailureData *tmfd, bool changingPart)
Definition: tableam.h:1462
static bool table_index_fetch_tuple(struct IndexFetchTableData *scan, ItemPointer tid, Snapshot snapshot, TupleTableSlot *slot, bool *call_again, bool *all_dead)
Definition: tableam.h:1212
static void table_tuple_insert(Relation rel, TupleTableSlot *slot, CommandId cid, int options, struct BulkInsertStateData *bistate)
Definition: tableam.h:1373
static TM_Result table_tuple_update(Relation rel, ItemPointer otid, TupleTableSlot *slot, CommandId cid, Snapshot snapshot, Snapshot crosscheck, bool wait, TM_FailureData *tmfd, LockTupleMode *lockmode, bool *update_indexes)
Definition: tableam.h:1506
#define TransactionIdIsValid(xid)
Definition: transam.h:41
bool bsysscan
Definition: xact.c:99
TransactionId CheckXidAlive
Definition: xact.c:98
CommandId GetCurrentCommandId(bool used)
Definition: xact.c:814