PostgreSQL Source Code  git master
tuplesort.c File Reference
#include "postgres.h"
#include <limits.h>
#include "access/hash.h"
#include "access/htup_details.h"
#include "access/nbtree.h"
#include "catalog/index.h"
#include "catalog/pg_am.h"
#include "commands/tablespace.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "pg_trace.h"
#include "utils/datum.h"
#include "utils/logtape.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_rusage.h"
#include "utils/rel.h"
#include "utils/sortsupport.h"
#include "utils/tuplesort.h"
#include "qsort_tuple.c"
Include dependency graph for tuplesort.c:

Go to the source code of this file.

Data Structures

struct  SortTuple
 
union  SlabSlot
 
struct  Tuplesortstate
 
struct  Sharedsort
 

Macros

#define HEAP_SORT   0
 
#define INDEX_SORT   1
 
#define DATUM_SORT   2
 
#define CLUSTER_SORT   3
 
#define PARALLEL_SORT(state)
 
#define SLAB_SLOT_SIZE   1024
 
#define MINORDER   6 /* minimum merge order */
 
#define MAXORDER   500 /* maximum merge order */
 
#define TAPE_BUFFER_OVERHEAD   BLCKSZ
 
#define MERGE_BUFFER_SIZE   (BLCKSZ * 32)
 
#define IS_SLAB_SLOT(state, tuple)
 
#define RELEASE_SLAB_SLOT(state, tuple)
 
#define COMPARETUP(state, a, b)   ((*(state)->comparetup) (a, b, state))
 
#define COPYTUP(state, stup, tup)   ((*(state)->copytup) (state, stup, tup))
 
#define WRITETUP(state, tape, stup)   ((*(state)->writetup) (state, tape, stup))
 
#define READTUP(state, stup, tape, len)   ((*(state)->readtup) (state, stup, tape, len))
 
#define LACKMEM(state)   ((state)->availMem < 0 && !(state)->slabAllocatorUsed)
 
#define USEMEM(state, amt)   ((state)->availMem -= (amt))
 
#define FREEMEM(state, amt)   ((state)->availMem += (amt))
 
#define SERIAL(state)   ((state)->shared == NULL)
 
#define WORKER(state)   ((state)->shared && (state)->worker != -1)
 
#define LEADER(state)   ((state)->shared && (state)->worker == -1)
 
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
 

Typedefs

typedef union SlabSlot SlabSlot
 
typedef int(* SortTupleComparator) (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 

Enumerations

enum  TupSortStatus {
  TSS_INITIAL, TSS_BOUNDED, TSS_BUILDRUNS, TSS_SORTEDINMEM,
  TSS_SORTEDONTAPE, TSS_FINALMERGE
}
 

Functions

static Tuplesortstatetuplesort_begin_common (int workMem, SortCoordinate coordinate, bool randomAccess)
 
static void puttuple_common (Tuplesortstate *state, SortTuple *tuple)
 
static bool consider_abort_common (Tuplesortstate *state)
 
static void inittapes (Tuplesortstate *state, bool mergeruns)
 
static void inittapestate (Tuplesortstate *state, int maxTapes)
 
static void selectnewtape (Tuplesortstate *state)
 
static void init_slab_allocator (Tuplesortstate *state, int numSlots)
 
static void mergeruns (Tuplesortstate *state)
 
static void mergeonerun (Tuplesortstate *state)
 
static void beginmerge (Tuplesortstate *state)
 
static bool mergereadnext (Tuplesortstate *state, int srcTape, SortTuple *stup)
 
static void dumptuples (Tuplesortstate *state, bool alltuples)
 
static void make_bounded_heap (Tuplesortstate *state)
 
static void sort_bounded_heap (Tuplesortstate *state)
 
static void tuplesort_sort_memtuples (Tuplesortstate *state)
 
static void tuplesort_heap_insert (Tuplesortstate *state, SortTuple *tuple)
 
static void tuplesort_heap_replace_top (Tuplesortstate *state, SortTuple *tuple)
 
static void tuplesort_heap_delete_top (Tuplesortstate *state)
 
static void reversedirection (Tuplesortstate *state)
 
static unsigned int getlen (Tuplesortstate *state, int tapenum, bool eofOK)
 
static void markrunend (Tuplesortstate *state, int tapenum)
 
static void * readtup_alloc (Tuplesortstate *state, Size tuplen)
 
static int comparetup_heap (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static void copytup_heap (Tuplesortstate *state, SortTuple *stup, void *tup)
 
static void writetup_heap (Tuplesortstate *state, int tapenum, SortTuple *stup)
 
static void readtup_heap (Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
 
static int comparetup_cluster (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static void copytup_cluster (Tuplesortstate *state, SortTuple *stup, void *tup)
 
static void writetup_cluster (Tuplesortstate *state, int tapenum, SortTuple *stup)
 
static void readtup_cluster (Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
 
static int comparetup_index_btree (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static int comparetup_index_hash (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static void copytup_index (Tuplesortstate *state, SortTuple *stup, void *tup)
 
static void writetup_index (Tuplesortstate *state, int tapenum, SortTuple *stup)
 
static void readtup_index (Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
 
static int comparetup_datum (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static void copytup_datum (Tuplesortstate *state, SortTuple *stup, void *tup)
 
static void writetup_datum (Tuplesortstate *state, int tapenum, SortTuple *stup)
 
static void readtup_datum (Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
 
static int worker_get_identifier (Tuplesortstate *state)
 
static void worker_freeze_result_tape (Tuplesortstate *state)
 
static void worker_nomergeruns (Tuplesortstate *state)
 
static void leader_takeover_tapes (Tuplesortstate *state)
 
static void free_sort_tuple (Tuplesortstate *state, SortTuple *stup)
 
Tuplesortstatetuplesort_begin_heap (TupleDesc tupDesc, int nkeys, AttrNumber *attNums, Oid *sortOperators, Oid *sortCollations, bool *nullsFirstFlags, int workMem, SortCoordinate coordinate, bool randomAccess)
 
Tuplesortstatetuplesort_begin_cluster (TupleDesc tupDesc, Relation indexRel, int workMem, SortCoordinate coordinate, bool randomAccess)
 
Tuplesortstatetuplesort_begin_index_btree (Relation heapRel, Relation indexRel, bool enforceUnique, int workMem, SortCoordinate coordinate, bool randomAccess)
 
Tuplesortstatetuplesort_begin_index_hash (Relation heapRel, Relation indexRel, uint32 high_mask, uint32 low_mask, uint32 max_buckets, int workMem, SortCoordinate coordinate, bool randomAccess)
 
Tuplesortstatetuplesort_begin_datum (Oid datumType, Oid sortOperator, Oid sortCollation, bool nullsFirstFlag, int workMem, SortCoordinate coordinate, bool randomAccess)
 
void tuplesort_set_bound (Tuplesortstate *state, int64 bound)
 
void tuplesort_end (Tuplesortstate *state)
 
static bool grow_memtuples (Tuplesortstate *state)
 
void tuplesort_puttupleslot (Tuplesortstate *state, TupleTableSlot *slot)
 
void tuplesort_putheaptuple (Tuplesortstate *state, HeapTuple tup)
 
void tuplesort_putindextuplevalues (Tuplesortstate *state, Relation rel, ItemPointer self, Datum *values, bool *isnull)
 
void tuplesort_putdatum (Tuplesortstate *state, Datum val, bool isNull)
 
void tuplesort_performsort (Tuplesortstate *state)
 
static bool tuplesort_gettuple_common (Tuplesortstate *state, bool forward, SortTuple *stup)
 
bool tuplesort_gettupleslot (Tuplesortstate *state, bool forward, bool copy, TupleTableSlot *slot, Datum *abbrev)
 
HeapTuple tuplesort_getheaptuple (Tuplesortstate *state, bool forward)
 
IndexTuple tuplesort_getindextuple (Tuplesortstate *state, bool forward)
 
bool tuplesort_getdatum (Tuplesortstate *state, bool forward, Datum *val, bool *isNull, Datum *abbrev)
 
bool tuplesort_skiptuples (Tuplesortstate *state, int64 ntuples, bool forward)
 
int tuplesort_merge_order (int64 allowedMem)
 
void tuplesort_rescan (Tuplesortstate *state)
 
void tuplesort_markpos (Tuplesortstate *state)
 
void tuplesort_restorepos (Tuplesortstate *state)
 
void tuplesort_get_stats (Tuplesortstate *state, TuplesortInstrumentation *stats)
 
const char * tuplesort_method_name (TuplesortMethod m)
 
const char * tuplesort_space_type_name (TuplesortSpaceType t)
 
Size tuplesort_estimate_shared (int nWorkers)
 
void tuplesort_initialize_shared (Sharedsort *shared, int nWorkers, dsm_segment *seg)
 
void tuplesort_attach_shared (Sharedsort *shared, dsm_segment *seg)
 

Variables

bool trace_sort = false
 

Macro Definition Documentation

◆ CLUSTER_SORT

#define CLUSTER_SORT   3

Definition at line 122 of file tuplesort.c.

Referenced by tuplesort_begin_cluster().

◆ COMPARETUP

#define COMPARETUP (   state,
  a,
 
)    ((*(state)->comparetup) (a, b, state))

◆ COPYTUP

#define COPYTUP (   state,
  stup,
  tup 
)    ((*(state)->copytup) (state, stup, tup))

Definition at line 524 of file tuplesort.c.

Referenced by tuplesort_putheaptuple(), and tuplesort_puttupleslot().

◆ DATUM_SORT

#define DATUM_SORT   2

Definition at line 121 of file tuplesort.c.

Referenced by tuplesort_begin_datum().

◆ FREEMEM

#define FREEMEM (   state,
  amt 
)    ((state)->availMem += (amt))

◆ HEAP_SORT

#define HEAP_SORT   0

Definition at line 119 of file tuplesort.c.

Referenced by tuplesort_begin_heap().

◆ INDEX_SORT

#define INDEX_SORT   1

Definition at line 120 of file tuplesort.c.

Referenced by tuplesort_begin_index_btree().

◆ IS_SLAB_SLOT

#define IS_SLAB_SLOT (   state,
  tuple 
)
Value:
((char *) (tuple) >= (state)->slabMemoryBegin && \
(char *) (tuple) < (state)->slabMemoryEnd)
Definition: regguts.h:298

Definition at line 503 of file tuplesort.c.

◆ LACKMEM

#define LACKMEM (   state)    ((state)->availMem < 0 && !(state)->slabAllocatorUsed)

Definition at line 527 of file tuplesort.c.

Referenced by dumptuples(), grow_memtuples(), puttuple_common(), and tuplesort_begin_common().

◆ LEADER

#define LEADER (   state)    ((state)->shared && (state)->worker == -1)

◆ LogicalTapeReadExact

#define LogicalTapeReadExact (   tapeset,
  tapenum,
  ptr,
  len 
)
Value:
do { \
if (LogicalTapeRead(tapeset, tapenum, ptr, len) != (size_t) (len)) \
elog(ERROR, "unexpected end of data"); \
} while(0)
size_t LogicalTapeRead(LogicalTapeSet *lts, int tapenum, void *ptr, size_t size)
Definition: logtape.c:822
#define ERROR
Definition: elog.h:43

Definition at line 584 of file tuplesort.c.

Referenced by readtup_cluster(), readtup_datum(), readtup_heap(), and readtup_index().

◆ MAXORDER

#define MAXORDER   500 /* maximum merge order */

Definition at line 220 of file tuplesort.c.

Referenced by tuplesort_merge_order().

◆ MERGE_BUFFER_SIZE

#define MERGE_BUFFER_SIZE   (BLCKSZ * 32)

Definition at line 222 of file tuplesort.c.

Referenced by tuplesort_merge_order().

◆ MINORDER

#define MINORDER   6 /* minimum merge order */

Definition at line 219 of file tuplesort.c.

Referenced by inittapes(), and tuplesort_merge_order().

◆ PARALLEL_SORT

#define PARALLEL_SORT (   state)
Value:
((state)->shared == NULL ? 0 : \
(state)->worker >= 0 ? 1 : 2)
Definition: regguts.h:298

Definition at line 125 of file tuplesort.c.

Referenced by tuplesort_begin_cluster(), tuplesort_begin_datum(), tuplesort_begin_heap(), and tuplesort_begin_index_btree().

◆ READTUP

#define READTUP (   state,
  stup,
  tape,
  len 
)    ((*(state)->readtup) (state, stup, tape, len))

Definition at line 526 of file tuplesort.c.

Referenced by mergereadnext(), and tuplesort_gettuple_common().

◆ RELEASE_SLAB_SLOT

#define RELEASE_SLAB_SLOT (   state,
  tuple 
)
Value:
do { \
SlabSlot *buf = (SlabSlot *) tuple; \
\
if (IS_SLAB_SLOT((state), buf)) \
{ \
buf->nextfree = (state)->slabFreeHead; \
(state)->slabFreeHead = buf; \
pfree(buf); \
} while(0)
void pfree(void *pointer)
Definition: mcxt.c:1056
static char * buf
Definition: pg_test_fsync.c:68
Definition: regguts.h:298
#define IS_SLAB_SLOT(state, tuple)
Definition: tuplesort.c:503

Definition at line 511 of file tuplesort.c.

Referenced by mergeonerun(), and tuplesort_gettuple_common().

◆ SERIAL

#define SERIAL (   state)    ((state)->shared == NULL)

◆ SLAB_SLOT_SIZE

#define SLAB_SLOT_SIZE   1024

Definition at line 186 of file tuplesort.c.

Referenced by init_slab_allocator(), and readtup_alloc().

◆ TAPE_BUFFER_OVERHEAD

#define TAPE_BUFFER_OVERHEAD   BLCKSZ

Definition at line 221 of file tuplesort.c.

Referenced by inittapestate(), mergeruns(), and tuplesort_merge_order().

◆ USEMEM

◆ WORKER

◆ WRITETUP

#define WRITETUP (   state,
  tape,
  stup 
)    ((*(state)->writetup) (state, tape, stup))

Definition at line 525 of file tuplesort.c.

Referenced by dumptuples(), and mergeonerun().

Typedef Documentation

◆ SlabSlot

typedef union SlabSlot SlabSlot

◆ SortTupleComparator

typedef int(* SortTupleComparator) (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)

Definition at line 224 of file tuplesort.c.

Enumeration Type Documentation

◆ TupSortStatus

Enumerator
TSS_INITIAL 
TSS_BOUNDED 
TSS_BUILDRUNS 
TSS_SORTEDINMEM 
TSS_SORTEDONTAPE 
TSS_FINALMERGE 

Definition at line 198 of file tuplesort.c.

199 {
200  TSS_INITIAL, /* Loading tuples; still within memory limit */
201  TSS_BOUNDED, /* Loading tuples into bounded-size heap */
202  TSS_BUILDRUNS, /* Loading tuples; writing to tape */
203  TSS_SORTEDINMEM, /* Sort completed entirely in memory */
204  TSS_SORTEDONTAPE, /* Sort completed, final run is on tape */
205  TSS_FINALMERGE /* Performing final merge on-the-fly */
206 } TupSortStatus;
TupSortStatus
Definition: tuplesort.c:198

Function Documentation

◆ beginmerge()

static void beginmerge ( Tuplesortstate state)
static

Definition at line 2852 of file tuplesort.c.

References Tuplesortstate::activeTapes, Assert, Tuplesortstate::maxTapes, Tuplesortstate::memtupcount, Tuplesortstate::mergeactive, mergereadnext(), SortTuple::srctape, Tuplesortstate::tapeRange, Tuplesortstate::tp_dummy, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, and tuplesort_heap_insert().

Referenced by mergeonerun(), and mergeruns().

2853 {
2854  int activeTapes;
2855  int tapenum;
2856  int srcTape;
2857 
2858  /* Heap should be empty here */
2859  Assert(state->memtupcount == 0);
2860 
2861  /* Adjust run counts and mark the active tapes */
2862  memset(state->mergeactive, 0,
2863  state->maxTapes * sizeof(*state->mergeactive));
2864  activeTapes = 0;
2865  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2866  {
2867  if (state->tp_dummy[tapenum] > 0)
2868  state->tp_dummy[tapenum]--;
2869  else
2870  {
2871  Assert(state->tp_runs[tapenum] > 0);
2872  state->tp_runs[tapenum]--;
2873  srcTape = state->tp_tapenum[tapenum];
2874  state->mergeactive[srcTape] = true;
2875  activeTapes++;
2876  }
2877  }
2878  Assert(activeTapes > 0);
2879  state->activeTapes = activeTapes;
2880 
2881  /* Load the merge heap with the first tuple from each input tape */
2882  for (srcTape = 0; srcTape < state->maxTapes; srcTape++)
2883  {
2884  SortTuple tup;
2885 
2886  if (mergereadnext(state, srcTape, &tup))
2887  {
2888  tup.srctape = srcTape;
2889  tuplesort_heap_insert(state, &tup);
2890  }
2891  }
2892 }
static void tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3337
static bool mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup)
Definition: tuplesort.c:2900
#define Assert(condition)
Definition: c.h:732
int srctape
Definition: tuplesort.c:172
int * tp_dummy
Definition: tuplesort.c:369
int * tp_tapenum
Definition: tuplesort.c:370
bool * mergeactive
Definition: tuplesort.c:358

◆ comparetup_cluster()

static int comparetup_cluster ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 3708 of file tuplesort.c.

References SortSupportData::abbrev_converter, ApplySortAbbrevFullComparator(), ApplySortComparator(), compare(), SortTuple::datum1, Tuplesortstate::estate, ExecStoreHeapTuple(), FormIndexDatum(), GetPerTupleExprContext, heap_getattr, IndexInfo::ii_Expressions, IndexInfo::ii_IndexAttrNumbers, INDEX_MAX_KEYS, Tuplesortstate::indexInfo, SortTuple::isnull1, Tuplesortstate::nKeys, ResetPerTupleExprContext, Tuplesortstate::sortKeys, Tuplesortstate::tupDesc, and SortTuple::tuple.

Referenced by tuplesort_begin_cluster().

3710 {
3711  SortSupport sortKey = state->sortKeys;
3712  HeapTuple ltup;
3713  HeapTuple rtup;
3714  TupleDesc tupDesc;
3715  int nkey;
3716  int32 compare;
3717  Datum datum1,
3718  datum2;
3719  bool isnull1,
3720  isnull2;
3721  AttrNumber leading = state->indexInfo->ii_IndexAttrNumbers[0];
3722 
3723  /* Be prepared to compare additional sort keys */
3724  ltup = (HeapTuple) a->tuple;
3725  rtup = (HeapTuple) b->tuple;
3726  tupDesc = state->tupDesc;
3727 
3728  /* Compare the leading sort key, if it's simple */
3729  if (leading != 0)
3730  {
3731  compare = ApplySortComparator(a->datum1, a->isnull1,
3732  b->datum1, b->isnull1,
3733  sortKey);
3734  if (compare != 0)
3735  return compare;
3736 
3737  if (sortKey->abbrev_converter)
3738  {
3739  datum1 = heap_getattr(ltup, leading, tupDesc, &isnull1);
3740  datum2 = heap_getattr(rtup, leading, tupDesc, &isnull2);
3741 
3742  compare = ApplySortAbbrevFullComparator(datum1, isnull1,
3743  datum2, isnull2,
3744  sortKey);
3745  }
3746  if (compare != 0 || state->nKeys == 1)
3747  return compare;
3748  /* Compare additional columns the hard way */
3749  sortKey++;
3750  nkey = 1;
3751  }
3752  else
3753  {
3754  /* Must compare all keys the hard way */
3755  nkey = 0;
3756  }
3757 
3758  if (state->indexInfo->ii_Expressions == NULL)
3759  {
3760  /* If not expression index, just compare the proper heap attrs */
3761 
3762  for (; nkey < state->nKeys; nkey++, sortKey++)
3763  {
3764  AttrNumber attno = state->indexInfo->ii_IndexAttrNumbers[nkey];
3765 
3766  datum1 = heap_getattr(ltup, attno, tupDesc, &isnull1);
3767  datum2 = heap_getattr(rtup, attno, tupDesc, &isnull2);
3768 
3769  compare = ApplySortComparator(datum1, isnull1,
3770  datum2, isnull2,
3771  sortKey);
3772  if (compare != 0)
3773  return compare;
3774  }
3775  }
3776  else
3777  {
3778  /*
3779  * In the expression index case, compute the whole index tuple and
3780  * then compare values. It would perhaps be faster to compute only as
3781  * many columns as we need to compare, but that would require
3782  * duplicating all the logic in FormIndexDatum.
3783  */
3784  Datum l_index_values[INDEX_MAX_KEYS];
3785  bool l_index_isnull[INDEX_MAX_KEYS];
3786  Datum r_index_values[INDEX_MAX_KEYS];
3787  bool r_index_isnull[INDEX_MAX_KEYS];
3788  TupleTableSlot *ecxt_scantuple;
3789 
3790  /* Reset context each time to prevent memory leakage */
3792 
3793  ecxt_scantuple = GetPerTupleExprContext(state->estate)->ecxt_scantuple;
3794 
3795  ExecStoreHeapTuple(ltup, ecxt_scantuple, false);
3796  FormIndexDatum(state->indexInfo, ecxt_scantuple, state->estate,
3797  l_index_values, l_index_isnull);
3798 
3799  ExecStoreHeapTuple(rtup, ecxt_scantuple, false);
3800  FormIndexDatum(state->indexInfo, ecxt_scantuple, state->estate,
3801  r_index_values, r_index_isnull);
3802 
3803  for (; nkey < state->nKeys; nkey++, sortKey++)
3804  {
3805  compare = ApplySortComparator(l_index_values[nkey],
3806  l_index_isnull[nkey],
3807  r_index_values[nkey],
3808  r_index_isnull[nkey],
3809  sortKey);
3810  if (compare != 0)
3811  return compare;
3812  }
3813  }
3814 
3815  return 0;
3816 }
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2511
HeapTupleData * HeapTuple
Definition: htup.h:71
#define ResetPerTupleExprContext(estate)
Definition: executor.h:510
EState * estate
Definition: tuplesort.c:434
SortSupport sortKeys
Definition: tuplesort.c:412
Datum datum1
Definition: tuplesort.c:170
bool isnull1
Definition: tuplesort.c:171
signed int int32
Definition: c.h:346
#define GetPerTupleExprContext(estate)
Definition: executor.h:501
void * tuple
Definition: tuplesort.c:169
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
IndexInfo * indexInfo
Definition: tuplesort.c:433
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:172
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:762
uintptr_t Datum
Definition: postgres.h:367
List * ii_Expressions
Definition: execnodes.h:160
#define INDEX_MAX_KEYS
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:159
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:200
int16 AttrNumber
Definition: attnum.h:21
TupleTableSlot * ExecStoreHeapTuple(HeapTuple tuple, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1317
TupleDesc tupDesc
Definition: tuplesort.c:411
static int ApplySortAbbrevFullComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:238

◆ comparetup_datum()

static int comparetup_datum ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 4254 of file tuplesort.c.

References SortSupportData::abbrev_converter, ApplySortAbbrevFullComparator(), ApplySortComparator(), compare(), SortTuple::datum1, SortTuple::isnull1, PointerGetDatum, Tuplesortstate::sortKeys, and SortTuple::tuple.

Referenced by tuplesort_begin_datum().

4255 {
4256  int compare;
4257 
4258  compare = ApplySortComparator(a->datum1, a->isnull1,
4259  b->datum1, b->isnull1,
4260  state->sortKeys);
4261  if (compare != 0)
4262  return compare;
4263 
4264  /* if we have abbreviations, then "tuple" has the original value */
4265 
4266  if (state->sortKeys->abbrev_converter)
4268  PointerGetDatum(b->tuple), b->isnull1,
4269  state->sortKeys);
4270 
4271  return compare;
4272 }
#define PointerGetDatum(X)
Definition: postgres.h:556
SortSupport sortKeys
Definition: tuplesort.c:412
Datum datum1
Definition: tuplesort.c:170
bool isnull1
Definition: tuplesort.c:171
void * tuple
Definition: tuplesort.c:169
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:172
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:200
static int ApplySortAbbrevFullComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:238

◆ comparetup_heap()

static int comparetup_heap ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 3509 of file tuplesort.c.

References SortSupportData::abbrev_converter, ApplySortAbbrevFullComparator(), ApplySortComparator(), compare(), SortTuple::datum1, heap_getattr, SortTuple::isnull1, MINIMAL_TUPLE_OFFSET, Tuplesortstate::nKeys, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, HeapTupleData::t_data, HeapTupleData::t_len, Tuplesortstate::tupDesc, and SortTuple::tuple.

Referenced by tuplesort_begin_heap().

3510 {
3511  SortSupport sortKey = state->sortKeys;
3512  HeapTupleData ltup;
3513  HeapTupleData rtup;
3514  TupleDesc tupDesc;
3515  int nkey;
3516  int32 compare;
3517  AttrNumber attno;
3518  Datum datum1,
3519  datum2;
3520  bool isnull1,
3521  isnull2;
3522 
3523 
3524  /* Compare the leading sort key */
3525  compare = ApplySortComparator(a->datum1, a->isnull1,
3526  b->datum1, b->isnull1,
3527  sortKey);
3528  if (compare != 0)
3529  return compare;
3530 
3531  /* Compare additional sort keys */
3532  ltup.t_len = ((MinimalTuple) a->tuple)->t_len + MINIMAL_TUPLE_OFFSET;
3533  ltup.t_data = (HeapTupleHeader) ((char *) a->tuple - MINIMAL_TUPLE_OFFSET);
3534  rtup.t_len = ((MinimalTuple) b->tuple)->t_len + MINIMAL_TUPLE_OFFSET;
3535  rtup.t_data = (HeapTupleHeader) ((char *) b->tuple - MINIMAL_TUPLE_OFFSET);
3536  tupDesc = state->tupDesc;
3537 
3538  if (sortKey->abbrev_converter)
3539  {
3540  attno = sortKey->ssup_attno;
3541 
3542  datum1 = heap_getattr(&ltup, attno, tupDesc, &isnull1);
3543  datum2 = heap_getattr(&rtup, attno, tupDesc, &isnull2);
3544 
3545  compare = ApplySortAbbrevFullComparator(datum1, isnull1,
3546  datum2, isnull2,
3547  sortKey);
3548  if (compare != 0)
3549  return compare;
3550  }
3551 
3552  sortKey++;
3553  for (nkey = 1; nkey < state->nKeys; nkey++, sortKey++)
3554  {
3555  attno = sortKey->ssup_attno;
3556 
3557  datum1 = heap_getattr(&ltup, attno, tupDesc, &isnull1);
3558  datum2 = heap_getattr(&rtup, attno, tupDesc, &isnull2);
3559 
3560  compare = ApplySortComparator(datum1, isnull1,
3561  datum2, isnull2,
3562  sortKey);
3563  if (compare != 0)
3564  return compare;
3565  }
3566 
3567  return 0;
3568 }
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
SortSupport sortKeys
Definition: tuplesort.c:412
Datum datum1
Definition: tuplesort.c:170
bool isnull1
Definition: tuplesort.c:171
signed int int32
Definition: c.h:346
HeapTupleHeader t_data
Definition: htup.h:68
void * tuple
Definition: tuplesort.c:169
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
uint32 t_len
Definition: htup.h:64
MinimalTupleData * MinimalTuple
Definition: htup.h:27
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:172
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:762
uintptr_t Datum
Definition: postgres.h:367
AttrNumber ssup_attno
Definition: sortsupport.h:81
#define MINIMAL_TUPLE_OFFSET
Definition: htup_details.h:619
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:200
int16 AttrNumber
Definition: attnum.h:21
TupleDesc tupDesc
Definition: tuplesort.c:411
static int ApplySortAbbrevFullComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:238

◆ comparetup_index_btree()

static int comparetup_index_btree ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 3954 of file tuplesort.c.

References SortSupportData::abbrev_converter, ApplySortAbbrevFullComparator(), ApplySortComparator(), Assert, BuildIndexValueDescription(), compare(), SortTuple::datum1, Tuplesortstate::enforceUnique, ereport, errcode(), errdetail(), errmsg(), ERROR, errtableconstraint(), Tuplesortstate::heapRel, index_deform_tuple(), index_getattr, INDEX_MAX_KEYS, Tuplesortstate::indexRel, SortTuple::isnull1, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, Tuplesortstate::nKeys, RelationGetDescr, RelationGetRelationName, Tuplesortstate::sortKeys, IndexTupleData::t_tid, SortTuple::tuple, and values.

Referenced by tuplesort_begin_index_btree().

3956 {
3957  /*
3958  * This is similar to comparetup_heap(), but expects index tuples. There
3959  * is also special handling for enforcing uniqueness, and special
3960  * treatment for equal keys at the end.
3961  */
3962  SortSupport sortKey = state->sortKeys;
3963  IndexTuple tuple1;
3964  IndexTuple tuple2;
3965  int keysz;
3966  TupleDesc tupDes;
3967  bool equal_hasnull = false;
3968  int nkey;
3969  int32 compare;
3970  Datum datum1,
3971  datum2;
3972  bool isnull1,
3973  isnull2;
3974 
3975 
3976  /* Compare the leading sort key */
3977  compare = ApplySortComparator(a->datum1, a->isnull1,
3978  b->datum1, b->isnull1,
3979  sortKey);
3980  if (compare != 0)
3981  return compare;
3982 
3983  /* Compare additional sort keys */
3984  tuple1 = (IndexTuple) a->tuple;
3985  tuple2 = (IndexTuple) b->tuple;
3986  keysz = state->nKeys;
3987  tupDes = RelationGetDescr(state->indexRel);
3988 
3989  if (sortKey->abbrev_converter)
3990  {
3991  datum1 = index_getattr(tuple1, 1, tupDes, &isnull1);
3992  datum2 = index_getattr(tuple2, 1, tupDes, &isnull2);
3993 
3994  compare = ApplySortAbbrevFullComparator(datum1, isnull1,
3995  datum2, isnull2,
3996  sortKey);
3997  if (compare != 0)
3998  return compare;
3999  }
4000 
4001  /* they are equal, so we only need to examine one null flag */
4002  if (a->isnull1)
4003  equal_hasnull = true;
4004 
4005  sortKey++;
4006  for (nkey = 2; nkey <= keysz; nkey++, sortKey++)
4007  {
4008  datum1 = index_getattr(tuple1, nkey, tupDes, &isnull1);
4009  datum2 = index_getattr(tuple2, nkey, tupDes, &isnull2);
4010 
4011  compare = ApplySortComparator(datum1, isnull1,
4012  datum2, isnull2,
4013  sortKey);
4014  if (compare != 0)
4015  return compare; /* done when we find unequal attributes */
4016 
4017  /* they are equal, so we only need to examine one null flag */
4018  if (isnull1)
4019  equal_hasnull = true;
4020  }
4021 
4022  /*
4023  * If btree has asked us to enforce uniqueness, complain if two equal
4024  * tuples are detected (unless there was at least one NULL field).
4025  *
4026  * It is sufficient to make the test here, because if two tuples are equal
4027  * they *must* get compared at some stage of the sort --- otherwise the
4028  * sort algorithm wouldn't have checked whether one must appear before the
4029  * other.
4030  */
4031  if (state->enforceUnique && !equal_hasnull)
4032  {
4034  bool isnull[INDEX_MAX_KEYS];
4035  char *key_desc;
4036 
4037  /*
4038  * Some rather brain-dead implementations of qsort (such as the one in
4039  * QNX 4) will sometimes call the comparison routine to compare a
4040  * value to itself, but we always use our own implementation, which
4041  * does not.
4042  */
4043  Assert(tuple1 != tuple2);
4044 
4045  index_deform_tuple(tuple1, tupDes, values, isnull);
4046 
4047  key_desc = BuildIndexValueDescription(state->indexRel, values, isnull);
4048 
4049  ereport(ERROR,
4050  (errcode(ERRCODE_UNIQUE_VIOLATION),
4051  errmsg("could not create unique index \"%s\"",
4053  key_desc ? errdetail("Key %s is duplicated.", key_desc) :
4054  errdetail("Duplicate keys exist."),
4055  errtableconstraint(state->heapRel,
4056  RelationGetRelationName(state->indexRel))));
4057  }
4058 
4059  /*
4060  * If key values are equal, we sort on ItemPointer. This is required for
4061  * btree indexes, since heap TID is treated as an implicit last key
4062  * attribute in order to ensure that all keys in the index are physically
4063  * unique.
4064  */
4065  {
4066  BlockNumber blk1 = ItemPointerGetBlockNumber(&tuple1->t_tid);
4067  BlockNumber blk2 = ItemPointerGetBlockNumber(&tuple2->t_tid);
4068 
4069  if (blk1 != blk2)
4070  return (blk1 < blk2) ? -1 : 1;
4071  }
4072  {
4075 
4076  if (pos1 != pos2)
4077  return (pos1 < pos2) ? -1 : 1;
4078  }
4079 
4080  /* ItemPointer values should never be equal */
4081  Assert(false);
4082 
4083  return 0;
4084 }
Relation heapRel
Definition: tuplesort.c:440
#define RelationGetDescr(relation)
Definition: rel.h:445
SortSupport sortKeys
Definition: tuplesort.c:412
ItemPointerData t_tid
Definition: itup.h:37
Datum datum1
Definition: tuplesort.c:170
int errcode(int sqlerrcode)
Definition: elog.c:570
uint32 BlockNumber
Definition: block.h:31
bool isnull1
Definition: tuplesort.c:171
signed int int32
Definition: c.h:346
uint16 OffsetNumber
Definition: off.h:24
void * tuple
Definition: tuplesort.c:169
int errtableconstraint(Relation rel, const char *conname)
Definition: relcache.c:5222
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
#define ERROR
Definition: elog.h:43
IndexTupleData * IndexTuple
Definition: itup.h:53
int errdetail(const char *fmt,...)
Definition: elog.c:860
#define RelationGetRelationName(relation)
Definition: rel.h:453
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:172
void index_deform_tuple(IndexTuple tup, TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: indextuple.c:433
#define ereport(elevel, rest)
Definition: elog.h:141
Relation indexRel
Definition: tuplesort.c:441
uintptr_t Datum
Definition: postgres.h:367
#define Assert(condition)
Definition: c.h:732
bool enforceUnique
Definition: tuplesort.c:444
#define INDEX_MAX_KEYS
#define index_getattr(tup, attnum, tupleDesc, isnull)
Definition: itup.h:100
#define ItemPointerGetOffsetNumber(pointer)
Definition: itemptr.h:117
static Datum values[MAXATTR]
Definition: bootstrap.c:167
int errmsg(const char *fmt,...)
Definition: elog.c:784
char * BuildIndexValueDescription(Relation indexRelation, Datum *values, bool *isnull)
Definition: genam.c:176
#define ItemPointerGetBlockNumber(pointer)
Definition: itemptr.h:98
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:200
static int ApplySortAbbrevFullComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:238

◆ comparetup_index_hash()

static int comparetup_index_hash ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 4087 of file tuplesort.c.

References _hash_hashkey2bucket(), Assert, SortTuple::datum1, DatumGetUInt32, Tuplesortstate::high_mask, SortTuple::isnull1, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, Tuplesortstate::low_mask, Tuplesortstate::max_buckets, IndexTupleData::t_tid, and SortTuple::tuple.

Referenced by tuplesort_begin_index_hash().

4089 {
4090  Bucket bucket1;
4091  Bucket bucket2;
4092  IndexTuple tuple1;
4093  IndexTuple tuple2;
4094 
4095  /*
4096  * Fetch hash keys and mask off bits we don't want to sort by. We know
4097  * that the first column of the index tuple is the hash key.
4098  */
4099  Assert(!a->isnull1);
4101  state->max_buckets, state->high_mask,
4102  state->low_mask);
4103  Assert(!b->isnull1);
4105  state->max_buckets, state->high_mask,
4106  state->low_mask);
4107  if (bucket1 > bucket2)
4108  return 1;
4109  else if (bucket1 < bucket2)
4110  return -1;
4111 
4112  /*
4113  * If hash values are equal, we sort on ItemPointer. This does not affect
4114  * validity of the finished index, but it may be useful to have index
4115  * scans in physical order.
4116  */
4117  tuple1 = (IndexTuple) a->tuple;
4118  tuple2 = (IndexTuple) b->tuple;
4119 
4120  {
4121  BlockNumber blk1 = ItemPointerGetBlockNumber(&tuple1->t_tid);
4122  BlockNumber blk2 = ItemPointerGetBlockNumber(&tuple2->t_tid);
4123 
4124  if (blk1 != blk2)
4125  return (blk1 < blk2) ? -1 : 1;
4126  }
4127  {
4130 
4131  if (pos1 != pos2)
4132  return (pos1 < pos2) ? -1 : 1;
4133  }
4134 
4135  /* ItemPointer values should never be equal */
4136  Assert(false);
4137 
4138  return 0;
4139 }
#define DatumGetUInt32(X)
Definition: postgres.h:486
Bucket _hash_hashkey2bucket(uint32 hashkey, uint32 maxbucket, uint32 highmask, uint32 lowmask)
Definition: hashutil.c:125
ItemPointerData t_tid
Definition: itup.h:37
Datum datum1
Definition: tuplesort.c:170
uint32 BlockNumber
Definition: block.h:31
bool isnull1
Definition: tuplesort.c:171
uint16 OffsetNumber
Definition: off.h:24
uint32 Bucket
Definition: hash.h:34
void * tuple
Definition: tuplesort.c:169
uint32 high_mask
Definition: tuplesort.c:447
IndexTupleData * IndexTuple
Definition: itup.h:53
#define Assert(condition)
Definition: c.h:732
#define ItemPointerGetOffsetNumber(pointer)
Definition: itemptr.h:117
uint32 max_buckets
Definition: tuplesort.c:449
uint32 low_mask
Definition: tuplesort.c:448
#define ItemPointerGetBlockNumber(pointer)
Definition: itemptr.h:98

◆ consider_abort_common()

static bool consider_abort_common ( Tuplesortstate state)
static

Definition at line 1747 of file tuplesort.c.

References SortSupportData::abbrev_abort, SortSupportData::abbrev_converter, SortSupportData::abbrev_full_comparator, Tuplesortstate::abbrevNext, Assert, SortSupportData::comparator, Tuplesortstate::memtupcount, Tuplesortstate::sortKeys, Tuplesortstate::status, and TSS_INITIAL.

Referenced by copytup_cluster(), copytup_heap(), copytup_index(), tuplesort_putdatum(), and tuplesort_putindextuplevalues().

1748 {
1749  Assert(state->sortKeys[0].abbrev_converter != NULL);
1750  Assert(state->sortKeys[0].abbrev_abort != NULL);
1751  Assert(state->sortKeys[0].abbrev_full_comparator != NULL);
1752 
1753  /*
1754  * Check effectiveness of abbreviation optimization. Consider aborting
1755  * when still within memory limit.
1756  */
1757  if (state->status == TSS_INITIAL &&
1758  state->memtupcount >= state->abbrevNext)
1759  {
1760  state->abbrevNext *= 2;
1761 
1762  /*
1763  * Check opclass-supplied abbreviation abort routine. It may indicate
1764  * that abbreviation should not proceed.
1765  */
1766  if (!state->sortKeys->abbrev_abort(state->memtupcount,
1767  state->sortKeys))
1768  return false;
1769 
1770  /*
1771  * Finally, restore authoritative comparator, and indicate that
1772  * abbreviation is not in play by setting abbrev_converter to NULL
1773  */
1774  state->sortKeys[0].comparator = state->sortKeys[0].abbrev_full_comparator;
1775  state->sortKeys[0].abbrev_converter = NULL;
1776  /* Not strictly necessary, but be tidy */
1777  state->sortKeys[0].abbrev_abort = NULL;
1778  state->sortKeys[0].abbrev_full_comparator = NULL;
1779 
1780  /* Give up - expect original pass-by-value representation */
1781  return true;
1782  }
1783 
1784  return false;
1785 }
TupSortStatus status
Definition: tuplesort.c:232
int64 abbrevNext
Definition: tuplesort.c:426
SortSupport sortKeys
Definition: tuplesort.c:412
int(* comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:106
int(* abbrev_full_comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:191
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:172
#define Assert(condition)
Definition: c.h:732
bool(* abbrev_abort)(int memtupcount, SortSupport ssup)
Definition: sortsupport.h:182

◆ copytup_cluster()

static void copytup_cluster ( Tuplesortstate state,
SortTuple stup,
void *  tup 
)
static

Definition at line 3819 of file tuplesort.c.

References SortSupportData::abbrev_converter, consider_abort_common(), SortTuple::datum1, GetMemoryChunkSpace(), heap_copytuple(), heap_getattr, i, IndexInfo::ii_IndexAttrNumbers, Tuplesortstate::indexInfo, SortTuple::isnull1, MemoryContextSwitchTo(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::sortKeys, Tuplesortstate::tupDesc, SortTuple::tuple, Tuplesortstate::tuplecontext, and USEMEM.

Referenced by tuplesort_begin_cluster().

3820 {
3821  HeapTuple tuple = (HeapTuple) tup;
3822  Datum original;
3823  MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);
3824 
3825  /* copy the tuple into sort storage */
3826  tuple = heap_copytuple(tuple);
3827  stup->tuple = (void *) tuple;
3828  USEMEM(state, GetMemoryChunkSpace(tuple));
3829 
3830  MemoryContextSwitchTo(oldcontext);
3831 
3832  /*
3833  * set up first-column key value, and potentially abbreviate, if it's a
3834  * simple column
3835  */
3836  if (state->indexInfo->ii_IndexAttrNumbers[0] == 0)
3837  return;
3838 
3839  original = heap_getattr(tuple,
3840  state->indexInfo->ii_IndexAttrNumbers[0],
3841  state->tupDesc,
3842  &stup->isnull1);
3843 
3844  if (!state->sortKeys->abbrev_converter || stup->isnull1)
3845  {
3846  /*
3847  * Store ordinary Datum representation, or NULL value. If there is a
3848  * converter it won't expect NULL values, and cost model is not
3849  * required to account for NULL, so in that case we avoid calling
3850  * converter and just set datum1 to zeroed representation (to be
3851  * consistent, and to support cheap inequality tests for NULL
3852  * abbreviated keys).
3853  */
3854  stup->datum1 = original;
3855  }
3856  else if (!consider_abort_common(state))
3857  {
3858  /* Store abbreviated key representation */
3859  stup->datum1 = state->sortKeys->abbrev_converter(original,
3860  state->sortKeys);
3861  }
3862  else
3863  {
3864  /* Abort abbreviation */
3865  int i;
3866 
3867  stup->datum1 = original;
3868 
3869  /*
3870  * Set state to be consistent with never trying abbreviation.
3871  *
3872  * Alter datum1 representation in already-copied tuples, so as to
3873  * ensure a consistent representation (current tuple was just
3874  * handled). It does not matter if some dumped tuples are already
3875  * sorted on tape, since serialized tuples lack abbreviated keys
3876  * (TSS_BUILDRUNS state prevents control reaching here in any case).
3877  */
3878  for (i = 0; i < state->memtupcount; i++)
3879  {
3880  SortTuple *mtup = &state->memtuples[i];
3881 
3882  tuple = (HeapTuple) mtup->tuple;
3883  mtup->datum1 = heap_getattr(tuple,
3884  state->indexInfo->ii_IndexAttrNumbers[0],
3885  state->tupDesc,
3886  &mtup->isnull1);
3887  }
3888  }
3889 }
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:680
HeapTupleData * HeapTuple
Definition: htup.h:71
SortSupport sortKeys
Definition: tuplesort.c:412
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
Datum datum1
Definition: tuplesort.c:170
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
bool isnull1
Definition: tuplesort.c:171
void * tuple
Definition: tuplesort.c:169
static bool consider_abort_common(Tuplesortstate *state)
Definition: tuplesort.c:1747
IndexInfo * indexInfo
Definition: tuplesort.c:433
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:172
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:762
uintptr_t Datum
Definition: postgres.h:367
MemoryContext tuplecontext
Definition: tuplesort.c:245
#define USEMEM(state, amt)
Definition: tuplesort.c:528
int i
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:159
TupleDesc tupDesc
Definition: tuplesort.c:411
SortTuple * memtuples
Definition: tuplesort.c:293

◆ copytup_datum()

static void copytup_datum ( Tuplesortstate state,
SortTuple stup,
void *  tup 
)
static

Definition at line 4275 of file tuplesort.c.

References elog, and ERROR.

Referenced by tuplesort_begin_datum().

4276 {
4277  /* Not currently needed */
4278  elog(ERROR, "copytup_datum() should not be called");
4279 }
#define ERROR
Definition: elog.h:43
#define elog(elevel,...)
Definition: elog.h:226

◆ copytup_heap()

static void copytup_heap ( Tuplesortstate state,
SortTuple stup,
void *  tup 
)
static

Definition at line 3571 of file tuplesort.c.

References SortSupportData::abbrev_converter, consider_abort_common(), SortTuple::datum1, ExecCopySlotMinimalTuple(), GetMemoryChunkSpace(), heap_getattr, i, SortTuple::isnull1, MemoryContextSwitchTo(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, MINIMAL_TUPLE_OFFSET, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, HeapTupleData::t_data, HeapTupleData::t_len, MinimalTupleData::t_len, Tuplesortstate::tupDesc, SortTuple::tuple, Tuplesortstate::tuplecontext, and USEMEM.

Referenced by tuplesort_begin_heap().

3572 {
3573  /*
3574  * We expect the passed "tup" to be a TupleTableSlot, and form a
3575  * MinimalTuple using the exported interface for that.
3576  */
3577  TupleTableSlot *slot = (TupleTableSlot *) tup;
3578  Datum original;
3579  MinimalTuple tuple;
3580  HeapTupleData htup;
3581  MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);
3582 
3583  /* copy the tuple into sort storage */
3584  tuple = ExecCopySlotMinimalTuple(slot);
3585  stup->tuple = (void *) tuple;
3586  USEMEM(state, GetMemoryChunkSpace(tuple));
3587  /* set up first-column key value */
3588  htup.t_len = tuple->t_len + MINIMAL_TUPLE_OFFSET;
3589  htup.t_data = (HeapTupleHeader) ((char *) tuple - MINIMAL_TUPLE_OFFSET);
3590  original = heap_getattr(&htup,
3591  state->sortKeys[0].ssup_attno,
3592  state->tupDesc,
3593  &stup->isnull1);
3594 
3595  MemoryContextSwitchTo(oldcontext);
3596 
3597  if (!state->sortKeys->abbrev_converter || stup->isnull1)
3598  {
3599  /*
3600  * Store ordinary Datum representation, or NULL value. If there is a
3601  * converter it won't expect NULL values, and cost model is not
3602  * required to account for NULL, so in that case we avoid calling
3603  * converter and just set datum1 to zeroed representation (to be
3604  * consistent, and to support cheap inequality tests for NULL
3605  * abbreviated keys).
3606  */
3607  stup->datum1 = original;
3608  }
3609  else if (!consider_abort_common(state))
3610  {
3611  /* Store abbreviated key representation */
3612  stup->datum1 = state->sortKeys->abbrev_converter(original,
3613  state->sortKeys);
3614  }
3615  else
3616  {
3617  /* Abort abbreviation */
3618  int i;
3619 
3620  stup->datum1 = original;
3621 
3622  /*
3623  * Set state to be consistent with never trying abbreviation.
3624  *
3625  * Alter datum1 representation in already-copied tuples, so as to
3626  * ensure a consistent representation (current tuple was just
3627  * handled). It does not matter if some dumped tuples are already
3628  * sorted on tape, since serialized tuples lack abbreviated keys
3629  * (TSS_BUILDRUNS state prevents control reaching here in any case).
3630  */
3631  for (i = 0; i < state->memtupcount; i++)
3632  {
3633  SortTuple *mtup = &state->memtuples[i];
3634 
3635  htup.t_len = ((MinimalTuple) mtup->tuple)->t_len +
3637  htup.t_data = (HeapTupleHeader) ((char *) mtup->tuple -
3639 
3640  mtup->datum1 = heap_getattr(&htup,
3641  state->sortKeys[0].ssup_attno,
3642  state->tupDesc,
3643  &mtup->isnull1);
3644  }
3645  }
3646 }
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
SortSupport sortKeys
Definition: tuplesort.c:412
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
Datum datum1
Definition: tuplesort.c:170
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
bool isnull1
Definition: tuplesort.c:171
HeapTupleHeader t_data
Definition: htup.h:68
void * tuple
Definition: tuplesort.c:169
static bool consider_abort_common(Tuplesortstate *state)
Definition: tuplesort.c:1747
uint32 t_len
Definition: htup.h:64
static MinimalTuple ExecCopySlotMinimalTuple(TupleTableSlot *slot)
Definition: tuptable.h:464
MinimalTupleData * MinimalTuple
Definition: htup.h:27
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:172
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:762
uintptr_t Datum
Definition: postgres.h:367
AttrNumber ssup_attno
Definition: sortsupport.h:81
#define MINIMAL_TUPLE_OFFSET
Definition: htup_details.h:619
MemoryContext tuplecontext
Definition: tuplesort.c:245
#define USEMEM(state, amt)
Definition: tuplesort.c:528
int i
TupleDesc tupDesc
Definition: tuplesort.c:411
SortTuple * memtuples
Definition: tuplesort.c:293

◆ copytup_index()

static void copytup_index ( Tuplesortstate state,
SortTuple stup,
void *  tup 
)
static

Definition at line 4142 of file tuplesort.c.

References SortSupportData::abbrev_converter, consider_abort_common(), SortTuple::datum1, GetMemoryChunkSpace(), i, index_getattr, Tuplesortstate::indexRel, IndexTupleSize, SortTuple::isnull1, MemoryContextAlloc(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, RelationGetDescr, Tuplesortstate::sortKeys, SortTuple::tuple, Tuplesortstate::tuplecontext, and USEMEM.

Referenced by tuplesort_begin_index_btree(), and tuplesort_begin_index_hash().

4143 {
4144  IndexTuple tuple = (IndexTuple) tup;
4145  unsigned int tuplen = IndexTupleSize(tuple);
4146  IndexTuple newtuple;
4147  Datum original;
4148 
4149  /* copy the tuple into sort storage */
4150  newtuple = (IndexTuple) MemoryContextAlloc(state->tuplecontext, tuplen);
4151  memcpy(newtuple, tuple, tuplen);
4152  USEMEM(state, GetMemoryChunkSpace(newtuple));
4153  stup->tuple = (void *) newtuple;
4154  /* set up first-column key value */
4155  original = index_getattr(newtuple,
4156  1,
4157  RelationGetDescr(state->indexRel),
4158  &stup->isnull1);
4159 
4160  if (!state->sortKeys->abbrev_converter || stup->isnull1)
4161  {
4162  /*
4163  * Store ordinary Datum representation, or NULL value. If there is a
4164  * converter it won't expect NULL values, and cost model is not
4165  * required to account for NULL, so in that case we avoid calling
4166  * converter and just set datum1 to zeroed representation (to be
4167  * consistent, and to support cheap inequality tests for NULL
4168  * abbreviated keys).
4169  */
4170  stup->datum1 = original;
4171  }
4172  else if (!consider_abort_common(state))
4173  {
4174  /* Store abbreviated key representation */
4175  stup->datum1 = state->sortKeys->abbrev_converter(original,
4176  state->sortKeys);
4177  }
4178  else
4179  {
4180  /* Abort abbreviation */
4181  int i;
4182 
4183  stup->datum1 = original;
4184 
4185  /*
4186  * Set state to be consistent with never trying abbreviation.
4187  *
4188  * Alter datum1 representation in already-copied tuples, so as to
4189  * ensure a consistent representation (current tuple was just
4190  * handled). It does not matter if some dumped tuples are already
4191  * sorted on tape, since serialized tuples lack abbreviated keys
4192  * (TSS_BUILDRUNS state prevents control reaching here in any case).
4193  */
4194  for (i = 0; i < state->memtupcount; i++)
4195  {
4196  SortTuple *mtup = &state->memtuples[i];
4197 
4198  tuple = (IndexTuple) mtup->tuple;
4199  mtup->datum1 = index_getattr(tuple,
4200  1,
4201  RelationGetDescr(state->indexRel),
4202  &mtup->isnull1);
4203  }
4204  }
4205 }
#define RelationGetDescr(relation)
Definition: rel.h:445
SortSupport sortKeys
Definition: tuplesort.c:412
Datum datum1
Definition: tuplesort.c:170
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
bool isnull1
Definition: tuplesort.c:171
void * tuple
Definition: tuplesort.c:169
static bool consider_abort_common(Tuplesortstate *state)
Definition: tuplesort.c:1747
IndexTupleData * IndexTuple
Definition: itup.h:53
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:172
Relation indexRel
Definition: tuplesort.c:441
uintptr_t Datum
Definition: postgres.h:367
#define index_getattr(tup, attnum, tupleDesc, isnull)
Definition: itup.h:100
MemoryContext tuplecontext
Definition: tuplesort.c:245
#define USEMEM(state, amt)
Definition: tuplesort.c:528
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:796
int i
#define IndexTupleSize(itup)
Definition: itup.h:71
SortTuple * memtuples
Definition: tuplesort.c:293

◆ dumptuples()

static void dumptuples ( Tuplesortstate state,
bool  alltuples 
)
static

Definition at line 2925 of file tuplesort.c.

References Assert, Tuplesortstate::currentRun, Tuplesortstate::destTape, elog, ereport, errcode(), errmsg(), ERROR, i, LACKMEM, LOG, markrunend(), MemoryContextReset(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, pg_rusage_show(), Tuplesortstate::ru_start, selectnewtape(), Tuplesortstate::status, Tuplesortstate::tp_dummy, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, trace_sort, TSS_BUILDRUNS, Tuplesortstate::tuplecontext, tuplesort_sort_memtuples(), Tuplesortstate::worker, and WRITETUP.

Referenced by puttuple_common(), and tuplesort_performsort().

2926 {
2927  int memtupwrite;
2928  int i;
2929 
2930  /*
2931  * Nothing to do if we still fit in available memory and have array slots,
2932  * unless this is the final call during initial run generation.
2933  */
2934  if (state->memtupcount < state->memtupsize && !LACKMEM(state) &&
2935  !alltuples)
2936  return;
2937 
2938  /*
2939  * Final call might require no sorting, in rare cases where we just so
2940  * happen to have previously LACKMEM()'d at the point where exactly all
2941  * remaining tuples are loaded into memory, just before input was
2942  * exhausted.
2943  *
2944  * In general, short final runs are quite possible. Rather than allowing
2945  * a special case where there was a superfluous selectnewtape() call (i.e.
2946  * a call with no subsequent run actually written to destTape), we prefer
2947  * to write out a 0 tuple run.
2948  *
2949  * mergereadnext() is prepared for 0 tuple runs, and will reliably mark
2950  * the tape inactive for the merge when called from beginmerge(). This
2951  * case is therefore similar to the case where mergeonerun() finds a dummy
2952  * run for the tape, and so doesn't need to merge a run from the tape (or
2953  * conceptually "merges" the dummy run, if you prefer). According to
2954  * Knuth, Algorithm D "isn't strictly optimal" in its method of
2955  * distribution and dummy run assignment; this edge case seems very
2956  * unlikely to make that appreciably worse.
2957  */
2958  Assert(state->status == TSS_BUILDRUNS);
2959 
2960  /*
2961  * It seems unlikely that this limit will ever be exceeded, but take no
2962  * chances
2963  */
2964  if (state->currentRun == INT_MAX)
2965  ereport(ERROR,
2966  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
2967  errmsg("cannot have more than %d runs for an external sort",
2968  INT_MAX)));
2969 
2970  state->currentRun++;
2971 
2972 #ifdef TRACE_SORT
2973  if (trace_sort)
2974  elog(LOG, "worker %d starting quicksort of run %d: %s",
2975  state->worker, state->currentRun,
2976  pg_rusage_show(&state->ru_start));
2977 #endif
2978 
2979  /*
2980  * Sort all tuples accumulated within the allowed amount of memory for
2981  * this run using quicksort
2982  */
2983  tuplesort_sort_memtuples(state);
2984 
2985 #ifdef TRACE_SORT
2986  if (trace_sort)
2987  elog(LOG, "worker %d finished quicksort of run %d: %s",
2988  state->worker, state->currentRun,
2989  pg_rusage_show(&state->ru_start));
2990 #endif
2991 
2992  memtupwrite = state->memtupcount;
2993  for (i = 0; i < memtupwrite; i++)
2994  {
2995  WRITETUP(state, state->tp_tapenum[state->destTape],
2996  &state->memtuples[i]);
2997  state->memtupcount--;
2998  }
2999 
3000  /*
3001  * Reset tuple memory. We've freed all of the tuples that we previously
3002  * allocated. It's important to avoid fragmentation when there is a stark
3003  * change in the sizes of incoming tuples. Fragmentation due to
3004  * AllocSetFree's bucketing by size class might be particularly bad if
3005  * this step wasn't taken.
3006  */
3008 
3009  markrunend(state, state->tp_tapenum[state->destTape]);
3010  state->tp_runs[state->destTape]++;
3011  state->tp_dummy[state->destTape]--; /* per Alg D step D2 */
3012 
3013 #ifdef TRACE_SORT
3014  if (trace_sort)
3015  elog(LOG, "worker %d finished writing run %d to tape %d: %s",
3016  state->worker, state->currentRun, state->destTape,
3017  pg_rusage_show(&state->ru_start));
3018 #endif
3019 
3020  if (!alltuples)
3021  selectnewtape(state);
3022 }
TupSortStatus status
Definition: tuplesort.c:232
PGRUsage ru_start
Definition: tuplesort.c:463
int errcode(int sqlerrcode)
Definition: elog.c:570
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:136
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
static void markrunend(Tuplesortstate *state, int tapenum)
Definition: tuplesort.c:3467
#define ERROR
Definition: elog.h:43
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define ereport(elevel, rest)
Definition: elog.h:141
static void selectnewtape(Tuplesortstate *state)
Definition: tuplesort.c:2494
#define WRITETUP(state, tape, stup)
Definition: tuplesort.c:525
#define Assert(condition)
Definition: c.h:732
static void tuplesort_sort_memtuples(Tuplesortstate *state)
Definition: tuplesort.c:3309
int * tp_dummy
Definition: tuplesort.c:369
MemoryContext tuplecontext
Definition: tuplesort.c:245
int errmsg(const char *fmt,...)
Definition: elog.c:784
int * tp_tapenum
Definition: tuplesort.c:370
#define elog(elevel,...)
Definition: elog.h:226
int i
#define LACKMEM(state)
Definition: tuplesort.c:527
SortTuple * memtuples
Definition: tuplesort.c:293

◆ free_sort_tuple()

static void free_sort_tuple ( Tuplesortstate state,
SortTuple stup 
)
static

Definition at line 4586 of file tuplesort.c.

References FREEMEM, GetMemoryChunkSpace(), pfree(), and SortTuple::tuple.

Referenced by make_bounded_heap(), and puttuple_common().

4587 {
4588  FREEMEM(state, GetMemoryChunkSpace(stup->tuple));
4589  pfree(stup->tuple);
4590 }
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
void * tuple
Definition: tuplesort.c:169
void pfree(void *pointer)
Definition: mcxt.c:1056
#define FREEMEM(state, amt)
Definition: tuplesort.c:529

◆ getlen()

static unsigned int getlen ( Tuplesortstate state,
int  tapenum,
bool  eofOK 
)
static

Definition at line 3454 of file tuplesort.c.

References elog, ERROR, LogicalTapeRead(), and Tuplesortstate::tapeset.

Referenced by mergereadnext(), and tuplesort_gettuple_common().

3455 {
3456  unsigned int len;
3457 
3458  if (LogicalTapeRead(state->tapeset, tapenum,
3459  &len, sizeof(len)) != sizeof(len))
3460  elog(ERROR, "unexpected end of tape");
3461  if (len == 0 && !eofOK)
3462  elog(ERROR, "unexpected end of data");
3463  return len;
3464 }
size_t LogicalTapeRead(LogicalTapeSet *lts, int tapenum, void *ptr, size_t size)
Definition: logtape.c:822
#define ERROR
Definition: elog.h:43
LogicalTapeSet * tapeset
Definition: tuplesort.c:246
#define elog(elevel,...)
Definition: elog.h:226

◆ grow_memtuples()

static bool grow_memtuples ( Tuplesortstate state)
static

Definition at line 1316 of file tuplesort.c.

References Tuplesortstate::allowedMem, Tuplesortstate::availMem, elog, ERROR, FREEMEM, GetMemoryChunkSpace(), Tuplesortstate::growmemtuples, LACKMEM, MaxAllocHugeSize, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, repalloc_huge(), and USEMEM.

Referenced by puttuple_common().

1317 {
1318  int newmemtupsize;
1319  int memtupsize = state->memtupsize;
1320  int64 memNowUsed = state->allowedMem - state->availMem;
1321 
1322  /* Forget it if we've already maxed out memtuples, per comment above */
1323  if (!state->growmemtuples)
1324  return false;
1325 
1326  /* Select new value of memtupsize */
1327  if (memNowUsed <= state->availMem)
1328  {
1329  /*
1330  * We've used no more than half of allowedMem; double our usage,
1331  * clamping at INT_MAX tuples.
1332  */
1333  if (memtupsize < INT_MAX / 2)
1334  newmemtupsize = memtupsize * 2;
1335  else
1336  {
1337  newmemtupsize = INT_MAX;
1338  state->growmemtuples = false;
1339  }
1340  }
1341  else
1342  {
1343  /*
1344  * This will be the last increment of memtupsize. Abandon doubling
1345  * strategy and instead increase as much as we safely can.
1346  *
1347  * To stay within allowedMem, we can't increase memtupsize by more
1348  * than availMem / sizeof(SortTuple) elements. In practice, we want
1349  * to increase it by considerably less, because we need to leave some
1350  * space for the tuples to which the new array slots will refer. We
1351  * assume the new tuples will be about the same size as the tuples
1352  * we've already seen, and thus we can extrapolate from the space
1353  * consumption so far to estimate an appropriate new size for the
1354  * memtuples array. The optimal value might be higher or lower than
1355  * this estimate, but it's hard to know that in advance. We again
1356  * clamp at INT_MAX tuples.
1357  *
1358  * This calculation is safe against enlarging the array so much that
1359  * LACKMEM becomes true, because the memory currently used includes
1360  * the present array; thus, there would be enough allowedMem for the
1361  * new array elements even if no other memory were currently used.
1362  *
1363  * We do the arithmetic in float8, because otherwise the product of
1364  * memtupsize and allowedMem could overflow. Any inaccuracy in the
1365  * result should be insignificant; but even if we computed a
1366  * completely insane result, the checks below will prevent anything
1367  * really bad from happening.
1368  */
1369  double grow_ratio;
1370 
1371  grow_ratio = (double) state->allowedMem / (double) memNowUsed;
1372  if (memtupsize * grow_ratio < INT_MAX)
1373  newmemtupsize = (int) (memtupsize * grow_ratio);
1374  else
1375  newmemtupsize = INT_MAX;
1376 
1377  /* We won't make any further enlargement attempts */
1378  state->growmemtuples = false;
1379  }
1380 
1381  /* Must enlarge array by at least one element, else report failure */
1382  if (newmemtupsize <= memtupsize)
1383  goto noalloc;
1384 
1385  /*
1386  * On a 32-bit machine, allowedMem could exceed MaxAllocHugeSize. Clamp
1387  * to ensure our request won't be rejected. Note that we can easily
1388  * exhaust address space before facing this outcome. (This is presently
1389  * impossible due to guc.c's MAX_KILOBYTES limitation on work_mem, but
1390  * don't rely on that at this distance.)
1391  */
1392  if ((Size) newmemtupsize >= MaxAllocHugeSize / sizeof(SortTuple))
1393  {
1394  newmemtupsize = (int) (MaxAllocHugeSize / sizeof(SortTuple));
1395  state->growmemtuples = false; /* can't grow any more */
1396  }
1397 
1398  /*
1399  * We need to be sure that we do not cause LACKMEM to become true, else
1400  * the space management algorithm will go nuts. The code above should
1401  * never generate a dangerous request, but to be safe, check explicitly
1402  * that the array growth fits within availMem. (We could still cause
1403  * LACKMEM if the memory chunk overhead associated with the memtuples
1404  * array were to increase. That shouldn't happen because we chose the
1405  * initial array size large enough to ensure that palloc will be treating
1406  * both old and new arrays as separate chunks. But we'll check LACKMEM
1407  * explicitly below just in case.)
1408  */
1409  if (state->availMem < (int64) ((newmemtupsize - memtupsize) * sizeof(SortTuple)))
1410  goto noalloc;
1411 
1412  /* OK, do it */
1413  FREEMEM(state, GetMemoryChunkSpace(state->memtuples));
1414  state->memtupsize = newmemtupsize;
1415  state->memtuples = (SortTuple *)
1416  repalloc_huge(state->memtuples,
1417  state->memtupsize * sizeof(SortTuple));
1418  USEMEM(state, GetMemoryChunkSpace(state->memtuples));
1419  if (LACKMEM(state))
1420  elog(ERROR, "unexpected out-of-memory situation in tuplesort");
1421  return true;
1422 
1423 noalloc:
1424  /* If for any reason we didn't realloc, shut off future attempts */
1425  state->growmemtuples = false;
1426  return false;
1427 }
int64 availMem
Definition: tuplesort.c:240
bool growmemtuples
Definition: tuplesort.c:296
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
#define MaxAllocHugeSize
Definition: memutils.h:44
#define ERROR
Definition: elog.h:43
#define FREEMEM(state, amt)
Definition: tuplesort.c:529
int64 allowedMem
Definition: tuplesort.c:241
size_t Size
Definition: c.h:466
void * repalloc_huge(void *pointer, Size size)
Definition: mcxt.c:1139
#define USEMEM(state, amt)
Definition: tuplesort.c:528
#define elog(elevel,...)
Definition: elog.h:226
#define LACKMEM(state)
Definition: tuplesort.c:527
SortTuple * memtuples
Definition: tuplesort.c:293

◆ init_slab_allocator()

static void init_slab_allocator ( Tuplesortstate state,
int  numSlots 
)
static

Definition at line 2526 of file tuplesort.c.

References i, palloc(), SLAB_SLOT_SIZE, Tuplesortstate::slabAllocatorUsed, Tuplesortstate::slabFreeHead, Tuplesortstate::slabMemoryBegin, Tuplesortstate::slabMemoryEnd, and USEMEM.

Referenced by mergeruns().

2527 {
2528  if (numSlots > 0)
2529  {
2530  char *p;
2531  int i;
2532 
2533  state->slabMemoryBegin = palloc(numSlots * SLAB_SLOT_SIZE);
2534  state->slabMemoryEnd = state->slabMemoryBegin +
2535  numSlots * SLAB_SLOT_SIZE;
2536  state->slabFreeHead = (SlabSlot *) state->slabMemoryBegin;
2537  USEMEM(state, numSlots * SLAB_SLOT_SIZE);
2538 
2539  p = state->slabMemoryBegin;
2540  for (i = 0; i < numSlots - 1; i++)
2541  {
2542  ((SlabSlot *) p)->nextfree = (SlabSlot *) (p + SLAB_SLOT_SIZE);
2543  p += SLAB_SLOT_SIZE;
2544  }
2545  ((SlabSlot *) p)->nextfree = NULL;
2546  }
2547  else
2548  {
2549  state->slabMemoryBegin = state->slabMemoryEnd = NULL;
2550  state->slabFreeHead = NULL;
2551  }
2552  state->slabAllocatorUsed = true;
2553 }
char * slabMemoryEnd
Definition: tuplesort.c:328
#define SLAB_SLOT_SIZE
Definition: tuplesort.c:186
char * slabMemoryBegin
Definition: tuplesort.c:327
bool slabAllocatorUsed
Definition: tuplesort.c:325
void * palloc(Size size)
Definition: mcxt.c:949
#define USEMEM(state, amt)
Definition: tuplesort.c:528
int i
SlabSlot * slabFreeHead
Definition: tuplesort.c:329

◆ inittapes()

static void inittapes ( Tuplesortstate state,
bool  mergeruns 
)
static

Definition at line 2393 of file tuplesort.c.

References Tuplesortstate::allowedMem, Assert, Tuplesortstate::currentRun, Tuplesortstate::destTape, elog, Sharedsort::fileset, inittapestate(), LEADER, Tuplesortstate::Level, LOG, LogicalTapeSetCreate(), MINORDER, pg_rusage_show(), Tuplesortstate::ru_start, Tuplesortstate::shared, Tuplesortstate::status, Tuplesortstate::tapeRange, Tuplesortstate::tapeset, Tuplesortstate::tp_dummy, Tuplesortstate::tp_fib, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, trace_sort, TSS_BUILDRUNS, tuplesort_merge_order(), Tuplesortstate::worker, and WORKER.

Referenced by puttuple_common(), and tuplesort_performsort().

2394 {
2395  int maxTapes,
2396  j;
2397 
2398  Assert(!LEADER(state));
2399 
2400  if (mergeruns)
2401  {
2402  /* Compute number of tapes to use: merge order plus 1 */
2403  maxTapes = tuplesort_merge_order(state->allowedMem) + 1;
2404  }
2405  else
2406  {
2407  /* Workers can sometimes produce single run, output without merge */
2408  Assert(WORKER(state));
2409  maxTapes = MINORDER + 1;
2410  }
2411 
2412 #ifdef TRACE_SORT
2413  if (trace_sort)
2414  elog(LOG, "worker %d switching to external sort with %d tapes: %s",
2415  state->worker, maxTapes, pg_rusage_show(&state->ru_start));
2416 #endif
2417 
2418  /* Create the tape set and allocate the per-tape data arrays */
2419  inittapestate(state, maxTapes);
2420  state->tapeset =
2421  LogicalTapeSetCreate(maxTapes, NULL,
2422  state->shared ? &state->shared->fileset : NULL,
2423  state->worker);
2424 
2425  state->currentRun = 0;
2426 
2427  /*
2428  * Initialize variables of Algorithm D (step D1).
2429  */
2430  for (j = 0; j < maxTapes; j++)
2431  {
2432  state->tp_fib[j] = 1;
2433  state->tp_runs[j] = 0;
2434  state->tp_dummy[j] = 1;
2435  state->tp_tapenum[j] = j;
2436  }
2437  state->tp_fib[state->tapeRange] = 0;
2438  state->tp_dummy[state->tapeRange] = 0;
2439 
2440  state->Level = 1;
2441  state->destTape = 0;
2442 
2443  state->status = TSS_BUILDRUNS;
2444 }
TupSortStatus status
Definition: tuplesort.c:232
PGRUsage ru_start
Definition: tuplesort.c:463
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
static void mergeruns(Tuplesortstate *state)
Definition: tuplesort.c:2562
LogicalTapeSet * LogicalTapeSetCreate(int ntapes, TapeShare *shared, SharedFileSet *fileset, int worker)
Definition: logtape.c:510
Sharedsort * shared
Definition: tuplesort.c:403
#define MINORDER
Definition: tuplesort.c:219
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define LEADER(state)
Definition: tuplesort.c:532
LogicalTapeSet * tapeset
Definition: tuplesort.c:246
#define WORKER(state)
Definition: tuplesort.c:531
int64 allowedMem
Definition: tuplesort.c:241
#define Assert(condition)
Definition: c.h:732
int tuplesort_merge_order(int64 allowedMem)
Definition: tuplesort.c:2353
int * tp_dummy
Definition: tuplesort.c:369
int * tp_tapenum
Definition: tuplesort.c:370
#define elog(elevel,...)
Definition: elog.h:226
static void inittapestate(Tuplesortstate *state, int maxTapes)
Definition: tuplesort.c:2450
SharedFileSet fileset
Definition: tuplesort.c:488

◆ inittapestate()

static void inittapestate ( Tuplesortstate state,
int  maxTapes 
)
static

Definition at line 2450 of file tuplesort.c.

References Tuplesortstate::allowedMem, GetMemoryChunkSpace(), Tuplesortstate::maxTapes, Tuplesortstate::memtuples, Tuplesortstate::mergeactive, palloc0(), PrepareTempTablespaces(), TAPE_BUFFER_OVERHEAD, Tuplesortstate::tapeRange, Tuplesortstate::tp_dummy, Tuplesortstate::tp_fib, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, and USEMEM.

Referenced by inittapes(), and leader_takeover_tapes().

2451 {
2452  int64 tapeSpace;
2453 
2454  /*
2455  * Decrease availMem to reflect the space needed for tape buffers; but
2456  * don't decrease it to the point that we have no room for tuples. (That
2457  * case is only likely to occur if sorting pass-by-value Datums; in all
2458  * other scenarios the memtuples[] array is unlikely to occupy more than
2459  * half of allowedMem. In the pass-by-value case it's not important to
2460  * account for tuple space, so we don't care if LACKMEM becomes
2461  * inaccurate.)
2462  */
2463  tapeSpace = (int64) maxTapes * TAPE_BUFFER_OVERHEAD;
2464 
2465  if (tapeSpace + GetMemoryChunkSpace(state->memtuples) < state->allowedMem)
2466  USEMEM(state, tapeSpace);
2467 
2468  /*
2469  * Make sure that the temp file(s) underlying the tape set are created in
2470  * suitable temp tablespaces. For parallel sorts, this should have been
2471  * called already, but it doesn't matter if it is called a second time.
2472  */
2474 
2475  state->mergeactive = (bool *) palloc0(maxTapes * sizeof(bool));
2476  state->tp_fib = (int *) palloc0(maxTapes * sizeof(int));
2477  state->tp_runs = (int *) palloc0(maxTapes * sizeof(int));
2478  state->tp_dummy = (int *) palloc0(maxTapes * sizeof(int));
2479  state->tp_tapenum = (int *) palloc0(maxTapes * sizeof(int));
2480 
2481  /* Record # of tapes allocated (for duration of sort) */
2482  state->maxTapes = maxTapes;
2483  /* Record maximum # of tapes usable as inputs when merging */
2484  state->tapeRange = maxTapes - 1;
2485 }
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
#define TAPE_BUFFER_OVERHEAD
Definition: tuplesort.c:221
void PrepareTempTablespaces(void)
Definition: tablespace.c:1324
int64 allowedMem
Definition: tuplesort.c:241
void * palloc0(Size size)
Definition: mcxt.c:980
int * tp_dummy
Definition: tuplesort.c:369
int * tp_tapenum
Definition: tuplesort.c:370
#define USEMEM(state, amt)
Definition: tuplesort.c:528
bool * mergeactive
Definition: tuplesort.c:358
SortTuple * memtuples
Definition: tuplesort.c:293

◆ leader_takeover_tapes()

static void leader_takeover_tapes ( Tuplesortstate state)
static

Definition at line 4521 of file tuplesort.c.

References Assert, Tuplesortstate::currentRun, Tuplesortstate::destTape, elog, ERROR, Sharedsort::fileset, inittapestate(), LEADER, Tuplesortstate::Level, LogicalTapeSetCreate(), Tuplesortstate::maxTapes, Sharedsort::mutex, Tuplesortstate::nParticipants, Tuplesortstate::shared, SpinLockAcquire, SpinLockRelease, Tuplesortstate::status, Tuplesortstate::tapeRange, Sharedsort::tapes, Tuplesortstate::tapeset, Tuplesortstate::tp_dummy, Tuplesortstate::tp_fib, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, TSS_BUILDRUNS, Tuplesortstate::worker, and Sharedsort::workersFinished.

Referenced by tuplesort_performsort().

4522 {
4523  Sharedsort *shared = state->shared;
4524  int nParticipants = state->nParticipants;
4525  int workersFinished;
4526  int j;
4527 
4528  Assert(LEADER(state));
4529  Assert(nParticipants >= 1);
4530 
4531  SpinLockAcquire(&shared->mutex);
4532  workersFinished = shared->workersFinished;
4533  SpinLockRelease(&shared->mutex);
4534 
4535  if (nParticipants != workersFinished)
4536  elog(ERROR, "cannot take over tapes before all workers finish");
4537 
4538  /*
4539  * Create the tapeset from worker tapes, including a leader-owned tape at
4540  * the end. Parallel workers are far more expensive than logical tapes,
4541  * so the number of tapes allocated here should never be excessive.
4542  *
4543  * We still have a leader tape, though it's not possible to write to it
4544  * due to restrictions in the shared fileset infrastructure used by
4545  * logtape.c. It will never be written to in practice because
4546  * randomAccess is disallowed for parallel sorts.
4547  */
4548  inittapestate(state, nParticipants + 1);
4549  state->tapeset = LogicalTapeSetCreate(nParticipants + 1, shared->tapes,
4550  &shared->fileset, state->worker);
4551 
4552  /* mergeruns() relies on currentRun for # of runs (in one-pass cases) */
4553  state->currentRun = nParticipants;
4554 
4555  /*
4556  * Initialize variables of Algorithm D to be consistent with runs from
4557  * workers having been generated in the leader.
4558  *
4559  * There will always be exactly 1 run per worker, and exactly one input
4560  * tape per run, because workers always output exactly 1 run, even when
4561  * there were no input tuples for workers to sort.
4562  */
4563  for (j = 0; j < state->maxTapes; j++)
4564  {
4565  /* One real run; no dummy runs for worker tapes */
4566  state->tp_fib[j] = 1;
4567  state->tp_runs[j] = 1;
4568  state->tp_dummy[j] = 0;
4569  state->tp_tapenum[j] = j;
4570  }
4571  /* Leader tape gets one dummy run, and no real runs */
4572  state->tp_fib[state->tapeRange] = 0;
4573  state->tp_runs[state->tapeRange] = 0;
4574  state->tp_dummy[state->tapeRange] = 1;
4575 
4576  state->Level = 1;
4577  state->destTape = 0;
4578 
4579  state->status = TSS_BUILDRUNS;
4580 }
TupSortStatus status
Definition: tuplesort.c:232
slock_t mutex
Definition: tuplesort.c:474
#define SpinLockAcquire(lock)
Definition: spin.h:62
#define ERROR
Definition: elog.h:43
LogicalTapeSet * LogicalTapeSetCreate(int ntapes, TapeShare *shared, SharedFileSet *fileset, int worker)
Definition: logtape.c:510
Sharedsort * shared
Definition: tuplesort.c:403
#define LEADER(state)
Definition: tuplesort.c:532
LogicalTapeSet * tapeset
Definition: tuplesort.c:246
int workersFinished
Definition: tuplesort.c:485
#define SpinLockRelease(lock)
Definition: spin.h:64
#define Assert(condition)
Definition: c.h:732
int * tp_dummy
Definition: tuplesort.c:369
int * tp_tapenum
Definition: tuplesort.c:370
#define elog(elevel,...)
Definition: elog.h:226
TapeShare tapes[FLEXIBLE_ARRAY_MEMBER]
Definition: tuplesort.c:497
static void inittapestate(Tuplesortstate *state, int maxTapes)
Definition: tuplesort.c:2450
SharedFileSet fileset
Definition: tuplesort.c:488

◆ make_bounded_heap()

static void make_bounded_heap ( Tuplesortstate state)
static

Definition at line 3220 of file tuplesort.c.

References Assert, Tuplesortstate::bound, Tuplesortstate::bounded, CHECK_FOR_INTERRUPTS, COMPARETUP, free_sort_tuple(), i, Tuplesortstate::memtupcount, Tuplesortstate::memtuples, reversedirection(), SERIAL, Tuplesortstate::status, TSS_BOUNDED, TSS_INITIAL, tuplesort_heap_insert(), and tuplesort_heap_replace_top().

Referenced by puttuple_common().

3221 {
3222  int tupcount = state->memtupcount;
3223  int i;
3224 
3225  Assert(state->status == TSS_INITIAL);
3226  Assert(state->bounded);
3227  Assert(tupcount >= state->bound);
3228  Assert(SERIAL(state));
3229 
3230  /* Reverse sort direction so largest entry will be at root */
3231  reversedirection(state);
3232 
3233  state->memtupcount = 0; /* make the heap empty */
3234  for (i = 0; i < tupcount; i++)
3235  {
3236  if (state->memtupcount < state->bound)
3237  {
3238  /* Insert next tuple into heap */
3239  /* Must copy source tuple to avoid possible overwrite */
3240  SortTuple stup = state->memtuples[i];
3241 
3242  tuplesort_heap_insert(state, &stup);
3243  }
3244  else
3245  {
3246  /*
3247  * The heap is full. Replace the largest entry with the new
3248  * tuple, or just discard it, if it's larger than anything already
3249  * in the heap.
3250  */
3251  if (COMPARETUP(state, &state->memtuples[i], &state->memtuples[0]) <= 0)
3252  {
3253  free_sort_tuple(state, &state->memtuples[i]);
3255  }
3256  else
3257  tuplesort_heap_replace_top(state, &state->memtuples[i]);
3258  }
3259  }
3260 
3261  Assert(state->memtupcount == state->bound);
3262  state->status = TSS_BOUNDED;
3263 }
static void reversedirection(Tuplesortstate *state)
Definition: tuplesort.c:3436
TupSortStatus status
Definition: tuplesort.c:232
#define SERIAL(state)
Definition: tuplesort.c:530
static void free_sort_tuple(Tuplesortstate *state, SortTuple *stup)
Definition: tuplesort.c:4586
#define COMPARETUP(state, a, b)
Definition: tuplesort.c:523
static void tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3337
#define Assert(condition)
Definition: c.h:732
int i
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:99
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3396
SortTuple * memtuples
Definition: tuplesort.c:293

◆ markrunend()

static void markrunend ( Tuplesortstate state,
int  tapenum 
)
static

Definition at line 3467 of file tuplesort.c.

References LogicalTapeWrite(), and Tuplesortstate::tapeset.

Referenced by dumptuples(), and mergeonerun().

3468 {
3469  unsigned int len = 0;
3470 
3471  LogicalTapeWrite(state->tapeset, tapenum, (void *) &len, sizeof(len));
3472 }
void LogicalTapeWrite(LogicalTapeSet *lts, int tapenum, void *ptr, size_t size)
Definition: logtape.c:621
LogicalTapeSet * tapeset
Definition: tuplesort.c:246

◆ mergeonerun()

static void mergeonerun ( Tuplesortstate state)
static

Definition at line 2789 of file tuplesort.c.

References Tuplesortstate::activeTapes, beginmerge(), elog, LOG, markrunend(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, mergereadnext(), pg_rusage_show(), RELEASE_SLAB_SLOT, Tuplesortstate::ru_start, SortTuple::srctape, Tuplesortstate::tapeRange, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, trace_sort, SortTuple::tuple, tuplesort_heap_delete_top(), tuplesort_heap_replace_top(), Tuplesortstate::worker, and WRITETUP.

Referenced by mergeruns().

2790 {
2791  int destTape = state->tp_tapenum[state->tapeRange];
2792  int srcTape;
2793 
2794  /*
2795  * Start the merge by loading one tuple from each active source tape into
2796  * the heap. We can also decrease the input run/dummy run counts.
2797  */
2798  beginmerge(state);
2799 
2800  /*
2801  * Execute merge by repeatedly extracting lowest tuple in heap, writing it
2802  * out, and replacing it with next tuple from same tape (if there is
2803  * another one).
2804  */
2805  while (state->memtupcount > 0)
2806  {
2807  SortTuple stup;
2808 
2809  /* write the tuple to destTape */
2810  srcTape = state->memtuples[0].srctape;
2811  WRITETUP(state, destTape, &state->memtuples[0]);
2812 
2813  /* recycle the slot of the tuple we just wrote out, for the next read */
2814  if (state->memtuples[0].tuple)
2815  RELEASE_SLAB_SLOT(state, state->memtuples[0].tuple);
2816 
2817  /*
2818  * pull next tuple from the tape, and replace the written-out tuple in
2819  * the heap with it.
2820  */
2821  if (mergereadnext(state, srcTape, &stup))
2822  {
2823  stup.srctape = srcTape;
2824  tuplesort_heap_replace_top(state, &stup);
2825  }
2826  else
2828  }
2829 
2830  /*
2831  * When the heap empties, we're done. Write an end-of-run marker on the
2832  * output tape, and increment its count of real runs.
2833  */
2834  markrunend(state, destTape);
2835  state->tp_runs[state->tapeRange]++;
2836 
2837 #ifdef TRACE_SORT
2838  if (trace_sort)
2839  elog(LOG, "worker %d finished %d-way merge step: %s", state->worker,
2840  state->activeTapes, pg_rusage_show(&state->ru_start));
2841 #endif
2842 }
PGRUsage ru_start
Definition: tuplesort.c:463
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
static void markrunend(Tuplesortstate *state, int tapenum)
Definition: tuplesort.c:3467
void * tuple
Definition: tuplesort.c:169
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define WRITETUP(state, tape, stup)
Definition: tuplesort.c:525
#define RELEASE_SLAB_SLOT(state, tuple)
Definition: tuplesort.c:511
static void tuplesort_heap_delete_top(Tuplesortstate *state)
Definition: tuplesort.c:3372
static bool mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup)
Definition: tuplesort.c:2900
int srctape
Definition: tuplesort.c:172
int * tp_tapenum
Definition: tuplesort.c:370
#define elog(elevel,...)
Definition: elog.h:226
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3396
static void beginmerge(Tuplesortstate *state)
Definition: tuplesort.c:2852
SortTuple * memtuples
Definition: tuplesort.c:293

◆ mergereadnext()

static bool mergereadnext ( Tuplesortstate state,
int  srcTape,
SortTuple stup 
)
static

Definition at line 2900 of file tuplesort.c.

References getlen(), Tuplesortstate::mergeactive, and READTUP.

Referenced by beginmerge(), mergeonerun(), and tuplesort_gettuple_common().

2901 {
2902  unsigned int tuplen;
2903 
2904  if (!state->mergeactive[srcTape])
2905  return false; /* tape's run is already exhausted */
2906 
2907  /* read next tuple, if any */
2908  if ((tuplen = getlen(state, srcTape, true)) == 0)
2909  {
2910  state->mergeactive[srcTape] = false;
2911  return false;
2912  }
2913  READTUP(state, stup, srcTape, tuplen);
2914 
2915  return true;
2916 }
static unsigned int getlen(Tuplesortstate *state, int tapenum, bool eofOK)
Definition: tuplesort.c:3454
#define READTUP(state, stup, tape, len)
Definition: tuplesort.c:526
bool * mergeactive
Definition: tuplesort.c:358

◆ mergeruns()

static void mergeruns ( Tuplesortstate state)
static

Definition at line 2562 of file tuplesort.c.

References SortSupportData::abbrev_abort, SortSupportData::abbrev_converter, SortSupportData::abbrev_full_comparator, Assert, Tuplesortstate::availMem, beginmerge(), SortSupportData::comparator, Tuplesortstate::currentRun, elog, FREEMEM, GetMemoryChunkSpace(), init_slab_allocator(), INT64_FORMAT, Tuplesortstate::Level, LOG, LogicalTapeFreeze(), LogicalTapeRewindForRead(), LogicalTapeRewindForWrite(), LogicalTapeSetForgetFreeSpace(), Max, Tuplesortstate::maxTapes, MemoryContextDelete(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, mergeonerun(), palloc(), pfree(), Tuplesortstate::randomAccess, Tuplesortstate::read_buffer_size, Tuplesortstate::result_tape, Tuplesortstate::sortKeys, Tuplesortstate::status, TAPE_BUFFER_OVERHEAD, Tuplesortstate::tapeRange, Tuplesortstate::tapeset, Tuplesortstate::tp_dummy, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, trace_sort, TSS_BUILDRUNS, TSS_FINALMERGE, TSS_SORTEDONTAPE, Tuplesortstate::tuplecontext, Tuplesortstate::tuples, USEMEM, Tuplesortstate::worker, WORKER, and worker_freeze_result_tape().

Referenced by tuplesort_performsort().

2563 {
2564  int tapenum,
2565  svTape,
2566  svRuns,
2567  svDummy;
2568  int numTapes;
2569  int numInputTapes;
2570 
2571  Assert(state->status == TSS_BUILDRUNS);
2572  Assert(state->memtupcount == 0);
2573 
2574  if (state->sortKeys != NULL && state->sortKeys->abbrev_converter != NULL)
2575  {
2576  /*
2577  * If there are multiple runs to be merged, when we go to read back
2578  * tuples from disk, abbreviated keys will not have been stored, and
2579  * we don't care to regenerate them. Disable abbreviation from this
2580  * point on.
2581  */
2582  state->sortKeys->abbrev_converter = NULL;
2584 
2585  /* Not strictly necessary, but be tidy */
2586  state->sortKeys->abbrev_abort = NULL;
2587  state->sortKeys->abbrev_full_comparator = NULL;
2588  }
2589 
2590  /*
2591  * Reset tuple memory. We've freed all the tuples that we previously
2592  * allocated. We will use the slab allocator from now on.
2593  */
2595  state->tuplecontext = NULL;
2596 
2597  /*
2598  * We no longer need a large memtuples array. (We will allocate a smaller
2599  * one for the heap later.)
2600  */
2601  FREEMEM(state, GetMemoryChunkSpace(state->memtuples));
2602  pfree(state->memtuples);
2603  state->memtuples = NULL;
2604 
2605  /*
2606  * If we had fewer runs than tapes, refund the memory that we imagined we
2607  * would need for the tape buffers of the unused tapes.
2608  *
2609  * numTapes and numInputTapes reflect the actual number of tapes we will
2610  * use. Note that the output tape's tape number is maxTapes - 1, so the
2611  * tape numbers of the used tapes are not consecutive, and you cannot just
2612  * loop from 0 to numTapes to visit all used tapes!
2613  */
2614  if (state->Level == 1)
2615  {
2616  numInputTapes = state->currentRun;
2617  numTapes = numInputTapes + 1;
2618  FREEMEM(state, (state->maxTapes - numTapes) * TAPE_BUFFER_OVERHEAD);
2619  }
2620  else
2621  {
2622  numInputTapes = state->tapeRange;
2623  numTapes = state->maxTapes;
2624  }
2625 
2626  /*
2627  * Initialize the slab allocator. We need one slab slot per input tape,
2628  * for the tuples in the heap, plus one to hold the tuple last returned
2629  * from tuplesort_gettuple. (If we're sorting pass-by-val Datums,
2630  * however, we don't need to do allocate anything.)
2631  *
2632  * From this point on, we no longer use the USEMEM()/LACKMEM() mechanism
2633  * to track memory usage of individual tuples.
2634  */
2635  if (state->tuples)
2636  init_slab_allocator(state, numInputTapes + 1);
2637  else
2638  init_slab_allocator(state, 0);
2639 
2640  /*
2641  * Allocate a new 'memtuples' array, for the heap. It will hold one tuple
2642  * from each input tape.
2643  */
2644  state->memtupsize = numInputTapes;
2645  state->memtuples = (SortTuple *) palloc(numInputTapes * sizeof(SortTuple));
2646  USEMEM(state, GetMemoryChunkSpace(state->memtuples));
2647 
2648  /*
2649  * Use all the remaining memory we have available for read buffers among
2650  * the input tapes.
2651  *
2652  * We don't try to "rebalance" the memory among tapes, when we start a new
2653  * merge phase, even if some tapes are inactive in the new phase. That
2654  * would be hard, because logtape.c doesn't know where one run ends and
2655  * another begins. When a new merge phase begins, and a tape doesn't
2656  * participate in it, its buffer nevertheless already contains tuples from
2657  * the next run on same tape, so we cannot release the buffer. That's OK
2658  * in practice, merge performance isn't that sensitive to the amount of
2659  * buffers used, and most merge phases use all or almost all tapes,
2660  * anyway.
2661  */
2662 #ifdef TRACE_SORT
2663  if (trace_sort)
2664  elog(LOG, "worker %d using " INT64_FORMAT " KB of memory for read buffers among %d input tapes",
2665  state->worker, state->availMem / 1024, numInputTapes);
2666 #endif
2667 
2668  state->read_buffer_size = Max(state->availMem / numInputTapes, 0);
2669  USEMEM(state, state->read_buffer_size * numInputTapes);
2670 
2671  /* End of step D2: rewind all output tapes to prepare for merging */
2672  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2673  LogicalTapeRewindForRead(state->tapeset, tapenum, state->read_buffer_size);
2674 
2675  for (;;)
2676  {
2677  /*
2678  * At this point we know that tape[T] is empty. If there's just one
2679  * (real or dummy) run left on each input tape, then only one merge
2680  * pass remains. If we don't have to produce a materialized sorted
2681  * tape, we can stop at this point and do the final merge on-the-fly.
2682  */
2683  if (!state->randomAccess && !WORKER(state))
2684  {
2685  bool allOneRun = true;
2686 
2687  Assert(state->tp_runs[state->tapeRange] == 0);
2688  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2689  {
2690  if (state->tp_runs[tapenum] + state->tp_dummy[tapenum] != 1)
2691  {
2692  allOneRun = false;
2693  break;
2694  }
2695  }
2696  if (allOneRun)
2697  {
2698  /* Tell logtape.c we won't be writing anymore */
2700  /* Initialize for the final merge pass */
2701  beginmerge(state);
2702  state->status = TSS_FINALMERGE;
2703  return;
2704  }
2705  }
2706 
2707  /* Step D5: merge runs onto tape[T] until tape[P] is empty */
2708  while (state->tp_runs[state->tapeRange - 1] ||
2709  state->tp_dummy[state->tapeRange - 1])
2710  {
2711  bool allDummy = true;
2712 
2713  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2714  {
2715  if (state->tp_dummy[tapenum] == 0)
2716  {
2717  allDummy = false;
2718  break;
2719  }
2720  }
2721 
2722  if (allDummy)
2723  {
2724  state->tp_dummy[state->tapeRange]++;
2725  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2726  state->tp_dummy[tapenum]--;
2727  }
2728  else
2729  mergeonerun(state);
2730  }
2731 
2732  /* Step D6: decrease level */
2733  if (--state->Level == 0)
2734  break;
2735  /* rewind output tape T to use as new input */
2736  LogicalTapeRewindForRead(state->tapeset, state->tp_tapenum[state->tapeRange],
2737  state->read_buffer_size);
2738  /* rewind used-up input tape P, and prepare it for write pass */
2739  LogicalTapeRewindForWrite(state->tapeset, state->tp_tapenum[state->tapeRange - 1]);
2740  state->tp_runs[state->tapeRange - 1] = 0;
2741 
2742  /*
2743  * reassign tape units per step D6; note we no longer care about A[]
2744  */
2745  svTape = state->tp_tapenum[state->tapeRange];
2746  svDummy = state->tp_dummy[state->tapeRange];
2747  svRuns = state->tp_runs[state->tapeRange];
2748  for (tapenum = state->tapeRange; tapenum > 0; tapenum--)
2749  {
2750  state->tp_tapenum[tapenum] = state->tp_tapenum[tapenum - 1];
2751  state->tp_dummy[tapenum] = state->tp_dummy[tapenum - 1];
2752  state->tp_runs[tapenum] = state->tp_runs[tapenum - 1];
2753  }
2754  state->tp_tapenum[0] = svTape;
2755  state->tp_dummy[0] = svDummy;
2756  state->tp_runs[0] = svRuns;
2757  }
2758 
2759  /*
2760  * Done. Knuth says that the result is on TAPE[1], but since we exited
2761  * the loop without performing the last iteration of step D6, we have not
2762  * rearranged the tape unit assignment, and therefore the result is on
2763  * TAPE[T]. We need to do it this way so that we can freeze the final
2764  * output tape while rewinding it. The last iteration of step D6 would be
2765  * a waste of cycles anyway...
2766  */
2767  state->result_tape = state->tp_tapenum[state->tapeRange];
2768  if (!WORKER(state))
2769  LogicalTapeFreeze(state->tapeset, state->result_tape, NULL);
2770  else
2772  state->status = TSS_SORTEDONTAPE;
2773 
2774  /* Release the read buffers of all the other tapes, by rewinding them. */
2775  for (tapenum = 0; tapenum < state->maxTapes; tapenum++)
2776  {
2777  if (tapenum != state->result_tape)
2778  LogicalTapeRewindForWrite(state->tapeset, tapenum);
2779  }
2780 }
int64 availMem
Definition: tuplesort.c:240
size_t read_buffer_size
Definition: tuplesort.c:332
TupSortStatus status
Definition: tuplesort.c:232
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:211
static void mergeonerun(Tuplesortstate *state)
Definition: tuplesort.c:2789
static void worker_freeze_result_tape(Tuplesortstate *state)
Definition: tuplesort.c:4462
SortSupport sortKeys
Definition: tuplesort.c:412
bool randomAccess
Definition: tuplesort.c:234
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
void LogicalTapeRewindForWrite(LogicalTapeSet *lts, int tapenum)
Definition: logtape.c:796
static void init_slab_allocator(Tuplesortstate *state, int numSlots)
Definition: tuplesort.c:2526
#define TAPE_BUFFER_OVERHEAD
Definition: tuplesort.c:221
void pfree(void *pointer)
Definition: mcxt.c:1056
int(* comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:106
int(* abbrev_full_comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:191
#define FREEMEM(state, amt)
Definition: tuplesort.c:529
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:172
LogicalTapeSet * tapeset
Definition: tuplesort.c:246
#define WORKER(state)
Definition: tuplesort.c:531
#define Max(x, y)
Definition: c.h:898
#define Assert(condition)
Definition: c.h:732
bool(* abbrev_abort)(int memtupcount, SortSupport ssup)
Definition: sortsupport.h:182
#define INT64_FORMAT
Definition: c.h:400
void LogicalTapeRewindForRead(LogicalTapeSet *lts, int tapenum, size_t buffer_size)
Definition: logtape.c:709
int * tp_dummy
Definition: tuplesort.c:369
void LogicalTapeFreeze(LogicalTapeSet *lts, int tapenum, TapeShare *share)
Definition: logtape.c:876
MemoryContext tuplecontext
Definition: tuplesort.c:245
void * palloc(Size size)
Definition: mcxt.c:949
int * tp_tapenum
Definition: tuplesort.c:370
#define USEMEM(state, amt)
Definition: tuplesort.c:528
#define elog(elevel,...)
Definition: elog.h:226
void LogicalTapeSetForgetFreeSpace(LogicalTapeSet *lts)
Definition: logtape.c:610
static void beginmerge(Tuplesortstate *state)
Definition: tuplesort.c:2852
SortTuple * memtuples
Definition: tuplesort.c:293

◆ puttuple_common()

static void puttuple_common ( Tuplesortstate state,
SortTuple tuple 
)
static

Definition at line 1638 of file tuplesort.c.

References Assert, Tuplesortstate::bound, Tuplesortstate::bounded, CHECK_FOR_INTERRUPTS, COMPARETUP, dumptuples(), elog, ERROR, free_sort_tuple(), grow_memtuples(), inittapes(), LACKMEM, LEADER, LOG, make_bounded_heap(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, pg_rusage_show(), Tuplesortstate::ru_start, Tuplesortstate::status, trace_sort, TSS_BOUNDED, TSS_BUILDRUNS, TSS_INITIAL, and tuplesort_heap_replace_top().

Referenced by tuplesort_putdatum(), tuplesort_putheaptuple(), tuplesort_putindextuplevalues(), and tuplesort_puttupleslot().

1639 {
1640  Assert(!LEADER(state));
1641 
1642  switch (state->status)
1643  {
1644  case TSS_INITIAL:
1645 
1646  /*
1647  * Save the tuple into the unsorted array. First, grow the array
1648  * as needed. Note that we try to grow the array when there is
1649  * still one free slot remaining --- if we fail, there'll still be
1650  * room to store the incoming tuple, and then we'll switch to
1651  * tape-based operation.
1652  */
1653  if (state->memtupcount >= state->memtupsize - 1)
1654  {
1655  (void) grow_memtuples(state);
1656  Assert(state->memtupcount < state->memtupsize);
1657  }
1658  state->memtuples[state->memtupcount++] = *tuple;
1659 
1660  /*
1661  * Check if it's time to switch over to a bounded heapsort. We do
1662  * so if the input tuple count exceeds twice the desired tuple
1663  * count (this is a heuristic for where heapsort becomes cheaper
1664  * than a quicksort), or if we've just filled workMem and have
1665  * enough tuples to meet the bound.
1666  *
1667  * Note that once we enter TSS_BOUNDED state we will always try to
1668  * complete the sort that way. In the worst case, if later input
1669  * tuples are larger than earlier ones, this might cause us to
1670  * exceed workMem significantly.
1671  */
1672  if (state->bounded &&
1673  (state->memtupcount > state->bound * 2 ||
1674  (state->memtupcount > state->bound && LACKMEM(state))))
1675  {
1676 #ifdef TRACE_SORT
1677  if (trace_sort)
1678  elog(LOG, "switching to bounded heapsort at %d tuples: %s",
1679  state->memtupcount,
1680  pg_rusage_show(&state->ru_start));
1681 #endif
1682  make_bounded_heap(state);
1683  return;
1684  }
1685 
1686  /*
1687  * Done if we still fit in available memory and have array slots.
1688  */
1689  if (state->memtupcount < state->memtupsize && !LACKMEM(state))
1690  return;
1691 
1692  /*
1693  * Nope; time to switch to tape-based operation.
1694  */
1695  inittapes(state, true);
1696 
1697  /*
1698  * Dump all tuples.
1699  */
1700  dumptuples(state, false);
1701  break;
1702 
1703  case TSS_BOUNDED:
1704 
1705  /*
1706  * We don't want to grow the array here, so check whether the new
1707  * tuple can be discarded before putting it in. This should be a
1708  * good speed optimization, too, since when there are many more
1709  * input tuples than the bound, most input tuples can be discarded
1710  * with just this one comparison. Note that because we currently
1711  * have the sort direction reversed, we must check for <= not >=.
1712  */
1713  if (COMPARETUP(state, tuple, &state->memtuples[0]) <= 0)
1714  {
1715  /* new tuple <= top of the heap, so we can discard it */
1716  free_sort_tuple(state, tuple);
1718  }
1719  else
1720  {
1721  /* discard top of heap, replacing it with the new tuple */
1722  free_sort_tuple(state, &state->memtuples[0]);
1723  tuplesort_heap_replace_top(state, tuple);
1724  }
1725  break;
1726 
1727  case TSS_BUILDRUNS:
1728 
1729  /*
1730  * Save the tuple into the unsorted array (there must be space)
1731  */
1732  state->memtuples[state->memtupcount++] = *tuple;
1733 
1734  /*
1735  * If we are over the memory limit, dump all tuples.
1736  */
1737  dumptuples(state, false);
1738  break;
1739 
1740  default:
1741  elog(ERROR, "invalid tuplesort state");
1742  break;
1743  }
1744 }
static void dumptuples(Tuplesortstate *state, bool alltuples)
Definition: tuplesort.c:2925
TupSortStatus status
Definition: tuplesort.c:232
static bool grow_memtuples(Tuplesortstate *state)
Definition: tuplesort.c:1316
PGRUsage ru_start
Definition: tuplesort.c:463
static void inittapes(Tuplesortstate *state, bool mergeruns)
Definition: tuplesort.c:2393
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
#define ERROR
Definition: elog.h:43
static void free_sort_tuple(Tuplesortstate *state, SortTuple *stup)
Definition: tuplesort.c:4586
#define COMPARETUP(state, a, b)
Definition: tuplesort.c:523
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define LEADER(state)
Definition: tuplesort.c:532
#define Assert(condition)
Definition: c.h:732
#define elog(elevel,...)
Definition: elog.h:226
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:99
static void make_bounded_heap(Tuplesortstate *state)
Definition: tuplesort.c:3220
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3396
#define LACKMEM(state)
Definition: tuplesort.c:527
SortTuple * memtuples
Definition: tuplesort.c:293

◆ readtup_alloc()

static void * readtup_alloc ( Tuplesortstate state,
Size  tuplen 
)
static

Definition at line 3481 of file tuplesort.c.

References Assert, buf, MemoryContextAlloc(), SlabSlot::nextfree, SLAB_SLOT_SIZE, Tuplesortstate::slabFreeHead, and Tuplesortstate::sortcontext.

Referenced by readtup_cluster(), readtup_datum(), readtup_heap(), and readtup_index().

3482 {
3483  SlabSlot *buf;
3484 
3485  /*
3486  * We pre-allocate enough slots in the slab arena that we should never run
3487  * out.
3488  */
3489  Assert(state->slabFreeHead);
3490 
3491  if (tuplen > SLAB_SLOT_SIZE || !state->slabFreeHead)
3492  return MemoryContextAlloc(state->sortcontext, tuplen);
3493  else
3494  {
3495  buf = state->slabFreeHead;
3496  /* Reuse this slot */
3497  state->slabFreeHead = buf->nextfree;
3498 
3499  return buf;
3500  }
3501 }
#define SLAB_SLOT_SIZE
Definition: tuplesort.c:186
union SlabSlot * nextfree
Definition: tuplesort.c:190
MemoryContext sortcontext
Definition: tuplesort.c:244
static char * buf
Definition: pg_test_fsync.c:68
#define Assert(condition)
Definition: c.h:732
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:796
SlabSlot * slabFreeHead
Definition: tuplesort.c:329

◆ readtup_cluster()

static void readtup_cluster ( Tuplesortstate state,
SortTuple stup,
int  tapenum,
unsigned int  len 
)
static

Definition at line 3916 of file tuplesort.c.

References SortTuple::datum1, heap_getattr, HEAPTUPLESIZE, IndexInfo::ii_IndexAttrNumbers, Tuplesortstate::indexInfo, InvalidOid, SortTuple::isnull1, LogicalTapeReadExact, Tuplesortstate::randomAccess, readtup_alloc(), HeapTupleData::t_data, HeapTupleData::t_len, HeapTupleData::t_self, HeapTupleData::t_tableOid, Tuplesortstate::tapeset, Tuplesortstate::tupDesc, and SortTuple::tuple.

Referenced by tuplesort_begin_cluster().

3918 {
3919  unsigned int t_len = tuplen - sizeof(ItemPointerData) - sizeof(int);
3920  HeapTuple tuple = (HeapTuple) readtup_alloc(state,
3921  t_len + HEAPTUPLESIZE);
3922 
3923  /* Reconstruct the HeapTupleData header */
3924  tuple->t_data = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE);
3925  tuple->t_len = t_len;
3926  LogicalTapeReadExact(state->tapeset, tapenum,
3927  &tuple->t_self, sizeof(ItemPointerData));
3928  /* We don't currently bother to reconstruct t_tableOid */
3929  tuple->t_tableOid = InvalidOid;
3930  /* Read in the tuple body */
3931  LogicalTapeReadExact(state->tapeset, tapenum,
3932  tuple->t_data, tuple->t_len);
3933  if (state->randomAccess) /* need trailing length word? */
3934  LogicalTapeReadExact(state->tapeset, tapenum,
3935  &tuplen, sizeof(tuplen));
3936  stup->tuple = (void *) tuple;
3937  /* set up first-column key value, if it's a simple column */
3938  if (state->indexInfo->ii_IndexAttrNumbers[0] != 0)
3939  stup->datum1 = heap_getattr(tuple,
3940  state->indexInfo->ii_IndexAttrNumbers[0],
3941  state->tupDesc,
3942  &stup->isnull1);
3943 }
HeapTupleData * HeapTuple
Definition: htup.h:71
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
bool randomAccess
Definition: tuplesort.c:234
Datum datum1
Definition: tuplesort.c:170
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
Definition: tuplesort.c:584
bool isnull1
Definition: tuplesort.c:171
HeapTupleHeader t_data
Definition: htup.h:68
void * tuple
Definition: tuplesort.c:169
ItemPointerData t_self
Definition: htup.h:65
uint32 t_len
Definition: htup.h:64
IndexInfo * indexInfo
Definition: tuplesort.c:433
LogicalTapeSet * tapeset
Definition: tuplesort.c:246
Oid t_tableOid
Definition: htup.h:66
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:762
#define InvalidOid
Definition: postgres_ext.h:36
struct ItemPointerData ItemPointerData
static void * readtup_alloc(Tuplesortstate *state, Size tuplen)
Definition: tuplesort.c:3481
#define HEAPTUPLESIZE
Definition: htup.h:73
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:159
TupleDesc tupDesc
Definition: tuplesort.c:411

◆ readtup_datum()

static void readtup_datum ( Tuplesortstate state,
SortTuple stup,
int  tapenum,
unsigned int  len 
)
static

Definition at line 4323 of file tuplesort.c.

References Assert, SortTuple::datum1, SortTuple::isnull1, LogicalTapeReadExact, PointerGetDatum, Tuplesortstate::randomAccess, readtup_alloc(), Tuplesortstate::tapeset, SortTuple::tuple, and Tuplesortstate::tuples.

Referenced by tuplesort_begin_datum().

4325 {
4326  unsigned int tuplen = len - sizeof(unsigned int);
4327 
4328  if (tuplen == 0)
4329  {
4330  /* it's NULL */
4331  stup->datum1 = (Datum) 0;
4332  stup->isnull1 = true;
4333  stup->tuple = NULL;
4334  }
4335  else if (!state->tuples)
4336  {
4337  Assert(tuplen == sizeof(Datum));
4338  LogicalTapeReadExact(state->tapeset, tapenum,
4339  &stup->datum1, tuplen);
4340  stup->isnull1 = false;
4341  stup->tuple = NULL;
4342  }
4343  else
4344  {
4345  void *raddr = readtup_alloc(state, tuplen);
4346 
4347  LogicalTapeReadExact(state->tapeset, tapenum,
4348  raddr, tuplen);
4349  stup->datum1 = PointerGetDatum(raddr);
4350  stup->isnull1 = false;
4351  stup->tuple = raddr;
4352  }
4353 
4354  if (state->randomAccess) /* need trailing length word? */
4355  LogicalTapeReadExact(state->tapeset, tapenum,
4356  &tuplen, sizeof(tuplen));
4357 }
#define PointerGetDatum(X)
Definition: postgres.h:556
bool randomAccess
Definition: tuplesort.c:234
Datum datum1
Definition: tuplesort.c:170
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
Definition: tuplesort.c:584
bool isnull1
Definition: tuplesort.c:171
void * tuple
Definition: tuplesort.c:169
LogicalTapeSet * tapeset
Definition: tuplesort.c:246
uintptr_t Datum
Definition: postgres.h:367
#define Assert(condition)
Definition: c.h:732
static void * readtup_alloc(Tuplesortstate *state, Size tuplen)
Definition: tuplesort.c:3481

◆ readtup_heap()

static void readtup_heap ( Tuplesortstate state,
SortTuple stup,
int  tapenum,
unsigned int  len 
)
static

Definition at line 3676 of file tuplesort.c.

References SortTuple::datum1, heap_getattr, SortTuple::isnull1, LogicalTapeReadExact, MINIMAL_TUPLE_DATA_OFFSET, MINIMAL_TUPLE_OFFSET, Tuplesortstate::randomAccess, readtup_alloc(), Tuplesortstate::sortKeys, SortSupportData::ssup_attno, HeapTupleData::t_data, HeapTupleData::t_len, MinimalTupleData::t_len, Tuplesortstate::tapeset, Tuplesortstate::tupDesc, and SortTuple::tuple.

Referenced by tuplesort_begin_heap().

3678 {
3679  unsigned int tupbodylen = len - sizeof(int);
3680  unsigned int tuplen = tupbodylen + MINIMAL_TUPLE_DATA_OFFSET;
3681  MinimalTuple tuple = (MinimalTuple) readtup_alloc(state, tuplen);
3682  char *tupbody = (char *) tuple + MINIMAL_TUPLE_DATA_OFFSET;
3683  HeapTupleData htup;
3684 
3685  /* read in the tuple proper */
3686  tuple->t_len = tuplen;
3687  LogicalTapeReadExact(state->tapeset, tapenum,
3688  tupbody, tupbodylen);
3689  if (state->randomAccess) /* need trailing length word? */
3690  LogicalTapeReadExact(state->tapeset, tapenum,
3691  &tuplen, sizeof(tuplen));
3692  stup->tuple = (void *) tuple;
3693  /* set up first-column key value */
3694  htup.t_len = tuple->t_len + MINIMAL_TUPLE_OFFSET;
3695  htup.t_data = (HeapTupleHeader) ((char *) tuple - MINIMAL_TUPLE_OFFSET);
3696  stup->datum1 = heap_getattr(&htup,
3697  state->sortKeys[0].ssup_attno,
3698  state->tupDesc,
3699  &stup->isnull1);
3700 }
#define MINIMAL_TUPLE_DATA_OFFSET
Definition: htup_details.h:623
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
SortSupport sortKeys
Definition: tuplesort.c:412
bool randomAccess
Definition: tuplesort.c:234
Datum datum1
Definition: tuplesort.c:170
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
Definition: tuplesort.c:584
bool isnull1
Definition: tuplesort.c:171
HeapTupleHeader t_data
Definition: htup.h:68
void * tuple
Definition: tuplesort.c:169
uint32 t_len
Definition: htup.h:64
MinimalTupleData * MinimalTuple
Definition: htup.h:27
LogicalTapeSet * tapeset
Definition: tuplesort.c:246
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:762
AttrNumber ssup_attno
Definition: sortsupport.h:81
#define MINIMAL_TUPLE_OFFSET
Definition: htup_details.h:619
static void * readtup_alloc(Tuplesortstate *state, Size tuplen)
Definition: tuplesort.c:3481
TupleDesc tupDesc
Definition: tuplesort.c:411

◆ readtup_index()

static void readtup_index ( Tuplesortstate state,
SortTuple stup,
int  tapenum,
unsigned int  len 
)
static

Definition at line 4230 of file tuplesort.c.

References SortTuple::datum1, index_getattr, Tuplesortstate::indexRel, SortTuple::isnull1, LogicalTapeReadExact, Tuplesortstate::randomAccess, readtup_alloc(), RelationGetDescr, Tuplesortstate::tapeset, and SortTuple::tuple.

Referenced by tuplesort_begin_index_btree(), and tuplesort_begin_index_hash().

4232 {
4233  unsigned int tuplen = len - sizeof(unsigned int);
4234  IndexTuple tuple = (IndexTuple) readtup_alloc(state, tuplen);
4235 
4236  LogicalTapeReadExact(state->tapeset, tapenum,
4237  tuple, tuplen);
4238  if (state->randomAccess) /* need trailing length word? */
4239  LogicalTapeReadExact(state->tapeset, tapenum,
4240  &tuplen, sizeof(tuplen));
4241  stup->tuple = (void *) tuple;
4242  /* set up first-column key value */
4243  stup->datum1 = index_getattr(tuple,
4244  1,
4245  RelationGetDescr(state->indexRel),
4246  &stup->isnull1);
4247 }
#define RelationGetDescr(relation)
Definition: rel.h:445
bool randomAccess
Definition: tuplesort.c:234
Datum datum1
Definition: tuplesort.c:170
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
Definition: tuplesort.c:584
bool isnull1
Definition: tuplesort.c:171
void * tuple
Definition: tuplesort.c:169
IndexTupleData * IndexTuple
Definition: itup.h:53
LogicalTapeSet * tapeset
Definition: tuplesort.c:246
Relation indexRel
Definition: tuplesort.c:441
#define index_getattr(tup, attnum, tupleDesc, isnull)
Definition: itup.h:100
static void * readtup_alloc(Tuplesortstate *state, Size tuplen)
Definition: tuplesort.c:3481

◆ reversedirection()

static void reversedirection ( Tuplesortstate state)
static

Definition at line 3436 of file tuplesort.c.

References Tuplesortstate::nKeys, Tuplesortstate::sortKeys, SortSupportData::ssup_nulls_first, and SortSupportData::ssup_reverse.

Referenced by make_bounded_heap(), and sort_bounded_heap().

3437 {
3438  SortSupport sortKey = state->sortKeys;
3439  int nkey;
3440 
3441  for (nkey = 0; nkey < state->nKeys; nkey++, sortKey++)
3442  {
3443  sortKey->ssup_reverse = !sortKey->ssup_reverse;
3444  sortKey->ssup_nulls_first = !sortKey->ssup_nulls_first;
3445  }
3446 }
bool ssup_nulls_first
Definition: sortsupport.h:75
SortSupport sortKeys
Definition: tuplesort.c:412

◆ selectnewtape()

static void selectnewtape ( Tuplesortstate state)
static

Definition at line 2494 of file tuplesort.c.

References Tuplesortstate::destTape, Tuplesortstate::Level, Tuplesortstate::tapeRange, Tuplesortstate::tp_dummy, and Tuplesortstate::tp_fib.

Referenced by dumptuples().

2495 {
2496  int j;
2497  int a;
2498 
2499  /* Step D3: advance j (destTape) */
2500  if (state->tp_dummy[state->destTape] < state->tp_dummy[state->destTape + 1])
2501  {
2502  state->destTape++;
2503  return;
2504  }
2505  if (state->tp_dummy[state->destTape] != 0)
2506  {
2507  state->destTape = 0;
2508  return;
2509  }
2510 
2511  /* Step D4: increase level */
2512  state->Level++;
2513  a = state->tp_fib[0];
2514  for (j = 0; j < state->tapeRange; j++)
2515  {
2516  state->tp_dummy[j] = a + state->tp_fib[j + 1] - state->tp_fib[j];
2517  state->tp_fib[j] = a + state->tp_fib[j + 1];
2518  }
2519  state->destTape = 0;
2520 }
int * tp_dummy
Definition: tuplesort.c:369

◆ sort_bounded_heap()

static void sort_bounded_heap ( Tuplesortstate state)
static

Definition at line 3269 of file tuplesort.c.

References Assert, Tuplesortstate::bound, Tuplesortstate::bounded, Tuplesortstate::boundUsed, Tuplesortstate::memtupcount, Tuplesortstate::memtuples, reversedirection(), SERIAL, Tuplesortstate::status, TSS_BOUNDED, TSS_SORTEDINMEM, and tuplesort_heap_delete_top().

Referenced by tuplesort_performsort().

3270 {
3271  int tupcount = state->memtupcount;
3272 
3273  Assert(state->status == TSS_BOUNDED);
3274  Assert(state->bounded);
3275  Assert(tupcount == state->bound);
3276  Assert(SERIAL(state));
3277 
3278  /*
3279  * We can unheapify in place because each delete-top call will remove the
3280  * largest entry, which we can promptly store in the newly freed slot at
3281  * the end. Once we're down to a single-entry heap, we're done.
3282  */
3283  while (state->memtupcount > 1)
3284  {
3285  SortTuple stup = state->memtuples[0];
3286 
3287  /* this sifts-up the next-largest entry and decreases memtupcount */
3289  state->memtuples[state->memtupcount] = stup;
3290  }
3291  state->memtupcount = tupcount;
3292 
3293  /*
3294  * Reverse sort direction back to the original state. This is not
3295  * actually necessary but seems like a good idea for tidiness.
3296  */
3297  reversedirection(state);
3298 
3299  state->status = TSS_SORTEDINMEM;
3300  state->boundUsed = true;
3301 }
static void reversedirection(Tuplesortstate *state)
Definition: tuplesort.c:3436
TupSortStatus status
Definition: tuplesort.c:232
#define SERIAL(state)
Definition: tuplesort.c:530
static void tuplesort_heap_delete_top(Tuplesortstate *state)
Definition: tuplesort.c:3372
#define Assert(condition)
Definition: c.h:732
SortTuple * memtuples
Definition: tuplesort.c:293

◆ tuplesort_attach_shared()

void tuplesort_attach_shared ( Sharedsort shared,
dsm_segment seg 
)

Definition at line 4414 of file tuplesort.c.

References Sharedsort::fileset, and SharedFileSetAttach().

Referenced by _bt_parallel_build_main().

4415 {
4416  /* Attach to SharedFileSet */
4417  SharedFileSetAttach(&shared->fileset, seg);
4418 }
void SharedFileSetAttach(SharedFileSet *fileset, dsm_segment *seg)
Definition: sharedfileset.c:78
SharedFileSet fileset
Definition: tuplesort.c:488

◆ tuplesort_begin_cluster()

Tuplesortstate* tuplesort_begin_cluster ( TupleDesc  tupDesc,
Relation  indexRel,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 880 of file tuplesort.c.

References _bt_mkscankey(), SortSupportData::abbreviate, Tuplesortstate::abbrevNext, Assert, AssertState, BTGreaterStrategyNumber, BTLessStrategyNumber, BuildIndexInfo(), CLUSTER_SORT, Tuplesortstate::comparetup, comparetup_cluster(), Tuplesortstate::copytup, copytup_cluster(), CreateExecutorState(), CurrentMemoryContext, ExprContext::ecxt_scantuple, elog, Tuplesortstate::estate, GetPerTupleExprContext, i, IndexInfo::ii_Expressions, Tuplesortstate::indexInfo, IndexRelationGetNumberOfKeyAttributes, LOG, MakeSingleTupleTableSlot(), MemoryContextSwitchTo(), Tuplesortstate::nKeys, palloc0(), PARALLEL_SORT, pfree(), PrepareSortSupportFromIndexRel(), RelationData::rd_rel, Tuplesortstate::readtup, readtup_cluster(), RelationGetNumberOfAttributes, BTScanInsertData::scankeys, ScanKeyData::sk_attno, SK_BT_DESC, SK_BT_NULLS_FIRST, ScanKeyData::sk_collation, ScanKeyData::sk_flags, Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, trace_sort, TTSOpsHeapTuple, Tuplesortstate::tupDesc, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_cluster().

Referenced by heapam_relation_copy_for_cluster().

884 {
885  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
886  randomAccess);
887  BTScanInsert indexScanKey;
888  MemoryContext oldcontext;
889  int i;
890 
891  Assert(indexRel->rd_rel->relam == BTREE_AM_OID);
892 
893  oldcontext = MemoryContextSwitchTo(state->sortcontext);
894 
895 #ifdef TRACE_SORT
896  if (trace_sort)
897  elog(LOG,
898  "begin tuple sort: nkeys = %d, workMem = %d, randomAccess = %c",
900  workMem, randomAccess ? 't' : 'f');
901 #endif
902 
903  state->nKeys = IndexRelationGetNumberOfKeyAttributes(indexRel);
904 
905  TRACE_POSTGRESQL_SORT_START(CLUSTER_SORT,
906  false, /* no unique check */
907  state->nKeys,
908  workMem,
909  randomAccess,
910  PARALLEL_SORT(state));
911 
913  state->copytup = copytup_cluster;
914  state->writetup = writetup_cluster;
915  state->readtup = readtup_cluster;
916  state->abbrevNext = 10;
917 
918  state->indexInfo = BuildIndexInfo(indexRel);
919 
920  state->tupDesc = tupDesc; /* assume we need not copy tupDesc */
921 
922  indexScanKey = _bt_mkscankey(indexRel, NULL);
923 
924  if (state->indexInfo->ii_Expressions != NULL)
925  {
926  TupleTableSlot *slot;
927  ExprContext *econtext;
928 
929  /*
930  * We will need to use FormIndexDatum to evaluate the index
931  * expressions. To do that, we need an EState, as well as a
932  * TupleTableSlot to put the table tuples into. The econtext's
933  * scantuple has to point to that slot, too.
934  */
935  state->estate = CreateExecutorState();
936  slot = MakeSingleTupleTableSlot(tupDesc, &TTSOpsHeapTuple);
937  econtext = GetPerTupleExprContext(state->estate);
938  econtext->ecxt_scantuple = slot;
939  }
940 
941  /* Prepare SortSupport data for each column */
942  state->sortKeys = (SortSupport) palloc0(state->nKeys *
943  sizeof(SortSupportData));
944 
945  for (i = 0; i < state->nKeys; i++)
946  {
947  SortSupport sortKey = state->sortKeys + i;
948  ScanKey scanKey = indexScanKey->scankeys + i;
949  int16 strategy;
950 
951  sortKey->ssup_cxt = CurrentMemoryContext;
952  sortKey->ssup_collation = scanKey->sk_collation;
953  sortKey->ssup_nulls_first =
954  (scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0;
955  sortKey->ssup_attno = scanKey->sk_attno;
956  /* Convey if abbreviation optimization is applicable in principle */
957  sortKey->abbreviate = (i == 0);
958 
959  AssertState(sortKey->ssup_attno != 0);
960 
961  strategy = (scanKey->sk_flags & SK_BT_DESC) != 0 ?
963 
964  PrepareSortSupportFromIndexRel(indexRel, strategy, sortKey);
965  }
966 
967  pfree(indexScanKey);
968 
969  MemoryContextSwitchTo(oldcontext);
970 
971  return state;
972 }
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
signed short int16
Definition: c.h:345
bool ssup_nulls_first
Definition: sortsupport.h:75
static void writetup_cluster(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:3892
#define BTGreaterStrategyNumber
Definition: stratnum.h:33
#define AssertState(condition)
Definition: c.h:735
int64 abbrevNext
Definition: tuplesort.c:426
BTScanInsert _bt_mkscankey(Relation rel, IndexTuple itup)
Definition: nbtutils.c:85
TupleTableSlot * MakeSingleTupleTableSlot(TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1203
#define RelationGetNumberOfAttributes(relation)
Definition: rel.h:425
EState * estate
Definition: tuplesort.c:434
SortSupport sortKeys
Definition: tuplesort.c:412
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:265
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:257
#define CLUSTER_SORT
Definition: tuplesort.c:122
static int comparetup_cluster(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:3708
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2279
#define LOG
Definition: elog.h:26
Form_pg_class rd_rel
Definition: rel.h:83
static void copytup_cluster(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:3819
bool trace_sort
Definition: tuplesort.c:130
#define PARALLEL_SORT(state)
Definition: tuplesort.c:125
#define GetPerTupleExprContext(estate)
Definition: executor.h:501
void pfree(void *pointer)
Definition: mcxt.c:1056
static void readtup_cluster(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:3916
MemoryContext sortcontext
Definition: tuplesort.c:244
MemoryContext ssup_cxt
Definition: sortsupport.h:66
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:283
IndexInfo * indexInfo
Definition: tuplesort.c:433
MemoryContext CurrentMemoryContext
Definition: mcxt.c:38
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:438
void PrepareSortSupportFromIndexRel(Relation indexRel, int16 strategy, SortSupport ssup)
Definition: sortsupport.c:161
EState * CreateExecutorState(void)
Definition: execUtils.c:88
#define SK_BT_NULLS_FIRST
Definition: nbtree.h:681
void * palloc0(Size size)
Definition: mcxt.c:980
AttrNumber ssup_attno
Definition: sortsupport.h:81
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:275
int sk_flags
Definition: skey.h:66
List * ii_Expressions
Definition: execnodes.h:160
#define Assert(condition)
Definition: c.h:732
#define SK_BT_DESC
Definition: nbtree.h:680
Definition: regguts.h:298
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:224
ScanKeyData scankeys[INDEX_MAX_KEYS]
Definition: nbtree.h:477
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
Oid sk_collation
Definition: skey.h:70
#define elog(elevel,...)
Definition: elog.h:226
int i
const TupleTableSlotOps TTSOpsHeapTuple
Definition: execTuples.c:85
#define BTLessStrategyNumber
Definition: stratnum.h:29
AttrNumber sk_attno
Definition: skey.h:67
TupleDesc tupDesc
Definition: tuplesort.c:411

◆ tuplesort_begin_common()

static Tuplesortstate * tuplesort_begin_common ( int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)
static

Definition at line 681 of file tuplesort.c.

References ALLOCSET_DEFAULT_SIZES, ALLOCSET_SEPARATE_THRESHOLD, AllocSetContextCreate, Tuplesortstate::allowedMem, Assert, Tuplesortstate::availMem, Tuplesortstate::bounded, Tuplesortstate::boundUsed, CurrentMemoryContext, Tuplesortstate::currentRun, elog, ERROR, GetMemoryChunkSpace(), Tuplesortstate::growmemtuples, SortCoordinateData::isWorker, LACKMEM, Max, MemoryContextSwitchTo(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, SortCoordinateData::nParticipants, Tuplesortstate::nParticipants, palloc(), palloc0(), pg_rusage_init(), Tuplesortstate::randomAccess, Tuplesortstate::result_tape, Tuplesortstate::ru_start, Tuplesortstate::shared, SortCoordinateData::sharedsort, Tuplesortstate::slabAllocatorUsed, Tuplesortstate::sortcontext, Tuplesortstate::status, Tuplesortstate::tapeset, trace_sort, TSS_INITIAL, Tuplesortstate::tuplecontext, Tuplesortstate::tuples, USEMEM, Tuplesortstate::worker, and worker_get_identifier().

Referenced by tuplesort_begin_cluster(), tuplesort_begin_datum(), tuplesort_begin_heap(), tuplesort_begin_index_btree(), and tuplesort_begin_index_hash().

683 {
685  MemoryContext sortcontext;
686  MemoryContext tuplecontext;
687  MemoryContext oldcontext;
688 
689  /* See leader_takeover_tapes() remarks on randomAccess support */
690  if (coordinate && randomAccess)
691  elog(ERROR, "random access disallowed under parallel sort");
692 
693  /*
694  * Create a working memory context for this sort operation. All data
695  * needed by the sort will live inside this context.
696  */
698  "TupleSort main",
700 
701  /*
702  * Caller tuple (e.g. IndexTuple) memory context.
703  *
704  * A dedicated child context used exclusively for caller passed tuples
705  * eases memory management. Resetting at key points reduces
706  * fragmentation. Note that the memtuples array of SortTuples is allocated
707  * in the parent context, not this context, because there is no need to
708  * free memtuples early.
709  */
710  tuplecontext = AllocSetContextCreate(sortcontext,
711  "Caller tuples",
713 
714  /*
715  * Make the Tuplesortstate within the per-sort context. This way, we
716  * don't need a separate pfree() operation for it at shutdown.
717  */
718  oldcontext = MemoryContextSwitchTo(sortcontext);
719 
720  state = (Tuplesortstate *) palloc0(sizeof(Tuplesortstate));
721 
722 #ifdef TRACE_SORT
723  if (trace_sort)
724  pg_rusage_init(&state->ru_start);
725 #endif
726 
727  state->status = TSS_INITIAL;
728  state->randomAccess = randomAccess;
729  state->bounded = false;
730  state->tuples = true;
731  state->boundUsed = false;
732 
733  /*
734  * workMem is forced to be at least 64KB, the current minimum valid value
735  * for the work_mem GUC. This is a defense against parallel sort callers
736  * that divide out memory among many workers in a way that leaves each
737  * with very little memory.
738  */
739  state->allowedMem = Max(workMem, 64) * (int64) 1024;
740  state->availMem = state->allowedMem;
741  state->sortcontext = sortcontext;
742  state->tuplecontext = tuplecontext;
743  state->tapeset = NULL;
744 
745  state->memtupcount = 0;
746 
747  /*
748  * Initial size of array must be more than ALLOCSET_SEPARATE_THRESHOLD;
749  * see comments in grow_memtuples().
750  */
751  state->memtupsize = Max(1024,
752  ALLOCSET_SEPARATE_THRESHOLD / sizeof(SortTuple) + 1);
753 
754  state->growmemtuples = true;
755  state->slabAllocatorUsed = false;
756  state->memtuples = (SortTuple *) palloc(state->memtupsize * sizeof(SortTuple));
757 
758  USEMEM(state, GetMemoryChunkSpace(state->memtuples));
759 
760  /* workMem must be large enough for the minimal memtuples array */
761  if (LACKMEM(state))
762  elog(ERROR, "insufficient memory allowed for sort");
763 
764  state->currentRun = 0;
765 
766  /*
767  * maxTapes, tapeRange, and Algorithm D variables will be initialized by
768  * inittapes(), if needed
769  */
770 
771  state->result_tape = -1; /* flag that result tape has not been formed */
772 
773  /*
774  * Initialize parallel-related state based on coordination information
775  * from caller
776  */
777  if (!coordinate)
778  {
779  /* Serial sort */
780  state->shared = NULL;
781  state->worker = -1;
782  state->nParticipants = -1;
783  }
784  else if (coordinate->isWorker)
785  {
786  /* Parallel worker produces exactly one final run from all input */
787  state->shared = coordinate->sharedsort;
788  state->worker = worker_get_identifier(state);
789  state->nParticipants = -1;
790  }
791  else
792  {
793  /* Parallel leader state only used for final merge */
794  state->shared = coordinate->sharedsort;
795  state->worker = -1;
796  state->nParticipants = coordinate->nParticipants;
797  Assert(state->nParticipants >= 1);
798  }
799 
800  MemoryContextSwitchTo(oldcontext);
801 
802  return state;
803 }
int64 availMem
Definition: tuplesort.c:240
TupSortStatus status
Definition: tuplesort.c:232
#define AllocSetContextCreate
Definition: memutils.h:170
PGRUsage ru_start
Definition: tuplesort.c:463
bool randomAccess
Definition: tuplesort.c:234
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
Sharedsort * sharedsort
Definition: tuplesort.h:55
bool growmemtuples
Definition: tuplesort.c:296
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:427
static int worker_get_identifier(Tuplesortstate *state)
Definition: tuplesort.c:4434
bool trace_sort
Definition: tuplesort.c:130
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
#define ERROR
Definition: elog.h:43
MemoryContext sortcontext
Definition: tuplesort.c:244
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:192
Sharedsort * shared
Definition: tuplesort.c:403
#define ALLOCSET_SEPARATE_THRESHOLD
Definition: memutils.h:219
LogicalTapeSet * tapeset
Definition: tuplesort.c:246
MemoryContext CurrentMemoryContext
Definition: mcxt.c:38
int64 allowedMem
Definition: tuplesort.c:241
void * palloc0(Size size)
Definition: mcxt.c:980
#define Max(x, y)
Definition: c.h:898
#define Assert(condition)
Definition: c.h:732
Definition: regguts.h:298
bool slabAllocatorUsed
Definition: tuplesort.c:325
MemoryContext tuplecontext
Definition: tuplesort.c:245
void * palloc(Size size)
Definition: mcxt.c:949
#define USEMEM(state, amt)
Definition: tuplesort.c:528
#define elog(elevel,...)
Definition: elog.h:226
#define LACKMEM(state)
Definition: tuplesort.c:527
SortTuple * memtuples
Definition: tuplesort.c:293

◆ tuplesort_begin_datum()

Tuplesortstate* tuplesort_begin_datum ( Oid  datumType,
Oid  sortOperator,
Oid  sortCollation,
bool  nullsFirstFlag,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 1099 of file tuplesort.c.

References SortSupportData::abbrev_converter, SortSupportData::abbreviate, Tuplesortstate::abbrevNext, Tuplesortstate::comparetup, comparetup_datum(), Tuplesortstate::copytup, copytup_datum(), CurrentMemoryContext, DATUM_SORT, Tuplesortstate::datumType, Tuplesortstate::datumTypeLen, elog, get_typlenbyval(), LOG, MemoryContextSwitchTo(), Tuplesortstate::nKeys, Tuplesortstate::onlyKey, palloc0(), PARALLEL_SORT, PrepareSortSupportFromOrderingOp(), Tuplesortstate::readtup, readtup_datum(), Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, trace_sort, Tuplesortstate::tuples, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_datum().

Referenced by initialize_aggregate(), ordered_set_startup(), and validate_index().

1102 {
1103  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
1104  randomAccess);
1105  MemoryContext oldcontext;
1106  int16 typlen;
1107  bool typbyval;
1108 
1109  oldcontext = MemoryContextSwitchTo(state->sortcontext);
1110 
1111 #ifdef TRACE_SORT
1112  if (trace_sort)
1113  elog(LOG,
1114  "begin datum sort: workMem = %d, randomAccess = %c",
1115  workMem, randomAccess ? 't' : 'f');
1116 #endif
1117 
1118  state->nKeys = 1; /* always a one-column sort */
1119 
1120  TRACE_POSTGRESQL_SORT_START(DATUM_SORT,
1121  false, /* no unique check */
1122  1,
1123  workMem,
1124  randomAccess,
1125  PARALLEL_SORT(state));
1126 
1127  state->comparetup = comparetup_datum;
1128  state->copytup = copytup_datum;
1129  state->writetup = writetup_datum;
1130  state->readtup = readtup_datum;
1131  state->abbrevNext = 10;
1132 
1133  state->datumType = datumType;
1134 
1135  /* lookup necessary attributes of the datum type */
1136  get_typlenbyval(datumType, &typlen, &typbyval);
1137  state->datumTypeLen = typlen;
1138  state->tuples = !typbyval;
1139 
1140  /* Prepare SortSupport data */
1141  state->sortKeys = (SortSupport) palloc0(sizeof(SortSupportData));
1142 
1144  state->sortKeys->ssup_collation = sortCollation;
1145  state->sortKeys->ssup_nulls_first = nullsFirstFlag;
1146 
1147  /*
1148  * Abbreviation is possible here only for by-reference types. In theory,
1149  * a pass-by-value datatype could have an abbreviated form that is cheaper
1150  * to compare. In a tuple sort, we could support that, because we can
1151  * always extract the original datum from the tuple as needed. Here, we
1152  * can't, because a datum sort only stores a single copy of the datum; the
1153  * "tuple" field of each SortTuple is NULL.
1154  */
1155  state->sortKeys->abbreviate = !typbyval;
1156 
1157  PrepareSortSupportFromOrderingOp(sortOperator, state->sortKeys);
1158 
1159  /*
1160  * The "onlyKey" optimization cannot be used with abbreviated keys, since
1161  * tie-breaker comparisons may be required. Typically, the optimization
1162  * is only of value to pass-by-value types anyway, whereas abbreviated
1163  * keys are typically only of value to pass-by-reference types.
1164  */
1165  if (!state->sortKeys->abbrev_converter)
1166  state->onlyKey = state->sortKeys;
1167 
1168  MemoryContextSwitchTo(oldcontext);
1169 
1170  return state;
1171 }
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
signed short int16
Definition: c.h:345
bool ssup_nulls_first
Definition: sortsupport.h:75
int64 abbrevNext
Definition: tuplesort.c:426
SortSupport sortKeys
Definition: tuplesort.c:412
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:265
void PrepareSortSupportFromOrderingOp(Oid orderingOp, SortSupport ssup)
Definition: sortsupport.c:134
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:257
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
#define PARALLEL_SORT(state)
Definition: tuplesort.c:125
#define DATUM_SORT
Definition: tuplesort.c:121
MemoryContext sortcontext
Definition: tuplesort.c:244
MemoryContext ssup_cxt
Definition: sortsupport.h:66
static int comparetup_datum(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:4254
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:283
static void copytup_datum(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:4275
static void readtup_datum(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:4323
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:172
MemoryContext CurrentMemoryContext
Definition: mcxt.c:38
static void writetup_datum(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:4282
void * palloc0(Size size)
Definition: mcxt.c:980
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:275
Definition: regguts.h:298
void get_typlenbyval(Oid typid, int16 *typlen, bool *typbyval)
Definition: lsyscache.c:2029
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
#define elog(elevel,...)
Definition: elog.h:226
SortSupport onlyKey
Definition: tuplesort.c:418

◆ tuplesort_begin_heap()

Tuplesortstate* tuplesort_begin_heap ( TupleDesc  tupDesc,
int  nkeys,
AttrNumber attNums,
Oid sortOperators,
Oid sortCollations,
bool nullsFirstFlags,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 806 of file tuplesort.c.

References SortSupportData::abbrev_converter, SortSupportData::abbreviate, Tuplesortstate::abbrevNext, AssertArg, Tuplesortstate::comparetup, comparetup_heap(), Tuplesortstate::copytup, copytup_heap(), CurrentMemoryContext, elog, HEAP_SORT, i, LOG, MemoryContextSwitchTo(), Tuplesortstate::nKeys, Tuplesortstate::onlyKey, palloc0(), PARALLEL_SORT, PrepareSortSupportFromOrderingOp(), Tuplesortstate::readtup, readtup_heap(), Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, trace_sort, Tuplesortstate::tupDesc, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_heap().

Referenced by ExecSort(), initialize_aggregate(), initialize_phase(), and ordered_set_startup().

811 {
812  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
813  randomAccess);
814  MemoryContext oldcontext;
815  int i;
816 
817  oldcontext = MemoryContextSwitchTo(state->sortcontext);
818 
819  AssertArg(nkeys > 0);
820 
821 #ifdef TRACE_SORT
822  if (trace_sort)
823  elog(LOG,
824  "begin tuple sort: nkeys = %d, workMem = %d, randomAccess = %c",
825  nkeys, workMem, randomAccess ? 't' : 'f');
826 #endif
827 
828  state->nKeys = nkeys;
829 
830  TRACE_POSTGRESQL_SORT_START(HEAP_SORT,
831  false, /* no unique check */
832  nkeys,
833  workMem,
834  randomAccess,
835  PARALLEL_SORT(state));
836 
837  state->comparetup = comparetup_heap;
838  state->copytup = copytup_heap;
839  state->writetup = writetup_heap;
840  state->readtup = readtup_heap;
841 
842  state->tupDesc = tupDesc; /* assume we need not copy tupDesc */
843  state->abbrevNext = 10;
844 
845  /* Prepare SortSupport data for each column */
846  state->sortKeys = (SortSupport) palloc0(nkeys * sizeof(SortSupportData));
847 
848  for (i = 0; i < nkeys; i++)
849  {
850  SortSupport sortKey = state->sortKeys + i;
851 
852  AssertArg(attNums[i] != 0);
853  AssertArg(sortOperators[i] != 0);
854 
855  sortKey->ssup_cxt = CurrentMemoryContext;
856  sortKey->ssup_collation = sortCollations[i];
857  sortKey->ssup_nulls_first = nullsFirstFlags[i];
858  sortKey->ssup_attno = attNums[i];
859  /* Convey if abbreviation optimization is applicable in principle */
860  sortKey->abbreviate = (i == 0);
861 
862  PrepareSortSupportFromOrderingOp(sortOperators[i], sortKey);
863  }
864 
865  /*
866  * The "onlyKey" optimization cannot be used with abbreviated keys, since
867  * tie-breaker comparisons may be required. Typically, the optimization
868  * is only of value to pass-by-value types anyway, whereas abbreviated
869  * keys are typically only of value to pass-by-reference types.
870  */
871  if (nkeys == 1 && !state->sortKeys->abbrev_converter)
872  state->onlyKey = state->sortKeys;
873 
874  MemoryContextSwitchTo(oldcontext);
875 
876  return state;
877 }
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
bool ssup_nulls_first
Definition: sortsupport.h:75
static int comparetup_heap(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:3509
int64 abbrevNext
Definition: tuplesort.c:426
SortSupport sortKeys
Definition: tuplesort.c:412
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:265
void PrepareSortSupportFromOrderingOp(Oid orderingOp, SortSupport ssup)
Definition: sortsupport.c:134
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:257
#define LOG
Definition: elog.h:26
#define HEAP_SORT
Definition: tuplesort.c:119
bool trace_sort
Definition: tuplesort.c:130
#define PARALLEL_SORT(state)
Definition: tuplesort.c:125
MemoryContext sortcontext
Definition: tuplesort.c:244
static void writetup_heap(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:3649
MemoryContext ssup_cxt
Definition: sortsupport.h:66
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:283
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:172
MemoryContext CurrentMemoryContext
Definition: mcxt.c:38
#define AssertArg(condition)
Definition: c.h:734
static void copytup_heap(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:3571
void * palloc0(Size size)
Definition: mcxt.c:980
AttrNumber ssup_attno
Definition: sortsupport.h:81
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:275
Definition: regguts.h:298
static void readtup_heap(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:3676
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
#define elog(elevel,...)
Definition: elog.h:226
int i
SortSupport onlyKey
Definition: tuplesort.c:418
TupleDesc tupDesc
Definition: tuplesort.c:411

◆ tuplesort_begin_index_btree()

Tuplesortstate* tuplesort_begin_index_btree ( Relation  heapRel,
Relation  indexRel,
bool  enforceUnique,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 975 of file tuplesort.c.

References _bt_mkscankey(), SortSupportData::abbreviate, Tuplesortstate::abbrevNext, AssertState, BTGreaterStrategyNumber, BTLessStrategyNumber, Tuplesortstate::comparetup, comparetup_index_btree(), Tuplesortstate::copytup, copytup_index(), CurrentMemoryContext, elog, Tuplesortstate::enforceUnique, Tuplesortstate::heapRel, i, INDEX_SORT, Tuplesortstate::indexRel, IndexRelationGetNumberOfKeyAttributes, LOG, MemoryContextSwitchTo(), Tuplesortstate::nKeys, palloc0(), PARALLEL_SORT, pfree(), PrepareSortSupportFromIndexRel(), Tuplesortstate::readtup, readtup_index(), BTScanInsertData::scankeys, ScanKeyData::sk_attno, SK_BT_DESC, SK_BT_NULLS_FIRST, ScanKeyData::sk_collation, ScanKeyData::sk_flags, Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, trace_sort, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_index().

Referenced by _bt_parallel_scan_and_sort(), and _bt_spools_heapscan().

981 {
982  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
983  randomAccess);
984  BTScanInsert indexScanKey;
985  MemoryContext oldcontext;
986  int i;
987 
988  oldcontext = MemoryContextSwitchTo(state->sortcontext);
989 
990 #ifdef TRACE_SORT
991  if (trace_sort)
992  elog(LOG,
993  "begin index sort: unique = %c, workMem = %d, randomAccess = %c",
994  enforceUnique ? 't' : 'f',
995  workMem, randomAccess ? 't' : 'f');
996 #endif
997 
998  state->nKeys = IndexRelationGetNumberOfKeyAttributes(indexRel);
999 
1000  TRACE_POSTGRESQL_SORT_START(INDEX_SORT,
1001  enforceUnique,
1002  state->nKeys,
1003  workMem,
1004  randomAccess,
1005  PARALLEL_SORT(state));
1006 
1008  state->copytup = copytup_index;
1009  state->writetup = writetup_index;
1010  state->readtup = readtup_index;
1011  state->abbrevNext = 10;
1012 
1013  state->heapRel = heapRel;
1014  state->indexRel = indexRel;
1015  state->enforceUnique = enforceUnique;
1016 
1017  indexScanKey = _bt_mkscankey(indexRel, NULL);
1018 
1019  /* Prepare SortSupport data for each column */
1020  state->sortKeys = (SortSupport) palloc0(state->nKeys *
1021  sizeof(SortSupportData));
1022 
1023  for (i = 0; i < state->nKeys; i++)
1024  {
1025  SortSupport sortKey = state->sortKeys + i;
1026  ScanKey scanKey = indexScanKey->scankeys + i;
1027  int16 strategy;
1028 
1029  sortKey->ssup_cxt = CurrentMemoryContext;
1030  sortKey->ssup_collation = scanKey->sk_collation;
1031  sortKey->ssup_nulls_first =
1032  (scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0;
1033  sortKey->ssup_attno = scanKey->sk_attno;
1034  /* Convey if abbreviation optimization is applicable in principle */
1035  sortKey->abbreviate = (i == 0);
1036 
1037  AssertState(sortKey->ssup_attno != 0);
1038 
1039  strategy = (scanKey->sk_flags & SK_BT_DESC) != 0 ?
1041 
1042  PrepareSortSupportFromIndexRel(indexRel, strategy, sortKey);
1043  }
1044 
1045  pfree(indexScanKey);
1046 
1047  MemoryContextSwitchTo(oldcontext);
1048 
1049  return state;
1050 }
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
signed short int16
Definition: c.h:345
bool ssup_nulls_first
Definition: sortsupport.h:75
Relation heapRel
Definition: tuplesort.c:440
#define BTGreaterStrategyNumber
Definition: stratnum.h:33
#define AssertState(condition)
Definition: c.h:735
int64 abbrevNext
Definition: tuplesort.c:426
BTScanInsert _bt_mkscankey(Relation rel, IndexTuple itup)
Definition: nbtutils.c:85
static void copytup_index(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:4142
SortSupport sortKeys
Definition: tuplesort.c:412
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:265
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:257
#define INDEX_SORT
Definition: tuplesort.c:120
#define LOG
Definition: elog.h:26
static int comparetup_index_btree(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:3954
bool trace_sort
Definition: tuplesort.c:130
#define PARALLEL_SORT(state)
Definition: tuplesort.c:125
void pfree(void *pointer)
Definition: mcxt.c:1056
MemoryContext sortcontext
Definition: tuplesort.c:244
static void writetup_index(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:4208
MemoryContext ssup_cxt
Definition: sortsupport.h:66
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:283
static void readtup_index(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:4230
MemoryContext CurrentMemoryContext
Definition: mcxt.c:38
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:438
void PrepareSortSupportFromIndexRel(Relation indexRel, int16 strategy, SortSupport ssup)
Definition: sortsupport.c:161
#define SK_BT_NULLS_FIRST
Definition: nbtree.h:681
void * palloc0(Size size)
Definition: mcxt.c:980
Relation indexRel
Definition: tuplesort.c:441
AttrNumber ssup_attno
Definition: sortsupport.h:81
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:275
int sk_flags
Definition: skey.h:66
#define SK_BT_DESC
Definition: nbtree.h:680
Definition: regguts.h:298
bool enforceUnique
Definition: tuplesort.c:444
ScanKeyData scankeys[INDEX_MAX_KEYS]
Definition: nbtree.h:477
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
Oid sk_collation
Definition: skey.h:70
#define elog(elevel,...)
Definition: elog.h:226
int i
#define BTLessStrategyNumber
Definition: stratnum.h:29
AttrNumber sk_attno
Definition: skey.h:67

◆ tuplesort_begin_index_hash()

Tuplesortstate* tuplesort_begin_index_hash ( Relation  heapRel,
Relation  indexRel,
uint32  high_mask,
uint32  low_mask,
uint32  max_buckets,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 1053 of file tuplesort.c.

References Tuplesortstate::comparetup, comparetup_index_hash(), Tuplesortstate::copytup, copytup_index(), elog, Tuplesortstate::heapRel, Tuplesortstate::high_mask, Tuplesortstate::indexRel, LOG, Tuplesortstate::low_mask, Tuplesortstate::max_buckets, MemoryContextSwitchTo(), Tuplesortstate::nKeys, Tuplesortstate::readtup, readtup_index(), Tuplesortstate::sortcontext, trace_sort, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_index().

Referenced by _h_spoolinit().

1061 {
1062  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
1063  randomAccess);
1064  MemoryContext oldcontext;
1065 
1066  oldcontext = MemoryContextSwitchTo(state->sortcontext);
1067 
1068 #ifdef TRACE_SORT
1069  if (trace_sort)
1070  elog(LOG,
1071  "begin index sort: high_mask = 0x%x, low_mask = 0x%x, "
1072  "max_buckets = 0x%x, workMem = %d, randomAccess = %c",
1073  high_mask,
1074  low_mask,
1075  max_buckets,
1076  workMem, randomAccess ? 't' : 'f');
1077 #endif
1078 
1079  state->nKeys = 1; /* Only one sort column, the hash code */
1080 
1082  state->copytup = copytup_index;
1083  state->writetup = writetup_index;
1084  state->readtup = readtup_index;
1085 
1086  state->heapRel = heapRel;
1087  state->indexRel = indexRel;
1088 
1089  state->high_mask = high_mask;
1090  state->low_mask = low_mask;
1091  state->max_buckets = max_buckets;
1092 
1093  MemoryContextSwitchTo(oldcontext);
1094 
1095  return state;
1096 }
static int comparetup_index_hash(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:4087
Relation heapRel
Definition: tuplesort.c:440
static void copytup_index(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:4142
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:265
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:257
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
MemoryContext sortcontext
Definition: tuplesort.c:244
static void writetup_index(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:4208
uint32 high_mask
Definition: tuplesort.c:447
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:283
static void readtup_index(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:4230
Relation indexRel
Definition: tuplesort.c:441
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:275
Definition: regguts.h:298
uint32 max_buckets
Definition: tuplesort.c:449
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
#define elog(elevel,...)
Definition: elog.h:226
uint32 low_mask
Definition: tuplesort.c:448

◆ tuplesort_end()

void tuplesort_end ( Tuplesortstate state)

Definition at line 1236 of file tuplesort.c.

References Tuplesortstate::allowedMem, Tuplesortstate::availMem, ExprContext::ecxt_scantuple, elog, Tuplesortstate::estate, ExecDropSingleTupleTableSlot(), FreeExecutorState(), GetPerTupleExprContext, LOG, LogicalTapeSetBlocks(), LogicalTapeSetClose(), MemoryContextDelete(), MemoryContextSwitchTo(), pg_rusage_show(), Tuplesortstate::ru_start, SERIAL, Tuplesortstate::sortcontext, Tuplesortstate::tapeset, trace_sort, and Tuplesortstate::worker.

Referenced by _bt_parallel_scan_and_sort(), _bt_spooldestroy(), _h_spooldestroy(), ExecEndAgg(), ExecEndSort(), ExecReScanAgg(), ExecReScanSort(), heapam_relation_copy_for_cluster(), initialize_aggregate(), initialize_phase(), ordered_set_shutdown(), process_ordered_aggregate_multi(), process_ordered_aggregate_single(), and validate_index().

1237 {
1238  /* context swap probably not needed, but let's be safe */
1239  MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
1240 
1241 #ifdef TRACE_SORT
1242  long spaceUsed;
1243 
1244  if (state->tapeset)
1245  spaceUsed = LogicalTapeSetBlocks(state->tapeset);
1246  else
1247  spaceUsed = (state->allowedMem - state->availMem + 1023) / 1024;
1248 #endif
1249 
1250  /*
1251  * Delete temporary "tape" files, if any.
1252  *
1253  * Note: want to include this in reported total cost of sort, hence need
1254  * for two #ifdef TRACE_SORT sections.
1255  */
1256  if (state->tapeset)
1257  LogicalTapeSetClose(state->tapeset);
1258 
1259 #ifdef TRACE_SORT
1260  if (trace_sort)
1261  {
1262  if (state->tapeset)
1263  elog(LOG, "%s of worker %d ended, %ld disk blocks used: %s",
1264  SERIAL(state) ? "external sort" : "parallel external sort",
1265  state->worker, spaceUsed, pg_rusage_show(&state->ru_start));
1266  else
1267  elog(LOG, "%s of worker %d ended, %ld KB used: %s",
1268  SERIAL(state) ? "internal sort" : "unperformed parallel sort",
1269  state->worker, spaceUsed, pg_rusage_show(&state->ru_start));
1270  }
1271 
1272  TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, spaceUsed);
1273 #else
1274 
1275  /*
1276  * If you disabled TRACE_SORT, you can still probe sort__done, but you
1277  * ain't getting space-used stats.
1278  */
1279  TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, 0L);
1280 #endif
1281 
1282  /* Free any execution state created for CLUSTER case */
1283  if (state->estate != NULL)
1284  {
1285  ExprContext *econtext = GetPerTupleExprContext(state->estate);
1286 
1288  FreeExecutorState(state->estate);
1289  }
1290 
1291  MemoryContextSwitchTo(oldcontext);
1292 
1293  /*
1294  * Free the per-sort memory context, thereby releasing all working memory,
1295  * including the Tuplesortstate struct itself.
1296  */
1298 }
int64 availMem
Definition: tuplesort.c:240
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:211
PGRUsage ru_start
Definition: tuplesort.c:463
#define SERIAL(state)
Definition: tuplesort.c:530
EState * estate
Definition: tuplesort.c:434
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
void FreeExecutorState(EState *estate)
Definition: execUtils.c:190
#define GetPerTupleExprContext(estate)
Definition: executor.h:501
MemoryContext sortcontext
Definition: tuplesort.c:244
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1219
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
LogicalTapeSet * tapeset
Definition: tuplesort.c:246
int64 allowedMem
Definition: tuplesort.c:241
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:224
#define elog(elevel,...)
Definition: elog.h:226
void LogicalTapeSetClose(LogicalTapeSet *lts)
Definition: logtape.c:584
long LogicalTapeSetBlocks(LogicalTapeSet *lts)
Definition: logtape.c:1082

◆ tuplesort_estimate_shared()

Size tuplesort_estimate_shared ( int  nWorkers)

Definition at line 4370 of file tuplesort.c.

References add_size(), Assert, MAXALIGN, mul_size(), and offsetof.

Referenced by _bt_begin_parallel().

4371 {
4372  Size tapesSize;
4373 
4374  Assert(nWorkers > 0);
4375 
4376  /* Make sure that BufFile shared state is MAXALIGN'd */
4377  tapesSize = mul_size(sizeof(TapeShare), nWorkers);
4378  tapesSize = MAXALIGN(add_size(tapesSize, offsetof(Sharedsort, tapes)));
4379 
4380  return tapesSize;
4381 }
Size mul_size(Size s1, Size s2)
Definition: shmem.c:492
Size add_size(Size s1, Size s2)
Definition: shmem.c:475
#define Assert(condition)
Definition: c.h:732
size_t Size
Definition: c.h:466
#define MAXALIGN(LEN)
Definition: c.h:685
#define offsetof(type, field)
Definition: c.h:655

◆ tuplesort_get_stats()

void tuplesort_get_stats ( Tuplesortstate state,
TuplesortInstrumentation stats 
)

Definition at line 3129 of file tuplesort.c.

References Tuplesortstate::allowedMem, Tuplesortstate::availMem, Tuplesortstate::boundUsed, LogicalTapeSetBlocks(), SORT_SPACE_TYPE_DISK, SORT_SPACE_TYPE_MEMORY, SORT_TYPE_EXTERNAL_MERGE, SORT_TYPE_EXTERNAL_SORT, SORT_TYPE_QUICKSORT, SORT_TYPE_STILL_IN_PROGRESS, SORT_TYPE_TOP_N_HEAPSORT, TuplesortInstrumentation::sortMethod, TuplesortInstrumentation::spaceType, TuplesortInstrumentation::spaceUsed, Tuplesortstate::status, Tuplesortstate::tapeset, TSS_FINALMERGE, TSS_SORTEDINMEM, and TSS_SORTEDONTAPE.

Referenced by ExecSort(), and show_sort_info().

3131 {
3132  /*
3133  * Note: it might seem we should provide both memory and disk usage for a
3134  * disk-based sort. However, the current code doesn't track memory space
3135  * accurately once we have begun to return tuples to the caller (since we
3136  * don't account for pfree's the caller is expected to do), so we cannot
3137  * rely on availMem in a disk sort. This does not seem worth the overhead
3138  * to fix. Is it worth creating an API for the memory context code to
3139  * tell us how much is actually used in sortcontext?
3140  */
3141  if (state->tapeset)
3142  {
3144  stats->spaceUsed = LogicalTapeSetBlocks(state->tapeset) * (BLCKSZ / 1024);
3145  }
3146  else
3147  {
3149  stats->spaceUsed = (state->allowedMem - state->availMem + 1023) / 1024;
3150  }
3151 
3152  switch (state->status)
3153  {
3154  case TSS_SORTEDINMEM:
3155  if (state->boundUsed)
3157  else
3159  break;
3160  case TSS_SORTEDONTAPE:
3162  break;
3163  case TSS_FINALMERGE:
3165  break;
3166  default:
3168  break;
3169  }
3170 }
int64 availMem
Definition: tuplesort.c:240
TupSortStatus status
Definition: tuplesort.c:232
TuplesortMethod sortMethod
Definition: tuplesort.h:82
LogicalTapeSet * tapeset
Definition: tuplesort.c:246
int64 allowedMem
Definition: tuplesort.c:241
TuplesortSpaceType spaceType
Definition: tuplesort.h:83
long LogicalTapeSetBlocks(LogicalTapeSet *lts)
Definition: logtape.c:1082

◆ tuplesort_getdatum()

bool tuplesort_getdatum ( Tuplesortstate state,
bool  forward,
Datum val,
bool isNull,
Datum abbrev 
)

Definition at line 2245 of file tuplesort.c.

References SortSupportData::abbrev_converter, SortTuple::datum1, datumCopy(), Tuplesortstate::datumTypeLen, SortTuple::isnull1, MemoryContextSwitchTo(), PointerGetDatum, Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortTuple::tuple, Tuplesortstate::tuples, and tuplesort_gettuple_common().

Referenced by heapam_index_validate_scan(), mode_final(), percentile_cont_final_common(), percentile_cont_multi_final_common(), percentile_disc_final(), percentile_disc_multi_final(), and process_ordered_aggregate_single().

2247 {
2248  MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2249  SortTuple stup;
2250 
2251  if (!tuplesort_gettuple_common(state, forward, &stup))
2252  {
2253  MemoryContextSwitchTo(oldcontext);
2254  return false;
2255  }
2256 
2257  /* Ensure we copy into caller's memory context */
2258  MemoryContextSwitchTo(oldcontext);
2259 
2260  /* Record abbreviated key for caller */
2261  if (state->sortKeys->abbrev_converter && abbrev)
2262  *abbrev = stup.datum1;
2263 
2264  if (stup.isnull1 || !state->tuples)
2265  {
2266  *val = stup.datum1;
2267  *isNull = stup.isnull1;
2268  }
2269  else
2270  {
2271  /* use stup.tuple because stup.datum1 may be an abbreviation */
2272  *val = datumCopy(PointerGetDatum(stup.tuple), false, state->datumTypeLen);
2273  *isNull = false;
2274  }
2275 
2276  return true;
2277 }
#define PointerGetDatum(X)
Definition: postgres.h:556
SortSupport sortKeys
Definition: tuplesort.c:412
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
Datum datum1
Definition: tuplesort.c:170
bool isnull1
Definition: tuplesort.c:171
void * tuple
Definition: tuplesort.c:169
MemoryContext sortcontext
Definition: tuplesort.c:244
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:172
static bool tuplesort_gettuple_common(Tuplesortstate *state, bool forward, SortTuple *stup)
Definition: tuplesort.c:1902
Datum datumCopy(Datum value, bool typByVal, int typLen)
Definition: datum.c:130
long val
Definition: informix.c:684

◆ tuplesort_getheaptuple()

HeapTuple tuplesort_getheaptuple ( Tuplesortstate state,
bool  forward 
)

Definition at line 2196 of file tuplesort.c.

References MemoryContextSwitchTo(), Tuplesortstate::sortcontext, SortTuple::tuple, and tuplesort_gettuple_common().

Referenced by heapam_relation_copy_for_cluster().

2197 {
2198  MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2199  SortTuple stup;
2200 
2201  if (!tuplesort_gettuple_common(state, forward, &stup))
2202  stup.tuple = NULL;
2203 
2204  MemoryContextSwitchTo(oldcontext);
2205 
2206  return stup.tuple;
2207 }
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
void * tuple
Definition: tuplesort.c:169
MemoryContext sortcontext
Definition: tuplesort.c:244
static bool tuplesort_gettuple_common(Tuplesortstate *state, bool forward, SortTuple *stup)
Definition: tuplesort.c:1902

◆ tuplesort_getindextuple()

IndexTuple tuplesort_getindextuple ( Tuplesortstate state,
bool  forward 
)

Definition at line 2216 of file tuplesort.c.

References MemoryContextSwitchTo(), Tuplesortstate::sortcontext, SortTuple::tuple, and tuplesort_gettuple_common().

Referenced by _bt_load(), and _h_indexbuild().

2217 {
2218  MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2219  SortTuple stup;
2220 
2221  if (!tuplesort_gettuple_common(state, forward, &stup))
2222  stup.tuple = NULL;
2223 
2224  MemoryContextSwitchTo(oldcontext);
2225 
2226  return (IndexTuple) stup.tuple;
2227 }
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
void * tuple
Definition: tuplesort.c:169
MemoryContext sortcontext
Definition: tuplesort.c:244
static bool tuplesort_gettuple_common(Tuplesortstate *state, bool forward, SortTuple *stup)
Definition: tuplesort.c:1902

◆ tuplesort_gettuple_common()

static bool tuplesort_gettuple_common ( Tuplesortstate state,
bool  forward,
SortTuple stup 
)
static

Definition at line 1902 of file tuplesort.c.

References Assert, Tuplesortstate::bound, Tuplesortstate::bounded, Tuplesortstate::current, elog, Tuplesortstate::eof_reached, ERROR, getlen(), Tuplesortstate::lastReturnedTuple, LogicalTapeBackspace(), LogicalTapeRewindForWrite(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, mergereadnext(), Tuplesortstate::randomAccess, READTUP, RELEASE_SLAB_SLOT, Tuplesortstate::result_tape, Tuplesortstate::slabAllocatorUsed, SortTuple::srctape, Tuplesortstate::status, Tuplesortstate::tapeset, TSS_FINALMERGE, TSS_SORTEDINMEM, TSS_SORTEDONTAPE, SortTuple::tuple, tuplesort_heap_delete_top(), tuplesort_heap_replace_top(), and WORKER.

Referenced by tuplesort_getdatum(), tuplesort_getheaptuple(), tuplesort_getindextuple(), tuplesort_gettupleslot(), and tuplesort_skiptuples().

1904 {
1905  unsigned int tuplen;
1906  size_t nmoved;
1907 
1908  Assert(!WORKER(state));
1909 
1910  switch (state->status)
1911  {
1912  case TSS_SORTEDINMEM:
1913  Assert(forward || state->randomAccess);
1914  Assert(!state->slabAllocatorUsed);
1915  if (forward)
1916  {
1917  if (state->current < state->memtupcount)
1918  {
1919  *stup = state->memtuples[state->current++];
1920  return true;
1921  }
1922  state->eof_reached = true;
1923 
1924  /*
1925  * Complain if caller tries to retrieve more tuples than
1926  * originally asked for in a bounded sort. This is because
1927  * returning EOF here might be the wrong thing.
1928  */
1929  if (state->bounded && state->current >= state->bound)
1930  elog(ERROR, "retrieved too many tuples in a bounded sort");
1931 
1932  return false;
1933  }
1934  else
1935  {
1936  if (state->current <= 0)
1937  return false;
1938 
1939  /*
1940  * if all tuples are fetched already then we return last
1941  * tuple, else - tuple before last returned.
1942  */
1943  if (state->eof_reached)
1944  state->eof_reached = false;
1945  else
1946  {
1947  state->current--; /* last returned tuple */
1948  if (state->current <= 0)
1949  return false;
1950  }
1951  *stup = state->memtuples[state->current - 1];
1952  return true;
1953  }
1954  break;
1955 
1956  case TSS_SORTEDONTAPE:
1957  Assert(forward || state->randomAccess);
1958  Assert(state->slabAllocatorUsed);
1959 
1960  /*
1961  * The slot that held the tuple that we returned in previous
1962  * gettuple call can now be reused.
1963  */
1964  if (state->lastReturnedTuple)
1965  {
1966  RELEASE_SLAB_SLOT(state, state->lastReturnedTuple);
1967  state->lastReturnedTuple = NULL;
1968  }
1969 
1970  if (forward)
1971  {
1972  if (state->eof_reached)
1973  return false;
1974 
1975  if ((tuplen = getlen(state, state->result_tape, true)) != 0)
1976  {
1977  READTUP(state, stup, state->result_tape, tuplen);
1978 
1979  /*
1980  * Remember the tuple we return, so that we can recycle
1981  * its memory on next call. (This can be NULL, in the
1982  * !state->tuples case).
1983  */
1984  state->lastReturnedTuple = stup->tuple;
1985 
1986  return true;
1987  }
1988  else
1989  {
1990  state->eof_reached = true;
1991  return false;
1992  }
1993  }
1994 
1995  /*
1996  * Backward.
1997  *
1998  * if all tuples are fetched already then we return last tuple,
1999  * else - tuple before last returned.
2000  */
2001  if (state->eof_reached)
2002  {
2003  /*
2004  * Seek position is pointing just past the zero tuplen at the
2005  * end of file; back up to fetch last tuple's ending length
2006  * word. If seek fails we must have a completely empty file.
2007  */
2008  nmoved = LogicalTapeBackspace(state->tapeset,
2009  state->result_tape,
2010  2 * sizeof(unsigned int));
2011  if (nmoved == 0)
2012  return false;
2013  else if (nmoved != 2 * sizeof(unsigned int))
2014  elog(ERROR, "unexpected tape position");
2015  state->eof_reached = false;
2016  }
2017  else
2018  {
2019  /*
2020  * Back up and fetch previously-returned tuple's ending length
2021  * word. If seek fails, assume we are at start of file.
2022  */
2023  nmoved = LogicalTapeBackspace(state->tapeset,
2024  state->result_tape,
2025  sizeof(unsigned int));
2026  if (nmoved == 0)
2027  return false;
2028  else if (nmoved != sizeof(unsigned int))
2029  elog(ERROR, "unexpected tape position");
2030  tuplen = getlen(state, state->result_tape, false);
2031 
2032  /*
2033  * Back up to get ending length word of tuple before it.
2034  */
2035  nmoved = LogicalTapeBackspace(state->tapeset,
2036  state->result_tape,
2037  tuplen + 2 * sizeof(unsigned int));
2038  if (nmoved == tuplen + sizeof(unsigned int))
2039  {
2040  /*
2041  * We backed up over the previous tuple, but there was no
2042  * ending length word before it. That means that the prev
2043  * tuple is the first tuple in the file. It is now the
2044  * next to read in forward direction (not obviously right,
2045  * but that is what in-memory case does).
2046  */
2047  return false;
2048  }
2049  else if (nmoved != tuplen + 2 * sizeof(unsigned int))
2050  elog(ERROR, "bogus tuple length in backward scan");
2051  }
2052 
2053  tuplen = getlen(state, state->result_tape, false);
2054 
2055  /*
2056  * Now we have the length of the prior tuple, back up and read it.
2057  * Note: READTUP expects we are positioned after the initial
2058  * length word of the tuple, so back up to that point.
2059  */
2060  nmoved = LogicalTapeBackspace(state->tapeset,
2061  state->result_tape,
2062  tuplen);
2063  if (nmoved != tuplen)
2064  elog(ERROR, "bogus tuple length in backward scan");
2065  READTUP(state, stup, state->result_tape, tuplen);
2066 
2067  /*
2068  * Remember the tuple we return, so that we can recycle its memory
2069  * on next call. (This can be NULL, in the Datum case).
2070  */
2071  state->lastReturnedTuple = stup->tuple;
2072 
2073  return true;
2074 
2075  case TSS_FINALMERGE:
2076  Assert(forward);
2077  /* We are managing memory ourselves, with the slab allocator. */
2078  Assert(state->slabAllocatorUsed);
2079 
2080  /*
2081  * The slab slot holding the tuple that we returned in previous
2082  * gettuple call can now be reused.
2083  */
2084  if (state->lastReturnedTuple)
2085  {
2086  RELEASE_SLAB_SLOT(state, state->lastReturnedTuple);
2087  state->lastReturnedTuple = NULL;
2088  }
2089 
2090  /*
2091  * This code should match the inner loop of mergeonerun().
2092  */
2093  if (state->memtupcount > 0)
2094  {
2095  int srcTape = state->memtuples[0].srctape;
2096  SortTuple newtup;
2097 
2098  *stup = state->memtuples[0];
2099 
2100  /*
2101  * Remember the tuple we return, so that we can recycle its
2102  * memory on next call. (This can be NULL, in the Datum case).
2103  */
2104  state->lastReturnedTuple = stup->tuple;
2105 
2106  /*
2107  * Pull next tuple from tape, and replace the returned tuple
2108  * at top of the heap with it.
2109  */
2110  if (!mergereadnext(state, srcTape, &newtup))
2111  {
2112  /*
2113  * If no more data, we've reached end of run on this tape.
2114  * Remove the top node from the heap.
2115  */
2117 
2118  /*
2119  * Rewind to free the read buffer. It'd go away at the
2120  * end of the sort anyway, but better to release the
2121  * memory early.
2122  */
2123  LogicalTapeRewindForWrite(state->tapeset, srcTape);
2124  return true;
2125  }
2126  newtup.srctape = srcTape;
2127  tuplesort_heap_replace_top(state, &newtup);
2128  return true;
2129  }
2130  return false;
2131 
2132  default:
2133  elog(ERROR, "invalid tuplesort state");
2134  return false; /* keep compiler quiet */
2135  }
2136 }
TupSortStatus status
Definition: tuplesort.c:232
bool randomAccess
Definition: tuplesort.c:234
void LogicalTapeRewindForWrite(LogicalTapeSet *lts, int tapenum)
Definition: logtape.c:796
static unsigned int getlen(Tuplesortstate *state, int tapenum, bool eofOK)
Definition: tuplesort.c:3454
void * tuple
Definition: tuplesort.c:169
#define ERROR
Definition: elog.h:43
void * lastReturnedTuple
Definition: tuplesort.c:340
size_t LogicalTapeBackspace(LogicalTapeSet *lts, int tapenum, size_t size)
Definition: logtape.c:960
LogicalTapeSet * tapeset
Definition: tuplesort.c:246
#define WORKER(state)
Definition: tuplesort.c:531
#define READTUP(state, stup, tape, len)
Definition: tuplesort.c:526
#define RELEASE_SLAB_SLOT(state, tuple)
Definition: tuplesort.c:511
static void tuplesort_heap_delete_top(Tuplesortstate *state)
Definition: tuplesort.c:3372
static bool mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup)
Definition: tuplesort.c:2900
#define Assert(condition)
Definition: c.h:732
int srctape
Definition: tuplesort.c:172
bool eof_reached
Definition: tuplesort.c:380
bool slabAllocatorUsed
Definition: tuplesort.c:325
#define elog(elevel,...)
Definition: elog.h:226
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3396
SortTuple * memtuples
Definition: tuplesort.c:293

◆ tuplesort_gettupleslot()