PostgreSQL Source Code  git master
tuplesort.c File Reference
#include "postgres.h"
#include <limits.h>
#include "access/htup_details.h"
#include "access/nbtree.h"
#include "access/hash.h"
#include "catalog/index.h"
#include "catalog/pg_am.h"
#include "commands/tablespace.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "pg_trace.h"
#include "utils/datum.h"
#include "utils/logtape.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_rusage.h"
#include "utils/rel.h"
#include "utils/sortsupport.h"
#include "utils/tuplesort.h"
#include "qsort_tuple.c"
Include dependency graph for tuplesort.c:

Go to the source code of this file.

Data Structures

struct  SortTuple
 
union  SlabSlot
 
struct  Tuplesortstate
 
struct  Sharedsort
 

Macros

#define HEAP_SORT   0
 
#define INDEX_SORT   1
 
#define DATUM_SORT   2
 
#define CLUSTER_SORT   3
 
#define PARALLEL_SORT(state)
 
#define SLAB_SLOT_SIZE   1024
 
#define MINORDER   6 /* minimum merge order */
 
#define MAXORDER   500 /* maximum merge order */
 
#define TAPE_BUFFER_OVERHEAD   BLCKSZ
 
#define MERGE_BUFFER_SIZE   (BLCKSZ * 32)
 
#define IS_SLAB_SLOT(state, tuple)
 
#define RELEASE_SLAB_SLOT(state, tuple)
 
#define COMPARETUP(state, a, b)   ((*(state)->comparetup) (a, b, state))
 
#define COPYTUP(state, stup, tup)   ((*(state)->copytup) (state, stup, tup))
 
#define WRITETUP(state, tape, stup)   ((*(state)->writetup) (state, tape, stup))
 
#define READTUP(state, stup, tape, len)   ((*(state)->readtup) (state, stup, tape, len))
 
#define LACKMEM(state)   ((state)->availMem < 0 && !(state)->slabAllocatorUsed)
 
#define USEMEM(state, amt)   ((state)->availMem -= (amt))
 
#define FREEMEM(state, amt)   ((state)->availMem += (amt))
 
#define SERIAL(state)   ((state)->shared == NULL)
 
#define WORKER(state)   ((state)->shared && (state)->worker != -1)
 
#define LEADER(state)   ((state)->shared && (state)->worker == -1)
 
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
 

Typedefs

typedef union SlabSlot SlabSlot
 
typedef int(* SortTupleComparator) (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 

Enumerations

enum  TupSortStatus {
  TSS_INITIAL, TSS_BOUNDED, TSS_BUILDRUNS, TSS_SORTEDINMEM,
  TSS_SORTEDONTAPE, TSS_FINALMERGE
}
 

Functions

static Tuplesortstatetuplesort_begin_common (int workMem, SortCoordinate coordinate, bool randomAccess)
 
static void puttuple_common (Tuplesortstate *state, SortTuple *tuple)
 
static bool consider_abort_common (Tuplesortstate *state)
 
static void inittapes (Tuplesortstate *state, bool mergeruns)
 
static void inittapestate (Tuplesortstate *state, int maxTapes)
 
static void selectnewtape (Tuplesortstate *state)
 
static void init_slab_allocator (Tuplesortstate *state, int numSlots)
 
static void mergeruns (Tuplesortstate *state)
 
static void mergeonerun (Tuplesortstate *state)
 
static void beginmerge (Tuplesortstate *state)
 
static bool mergereadnext (Tuplesortstate *state, int srcTape, SortTuple *stup)
 
static void dumptuples (Tuplesortstate *state, bool alltuples)
 
static void make_bounded_heap (Tuplesortstate *state)
 
static void sort_bounded_heap (Tuplesortstate *state)
 
static void tuplesort_sort_memtuples (Tuplesortstate *state)
 
static void tuplesort_heap_insert (Tuplesortstate *state, SortTuple *tuple)
 
static void tuplesort_heap_replace_top (Tuplesortstate *state, SortTuple *tuple)
 
static void tuplesort_heap_delete_top (Tuplesortstate *state)
 
static void reversedirection (Tuplesortstate *state)
 
static unsigned int getlen (Tuplesortstate *state, int tapenum, bool eofOK)
 
static void markrunend (Tuplesortstate *state, int tapenum)
 
static void * readtup_alloc (Tuplesortstate *state, Size tuplen)
 
static int comparetup_heap (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static void copytup_heap (Tuplesortstate *state, SortTuple *stup, void *tup)
 
static void writetup_heap (Tuplesortstate *state, int tapenum, SortTuple *stup)
 
static void readtup_heap (Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
 
static int comparetup_cluster (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static void copytup_cluster (Tuplesortstate *state, SortTuple *stup, void *tup)
 
static void writetup_cluster (Tuplesortstate *state, int tapenum, SortTuple *stup)
 
static void readtup_cluster (Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
 
static int comparetup_index_btree (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static int comparetup_index_hash (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static void copytup_index (Tuplesortstate *state, SortTuple *stup, void *tup)
 
static void writetup_index (Tuplesortstate *state, int tapenum, SortTuple *stup)
 
static void readtup_index (Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
 
static int comparetup_datum (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static void copytup_datum (Tuplesortstate *state, SortTuple *stup, void *tup)
 
static void writetup_datum (Tuplesortstate *state, int tapenum, SortTuple *stup)
 
static void readtup_datum (Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
 
static int worker_get_identifier (Tuplesortstate *state)
 
static void worker_freeze_result_tape (Tuplesortstate *state)
 
static void worker_nomergeruns (Tuplesortstate *state)
 
static void leader_takeover_tapes (Tuplesortstate *state)
 
static void free_sort_tuple (Tuplesortstate *state, SortTuple *stup)
 
Tuplesortstatetuplesort_begin_heap (TupleDesc tupDesc, int nkeys, AttrNumber *attNums, Oid *sortOperators, Oid *sortCollations, bool *nullsFirstFlags, int workMem, SortCoordinate coordinate, bool randomAccess)
 
Tuplesortstatetuplesort_begin_cluster (TupleDesc tupDesc, Relation indexRel, int workMem, SortCoordinate coordinate, bool randomAccess)
 
Tuplesortstatetuplesort_begin_index_btree (Relation heapRel, Relation indexRel, bool enforceUnique, int workMem, SortCoordinate coordinate, bool randomAccess)
 
Tuplesortstatetuplesort_begin_index_hash (Relation heapRel, Relation indexRel, uint32 high_mask, uint32 low_mask, uint32 max_buckets, int workMem, SortCoordinate coordinate, bool randomAccess)
 
Tuplesortstatetuplesort_begin_datum (Oid datumType, Oid sortOperator, Oid sortCollation, bool nullsFirstFlag, int workMem, SortCoordinate coordinate, bool randomAccess)
 
void tuplesort_set_bound (Tuplesortstate *state, int64 bound)
 
void tuplesort_end (Tuplesortstate *state)
 
static bool grow_memtuples (Tuplesortstate *state)
 
void tuplesort_puttupleslot (Tuplesortstate *state, TupleTableSlot *slot)
 
void tuplesort_putheaptuple (Tuplesortstate *state, HeapTuple tup)
 
void tuplesort_putindextuplevalues (Tuplesortstate *state, Relation rel, ItemPointer self, Datum *values, bool *isnull)
 
void tuplesort_putdatum (Tuplesortstate *state, Datum val, bool isNull)
 
void tuplesort_performsort (Tuplesortstate *state)
 
static bool tuplesort_gettuple_common (Tuplesortstate *state, bool forward, SortTuple *stup)
 
bool tuplesort_gettupleslot (Tuplesortstate *state, bool forward, bool copy, TupleTableSlot *slot, Datum *abbrev)
 
HeapTuple tuplesort_getheaptuple (Tuplesortstate *state, bool forward)
 
IndexTuple tuplesort_getindextuple (Tuplesortstate *state, bool forward)
 
bool tuplesort_getdatum (Tuplesortstate *state, bool forward, Datum *val, bool *isNull, Datum *abbrev)
 
bool tuplesort_skiptuples (Tuplesortstate *state, int64 ntuples, bool forward)
 
int tuplesort_merge_order (int64 allowedMem)
 
void tuplesort_rescan (Tuplesortstate *state)
 
void tuplesort_markpos (Tuplesortstate *state)
 
void tuplesort_restorepos (Tuplesortstate *state)
 
void tuplesort_get_stats (Tuplesortstate *state, TuplesortInstrumentation *stats)
 
const char * tuplesort_method_name (TuplesortMethod m)
 
const char * tuplesort_space_type_name (TuplesortSpaceType t)
 
Size tuplesort_estimate_shared (int nWorkers)
 
void tuplesort_initialize_shared (Sharedsort *shared, int nWorkers, dsm_segment *seg)
 
void tuplesort_attach_shared (Sharedsort *shared, dsm_segment *seg)
 

Variables

bool trace_sort = false
 

Macro Definition Documentation

◆ CLUSTER_SORT

#define CLUSTER_SORT   3

Definition at line 122 of file tuplesort.c.

Referenced by tuplesort_begin_cluster().

◆ COMPARETUP

#define COMPARETUP (   state,
  a,
 
)    ((*(state)->comparetup) (a, b, state))

◆ COPYTUP

#define COPYTUP (   state,
  stup,
  tup 
)    ((*(state)->copytup) (state, stup, tup))

Definition at line 526 of file tuplesort.c.

Referenced by tuplesort_putheaptuple(), and tuplesort_puttupleslot().

◆ DATUM_SORT

#define DATUM_SORT   2

Definition at line 121 of file tuplesort.c.

Referenced by tuplesort_begin_datum().

◆ FREEMEM

#define FREEMEM (   state,
  amt 
)    ((state)->availMem += (amt))

◆ HEAP_SORT

#define HEAP_SORT   0

Definition at line 119 of file tuplesort.c.

Referenced by tuplesort_begin_heap().

◆ INDEX_SORT

#define INDEX_SORT   1

Definition at line 120 of file tuplesort.c.

Referenced by tuplesort_begin_index_btree().

◆ IS_SLAB_SLOT

#define IS_SLAB_SLOT (   state,
  tuple 
)
Value:
((char *) (tuple) >= (state)->slabMemoryBegin && \
(char *) (tuple) < (state)->slabMemoryEnd)
Definition: regguts.h:298

Definition at line 505 of file tuplesort.c.

◆ LACKMEM

#define LACKMEM (   state)    ((state)->availMem < 0 && !(state)->slabAllocatorUsed)

Definition at line 529 of file tuplesort.c.

Referenced by dumptuples(), grow_memtuples(), puttuple_common(), and tuplesort_begin_common().

◆ LEADER

#define LEADER (   state)    ((state)->shared && (state)->worker == -1)

◆ LogicalTapeReadExact

#define LogicalTapeReadExact (   tapeset,
  tapenum,
  ptr,
  len 
)
Value:
do { \
if (LogicalTapeRead(tapeset, tapenum, ptr, len) != (size_t) (len)) \
elog(ERROR, "unexpected end of data"); \
} while(0)
size_t LogicalTapeRead(LogicalTapeSet *lts, int tapenum, void *ptr, size_t size)
Definition: logtape.c:821
#define ERROR
Definition: elog.h:43

Definition at line 584 of file tuplesort.c.

Referenced by readtup_cluster(), readtup_datum(), readtup_heap(), and readtup_index().

◆ MAXORDER

#define MAXORDER   500 /* maximum merge order */

Definition at line 222 of file tuplesort.c.

Referenced by tuplesort_merge_order().

◆ MERGE_BUFFER_SIZE

#define MERGE_BUFFER_SIZE   (BLCKSZ * 32)

Definition at line 224 of file tuplesort.c.

Referenced by tuplesort_merge_order().

◆ MINORDER

#define MINORDER   6 /* minimum merge order */

Definition at line 221 of file tuplesort.c.

Referenced by inittapes(), and tuplesort_merge_order().

◆ PARALLEL_SORT

#define PARALLEL_SORT (   state)
Value:
((state)->shared == NULL ? 0 : \
(state)->worker >= 0 ? 1 : 2)
Definition: regguts.h:298

Definition at line 125 of file tuplesort.c.

Referenced by tuplesort_begin_cluster(), tuplesort_begin_datum(), tuplesort_begin_heap(), and tuplesort_begin_index_btree().

◆ READTUP

#define READTUP (   state,
  stup,
  tape,
  len 
)    ((*(state)->readtup) (state, stup, tape, len))

Definition at line 528 of file tuplesort.c.

Referenced by mergereadnext(), and tuplesort_gettuple_common().

◆ RELEASE_SLAB_SLOT

#define RELEASE_SLAB_SLOT (   state,
  tuple 
)
Value:
do { \
SlabSlot *buf = (SlabSlot *) tuple; \
\
if (IS_SLAB_SLOT((state), buf)) \
{ \
buf->nextfree = (state)->slabFreeHead; \
(state)->slabFreeHead = buf; \
pfree(buf); \
} while(0)
void pfree(void *pointer)
Definition: mcxt.c:1031
static char * buf
Definition: pg_test_fsync.c:67
Definition: regguts.h:298
#define IS_SLAB_SLOT(state, tuple)
Definition: tuplesort.c:505

Definition at line 513 of file tuplesort.c.

Referenced by mergeonerun(), and tuplesort_gettuple_common().

◆ SERIAL

#define SERIAL (   state)    ((state)->shared == NULL)

◆ SLAB_SLOT_SIZE

#define SLAB_SLOT_SIZE   1024

Definition at line 188 of file tuplesort.c.

Referenced by init_slab_allocator(), and readtup_alloc().

◆ TAPE_BUFFER_OVERHEAD

#define TAPE_BUFFER_OVERHEAD   BLCKSZ

Definition at line 223 of file tuplesort.c.

Referenced by inittapestate(), mergeruns(), and tuplesort_merge_order().

◆ USEMEM

◆ WORKER

◆ WRITETUP

#define WRITETUP (   state,
  tape,
  stup 
)    ((*(state)->writetup) (state, tape, stup))

Definition at line 527 of file tuplesort.c.

Referenced by dumptuples(), and mergeonerun().

Typedef Documentation

◆ SlabSlot

◆ SortTupleComparator

typedef int(* SortTupleComparator) (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)

Definition at line 226 of file tuplesort.c.

Enumeration Type Documentation

◆ TupSortStatus

Enumerator
TSS_INITIAL 
TSS_BOUNDED 
TSS_BUILDRUNS 
TSS_SORTEDINMEM 
TSS_SORTEDONTAPE 
TSS_FINALMERGE 

Definition at line 200 of file tuplesort.c.

201 {
202  TSS_INITIAL, /* Loading tuples; still within memory limit */
203  TSS_BOUNDED, /* Loading tuples into bounded-size heap */
204  TSS_BUILDRUNS, /* Loading tuples; writing to tape */
205  TSS_SORTEDINMEM, /* Sort completed entirely in memory */
206  TSS_SORTEDONTAPE, /* Sort completed, final run is on tape */
207  TSS_FINALMERGE /* Performing final merge on-the-fly */
208 } TupSortStatus;
TupSortStatus
Definition: tuplesort.c:200

Function Documentation

◆ beginmerge()

static void beginmerge ( Tuplesortstate state)
static

Definition at line 2852 of file tuplesort.c.

References Tuplesortstate::activeTapes, Assert, Tuplesortstate::maxTapes, Tuplesortstate::memtupcount, Tuplesortstate::mergeactive, mergereadnext(), Tuplesortstate::tapeRange, Tuplesortstate::tp_dummy, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, SortTuple::tupindex, and tuplesort_heap_insert().

Referenced by mergeonerun(), and mergeruns().

2853 {
2854  int activeTapes;
2855  int tapenum;
2856  int srcTape;
2857 
2858  /* Heap should be empty here */
2859  Assert(state->memtupcount == 0);
2860 
2861  /* Adjust run counts and mark the active tapes */
2862  memset(state->mergeactive, 0,
2863  state->maxTapes * sizeof(*state->mergeactive));
2864  activeTapes = 0;
2865  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2866  {
2867  if (state->tp_dummy[tapenum] > 0)
2868  state->tp_dummy[tapenum]--;
2869  else
2870  {
2871  Assert(state->tp_runs[tapenum] > 0);
2872  state->tp_runs[tapenum]--;
2873  srcTape = state->tp_tapenum[tapenum];
2874  state->mergeactive[srcTape] = true;
2875  activeTapes++;
2876  }
2877  }
2878  Assert(activeTapes > 0);
2879  state->activeTapes = activeTapes;
2880 
2881  /* Load the merge heap with the first tuple from each input tape */
2882  for (srcTape = 0; srcTape < state->maxTapes; srcTape++)
2883  {
2884  SortTuple tup;
2885 
2886  if (mergereadnext(state, srcTape, &tup))
2887  {
2888  tup.tupindex = srcTape;
2889  tuplesort_heap_insert(state, &tup);
2890  }
2891  }
2892 }
static void tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3337
static bool mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup)
Definition: tuplesort.c:2900
#define Assert(condition)
Definition: c.h:699
int tupindex
Definition: tuplesort.c:174
int * tp_dummy
Definition: tuplesort.c:371
int * tp_tapenum
Definition: tuplesort.c:372
bool * mergeactive
Definition: tuplesort.c:360

◆ comparetup_cluster()

static int comparetup_cluster ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 3708 of file tuplesort.c.

References SortSupportData::abbrev_converter, ApplySortAbbrevFullComparator(), ApplySortComparator(), compare(), SortTuple::datum1, Tuplesortstate::estate, ExecStoreTuple(), FormIndexDatum(), GetPerTupleExprContext, heap_getattr, IndexInfo::ii_Expressions, IndexInfo::ii_IndexAttrNumbers, INDEX_MAX_KEYS, Tuplesortstate::indexInfo, InvalidBuffer, SortTuple::isnull1, Tuplesortstate::nKeys, ResetPerTupleExprContext, Tuplesortstate::sortKeys, Tuplesortstate::tupDesc, and SortTuple::tuple.

Referenced by tuplesort_begin_cluster().

3710 {
3711  SortSupport sortKey = state->sortKeys;
3712  HeapTuple ltup;
3713  HeapTuple rtup;
3714  TupleDesc tupDesc;
3715  int nkey;
3716  int32 compare;
3717  Datum datum1,
3718  datum2;
3719  bool isnull1,
3720  isnull2;
3721  AttrNumber leading = state->indexInfo->ii_IndexAttrNumbers[0];
3722 
3723  /* Be prepared to compare additional sort keys */
3724  ltup = (HeapTuple) a->tuple;
3725  rtup = (HeapTuple) b->tuple;
3726  tupDesc = state->tupDesc;
3727 
3728  /* Compare the leading sort key, if it's simple */
3729  if (leading != 0)
3730  {
3731  compare = ApplySortComparator(a->datum1, a->isnull1,
3732  b->datum1, b->isnull1,
3733  sortKey);
3734  if (compare != 0)
3735  return compare;
3736 
3737  if (sortKey->abbrev_converter)
3738  {
3739  datum1 = heap_getattr(ltup, leading, tupDesc, &isnull1);
3740  datum2 = heap_getattr(rtup, leading, tupDesc, &isnull2);
3741 
3742  compare = ApplySortAbbrevFullComparator(datum1, isnull1,
3743  datum2, isnull2,
3744  sortKey);
3745  }
3746  if (compare != 0 || state->nKeys == 1)
3747  return compare;
3748  /* Compare additional columns the hard way */
3749  sortKey++;
3750  nkey = 1;
3751  }
3752  else
3753  {
3754  /* Must compare all keys the hard way */
3755  nkey = 0;
3756  }
3757 
3758  if (state->indexInfo->ii_Expressions == NULL)
3759  {
3760  /* If not expression index, just compare the proper heap attrs */
3761 
3762  for (; nkey < state->nKeys; nkey++, sortKey++)
3763  {
3764  AttrNumber attno = state->indexInfo->ii_IndexAttrNumbers[nkey];
3765 
3766  datum1 = heap_getattr(ltup, attno, tupDesc, &isnull1);
3767  datum2 = heap_getattr(rtup, attno, tupDesc, &isnull2);
3768 
3769  compare = ApplySortComparator(datum1, isnull1,
3770  datum2, isnull2,
3771  sortKey);
3772  if (compare != 0)
3773  return compare;
3774  }
3775  }
3776  else
3777  {
3778  /*
3779  * In the expression index case, compute the whole index tuple and
3780  * then compare values. It would perhaps be faster to compute only as
3781  * many columns as we need to compare, but that would require
3782  * duplicating all the logic in FormIndexDatum.
3783  */
3784  Datum l_index_values[INDEX_MAX_KEYS];
3785  bool l_index_isnull[INDEX_MAX_KEYS];
3786  Datum r_index_values[INDEX_MAX_KEYS];
3787  bool r_index_isnull[INDEX_MAX_KEYS];
3788  TupleTableSlot *ecxt_scantuple;
3789 
3790  /* Reset context each time to prevent memory leakage */
3792 
3793  ecxt_scantuple = GetPerTupleExprContext(state->estate)->ecxt_scantuple;
3794 
3795  ExecStoreTuple(ltup, ecxt_scantuple, InvalidBuffer, false);
3796  FormIndexDatum(state->indexInfo, ecxt_scantuple, state->estate,
3797  l_index_values, l_index_isnull);
3798 
3799  ExecStoreTuple(rtup, ecxt_scantuple, InvalidBuffer, false);
3800  FormIndexDatum(state->indexInfo, ecxt_scantuple, state->estate,
3801  r_index_values, r_index_isnull);
3802 
3803  for (; nkey < state->nKeys; nkey++, sortKey++)
3804  {
3805  compare = ApplySortComparator(l_index_values[nkey],
3806  l_index_isnull[nkey],
3807  r_index_values[nkey],
3808  r_index_isnull[nkey],
3809  sortKey);
3810  if (compare != 0)
3811  return compare;
3812  }
3813  }
3814 
3815  return 0;
3816 }
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2000
TupleTableSlot * ExecStoreTuple(HeapTuple tuple, TupleTableSlot *slot, Buffer buffer, bool shouldFree)
Definition: execTuples.c:356
HeapTupleData * HeapTuple
Definition: htup.h:71
#define ResetPerTupleExprContext(estate)
Definition: executor.h:498
EState * estate
Definition: tuplesort.c:436
SortSupport sortKeys
Definition: tuplesort.c:414
Datum datum1
Definition: tuplesort.c:172
#define InvalidBuffer
Definition: buf.h:25
bool isnull1
Definition: tuplesort.c:173
signed int int32
Definition: c.h:313
#define GetPerTupleExprContext(estate)
Definition: executor.h:489
void * tuple
Definition: tuplesort.c:171
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
IndexInfo * indexInfo
Definition: tuplesort.c:435
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:786
uintptr_t Datum
Definition: postgres.h:365
List * ii_Expressions
Definition: execnodes.h:154
#define INDEX_MAX_KEYS
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:153
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:201
int16 AttrNumber
Definition: attnum.h:21
TupleDesc tupDesc
Definition: tuplesort.c:413
static int ApplySortAbbrevFullComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:239

◆ comparetup_datum()

static int comparetup_datum ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 4247 of file tuplesort.c.

References SortSupportData::abbrev_converter, ApplySortAbbrevFullComparator(), ApplySortComparator(), compare(), SortTuple::datum1, SortTuple::isnull1, PointerGetDatum, Tuplesortstate::sortKeys, and SortTuple::tuple.

Referenced by tuplesort_begin_datum().

4248 {
4249  int compare;
4250 
4251  compare = ApplySortComparator(a->datum1, a->isnull1,
4252  b->datum1, b->isnull1,
4253  state->sortKeys);
4254  if (compare != 0)
4255  return compare;
4256 
4257  /* if we have abbreviations, then "tuple" has the original value */
4258 
4259  if (state->sortKeys->abbrev_converter)
4261  PointerGetDatum(b->tuple), b->isnull1,
4262  state->sortKeys);
4263 
4264  return compare;
4265 }
#define PointerGetDatum(X)
Definition: postgres.h:539
SortSupport sortKeys
Definition: tuplesort.c:414
Datum datum1
Definition: tuplesort.c:172
bool isnull1
Definition: tuplesort.c:173
void * tuple
Definition: tuplesort.c:171
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:201
static int ApplySortAbbrevFullComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:239

◆ comparetup_heap()

static int comparetup_heap ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 3509 of file tuplesort.c.

References SortSupportData::abbrev_converter, ApplySortAbbrevFullComparator(), ApplySortComparator(), compare(), SortTuple::datum1, heap_getattr, SortTuple::isnull1, MINIMAL_TUPLE_OFFSET, Tuplesortstate::nKeys, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, HeapTupleData::t_data, HeapTupleData::t_len, Tuplesortstate::tupDesc, and SortTuple::tuple.

Referenced by tuplesort_begin_heap().

3510 {
3511  SortSupport sortKey = state->sortKeys;
3512  HeapTupleData ltup;
3513  HeapTupleData rtup;
3514  TupleDesc tupDesc;
3515  int nkey;
3516  int32 compare;
3517  AttrNumber attno;
3518  Datum datum1,
3519  datum2;
3520  bool isnull1,
3521  isnull2;
3522 
3523 
3524  /* Compare the leading sort key */
3525  compare = ApplySortComparator(a->datum1, a->isnull1,
3526  b->datum1, b->isnull1,
3527  sortKey);
3528  if (compare != 0)
3529  return compare;
3530 
3531  /* Compare additional sort keys */
3532  ltup.t_len = ((MinimalTuple) a->tuple)->t_len + MINIMAL_TUPLE_OFFSET;
3533  ltup.t_data = (HeapTupleHeader) ((char *) a->tuple - MINIMAL_TUPLE_OFFSET);
3534  rtup.t_len = ((MinimalTuple) b->tuple)->t_len + MINIMAL_TUPLE_OFFSET;
3535  rtup.t_data = (HeapTupleHeader) ((char *) b->tuple - MINIMAL_TUPLE_OFFSET);
3536  tupDesc = state->tupDesc;
3537 
3538  if (sortKey->abbrev_converter)
3539  {
3540  attno = sortKey->ssup_attno;
3541 
3542  datum1 = heap_getattr(&ltup, attno, tupDesc, &isnull1);
3543  datum2 = heap_getattr(&rtup, attno, tupDesc, &isnull2);
3544 
3545  compare = ApplySortAbbrevFullComparator(datum1, isnull1,
3546  datum2, isnull2,
3547  sortKey);
3548  if (compare != 0)
3549  return compare;
3550  }
3551 
3552  sortKey++;
3553  for (nkey = 1; nkey < state->nKeys; nkey++, sortKey++)
3554  {
3555  attno = sortKey->ssup_attno;
3556 
3557  datum1 = heap_getattr(&ltup, attno, tupDesc, &isnull1);
3558  datum2 = heap_getattr(&rtup, attno, tupDesc, &isnull2);
3559 
3560  compare = ApplySortComparator(datum1, isnull1,
3561  datum2, isnull2,
3562  sortKey);
3563  if (compare != 0)
3564  return compare;
3565  }
3566 
3567  return 0;
3568 }
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
SortSupport sortKeys
Definition: tuplesort.c:414
Datum datum1
Definition: tuplesort.c:172
bool isnull1
Definition: tuplesort.c:173
signed int int32
Definition: c.h:313
HeapTupleHeader t_data
Definition: htup.h:68
void * tuple
Definition: tuplesort.c:171
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
uint32 t_len
Definition: htup.h:64
MinimalTupleData * MinimalTuple
Definition: htup.h:27
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:786
uintptr_t Datum
Definition: postgres.h:365
AttrNumber ssup_attno
Definition: sortsupport.h:81
#define MINIMAL_TUPLE_OFFSET
Definition: htup_details.h:637
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:201
int16 AttrNumber
Definition: attnum.h:21
TupleDesc tupDesc
Definition: tuplesort.c:413
static int ApplySortAbbrevFullComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:239

◆ comparetup_index_btree()

static int comparetup_index_btree ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 3954 of file tuplesort.c.

References SortSupportData::abbrev_converter, ApplySortAbbrevFullComparator(), ApplySortComparator(), Assert, BuildIndexValueDescription(), compare(), SortTuple::datum1, Tuplesortstate::enforceUnique, ereport, errcode(), errdetail(), errmsg(), ERROR, errtableconstraint(), Tuplesortstate::heapRel, index_deform_tuple(), index_getattr, INDEX_MAX_KEYS, Tuplesortstate::indexRel, SortTuple::isnull1, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, Tuplesortstate::nKeys, RelationGetDescr, RelationGetRelationName, Tuplesortstate::sortKeys, IndexTupleData::t_tid, SortTuple::tuple, and values.

Referenced by tuplesort_begin_index_btree().

3956 {
3957  /*
3958  * This is similar to comparetup_heap(), but expects index tuples. There
3959  * is also special handling for enforcing uniqueness, and special
3960  * treatment for equal keys at the end.
3961  */
3962  SortSupport sortKey = state->sortKeys;
3963  IndexTuple tuple1;
3964  IndexTuple tuple2;
3965  int keysz;
3966  TupleDesc tupDes;
3967  bool equal_hasnull = false;
3968  int nkey;
3969  int32 compare;
3970  Datum datum1,
3971  datum2;
3972  bool isnull1,
3973  isnull2;
3974 
3975 
3976  /* Compare the leading sort key */
3977  compare = ApplySortComparator(a->datum1, a->isnull1,
3978  b->datum1, b->isnull1,
3979  sortKey);
3980  if (compare != 0)
3981  return compare;
3982 
3983  /* Compare additional sort keys */
3984  tuple1 = (IndexTuple) a->tuple;
3985  tuple2 = (IndexTuple) b->tuple;
3986  keysz = state->nKeys;
3987  tupDes = RelationGetDescr(state->indexRel);
3988 
3989  if (sortKey->abbrev_converter)
3990  {
3991  datum1 = index_getattr(tuple1, 1, tupDes, &isnull1);
3992  datum2 = index_getattr(tuple2, 1, tupDes, &isnull2);
3993 
3994  compare = ApplySortAbbrevFullComparator(datum1, isnull1,
3995  datum2, isnull2,
3996  sortKey);
3997  if (compare != 0)
3998  return compare;
3999  }
4000 
4001  /* they are equal, so we only need to examine one null flag */
4002  if (a->isnull1)
4003  equal_hasnull = true;
4004 
4005  sortKey++;
4006  for (nkey = 2; nkey <= keysz; nkey++, sortKey++)
4007  {
4008  datum1 = index_getattr(tuple1, nkey, tupDes, &isnull1);
4009  datum2 = index_getattr(tuple2, nkey, tupDes, &isnull2);
4010 
4011  compare = ApplySortComparator(datum1, isnull1,
4012  datum2, isnull2,
4013  sortKey);
4014  if (compare != 0)
4015  return compare; /* done when we find unequal attributes */
4016 
4017  /* they are equal, so we only need to examine one null flag */
4018  if (isnull1)
4019  equal_hasnull = true;
4020  }
4021 
4022  /*
4023  * If btree has asked us to enforce uniqueness, complain if two equal
4024  * tuples are detected (unless there was at least one NULL field).
4025  *
4026  * It is sufficient to make the test here, because if two tuples are equal
4027  * they *must* get compared at some stage of the sort --- otherwise the
4028  * sort algorithm wouldn't have checked whether one must appear before the
4029  * other.
4030  */
4031  if (state->enforceUnique && !equal_hasnull)
4032  {
4034  bool isnull[INDEX_MAX_KEYS];
4035  char *key_desc;
4036 
4037  /*
4038  * Some rather brain-dead implementations of qsort (such as the one in
4039  * QNX 4) will sometimes call the comparison routine to compare a
4040  * value to itself, but we always use our own implementation, which
4041  * does not.
4042  */
4043  Assert(tuple1 != tuple2);
4044 
4045  index_deform_tuple(tuple1, tupDes, values, isnull);
4046 
4047  key_desc = BuildIndexValueDescription(state->indexRel, values, isnull);
4048 
4049  ereport(ERROR,
4050  (errcode(ERRCODE_UNIQUE_VIOLATION),
4051  errmsg("could not create unique index \"%s\"",
4053  key_desc ? errdetail("Key %s is duplicated.", key_desc) :
4054  errdetail("Duplicate keys exist."),
4055  errtableconstraint(state->heapRel,
4056  RelationGetRelationName(state->indexRel))));
4057  }
4058 
4059  /*
4060  * If key values are equal, we sort on ItemPointer. This does not affect
4061  * validity of the finished index, but it may be useful to have index
4062  * scans in physical order.
4063  */
4064  {
4065  BlockNumber blk1 = ItemPointerGetBlockNumber(&tuple1->t_tid);
4066  BlockNumber blk2 = ItemPointerGetBlockNumber(&tuple2->t_tid);
4067 
4068  if (blk1 != blk2)
4069  return (blk1 < blk2) ? -1 : 1;
4070  }
4071  {
4074 
4075  if (pos1 != pos2)
4076  return (pos1 < pos2) ? -1 : 1;
4077  }
4078 
4079  return 0;
4080 }
Relation heapRel
Definition: tuplesort.c:442
#define RelationGetDescr(relation)
Definition: rel.h:433
SortSupport sortKeys
Definition: tuplesort.c:414
ItemPointerData t_tid
Definition: itup.h:37
Datum datum1
Definition: tuplesort.c:172
int errcode(int sqlerrcode)
Definition: elog.c:575
uint32 BlockNumber
Definition: block.h:31
bool isnull1
Definition: tuplesort.c:173
signed int int32
Definition: c.h:313
uint16 OffsetNumber
Definition: off.h:24
void * tuple
Definition: tuplesort.c:171
int errtableconstraint(Relation rel, const char *conname)
Definition: relcache.c:5246
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
#define ERROR
Definition: elog.h:43
IndexTupleData * IndexTuple
Definition: itup.h:53
int errdetail(const char *fmt,...)
Definition: elog.c:873
#define RelationGetRelationName(relation)
Definition: rel.h:441
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
void index_deform_tuple(IndexTuple tup, TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: indextuple.c:423
#define ereport(elevel, rest)
Definition: elog.h:122
Relation indexRel
Definition: tuplesort.c:443
uintptr_t Datum
Definition: postgres.h:365
#define Assert(condition)
Definition: c.h:699
bool enforceUnique
Definition: tuplesort.c:446
#define INDEX_MAX_KEYS
#define index_getattr(tup, attnum, tupleDesc, isnull)
Definition: itup.h:100
#define ItemPointerGetOffsetNumber(pointer)
Definition: itemptr.h:95
static Datum values[MAXATTR]
Definition: bootstrap.c:164
int errmsg(const char *fmt,...)
Definition: elog.c:797
char * BuildIndexValueDescription(Relation indexRelation, Datum *values, bool *isnull)
Definition: genam.c:178
#define ItemPointerGetBlockNumber(pointer)
Definition: itemptr.h:76
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:201
static int ApplySortAbbrevFullComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:239

◆ comparetup_index_hash()

static int comparetup_index_hash ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 4083 of file tuplesort.c.

References _hash_hashkey2bucket(), Assert, SortTuple::datum1, DatumGetUInt32, Tuplesortstate::high_mask, SortTuple::isnull1, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, Tuplesortstate::low_mask, Tuplesortstate::max_buckets, IndexTupleData::t_tid, and SortTuple::tuple.

Referenced by tuplesort_begin_index_hash().

4085 {
4086  Bucket bucket1;
4087  Bucket bucket2;
4088  IndexTuple tuple1;
4089  IndexTuple tuple2;
4090 
4091  /*
4092  * Fetch hash keys and mask off bits we don't want to sort by. We know
4093  * that the first column of the index tuple is the hash key.
4094  */
4095  Assert(!a->isnull1);
4097  state->max_buckets, state->high_mask,
4098  state->low_mask);
4099  Assert(!b->isnull1);
4101  state->max_buckets, state->high_mask,
4102  state->low_mask);
4103  if (bucket1 > bucket2)
4104  return 1;
4105  else if (bucket1 < bucket2)
4106  return -1;
4107 
4108  /*
4109  * If hash values are equal, we sort on ItemPointer. This does not affect
4110  * validity of the finished index, but it may be useful to have index
4111  * scans in physical order.
4112  */
4113  tuple1 = (IndexTuple) a->tuple;
4114  tuple2 = (IndexTuple) b->tuple;
4115 
4116  {
4117  BlockNumber blk1 = ItemPointerGetBlockNumber(&tuple1->t_tid);
4118  BlockNumber blk2 = ItemPointerGetBlockNumber(&tuple2->t_tid);
4119 
4120  if (blk1 != blk2)
4121  return (blk1 < blk2) ? -1 : 1;
4122  }
4123  {
4126 
4127  if (pos1 != pos2)
4128  return (pos1 < pos2) ? -1 : 1;
4129  }
4130 
4131  return 0;
4132 }
#define DatumGetUInt32(X)
Definition: postgres.h:469
Bucket _hash_hashkey2bucket(uint32 hashkey, uint32 maxbucket, uint32 highmask, uint32 lowmask)
Definition: hashutil.c:125
ItemPointerData t_tid
Definition: itup.h:37
Datum datum1
Definition: tuplesort.c:172
uint32 BlockNumber
Definition: block.h:31
bool isnull1
Definition: tuplesort.c:173
uint16 OffsetNumber
Definition: off.h:24
uint32 Bucket
Definition: hash.h:34
void * tuple
Definition: tuplesort.c:171
uint32 high_mask
Definition: tuplesort.c:449
IndexTupleData * IndexTuple
Definition: itup.h:53
#define Assert(condition)
Definition: c.h:699
#define ItemPointerGetOffsetNumber(pointer)
Definition: itemptr.h:95
uint32 max_buckets
Definition: tuplesort.c:451
uint32 low_mask
Definition: tuplesort.c:450
#define ItemPointerGetBlockNumber(pointer)
Definition: itemptr.h:76

◆ consider_abort_common()

static bool consider_abort_common ( Tuplesortstate state)
static

Definition at line 1746 of file tuplesort.c.

References SortSupportData::abbrev_abort, SortSupportData::abbrev_converter, SortSupportData::abbrev_full_comparator, Tuplesortstate::abbrevNext, Assert, SortSupportData::comparator, Tuplesortstate::memtupcount, Tuplesortstate::sortKeys, Tuplesortstate::status, and TSS_INITIAL.

Referenced by copytup_cluster(), copytup_heap(), copytup_index(), tuplesort_putdatum(), and tuplesort_putindextuplevalues().

1747 {
1748  Assert(state->sortKeys[0].abbrev_converter != NULL);
1749  Assert(state->sortKeys[0].abbrev_abort != NULL);
1750  Assert(state->sortKeys[0].abbrev_full_comparator != NULL);
1751 
1752  /*
1753  * Check effectiveness of abbreviation optimization. Consider aborting
1754  * when still within memory limit.
1755  */
1756  if (state->status == TSS_INITIAL &&
1757  state->memtupcount >= state->abbrevNext)
1758  {
1759  state->abbrevNext *= 2;
1760 
1761  /*
1762  * Check opclass-supplied abbreviation abort routine. It may indicate
1763  * that abbreviation should not proceed.
1764  */
1765  if (!state->sortKeys->abbrev_abort(state->memtupcount,
1766  state->sortKeys))
1767  return false;
1768 
1769  /*
1770  * Finally, restore authoritative comparator, and indicate that
1771  * abbreviation is not in play by setting abbrev_converter to NULL
1772  */
1773  state->sortKeys[0].comparator = state->sortKeys[0].abbrev_full_comparator;
1774  state->sortKeys[0].abbrev_converter = NULL;
1775  /* Not strictly necessary, but be tidy */
1776  state->sortKeys[0].abbrev_abort = NULL;
1777  state->sortKeys[0].abbrev_full_comparator = NULL;
1778 
1779  /* Give up - expect original pass-by-value representation */
1780  return true;
1781  }
1782 
1783  return false;
1784 }
TupSortStatus status
Definition: tuplesort.c:234
int64 abbrevNext
Definition: tuplesort.c:428
SortSupport sortKeys
Definition: tuplesort.c:414
int(* comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:107
int(* abbrev_full_comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:192
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
#define Assert(condition)
Definition: c.h:699
bool(* abbrev_abort)(int memtupcount, SortSupport ssup)
Definition: sortsupport.h:183

◆ copytup_cluster()

static void copytup_cluster ( Tuplesortstate state,
SortTuple stup,
void *  tup 
)
static

Definition at line 3819 of file tuplesort.c.

References SortSupportData::abbrev_converter, consider_abort_common(), SortTuple::datum1, GetMemoryChunkSpace(), heap_copytuple(), heap_getattr, i, IndexInfo::ii_IndexAttrNumbers, Tuplesortstate::indexInfo, SortTuple::isnull1, MemoryContextSwitchTo(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::sortKeys, Tuplesortstate::tupDesc, SortTuple::tuple, Tuplesortstate::tuplecontext, and USEMEM.

Referenced by tuplesort_begin_cluster().

3820 {
3821  HeapTuple tuple = (HeapTuple) tup;
3822  Datum original;
3823  MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);
3824 
3825  /* copy the tuple into sort storage */
3826  tuple = heap_copytuple(tuple);
3827  stup->tuple = (void *) tuple;
3828  USEMEM(state, GetMemoryChunkSpace(tuple));
3829 
3830  MemoryContextSwitchTo(oldcontext);
3831 
3832  /*
3833  * set up first-column key value, and potentially abbreviate, if it's a
3834  * simple column
3835  */
3836  if (state->indexInfo->ii_IndexAttrNumbers[0] == 0)
3837  return;
3838 
3839  original = heap_getattr(tuple,
3840  state->indexInfo->ii_IndexAttrNumbers[0],
3841  state->tupDesc,
3842  &stup->isnull1);
3843 
3844  if (!state->sortKeys->abbrev_converter || stup->isnull1)
3845  {
3846  /*
3847  * Store ordinary Datum representation, or NULL value. If there is a
3848  * converter it won't expect NULL values, and cost model is not
3849  * required to account for NULL, so in that case we avoid calling
3850  * converter and just set datum1 to zeroed representation (to be
3851  * consistent, and to support cheap inequality tests for NULL
3852  * abbreviated keys).
3853  */
3854  stup->datum1 = original;
3855  }
3856  else if (!consider_abort_common(state))
3857  {
3858  /* Store abbreviated key representation */
3859  stup->datum1 = state->sortKeys->abbrev_converter(original,
3860  state->sortKeys);
3861  }
3862  else
3863  {
3864  /* Abort abbreviation */
3865  int i;
3866 
3867  stup->datum1 = original;
3868 
3869  /*
3870  * Set state to be consistent with never trying abbreviation.
3871  *
3872  * Alter datum1 representation in already-copied tuples, so as to
3873  * ensure a consistent representation (current tuple was just
3874  * handled). It does not matter if some dumped tuples are already
3875  * sorted on tape, since serialized tuples lack abbreviated keys
3876  * (TSS_BUILDRUNS state prevents control reaching here in any case).
3877  */
3878  for (i = 0; i < state->memtupcount; i++)
3879  {
3880  SortTuple *mtup = &state->memtuples[i];
3881 
3882  tuple = (HeapTuple) mtup->tuple;
3883  mtup->datum1 = heap_getattr(tuple,
3884  state->indexInfo->ii_IndexAttrNumbers[0],
3885  state->tupDesc,
3886  &mtup->isnull1);
3887  }
3888  }
3889 }
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:722
HeapTupleData * HeapTuple
Definition: htup.h:71
SortSupport sortKeys
Definition: tuplesort.c:414
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
Datum datum1
Definition: tuplesort.c:172
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
bool isnull1
Definition: tuplesort.c:173
void * tuple
Definition: tuplesort.c:171
static bool consider_abort_common(Tuplesortstate *state)
Definition: tuplesort.c:1746
IndexInfo * indexInfo
Definition: tuplesort.c:435
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:786
uintptr_t Datum
Definition: postgres.h:365
MemoryContext tuplecontext
Definition: tuplesort.c:247
#define USEMEM(state, amt)
Definition: tuplesort.c:530
int i
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:153
TupleDesc tupDesc
Definition: tuplesort.c:413
SortTuple * memtuples
Definition: tuplesort.c:295

◆ copytup_datum()

static void copytup_datum ( Tuplesortstate state,
SortTuple stup,
void *  tup 
)
static

Definition at line 4268 of file tuplesort.c.

References elog, and ERROR.

Referenced by tuplesort_begin_datum().

4269 {
4270  /* Not currently needed */
4271  elog(ERROR, "copytup_datum() should not be called");
4272 }
#define ERROR
Definition: elog.h:43
#define elog
Definition: elog.h:219

◆ copytup_heap()

static void copytup_heap ( Tuplesortstate state,
SortTuple stup,
void *  tup 
)
static

Definition at line 3571 of file tuplesort.c.

References SortSupportData::abbrev_converter, consider_abort_common(), SortTuple::datum1, ExecCopySlotMinimalTuple(), GetMemoryChunkSpace(), heap_getattr, i, SortTuple::isnull1, MemoryContextSwitchTo(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, MINIMAL_TUPLE_OFFSET, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, HeapTupleData::t_data, HeapTupleData::t_len, MinimalTupleData::t_len, Tuplesortstate::tupDesc, SortTuple::tuple, Tuplesortstate::tuplecontext, and USEMEM.

Referenced by tuplesort_begin_heap().

3572 {
3573  /*
3574  * We expect the passed "tup" to be a TupleTableSlot, and form a
3575  * MinimalTuple using the exported interface for that.
3576  */
3577  TupleTableSlot *slot = (TupleTableSlot *) tup;
3578  Datum original;
3579  MinimalTuple tuple;
3580  HeapTupleData htup;
3581  MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);
3582 
3583  /* copy the tuple into sort storage */
3584  tuple = ExecCopySlotMinimalTuple(slot);
3585  stup->tuple = (void *) tuple;
3586  USEMEM(state, GetMemoryChunkSpace(tuple));
3587  /* set up first-column key value */
3588  htup.t_len = tuple->t_len + MINIMAL_TUPLE_OFFSET;
3589  htup.t_data = (HeapTupleHeader) ((char *) tuple - MINIMAL_TUPLE_OFFSET);
3590  original = heap_getattr(&htup,
3591  state->sortKeys[0].ssup_attno,
3592  state->tupDesc,
3593  &stup->isnull1);
3594 
3595  MemoryContextSwitchTo(oldcontext);
3596 
3597  if (!state->sortKeys->abbrev_converter || stup->isnull1)
3598  {
3599  /*
3600  * Store ordinary Datum representation, or NULL value. If there is a
3601  * converter it won't expect NULL values, and cost model is not
3602  * required to account for NULL, so in that case we avoid calling
3603  * converter and just set datum1 to zeroed representation (to be
3604  * consistent, and to support cheap inequality tests for NULL
3605  * abbreviated keys).
3606  */
3607  stup->datum1 = original;
3608  }
3609  else if (!consider_abort_common(state))
3610  {
3611  /* Store abbreviated key representation */
3612  stup->datum1 = state->sortKeys->abbrev_converter(original,
3613  state->sortKeys);
3614  }
3615  else
3616  {
3617  /* Abort abbreviation */
3618  int i;
3619 
3620  stup->datum1 = original;
3621 
3622  /*
3623  * Set state to be consistent with never trying abbreviation.
3624  *
3625  * Alter datum1 representation in already-copied tuples, so as to
3626  * ensure a consistent representation (current tuple was just
3627  * handled). It does not matter if some dumped tuples are already
3628  * sorted on tape, since serialized tuples lack abbreviated keys
3629  * (TSS_BUILDRUNS state prevents control reaching here in any case).
3630  */
3631  for (i = 0; i < state->memtupcount; i++)
3632  {
3633  SortTuple *mtup = &state->memtuples[i];
3634 
3635  htup.t_len = ((MinimalTuple) mtup->tuple)->t_len +
3637  htup.t_data = (HeapTupleHeader) ((char *) mtup->tuple -
3639 
3640  mtup->datum1 = heap_getattr(&htup,
3641  state->sortKeys[0].ssup_attno,
3642  state->tupDesc,
3643  &mtup->isnull1);
3644  }
3645  }
3646 }
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
SortSupport sortKeys
Definition: tuplesort.c:414
MinimalTuple ExecCopySlotMinimalTuple(TupleTableSlot *slot)
Definition: execTuples.c:613
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
Datum datum1
Definition: tuplesort.c:172
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
bool isnull1
Definition: tuplesort.c:173
HeapTupleHeader t_data
Definition: htup.h:68
void * tuple
Definition: tuplesort.c:171
static bool consider_abort_common(Tuplesortstate *state)
Definition: tuplesort.c:1746
uint32 t_len
Definition: htup.h:64
MinimalTupleData * MinimalTuple
Definition: htup.h:27
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:786
uintptr_t Datum
Definition: postgres.h:365
AttrNumber ssup_attno
Definition: sortsupport.h:81
#define MINIMAL_TUPLE_OFFSET
Definition: htup_details.h:637
MemoryContext tuplecontext
Definition: tuplesort.c:247
#define USEMEM(state, amt)
Definition: tuplesort.c:530
int i
TupleDesc tupDesc
Definition: tuplesort.c:413
SortTuple * memtuples
Definition: tuplesort.c:295

◆ copytup_index()

static void copytup_index ( Tuplesortstate state,
SortTuple stup,
void *  tup 
)
static

Definition at line 4135 of file tuplesort.c.

References SortSupportData::abbrev_converter, consider_abort_common(), SortTuple::datum1, GetMemoryChunkSpace(), i, index_getattr, Tuplesortstate::indexRel, IndexTupleSize, SortTuple::isnull1, MemoryContextAlloc(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, RelationGetDescr, Tuplesortstate::sortKeys, SortTuple::tuple, Tuplesortstate::tuplecontext, and USEMEM.

Referenced by tuplesort_begin_index_btree(), and tuplesort_begin_index_hash().

4136 {
4137  IndexTuple tuple = (IndexTuple) tup;
4138  unsigned int tuplen = IndexTupleSize(tuple);
4139  IndexTuple newtuple;
4140  Datum original;
4141 
4142  /* copy the tuple into sort storage */
4143  newtuple = (IndexTuple) MemoryContextAlloc(state->tuplecontext, tuplen);
4144  memcpy(newtuple, tuple, tuplen);
4145  USEMEM(state, GetMemoryChunkSpace(newtuple));
4146  stup->tuple = (void *) newtuple;
4147  /* set up first-column key value */
4148  original = index_getattr(newtuple,
4149  1,
4150  RelationGetDescr(state->indexRel),
4151  &stup->isnull1);
4152 
4153  if (!state->sortKeys->abbrev_converter || stup->isnull1)
4154  {
4155  /*
4156  * Store ordinary Datum representation, or NULL value. If there is a
4157  * converter it won't expect NULL values, and cost model is not
4158  * required to account for NULL, so in that case we avoid calling
4159  * converter and just set datum1 to zeroed representation (to be
4160  * consistent, and to support cheap inequality tests for NULL
4161  * abbreviated keys).
4162  */
4163  stup->datum1 = original;
4164  }
4165  else if (!consider_abort_common(state))
4166  {
4167  /* Store abbreviated key representation */
4168  stup->datum1 = state->sortKeys->abbrev_converter(original,
4169  state->sortKeys);
4170  }
4171  else
4172  {
4173  /* Abort abbreviation */
4174  int i;
4175 
4176  stup->datum1 = original;
4177 
4178  /*
4179  * Set state to be consistent with never trying abbreviation.
4180  *
4181  * Alter datum1 representation in already-copied tuples, so as to
4182  * ensure a consistent representation (current tuple was just
4183  * handled). It does not matter if some dumped tuples are already
4184  * sorted on tape, since serialized tuples lack abbreviated keys
4185  * (TSS_BUILDRUNS state prevents control reaching here in any case).
4186  */
4187  for (i = 0; i < state->memtupcount; i++)
4188  {
4189  SortTuple *mtup = &state->memtuples[i];
4190 
4191  tuple = (IndexTuple) mtup->tuple;
4192  mtup->datum1 = index_getattr(tuple,
4193  1,
4194  RelationGetDescr(state->indexRel),
4195  &mtup->isnull1);
4196  }
4197  }
4198 }
#define RelationGetDescr(relation)
Definition: rel.h:433
SortSupport sortKeys
Definition: tuplesort.c:414
Datum datum1
Definition: tuplesort.c:172
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
bool isnull1
Definition: tuplesort.c:173
void * tuple
Definition: tuplesort.c:171
static bool consider_abort_common(Tuplesortstate *state)
Definition: tuplesort.c:1746
IndexTupleData * IndexTuple
Definition: itup.h:53
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
Relation indexRel
Definition: tuplesort.c:443
uintptr_t Datum
Definition: postgres.h:365
#define index_getattr(tup, attnum, tupleDesc, isnull)
Definition: itup.h:100
MemoryContext tuplecontext
Definition: tuplesort.c:247
#define USEMEM(state, amt)
Definition: tuplesort.c:530
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:771
int i
#define IndexTupleSize(itup)
Definition: itup.h:71
SortTuple * memtuples
Definition: tuplesort.c:295

◆ dumptuples()

static void dumptuples ( Tuplesortstate state,
bool  alltuples 
)
static

Definition at line 2925 of file tuplesort.c.

References Assert, Tuplesortstate::currentRun, Tuplesortstate::destTape, elog, ereport, errcode(), errmsg(), ERROR, i, LACKMEM, LOG, markrunend(), MemoryContextReset(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, pg_rusage_show(), Tuplesortstate::ru_start, selectnewtape(), Tuplesortstate::status, Tuplesortstate::tp_dummy, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, trace_sort, TSS_BUILDRUNS, Tuplesortstate::tuplecontext, tuplesort_sort_memtuples(), Tuplesortstate::worker, and WRITETUP.

Referenced by puttuple_common(), and tuplesort_performsort().

2926 {
2927  int memtupwrite;
2928  int i;
2929 
2930  /*
2931  * Nothing to do if we still fit in available memory and have array slots,
2932  * unless this is the final call during initial run generation.
2933  */
2934  if (state->memtupcount < state->memtupsize && !LACKMEM(state) &&
2935  !alltuples)
2936  return;
2937 
2938  /*
2939  * Final call might require no sorting, in rare cases where we just so
2940  * happen to have previously LACKMEM()'d at the point where exactly all
2941  * remaining tuples are loaded into memory, just before input was
2942  * exhausted.
2943  *
2944  * In general, short final runs are quite possible. Rather than allowing
2945  * a special case where there was a superfluous selectnewtape() call (i.e.
2946  * a call with no subsequent run actually written to destTape), we prefer
2947  * to write out a 0 tuple run.
2948  *
2949  * mergereadnext() is prepared for 0 tuple runs, and will reliably mark
2950  * the tape inactive for the merge when called from beginmerge(). This
2951  * case is therefore similar to the case where mergeonerun() finds a dummy
2952  * run for the tape, and so doesn't need to merge a run from the tape (or
2953  * conceptually "merges" the dummy run, if you prefer). According to
2954  * Knuth, Algorithm D "isn't strictly optimal" in its method of
2955  * distribution and dummy run assignment; this edge case seems very
2956  * unlikely to make that appreciably worse.
2957  */
2958  Assert(state->status == TSS_BUILDRUNS);
2959 
2960  /*
2961  * It seems unlikely that this limit will ever be exceeded, but take no
2962  * chances
2963  */
2964  if (state->currentRun == INT_MAX)
2965  ereport(ERROR,
2966  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
2967  errmsg("cannot have more than %d runs for an external sort",
2968  INT_MAX)));
2969 
2970  state->currentRun++;
2971 
2972 #ifdef TRACE_SORT
2973  if (trace_sort)
2974  elog(LOG, "%d starting quicksort of run %d: %s",
2975  state->worker, state->currentRun,
2976  pg_rusage_show(&state->ru_start));
2977 #endif
2978 
2979  /*
2980  * Sort all tuples accumulated within the allowed amount of memory for
2981  * this run using quicksort
2982  */
2983  tuplesort_sort_memtuples(state);
2984 
2985 #ifdef TRACE_SORT
2986  if (trace_sort)
2987  elog(LOG, "%d finished quicksort of run %d: %s",
2988  state->worker, state->currentRun,
2989  pg_rusage_show(&state->ru_start));
2990 #endif
2991 
2992  memtupwrite = state->memtupcount;
2993  for (i = 0; i < memtupwrite; i++)
2994  {
2995  WRITETUP(state, state->tp_tapenum[state->destTape],
2996  &state->memtuples[i]);
2997  state->memtupcount--;
2998  }
2999 
3000  /*
3001  * Reset tuple memory. We've freed all of the tuples that we previously
3002  * allocated. It's important to avoid fragmentation when there is a stark
3003  * change in the sizes of incoming tuples. Fragmentation due to
3004  * AllocSetFree's bucketing by size class might be particularly bad if
3005  * this step wasn't taken.
3006  */
3008 
3009  markrunend(state, state->tp_tapenum[state->destTape]);
3010  state->tp_runs[state->destTape]++;
3011  state->tp_dummy[state->destTape]--; /* per Alg D step D2 */
3012 
3013 #ifdef TRACE_SORT
3014  if (trace_sort)
3015  elog(LOG, "%d finished writing run %d to tape %d: %s",
3016  state->worker, state->currentRun, state->destTape,
3017  pg_rusage_show(&state->ru_start));
3018 #endif
3019 
3020  if (!alltuples)
3021  selectnewtape(state);
3022 }
TupSortStatus status
Definition: tuplesort.c:234
PGRUsage ru_start
Definition: tuplesort.c:465
int errcode(int sqlerrcode)
Definition: elog.c:575
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:136
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
static void markrunend(Tuplesortstate *state, int tapenum)
Definition: tuplesort.c:3467
#define ERROR
Definition: elog.h:43
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define ereport(elevel, rest)
Definition: elog.h:122
static void selectnewtape(Tuplesortstate *state)
Definition: tuplesort.c:2493
#define WRITETUP(state, tape, stup)
Definition: tuplesort.c:527
#define Assert(condition)
Definition: c.h:699
static void tuplesort_sort_memtuples(Tuplesortstate *state)
Definition: tuplesort.c:3309
int * tp_dummy
Definition: tuplesort.c:371
MemoryContext tuplecontext
Definition: tuplesort.c:247
int errmsg(const char *fmt,...)
Definition: elog.c:797
int * tp_tapenum
Definition: tuplesort.c:372
int i
#define elog
Definition: elog.h:219
#define LACKMEM(state)
Definition: tuplesort.c:529
SortTuple * memtuples
Definition: tuplesort.c:295

◆ free_sort_tuple()

static void free_sort_tuple ( Tuplesortstate state,
SortTuple stup 
)
static

Definition at line 4580 of file tuplesort.c.

References FREEMEM, GetMemoryChunkSpace(), pfree(), and SortTuple::tuple.

Referenced by make_bounded_heap(), and puttuple_common().

4581 {
4582  FREEMEM(state, GetMemoryChunkSpace(stup->tuple));
4583  pfree(stup->tuple);
4584 }
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
void * tuple
Definition: tuplesort.c:171
void pfree(void *pointer)
Definition: mcxt.c:1031
#define FREEMEM(state, amt)
Definition: tuplesort.c:531

◆ getlen()

static unsigned int getlen ( Tuplesortstate state,
int  tapenum,
bool  eofOK 
)
static

Definition at line 3454 of file tuplesort.c.

References elog, ERROR, LogicalTapeRead(), and Tuplesortstate::tapeset.

Referenced by mergereadnext(), and tuplesort_gettuple_common().

3455 {
3456  unsigned int len;
3457 
3458  if (LogicalTapeRead(state->tapeset, tapenum,
3459  &len, sizeof(len)) != sizeof(len))
3460  elog(ERROR, "unexpected end of tape");
3461  if (len == 0 && !eofOK)
3462  elog(ERROR, "unexpected end of data");
3463  return len;
3464 }
size_t LogicalTapeRead(LogicalTapeSet *lts, int tapenum, void *ptr, size_t size)
Definition: logtape.c:821
#define ERROR
Definition: elog.h:43
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
#define elog
Definition: elog.h:219

◆ grow_memtuples()

static bool grow_memtuples ( Tuplesortstate state)
static

Definition at line 1315 of file tuplesort.c.

References Tuplesortstate::allowedMem, Tuplesortstate::availMem, elog, ERROR, FREEMEM, GetMemoryChunkSpace(), Tuplesortstate::growmemtuples, LACKMEM, MaxAllocHugeSize, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, repalloc_huge(), and USEMEM.

Referenced by puttuple_common().

1316 {
1317  int newmemtupsize;
1318  int memtupsize = state->memtupsize;
1319  int64 memNowUsed = state->allowedMem - state->availMem;
1320 
1321  /* Forget it if we've already maxed out memtuples, per comment above */
1322  if (!state->growmemtuples)
1323  return false;
1324 
1325  /* Select new value of memtupsize */
1326  if (memNowUsed <= state->availMem)
1327  {
1328  /*
1329  * We've used no more than half of allowedMem; double our usage,
1330  * clamping at INT_MAX tuples.
1331  */
1332  if (memtupsize < INT_MAX / 2)
1333  newmemtupsize = memtupsize * 2;
1334  else
1335  {
1336  newmemtupsize = INT_MAX;
1337  state->growmemtuples = false;
1338  }
1339  }
1340  else
1341  {
1342  /*
1343  * This will be the last increment of memtupsize. Abandon doubling
1344  * strategy and instead increase as much as we safely can.
1345  *
1346  * To stay within allowedMem, we can't increase memtupsize by more
1347  * than availMem / sizeof(SortTuple) elements. In practice, we want
1348  * to increase it by considerably less, because we need to leave some
1349  * space for the tuples to which the new array slots will refer. We
1350  * assume the new tuples will be about the same size as the tuples
1351  * we've already seen, and thus we can extrapolate from the space
1352  * consumption so far to estimate an appropriate new size for the
1353  * memtuples array. The optimal value might be higher or lower than
1354  * this estimate, but it's hard to know that in advance. We again
1355  * clamp at INT_MAX tuples.
1356  *
1357  * This calculation is safe against enlarging the array so much that
1358  * LACKMEM becomes true, because the memory currently used includes
1359  * the present array; thus, there would be enough allowedMem for the
1360  * new array elements even if no other memory were currently used.
1361  *
1362  * We do the arithmetic in float8, because otherwise the product of
1363  * memtupsize and allowedMem could overflow. Any inaccuracy in the
1364  * result should be insignificant; but even if we computed a
1365  * completely insane result, the checks below will prevent anything
1366  * really bad from happening.
1367  */
1368  double grow_ratio;
1369 
1370  grow_ratio = (double) state->allowedMem / (double) memNowUsed;
1371  if (memtupsize * grow_ratio < INT_MAX)
1372  newmemtupsize = (int) (memtupsize * grow_ratio);
1373  else
1374  newmemtupsize = INT_MAX;
1375 
1376  /* We won't make any further enlargement attempts */
1377  state->growmemtuples = false;
1378  }
1379 
1380  /* Must enlarge array by at least one element, else report failure */
1381  if (newmemtupsize <= memtupsize)
1382  goto noalloc;
1383 
1384  /*
1385  * On a 32-bit machine, allowedMem could exceed MaxAllocHugeSize. Clamp
1386  * to ensure our request won't be rejected. Note that we can easily
1387  * exhaust address space before facing this outcome. (This is presently
1388  * impossible due to guc.c's MAX_KILOBYTES limitation on work_mem, but
1389  * don't rely on that at this distance.)
1390  */
1391  if ((Size) newmemtupsize >= MaxAllocHugeSize / sizeof(SortTuple))
1392  {
1393  newmemtupsize = (int) (MaxAllocHugeSize / sizeof(SortTuple));
1394  state->growmemtuples = false; /* can't grow any more */
1395  }
1396 
1397  /*
1398  * We need to be sure that we do not cause LACKMEM to become true, else
1399  * the space management algorithm will go nuts. The code above should
1400  * never generate a dangerous request, but to be safe, check explicitly
1401  * that the array growth fits within availMem. (We could still cause
1402  * LACKMEM if the memory chunk overhead associated with the memtuples
1403  * array were to increase. That shouldn't happen because we chose the
1404  * initial array size large enough to ensure that palloc will be treating
1405  * both old and new arrays as separate chunks. But we'll check LACKMEM
1406  * explicitly below just in case.)
1407  */
1408  if (state->availMem < (int64) ((newmemtupsize - memtupsize) * sizeof(SortTuple)))
1409  goto noalloc;
1410 
1411  /* OK, do it */
1412  FREEMEM(state, GetMemoryChunkSpace(state->memtuples));
1413  state->memtupsize = newmemtupsize;
1414  state->memtuples = (SortTuple *)
1415  repalloc_huge(state->memtuples,
1416  state->memtupsize * sizeof(SortTuple));
1417  USEMEM(state, GetMemoryChunkSpace(state->memtuples));
1418  if (LACKMEM(state))
1419  elog(ERROR, "unexpected out-of-memory situation in tuplesort");
1420  return true;
1421 
1422 noalloc:
1423  /* If for any reason we didn't realloc, shut off future attempts */
1424  state->growmemtuples = false;
1425  return false;
1426 }
int64 availMem
Definition: tuplesort.c:242
bool growmemtuples
Definition: tuplesort.c:298
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
#define MaxAllocHugeSize
Definition: memutils.h:44
#define ERROR
Definition: elog.h:43
#define FREEMEM(state, amt)
Definition: tuplesort.c:531
int64 allowedMem
Definition: tuplesort.c:243
size_t Size
Definition: c.h:433
void * repalloc_huge(void *pointer, Size size)
Definition: mcxt.c:1114
#define USEMEM(state, amt)
Definition: tuplesort.c:530
#define elog
Definition: elog.h:219
#define LACKMEM(state)
Definition: tuplesort.c:529
SortTuple * memtuples
Definition: tuplesort.c:295

◆ init_slab_allocator()

static void init_slab_allocator ( Tuplesortstate state,
int  numSlots 
)
static

Definition at line 2525 of file tuplesort.c.

References i, palloc(), SLAB_SLOT_SIZE, Tuplesortstate::slabAllocatorUsed, Tuplesortstate::slabFreeHead, Tuplesortstate::slabMemoryBegin, Tuplesortstate::slabMemoryEnd, and USEMEM.

Referenced by mergeruns().

2526 {
2527  if (numSlots > 0)
2528  {
2529  char *p;
2530  int i;
2531 
2532  state->slabMemoryBegin = palloc(numSlots * SLAB_SLOT_SIZE);
2533  state->slabMemoryEnd = state->slabMemoryBegin +
2534  numSlots * SLAB_SLOT_SIZE;
2535  state->slabFreeHead = (SlabSlot *) state->slabMemoryBegin;
2536  USEMEM(state, numSlots * SLAB_SLOT_SIZE);
2537 
2538  p = state->slabMemoryBegin;
2539  for (i = 0; i < numSlots - 1; i++)
2540  {
2541  ((SlabSlot *) p)->nextfree = (SlabSlot *) (p + SLAB_SLOT_SIZE);
2542  p += SLAB_SLOT_SIZE;
2543  }
2544  ((SlabSlot *) p)->nextfree = NULL;
2545  }
2546  else
2547  {
2548  state->slabMemoryBegin = state->slabMemoryEnd = NULL;
2549  state->slabFreeHead = NULL;
2550  }
2551  state->slabAllocatorUsed = true;
2552 }
char * slabMemoryEnd
Definition: tuplesort.c:330
#define SLAB_SLOT_SIZE
Definition: tuplesort.c:188
char * slabMemoryBegin
Definition: tuplesort.c:329
bool slabAllocatorUsed
Definition: tuplesort.c:327
void * palloc(Size size)
Definition: mcxt.c:924
#define USEMEM(state, amt)
Definition: tuplesort.c:530
int i
SlabSlot * slabFreeHead
Definition: tuplesort.c:331

◆ inittapes()

static void inittapes ( Tuplesortstate state,
bool  mergeruns 
)
static

Definition at line 2392 of file tuplesort.c.

References Tuplesortstate::allowedMem, Assert, Tuplesortstate::currentRun, Tuplesortstate::destTape, elog, Sharedsort::fileset, inittapestate(), LEADER, Tuplesortstate::Level, LOG, LogicalTapeSetCreate(), MINORDER, pg_rusage_show(), Tuplesortstate::ru_start, Tuplesortstate::shared, Tuplesortstate::status, Tuplesortstate::tapeRange, Tuplesortstate::tapeset, Tuplesortstate::tp_dummy, Tuplesortstate::tp_fib, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, trace_sort, TSS_BUILDRUNS, tuplesort_merge_order(), Tuplesortstate::worker, and WORKER.

Referenced by puttuple_common(), and tuplesort_performsort().

2393 {
2394  int maxTapes,
2395  j;
2396 
2397  Assert(!LEADER(state));
2398 
2399  if (mergeruns)
2400  {
2401  /* Compute number of tapes to use: merge order plus 1 */
2402  maxTapes = tuplesort_merge_order(state->allowedMem) + 1;
2403  }
2404  else
2405  {
2406  /* Workers can sometimes produce single run, output without merge */
2407  Assert(WORKER(state));
2408  maxTapes = MINORDER + 1;
2409  }
2410 
2411 #ifdef TRACE_SORT
2412  if (trace_sort)
2413  elog(LOG, "%d switching to external sort with %d tapes: %s",
2414  state->worker, maxTapes, pg_rusage_show(&state->ru_start));
2415 #endif
2416 
2417  /* Create the tape set and allocate the per-tape data arrays */
2418  inittapestate(state, maxTapes);
2419  state->tapeset =
2420  LogicalTapeSetCreate(maxTapes, NULL,
2421  state->shared ? &state->shared->fileset : NULL,
2422  state->worker);
2423 
2424  state->currentRun = 0;
2425 
2426  /*
2427  * Initialize variables of Algorithm D (step D1).
2428  */
2429  for (j = 0; j < maxTapes; j++)
2430  {
2431  state->tp_fib[j] = 1;
2432  state->tp_runs[j] = 0;
2433  state->tp_dummy[j] = 1;
2434  state->tp_tapenum[j] = j;
2435  }
2436  state->tp_fib[state->tapeRange] = 0;
2437  state->tp_dummy[state->tapeRange] = 0;
2438 
2439  state->Level = 1;
2440  state->destTape = 0;
2441 
2442  state->status = TSS_BUILDRUNS;
2443 }
TupSortStatus status
Definition: tuplesort.c:234
PGRUsage ru_start
Definition: tuplesort.c:465
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
static void mergeruns(Tuplesortstate *state)
Definition: tuplesort.c:2561
LogicalTapeSet * LogicalTapeSetCreate(int ntapes, TapeShare *shared, SharedFileSet *fileset, int worker)
Definition: logtape.c:509
Sharedsort * shared
Definition: tuplesort.c:405
#define MINORDER
Definition: tuplesort.c:221
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define LEADER(state)
Definition: tuplesort.c:534
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
#define WORKER(state)
Definition: tuplesort.c:533
int64 allowedMem
Definition: tuplesort.c:243
#define Assert(condition)
Definition: c.h:699
int tuplesort_merge_order(int64 allowedMem)
Definition: tuplesort.c:2352
int * tp_dummy
Definition: tuplesort.c:371
int * tp_tapenum
Definition: tuplesort.c:372
#define elog
Definition: elog.h:219
static void inittapestate(Tuplesortstate *state, int maxTapes)
Definition: tuplesort.c:2449
SharedFileSet fileset
Definition: tuplesort.c:490

◆ inittapestate()

static void inittapestate ( Tuplesortstate state,
int  maxTapes 
)
static

Definition at line 2449 of file tuplesort.c.

References Tuplesortstate::allowedMem, GetMemoryChunkSpace(), Tuplesortstate::maxTapes, Tuplesortstate::memtuples, Tuplesortstate::mergeactive, palloc0(), PrepareTempTablespaces(), TAPE_BUFFER_OVERHEAD, Tuplesortstate::tapeRange, Tuplesortstate::tp_dummy, Tuplesortstate::tp_fib, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, and USEMEM.

Referenced by inittapes(), and leader_takeover_tapes().

2450 {
2451  int64 tapeSpace;
2452 
2453  /*
2454  * Decrease availMem to reflect the space needed for tape buffers; but
2455  * don't decrease it to the point that we have no room for tuples. (That
2456  * case is only likely to occur if sorting pass-by-value Datums; in all
2457  * other scenarios the memtuples[] array is unlikely to occupy more than
2458  * half of allowedMem. In the pass-by-value case it's not important to
2459  * account for tuple space, so we don't care if LACKMEM becomes
2460  * inaccurate.)
2461  */
2462  tapeSpace = (int64) maxTapes * TAPE_BUFFER_OVERHEAD;
2463 
2464  if (tapeSpace + GetMemoryChunkSpace(state->memtuples) < state->allowedMem)
2465  USEMEM(state, tapeSpace);
2466 
2467  /*
2468  * Make sure that the temp file(s) underlying the tape set are created in
2469  * suitable temp tablespaces. For parallel sorts, this should have been
2470  * called already, but it doesn't matter if it is called a second time.
2471  */
2473 
2474  state->mergeactive = (bool *) palloc0(maxTapes * sizeof(bool));
2475  state->tp_fib = (int *) palloc0(maxTapes * sizeof(int));
2476  state->tp_runs = (int *) palloc0(maxTapes * sizeof(int));
2477  state->tp_dummy = (int *) palloc0(maxTapes * sizeof(int));
2478  state->tp_tapenum = (int *) palloc0(maxTapes * sizeof(int));
2479 
2480  /* Record # of tapes allocated (for duration of sort) */
2481  state->maxTapes = maxTapes;
2482  /* Record maximum # of tapes usable as inputs when merging */
2483  state->tapeRange = maxTapes - 1;
2484 }
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
#define TAPE_BUFFER_OVERHEAD
Definition: tuplesort.c:223
void PrepareTempTablespaces(void)
Definition: tablespace.c:1289
int64 allowedMem
Definition: tuplesort.c:243
void * palloc0(Size size)
Definition: mcxt.c:955
int * tp_dummy
Definition: tuplesort.c:371
int * tp_tapenum
Definition: tuplesort.c:372
#define USEMEM(state, amt)
Definition: tuplesort.c:530
bool * mergeactive
Definition: tuplesort.c:360
SortTuple * memtuples
Definition: tuplesort.c:295

◆ leader_takeover_tapes()

static void leader_takeover_tapes ( Tuplesortstate state)
static

Definition at line 4515 of file tuplesort.c.

References Assert, Tuplesortstate::currentRun, Tuplesortstate::destTape, elog, ERROR, Sharedsort::fileset, inittapestate(), LEADER, Tuplesortstate::Level, LogicalTapeSetCreate(), Tuplesortstate::maxTapes, Sharedsort::mutex, Tuplesortstate::nParticipants, Tuplesortstate::shared, SpinLockAcquire, SpinLockRelease, Tuplesortstate::status, Tuplesortstate::tapeRange, Sharedsort::tapes, Tuplesortstate::tapeset, Tuplesortstate::tp_dummy, Tuplesortstate::tp_fib, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, TSS_BUILDRUNS, Tuplesortstate::worker, and Sharedsort::workersFinished.

Referenced by tuplesort_performsort().

4516 {
4517  Sharedsort *shared = state->shared;
4518  int nParticipants = state->nParticipants;
4519  int workersFinished;
4520  int j;
4521 
4522  Assert(LEADER(state));
4523  Assert(nParticipants >= 1);
4524 
4525  SpinLockAcquire(&shared->mutex);
4526  workersFinished = shared->workersFinished;
4527  SpinLockRelease(&shared->mutex);
4528 
4529  if (nParticipants != workersFinished)
4530  elog(ERROR, "cannot take over tapes before all workers finish");
4531 
4532  /*
4533  * Create the tapeset from worker tapes, including a leader-owned tape at
4534  * the end. Parallel workers are far more expensive than logical tapes,
4535  * so the number of tapes allocated here should never be excessive.
4536  *
4537  * We still have a leader tape, though it's not possible to write to it
4538  * due to restrictions in the shared fileset infrastructure used by
4539  * logtape.c. It will never be written to in practice because
4540  * randomAccess is disallowed for parallel sorts.
4541  */
4542  inittapestate(state, nParticipants + 1);
4543  state->tapeset = LogicalTapeSetCreate(nParticipants + 1, shared->tapes,
4544  &shared->fileset, state->worker);
4545 
4546  /* mergeruns() relies on currentRun for # of runs (in one-pass cases) */
4547  state->currentRun = nParticipants;
4548 
4549  /*
4550  * Initialize variables of Algorithm D to be consistent with runs from
4551  * workers having been generated in the leader.
4552  *
4553  * There will always be exactly 1 run per worker, and exactly one input
4554  * tape per run, because workers always output exactly 1 run, even when
4555  * there were no input tuples for workers to sort.
4556  */
4557  for (j = 0; j < state->maxTapes; j++)
4558  {
4559  /* One real run; no dummy runs for worker tapes */
4560  state->tp_fib[j] = 1;
4561  state->tp_runs[j] = 1;
4562  state->tp_dummy[j] = 0;
4563  state->tp_tapenum[j] = j;
4564  }
4565  /* Leader tape gets one dummy run, and no real runs */
4566  state->tp_fib[state->tapeRange] = 0;
4567  state->tp_runs[state->tapeRange] = 0;
4568  state->tp_dummy[state->tapeRange] = 1;
4569 
4570  state->Level = 1;
4571  state->destTape = 0;
4572 
4573  state->status = TSS_BUILDRUNS;
4574 }
TupSortStatus status
Definition: tuplesort.c:234
slock_t mutex
Definition: tuplesort.c:476
#define SpinLockAcquire(lock)
Definition: spin.h:62
#define ERROR
Definition: elog.h:43
LogicalTapeSet * LogicalTapeSetCreate(int ntapes, TapeShare *shared, SharedFileSet *fileset, int worker)
Definition: logtape.c:509
Sharedsort * shared
Definition: tuplesort.c:405
#define LEADER(state)
Definition: tuplesort.c:534
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
int workersFinished
Definition: tuplesort.c:487
#define SpinLockRelease(lock)
Definition: spin.h:64
#define Assert(condition)
Definition: c.h:699
int * tp_dummy
Definition: tuplesort.c:371
int * tp_tapenum
Definition: tuplesort.c:372
TapeShare tapes[FLEXIBLE_ARRAY_MEMBER]
Definition: tuplesort.c:499
#define elog
Definition: elog.h:219
static void inittapestate(Tuplesortstate *state, int maxTapes)
Definition: tuplesort.c:2449
SharedFileSet fileset
Definition: tuplesort.c:490

◆ make_bounded_heap()

static void make_bounded_heap ( Tuplesortstate state)
static

Definition at line 3220 of file tuplesort.c.

References Assert, Tuplesortstate::bound, Tuplesortstate::bounded, CHECK_FOR_INTERRUPTS, COMPARETUP, free_sort_tuple(), i, Tuplesortstate::memtupcount, Tuplesortstate::memtuples, reversedirection(), SERIAL, Tuplesortstate::status, TSS_BOUNDED, TSS_INITIAL, tuplesort_heap_insert(), and tuplesort_heap_replace_top().

Referenced by puttuple_common().

3221 {
3222  int tupcount = state->memtupcount;
3223  int i;
3224 
3225  Assert(state->status == TSS_INITIAL);
3226  Assert(state->bounded);
3227  Assert(tupcount >= state->bound);
3228  Assert(SERIAL(state));
3229 
3230  /* Reverse sort direction so largest entry will be at root */
3231  reversedirection(state);
3232 
3233  state->memtupcount = 0; /* make the heap empty */
3234  for (i = 0; i < tupcount; i++)
3235  {
3236  if (state->memtupcount < state->bound)
3237  {
3238  /* Insert next tuple into heap */
3239  /* Must copy source tuple to avoid possible overwrite */
3240  SortTuple stup = state->memtuples[i];
3241 
3242  tuplesort_heap_insert(state, &stup);
3243  }
3244  else
3245  {
3246  /*
3247  * The heap is full. Replace the largest entry with the new
3248  * tuple, or just discard it, if it's larger than anything already
3249  * in the heap.
3250  */
3251  if (COMPARETUP(state, &state->memtuples[i], &state->memtuples[0]) <= 0)
3252  {
3253  free_sort_tuple(state, &state->memtuples[i]);
3255  }
3256  else
3257  tuplesort_heap_replace_top(state, &state->memtuples[i]);
3258  }
3259  }
3260 
3261  Assert(state->memtupcount == state->bound);
3262  state->status = TSS_BOUNDED;
3263 }
static void reversedirection(Tuplesortstate *state)
Definition: tuplesort.c:3436
TupSortStatus status
Definition: tuplesort.c:234
#define SERIAL(state)
Definition: tuplesort.c:532
static void free_sort_tuple(Tuplesortstate *state, SortTuple *stup)
Definition: tuplesort.c:4580
#define COMPARETUP(state, a, b)
Definition: tuplesort.c:525
static void tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3337
#define Assert(condition)
Definition: c.h:699
int i
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:98
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3396
SortTuple * memtuples
Definition: tuplesort.c:295

◆ markrunend()

static void markrunend ( Tuplesortstate state,
int  tapenum 
)
static

Definition at line 3467 of file tuplesort.c.

References LogicalTapeWrite(), and Tuplesortstate::tapeset.

Referenced by dumptuples(), and mergeonerun().

3468 {
3469  unsigned int len = 0;
3470 
3471  LogicalTapeWrite(state->tapeset, tapenum, (void *) &len, sizeof(len));
3472 }
void LogicalTapeWrite(LogicalTapeSet *lts, int tapenum, void *ptr, size_t size)
Definition: logtape.c:620
LogicalTapeSet * tapeset
Definition: tuplesort.c:248

◆ mergeonerun()

static void mergeonerun ( Tuplesortstate state)
static

Definition at line 2788 of file tuplesort.c.

References Tuplesortstate::activeTapes, beginmerge(), elog, LOG, markrunend(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, mergereadnext(), pg_rusage_show(), RELEASE_SLAB_SLOT, Tuplesortstate::ru_start, Tuplesortstate::tapeRange, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, trace_sort, SortTuple::tupindex, SortTuple::tuple, tuplesort_heap_delete_top(), tuplesort_heap_replace_top(), Tuplesortstate::worker, and WRITETUP.

Referenced by mergeruns().

2789 {
2790  int destTape = state->tp_tapenum[state->tapeRange];
2791  int srcTape;
2792 
2793  /*
2794  * Start the merge by loading one tuple from each active source tape into
2795  * the heap. We can also decrease the input run/dummy run counts.
2796  */
2797  beginmerge(state);
2798 
2799  /*
2800  * Execute merge by repeatedly extracting lowest tuple in heap, writing it
2801  * out, and replacing it with next tuple from same tape (if there is
2802  * another one).
2803  */
2804  while (state->memtupcount > 0)
2805  {
2806  SortTuple stup;
2807 
2808  /* write the tuple to destTape */
2809  srcTape = state->memtuples[0].tupindex;
2810  WRITETUP(state, destTape, &state->memtuples[0]);
2811 
2812  /* recycle the slot of the tuple we just wrote out, for the next read */
2813  if (state->memtuples[0].tuple)
2814  RELEASE_SLAB_SLOT(state, state->memtuples[0].tuple);
2815 
2816  /*
2817  * pull next tuple from the tape, and replace the written-out tuple in
2818  * the heap with it.
2819  */
2820  if (mergereadnext(state, srcTape, &stup))
2821  {
2822  stup.tupindex = srcTape;
2823  tuplesort_heap_replace_top(state, &stup);
2824 
2825  }
2826  else
2828  }
2829 
2830  /*
2831  * When the heap empties, we're done. Write an end-of-run marker on the
2832  * output tape, and increment its count of real runs.
2833  */
2834  markrunend(state, destTape);
2835  state->tp_runs[state->tapeRange]++;
2836 
2837 #ifdef TRACE_SORT
2838  if (trace_sort)
2839  elog(LOG, "%d finished %d-way merge step: %s", state->worker,
2840  state->activeTapes, pg_rusage_show(&state->ru_start));
2841 #endif
2842 }
PGRUsage ru_start
Definition: tuplesort.c:465
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
static void markrunend(Tuplesortstate *state, int tapenum)
Definition: tuplesort.c:3467
void * tuple
Definition: tuplesort.c:171
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define WRITETUP(state, tape, stup)
Definition: tuplesort.c:527
#define RELEASE_SLAB_SLOT(state, tuple)
Definition: tuplesort.c:513
static void tuplesort_heap_delete_top(Tuplesortstate *state)
Definition: tuplesort.c:3372
static bool mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup)
Definition: tuplesort.c:2900
int tupindex
Definition: tuplesort.c:174
int * tp_tapenum
Definition: tuplesort.c:372
#define elog
Definition: elog.h:219
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3396
static void beginmerge(Tuplesortstate *state)
Definition: tuplesort.c:2852
SortTuple * memtuples
Definition: tuplesort.c:295

◆ mergereadnext()

static bool mergereadnext ( Tuplesortstate state,
int  srcTape,
SortTuple stup 
)
static

Definition at line 2900 of file tuplesort.c.

References getlen(), Tuplesortstate::mergeactive, and READTUP.

Referenced by beginmerge(), mergeonerun(), and tuplesort_gettuple_common().

2901 {
2902  unsigned int tuplen;
2903 
2904  if (!state->mergeactive[srcTape])
2905  return false; /* tape's run is already exhausted */
2906 
2907  /* read next tuple, if any */
2908  if ((tuplen = getlen(state, srcTape, true)) == 0)
2909  {
2910  state->mergeactive[srcTape] = false;
2911  return false;
2912  }
2913  READTUP(state, stup, srcTape, tuplen);
2914 
2915  return true;
2916 }
static unsigned int getlen(Tuplesortstate *state, int tapenum, bool eofOK)
Definition: tuplesort.c:3454
#define READTUP(state, stup, tape, len)
Definition: tuplesort.c:528
bool * mergeactive
Definition: tuplesort.c:360

◆ mergeruns()

static void mergeruns ( Tuplesortstate state)
static

Definition at line 2561 of file tuplesort.c.

References SortSupportData::abbrev_abort, SortSupportData::abbrev_converter, SortSupportData::abbrev_full_comparator, Assert, Tuplesortstate::availMem, beginmerge(), SortSupportData::comparator, Tuplesortstate::currentRun, elog, FREEMEM, GetMemoryChunkSpace(), init_slab_allocator(), INT64_FORMAT, Tuplesortstate::Level, LOG, LogicalTapeFreeze(), LogicalTapeRewindForRead(), LogicalTapeRewindForWrite(), LogicalTapeSetForgetFreeSpace(), Max, Tuplesortstate::maxTapes, MemoryContextDelete(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, mergeonerun(), palloc(), pfree(), Tuplesortstate::randomAccess, Tuplesortstate::read_buffer_size, Tuplesortstate::result_tape, Tuplesortstate::sortKeys, Tuplesortstate::status, TAPE_BUFFER_OVERHEAD, Tuplesortstate::tapeRange, Tuplesortstate::tapeset, Tuplesortstate::tp_dummy, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, trace_sort, TSS_BUILDRUNS, TSS_FINALMERGE, TSS_SORTEDONTAPE, Tuplesortstate::tuplecontext, Tuplesortstate::tuples, USEMEM, Tuplesortstate::worker, WORKER, and worker_freeze_result_tape().

Referenced by tuplesort_performsort().

2562 {
2563  int tapenum,
2564  svTape,
2565  svRuns,
2566  svDummy;
2567  int numTapes;
2568  int numInputTapes;
2569 
2570  Assert(state->status == TSS_BUILDRUNS);
2571  Assert(state->memtupcount == 0);
2572 
2573  if (state->sortKeys != NULL && state->sortKeys->abbrev_converter != NULL)
2574  {
2575  /*
2576  * If there are multiple runs to be merged, when we go to read back
2577  * tuples from disk, abbreviated keys will not have been stored, and
2578  * we don't care to regenerate them. Disable abbreviation from this
2579  * point on.
2580  */
2581  state->sortKeys->abbrev_converter = NULL;
2583 
2584  /* Not strictly necessary, but be tidy */
2585  state->sortKeys->abbrev_abort = NULL;
2586  state->sortKeys->abbrev_full_comparator = NULL;
2587  }
2588 
2589  /*
2590  * Reset tuple memory. We've freed all the tuples that we previously
2591  * allocated. We will use the slab allocator from now on.
2592  */
2594  state->tuplecontext = NULL;
2595 
2596  /*
2597  * We no longer need a large memtuples array. (We will allocate a smaller
2598  * one for the heap later.)
2599  */
2600  FREEMEM(state, GetMemoryChunkSpace(state->memtuples));
2601  pfree(state->memtuples);
2602  state->memtuples = NULL;
2603 
2604  /*
2605  * If we had fewer runs than tapes, refund the memory that we imagined we
2606  * would need for the tape buffers of the unused tapes.
2607  *
2608  * numTapes and numInputTapes reflect the actual number of tapes we will
2609  * use. Note that the output tape's tape number is maxTapes - 1, so the
2610  * tape numbers of the used tapes are not consecutive, and you cannot just
2611  * loop from 0 to numTapes to visit all used tapes!
2612  */
2613  if (state->Level == 1)
2614  {
2615  numInputTapes = state->currentRun;
2616  numTapes = numInputTapes + 1;
2617  FREEMEM(state, (state->maxTapes - numTapes) * TAPE_BUFFER_OVERHEAD);
2618  }
2619  else
2620  {
2621  numInputTapes = state->tapeRange;
2622  numTapes = state->maxTapes;
2623  }
2624 
2625  /*
2626  * Initialize the slab allocator. We need one slab slot per input tape,
2627  * for the tuples in the heap, plus one to hold the tuple last returned
2628  * from tuplesort_gettuple. (If we're sorting pass-by-val Datums,
2629  * however, we don't need to do allocate anything.)
2630  *
2631  * From this point on, we no longer use the USEMEM()/LACKMEM() mechanism
2632  * to track memory usage of individual tuples.
2633  */
2634  if (state->tuples)
2635  init_slab_allocator(state, numInputTapes + 1);
2636  else
2637  init_slab_allocator(state, 0);
2638 
2639  /*
2640  * Allocate a new 'memtuples' array, for the heap. It will hold one tuple
2641  * from each input tape.
2642  */
2643  state->memtupsize = numInputTapes;
2644  state->memtuples = (SortTuple *) palloc(numInputTapes * sizeof(SortTuple));
2645  USEMEM(state, GetMemoryChunkSpace(state->memtuples));
2646 
2647  /*
2648  * Use all the remaining memory we have available for read buffers among
2649  * the input tapes.
2650  *
2651  * We don't try to "rebalance" the memory among tapes, when we start a new
2652  * merge phase, even if some tapes are inactive in the new phase. That
2653  * would be hard, because logtape.c doesn't know where one run ends and
2654  * another begins. When a new merge phase begins, and a tape doesn't
2655  * participate in it, its buffer nevertheless already contains tuples from
2656  * the next run on same tape, so we cannot release the buffer. That's OK
2657  * in practice, merge performance isn't that sensitive to the amount of
2658  * buffers used, and most merge phases use all or almost all tapes,
2659  * anyway.
2660  */
2661 #ifdef TRACE_SORT
2662  if (trace_sort)
2663  elog(LOG, "%d using " INT64_FORMAT " KB of memory for read buffers among %d input tapes",
2664  state->worker, state->availMem / 1024, numInputTapes);
2665 #endif
2666 
2667  state->read_buffer_size = Max(state->availMem / numInputTapes, 0);
2668  USEMEM(state, state->read_buffer_size * numInputTapes);
2669 
2670  /* End of step D2: rewind all output tapes to prepare for merging */
2671  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2672  LogicalTapeRewindForRead(state->tapeset, tapenum, state->read_buffer_size);
2673 
2674  for (;;)
2675  {
2676  /*
2677  * At this point we know that tape[T] is empty. If there's just one
2678  * (real or dummy) run left on each input tape, then only one merge
2679  * pass remains. If we don't have to produce a materialized sorted
2680  * tape, we can stop at this point and do the final merge on-the-fly.
2681  */
2682  if (!state->randomAccess && !WORKER(state))
2683  {
2684  bool allOneRun = true;
2685 
2686  Assert(state->tp_runs[state->tapeRange] == 0);
2687  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2688  {
2689  if (state->tp_runs[tapenum] + state->tp_dummy[tapenum] != 1)
2690  {
2691  allOneRun = false;
2692  break;
2693  }
2694  }
2695  if (allOneRun)
2696  {
2697  /* Tell logtape.c we won't be writing anymore */
2699  /* Initialize for the final merge pass */
2700  beginmerge(state);
2701  state->status = TSS_FINALMERGE;
2702  return;
2703  }
2704  }
2705 
2706  /* Step D5: merge runs onto tape[T] until tape[P] is empty */
2707  while (state->tp_runs[state->tapeRange - 1] ||
2708  state->tp_dummy[state->tapeRange - 1])
2709  {
2710  bool allDummy = true;
2711 
2712  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2713  {
2714  if (state->tp_dummy[tapenum] == 0)
2715  {
2716  allDummy = false;
2717  break;
2718  }
2719  }
2720 
2721  if (allDummy)
2722  {
2723  state->tp_dummy[state->tapeRange]++;
2724  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2725  state->tp_dummy[tapenum]--;
2726  }
2727  else
2728  mergeonerun(state);
2729  }
2730 
2731  /* Step D6: decrease level */
2732  if (--state->Level == 0)
2733  break;
2734  /* rewind output tape T to use as new input */
2735  LogicalTapeRewindForRead(state->tapeset, state->tp_tapenum[state->tapeRange],
2736  state->read_buffer_size);
2737  /* rewind used-up input tape P, and prepare it for write pass */
2738  LogicalTapeRewindForWrite(state->tapeset, state->tp_tapenum[state->tapeRange - 1]);
2739  state->tp_runs[state->tapeRange - 1] = 0;
2740 
2741  /*
2742  * reassign tape units per step D6; note we no longer care about A[]
2743  */
2744  svTape = state->tp_tapenum[state->tapeRange];
2745  svDummy = state->tp_dummy[state->tapeRange];
2746  svRuns = state->tp_runs[state->tapeRange];
2747  for (tapenum = state->tapeRange; tapenum > 0; tapenum--)
2748  {
2749  state->tp_tapenum[tapenum] = state->tp_tapenum[tapenum - 1];
2750  state->tp_dummy[tapenum] = state->tp_dummy[tapenum - 1];
2751  state->tp_runs[tapenum] = state->tp_runs[tapenum - 1];
2752  }
2753  state->tp_tapenum[0] = svTape;
2754  state->tp_dummy[0] = svDummy;
2755  state->tp_runs[0] = svRuns;
2756  }
2757 
2758  /*
2759  * Done. Knuth says that the result is on TAPE[1], but since we exited
2760  * the loop without performing the last iteration of step D6, we have not
2761  * rearranged the tape unit assignment, and therefore the result is on
2762  * TAPE[T]. We need to do it this way so that we can freeze the final
2763  * output tape while rewinding it. The last iteration of step D6 would be
2764  * a waste of cycles anyway...
2765  */
2766  state->result_tape = state->tp_tapenum[state->tapeRange];
2767  if (!WORKER(state))
2768  LogicalTapeFreeze(state->tapeset, state->result_tape, NULL);
2769  else
2771  state->status = TSS_SORTEDONTAPE;
2772 
2773  /* Release the read buffers of all the other tapes, by rewinding them. */
2774  for (tapenum = 0; tapenum < state->maxTapes; tapenum++)
2775  {
2776  if (tapenum != state->result_tape)
2777  LogicalTapeRewindForWrite(state->tapeset, tapenum);
2778  }
2779 }
int64 availMem
Definition: tuplesort.c:242
size_t read_buffer_size
Definition: tuplesort.c:334
TupSortStatus status
Definition: tuplesort.c:234
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:211
static void mergeonerun(Tuplesortstate *state)
Definition: tuplesort.c:2788
static void worker_freeze_result_tape(Tuplesortstate *state)
Definition: tuplesort.c:4456
SortSupport sortKeys
Definition: tuplesort.c:414
bool randomAccess
Definition: tuplesort.c:236
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
void LogicalTapeRewindForWrite(LogicalTapeSet *lts, int tapenum)
Definition: logtape.c:795
static void init_slab_allocator(Tuplesortstate *state, int numSlots)
Definition: tuplesort.c:2525
#define TAPE_BUFFER_OVERHEAD
Definition: tuplesort.c:223
void pfree(void *pointer)
Definition: mcxt.c:1031
int(* comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:107
int(* abbrev_full_comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:192
#define FREEMEM(state, amt)
Definition: tuplesort.c:531
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
#define WORKER(state)
Definition: tuplesort.c:533
#define Max(x, y)
Definition: c.h:851
#define Assert(condition)
Definition: c.h:699
bool(* abbrev_abort)(int memtupcount, SortSupport ssup)
Definition: sortsupport.h:183
#define INT64_FORMAT
Definition: c.h:367
void LogicalTapeRewindForRead(LogicalTapeSet *lts, int tapenum, size_t buffer_size)
Definition: logtape.c:708
int * tp_dummy
Definition: tuplesort.c:371
void LogicalTapeFreeze(LogicalTapeSet *lts, int tapenum, TapeShare *share)
Definition: logtape.c:875
MemoryContext tuplecontext
Definition: tuplesort.c:247
void * palloc(Size size)
Definition: mcxt.c:924
int * tp_tapenum
Definition: tuplesort.c:372
#define USEMEM(state, amt)
Definition: tuplesort.c:530
#define elog
Definition: elog.h:219
void LogicalTapeSetForgetFreeSpace(LogicalTapeSet *lts)
Definition: logtape.c:609
static void beginmerge(Tuplesortstate *state)
Definition: tuplesort.c:2852
SortTuple * memtuples
Definition: tuplesort.c:295

◆ puttuple_common()

static void puttuple_common ( Tuplesortstate state,
SortTuple tuple 
)
static

Definition at line 1637 of file tuplesort.c.

References Assert, Tuplesortstate::bound, Tuplesortstate::bounded, CHECK_FOR_INTERRUPTS, COMPARETUP, dumptuples(), elog, ERROR, free_sort_tuple(), grow_memtuples(), inittapes(), LACKMEM, LEADER, LOG, make_bounded_heap(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, pg_rusage_show(), Tuplesortstate::ru_start, Tuplesortstate::status, trace_sort, TSS_BOUNDED, TSS_BUILDRUNS, TSS_INITIAL, and tuplesort_heap_replace_top().

Referenced by tuplesort_putdatum(), tuplesort_putheaptuple(), tuplesort_putindextuplevalues(), and tuplesort_puttupleslot().

1638 {
1639  Assert(!LEADER(state));
1640 
1641  switch (state->status)
1642  {
1643  case TSS_INITIAL:
1644 
1645  /*
1646  * Save the tuple into the unsorted array. First, grow the array
1647  * as needed. Note that we try to grow the array when there is
1648  * still one free slot remaining --- if we fail, there'll still be
1649  * room to store the incoming tuple, and then we'll switch to
1650  * tape-based operation.
1651  */
1652  if (state->memtupcount >= state->memtupsize - 1)
1653  {
1654  (void) grow_memtuples(state);
1655  Assert(state->memtupcount < state->memtupsize);
1656  }
1657  state->memtuples[state->memtupcount++] = *tuple;
1658 
1659  /*
1660  * Check if it's time to switch over to a bounded heapsort. We do
1661  * so if the input tuple count exceeds twice the desired tuple
1662  * count (this is a heuristic for where heapsort becomes cheaper
1663  * than a quicksort), or if we've just filled workMem and have
1664  * enough tuples to meet the bound.
1665  *
1666  * Note that once we enter TSS_BOUNDED state we will always try to
1667  * complete the sort that way. In the worst case, if later input
1668  * tuples are larger than earlier ones, this might cause us to
1669  * exceed workMem significantly.
1670  */
1671  if (state->bounded &&
1672  (state->memtupcount > state->bound * 2 ||
1673  (state->memtupcount > state->bound && LACKMEM(state))))
1674  {
1675 #ifdef TRACE_SORT
1676  if (trace_sort)
1677  elog(LOG, "switching to bounded heapsort at %d tuples: %s",
1678  state->memtupcount,
1679  pg_rusage_show(&state->ru_start));
1680 #endif
1681  make_bounded_heap(state);
1682  return;
1683  }
1684 
1685  /*
1686  * Done if we still fit in available memory and have array slots.
1687  */
1688  if (state->memtupcount < state->memtupsize && !LACKMEM(state))
1689  return;
1690 
1691  /*
1692  * Nope; time to switch to tape-based operation.
1693  */
1694  inittapes(state, true);
1695 
1696  /*
1697  * Dump all tuples.
1698  */
1699  dumptuples(state, false);
1700  break;
1701 
1702  case TSS_BOUNDED:
1703 
1704  /*
1705  * We don't want to grow the array here, so check whether the new
1706  * tuple can be discarded before putting it in. This should be a
1707  * good speed optimization, too, since when there are many more
1708  * input tuples than the bound, most input tuples can be discarded
1709  * with just this one comparison. Note that because we currently
1710  * have the sort direction reversed, we must check for <= not >=.
1711  */
1712  if (COMPARETUP(state, tuple, &state->memtuples[0]) <= 0)
1713  {
1714  /* new tuple <= top of the heap, so we can discard it */
1715  free_sort_tuple(state, tuple);
1717  }
1718  else
1719  {
1720  /* discard top of heap, replacing it with the new tuple */
1721  free_sort_tuple(state, &state->memtuples[0]);
1722  tuplesort_heap_replace_top(state, tuple);
1723  }
1724  break;
1725 
1726  case TSS_BUILDRUNS:
1727 
1728  /*
1729  * Save the tuple into the unsorted array (there must be space)
1730  */
1731  state->memtuples[state->memtupcount++] = *tuple;
1732 
1733  /*
1734  * If we are over the memory limit, dump all tuples.
1735  */
1736  dumptuples(state, false);
1737  break;
1738 
1739  default:
1740  elog(ERROR, "invalid tuplesort state");
1741  break;
1742  }
1743 }
static void dumptuples(Tuplesortstate *state, bool alltuples)
Definition: tuplesort.c:2925
TupSortStatus status
Definition: tuplesort.c:234
static bool grow_memtuples(Tuplesortstate *state)
Definition: tuplesort.c:1315
PGRUsage ru_start
Definition: tuplesort.c:465
static void inittapes(Tuplesortstate *state, bool mergeruns)
Definition: tuplesort.c:2392
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
#define ERROR
Definition: elog.h:43
static void free_sort_tuple(Tuplesortstate *state, SortTuple *stup)
Definition: tuplesort.c:4580
#define COMPARETUP(state, a, b)
Definition: tuplesort.c:525
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define LEADER(state)
Definition: tuplesort.c:534
#define Assert(condition)
Definition: c.h:699
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:98
#define elog
Definition: elog.h:219
static void make_bounded_heap(Tuplesortstate *state)
Definition: tuplesort.c:3220
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3396
#define LACKMEM(state)
Definition: tuplesort.c:529
SortTuple * memtuples
Definition: tuplesort.c:295

◆ readtup_alloc()

static void * readtup_alloc ( Tuplesortstate state,
Size  tuplen 
)
static

Definition at line 3481 of file tuplesort.c.

References Assert, buf, MemoryContextAlloc(), SlabSlot::nextfree, SLAB_SLOT_SIZE, Tuplesortstate::slabFreeHead, and Tuplesortstate::sortcontext.

Referenced by readtup_cluster(), readtup_datum(), readtup_heap(), and readtup_index().

3482 {
3483  SlabSlot *buf;
3484 
3485  /*
3486  * We pre-allocate enough slots in the slab arena that we should never run
3487  * out.
3488  */
3489  Assert(state->slabFreeHead);
3490 
3491  if (tuplen > SLAB_SLOT_SIZE || !state->slabFreeHead)
3492  return MemoryContextAlloc(state->sortcontext, tuplen);
3493  else
3494  {
3495  buf = state->slabFreeHead;
3496  /* Reuse this slot */
3497  state->slabFreeHead = buf->nextfree;
3498 
3499  return buf;
3500  }
3501 }
#define SLAB_SLOT_SIZE
Definition: tuplesort.c:188
union SlabSlot * nextfree
Definition: tuplesort.c:192
MemoryContext sortcontext
Definition: tuplesort.c:246
static char * buf
Definition: pg_test_fsync.c:67
#define Assert(condition)
Definition: c.h:699
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:771
SlabSlot * slabFreeHead
Definition: tuplesort.c:331

◆ readtup_cluster()

static void readtup_cluster ( Tuplesortstate state,
SortTuple stup,
int  tapenum,
unsigned int  len 
)
static

Definition at line 3916 of file tuplesort.c.

References SortTuple::datum1, heap_getattr, HEAPTUPLESIZE, IndexInfo::ii_IndexAttrNumbers, Tuplesortstate::indexInfo, InvalidOid, SortTuple::isnull1, LogicalTapeReadExact, Tuplesortstate::randomAccess, readtup_alloc(), HeapTupleData::t_data, HeapTupleData::t_len, HeapTupleData::t_self, HeapTupleData::t_tableOid, Tuplesortstate::tapeset, Tuplesortstate::tupDesc, and SortTuple::tuple.

Referenced by tuplesort_begin_cluster().

3918 {
3919  unsigned int t_len = tuplen - sizeof(ItemPointerData) - sizeof(int);
3920  HeapTuple tuple = (HeapTuple) readtup_alloc(state,
3921  t_len + HEAPTUPLESIZE);
3922 
3923  /* Reconstruct the HeapTupleData header */
3924  tuple->t_data = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE);
3925  tuple->t_len = t_len;
3926  LogicalTapeReadExact(state->tapeset, tapenum,
3927  &tuple->t_self, sizeof(ItemPointerData));
3928  /* We don't currently bother to reconstruct t_tableOid */
3929  tuple->t_tableOid = InvalidOid;
3930  /* Read in the tuple body */
3931  LogicalTapeReadExact(state->tapeset, tapenum,
3932  tuple->t_data, tuple->t_len);
3933  if (state->randomAccess) /* need trailing length word? */
3934  LogicalTapeReadExact(state->tapeset, tapenum,
3935  &tuplen, sizeof(tuplen));
3936  stup->tuple = (void *) tuple;
3937  /* set up first-column key value, if it's a simple column */
3938  if (state->indexInfo->ii_IndexAttrNumbers[0] != 0)
3939  stup->datum1 = heap_getattr(tuple,
3940  state->indexInfo->ii_IndexAttrNumbers[0],
3941  state->tupDesc,
3942  &stup->isnull1);
3943 }
HeapTupleData * HeapTuple
Definition: htup.h:71
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
bool randomAccess
Definition: tuplesort.c:236
Datum datum1
Definition: tuplesort.c:172
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
Definition: tuplesort.c:584
bool isnull1
Definition: tuplesort.c:173
HeapTupleHeader t_data
Definition: htup.h:68
void * tuple
Definition: tuplesort.c:171
ItemPointerData t_self
Definition: htup.h:65
uint32 t_len
Definition: htup.h:64
IndexInfo * indexInfo
Definition: tuplesort.c:435
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
Oid t_tableOid
Definition: htup.h:66
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:786
#define InvalidOid
Definition: postgres_ext.h:36
struct ItemPointerData ItemPointerData
static void * readtup_alloc(Tuplesortstate *state, Size tuplen)
Definition: tuplesort.c:3481
#define HEAPTUPLESIZE
Definition: htup.h:73
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:153
TupleDesc tupDesc
Definition: tuplesort.c:413

◆ readtup_datum()

static void readtup_datum ( Tuplesortstate state,
SortTuple stup,
int  tapenum,
unsigned int  len 
)
static

Definition at line 4316 of file tuplesort.c.

References Assert, SortTuple::datum1, SortTuple::isnull1, LogicalTapeReadExact, PointerGetDatum, Tuplesortstate::randomAccess, readtup_alloc(), Tuplesortstate::tapeset, SortTuple::tuple, and Tuplesortstate::tuples.

Referenced by tuplesort_begin_datum().

4318 {
4319  unsigned int tuplen = len - sizeof(unsigned int);
4320 
4321  if (tuplen == 0)
4322  {
4323  /* it's NULL */
4324  stup->datum1 = (Datum) 0;
4325  stup->isnull1 = true;
4326  stup->tuple = NULL;
4327  }
4328  else if (!state->tuples)
4329  {
4330  Assert(tuplen == sizeof(Datum));
4331  LogicalTapeReadExact(state->tapeset, tapenum,
4332  &stup->datum1, tuplen);
4333  stup->isnull1 = false;
4334  stup->tuple = NULL;
4335  }
4336  else
4337  {
4338  void *raddr = readtup_alloc(state, tuplen);
4339 
4340  LogicalTapeReadExact(state->tapeset, tapenum,
4341  raddr, tuplen);
4342  stup->datum1 = PointerGetDatum(raddr);
4343  stup->isnull1 = false;
4344  stup->tuple = raddr;
4345  }
4346 
4347  if (state->randomAccess) /* need trailing length word? */
4348  LogicalTapeReadExact(state->tapeset, tapenum,
4349  &tuplen, sizeof(tuplen));
4350 }
#define PointerGetDatum(X)
Definition: postgres.h:539
bool randomAccess
Definition: tuplesort.c:236
Datum datum1
Definition: tuplesort.c:172
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
Definition: tuplesort.c:584
bool isnull1
Definition: tuplesort.c:173
void * tuple
Definition: tuplesort.c:171
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
uintptr_t Datum
Definition: postgres.h:365
#define Assert(condition)
Definition: c.h:699
static void * readtup_alloc(Tuplesortstate *state, Size tuplen)
Definition: tuplesort.c:3481

◆ readtup_heap()

static void readtup_heap ( Tuplesortstate state,
SortTuple stup,
int  tapenum,
unsigned int  len 
)
static

Definition at line 3676 of file tuplesort.c.

References SortTuple::datum1, heap_getattr, SortTuple::isnull1, LogicalTapeReadExact, MINIMAL_TUPLE_DATA_OFFSET, MINIMAL_TUPLE_OFFSET, Tuplesortstate::randomAccess, readtup_alloc(), Tuplesortstate::sortKeys, SortSupportData::ssup_attno, HeapTupleData::t_data, HeapTupleData::t_len, MinimalTupleData::t_len, Tuplesortstate::tapeset, Tuplesortstate::tupDesc, and SortTuple::tuple.

Referenced by tuplesort_begin_heap().

3678 {
3679  unsigned int tupbodylen = len - sizeof(int);
3680  unsigned int tuplen = tupbodylen + MINIMAL_TUPLE_DATA_OFFSET;
3681  MinimalTuple tuple = (MinimalTuple) readtup_alloc(state, tuplen);
3682  char *tupbody = (char *) tuple + MINIMAL_TUPLE_DATA_OFFSET;
3683  HeapTupleData htup;
3684 
3685  /* read in the tuple proper */
3686  tuple->t_len = tuplen;
3687  LogicalTapeReadExact(state->tapeset, tapenum,
3688  tupbody, tupbodylen);
3689  if (state->randomAccess) /* need trailing length word? */
3690  LogicalTapeReadExact(state->tapeset, tapenum,
3691  &tuplen, sizeof(tuplen));
3692  stup->tuple = (void *) tuple;
3693  /* set up first-column key value */
3694  htup.t_len = tuple->t_len + MINIMAL_TUPLE_OFFSET;
3695  htup.t_data = (HeapTupleHeader) ((char *) tuple - MINIMAL_TUPLE_OFFSET);
3696  stup->datum1 = heap_getattr(&htup,
3697  state->sortKeys[0].ssup_attno,
3698  state->tupDesc,
3699  &stup->isnull1);
3700 }
#define MINIMAL_TUPLE_DATA_OFFSET
Definition: htup_details.h:641
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
SortSupport sortKeys
Definition: tuplesort.c:414
bool randomAccess
Definition: tuplesort.c:236
Datum datum1
Definition: tuplesort.c:172
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
Definition: tuplesort.c:584
bool isnull1
Definition: tuplesort.c:173
HeapTupleHeader t_data
Definition: htup.h:68
void * tuple
Definition: tuplesort.c:171
uint32 t_len
Definition: htup.h:64
MinimalTupleData * MinimalTuple
Definition: htup.h:27
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:786
AttrNumber ssup_attno
Definition: sortsupport.h:81
#define MINIMAL_TUPLE_OFFSET
Definition: htup_details.h:637
static void * readtup_alloc(Tuplesortstate *state, Size tuplen)
Definition: tuplesort.c:3481
TupleDesc tupDesc
Definition: tuplesort.c:413

◆ readtup_index()

static void readtup_index ( Tuplesortstate state,
SortTuple stup,
int  tapenum,
unsigned int  len 
)
static

Definition at line 4223 of file tuplesort.c.

References SortTuple::datum1, index_getattr, Tuplesortstate::indexRel, SortTuple::isnull1, LogicalTapeReadExact, Tuplesortstate::randomAccess, readtup_alloc(), RelationGetDescr, Tuplesortstate::tapeset, and SortTuple::tuple.

Referenced by tuplesort_begin_index_btree(), and tuplesort_begin_index_hash().

4225 {
4226  unsigned int tuplen = len - sizeof(unsigned int);
4227  IndexTuple tuple = (IndexTuple) readtup_alloc(state, tuplen);
4228 
4229  LogicalTapeReadExact(state->tapeset, tapenum,
4230  tuple, tuplen);
4231  if (state->randomAccess) /* need trailing length word? */
4232  LogicalTapeReadExact(state->tapeset, tapenum,
4233  &tuplen, sizeof(tuplen));
4234  stup->tuple = (void *) tuple;
4235  /* set up first-column key value */
4236  stup->datum1 = index_getattr(tuple,
4237  1,
4238  RelationGetDescr(state->indexRel),
4239  &stup->isnull1);
4240 }
#define RelationGetDescr(relation)
Definition: rel.h:433
bool randomAccess
Definition: tuplesort.c:236
Datum datum1
Definition: tuplesort.c:172
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
Definition: tuplesort.c:584
bool isnull1
Definition: tuplesort.c:173
void * tuple
Definition: tuplesort.c:171
IndexTupleData * IndexTuple
Definition: itup.h:53
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
Relation indexRel
Definition: tuplesort.c:443
#define index_getattr(tup, attnum, tupleDesc, isnull)
Definition: itup.h:100
static void * readtup_alloc(Tuplesortstate *state, Size tuplen)
Definition: tuplesort.c:3481

◆ reversedirection()

static void reversedirection ( Tuplesortstate state)
static

Definition at line 3436 of file tuplesort.c.

References Tuplesortstate::nKeys, Tuplesortstate::sortKeys, SortSupportData::ssup_nulls_first, and SortSupportData::ssup_reverse.

Referenced by make_bounded_heap(), and sort_bounded_heap().

3437 {
3438  SortSupport sortKey = state->sortKeys;
3439  int nkey;
3440 
3441  for (nkey = 0; nkey < state->nKeys; nkey++, sortKey++)
3442  {
3443  sortKey->ssup_reverse = !sortKey->ssup_reverse;
3444  sortKey->ssup_nulls_first = !sortKey->ssup_nulls_first;
3445  }
3446 }
bool ssup_nulls_first
Definition: sortsupport.h:75
SortSupport sortKeys
Definition: tuplesort.c:414

◆ selectnewtape()

static void selectnewtape ( Tuplesortstate state)
static

Definition at line 2493 of file tuplesort.c.

References Tuplesortstate::destTape, Tuplesortstate::Level, Tuplesortstate::tapeRange, Tuplesortstate::tp_dummy, and Tuplesortstate::tp_fib.

Referenced by dumptuples().

2494 {
2495  int j;
2496  int a;
2497 
2498  /* Step D3: advance j (destTape) */
2499  if (state->tp_dummy[state->destTape] < state->tp_dummy[state->destTape + 1])
2500  {
2501  state->destTape++;
2502  return;
2503  }
2504  if (state->tp_dummy[state->destTape] != 0)
2505  {
2506  state->destTape = 0;
2507  return;
2508  }
2509 
2510  /* Step D4: increase level */
2511  state->Level++;
2512  a = state->tp_fib[0];
2513  for (j = 0; j < state->tapeRange; j++)
2514  {
2515  state->tp_dummy[j] = a + state->tp_fib[j + 1] - state->tp_fib[j];
2516  state->tp_fib[j] = a + state->tp_fib[j + 1];
2517  }
2518  state->destTape = 0;
2519 }
int * tp_dummy
Definition: tuplesort.c:371

◆ sort_bounded_heap()

static void sort_bounded_heap ( Tuplesortstate state)
static

Definition at line 3269 of file tuplesort.c.

References Assert, Tuplesortstate::bound, Tuplesortstate::bounded, Tuplesortstate::boundUsed, Tuplesortstate::memtupcount, Tuplesortstate::memtuples, reversedirection(), SERIAL, Tuplesortstate::status, TSS_BOUNDED, TSS_SORTEDINMEM, and tuplesort_heap_delete_top().

Referenced by tuplesort_performsort().

3270 {
3271  int tupcount = state->memtupcount;
3272 
3273  Assert(state->status == TSS_BOUNDED);
3274  Assert(state->bounded);
3275  Assert(tupcount == state->bound);
3276  Assert(SERIAL(state));
3277 
3278  /*
3279  * We can unheapify in place because each delete-top call will remove the
3280  * largest entry, which we can promptly store in the newly freed slot at
3281  * the end. Once we're down to a single-entry heap, we're done.
3282  */
3283  while (state->memtupcount > 1)
3284  {
3285  SortTuple stup = state->memtuples[0];
3286 
3287  /* this sifts-up the next-largest entry and decreases memtupcount */
3289  state->memtuples[state->memtupcount] = stup;
3290  }
3291  state->memtupcount = tupcount;
3292 
3293  /*
3294  * Reverse sort direction back to the original state. This is not
3295  * actually necessary but seems like a good idea for tidiness.
3296  */
3297  reversedirection(state);
3298 
3299  state->status = TSS_SORTEDINMEM;
3300  state->boundUsed = true;
3301 }
static void reversedirection(Tuplesortstate *state)
Definition: tuplesort.c:3436
TupSortStatus status
Definition: tuplesort.c:234
#define SERIAL(state)
Definition: tuplesort.c:532
static void tuplesort_heap_delete_top(Tuplesortstate *state)
Definition: tuplesort.c:3372
#define Assert(condition)
Definition: c.h:699
SortTuple * memtuples
Definition: tuplesort.c:295

◆ tuplesort_attach_shared()

void tuplesort_attach_shared ( Sharedsort shared,
dsm_segment seg 
)

Definition at line 4408 of file tuplesort.c.

References Sharedsort::fileset, and SharedFileSetAttach().

Referenced by _bt_parallel_build_main().

4409 {
4410  /* Attach to SharedFileSet */
4411  SharedFileSetAttach(&shared->fileset, seg);
4412 }
void SharedFileSetAttach(SharedFileSet *fileset, dsm_segment *seg)
Definition: sharedfileset.c:76
SharedFileSet fileset
Definition: tuplesort.c:490

◆ tuplesort_begin_cluster()

Tuplesortstate* tuplesort_begin_cluster ( TupleDesc  tupDesc,
Relation  indexRel,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 880 of file tuplesort.c.

References _bt_freeskey(), _bt_mkscankey_nodata(), SortSupportData::abbreviate, Tuplesortstate::abbrevNext, Assert, AssertState, BTGreaterStrategyNumber, BTLessStrategyNumber, BuildIndexInfo(), CLUSTER_SORT, Tuplesortstate::comparetup, comparetup_cluster(), Tuplesortstate::copytup, copytup_cluster(), CreateExecutorState(), CurrentMemoryContext, ExprContext::ecxt_scantuple, elog, Tuplesortstate::estate, GetPerTupleExprContext, i, IndexInfo::ii_Expressions, Tuplesortstate::indexInfo, IndexRelationGetNumberOfKeyAttributes, LOG, MakeSingleTupleTableSlot(), MemoryContextSwitchTo(), Tuplesortstate::nKeys, palloc0(), PARALLEL_SORT, PrepareSortSupportFromIndexRel(), RelationData::rd_rel, Tuplesortstate::readtup, readtup_cluster(), RelationGetNumberOfAttributes, ScanKeyData::sk_attno, SK_BT_DESC, SK_BT_NULLS_FIRST, ScanKeyData::sk_collation, ScanKeyData::sk_flags, Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, trace_sort, Tuplesortstate::tupDesc, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_cluster().

Referenced by copy_heap_data().

884 {
885  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
886  randomAccess);
887  ScanKey indexScanKey;
888  MemoryContext oldcontext;
889  int i;
890 
891  Assert(indexRel->rd_rel->relam == BTREE_AM_OID);
892 
893  oldcontext = MemoryContextSwitchTo(state->sortcontext);
894 
895 #ifdef TRACE_SORT
896  if (trace_sort)
897  elog(LOG,
898  "begin tuple sort: nkeys = %d, workMem = %d, randomAccess = %c",
900  workMem, randomAccess ? 't' : 'f');
901 #endif
902 
903  state->nKeys = IndexRelationGetNumberOfKeyAttributes(indexRel);
904 
905  TRACE_POSTGRESQL_SORT_START(CLUSTER_SORT,
906  false, /* no unique check */
907  state->nKeys,
908  workMem,
909  randomAccess,
910  PARALLEL_SORT(state));
911 
913  state->copytup = copytup_cluster;
914  state->writetup = writetup_cluster;
915  state->readtup = readtup_cluster;
916  state->abbrevNext = 10;
917 
918  state->indexInfo = BuildIndexInfo(indexRel);
919 
920  state->tupDesc = tupDesc; /* assume we need not copy tupDesc */
921 
922  indexScanKey = _bt_mkscankey_nodata(indexRel);
923 
924  if (state->indexInfo->ii_Expressions != NULL)
925  {
926  TupleTableSlot *slot;
927  ExprContext *econtext;
928 
929  /*
930  * We will need to use FormIndexDatum to evaluate the index
931  * expressions. To do that, we need an EState, as well as a
932  * TupleTableSlot to put the table tuples into. The econtext's
933  * scantuple has to point to that slot, too.
934  */
935  state->estate = CreateExecutorState();
936  slot = MakeSingleTupleTableSlot(tupDesc);
937  econtext = GetPerTupleExprContext(state->estate);
938  econtext->ecxt_scantuple = slot;
939  }
940 
941  /* Prepare SortSupport data for each column */
942  state->sortKeys = (SortSupport) palloc0(state->nKeys *
943  sizeof(SortSupportData));
944 
945  for (i = 0; i < state->nKeys; i++)
946  {
947  SortSupport sortKey = state->sortKeys + i;
948  ScanKey scanKey = indexScanKey + i;
949  int16 strategy;
950 
951  sortKey->ssup_cxt = CurrentMemoryContext;
952  sortKey->ssup_collation = scanKey->sk_collation;
953  sortKey->ssup_nulls_first =
954  (scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0;
955  sortKey->ssup_attno = scanKey->sk_attno;
956  /* Convey if abbreviation optimization is applicable in principle */
957  sortKey->abbreviate = (i == 0);
958 
959  AssertState(sortKey->ssup_attno != 0);
960 
961  strategy = (scanKey->sk_flags & SK_BT_DESC) != 0 ?
963 
964  PrepareSortSupportFromIndexRel(indexRel, strategy, sortKey);
965  }
966 
967  _bt_freeskey(indexScanKey);
968 
969  MemoryContextSwitchTo(oldcontext);
970 
971  return state;
972 }
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
signed short int16
Definition: c.h:312
bool ssup_nulls_first
Definition: sortsupport.h:75
ScanKey _bt_mkscankey_nodata(Relation rel)
Definition: nbtutils.c:126
static void writetup_cluster(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:3892
#define BTGreaterStrategyNumber
Definition: stratnum.h:33
#define AssertState(condition)
Definition: c.h:702
int64 abbrevNext
Definition: tuplesort.c:428
#define RelationGetNumberOfAttributes(relation)
Definition: rel.h:413
EState * estate
Definition: tuplesort.c:436
SortSupport sortKeys
Definition: tuplesort.c:414
void _bt_freeskey(ScanKey skey)
Definition: nbtutils.c:166
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:267
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:259
#define CLUSTER_SORT
Definition: tuplesort.c:122
static int comparetup_cluster(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:3708
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:1745
#define LOG
Definition: elog.h:26
Form_pg_class rd_rel
Definition: rel.h:84
static void copytup_cluster(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:3819
bool trace_sort
Definition: tuplesort.c:130
#define PARALLEL_SORT(state)
Definition: tuplesort.c:125
#define GetPerTupleExprContext(estate)
Definition: executor.h:489
static void readtup_cluster(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:3916
MemoryContext sortcontext
Definition: tuplesort.c:246
MemoryContext ssup_cxt
Definition: sortsupport.h:66
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:285
IndexInfo * indexInfo
Definition: tuplesort.c:435
MemoryContext CurrentMemoryContext
Definition: mcxt.c:38
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:426
TupleTableSlot * MakeSingleTupleTableSlot(TupleDesc tupdesc)
Definition: execTuples.c:232
void PrepareSortSupportFromIndexRel(Relation indexRel, int16 strategy, SortSupport ssup)
Definition: sortsupport.c:160
EState * CreateExecutorState(void)
Definition: execUtils.c:80
#define SK_BT_NULLS_FIRST
Definition: nbtree.h:490
void * palloc0(Size size)
Definition: mcxt.c:955
AttrNumber ssup_attno
Definition: sortsupport.h:81
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:277
int sk_flags
Definition: skey.h:66
List * ii_Expressions
Definition: execnodes.h:154
#define Assert(condition)
Definition: c.h:699
#define SK_BT_DESC
Definition: nbtree.h:489
Definition: regguts.h:298
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:218
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
Oid sk_collation
Definition: skey.h:70
int i
#define elog
Definition: elog.h:219
#define BTLessStrategyNumber
Definition: stratnum.h:29
AttrNumber sk_attno
Definition: skey.h:67
TupleDesc tupDesc
Definition: tuplesort.c:413

◆ tuplesort_begin_common()

static Tuplesortstate * tuplesort_begin_common ( int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)
static

Definition at line 681 of file tuplesort.c.

References ALLOCSET_DEFAULT_SIZES, ALLOCSET_SEPARATE_THRESHOLD, AllocSetContextCreate, Tuplesortstate::allowedMem, Assert, Tuplesortstate::availMem, Tuplesortstate::bounded, Tuplesortstate::boundUsed, CurrentMemoryContext, Tuplesortstate::currentRun, elog, ERROR, GetMemoryChunkSpace(), Tuplesortstate::growmemtuples, SortCoordinateData::isWorker, LACKMEM, Max, MemoryContextSwitchTo(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, SortCoordinateData::nParticipants, Tuplesortstate::nParticipants, palloc(), palloc0(), pg_rusage_init(), Tuplesortstate::randomAccess, Tuplesortstate::result_tape, Tuplesortstate::ru_start, Tuplesortstate::shared, SortCoordinateData::sharedsort, Tuplesortstate::slabAllocatorUsed, Tuplesortstate::sortcontext, Tuplesortstate::status, Tuplesortstate::tapeset, trace_sort, TSS_INITIAL, Tuplesortstate::tuplecontext, Tuplesortstate::tuples, USEMEM, Tuplesortstate::worker, and worker_get_identifier().

Referenced by tuplesort_begin_cluster(), tuplesort_begin_datum(), tuplesort_begin_heap(), tuplesort_begin_index_btree(), and tuplesort_begin_index_hash().

683 {
685  MemoryContext sortcontext;
686  MemoryContext tuplecontext;
687  MemoryContext oldcontext;
688 
689  /* See leader_takeover_tapes() remarks on randomAccess support */
690  if (coordinate && randomAccess)
691  elog(ERROR, "random access disallowed under parallel sort");
692 
693  /*
694  * Create a working memory context for this sort operation. All data
695  * needed by the sort will live inside this context.
696  */
698  "TupleSort main",
700 
701  /*
702  * Caller tuple (e.g. IndexTuple) memory context.
703  *
704  * A dedicated child context used exclusively for caller passed tuples
705  * eases memory management. Resetting at key points reduces
706  * fragmentation. Note that the memtuples array of SortTuples is allocated
707  * in the parent context, not this context, because there is no need to
708  * free memtuples early.
709  */
710  tuplecontext = AllocSetContextCreate(sortcontext,
711  "Caller tuples",
713 
714  /*
715  * Make the Tuplesortstate within the per-sort context. This way, we
716  * don't need a separate pfree() operation for it at shutdown.
717  */
718  oldcontext = MemoryContextSwitchTo(sortcontext);
719 
720  state = (Tuplesortstate *) palloc0(sizeof(Tuplesortstate));
721 
722 #ifdef TRACE_SORT
723  if (trace_sort)
724  pg_rusage_init(&state->ru_start);
725 #endif
726 
727  state->status = TSS_INITIAL;
728  state->randomAccess = randomAccess;
729  state->bounded = false;
730  state->tuples = true;
731  state->boundUsed = false;
732 
733  /*
734  * workMem is forced to be at least 64KB, the current minimum valid value
735  * for the work_mem GUC. This is a defense against parallel sort callers
736  * that divide out memory among many workers in a way that leaves each
737  * with very little memory.
738  */
739  state->allowedMem = Max(workMem, 64) * (int64) 1024;
740  state->availMem = state->allowedMem;
741  state->sortcontext = sortcontext;
742  state->tuplecontext = tuplecontext;
743  state->tapeset = NULL;
744 
745  state->memtupcount = 0;
746 
747  /*
748  * Initial size of array must be more than ALLOCSET_SEPARATE_THRESHOLD;
749  * see comments in grow_memtuples().
750  */
751  state->memtupsize = Max(1024,
752  ALLOCSET_SEPARATE_THRESHOLD / sizeof(SortTuple) + 1);
753 
754  state->growmemtuples = true;
755  state->slabAllocatorUsed = false;
756  state->memtuples = (SortTuple *) palloc(state->memtupsize * sizeof(SortTuple));
757 
758  USEMEM(state, GetMemoryChunkSpace(state->memtuples));
759 
760  /* workMem must be large enough for the minimal memtuples array */
761  if (LACKMEM(state))
762  elog(ERROR, "insufficient memory allowed for sort");
763 
764  state->currentRun = 0;
765 
766  /*
767  * maxTapes, tapeRange, and Algorithm D variables will be initialized by
768  * inittapes(), if needed
769  */
770 
771  state->result_tape = -1; /* flag that result tape has not been formed */
772 
773  /*
774  * Initialize parallel-related state based on coordination information
775  * from caller
776  */
777  if (!coordinate)
778  {
779  /* Serial sort */
780  state->shared = NULL;
781  state->worker = -1;
782  state->nParticipants = -1;
783  }
784  else if (coordinate->isWorker)
785  {
786  /* Parallel worker produces exactly one final run from all input */
787  state->shared = coordinate->sharedsort;
788  state->worker = worker_get_identifier(state);
789  state->nParticipants = -1;
790  }
791  else
792  {
793  /* Parallel leader state only used for final merge */
794  state->shared = coordinate->sharedsort;
795  state->worker = -1;
796  state->nParticipants = coordinate->nParticipants;
797  Assert(state->nParticipants >= 1);
798  }
799 
800  MemoryContextSwitchTo(oldcontext);
801 
802  return state;
803 }
int64 availMem
Definition: tuplesort.c:242
TupSortStatus status
Definition: tuplesort.c:234
PGRUsage ru_start
Definition: tuplesort.c:465
bool randomAccess
Definition: tuplesort.c:236
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
Sharedsort * sharedsort
Definition: tuplesort.h:56
bool growmemtuples
Definition: tuplesort.c:298
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
static int worker_get_identifier(Tuplesortstate *state)
Definition: tuplesort.c:4428
bool trace_sort
Definition: tuplesort.c:130
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
#define ERROR
Definition: elog.h:43
MemoryContext sortcontext
Definition: tuplesort.c:246
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:192
Sharedsort * shared
Definition: tuplesort.c:405
#define ALLOCSET_SEPARATE_THRESHOLD
Definition: memutils.h:219
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
MemoryContext CurrentMemoryContext
Definition: mcxt.c:38
int64 allowedMem
Definition: tuplesort.c:243
#define AllocSetContextCreate(parent, name, allocparams)
Definition: memutils.h:170
void * palloc0(Size size)
Definition: mcxt.c:955
#define Max(x, y)
Definition: c.h:851
#define Assert(condition)
Definition: c.h:699
Definition: regguts.h:298
bool slabAllocatorUsed
Definition: tuplesort.c:327
MemoryContext tuplecontext
Definition: tuplesort.c:247
void * palloc(Size size)
Definition: mcxt.c:924
#define USEMEM(state, amt)
Definition: tuplesort.c:530
#define elog
Definition: elog.h:219
#define LACKMEM(state)
Definition: tuplesort.c:529
SortTuple * memtuples
Definition: tuplesort.c:295

◆ tuplesort_begin_datum()

Tuplesortstate* tuplesort_begin_datum ( Oid  datumType,
Oid  sortOperator,
Oid  sortCollation,
bool  nullsFirstFlag,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 1099 of file tuplesort.c.

References SortSupportData::abbrev_converter, SortSupportData::abbreviate, Tuplesortstate::abbrevNext, Tuplesortstate::comparetup, comparetup_datum(), Tuplesortstate::copytup, copytup_datum(), CurrentMemoryContext, DATUM_SORT, Tuplesortstate::datumType, Tuplesortstate::datumTypeLen, elog, get_typlenbyval(), LOG, MemoryContextSwitchTo(), Tuplesortstate::nKeys, Tuplesortstate::onlyKey, palloc0(), PARALLEL_SORT, PrepareSortSupportFromOrderingOp(), Tuplesortstate::readtup, readtup_datum(), Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, trace_sort, Tuplesortstate::tuples, tuplesort_begin_common(), typbyval, typlen, Tuplesortstate::writetup, and writetup_datum().

Referenced by initialize_aggregate(), ordered_set_startup(), and validate_index().

1102 {
1103  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
1104  randomAccess);
1105  MemoryContext oldcontext;
1106  int16 typlen;
1107  bool typbyval;
1108 
1109  oldcontext = MemoryContextSwitchTo(state->sortcontext);
1110 
1111 #ifdef TRACE_SORT
1112  if (trace_sort)
1113  elog(LOG,
1114  "begin datum sort: workMem = %d, randomAccess = %c",
1115  workMem, randomAccess ? 't' : 'f');
1116 #endif
1117 
1118  state->nKeys = 1; /* always a one-column sort */
1119 
1120  TRACE_POSTGRESQL_SORT_START(DATUM_SORT,
1121  false, /* no unique check */
1122  1,
1123  workMem,
1124  randomAccess,
1125  PARALLEL_SORT(state));
1126 
1127  state->comparetup = comparetup_datum;
1128  state->copytup = copytup_datum;
1129  state->writetup = writetup_datum;
1130  state->readtup = readtup_datum;
1131  state->abbrevNext = 10;
1132 
1133  state->datumType = datumType;
1134 
1135  /* lookup necessary attributes of the datum type */
1136  get_typlenbyval(datumType, &typlen, &typbyval);
1137  state->datumTypeLen = typlen;
1138  state->tuples = !typbyval;
1139 
1140  /* Prepare SortSupport data */
1141  state->sortKeys = (SortSupport) palloc0(sizeof(SortSupportData));
1142 
1144  state->sortKeys->ssup_collation = sortCollation;
1145  state->sortKeys->ssup_nulls_first = nullsFirstFlag;
1146 
1147  /*
1148  * Abbreviation is possible here only for by-reference types. In theory,
1149  * a pass-by-value datatype could have an abbreviated form that is cheaper
1150  * to compare. In a tuple sort, we could support that, because we can
1151  * always extract the original datum from the tuple is needed. Here, we
1152  * can't, because a datum sort only stores a single copy of the datum; the
1153  * "tuple" field of each sortTuple is NULL.
1154  */
1155  state->sortKeys->abbreviate = !typbyval;
1156 
1157  PrepareSortSupportFromOrderingOp(sortOperator, state->sortKeys);
1158 
1159  /*
1160  * The "onlyKey" optimization cannot be used with abbreviated keys, since
1161  * tie-breaker comparisons may be required. Typically, the optimization
1162  * is only of value to pass-by-value types anyway, whereas abbreviated
1163  * keys are typically only of value to pass-by-reference types.
1164  */
1165  if (!state->sortKeys->abbrev_converter)
1166  state->onlyKey = state->sortKeys;
1167 
1168  MemoryContextSwitchTo(oldcontext);
1169 
1170  return state;
1171 }
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
signed short int16
Definition: c.h:312
bool ssup_nulls_first
Definition: sortsupport.h:75
int16 typlen
Definition: pg_type.h:55
int64 abbrevNext
Definition: tuplesort.c:428
SortSupport sortKeys
Definition: tuplesort.c:414
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:267
void PrepareSortSupportFromOrderingOp(Oid orderingOp, SortSupport ssup)
Definition: sortsupport.c:133
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:259
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
#define PARALLEL_SORT(state)
Definition: tuplesort.c:125
#define DATUM_SORT
Definition: tuplesort.c:121
MemoryContext sortcontext
Definition: tuplesort.c:246
MemoryContext ssup_cxt
Definition: sortsupport.h:66
static int comparetup_datum(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:4247
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:285
static void copytup_datum(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:4268
static void readtup_datum(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:4316
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
MemoryContext CurrentMemoryContext
Definition: mcxt.c:38
static void writetup_datum(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:4275
void * palloc0(Size size)
Definition: mcxt.c:955
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:277
Definition: regguts.h:298
void get_typlenbyval(Oid typid, int16 *typlen, bool *typbyval)
Definition: lsyscache.c:2005
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
SortSupport onlyKey
Definition: tuplesort.c:420
#define elog
Definition: elog.h:219
bool typbyval
Definition: pg_type.h:65

◆ tuplesort_begin_heap()

Tuplesortstate* tuplesort_begin_heap ( TupleDesc  tupDesc,
int  nkeys,
AttrNumber attNums,
Oid sortOperators,
Oid sortCollations,
bool nullsFirstFlags,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 806 of file tuplesort.c.

References SortSupportData::abbrev_converter, SortSupportData::abbreviate, Tuplesortstate::abbrevNext, AssertArg, Tuplesortstate::comparetup, comparetup_heap(), Tuplesortstate::copytup, copytup_heap(), CurrentMemoryContext, elog, HEAP_SORT, i, LOG, MemoryContextSwitchTo(), Tuplesortstate::nKeys, Tuplesortstate::onlyKey, palloc0(), PARALLEL_SORT, PrepareSortSupportFromOrderingOp(), Tuplesortstate::readtup, readtup_heap(), Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, trace_sort, Tuplesortstate::tupDesc, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_heap().

Referenced by ExecSort(), initialize_aggregate(), initialize_phase(), and ordered_set_startup().

811 {
812  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
813  randomAccess);
814  MemoryContext oldcontext;
815  int i;
816 
817  oldcontext = MemoryContextSwitchTo(state->sortcontext);
818 
819  AssertArg(nkeys > 0);
820 
821 #ifdef TRACE_SORT
822  if (trace_sort)
823  elog(LOG,
824  "begin tuple sort: nkeys = %d, workMem = %d, randomAccess = %c",
825  nkeys, workMem, randomAccess ? 't' : 'f');
826 #endif
827 
828  state->nKeys = nkeys;
829 
830  TRACE_POSTGRESQL_SORT_START(HEAP_SORT,
831  false, /* no unique check */
832  nkeys,
833  workMem,
834  randomAccess,
835  PARALLEL_SORT(state));
836 
837  state->comparetup = comparetup_heap;
838  state->copytup = copytup_heap;
839  state->writetup = writetup_heap;
840  state->readtup = readtup_heap;
841 
842  state->tupDesc = tupDesc; /* assume we need not copy tupDesc */
843  state->abbrevNext = 10;
844 
845  /* Prepare SortSupport data for each column */
846  state->sortKeys = (SortSupport) palloc0(nkeys * sizeof(SortSupportData));
847 
848  for (i = 0; i < nkeys; i++)
849  {
850  SortSupport sortKey = state->sortKeys + i;
851 
852  AssertArg(attNums[i] != 0);
853  AssertArg(sortOperators[i] != 0);
854 
855  sortKey->ssup_cxt = CurrentMemoryContext;
856  sortKey->ssup_collation = sortCollations[i];
857  sortKey->ssup_nulls_first = nullsFirstFlags[i];
858  sortKey->ssup_attno = attNums[i];
859  /* Convey if abbreviation optimization is applicable in principle */
860  sortKey->abbreviate = (i == 0);
861 
862  PrepareSortSupportFromOrderingOp(sortOperators[i], sortKey);
863  }
864 
865  /*
866  * The "onlyKey" optimization cannot be used with abbreviated keys, since
867  * tie-breaker comparisons may be required. Typically, the optimization
868  * is only of value to pass-by-value types anyway, whereas abbreviated
869  * keys are typically only of value to pass-by-reference types.
870  */
871  if (nkeys == 1 && !state->sortKeys->abbrev_converter)
872  state->onlyKey = state->sortKeys;
873 
874  MemoryContextSwitchTo(oldcontext);
875 
876  return state;
877 }
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
bool ssup_nulls_first
Definition: sortsupport.h:75
static int comparetup_heap(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:3509
int64 abbrevNext
Definition: tuplesort.c:428
SortSupport sortKeys
Definition: tuplesort.c:414
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:267
void PrepareSortSupportFromOrderingOp(Oid orderingOp, SortSupport ssup)
Definition: sortsupport.c:133
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:259
#define LOG
Definition: elog.h:26
#define HEAP_SORT
Definition: tuplesort.c:119
bool trace_sort
Definition: tuplesort.c:130
#define PARALLEL_SORT(state)
Definition: tuplesort.c:125
MemoryContext sortcontext
Definition: tuplesort.c:246
static void writetup_heap(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:3649
MemoryContext ssup_cxt
Definition: sortsupport.h:66
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:285
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
MemoryContext CurrentMemoryContext
Definition: mcxt.c:38
#define AssertArg(condition)
Definition: c.h:701
static void copytup_heap(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:3571
void * palloc0(Size size)
Definition: mcxt.c:955
AttrNumber ssup_attno
Definition: sortsupport.h:81
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:277
Definition: regguts.h:298
static void readtup_heap(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:3676
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
int i
SortSupport onlyKey
Definition: tuplesort.c:420
#define elog
Definition: elog.h:219
TupleDesc tupDesc
Definition: tuplesort.c:413

◆ tuplesort_begin_index_btree()

Tuplesortstate* tuplesort_begin_index_btree ( Relation  heapRel,
Relation  indexRel,
bool  enforceUnique,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 975 of file tuplesort.c.

References _bt_freeskey(), _bt_mkscankey_nodata(), SortSupportData::abbreviate, Tuplesortstate::abbrevNext, AssertState, BTGreaterStrategyNumber, BTLessStrategyNumber, Tuplesortstate::comparetup, comparetup_index_btree(), Tuplesortstate::copytup, copytup_index(), CurrentMemoryContext, elog, Tuplesortstate::enforceUnique, Tuplesortstate::heapRel, i, INDEX_SORT, Tuplesortstate::indexRel, IndexRelationGetNumberOfKeyAttributes, LOG, MemoryContextSwitchTo(), Tuplesortstate::nKeys, palloc0(), PARALLEL_SORT, PrepareSortSupportFromIndexRel(), Tuplesortstate::readtup, readtup_index(), ScanKeyData::sk_attno, SK_BT_DESC, SK_BT_NULLS_FIRST, ScanKeyData::sk_collation, ScanKeyData::sk_flags, Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, trace_sort, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_index().

Referenced by _bt_parallel_scan_and_sort(), and _bt_spools_heapscan().

981 {
982  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
983  randomAccess);
984  ScanKey indexScanKey;
985  MemoryContext oldcontext;
986  int i;
987 
988  oldcontext = MemoryContextSwitchTo(state->sortcontext);
989 
990 #ifdef TRACE_SORT
991  if (trace_sort)
992  elog(LOG,
993  "begin index sort: unique = %c, workMem = %d, randomAccess = %c",
994  enforceUnique ? 't' : 'f',
995  workMem, randomAccess ? 't' : 'f');
996 #endif
997 
998  state->nKeys = IndexRelationGetNumberOfKeyAttributes(indexRel);
999 
1000  TRACE_POSTGRESQL_SORT_START(INDEX_SORT,
1001  enforceUnique,
1002  state->nKeys,
1003  workMem,
1004  randomAccess,
1005  PARALLEL_SORT(state));
1006 
1008  state->copytup = copytup_index;
1009  state->writetup = writetup_index;
1010  state->readtup = readtup_index;
1011  state->abbrevNext = 10;
1012 
1013  state->heapRel = heapRel;
1014  state->indexRel = indexRel;
1015  state->enforceUnique = enforceUnique;
1016 
1017  indexScanKey = _bt_mkscankey_nodata(indexRel);
1018 
1019  /* Prepare SortSupport data for each column */
1020  state->sortKeys = (SortSupport) palloc0(state->nKeys *
1021  sizeof(SortSupportData));
1022 
1023  for (i = 0; i < state->nKeys; i++)
1024  {
1025  SortSupport sortKey = state->sortKeys + i;
1026  ScanKey scanKey = indexScanKey + i;
1027  int16 strategy;
1028 
1029  sortKey->ssup_cxt = CurrentMemoryContext;
1030  sortKey->ssup_collation = scanKey->sk_collation;
1031  sortKey->ssup_nulls_first =
1032  (scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0;
1033  sortKey->ssup_attno = scanKey->sk_attno;
1034  /* Convey if abbreviation optimization is applicable in principle */
1035  sortKey->abbreviate = (i == 0);
1036 
1037  AssertState(sortKey->ssup_attno != 0);
1038 
1039  strategy = (scanKey->sk_flags & SK_BT_DESC) != 0 ?
1041 
1042  PrepareSortSupportFromIndexRel(indexRel, strategy, sortKey);
1043  }
1044 
1045  _bt_freeskey(indexScanKey);
1046 
1047  MemoryContextSwitchTo(oldcontext);
1048 
1049  return state;
1050 }
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
signed short int16
Definition: c.h:312
bool ssup_nulls_first
Definition: sortsupport.h:75
ScanKey _bt_mkscankey_nodata(Relation rel)
Definition: nbtutils.c:126
Relation heapRel
Definition: tuplesort.c:442
#define BTGreaterStrategyNumber
Definition: stratnum.h:33
#define AssertState(condition)
Definition: c.h:702
int64 abbrevNext
Definition: tuplesort.c:428
static void copytup_index(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:4135
SortSupport sortKeys
Definition: tuplesort.c:414
void _bt_freeskey(ScanKey skey)
Definition: nbtutils.c:166
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:267
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:259
#define INDEX_SORT
Definition: tuplesort.c:120
#define LOG
Definition: elog.h:26
static int comparetup_index_btree(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:3954
bool trace_sort
Definition: tuplesort.c:130
#define PARALLEL_SORT(state)
Definition: tuplesort.c:125
MemoryContext sortcontext
Definition: tuplesort.c:246
static void writetup_index(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:4201
MemoryContext ssup_cxt
Definition: sortsupport.h:66
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:285
static void readtup_index(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:4223
MemoryContext CurrentMemoryContext
Definition: mcxt.c:38
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:426
void PrepareSortSupportFromIndexRel(Relation indexRel, int16 strategy, SortSupport ssup)
Definition: sortsupport.c:160
#define SK_BT_NULLS_FIRST
Definition: nbtree.h:490
void * palloc0(Size size)
Definition: mcxt.c:955
Relation indexRel
Definition: tuplesort.c:443
AttrNumber ssup_attno
Definition: sortsupport.h:81
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:277
int sk_flags
Definition: skey.h:66
#define SK_BT_DESC
Definition: nbtree.h:489
Definition: regguts.h:298
bool enforceUnique
Definition: tuplesort.c:446
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
Oid sk_collation
Definition: skey.h:70
int i
#define elog
Definition: elog.h:219
#define BTLessStrategyNumber
Definition: stratnum.h:29
AttrNumber sk_attno
Definition: skey.h:67

◆ tuplesort_begin_index_hash()

Tuplesortstate* tuplesort_begin_index_hash ( Relation  heapRel,
Relation  indexRel,
uint32  high_mask,
uint32  low_mask,
uint32  max_buckets,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 1053 of file tuplesort.c.

References Tuplesortstate::comparetup, comparetup_index_hash(), Tuplesortstate::copytup, copytup_index(), elog, Tuplesortstate::heapRel, Tuplesortstate::high_mask, Tuplesortstate::indexRel, LOG, Tuplesortstate::low_mask, Tuplesortstate::max_buckets, MemoryContextSwitchTo(), Tuplesortstate::nKeys, Tuplesortstate::readtup, readtup_index(), Tuplesortstate::sortcontext, trace_sort, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_index().

Referenced by _h_spoolinit().

1061 {
1062  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
1063  randomAccess);
1064  MemoryContext oldcontext;
1065 
1066  oldcontext = MemoryContextSwitchTo(state->sortcontext);
1067 
1068 #ifdef TRACE_SORT
1069  if (trace_sort)
1070  elog(LOG,
1071  "begin index sort: high_mask = 0x%x, low_mask = 0x%x, "
1072  "max_buckets = 0x%x, workMem = %d, randomAccess = %c",
1073  high_mask,
1074  low_mask,
1075  max_buckets,
1076  workMem, randomAccess ? 't' : 'f');
1077 #endif
1078 
1079  state->nKeys = 1; /* Only one sort column, the hash code */
1080 
1082  state->copytup = copytup_index;
1083  state->writetup = writetup_index;
1084  state->readtup = readtup_index;
1085 
1086  state->heapRel = heapRel;
1087  state->indexRel = indexRel;
1088 
1089  state->high_mask = high_mask;
1090  state->low_mask = low_mask;
1091  state->max_buckets = max_buckets;
1092 
1093  MemoryContextSwitchTo(oldcontext);
1094 
1095  return state;
1096 }
static int comparetup_index_hash(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:4083
Relation heapRel
Definition: tuplesort.c:442
static void copytup_index(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:4135
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:267
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:259
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
MemoryContext sortcontext
Definition: tuplesort.c:246
static void writetup_index(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:4201
uint32 high_mask
Definition: tuplesort.c:449
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:285
static void readtup_index(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:4223
Relation indexRel
Definition: tuplesort.c:443
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:277
Definition: regguts.h:298
uint32 max_buckets
Definition: tuplesort.c:451
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
uint32 low_mask
Definition: tuplesort.c:450
#define elog
Definition: elog.h:219

◆ tuplesort_end()

void tuplesort_end ( Tuplesortstate state)

Definition at line 1235 of file tuplesort.c.

References Tuplesortstate::allowedMem, Tuplesortstate::availMem, ExprContext::ecxt_scantuple, elog, Tuplesortstate::estate, ExecDropSingleTupleTableSlot(), FreeExecutorState(), GetPerTupleExprContext, LOG, LogicalTapeSetBlocks(), LogicalTapeSetClose(), MemoryContextDelete(), MemoryContextSwitchTo(), pg_rusage_show(), Tuplesortstate::ru_start, SERIAL, Tuplesortstate::sortcontext, Tuplesortstate::tapeset, trace_sort, and Tuplesortstate::worker.

Referenced by _bt_parallel_scan_and_sort(), _bt_spooldestroy(), _h_spooldestroy(), copy_heap_data(), ExecEndAgg(), ExecEndSort(), ExecReScanAgg(), ExecReScanSort(), initialize_aggregate(), initialize_phase(), ordered_set_shutdown(), process_ordered_aggregate_multi(), process_ordered_aggregate_single(), and validate_index().

1236 {
1237  /* context swap probably not needed, but let's be safe */
1238  MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
1239 
1240 #ifdef TRACE_SORT
1241  long spaceUsed;
1242 
1243  if (state->tapeset)
1244  spaceUsed = LogicalTapeSetBlocks(state->tapeset);
1245  else
1246  spaceUsed = (state->allowedMem - state->availMem + 1023) / 1024;
1247 #endif
1248 
1249  /*
1250  * Delete temporary "tape" files, if any.
1251  *
1252  * Note: want to include this in reported total cost of sort, hence need
1253  * for two #ifdef TRACE_SORT sections.
1254  */
1255  if (state->tapeset)
1256  LogicalTapeSetClose(state->tapeset);
1257 
1258 #ifdef TRACE_SORT
1259  if (trace_sort)
1260  {
1261  if (state->tapeset)
1262  elog(LOG, "%s of %d ended, %ld disk blocks used: %s",
1263  SERIAL(state) ? "external sort" : "parallel external sort",
1264  state->worker, spaceUsed, pg_rusage_show(&state->ru_start));
1265  else
1266  elog(LOG, "%s of %d ended, %ld KB used: %s",
1267  SERIAL(state) ? "internal sort" : "unperformed parallel sort",
1268  state->worker, spaceUsed, pg_rusage_show(&state->ru_start));
1269  }
1270 
1271  TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, spaceUsed);
1272 #else
1273 
1274  /*
1275  * If you disabled TRACE_SORT, you can still probe sort__done, but you
1276  * ain't getting space-used stats.
1277  */
1278  TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, 0L);
1279 #endif
1280 
1281  /* Free any execution state created for CLUSTER case */
1282  if (state->estate != NULL)
1283  {
1284  ExprContext *econtext = GetPerTupleExprContext(state->estate);
1285 
1287  FreeExecutorState(state->estate);
1288  }
1289 
1290  MemoryContextSwitchTo(oldcontext);
1291 
1292  /*
1293  * Free the per-sort memory context, thereby releasing all working memory,
1294  * including the Tuplesortstate struct itself.
1295  */
1297 }
int64 availMem
Definition: tuplesort.c:242
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:211
PGRUsage ru_start
Definition: tuplesort.c:465
#define SERIAL(state)
Definition: tuplesort.c:532
EState * estate
Definition: tuplesort.c:436
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
void FreeExecutorState(EState *estate)
Definition: execUtils.c:188
#define GetPerTupleExprContext(estate)
Definition: executor.h:489
MemoryContext sortcontext
Definition: tuplesort.c:246
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:247
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
int64 allowedMem
Definition: tuplesort.c:243
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:218
void LogicalTapeSetClose(LogicalTapeSet *lts)
Definition: logtape.c:583
#define elog
Definition: elog.h:219
long LogicalTapeSetBlocks(LogicalTapeSet *lts)
Definition: logtape.c:1082

◆ tuplesort_estimate_shared()

Size tuplesort_estimate_shared ( int  nWorkers)

Definition at line 4363 of file tuplesort.c.

References add_size(), Assert, MAXALIGN, mul_size(), and offsetof.

Referenced by _bt_begin_parallel().

4364 {
4365  Size tapesSize;
4366 
4367  Assert(nWorkers > 0);
4368 
4369  /* Make sure that BufFile shared state is MAXALIGN'd */
4370  tapesSize = mul_size(sizeof(TapeShare), nWorkers);
4371  tapesSize = MAXALIGN(add_size(tapesSize, offsetof(Sharedsort, tapes)));
4372 
4373  return tapesSize;
4374 }
Size mul_size(Size s1, Size s2)
Definition: shmem.c:492
Size add_size(Size s1, Size s2)
Definition: shmem.c:475
#define Assert(condition)
Definition: c.h:699
size_t Size
Definition: c.h:433
#define MAXALIGN(LEN)
Definition: c.h:652
#define offsetof(type, field)
Definition: c.h:622

◆ tuplesort_get_stats()

void tuplesort_get_stats ( Tuplesortstate state,
TuplesortInstrumentation stats 
)

Definition at line 3129 of file tuplesort.c.

References Tuplesortstate::allowedMem, Tuplesortstate::availMem, Tuplesortstate::boundUsed, LogicalTapeSetBlocks(), SORT_SPACE_TYPE_DISK, SORT_SPACE_TYPE_MEMORY, SORT_TYPE_EXTERNAL_MERGE, SORT_TYPE_EXTERNAL_SORT, SORT_TYPE_QUICKSORT, SORT_TYPE_STILL_IN_PROGRESS, SORT_TYPE_TOP_N_HEAPSORT, TuplesortInstrumentation::sortMethod, TuplesortInstrumentation::spaceType, TuplesortInstrumentation::spaceUsed, Tuplesortstate::status, Tuplesortstate::tapeset, TSS_FINALMERGE, TSS_SORTEDINMEM, and TSS_SORTEDONTAPE.

Referenced by ExecSort(), and show_sort_info().

3131 {
3132  /*
3133  * Note: it might seem we should provide both memory and disk usage for a
3134  * disk-based sort. However, the current code doesn't track memory space
3135  * accurately once we have begun to return tuples to the caller (since we
3136  * don't account for pfree's the caller is expected to do), so we cannot
3137  * rely on availMem in a disk sort. This does not seem worth the overhead
3138  * to fix. Is it worth creating an API for the memory context code to
3139  * tell us how much is actually used in sortcontext?
3140  */
3141  if (state->tapeset)
3142  {
3144  stats->spaceUsed = LogicalTapeSetBlocks(state->tapeset) * (BLCKSZ / 1024);
3145  }
3146  else
3147  {
3149  stats->spaceUsed = (state->allowedMem - state->availMem + 1023) / 1024;
3150  }
3151 
3152  switch (state->status)
3153  {
3154  case TSS_SORTEDINMEM:
3155  if (state->boundUsed)
3157  else
3159  break;
3160  case TSS_SORTEDONTAPE:
3162  break;
3163  case TSS_FINALMERGE:
3165  break;
3166  default:
3168  break;
3169  }
3170 }
int64 availMem
Definition: tuplesort.c:242
TupSortStatus status
Definition: tuplesort.c:234
TuplesortMethod sortMethod
Definition: tuplesort.h:83
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
int64 allowedMem
Definition: tuplesort.c:243
TuplesortSpaceType spaceType
Definition: tuplesort.h:84
long LogicalTapeSetBlocks(LogicalTapeSet *lts)
Definition: logtape.c:1082

◆ tuplesort_getdatum()

bool tuplesort_getdatum ( Tuplesortstate state,
bool  forward,
Datum val,
bool isNull,
Datum abbrev 
)

Definition at line 2244 of file tuplesort.c.

References SortSupportData::abbrev_converter, SortTuple::datum1, datumCopy(), Tuplesortstate::datumTypeLen, SortTuple::isnull1, MemoryContextSwitchTo(), PointerGetDatum, Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortTuple::tuple, Tuplesortstate::tuples, and tuplesort_gettuple_common().

Referenced by mode_final(), percentile_cont_final_common(), percentile_cont_multi_final_common(), percentile_disc_final(), percentile_disc_multi_final(), process_ordered_aggregate_single(), and validate_index_heapscan().

2246 {
2247  MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2248  SortTuple stup;
2249 
2250  if (!tuplesort_gettuple_common(state, forward, &stup))
2251  {
2252  MemoryContextSwitchTo(oldcontext);
2253  return false;
2254  }
2255 
2256  /* Ensure we copy into caller's memory context */
2257  MemoryContextSwitchTo(oldcontext);
2258 
2259  /* Record abbreviated key for caller */
2260  if (state->sortKeys->abbrev_converter && abbrev)
2261  *abbrev = stup.datum1;
2262 
2263  if (stup.isnull1 || !state->tuples)
2264  {
2265  *val = stup.datum1;
2266  *isNull = stup.isnull1;
2267  }
2268  else
2269  {
2270  /* use stup.tuple because stup.datum1 may be an abbreviation */
2271  *val = datumCopy(PointerGetDatum(stup.tuple), false, state->datumTypeLen);
2272  *isNull = false;
2273  }
2274 
2275  return true;
2276 }
#define PointerGetDatum(X)
Definition: postgres.h:539
SortSupport sortKeys
Definition: tuplesort.c:414
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
Datum datum1
Definition: tuplesort.c:172
bool isnull1
Definition: tuplesort.c:173
void * tuple
Definition: tuplesort.c:171
MemoryContext sortcontext
Definition: tuplesort.c:246
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
static bool tuplesort_gettuple_common(Tuplesortstate *state, bool forward, SortTuple *stup)
Definition: tuplesort.c:1901
Datum datumCopy(Datum value, bool typByVal, int typLen)
Definition: datum.c:128
long val
Definition: informix.c:689

◆ tuplesort_getheaptuple()

HeapTuple tuplesort_getheaptuple ( Tuplesortstate state,
bool  forward 
)

Definition at line 2195 of file tuplesort.c.

References MemoryContextSwitchTo(), Tuplesortstate::sortcontext, SortTuple::tuple, and tuplesort_gettuple_common().

Referenced by copy_heap_data().

2196 {
2197  MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2198  SortTuple stup;
2199 
2200  if (!tuplesort_gettuple_common(state, forward, &stup))
2201  stup.tuple = NULL;
2202 
2203  MemoryContextSwitchTo(oldcontext);
2204 
2205  return stup.tuple;
2206 }
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
void * tuple
Definition: tuplesort.c:171
MemoryContext sortcontext
Definition: tuplesort.c:246
static bool tuplesort_gettuple_common(Tuplesortstate *state, bool forward, SortTuple *stup)
Definition: tuplesort.c:1901

◆ tuplesort_getindextuple()

IndexTuple tuplesort_getindextuple ( Tuplesortstate state,
bool  forward 
)

Definition at line 2215 of file tuplesort.c.

References MemoryContextSwitchTo(), Tuplesortstate::sortcontext, SortTuple::tuple, and tuplesort_gettuple_common().

Referenced by _bt_load(), and _h_indexbuild().

2216 {
2217  MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2218  SortTuple stup;
2219 
2220  if (!tuplesort_gettuple_common(state, forward, &stup))
2221  stup.tuple = NULL;
2222 
2223  MemoryContextSwitchTo(oldcontext);
2224 
2225  return (IndexTuple) stup.tuple;
2226 }
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
void * tuple
Definition: tuplesort.c:171
MemoryContext sortcontext
Definition: tuplesort.c:246
static bool tuplesort_gettuple_common(Tuplesortstate *state, bool forward, SortTuple *stup)
Definition: tuplesort.c:1901

◆ tuplesort_gettuple_common()

static bool tuplesort_gettuple_common ( Tuplesortstate state,
bool  forward,
SortTuple stup 
)
static

Definition at line 1901 of file tuplesort.c.

References Assert, Tuplesortstate::bound, Tuplesortstate::bounded, Tuplesortstate::current, elog, Tuplesortstate::eof_reached, ERROR, getlen(), Tuplesortstate::lastReturnedTuple, LogicalTapeBackspace(), LogicalTapeRewindForWrite(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, mergereadnext(), Tuplesortstate::randomAccess, READTUP, RELEASE_SLAB_SLOT, Tuplesortstate::result_tape, Tuplesortstate::slabAllocatorUsed, Tuplesortstate::status, Tuplesortstate::tapeset, TSS_FINALMERGE, TSS_SORTEDINMEM, TSS_SORTEDONTAPE, SortTuple::tupindex, SortTuple::tuple, tuplesort_heap_delete_top(), tuplesort_heap_replace_top(), and WORKER.

Referenced by tuplesort_getdatum(), tuplesort_getheaptuple(), tuplesort_getindextuple(), tuplesort_gettupleslot(), and tuplesort_skiptuples().

1903 {
1904  unsigned int tuplen;
1905  size_t nmoved;
1906 
1907  Assert(!WORKER(state));
1908 
1909  switch (state->status)
1910  {
1911  case TSS_SORTEDINMEM:
1912  Assert(forward || state->randomAccess);
1913  Assert(!state->slabAllocatorUsed);
1914  if (forward)
1915  {
1916  if (state->current < state->memtupcount)
1917  {
1918  *stup = state->memtuples[state->current++];
1919  return true;
1920  }
1921  state->eof_reached = true;
1922 
1923  /*
1924  * Complain if caller tries to retrieve more tuples than
1925  * originally asked for in a bounded sort. This is because
1926  * returning EOF here might be the wrong thing.
1927  */
1928  if (state->bounded && state->current >= state->bound)
1929  elog(ERROR, "retrieved too many tuples in a bounded sort");
1930 
1931  return false;
1932  }
1933  else
1934  {
1935  if (state->current <= 0)
1936  return false;
1937 
1938  /*
1939  * if all tuples are fetched already then we return last
1940  * tuple, else - tuple before last returned.
1941  */
1942  if (state->eof_reached)
1943  state->eof_reached = false;
1944  else
1945  {
1946  state->current--; /* last returned tuple */
1947  if (state->current <= 0)
1948  return false;
1949  }
1950  *stup = state->memtuples[state->current - 1];
1951  return true;
1952  }
1953  break;
1954 
1955  case TSS_SORTEDONTAPE:
1956  Assert(forward || state->randomAccess);
1957  Assert(state->slabAllocatorUsed);
1958 
1959  /*
1960  * The slot that held the tuple that we returned in previous
1961  * gettuple call can now be reused.
1962  */
1963  if (state->lastReturnedTuple)
1964  {
1965  RELEASE_SLAB_SLOT(state, state->lastReturnedTuple);
1966  state->lastReturnedTuple = NULL;
1967  }
1968 
1969  if (forward)
1970  {
1971  if (state->eof_reached)
1972  return false;
1973 
1974  if ((tuplen = getlen(state, state->result_tape, true)) != 0)
1975  {
1976  READTUP(state, stup, state->result_tape, tuplen);
1977 
1978  /*
1979  * Remember the tuple we return, so that we can recycle
1980  * its memory on next call. (This can be NULL, in the
1981  * !state->tuples case).
1982  */
1983  state->lastReturnedTuple = stup->tuple;
1984 
1985  return true;
1986  }
1987  else
1988  {
1989  state->eof_reached = true;
1990  return false;
1991  }
1992  }
1993 
1994  /*
1995  * Backward.
1996  *
1997  * if all tuples are fetched already then we return last tuple,
1998  * else - tuple before last returned.
1999  */
2000  if (state->eof_reached)
2001  {
2002  /*
2003  * Seek position is pointing just past the zero tuplen at the
2004  * end of file; back up to fetch last tuple's ending length
2005  * word. If seek fails we must have a completely empty file.
2006  */
2007  nmoved = LogicalTapeBackspace(state->tapeset,
2008  state->result_tape,
2009  2 * sizeof(unsigned int));
2010  if (nmoved == 0)
2011  return false;
2012  else if (nmoved != 2 * sizeof(unsigned int))
2013  elog(ERROR, "unexpected tape position");
2014  state->eof_reached = false;
2015  }
2016  else
2017  {
2018  /*
2019  * Back up and fetch previously-returned tuple's ending length
2020  * word. If seek fails, assume we are at start of file.
2021  */
2022  nmoved = LogicalTapeBackspace(state->tapeset,
2023  state->result_tape,
2024  sizeof(unsigned int));
2025  if (nmoved == 0)
2026  return false;
2027  else if (nmoved != sizeof(unsigned int))
2028  elog(ERROR, "unexpected tape position");
2029  tuplen = getlen(state, state->result_tape, false);
2030 
2031  /*
2032  * Back up to get ending length word of tuple before it.
2033  */
2034  nmoved = LogicalTapeBackspace(state->tapeset,
2035  state->result_tape,
2036  tuplen + 2 * sizeof(unsigned int));
2037  if (nmoved == tuplen + sizeof(unsigned int))
2038  {
2039  /*
2040  * We backed up over the previous tuple, but there was no
2041  * ending length word before it. That means that the prev
2042  * tuple is the first tuple in the file. It is now the
2043  * next to read in forward direction (not obviously right,
2044  * but that is what in-memory case does).
2045  */
2046  return false;
2047  }
2048  else if (nmoved != tuplen + 2 * sizeof(unsigned int))
2049  elog(ERROR, "bogus tuple length in backward scan");
2050  }
2051 
2052  tuplen = getlen(state, state->result_tape, false);
2053 
2054  /*
2055  * Now we have the length of the prior tuple, back up and read it.
2056  * Note: READTUP expects we are positioned after the initial
2057  * length word of the tuple, so back up to that point.
2058  */
2059  nmoved = LogicalTapeBackspace(state->tapeset,
2060  state->result_tape,
2061  tuplen);
2062  if (nmoved != tuplen)
2063  elog(ERROR, "bogus tuple length in backward scan");
2064  READTUP(state, stup, state->result_tape, tuplen);
2065 
2066  /*
2067  * Remember the tuple we return, so that we can recycle its memory
2068  * on next call. (This can be NULL, in the Datum case).
2069  */
2070  state->lastReturnedTuple = stup->tuple;
2071 
2072  return true;
2073 
2074  case TSS_FINALMERGE:
2075  Assert(forward);
2076  /* We are managing memory ourselves, with the slab allocator. */
2077  Assert(state->slabAllocatorUsed);
2078 
2079  /*
2080  * The slab slot holding the tuple that we returned in previous
2081  * gettuple call can now be reused.
2082  */
2083  if (state->lastReturnedTuple)
2084  {
2085  RELEASE_SLAB_SLOT(state, state->lastReturnedTuple);
2086  state->lastReturnedTuple = NULL;
2087  }
2088 
2089  /*
2090  * This code should match the inner loop of mergeonerun().
2091  */
2092  if (state->memtupcount > 0)
2093  {
2094  int srcTape = state->memtuples[0].tupindex;
2095  SortTuple newtup;
2096 
2097  *stup = state->memtuples[0];
2098 
2099  /*
2100  * Remember the tuple we return, so that we can recycle its
2101  * memory on next call. (This can be NULL, in the Datum case).
2102  */
2103  state->lastReturnedTuple = stup->tuple;
2104 
2105  /*
2106  * Pull next tuple from tape, and replace the returned tuple
2107  * at top of the heap with it.
2108  */
2109  if (!mergereadnext(state, srcTape, &newtup))
2110  {
2111  /*
2112  * If no more data, we've reached end of run on this tape.
2113  * Remove the top node from the heap.
2114  */
2116 
2117  /*
2118  * Rewind to free the read buffer. It'd go away at the
2119  * end of the sort anyway, but better to release the
2120  * memory early.
2121  */
2122  LogicalTapeRewindForWrite(state->tapeset, srcTape);
2123  return true;
2124  }
2125  newtup.tupindex = srcTape;
2126  tuplesort_heap_replace_top(state, &newtup);
2127  return true;
2128  }
2129  return false;
2130 
2131  default:
2132  elog(ERROR, "invalid tuplesort state");
2133  return false; /* keep compiler quiet */
2134  }
2135 }
TupSortStatus status
Definition: tuplesort.c:234
bool randomAccess
Definition: tuplesort.c:236
void LogicalTapeRewindForWrite(LogicalTapeSet *lts, int tapenum)
Definition: logtape.c:795
static unsigned int getlen(Tuplesortstate *state, int tapenum, bool eofOK)
Definition: tuplesort.c:3454
void * tuple
Definition: tuplesort.c:171
#define ERROR
Definition: elog.h:43
void * lastReturnedTuple
Definition: tuplesort.c:342
size_t LogicalTapeBackspace(LogicalTapeSet *lts, int tapenum, size_t size)
Definition: logtape.c:960
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
#define WORKER(state)
Definition: tuplesort.c:533
#define READTUP(state, stup, tape, len)
Definition: tuplesort.c:528
#define RELEASE_SLAB_SLOT(state, tuple)
Definition: tuplesort.c:513
static void tuplesort_heap_delete_top(Tuplesortstate *state)
Definition: tuplesort.c:3372
static bool mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup)
Definition: tuplesort.c:2900
#define Assert(condition)
Definition: c.h:699
bool eof_reached
Definition: tuplesort.c:382
int tupindex
Definition: tuplesort.c:174
bool slabAllocatorUsed
Definition: tuplesort.c:327
#define elog
Definition: elog.h:219
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3396
SortTuple * memtuples
Definition: tuplesort.c:295

◆ tuplesort_gettupleslot()