PostgreSQL Source Code  git master
tuplesort.c File Reference
#include "postgres.h"
#include <limits.h>
#include "access/htup_details.h"
#include "access/nbtree.h"
#include "access/hash.h"
#include "catalog/index.h"
#include "catalog/pg_am.h"
#include "commands/tablespace.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "pg_trace.h"
#include "utils/datum.h"
#include "utils/logtape.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_rusage.h"
#include "utils/rel.h"
#include "utils/sortsupport.h"
#include "utils/tuplesort.h"
#include "qsort_tuple.c"
Include dependency graph for tuplesort.c:

Go to the source code of this file.

Data Structures

struct  SortTuple
 
union  SlabSlot
 
struct  Tuplesortstate
 
struct  Sharedsort
 

Macros

#define HEAP_SORT   0
 
#define INDEX_SORT   1
 
#define DATUM_SORT   2
 
#define CLUSTER_SORT   3
 
#define PARALLEL_SORT(state)
 
#define SLAB_SLOT_SIZE   1024
 
#define MINORDER   6 /* minimum merge order */
 
#define MAXORDER   500 /* maximum merge order */
 
#define TAPE_BUFFER_OVERHEAD   BLCKSZ
 
#define MERGE_BUFFER_SIZE   (BLCKSZ * 32)
 
#define IS_SLAB_SLOT(state, tuple)
 
#define RELEASE_SLAB_SLOT(state, tuple)
 
#define COMPARETUP(state, a, b)   ((*(state)->comparetup) (a, b, state))
 
#define COPYTUP(state, stup, tup)   ((*(state)->copytup) (state, stup, tup))
 
#define WRITETUP(state, tape, stup)   ((*(state)->writetup) (state, tape, stup))
 
#define READTUP(state, stup, tape, len)   ((*(state)->readtup) (state, stup, tape, len))
 
#define LACKMEM(state)   ((state)->availMem < 0 && !(state)->slabAllocatorUsed)
 
#define USEMEM(state, amt)   ((state)->availMem -= (amt))
 
#define FREEMEM(state, amt)   ((state)->availMem += (amt))
 
#define SERIAL(state)   ((state)->shared == NULL)
 
#define WORKER(state)   ((state)->shared && (state)->worker != -1)
 
#define LEADER(state)   ((state)->shared && (state)->worker == -1)
 
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
 

Typedefs

typedef union SlabSlot SlabSlot
 
typedef int(* SortTupleComparator) (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 

Enumerations

enum  TupSortStatus {
  TSS_INITIAL, TSS_BOUNDED, TSS_BUILDRUNS, TSS_SORTEDINMEM,
  TSS_SORTEDONTAPE, TSS_FINALMERGE
}
 

Functions

static Tuplesortstatetuplesort_begin_common (int workMem, SortCoordinate coordinate, bool randomAccess)
 
static void puttuple_common (Tuplesortstate *state, SortTuple *tuple)
 
static bool consider_abort_common (Tuplesortstate *state)
 
static void inittapes (Tuplesortstate *state, bool mergeruns)
 
static void inittapestate (Tuplesortstate *state, int maxTapes)
 
static void selectnewtape (Tuplesortstate *state)
 
static void init_slab_allocator (Tuplesortstate *state, int numSlots)
 
static void mergeruns (Tuplesortstate *state)
 
static void mergeonerun (Tuplesortstate *state)
 
static void beginmerge (Tuplesortstate *state)
 
static bool mergereadnext (Tuplesortstate *state, int srcTape, SortTuple *stup)
 
static void dumptuples (Tuplesortstate *state, bool alltuples)
 
static void make_bounded_heap (Tuplesortstate *state)
 
static void sort_bounded_heap (Tuplesortstate *state)
 
static void tuplesort_sort_memtuples (Tuplesortstate *state)
 
static void tuplesort_heap_insert (Tuplesortstate *state, SortTuple *tuple)
 
static void tuplesort_heap_replace_top (Tuplesortstate *state, SortTuple *tuple)
 
static void tuplesort_heap_delete_top (Tuplesortstate *state)
 
static void reversedirection (Tuplesortstate *state)
 
static unsigned int getlen (Tuplesortstate *state, int tapenum, bool eofOK)
 
static void markrunend (Tuplesortstate *state, int tapenum)
 
static void * readtup_alloc (Tuplesortstate *state, Size tuplen)
 
static int comparetup_heap (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static void copytup_heap (Tuplesortstate *state, SortTuple *stup, void *tup)
 
static void writetup_heap (Tuplesortstate *state, int tapenum, SortTuple *stup)
 
static void readtup_heap (Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
 
static int comparetup_cluster (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static void copytup_cluster (Tuplesortstate *state, SortTuple *stup, void *tup)
 
static void writetup_cluster (Tuplesortstate *state, int tapenum, SortTuple *stup)
 
static void readtup_cluster (Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
 
static int comparetup_index_btree (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static int comparetup_index_hash (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static void copytup_index (Tuplesortstate *state, SortTuple *stup, void *tup)
 
static void writetup_index (Tuplesortstate *state, int tapenum, SortTuple *stup)
 
static void readtup_index (Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
 
static int comparetup_datum (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
 
static void copytup_datum (Tuplesortstate *state, SortTuple *stup, void *tup)
 
static void writetup_datum (Tuplesortstate *state, int tapenum, SortTuple *stup)
 
static void readtup_datum (Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
 
static int worker_get_identifier (Tuplesortstate *state)
 
static void worker_freeze_result_tape (Tuplesortstate *state)
 
static void worker_nomergeruns (Tuplesortstate *state)
 
static void leader_takeover_tapes (Tuplesortstate *state)
 
static void free_sort_tuple (Tuplesortstate *state, SortTuple *stup)
 
Tuplesortstatetuplesort_begin_heap (TupleDesc tupDesc, int nkeys, AttrNumber *attNums, Oid *sortOperators, Oid *sortCollations, bool *nullsFirstFlags, int workMem, SortCoordinate coordinate, bool randomAccess)
 
Tuplesortstatetuplesort_begin_cluster (TupleDesc tupDesc, Relation indexRel, int workMem, SortCoordinate coordinate, bool randomAccess)
 
Tuplesortstatetuplesort_begin_index_btree (Relation heapRel, Relation indexRel, bool enforceUnique, int workMem, SortCoordinate coordinate, bool randomAccess)
 
Tuplesortstatetuplesort_begin_index_hash (Relation heapRel, Relation indexRel, uint32 high_mask, uint32 low_mask, uint32 max_buckets, int workMem, SortCoordinate coordinate, bool randomAccess)
 
Tuplesortstatetuplesort_begin_datum (Oid datumType, Oid sortOperator, Oid sortCollation, bool nullsFirstFlag, int workMem, SortCoordinate coordinate, bool randomAccess)
 
void tuplesort_set_bound (Tuplesortstate *state, int64 bound)
 
void tuplesort_end (Tuplesortstate *state)
 
static bool grow_memtuples (Tuplesortstate *state)
 
void tuplesort_puttupleslot (Tuplesortstate *state, TupleTableSlot *slot)
 
void tuplesort_putheaptuple (Tuplesortstate *state, HeapTuple tup)
 
void tuplesort_putindextuplevalues (Tuplesortstate *state, Relation rel, ItemPointer self, Datum *values, bool *isnull)
 
void tuplesort_putdatum (Tuplesortstate *state, Datum val, bool isNull)
 
void tuplesort_performsort (Tuplesortstate *state)
 
static bool tuplesort_gettuple_common (Tuplesortstate *state, bool forward, SortTuple *stup)
 
bool tuplesort_gettupleslot (Tuplesortstate *state, bool forward, bool copy, TupleTableSlot *slot, Datum *abbrev)
 
HeapTuple tuplesort_getheaptuple (Tuplesortstate *state, bool forward)
 
IndexTuple tuplesort_getindextuple (Tuplesortstate *state, bool forward)
 
bool tuplesort_getdatum (Tuplesortstate *state, bool forward, Datum *val, bool *isNull, Datum *abbrev)
 
bool tuplesort_skiptuples (Tuplesortstate *state, int64 ntuples, bool forward)
 
int tuplesort_merge_order (int64 allowedMem)
 
void tuplesort_rescan (Tuplesortstate *state)
 
void tuplesort_markpos (Tuplesortstate *state)
 
void tuplesort_restorepos (Tuplesortstate *state)
 
void tuplesort_get_stats (Tuplesortstate *state, TuplesortInstrumentation *stats)
 
const char * tuplesort_method_name (TuplesortMethod m)
 
const char * tuplesort_space_type_name (TuplesortSpaceType t)
 
Size tuplesort_estimate_shared (int nWorkers)
 
void tuplesort_initialize_shared (Sharedsort *shared, int nWorkers, dsm_segment *seg)
 
void tuplesort_attach_shared (Sharedsort *shared, dsm_segment *seg)
 

Variables

bool trace_sort = false
 

Macro Definition Documentation

◆ CLUSTER_SORT

#define CLUSTER_SORT   3

Definition at line 122 of file tuplesort.c.

Referenced by tuplesort_begin_cluster().

◆ COMPARETUP

#define COMPARETUP (   state,
  a,
 
)    ((*(state)->comparetup) (a, b, state))

◆ COPYTUP

#define COPYTUP (   state,
  stup,
  tup 
)    ((*(state)->copytup) (state, stup, tup))

Definition at line 526 of file tuplesort.c.

Referenced by tuplesort_putheaptuple(), and tuplesort_puttupleslot().

◆ DATUM_SORT

#define DATUM_SORT   2

Definition at line 121 of file tuplesort.c.

Referenced by tuplesort_begin_datum().

◆ FREEMEM

#define FREEMEM (   state,
  amt 
)    ((state)->availMem += (amt))

◆ HEAP_SORT

#define HEAP_SORT   0

Definition at line 119 of file tuplesort.c.

Referenced by tuplesort_begin_heap().

◆ INDEX_SORT

#define INDEX_SORT   1

Definition at line 120 of file tuplesort.c.

Referenced by tuplesort_begin_index_btree().

◆ IS_SLAB_SLOT

#define IS_SLAB_SLOT (   state,
  tuple 
)
Value:
((char *) (tuple) >= (state)->slabMemoryBegin && \
(char *) (tuple) < (state)->slabMemoryEnd)
Definition: regguts.h:298

Definition at line 505 of file tuplesort.c.

◆ LACKMEM

#define LACKMEM (   state)    ((state)->availMem < 0 && !(state)->slabAllocatorUsed)

Definition at line 529 of file tuplesort.c.

Referenced by dumptuples(), grow_memtuples(), puttuple_common(), and tuplesort_begin_common().

◆ LEADER

#define LEADER (   state)    ((state)->shared && (state)->worker == -1)

◆ LogicalTapeReadExact

#define LogicalTapeReadExact (   tapeset,
  tapenum,
  ptr,
  len 
)
Value:
do { \
if (LogicalTapeRead(tapeset, tapenum, ptr, len) != (size_t) (len)) \
elog(ERROR, "unexpected end of data"); \
} while(0)
size_t LogicalTapeRead(LogicalTapeSet *lts, int tapenum, void *ptr, size_t size)
Definition: logtape.c:809
#define ERROR
Definition: elog.h:43

Definition at line 584 of file tuplesort.c.

Referenced by readtup_cluster(), readtup_datum(), readtup_heap(), and readtup_index().

◆ MAXORDER

#define MAXORDER   500 /* maximum merge order */

Definition at line 222 of file tuplesort.c.

Referenced by tuplesort_merge_order().

◆ MERGE_BUFFER_SIZE

#define MERGE_BUFFER_SIZE   (BLCKSZ * 32)

Definition at line 224 of file tuplesort.c.

Referenced by tuplesort_merge_order().

◆ MINORDER

#define MINORDER   6 /* minimum merge order */

Definition at line 221 of file tuplesort.c.

Referenced by inittapes(), and tuplesort_merge_order().

◆ PARALLEL_SORT

#define PARALLEL_SORT (   state)
Value:
((state)->shared == NULL ? 0 : \
(state)->worker >= 0 ? 1 : 2)
Definition: regguts.h:298

Definition at line 125 of file tuplesort.c.

Referenced by tuplesort_begin_cluster(), tuplesort_begin_datum(), tuplesort_begin_heap(), and tuplesort_begin_index_btree().

◆ READTUP

#define READTUP (   state,
  stup,
  tape,
  len 
)    ((*(state)->readtup) (state, stup, tape, len))

Definition at line 528 of file tuplesort.c.

Referenced by mergereadnext(), and tuplesort_gettuple_common().

◆ RELEASE_SLAB_SLOT

#define RELEASE_SLAB_SLOT (   state,
  tuple 
)
Value:
do { \
SlabSlot *buf = (SlabSlot *) tuple; \
\
if (IS_SLAB_SLOT((state), buf)) \
{ \
buf->nextfree = (state)->slabFreeHead; \
(state)->slabFreeHead = buf; \
pfree(buf); \
} while(0)
void pfree(void *pointer)
Definition: mcxt.c:936
static char * buf
Definition: pg_test_fsync.c:67
Definition: regguts.h:298
#define IS_SLAB_SLOT(state, tuple)
Definition: tuplesort.c:505

Definition at line 513 of file tuplesort.c.

Referenced by mergeonerun(), and tuplesort_gettuple_common().

◆ SERIAL

#define SERIAL (   state)    ((state)->shared == NULL)

◆ SLAB_SLOT_SIZE

#define SLAB_SLOT_SIZE   1024

Definition at line 188 of file tuplesort.c.

Referenced by init_slab_allocator(), and readtup_alloc().

◆ TAPE_BUFFER_OVERHEAD

#define TAPE_BUFFER_OVERHEAD   BLCKSZ

Definition at line 223 of file tuplesort.c.

Referenced by inittapestate(), mergeruns(), and tuplesort_merge_order().

◆ USEMEM

◆ WORKER

◆ WRITETUP

#define WRITETUP (   state,
  tape,
  stup 
)    ((*(state)->writetup) (state, tape, stup))

Definition at line 527 of file tuplesort.c.

Referenced by dumptuples(), and mergeonerun().

Typedef Documentation

◆ SlabSlot

◆ SortTupleComparator

typedef int(* SortTupleComparator) (const SortTuple *a, const SortTuple *b, Tuplesortstate *state)

Definition at line 226 of file tuplesort.c.

Enumeration Type Documentation

◆ TupSortStatus

Enumerator
TSS_INITIAL 
TSS_BOUNDED 
TSS_BUILDRUNS 
TSS_SORTEDINMEM 
TSS_SORTEDONTAPE 
TSS_FINALMERGE 

Definition at line 200 of file tuplesort.c.

201 {
202  TSS_INITIAL, /* Loading tuples; still within memory limit */
203  TSS_BOUNDED, /* Loading tuples into bounded-size heap */
204  TSS_BUILDRUNS, /* Loading tuples; writing to tape */
205  TSS_SORTEDINMEM, /* Sort completed entirely in memory */
206  TSS_SORTEDONTAPE, /* Sort completed, final run is on tape */
207  TSS_FINALMERGE /* Performing final merge on-the-fly */
208 } TupSortStatus;
TupSortStatus
Definition: tuplesort.c:200

Function Documentation

◆ beginmerge()

static void beginmerge ( Tuplesortstate state)
static

Definition at line 2851 of file tuplesort.c.

References Tuplesortstate::activeTapes, Assert, Tuplesortstate::maxTapes, Tuplesortstate::memtupcount, Tuplesortstate::mergeactive, mergereadnext(), Tuplesortstate::tapeRange, Tuplesortstate::tp_dummy, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, SortTuple::tupindex, and tuplesort_heap_insert().

Referenced by mergeonerun(), and mergeruns().

2852 {
2853  int activeTapes;
2854  int tapenum;
2855  int srcTape;
2856 
2857  /* Heap should be empty here */
2858  Assert(state->memtupcount == 0);
2859 
2860  /* Adjust run counts and mark the active tapes */
2861  memset(state->mergeactive, 0,
2862  state->maxTapes * sizeof(*state->mergeactive));
2863  activeTapes = 0;
2864  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2865  {
2866  if (state->tp_dummy[tapenum] > 0)
2867  state->tp_dummy[tapenum]--;
2868  else
2869  {
2870  Assert(state->tp_runs[tapenum] > 0);
2871  state->tp_runs[tapenum]--;
2872  srcTape = state->tp_tapenum[tapenum];
2873  state->mergeactive[srcTape] = true;
2874  activeTapes++;
2875  }
2876  }
2877  Assert(activeTapes > 0);
2878  state->activeTapes = activeTapes;
2879 
2880  /* Load the merge heap with the first tuple from each input tape */
2881  for (srcTape = 0; srcTape < state->maxTapes; srcTape++)
2882  {
2883  SortTuple tup;
2884 
2885  if (mergereadnext(state, srcTape, &tup))
2886  {
2887  tup.tupindex = srcTape;
2888  tuplesort_heap_insert(state, &tup);
2889  }
2890  }
2891 }
static void tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3336
static bool mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup)
Definition: tuplesort.c:2899
#define Assert(condition)
Definition: c.h:688
int tupindex
Definition: tuplesort.c:174
int * tp_dummy
Definition: tuplesort.c:371
int * tp_tapenum
Definition: tuplesort.c:372
bool * mergeactive
Definition: tuplesort.c:360

◆ comparetup_cluster()

static int comparetup_cluster ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 3707 of file tuplesort.c.

References SortSupportData::abbrev_converter, ApplySortAbbrevFullComparator(), ApplySortComparator(), compare(), SortTuple::datum1, Tuplesortstate::estate, ExecStoreTuple(), FormIndexDatum(), GetPerTupleExprContext, heap_getattr, IndexInfo::ii_Expressions, IndexInfo::ii_KeyAttrNumbers, INDEX_MAX_KEYS, Tuplesortstate::indexInfo, InvalidBuffer, SortTuple::isnull1, Tuplesortstate::nKeys, ResetPerTupleExprContext, Tuplesortstate::sortKeys, Tuplesortstate::tupDesc, and SortTuple::tuple.

Referenced by tuplesort_begin_cluster().

3709 {
3710  SortSupport sortKey = state->sortKeys;
3711  HeapTuple ltup;
3712  HeapTuple rtup;
3713  TupleDesc tupDesc;
3714  int nkey;
3715  int32 compare;
3716  Datum datum1,
3717  datum2;
3718  bool isnull1,
3719  isnull2;
3720  AttrNumber leading = state->indexInfo->ii_KeyAttrNumbers[0];
3721 
3722  /* Be prepared to compare additional sort keys */
3723  ltup = (HeapTuple) a->tuple;
3724  rtup = (HeapTuple) b->tuple;
3725  tupDesc = state->tupDesc;
3726 
3727  /* Compare the leading sort key, if it's simple */
3728  if (leading != 0)
3729  {
3730  compare = ApplySortComparator(a->datum1, a->isnull1,
3731  b->datum1, b->isnull1,
3732  sortKey);
3733  if (compare != 0)
3734  return compare;
3735 
3736  if (sortKey->abbrev_converter)
3737  {
3738  datum1 = heap_getattr(ltup, leading, tupDesc, &isnull1);
3739  datum2 = heap_getattr(rtup, leading, tupDesc, &isnull2);
3740 
3741  compare = ApplySortAbbrevFullComparator(datum1, isnull1,
3742  datum2, isnull2,
3743  sortKey);
3744  }
3745  if (compare != 0 || state->nKeys == 1)
3746  return compare;
3747  /* Compare additional columns the hard way */
3748  sortKey++;
3749  nkey = 1;
3750  }
3751  else
3752  {
3753  /* Must compare all keys the hard way */
3754  nkey = 0;
3755  }
3756 
3757  if (state->indexInfo->ii_Expressions == NULL)
3758  {
3759  /* If not expression index, just compare the proper heap attrs */
3760 
3761  for (; nkey < state->nKeys; nkey++, sortKey++)
3762  {
3763  AttrNumber attno = state->indexInfo->ii_KeyAttrNumbers[nkey];
3764 
3765  datum1 = heap_getattr(ltup, attno, tupDesc, &isnull1);
3766  datum2 = heap_getattr(rtup, attno, tupDesc, &isnull2);
3767 
3768  compare = ApplySortComparator(datum1, isnull1,
3769  datum2, isnull2,
3770  sortKey);
3771  if (compare != 0)
3772  return compare;
3773  }
3774  }
3775  else
3776  {
3777  /*
3778  * In the expression index case, compute the whole index tuple and
3779  * then compare values. It would perhaps be faster to compute only as
3780  * many columns as we need to compare, but that would require
3781  * duplicating all the logic in FormIndexDatum.
3782  */
3783  Datum l_index_values[INDEX_MAX_KEYS];
3784  bool l_index_isnull[INDEX_MAX_KEYS];
3785  Datum r_index_values[INDEX_MAX_KEYS];
3786  bool r_index_isnull[INDEX_MAX_KEYS];
3787  TupleTableSlot *ecxt_scantuple;
3788 
3789  /* Reset context each time to prevent memory leakage */
3791 
3792  ecxt_scantuple = GetPerTupleExprContext(state->estate)->ecxt_scantuple;
3793 
3794  ExecStoreTuple(ltup, ecxt_scantuple, InvalidBuffer, false);
3795  FormIndexDatum(state->indexInfo, ecxt_scantuple, state->estate,
3796  l_index_values, l_index_isnull);
3797 
3798  ExecStoreTuple(rtup, ecxt_scantuple, InvalidBuffer, false);
3799  FormIndexDatum(state->indexInfo, ecxt_scantuple, state->estate,
3800  r_index_values, r_index_isnull);
3801 
3802  for (; nkey < state->nKeys; nkey++, sortKey++)
3803  {
3804  compare = ApplySortComparator(l_index_values[nkey],
3805  l_index_isnull[nkey],
3806  r_index_values[nkey],
3807  r_index_isnull[nkey],
3808  sortKey);
3809  if (compare != 0)
3810  return compare;
3811  }
3812  }
3813 
3814  return 0;
3815 }
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:1981
TupleTableSlot * ExecStoreTuple(HeapTuple tuple, TupleTableSlot *slot, Buffer buffer, bool shouldFree)
Definition: execTuples.c:356
HeapTupleData * HeapTuple
Definition: htup.h:70
#define ResetPerTupleExprContext(estate)
Definition: executor.h:499
EState * estate
Definition: tuplesort.c:436
SortSupport sortKeys
Definition: tuplesort.c:414
Datum datum1
Definition: tuplesort.c:172
#define InvalidBuffer
Definition: buf.h:25
bool isnull1
Definition: tuplesort.c:173
signed int int32
Definition: c.h:302
#define GetPerTupleExprContext(estate)
Definition: executor.h:490
void * tuple
Definition: tuplesort.c:171
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
IndexInfo * indexInfo
Definition: tuplesort.c:435
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:774
uintptr_t Datum
Definition: postgres.h:365
List * ii_Expressions
Definition: execnodes.h:148
#define INDEX_MAX_KEYS
AttrNumber ii_KeyAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:147
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:201
int16 AttrNumber
Definition: attnum.h:21
TupleDesc tupDesc
Definition: tuplesort.c:413
static int ApplySortAbbrevFullComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:239

◆ comparetup_datum()

static int comparetup_datum ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 4246 of file tuplesort.c.

References SortSupportData::abbrev_converter, ApplySortAbbrevFullComparator(), ApplySortComparator(), compare(), SortTuple::datum1, SortTuple::isnull1, PointerGetDatum, Tuplesortstate::sortKeys, and SortTuple::tuple.

Referenced by tuplesort_begin_datum().

4247 {
4248  int compare;
4249 
4250  compare = ApplySortComparator(a->datum1, a->isnull1,
4251  b->datum1, b->isnull1,
4252  state->sortKeys);
4253  if (compare != 0)
4254  return compare;
4255 
4256  /* if we have abbreviations, then "tuple" has the original value */
4257 
4258  if (state->sortKeys->abbrev_converter)
4260  PointerGetDatum(b->tuple), b->isnull1,
4261  state->sortKeys);
4262 
4263  return compare;
4264 }
#define PointerGetDatum(X)
Definition: postgres.h:539
SortSupport sortKeys
Definition: tuplesort.c:414
Datum datum1
Definition: tuplesort.c:172
bool isnull1
Definition: tuplesort.c:173
void * tuple
Definition: tuplesort.c:171
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:201
static int ApplySortAbbrevFullComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:239

◆ comparetup_heap()

static int comparetup_heap ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 3508 of file tuplesort.c.

References SortSupportData::abbrev_converter, ApplySortAbbrevFullComparator(), ApplySortComparator(), compare(), SortTuple::datum1, heap_getattr, SortTuple::isnull1, MINIMAL_TUPLE_OFFSET, Tuplesortstate::nKeys, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, HeapTupleData::t_data, HeapTupleData::t_len, Tuplesortstate::tupDesc, and SortTuple::tuple.

Referenced by tuplesort_begin_heap().

3509 {
3510  SortSupport sortKey = state->sortKeys;
3511  HeapTupleData ltup;
3512  HeapTupleData rtup;
3513  TupleDesc tupDesc;
3514  int nkey;
3515  int32 compare;
3516  AttrNumber attno;
3517  Datum datum1,
3518  datum2;
3519  bool isnull1,
3520  isnull2;
3521 
3522 
3523  /* Compare the leading sort key */
3524  compare = ApplySortComparator(a->datum1, a->isnull1,
3525  b->datum1, b->isnull1,
3526  sortKey);
3527  if (compare != 0)
3528  return compare;
3529 
3530  /* Compare additional sort keys */
3531  ltup.t_len = ((MinimalTuple) a->tuple)->t_len + MINIMAL_TUPLE_OFFSET;
3532  ltup.t_data = (HeapTupleHeader) ((char *) a->tuple - MINIMAL_TUPLE_OFFSET);
3533  rtup.t_len = ((MinimalTuple) b->tuple)->t_len + MINIMAL_TUPLE_OFFSET;
3534  rtup.t_data = (HeapTupleHeader) ((char *) b->tuple - MINIMAL_TUPLE_OFFSET);
3535  tupDesc = state->tupDesc;
3536 
3537  if (sortKey->abbrev_converter)
3538  {
3539  attno = sortKey->ssup_attno;
3540 
3541  datum1 = heap_getattr(&ltup, attno, tupDesc, &isnull1);
3542  datum2 = heap_getattr(&rtup, attno, tupDesc, &isnull2);
3543 
3544  compare = ApplySortAbbrevFullComparator(datum1, isnull1,
3545  datum2, isnull2,
3546  sortKey);
3547  if (compare != 0)
3548  return compare;
3549  }
3550 
3551  sortKey++;
3552  for (nkey = 1; nkey < state->nKeys; nkey++, sortKey++)
3553  {
3554  attno = sortKey->ssup_attno;
3555 
3556  datum1 = heap_getattr(&ltup, attno, tupDesc, &isnull1);
3557  datum2 = heap_getattr(&rtup, attno, tupDesc, &isnull2);
3558 
3559  compare = ApplySortComparator(datum1, isnull1,
3560  datum2, isnull2,
3561  sortKey);
3562  if (compare != 0)
3563  return compare;
3564  }
3565 
3566  return 0;
3567 }
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
SortSupport sortKeys
Definition: tuplesort.c:414
Datum datum1
Definition: tuplesort.c:172
bool isnull1
Definition: tuplesort.c:173
signed int int32
Definition: c.h:302
HeapTupleHeader t_data
Definition: htup.h:67
void * tuple
Definition: tuplesort.c:171
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
uint32 t_len
Definition: htup.h:64
MinimalTupleData * MinimalTuple
Definition: htup.h:27
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:774
uintptr_t Datum
Definition: postgres.h:365
AttrNumber ssup_attno
Definition: sortsupport.h:81
#define MINIMAL_TUPLE_OFFSET
Definition: htup_details.h:625
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:201
int16 AttrNumber
Definition: attnum.h:21
TupleDesc tupDesc
Definition: tuplesort.c:413
static int ApplySortAbbrevFullComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:239

◆ comparetup_index_btree()

static int comparetup_index_btree ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 3953 of file tuplesort.c.

References SortSupportData::abbrev_converter, ApplySortAbbrevFullComparator(), ApplySortComparator(), Assert, BuildIndexValueDescription(), compare(), SortTuple::datum1, Tuplesortstate::enforceUnique, ereport, errcode(), errdetail(), errmsg(), ERROR, errtableconstraint(), Tuplesortstate::heapRel, index_deform_tuple(), index_getattr, INDEX_MAX_KEYS, Tuplesortstate::indexRel, SortTuple::isnull1, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, Tuplesortstate::nKeys, RelationGetDescr, RelationGetRelationName, Tuplesortstate::sortKeys, IndexTupleData::t_tid, SortTuple::tuple, and values.

Referenced by tuplesort_begin_index_btree().

3955 {
3956  /*
3957  * This is similar to comparetup_heap(), but expects index tuples. There
3958  * is also special handling for enforcing uniqueness, and special
3959  * treatment for equal keys at the end.
3960  */
3961  SortSupport sortKey = state->sortKeys;
3962  IndexTuple tuple1;
3963  IndexTuple tuple2;
3964  int keysz;
3965  TupleDesc tupDes;
3966  bool equal_hasnull = false;
3967  int nkey;
3968  int32 compare;
3969  Datum datum1,
3970  datum2;
3971  bool isnull1,
3972  isnull2;
3973 
3974 
3975  /* Compare the leading sort key */
3976  compare = ApplySortComparator(a->datum1, a->isnull1,
3977  b->datum1, b->isnull1,
3978  sortKey);
3979  if (compare != 0)
3980  return compare;
3981 
3982  /* Compare additional sort keys */
3983  tuple1 = (IndexTuple) a->tuple;
3984  tuple2 = (IndexTuple) b->tuple;
3985  keysz = state->nKeys;
3986  tupDes = RelationGetDescr(state->indexRel);
3987 
3988  if (sortKey->abbrev_converter)
3989  {
3990  datum1 = index_getattr(tuple1, 1, tupDes, &isnull1);
3991  datum2 = index_getattr(tuple2, 1, tupDes, &isnull2);
3992 
3993  compare = ApplySortAbbrevFullComparator(datum1, isnull1,
3994  datum2, isnull2,
3995  sortKey);
3996  if (compare != 0)
3997  return compare;
3998  }
3999 
4000  /* they are equal, so we only need to examine one null flag */
4001  if (a->isnull1)
4002  equal_hasnull = true;
4003 
4004  sortKey++;
4005  for (nkey = 2; nkey <= keysz; nkey++, sortKey++)
4006  {
4007  datum1 = index_getattr(tuple1, nkey, tupDes, &isnull1);
4008  datum2 = index_getattr(tuple2, nkey, tupDes, &isnull2);
4009 
4010  compare = ApplySortComparator(datum1, isnull1,
4011  datum2, isnull2,
4012  sortKey);
4013  if (compare != 0)
4014  return compare; /* done when we find unequal attributes */
4015 
4016  /* they are equal, so we only need to examine one null flag */
4017  if (isnull1)
4018  equal_hasnull = true;
4019  }
4020 
4021  /*
4022  * If btree has asked us to enforce uniqueness, complain if two equal
4023  * tuples are detected (unless there was at least one NULL field).
4024  *
4025  * It is sufficient to make the test here, because if two tuples are equal
4026  * they *must* get compared at some stage of the sort --- otherwise the
4027  * sort algorithm wouldn't have checked whether one must appear before the
4028  * other.
4029  */
4030  if (state->enforceUnique && !equal_hasnull)
4031  {
4033  bool isnull[INDEX_MAX_KEYS];
4034  char *key_desc;
4035 
4036  /*
4037  * Some rather brain-dead implementations of qsort (such as the one in
4038  * QNX 4) will sometimes call the comparison routine to compare a
4039  * value to itself, but we always use our own implementation, which
4040  * does not.
4041  */
4042  Assert(tuple1 != tuple2);
4043 
4044  index_deform_tuple(tuple1, tupDes, values, isnull);
4045 
4046  key_desc = BuildIndexValueDescription(state->indexRel, values, isnull);
4047 
4048  ereport(ERROR,
4049  (errcode(ERRCODE_UNIQUE_VIOLATION),
4050  errmsg("could not create unique index \"%s\"",
4052  key_desc ? errdetail("Key %s is duplicated.", key_desc) :
4053  errdetail("Duplicate keys exist."),
4054  errtableconstraint(state->heapRel,
4055  RelationGetRelationName(state->indexRel))));
4056  }
4057 
4058  /*
4059  * If key values are equal, we sort on ItemPointer. This does not affect
4060  * validity of the finished index, but it may be useful to have index
4061  * scans in physical order.
4062  */
4063  {
4064  BlockNumber blk1 = ItemPointerGetBlockNumber(&tuple1->t_tid);
4065  BlockNumber blk2 = ItemPointerGetBlockNumber(&tuple2->t_tid);
4066 
4067  if (blk1 != blk2)
4068  return (blk1 < blk2) ? -1 : 1;
4069  }
4070  {
4073 
4074  if (pos1 != pos2)
4075  return (pos1 < pos2) ? -1 : 1;
4076  }
4077 
4078  return 0;
4079 }
Relation heapRel
Definition: tuplesort.c:442
#define RelationGetDescr(relation)
Definition: rel.h:437
SortSupport sortKeys
Definition: tuplesort.c:414
ItemPointerData t_tid
Definition: itup.h:37
Datum datum1
Definition: tuplesort.c:172
int errcode(int sqlerrcode)
Definition: elog.c:575
uint32 BlockNumber
Definition: block.h:31
bool isnull1
Definition: tuplesort.c:173
signed int int32
Definition: c.h:302
uint16 OffsetNumber
Definition: off.h:24
void * tuple
Definition: tuplesort.c:171
int errtableconstraint(Relation rel, const char *conname)
Definition: relcache.c:5281
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
#define ERROR
Definition: elog.h:43
IndexTupleData * IndexTuple
Definition: itup.h:53
int errdetail(const char *fmt,...)
Definition: elog.c:873
#define RelationGetRelationName(relation)
Definition: rel.h:445
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
void index_deform_tuple(IndexTuple tup, TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: indextuple.c:420
#define ereport(elevel, rest)
Definition: elog.h:122
Relation indexRel
Definition: tuplesort.c:443
uintptr_t Datum
Definition: postgres.h:365
#define Assert(condition)
Definition: c.h:688
bool enforceUnique
Definition: tuplesort.c:446
#define INDEX_MAX_KEYS
#define index_getattr(tup, attnum, tupleDesc, isnull)
Definition: itup.h:100
#define ItemPointerGetOffsetNumber(pointer)
Definition: itemptr.h:95
static Datum values[MAXATTR]
Definition: bootstrap.c:164
int errmsg(const char *fmt,...)
Definition: elog.c:797
char * BuildIndexValueDescription(Relation indexRelation, Datum *values, bool *isnull)
Definition: genam.c:177
#define ItemPointerGetBlockNumber(pointer)
Definition: itemptr.h:76
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:201
static int ApplySortAbbrevFullComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:239

◆ comparetup_index_hash()

static int comparetup_index_hash ( const SortTuple a,
const SortTuple b,
Tuplesortstate state 
)
static

Definition at line 4082 of file tuplesort.c.

References _hash_hashkey2bucket(), Assert, SortTuple::datum1, DatumGetUInt32, Tuplesortstate::high_mask, SortTuple::isnull1, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, Tuplesortstate::low_mask, Tuplesortstate::max_buckets, IndexTupleData::t_tid, and SortTuple::tuple.

Referenced by tuplesort_begin_index_hash().

4084 {
4085  Bucket bucket1;
4086  Bucket bucket2;
4087  IndexTuple tuple1;
4088  IndexTuple tuple2;
4089 
4090  /*
4091  * Fetch hash keys and mask off bits we don't want to sort by. We know
4092  * that the first column of the index tuple is the hash key.
4093  */
4094  Assert(!a->isnull1);
4096  state->max_buckets, state->high_mask,
4097  state->low_mask);
4098  Assert(!b->isnull1);
4100  state->max_buckets, state->high_mask,
4101  state->low_mask);
4102  if (bucket1 > bucket2)
4103  return 1;
4104  else if (bucket1 < bucket2)
4105  return -1;
4106 
4107  /*
4108  * If hash values are equal, we sort on ItemPointer. This does not affect
4109  * validity of the finished index, but it may be useful to have index
4110  * scans in physical order.
4111  */
4112  tuple1 = (IndexTuple) a->tuple;
4113  tuple2 = (IndexTuple) b->tuple;
4114 
4115  {
4116  BlockNumber blk1 = ItemPointerGetBlockNumber(&tuple1->t_tid);
4117  BlockNumber blk2 = ItemPointerGetBlockNumber(&tuple2->t_tid);
4118 
4119  if (blk1 != blk2)
4120  return (blk1 < blk2) ? -1 : 1;
4121  }
4122  {
4125 
4126  if (pos1 != pos2)
4127  return (pos1 < pos2) ? -1 : 1;
4128  }
4129 
4130  return 0;
4131 }
#define DatumGetUInt32(X)
Definition: postgres.h:469
Bucket _hash_hashkey2bucket(uint32 hashkey, uint32 maxbucket, uint32 highmask, uint32 lowmask)
Definition: hashutil.c:125
ItemPointerData t_tid
Definition: itup.h:37
Datum datum1
Definition: tuplesort.c:172
uint32 BlockNumber
Definition: block.h:31
bool isnull1
Definition: tuplesort.c:173
uint16 OffsetNumber
Definition: off.h:24
uint32 Bucket
Definition: hash.h:34
void * tuple
Definition: tuplesort.c:171
uint32 high_mask
Definition: tuplesort.c:449
IndexTupleData * IndexTuple
Definition: itup.h:53
#define Assert(condition)
Definition: c.h:688
#define ItemPointerGetOffsetNumber(pointer)
Definition: itemptr.h:95
uint32 max_buckets
Definition: tuplesort.c:451
uint32 low_mask
Definition: tuplesort.c:450
#define ItemPointerGetBlockNumber(pointer)
Definition: itemptr.h:76

◆ consider_abort_common()

static bool consider_abort_common ( Tuplesortstate state)
static

Definition at line 1747 of file tuplesort.c.

References SortSupportData::abbrev_abort, SortSupportData::abbrev_converter, SortSupportData::abbrev_full_comparator, Tuplesortstate::abbrevNext, Assert, SortSupportData::comparator, Tuplesortstate::memtupcount, Tuplesortstate::sortKeys, Tuplesortstate::status, and TSS_INITIAL.

Referenced by copytup_cluster(), copytup_heap(), copytup_index(), tuplesort_putdatum(), and tuplesort_putindextuplevalues().

1748 {
1749  Assert(state->sortKeys[0].abbrev_converter != NULL);
1750  Assert(state->sortKeys[0].abbrev_abort != NULL);
1751  Assert(state->sortKeys[0].abbrev_full_comparator != NULL);
1752 
1753  /*
1754  * Check effectiveness of abbreviation optimization. Consider aborting
1755  * when still within memory limit.
1756  */
1757  if (state->status == TSS_INITIAL &&
1758  state->memtupcount >= state->abbrevNext)
1759  {
1760  state->abbrevNext *= 2;
1761 
1762  /*
1763  * Check opclass-supplied abbreviation abort routine. It may indicate
1764  * that abbreviation should not proceed.
1765  */
1766  if (!state->sortKeys->abbrev_abort(state->memtupcount,
1767  state->sortKeys))
1768  return false;
1769 
1770  /*
1771  * Finally, restore authoritative comparator, and indicate that
1772  * abbreviation is not in play by setting abbrev_converter to NULL
1773  */
1774  state->sortKeys[0].comparator = state->sortKeys[0].abbrev_full_comparator;
1775  state->sortKeys[0].abbrev_converter = NULL;
1776  /* Not strictly necessary, but be tidy */
1777  state->sortKeys[0].abbrev_abort = NULL;
1778  state->sortKeys[0].abbrev_full_comparator = NULL;
1779 
1780  /* Give up - expect original pass-by-value representation */
1781  return true;
1782  }
1783 
1784  return false;
1785 }
TupSortStatus status
Definition: tuplesort.c:234
int64 abbrevNext
Definition: tuplesort.c:428
SortSupport sortKeys
Definition: tuplesort.c:414
int(* comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:107
int(* abbrev_full_comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:192
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
#define Assert(condition)
Definition: c.h:688
bool(* abbrev_abort)(int memtupcount, SortSupport ssup)
Definition: sortsupport.h:183

◆ copytup_cluster()

static void copytup_cluster ( Tuplesortstate state,
SortTuple stup,
void *  tup 
)
static

Definition at line 3818 of file tuplesort.c.

References SortSupportData::abbrev_converter, consider_abort_common(), SortTuple::datum1, GetMemoryChunkSpace(), heap_copytuple(), heap_getattr, i, IndexInfo::ii_KeyAttrNumbers, Tuplesortstate::indexInfo, SortTuple::isnull1, MemoryContextSwitchTo(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::sortKeys, Tuplesortstate::tupDesc, SortTuple::tuple, Tuplesortstate::tuplecontext, and USEMEM.

Referenced by tuplesort_begin_cluster().

3819 {
3820  HeapTuple tuple = (HeapTuple) tup;
3821  Datum original;
3822  MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);
3823 
3824  /* copy the tuple into sort storage */
3825  tuple = heap_copytuple(tuple);
3826  stup->tuple = (void *) tuple;
3827  USEMEM(state, GetMemoryChunkSpace(tuple));
3828 
3829  MemoryContextSwitchTo(oldcontext);
3830 
3831  /*
3832  * set up first-column key value, and potentially abbreviate, if it's a
3833  * simple column
3834  */
3835  if (state->indexInfo->ii_KeyAttrNumbers[0] == 0)
3836  return;
3837 
3838  original = heap_getattr(tuple,
3839  state->indexInfo->ii_KeyAttrNumbers[0],
3840  state->tupDesc,
3841  &stup->isnull1);
3842 
3843  if (!state->sortKeys->abbrev_converter || stup->isnull1)
3844  {
3845  /*
3846  * Store ordinary Datum representation, or NULL value. If there is a
3847  * converter it won't expect NULL values, and cost model is not
3848  * required to account for NULL, so in that case we avoid calling
3849  * converter and just set datum1 to zeroed representation (to be
3850  * consistent, and to support cheap inequality tests for NULL
3851  * abbreviated keys).
3852  */
3853  stup->datum1 = original;
3854  }
3855  else if (!consider_abort_common(state))
3856  {
3857  /* Store abbreviated key representation */
3858  stup->datum1 = state->sortKeys->abbrev_converter(original,
3859  state->sortKeys);
3860  }
3861  else
3862  {
3863  /* Abort abbreviation */
3864  int i;
3865 
3866  stup->datum1 = original;
3867 
3868  /*
3869  * Set state to be consistent with never trying abbreviation.
3870  *
3871  * Alter datum1 representation in already-copied tuples, so as to
3872  * ensure a consistent representation (current tuple was just
3873  * handled). It does not matter if some dumped tuples are already
3874  * sorted on tape, since serialized tuples lack abbreviated keys
3875  * (TSS_BUILDRUNS state prevents control reaching here in any case).
3876  */
3877  for (i = 0; i < state->memtupcount; i++)
3878  {
3879  SortTuple *mtup = &state->memtuples[i];
3880 
3881  tuple = (HeapTuple) mtup->tuple;
3882  mtup->datum1 = heap_getattr(tuple,
3883  state->indexInfo->ii_KeyAttrNumbers[0],
3884  state->tupDesc,
3885  &mtup->isnull1);
3886  }
3887  }
3888 }
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:611
HeapTupleData * HeapTuple
Definition: htup.h:70
SortSupport sortKeys
Definition: tuplesort.c:414
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
Datum datum1
Definition: tuplesort.c:172
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:390
bool isnull1
Definition: tuplesort.c:173
void * tuple
Definition: tuplesort.c:171
static bool consider_abort_common(Tuplesortstate *state)
Definition: tuplesort.c:1747
IndexInfo * indexInfo
Definition: tuplesort.c:435
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:774
uintptr_t Datum
Definition: postgres.h:365
AttrNumber ii_KeyAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:147
MemoryContext tuplecontext
Definition: tuplesort.c:247
#define USEMEM(state, amt)
Definition: tuplesort.c:530
int i
TupleDesc tupDesc
Definition: tuplesort.c:413
SortTuple * memtuples
Definition: tuplesort.c:295

◆ copytup_datum()

static void copytup_datum ( Tuplesortstate state,
SortTuple stup,
void *  tup 
)
static

Definition at line 4267 of file tuplesort.c.

References elog, and ERROR.

Referenced by tuplesort_begin_datum().

4268 {
4269  /* Not currently needed */
4270  elog(ERROR, "copytup_datum() should not be called");
4271 }
#define ERROR
Definition: elog.h:43
#define elog
Definition: elog.h:219

◆ copytup_heap()

static void copytup_heap ( Tuplesortstate state,
SortTuple stup,
void *  tup 
)
static

Definition at line 3570 of file tuplesort.c.

References SortSupportData::abbrev_converter, consider_abort_common(), SortTuple::datum1, ExecCopySlotMinimalTuple(), GetMemoryChunkSpace(), heap_getattr, i, SortTuple::isnull1, MemoryContextSwitchTo(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, MINIMAL_TUPLE_OFFSET, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, HeapTupleData::t_data, HeapTupleData::t_len, MinimalTupleData::t_len, Tuplesortstate::tupDesc, SortTuple::tuple, Tuplesortstate::tuplecontext, and USEMEM.

Referenced by tuplesort_begin_heap().

3571 {
3572  /*
3573  * We expect the passed "tup" to be a TupleTableSlot, and form a
3574  * MinimalTuple using the exported interface for that.
3575  */
3576  TupleTableSlot *slot = (TupleTableSlot *) tup;
3577  Datum original;
3578  MinimalTuple tuple;
3579  HeapTupleData htup;
3580  MemoryContext oldcontext = MemoryContextSwitchTo(state->tuplecontext);
3581 
3582  /* copy the tuple into sort storage */
3583  tuple = ExecCopySlotMinimalTuple(slot);
3584  stup->tuple = (void *) tuple;
3585  USEMEM(state, GetMemoryChunkSpace(tuple));
3586  /* set up first-column key value */
3587  htup.t_len = tuple->t_len + MINIMAL_TUPLE_OFFSET;
3588  htup.t_data = (HeapTupleHeader) ((char *) tuple - MINIMAL_TUPLE_OFFSET);
3589  original = heap_getattr(&htup,
3590  state->sortKeys[0].ssup_attno,
3591  state->tupDesc,
3592  &stup->isnull1);
3593 
3594  MemoryContextSwitchTo(oldcontext);
3595 
3596  if (!state->sortKeys->abbrev_converter || stup->isnull1)
3597  {
3598  /*
3599  * Store ordinary Datum representation, or NULL value. If there is a
3600  * converter it won't expect NULL values, and cost model is not
3601  * required to account for NULL, so in that case we avoid calling
3602  * converter and just set datum1 to zeroed representation (to be
3603  * consistent, and to support cheap inequality tests for NULL
3604  * abbreviated keys).
3605  */
3606  stup->datum1 = original;
3607  }
3608  else if (!consider_abort_common(state))
3609  {
3610  /* Store abbreviated key representation */
3611  stup->datum1 = state->sortKeys->abbrev_converter(original,
3612  state->sortKeys);
3613  }
3614  else
3615  {
3616  /* Abort abbreviation */
3617  int i;
3618 
3619  stup->datum1 = original;
3620 
3621  /*
3622  * Set state to be consistent with never trying abbreviation.
3623  *
3624  * Alter datum1 representation in already-copied tuples, so as to
3625  * ensure a consistent representation (current tuple was just
3626  * handled). It does not matter if some dumped tuples are already
3627  * sorted on tape, since serialized tuples lack abbreviated keys
3628  * (TSS_BUILDRUNS state prevents control reaching here in any case).
3629  */
3630  for (i = 0; i < state->memtupcount; i++)
3631  {
3632  SortTuple *mtup = &state->memtuples[i];
3633 
3634  htup.t_len = ((MinimalTuple) mtup->tuple)->t_len +
3636  htup.t_data = (HeapTupleHeader) ((char *) mtup->tuple -
3638 
3639  mtup->datum1 = heap_getattr(&htup,
3640  state->sortKeys[0].ssup_attno,
3641  state->tupDesc,
3642  &mtup->isnull1);
3643  }
3644  }
3645 }
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
SortSupport sortKeys
Definition: tuplesort.c:414
MinimalTuple ExecCopySlotMinimalTuple(TupleTableSlot *slot)
Definition: execTuples.c:613
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
Datum datum1
Definition: tuplesort.c:172
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:390
bool isnull1
Definition: tuplesort.c:173
HeapTupleHeader t_data
Definition: htup.h:67
void * tuple
Definition: tuplesort.c:171
static bool consider_abort_common(Tuplesortstate *state)
Definition: tuplesort.c:1747
uint32 t_len
Definition: htup.h:64
MinimalTupleData * MinimalTuple
Definition: htup.h:27
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:774
uintptr_t Datum
Definition: postgres.h:365
AttrNumber ssup_attno
Definition: sortsupport.h:81
#define MINIMAL_TUPLE_OFFSET
Definition: htup_details.h:625
MemoryContext tuplecontext
Definition: tuplesort.c:247
#define USEMEM(state, amt)
Definition: tuplesort.c:530
int i
TupleDesc tupDesc
Definition: tuplesort.c:413
SortTuple * memtuples
Definition: tuplesort.c:295

◆ copytup_index()

static void copytup_index ( Tuplesortstate state,
SortTuple stup,
void *  tup 
)
static

Definition at line 4134 of file tuplesort.c.

References SortSupportData::abbrev_converter, consider_abort_common(), SortTuple::datum1, GetMemoryChunkSpace(), i, index_getattr, Tuplesortstate::indexRel, IndexTupleSize, SortTuple::isnull1, MemoryContextAlloc(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, RelationGetDescr, Tuplesortstate::sortKeys, SortTuple::tuple, Tuplesortstate::tuplecontext, and USEMEM.

Referenced by tuplesort_begin_index_btree(), and tuplesort_begin_index_hash().

4135 {
4136  IndexTuple tuple = (IndexTuple) tup;
4137  unsigned int tuplen = IndexTupleSize(tuple);
4138  IndexTuple newtuple;
4139  Datum original;
4140 
4141  /* copy the tuple into sort storage */
4142  newtuple = (IndexTuple) MemoryContextAlloc(state->tuplecontext, tuplen);
4143  memcpy(newtuple, tuple, tuplen);
4144  USEMEM(state, GetMemoryChunkSpace(newtuple));
4145  stup->tuple = (void *) newtuple;
4146  /* set up first-column key value */
4147  original = index_getattr(newtuple,
4148  1,
4149  RelationGetDescr(state->indexRel),
4150  &stup->isnull1);
4151 
4152  if (!state->sortKeys->abbrev_converter || stup->isnull1)
4153  {
4154  /*
4155  * Store ordinary Datum representation, or NULL value. If there is a
4156  * converter it won't expect NULL values, and cost model is not
4157  * required to account for NULL, so in that case we avoid calling
4158  * converter and just set datum1 to zeroed representation (to be
4159  * consistent, and to support cheap inequality tests for NULL
4160  * abbreviated keys).
4161  */
4162  stup->datum1 = original;
4163  }
4164  else if (!consider_abort_common(state))
4165  {
4166  /* Store abbreviated key representation */
4167  stup->datum1 = state->sortKeys->abbrev_converter(original,
4168  state->sortKeys);
4169  }
4170  else
4171  {
4172  /* Abort abbreviation */
4173  int i;
4174 
4175  stup->datum1 = original;
4176 
4177  /*
4178  * Set state to be consistent with never trying abbreviation.
4179  *
4180  * Alter datum1 representation in already-copied tuples, so as to
4181  * ensure a consistent representation (current tuple was just
4182  * handled). It does not matter if some dumped tuples are already
4183  * sorted on tape, since serialized tuples lack abbreviated keys
4184  * (TSS_BUILDRUNS state prevents control reaching here in any case).
4185  */
4186  for (i = 0; i < state->memtupcount; i++)
4187  {
4188  SortTuple *mtup = &state->memtuples[i];
4189 
4190  tuple = (IndexTuple) mtup->tuple;
4191  mtup->datum1 = index_getattr(tuple,
4192  1,
4193  RelationGetDescr(state->indexRel),
4194  &mtup->isnull1);
4195  }
4196  }
4197 }
#define RelationGetDescr(relation)
Definition: rel.h:437
SortSupport sortKeys
Definition: tuplesort.c:414
Datum datum1
Definition: tuplesort.c:172
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:390
bool isnull1
Definition: tuplesort.c:173
void * tuple
Definition: tuplesort.c:171
static bool consider_abort_common(Tuplesortstate *state)
Definition: tuplesort.c:1747
IndexTupleData * IndexTuple
Definition: itup.h:53
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
Relation indexRel
Definition: tuplesort.c:443
uintptr_t Datum
Definition: postgres.h:365
#define index_getattr(tup, attnum, tupleDesc, isnull)
Definition: itup.h:100
MemoryContext tuplecontext
Definition: tuplesort.c:247
#define USEMEM(state, amt)
Definition: tuplesort.c:530
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:693
int i
#define IndexTupleSize(itup)
Definition: itup.h:70
SortTuple * memtuples
Definition: tuplesort.c:295

◆ dumptuples()

static void dumptuples ( Tuplesortstate state,
bool  alltuples 
)
static

Definition at line 2924 of file tuplesort.c.

References Assert, Tuplesortstate::currentRun, Tuplesortstate::destTape, elog, ereport, errcode(), errmsg(), ERROR, i, LACKMEM, LOG, markrunend(), MemoryContextReset(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, pg_rusage_show(), Tuplesortstate::ru_start, selectnewtape(), Tuplesortstate::status, Tuplesortstate::tp_dummy, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, trace_sort, TSS_BUILDRUNS, Tuplesortstate::tuplecontext, tuplesort_sort_memtuples(), Tuplesortstate::worker, and WRITETUP.

Referenced by puttuple_common(), and tuplesort_performsort().

2925 {
2926  int memtupwrite;
2927  int i;
2928 
2929  /*
2930  * Nothing to do if we still fit in available memory and have array slots,
2931  * unless this is the final call during initial run generation.
2932  */
2933  if (state->memtupcount < state->memtupsize && !LACKMEM(state) &&
2934  !alltuples)
2935  return;
2936 
2937  /*
2938  * Final call might require no sorting, in rare cases where we just so
2939  * happen to have previously LACKMEM()'d at the point where exactly all
2940  * remaining tuples are loaded into memory, just before input was
2941  * exhausted.
2942  *
2943  * In general, short final runs are quite possible. Rather than allowing
2944  * a special case where there was a superfluous selectnewtape() call (i.e.
2945  * a call with no subsequent run actually written to destTape), we prefer
2946  * to write out a 0 tuple run.
2947  *
2948  * mergereadnext() is prepared for 0 tuple runs, and will reliably mark
2949  * the tape inactive for the merge when called from beginmerge(). This
2950  * case is therefore similar to the case where mergeonerun() finds a dummy
2951  * run for the tape, and so doesn't need to merge a run from the tape (or
2952  * conceptually "merges" the dummy run, if you prefer). According to
2953  * Knuth, Algorithm D "isn't strictly optimal" in its method of
2954  * distribution and dummy run assignment; this edge case seems very
2955  * unlikely to make that appreciably worse.
2956  */
2957  Assert(state->status == TSS_BUILDRUNS);
2958 
2959  /*
2960  * It seems unlikely that this limit will ever be exceeded, but take no
2961  * chances
2962  */
2963  if (state->currentRun == INT_MAX)
2964  ereport(ERROR,
2965  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
2966  errmsg("cannot have more than %d runs for an external sort",
2967  INT_MAX)));
2968 
2969  state->currentRun++;
2970 
2971 #ifdef TRACE_SORT
2972  if (trace_sort)
2973  elog(LOG, "%d starting quicksort of run %d: %s",
2974  state->worker, state->currentRun,
2975  pg_rusage_show(&state->ru_start));
2976 #endif
2977 
2978  /*
2979  * Sort all tuples accumulated within the allowed amount of memory for
2980  * this run using quicksort
2981  */
2982  tuplesort_sort_memtuples(state);
2983 
2984 #ifdef TRACE_SORT
2985  if (trace_sort)
2986  elog(LOG, "%d finished quicksort of run %d: %s",
2987  state->worker, state->currentRun,
2988  pg_rusage_show(&state->ru_start));
2989 #endif
2990 
2991  memtupwrite = state->memtupcount;
2992  for (i = 0; i < memtupwrite; i++)
2993  {
2994  WRITETUP(state, state->tp_tapenum[state->destTape],
2995  &state->memtuples[i]);
2996  state->memtupcount--;
2997  }
2998 
2999  /*
3000  * Reset tuple memory. We've freed all of the tuples that we previously
3001  * allocated. It's important to avoid fragmentation when there is a stark
3002  * change in the sizes of incoming tuples. Fragmentation due to
3003  * AllocSetFree's bucketing by size class might be particularly bad if
3004  * this step wasn't taken.
3005  */
3007 
3008  markrunend(state, state->tp_tapenum[state->destTape]);
3009  state->tp_runs[state->destTape]++;
3010  state->tp_dummy[state->destTape]--; /* per Alg D step D2 */
3011 
3012 #ifdef TRACE_SORT
3013  if (trace_sort)
3014  elog(LOG, "%d finished writing run %d to tape %d: %s",
3015  state->worker, state->currentRun, state->destTape,
3016  pg_rusage_show(&state->ru_start));
3017 #endif
3018 
3019  if (!alltuples)
3020  selectnewtape(state);
3021 }
TupSortStatus status
Definition: tuplesort.c:234
PGRUsage ru_start
Definition: tuplesort.c:465
int errcode(int sqlerrcode)
Definition: elog.c:575
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:134
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
static void markrunend(Tuplesortstate *state, int tapenum)
Definition: tuplesort.c:3466
#define ERROR
Definition: elog.h:43
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define ereport(elevel, rest)
Definition: elog.h:122
static void selectnewtape(Tuplesortstate *state)
Definition: tuplesort.c:2492
#define WRITETUP(state, tape, stup)
Definition: tuplesort.c:527
#define Assert(condition)
Definition: c.h:688
static void tuplesort_sort_memtuples(Tuplesortstate *state)
Definition: tuplesort.c:3308
int * tp_dummy
Definition: tuplesort.c:371
MemoryContext tuplecontext
Definition: tuplesort.c:247
int errmsg(const char *fmt,...)
Definition: elog.c:797
int * tp_tapenum
Definition: tuplesort.c:372
int i
#define elog
Definition: elog.h:219
#define LACKMEM(state)
Definition: tuplesort.c:529
SortTuple * memtuples
Definition: tuplesort.c:295

◆ free_sort_tuple()

static void free_sort_tuple ( Tuplesortstate state,
SortTuple stup 
)
static

Definition at line 4579 of file tuplesort.c.

References FREEMEM, GetMemoryChunkSpace(), pfree(), and SortTuple::tuple.

Referenced by make_bounded_heap(), and puttuple_common().

4580 {
4581  FREEMEM(state, GetMemoryChunkSpace(stup->tuple));
4582  pfree(stup->tuple);
4583 }
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:390
void * tuple
Definition: tuplesort.c:171
void pfree(void *pointer)
Definition: mcxt.c:936
#define FREEMEM(state, amt)
Definition: tuplesort.c:531

◆ getlen()

static unsigned int getlen ( Tuplesortstate state,
int  tapenum,
bool  eofOK 
)
static

Definition at line 3453 of file tuplesort.c.

References elog, ERROR, LogicalTapeRead(), and Tuplesortstate::tapeset.

Referenced by mergereadnext(), and tuplesort_gettuple_common().

3454 {
3455  unsigned int len;
3456 
3457  if (LogicalTapeRead(state->tapeset, tapenum,
3458  &len, sizeof(len)) != sizeof(len))
3459  elog(ERROR, "unexpected end of tape");
3460  if (len == 0 && !eofOK)
3461  elog(ERROR, "unexpected end of data");
3462  return len;
3463 }
size_t LogicalTapeRead(LogicalTapeSet *lts, int tapenum, void *ptr, size_t size)
Definition: logtape.c:809
#define ERROR
Definition: elog.h:43
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
#define elog
Definition: elog.h:219

◆ grow_memtuples()

static bool grow_memtuples ( Tuplesortstate state)
static

Definition at line 1316 of file tuplesort.c.

References Tuplesortstate::allowedMem, Tuplesortstate::availMem, elog, ERROR, FREEMEM, GetMemoryChunkSpace(), Tuplesortstate::growmemtuples, LACKMEM, MaxAllocHugeSize, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, repalloc_huge(), and USEMEM.

Referenced by puttuple_common().

1317 {
1318  int newmemtupsize;
1319  int memtupsize = state->memtupsize;
1320  int64 memNowUsed = state->allowedMem - state->availMem;
1321 
1322  /* Forget it if we've already maxed out memtuples, per comment above */
1323  if (!state->growmemtuples)
1324  return false;
1325 
1326  /* Select new value of memtupsize */
1327  if (memNowUsed <= state->availMem)
1328  {
1329  /*
1330  * We've used no more than half of allowedMem; double our usage,
1331  * clamping at INT_MAX tuples.
1332  */
1333  if (memtupsize < INT_MAX / 2)
1334  newmemtupsize = memtupsize * 2;
1335  else
1336  {
1337  newmemtupsize = INT_MAX;
1338  state->growmemtuples = false;
1339  }
1340  }
1341  else
1342  {
1343  /*
1344  * This will be the last increment of memtupsize. Abandon doubling
1345  * strategy and instead increase as much as we safely can.
1346  *
1347  * To stay within allowedMem, we can't increase memtupsize by more
1348  * than availMem / sizeof(SortTuple) elements. In practice, we want
1349  * to increase it by considerably less, because we need to leave some
1350  * space for the tuples to which the new array slots will refer. We
1351  * assume the new tuples will be about the same size as the tuples
1352  * we've already seen, and thus we can extrapolate from the space
1353  * consumption so far to estimate an appropriate new size for the
1354  * memtuples array. The optimal value might be higher or lower than
1355  * this estimate, but it's hard to know that in advance. We again
1356  * clamp at INT_MAX tuples.
1357  *
1358  * This calculation is safe against enlarging the array so much that
1359  * LACKMEM becomes true, because the memory currently used includes
1360  * the present array; thus, there would be enough allowedMem for the
1361  * new array elements even if no other memory were currently used.
1362  *
1363  * We do the arithmetic in float8, because otherwise the product of
1364  * memtupsize and allowedMem could overflow. Any inaccuracy in the
1365  * result should be insignificant; but even if we computed a
1366  * completely insane result, the checks below will prevent anything
1367  * really bad from happening.
1368  */
1369  double grow_ratio;
1370 
1371  grow_ratio = (double) state->allowedMem / (double) memNowUsed;
1372  if (memtupsize * grow_ratio < INT_MAX)
1373  newmemtupsize = (int) (memtupsize * grow_ratio);
1374  else
1375  newmemtupsize = INT_MAX;
1376 
1377  /* We won't make any further enlargement attempts */
1378  state->growmemtuples = false;
1379  }
1380 
1381  /* Must enlarge array by at least one element, else report failure */
1382  if (newmemtupsize <= memtupsize)
1383  goto noalloc;
1384 
1385  /*
1386  * On a 32-bit machine, allowedMem could exceed MaxAllocHugeSize. Clamp
1387  * to ensure our request won't be rejected. Note that we can easily
1388  * exhaust address space before facing this outcome. (This is presently
1389  * impossible due to guc.c's MAX_KILOBYTES limitation on work_mem, but
1390  * don't rely on that at this distance.)
1391  */
1392  if ((Size) newmemtupsize >= MaxAllocHugeSize / sizeof(SortTuple))
1393  {
1394  newmemtupsize = (int) (MaxAllocHugeSize / sizeof(SortTuple));
1395  state->growmemtuples = false; /* can't grow any more */
1396  }
1397 
1398  /*
1399  * We need to be sure that we do not cause LACKMEM to become true, else
1400  * the space management algorithm will go nuts. The code above should
1401  * never generate a dangerous request, but to be safe, check explicitly
1402  * that the array growth fits within availMem. (We could still cause
1403  * LACKMEM if the memory chunk overhead associated with the memtuples
1404  * array were to increase. That shouldn't happen because we chose the
1405  * initial array size large enough to ensure that palloc will be treating
1406  * both old and new arrays as separate chunks. But we'll check LACKMEM
1407  * explicitly below just in case.)
1408  */
1409  if (state->availMem < (int64) ((newmemtupsize - memtupsize) * sizeof(SortTuple)))
1410  goto noalloc;
1411 
1412  /* OK, do it */
1413  FREEMEM(state, GetMemoryChunkSpace(state->memtuples));
1414  state->memtupsize = newmemtupsize;
1415  state->memtuples = (SortTuple *)
1416  repalloc_huge(state->memtuples,
1417  state->memtupsize * sizeof(SortTuple));
1418  USEMEM(state, GetMemoryChunkSpace(state->memtuples));
1419  if (LACKMEM(state))
1420  elog(ERROR, "unexpected out-of-memory situation in tuplesort");
1421  return true;
1422 
1423 noalloc:
1424  /* If for any reason we didn't realloc, shut off future attempts */
1425  state->growmemtuples = false;
1426  return false;
1427 }
int64 availMem
Definition: tuplesort.c:242
bool growmemtuples
Definition: tuplesort.c:298
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:390
#define MaxAllocHugeSize
Definition: memutils.h:44
#define ERROR
Definition: elog.h:43
#define FREEMEM(state, amt)
Definition: tuplesort.c:531
int64 allowedMem
Definition: tuplesort.c:243
size_t Size
Definition: c.h:422
void * repalloc_huge(void *pointer, Size size)
Definition: mcxt.c:1017
#define USEMEM(state, amt)
Definition: tuplesort.c:530
#define elog
Definition: elog.h:219
#define LACKMEM(state)
Definition: tuplesort.c:529
SortTuple * memtuples
Definition: tuplesort.c:295

◆ init_slab_allocator()

static void init_slab_allocator ( Tuplesortstate state,
int  numSlots 
)
static

Definition at line 2524 of file tuplesort.c.

References i, palloc(), SLAB_SLOT_SIZE, Tuplesortstate::slabAllocatorUsed, Tuplesortstate::slabFreeHead, Tuplesortstate::slabMemoryBegin, Tuplesortstate::slabMemoryEnd, and USEMEM.

Referenced by mergeruns().

2525 {
2526  if (numSlots > 0)
2527  {
2528  char *p;
2529  int i;
2530 
2531  state->slabMemoryBegin = palloc(numSlots * SLAB_SLOT_SIZE);
2532  state->slabMemoryEnd = state->slabMemoryBegin +
2533  numSlots * SLAB_SLOT_SIZE;
2534  state->slabFreeHead = (SlabSlot *) state->slabMemoryBegin;
2535  USEMEM(state, numSlots * SLAB_SLOT_SIZE);
2536 
2537  p = state->slabMemoryBegin;
2538  for (i = 0; i < numSlots - 1; i++)
2539  {
2540  ((SlabSlot *) p)->nextfree = (SlabSlot *) (p + SLAB_SLOT_SIZE);
2541  p += SLAB_SLOT_SIZE;
2542  }
2543  ((SlabSlot *) p)->nextfree = NULL;
2544  }
2545  else
2546  {
2547  state->slabMemoryBegin = state->slabMemoryEnd = NULL;
2548  state->slabFreeHead = NULL;
2549  }
2550  state->slabAllocatorUsed = true;
2551 }
char * slabMemoryEnd
Definition: tuplesort.c:330
#define SLAB_SLOT_SIZE
Definition: tuplesort.c:188
char * slabMemoryBegin
Definition: tuplesort.c:329
bool slabAllocatorUsed
Definition: tuplesort.c:327
void * palloc(Size size)
Definition: mcxt.c:835
#define USEMEM(state, amt)
Definition: tuplesort.c:530
int i
SlabSlot * slabFreeHead
Definition: tuplesort.c:331

◆ inittapes()

static void inittapes ( Tuplesortstate state,
bool  mergeruns 
)
static

Definition at line 2391 of file tuplesort.c.

References Tuplesortstate::allowedMem, Assert, Tuplesortstate::currentRun, Tuplesortstate::destTape, elog, Sharedsort::fileset, inittapestate(), LEADER, Tuplesortstate::Level, LOG, LogicalTapeSetCreate(), MINORDER, pg_rusage_show(), Tuplesortstate::ru_start, Tuplesortstate::shared, Tuplesortstate::status, Tuplesortstate::tapeRange, Tuplesortstate::tapeset, Tuplesortstate::tp_dummy, Tuplesortstate::tp_fib, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, trace_sort, TSS_BUILDRUNS, tuplesort_merge_order(), Tuplesortstate::worker, and WORKER.

Referenced by puttuple_common(), and tuplesort_performsort().

2392 {
2393  int maxTapes,
2394  j;
2395 
2396  Assert(!LEADER(state));
2397 
2398  if (mergeruns)
2399  {
2400  /* Compute number of tapes to use: merge order plus 1 */
2401  maxTapes = tuplesort_merge_order(state->allowedMem) + 1;
2402  }
2403  else
2404  {
2405  /* Workers can sometimes produce single run, output without merge */
2406  Assert(WORKER(state));
2407  maxTapes = MINORDER + 1;
2408  }
2409 
2410 #ifdef TRACE_SORT
2411  if (trace_sort)
2412  elog(LOG, "%d switching to external sort with %d tapes: %s",
2413  state->worker, maxTapes, pg_rusage_show(&state->ru_start));
2414 #endif
2415 
2416  /* Create the tape set and allocate the per-tape data arrays */
2417  inittapestate(state, maxTapes);
2418  state->tapeset =
2419  LogicalTapeSetCreate(maxTapes, NULL,
2420  state->shared ? &state->shared->fileset : NULL,
2421  state->worker);
2422 
2423  state->currentRun = 0;
2424 
2425  /*
2426  * Initialize variables of Algorithm D (step D1).
2427  */
2428  for (j = 0; j < maxTapes; j++)
2429  {
2430  state->tp_fib[j] = 1;
2431  state->tp_runs[j] = 0;
2432  state->tp_dummy[j] = 1;
2433  state->tp_tapenum[j] = j;
2434  }
2435  state->tp_fib[state->tapeRange] = 0;
2436  state->tp_dummy[state->tapeRange] = 0;
2437 
2438  state->Level = 1;
2439  state->destTape = 0;
2440 
2441  state->status = TSS_BUILDRUNS;
2442 }
TupSortStatus status
Definition: tuplesort.c:234
PGRUsage ru_start
Definition: tuplesort.c:465
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
static void mergeruns(Tuplesortstate *state)
Definition: tuplesort.c:2560
LogicalTapeSet * LogicalTapeSetCreate(int ntapes, TapeShare *shared, SharedFileSet *fileset, int worker)
Definition: logtape.c:509
Sharedsort * shared
Definition: tuplesort.c:405
#define MINORDER
Definition: tuplesort.c:221
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define LEADER(state)
Definition: tuplesort.c:534
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
#define WORKER(state)
Definition: tuplesort.c:533
int64 allowedMem
Definition: tuplesort.c:243
#define Assert(condition)
Definition: c.h:688
int tuplesort_merge_order(int64 allowedMem)
Definition: tuplesort.c:2351
int * tp_dummy
Definition: tuplesort.c:371
int * tp_tapenum
Definition: tuplesort.c:372
#define elog
Definition: elog.h:219
static void inittapestate(Tuplesortstate *state, int maxTapes)
Definition: tuplesort.c:2448
SharedFileSet fileset
Definition: tuplesort.c:490

◆ inittapestate()

static void inittapestate ( Tuplesortstate state,
int  maxTapes 
)
static

Definition at line 2448 of file tuplesort.c.

References Tuplesortstate::allowedMem, GetMemoryChunkSpace(), Tuplesortstate::maxTapes, Tuplesortstate::memtuples, Tuplesortstate::mergeactive, palloc0(), PrepareTempTablespaces(), TAPE_BUFFER_OVERHEAD, Tuplesortstate::tapeRange, Tuplesortstate::tp_dummy, Tuplesortstate::tp_fib, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, and USEMEM.

Referenced by inittapes(), and leader_takeover_tapes().

2449 {
2450  int64 tapeSpace;
2451 
2452  /*
2453  * Decrease availMem to reflect the space needed for tape buffers; but
2454  * don't decrease it to the point that we have no room for tuples. (That
2455  * case is only likely to occur if sorting pass-by-value Datums; in all
2456  * other scenarios the memtuples[] array is unlikely to occupy more than
2457  * half of allowedMem. In the pass-by-value case it's not important to
2458  * account for tuple space, so we don't care if LACKMEM becomes
2459  * inaccurate.)
2460  */
2461  tapeSpace = (int64) maxTapes * TAPE_BUFFER_OVERHEAD;
2462 
2463  if (tapeSpace + GetMemoryChunkSpace(state->memtuples) < state->allowedMem)
2464  USEMEM(state, tapeSpace);
2465 
2466  /*
2467  * Make sure that the temp file(s) underlying the tape set are created in
2468  * suitable temp tablespaces. For parallel sorts, this should have been
2469  * called already, but it doesn't matter if it is called a second time.
2470  */
2472 
2473  state->mergeactive = (bool *) palloc0(maxTapes * sizeof(bool));
2474  state->tp_fib = (int *) palloc0(maxTapes * sizeof(int));
2475  state->tp_runs = (int *) palloc0(maxTapes * sizeof(int));
2476  state->tp_dummy = (int *) palloc0(maxTapes * sizeof(int));
2477  state->tp_tapenum = (int *) palloc0(maxTapes * sizeof(int));
2478 
2479  /* Record # of tapes allocated (for duration of sort) */
2480  state->maxTapes = maxTapes;
2481  /* Record maximum # of tapes usable as inputs when merging */
2482  state->tapeRange = maxTapes - 1;
2483 }
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:390
#define TAPE_BUFFER_OVERHEAD
Definition: tuplesort.c:223
void PrepareTempTablespaces(void)
Definition: tablespace.c:1287
int64 allowedMem
Definition: tuplesort.c:243
void * palloc0(Size size)
Definition: mcxt.c:864
int * tp_dummy
Definition: tuplesort.c:371
int * tp_tapenum
Definition: tuplesort.c:372
#define USEMEM(state, amt)
Definition: tuplesort.c:530
bool * mergeactive
Definition: tuplesort.c:360
SortTuple * memtuples
Definition: tuplesort.c:295

◆ leader_takeover_tapes()

static void leader_takeover_tapes ( Tuplesortstate state)
static

Definition at line 4514 of file tuplesort.c.

References Assert, Tuplesortstate::currentRun, Tuplesortstate::destTape, elog, ERROR, Sharedsort::fileset, inittapestate(), LEADER, Tuplesortstate::Level, LogicalTapeSetCreate(), Tuplesortstate::maxTapes, Sharedsort::mutex, Tuplesortstate::nParticipants, Tuplesortstate::shared, SpinLockAcquire, SpinLockRelease, Tuplesortstate::status, Tuplesortstate::tapeRange, Sharedsort::tapes, Tuplesortstate::tapeset, Tuplesortstate::tp_dummy, Tuplesortstate::tp_fib, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, TSS_BUILDRUNS, Tuplesortstate::worker, and Sharedsort::workersFinished.

Referenced by tuplesort_performsort().

4515 {
4516  Sharedsort *shared = state->shared;
4517  int nParticipants = state->nParticipants;
4518  int workersFinished;
4519  int j;
4520 
4521  Assert(LEADER(state));
4522  Assert(nParticipants >= 1);
4523 
4524  SpinLockAcquire(&shared->mutex);
4525  workersFinished = shared->workersFinished;
4526  SpinLockRelease(&shared->mutex);
4527 
4528  if (nParticipants != workersFinished)
4529  elog(ERROR, "cannot take over tapes before all workers finish");
4530 
4531  /*
4532  * Create the tapeset from worker tapes, including a leader-owned tape at
4533  * the end. Parallel workers are far more expensive than logical tapes,
4534  * so the number of tapes allocated here should never be excessive.
4535  *
4536  * We still have a leader tape, though it's not possible to write to it
4537  * due to restrictions in the shared fileset infrastructure used by
4538  * logtape.c. It will never be written to in practice because
4539  * randomAccess is disallowed for parallel sorts.
4540  */
4541  inittapestate(state, nParticipants + 1);
4542  state->tapeset = LogicalTapeSetCreate(nParticipants + 1, shared->tapes,
4543  &shared->fileset, state->worker);
4544 
4545  /* mergeruns() relies on currentRun for # of runs (in one-pass cases) */
4546  state->currentRun = nParticipants;
4547 
4548  /*
4549  * Initialize variables of Algorithm D to be consistent with runs from
4550  * workers having been generated in the leader.
4551  *
4552  * There will always be exactly 1 run per worker, and exactly one input
4553  * tape per run, because workers always output exactly 1 run, even when
4554  * there were no input tuples for workers to sort.
4555  */
4556  for (j = 0; j < state->maxTapes; j++)
4557  {
4558  /* One real run; no dummy runs for worker tapes */
4559  state->tp_fib[j] = 1;
4560  state->tp_runs[j] = 1;
4561  state->tp_dummy[j] = 0;
4562  state->tp_tapenum[j] = j;
4563  }
4564  /* Leader tape gets one dummy run, and no real runs */
4565  state->tp_fib[state->tapeRange] = 0;
4566  state->tp_runs[state->tapeRange] = 0;
4567  state->tp_dummy[state->tapeRange] = 1;
4568 
4569  state->Level = 1;
4570  state->destTape = 0;
4571 
4572  state->status = TSS_BUILDRUNS;
4573 }
TupSortStatus status
Definition: tuplesort.c:234
slock_t mutex
Definition: tuplesort.c:476
#define SpinLockAcquire(lock)
Definition: spin.h:62
#define ERROR
Definition: elog.h:43
LogicalTapeSet * LogicalTapeSetCreate(int ntapes, TapeShare *shared, SharedFileSet *fileset, int worker)
Definition: logtape.c:509
Sharedsort * shared
Definition: tuplesort.c:405
#define LEADER(state)
Definition: tuplesort.c:534
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
int workersFinished
Definition: tuplesort.c:487
#define SpinLockRelease(lock)
Definition: spin.h:64
#define Assert(condition)
Definition: c.h:688
int * tp_dummy
Definition: tuplesort.c:371
int * tp_tapenum
Definition: tuplesort.c:372
TapeShare tapes[FLEXIBLE_ARRAY_MEMBER]
Definition: tuplesort.c:499
#define elog
Definition: elog.h:219
static void inittapestate(Tuplesortstate *state, int maxTapes)
Definition: tuplesort.c:2448
SharedFileSet fileset
Definition: tuplesort.c:490

◆ make_bounded_heap()

static void make_bounded_heap ( Tuplesortstate state)
static

Definition at line 3219 of file tuplesort.c.

References Assert, Tuplesortstate::bound, Tuplesortstate::bounded, CHECK_FOR_INTERRUPTS, COMPARETUP, free_sort_tuple(), i, Tuplesortstate::memtupcount, Tuplesortstate::memtuples, reversedirection(), SERIAL, Tuplesortstate::status, TSS_BOUNDED, TSS_INITIAL, tuplesort_heap_insert(), and tuplesort_heap_replace_top().

Referenced by puttuple_common().

3220 {
3221  int tupcount = state->memtupcount;
3222  int i;
3223 
3224  Assert(state->status == TSS_INITIAL);
3225  Assert(state->bounded);
3226  Assert(tupcount >= state->bound);
3227  Assert(SERIAL(state));
3228 
3229  /* Reverse sort direction so largest entry will be at root */
3230  reversedirection(state);
3231 
3232  state->memtupcount = 0; /* make the heap empty */
3233  for (i = 0; i < tupcount; i++)
3234  {
3235  if (state->memtupcount < state->bound)
3236  {
3237  /* Insert next tuple into heap */
3238  /* Must copy source tuple to avoid possible overwrite */
3239  SortTuple stup = state->memtuples[i];
3240 
3241  tuplesort_heap_insert(state, &stup);
3242  }
3243  else
3244  {
3245  /*
3246  * The heap is full. Replace the largest entry with the new
3247  * tuple, or just discard it, if it's larger than anything already
3248  * in the heap.
3249  */
3250  if (COMPARETUP(state, &state->memtuples[i], &state->memtuples[0]) <= 0)
3251  {
3252  free_sort_tuple(state, &state->memtuples[i]);
3254  }
3255  else
3256  tuplesort_heap_replace_top(state, &state->memtuples[i]);
3257  }
3258  }
3259 
3260  Assert(state->memtupcount == state->bound);
3261  state->status = TSS_BOUNDED;
3262 }
static void reversedirection(Tuplesortstate *state)
Definition: tuplesort.c:3435
TupSortStatus status
Definition: tuplesort.c:234
#define SERIAL(state)
Definition: tuplesort.c:532
static void free_sort_tuple(Tuplesortstate *state, SortTuple *stup)
Definition: tuplesort.c:4579
#define COMPARETUP(state, a, b)
Definition: tuplesort.c:525
static void tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3336
#define Assert(condition)
Definition: c.h:688
int i
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:98
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3395
SortTuple * memtuples
Definition: tuplesort.c:295

◆ markrunend()

static void markrunend ( Tuplesortstate state,
int  tapenum 
)
static

Definition at line 3466 of file tuplesort.c.

References LogicalTapeWrite(), and Tuplesortstate::tapeset.

Referenced by dumptuples(), and mergeonerun().

3467 {
3468  unsigned int len = 0;
3469 
3470  LogicalTapeWrite(state->tapeset, tapenum, (void *) &len, sizeof(len));
3471 }
void LogicalTapeWrite(LogicalTapeSet *lts, int tapenum, void *ptr, size_t size)
Definition: logtape.c:620
LogicalTapeSet * tapeset
Definition: tuplesort.c:248

◆ mergeonerun()

static void mergeonerun ( Tuplesortstate state)
static

Definition at line 2787 of file tuplesort.c.

References Tuplesortstate::activeTapes, beginmerge(), elog, LOG, markrunend(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, mergereadnext(), pg_rusage_show(), RELEASE_SLAB_SLOT, Tuplesortstate::ru_start, Tuplesortstate::tapeRange, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, trace_sort, SortTuple::tupindex, SortTuple::tuple, tuplesort_heap_delete_top(), tuplesort_heap_replace_top(), Tuplesortstate::worker, and WRITETUP.

Referenced by mergeruns().

2788 {
2789  int destTape = state->tp_tapenum[state->tapeRange];
2790  int srcTape;
2791 
2792  /*
2793  * Start the merge by loading one tuple from each active source tape into
2794  * the heap. We can also decrease the input run/dummy run counts.
2795  */
2796  beginmerge(state);
2797 
2798  /*
2799  * Execute merge by repeatedly extracting lowest tuple in heap, writing it
2800  * out, and replacing it with next tuple from same tape (if there is
2801  * another one).
2802  */
2803  while (state->memtupcount > 0)
2804  {
2805  SortTuple stup;
2806 
2807  /* write the tuple to destTape */
2808  srcTape = state->memtuples[0].tupindex;
2809  WRITETUP(state, destTape, &state->memtuples[0]);
2810 
2811  /* recycle the slot of the tuple we just wrote out, for the next read */
2812  if (state->memtuples[0].tuple)
2813  RELEASE_SLAB_SLOT(state, state->memtuples[0].tuple);
2814 
2815  /*
2816  * pull next tuple from the tape, and replace the written-out tuple in
2817  * the heap with it.
2818  */
2819  if (mergereadnext(state, srcTape, &stup))
2820  {
2821  stup.tupindex = srcTape;
2822  tuplesort_heap_replace_top(state, &stup);
2823 
2824  }
2825  else
2827  }
2828 
2829  /*
2830  * When the heap empties, we're done. Write an end-of-run marker on the
2831  * output tape, and increment its count of real runs.
2832  */
2833  markrunend(state, destTape);
2834  state->tp_runs[state->tapeRange]++;
2835 
2836 #ifdef TRACE_SORT
2837  if (trace_sort)
2838  elog(LOG, "%d finished %d-way merge step: %s", state->worker,
2839  state->activeTapes, pg_rusage_show(&state->ru_start));
2840 #endif
2841 }
PGRUsage ru_start
Definition: tuplesort.c:465
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
static void markrunend(Tuplesortstate *state, int tapenum)
Definition: tuplesort.c:3466
void * tuple
Definition: tuplesort.c:171
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define WRITETUP(state, tape, stup)
Definition: tuplesort.c:527
#define RELEASE_SLAB_SLOT(state, tuple)
Definition: tuplesort.c:513
static void tuplesort_heap_delete_top(Tuplesortstate *state)
Definition: tuplesort.c:3371
static bool mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup)
Definition: tuplesort.c:2899
int tupindex
Definition: tuplesort.c:174
int * tp_tapenum
Definition: tuplesort.c:372
#define elog
Definition: elog.h:219
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3395
static void beginmerge(Tuplesortstate *state)
Definition: tuplesort.c:2851
SortTuple * memtuples
Definition: tuplesort.c:295

◆ mergereadnext()

static bool mergereadnext ( Tuplesortstate state,
int  srcTape,
SortTuple stup 
)
static

Definition at line 2899 of file tuplesort.c.

References getlen(), Tuplesortstate::mergeactive, and READTUP.

Referenced by beginmerge(), mergeonerun(), and tuplesort_gettuple_common().

2900 {
2901  unsigned int tuplen;
2902 
2903  if (!state->mergeactive[srcTape])
2904  return false; /* tape's run is already exhausted */
2905 
2906  /* read next tuple, if any */
2907  if ((tuplen = getlen(state, srcTape, true)) == 0)
2908  {
2909  state->mergeactive[srcTape] = false;
2910  return false;
2911  }
2912  READTUP(state, stup, srcTape, tuplen);
2913 
2914  return true;
2915 }
static unsigned int getlen(Tuplesortstate *state, int tapenum, bool eofOK)
Definition: tuplesort.c:3453
#define READTUP(state, stup, tape, len)
Definition: tuplesort.c:528
bool * mergeactive
Definition: tuplesort.c:360

◆ mergeruns()

static void mergeruns ( Tuplesortstate state)
static

Definition at line 2560 of file tuplesort.c.

References SortSupportData::abbrev_abort, SortSupportData::abbrev_converter, SortSupportData::abbrev_full_comparator, Assert, Tuplesortstate::availMem, beginmerge(), SortSupportData::comparator, Tuplesortstate::currentRun, elog, FREEMEM, GetMemoryChunkSpace(), init_slab_allocator(), INT64_FORMAT, Tuplesortstate::Level, LOG, LogicalTapeFreeze(), LogicalTapeRewindForRead(), LogicalTapeRewindForWrite(), LogicalTapeSetForgetFreeSpace(), Max, Tuplesortstate::maxTapes, MemoryContextDelete(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, mergeonerun(), palloc(), pfree(), Tuplesortstate::randomAccess, Tuplesortstate::read_buffer_size, Tuplesortstate::result_tape, Tuplesortstate::sortKeys, Tuplesortstate::status, TAPE_BUFFER_OVERHEAD, Tuplesortstate::tapeRange, Tuplesortstate::tapeset, Tuplesortstate::tp_dummy, Tuplesortstate::tp_runs, Tuplesortstate::tp_tapenum, trace_sort, TSS_BUILDRUNS, TSS_FINALMERGE, TSS_SORTEDONTAPE, Tuplesortstate::tuplecontext, Tuplesortstate::tuples, USEMEM, Tuplesortstate::worker, WORKER, and worker_freeze_result_tape().

Referenced by tuplesort_performsort().

2561 {
2562  int tapenum,
2563  svTape,
2564  svRuns,
2565  svDummy;
2566  int numTapes;
2567  int numInputTapes;
2568 
2569  Assert(state->status == TSS_BUILDRUNS);
2570  Assert(state->memtupcount == 0);
2571 
2572  if (state->sortKeys != NULL && state->sortKeys->abbrev_converter != NULL)
2573  {
2574  /*
2575  * If there are multiple runs to be merged, when we go to read back
2576  * tuples from disk, abbreviated keys will not have been stored, and
2577  * we don't care to regenerate them. Disable abbreviation from this
2578  * point on.
2579  */
2580  state->sortKeys->abbrev_converter = NULL;
2582 
2583  /* Not strictly necessary, but be tidy */
2584  state->sortKeys->abbrev_abort = NULL;
2585  state->sortKeys->abbrev_full_comparator = NULL;
2586  }
2587 
2588  /*
2589  * Reset tuple memory. We've freed all the tuples that we previously
2590  * allocated. We will use the slab allocator from now on.
2591  */
2593  state->tuplecontext = NULL;
2594 
2595  /*
2596  * We no longer need a large memtuples array. (We will allocate a smaller
2597  * one for the heap later.)
2598  */
2599  FREEMEM(state, GetMemoryChunkSpace(state->memtuples));
2600  pfree(state->memtuples);
2601  state->memtuples = NULL;
2602 
2603  /*
2604  * If we had fewer runs than tapes, refund the memory that we imagined we
2605  * would need for the tape buffers of the unused tapes.
2606  *
2607  * numTapes and numInputTapes reflect the actual number of tapes we will
2608  * use. Note that the output tape's tape number is maxTapes - 1, so the
2609  * tape numbers of the used tapes are not consecutive, and you cannot just
2610  * loop from 0 to numTapes to visit all used tapes!
2611  */
2612  if (state->Level == 1)
2613  {
2614  numInputTapes = state->currentRun;
2615  numTapes = numInputTapes + 1;
2616  FREEMEM(state, (state->maxTapes - numTapes) * TAPE_BUFFER_OVERHEAD);
2617  }
2618  else
2619  {
2620  numInputTapes = state->tapeRange;
2621  numTapes = state->maxTapes;
2622  }
2623 
2624  /*
2625  * Initialize the slab allocator. We need one slab slot per input tape,
2626  * for the tuples in the heap, plus one to hold the tuple last returned
2627  * from tuplesort_gettuple. (If we're sorting pass-by-val Datums,
2628  * however, we don't need to do allocate anything.)
2629  *
2630  * From this point on, we no longer use the USEMEM()/LACKMEM() mechanism
2631  * to track memory usage of individual tuples.
2632  */
2633  if (state->tuples)
2634  init_slab_allocator(state, numInputTapes + 1);
2635  else
2636  init_slab_allocator(state, 0);
2637 
2638  /*
2639  * Allocate a new 'memtuples' array, for the heap. It will hold one tuple
2640  * from each input tape.
2641  */
2642  state->memtupsize = numInputTapes;
2643  state->memtuples = (SortTuple *) palloc(numInputTapes * sizeof(SortTuple));
2644  USEMEM(state, GetMemoryChunkSpace(state->memtuples));
2645 
2646  /*
2647  * Use all the remaining memory we have available for read buffers among
2648  * the input tapes.
2649  *
2650  * We don't try to "rebalance" the memory among tapes, when we start a new
2651  * merge phase, even if some tapes are inactive in the new phase. That
2652  * would be hard, because logtape.c doesn't know where one run ends and
2653  * another begins. When a new merge phase begins, and a tape doesn't
2654  * participate in it, its buffer nevertheless already contains tuples from
2655  * the next run on same tape, so we cannot release the buffer. That's OK
2656  * in practice, merge performance isn't that sensitive to the amount of
2657  * buffers used, and most merge phases use all or almost all tapes,
2658  * anyway.
2659  */
2660 #ifdef TRACE_SORT
2661  if (trace_sort)
2662  elog(LOG, "%d using " INT64_FORMAT " KB of memory for read buffers among %d input tapes",
2663  state->worker, state->availMem / 1024, numInputTapes);
2664 #endif
2665 
2666  state->read_buffer_size = Max(state->availMem / numInputTapes, 0);
2667  USEMEM(state, state->read_buffer_size * numInputTapes);
2668 
2669  /* End of step D2: rewind all output tapes to prepare for merging */
2670  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2671  LogicalTapeRewindForRead(state->tapeset, tapenum, state->read_buffer_size);
2672 
2673  for (;;)
2674  {
2675  /*
2676  * At this point we know that tape[T] is empty. If there's just one
2677  * (real or dummy) run left on each input tape, then only one merge
2678  * pass remains. If we don't have to produce a materialized sorted
2679  * tape, we can stop at this point and do the final merge on-the-fly.
2680  */
2681  if (!state->randomAccess && !WORKER(state))
2682  {
2683  bool allOneRun = true;
2684 
2685  Assert(state->tp_runs[state->tapeRange] == 0);
2686  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2687  {
2688  if (state->tp_runs[tapenum] + state->tp_dummy[tapenum] != 1)
2689  {
2690  allOneRun = false;
2691  break;
2692  }
2693  }
2694  if (allOneRun)
2695  {
2696  /* Tell logtape.c we won't be writing anymore */
2698  /* Initialize for the final merge pass */
2699  beginmerge(state);
2700  state->status = TSS_FINALMERGE;
2701  return;
2702  }
2703  }
2704 
2705  /* Step D5: merge runs onto tape[T] until tape[P] is empty */
2706  while (state->tp_runs[state->tapeRange - 1] ||
2707  state->tp_dummy[state->tapeRange - 1])
2708  {
2709  bool allDummy = true;
2710 
2711  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2712  {
2713  if (state->tp_dummy[tapenum] == 0)
2714  {
2715  allDummy = false;
2716  break;
2717  }
2718  }
2719 
2720  if (allDummy)
2721  {
2722  state->tp_dummy[state->tapeRange]++;
2723  for (tapenum = 0; tapenum < state->tapeRange; tapenum++)
2724  state->tp_dummy[tapenum]--;
2725  }
2726  else
2727  mergeonerun(state);
2728  }
2729 
2730  /* Step D6: decrease level */
2731  if (--state->Level == 0)
2732  break;
2733  /* rewind output tape T to use as new input */
2734  LogicalTapeRewindForRead(state->tapeset, state->tp_tapenum[state->tapeRange],
2735  state->read_buffer_size);
2736  /* rewind used-up input tape P, and prepare it for write pass */
2737  LogicalTapeRewindForWrite(state->tapeset, state->tp_tapenum[state->tapeRange - 1]);
2738  state->tp_runs[state->tapeRange - 1] = 0;
2739 
2740  /*
2741  * reassign tape units per step D6; note we no longer care about A[]
2742  */
2743  svTape = state->tp_tapenum[state->tapeRange];
2744  svDummy = state->tp_dummy[state->tapeRange];
2745  svRuns = state->tp_runs[state->tapeRange];
2746  for (tapenum = state->tapeRange; tapenum > 0; tapenum--)
2747  {
2748  state->tp_tapenum[tapenum] = state->tp_tapenum[tapenum - 1];
2749  state->tp_dummy[tapenum] = state->tp_dummy[tapenum - 1];
2750  state->tp_runs[tapenum] = state->tp_runs[tapenum - 1];
2751  }
2752  state->tp_tapenum[0] = svTape;
2753  state->tp_dummy[0] = svDummy;
2754  state->tp_runs[0] = svRuns;
2755  }
2756 
2757  /*
2758  * Done. Knuth says that the result is on TAPE[1], but since we exited
2759  * the loop without performing the last iteration of step D6, we have not
2760  * rearranged the tape unit assignment, and therefore the result is on
2761  * TAPE[T]. We need to do it this way so that we can freeze the final
2762  * output tape while rewinding it. The last iteration of step D6 would be
2763  * a waste of cycles anyway...
2764  */
2765  state->result_tape = state->tp_tapenum[state->tapeRange];
2766  if (!WORKER(state))
2767  LogicalTapeFreeze(state->tapeset, state->result_tape, NULL);
2768  else
2770  state->status = TSS_SORTEDONTAPE;
2771 
2772  /* Release the read buffers of all the other tapes, by rewinding them. */
2773  for (tapenum = 0; tapenum < state->maxTapes; tapenum++)
2774  {
2775  if (tapenum != state->result_tape)
2776  LogicalTapeRewindForWrite(state->tapeset, tapenum);
2777  }
2778 }
int64 availMem
Definition: tuplesort.c:242
size_t read_buffer_size
Definition: tuplesort.c:334
TupSortStatus status
Definition: tuplesort.c:234
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:198
static void mergeonerun(Tuplesortstate *state)
Definition: tuplesort.c:2787
static void worker_freeze_result_tape(Tuplesortstate *state)
Definition: tuplesort.c:4455
SortSupport sortKeys
Definition: tuplesort.c:414
bool randomAccess
Definition: tuplesort.c:236
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:390
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
void LogicalTapeRewindForWrite(LogicalTapeSet *lts, int tapenum)
Definition: logtape.c:783
static void init_slab_allocator(Tuplesortstate *state, int numSlots)
Definition: tuplesort.c:2524
#define TAPE_BUFFER_OVERHEAD
Definition: tuplesort.c:223
void pfree(void *pointer)
Definition: mcxt.c:936
int(* comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:107
int(* abbrev_full_comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:192
#define FREEMEM(state, amt)
Definition: tuplesort.c:531
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
#define WORKER(state)
Definition: tuplesort.c:533
#define Max(x, y)
Definition: c.h:840
#define Assert(condition)
Definition: c.h:688
bool(* abbrev_abort)(int memtupcount, SortSupport ssup)
Definition: sortsupport.h:183
#define INT64_FORMAT
Definition: c.h:356
void LogicalTapeRewindForRead(LogicalTapeSet *lts, int tapenum, size_t buffer_size)
Definition: logtape.c:708
int * tp_dummy
Definition: tuplesort.c:371
void LogicalTapeFreeze(LogicalTapeSet *lts, int tapenum, TapeShare *share)
Definition: logtape.c:863
MemoryContext tuplecontext
Definition: tuplesort.c:247
void * palloc(Size size)
Definition: mcxt.c:835
int * tp_tapenum
Definition: tuplesort.c:372
#define USEMEM(state, amt)
Definition: tuplesort.c:530
#define elog
Definition: elog.h:219
void LogicalTapeSetForgetFreeSpace(LogicalTapeSet *lts)
Definition: logtape.c:609
static void beginmerge(Tuplesortstate *state)
Definition: tuplesort.c:2851
SortTuple * memtuples
Definition: tuplesort.c:295

◆ puttuple_common()

static void puttuple_common ( Tuplesortstate state,
SortTuple tuple 
)
static

Definition at line 1638 of file tuplesort.c.

References Assert, Tuplesortstate::bound, Tuplesortstate::bounded, CHECK_FOR_INTERRUPTS, COMPARETUP, dumptuples(), elog, ERROR, free_sort_tuple(), grow_memtuples(), inittapes(), LACKMEM, LEADER, LOG, make_bounded_heap(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, pg_rusage_show(), Tuplesortstate::ru_start, Tuplesortstate::status, trace_sort, TSS_BOUNDED, TSS_BUILDRUNS, TSS_INITIAL, and tuplesort_heap_replace_top().

Referenced by tuplesort_putdatum(), tuplesort_putheaptuple(), tuplesort_putindextuplevalues(), and tuplesort_puttupleslot().

1639 {
1640  Assert(!LEADER(state));
1641 
1642  switch (state->status)
1643  {
1644  case TSS_INITIAL:
1645 
1646  /*
1647  * Save the tuple into the unsorted array. First, grow the array
1648  * as needed. Note that we try to grow the array when there is
1649  * still one free slot remaining --- if we fail, there'll still be
1650  * room to store the incoming tuple, and then we'll switch to
1651  * tape-based operation.
1652  */
1653  if (state->memtupcount >= state->memtupsize - 1)
1654  {
1655  (void) grow_memtuples(state);
1656  Assert(state->memtupcount < state->memtupsize);
1657  }
1658  state->memtuples[state->memtupcount++] = *tuple;
1659 
1660  /*
1661  * Check if it's time to switch over to a bounded heapsort. We do
1662  * so if the input tuple count exceeds twice the desired tuple
1663  * count (this is a heuristic for where heapsort becomes cheaper
1664  * than a quicksort), or if we've just filled workMem and have
1665  * enough tuples to meet the bound.
1666  *
1667  * Note that once we enter TSS_BOUNDED state we will always try to
1668  * complete the sort that way. In the worst case, if later input
1669  * tuples are larger than earlier ones, this might cause us to
1670  * exceed workMem significantly.
1671  */
1672  if (state->bounded &&
1673  (state->memtupcount > state->bound * 2 ||
1674  (state->memtupcount > state->bound && LACKMEM(state))))
1675  {
1676 #ifdef TRACE_SORT
1677  if (trace_sort)
1678  elog(LOG, "switching to bounded heapsort at %d tuples: %s",
1679  state->memtupcount,
1680  pg_rusage_show(&state->ru_start));
1681 #endif
1682  make_bounded_heap(state);
1683  return;
1684  }
1685 
1686  /*
1687  * Done if we still fit in available memory and have array slots.
1688  */
1689  if (state->memtupcount < state->memtupsize && !LACKMEM(state))
1690  return;
1691 
1692  /*
1693  * Nope; time to switch to tape-based operation.
1694  */
1695  inittapes(state, true);
1696 
1697  /*
1698  * Dump all tuples.
1699  */
1700  dumptuples(state, false);
1701  break;
1702 
1703  case TSS_BOUNDED:
1704 
1705  /*
1706  * We don't want to grow the array here, so check whether the new
1707  * tuple can be discarded before putting it in. This should be a
1708  * good speed optimization, too, since when there are many more
1709  * input tuples than the bound, most input tuples can be discarded
1710  * with just this one comparison. Note that because we currently
1711  * have the sort direction reversed, we must check for <= not >=.
1712  */
1713  if (COMPARETUP(state, tuple, &state->memtuples[0]) <= 0)
1714  {
1715  /* new tuple <= top of the heap, so we can discard it */
1716  free_sort_tuple(state, tuple);
1718  }
1719  else
1720  {
1721  /* discard top of heap, replacing it with the new tuple */
1722  free_sort_tuple(state, &state->memtuples[0]);
1723  tuplesort_heap_replace_top(state, tuple);
1724  }
1725  break;
1726 
1727  case TSS_BUILDRUNS:
1728 
1729  /*
1730  * Save the tuple into the unsorted array (there must be space)
1731  */
1732  state->memtuples[state->memtupcount++] = *tuple;
1733 
1734  /*
1735  * If we are over the memory limit, dump all tuples.
1736  */
1737  dumptuples(state, false);
1738  break;
1739 
1740  default:
1741  elog(ERROR, "invalid tuplesort state");
1742  break;
1743  }
1744 }
static void dumptuples(Tuplesortstate *state, bool alltuples)
Definition: tuplesort.c:2924
TupSortStatus status
Definition: tuplesort.c:234
static bool grow_memtuples(Tuplesortstate *state)
Definition: tuplesort.c:1316
PGRUsage ru_start
Definition: tuplesort.c:465
static void inittapes(Tuplesortstate *state, bool mergeruns)
Definition: tuplesort.c:2391
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
#define ERROR
Definition: elog.h:43
static void free_sort_tuple(Tuplesortstate *state, SortTuple *stup)
Definition: tuplesort.c:4579
#define COMPARETUP(state, a, b)
Definition: tuplesort.c:525
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
#define LEADER(state)
Definition: tuplesort.c:534
#define Assert(condition)
Definition: c.h:688
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:98
#define elog
Definition: elog.h:219
static void make_bounded_heap(Tuplesortstate *state)
Definition: tuplesort.c:3219
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3395
#define LACKMEM(state)
Definition: tuplesort.c:529
SortTuple * memtuples
Definition: tuplesort.c:295

◆ readtup_alloc()

static void * readtup_alloc ( Tuplesortstate state,
Size  tuplen 
)
static

Definition at line 3480 of file tuplesort.c.

References Assert, buf, MemoryContextAlloc(), SlabSlot::nextfree, SLAB_SLOT_SIZE, Tuplesortstate::slabFreeHead, and Tuplesortstate::sortcontext.

Referenced by readtup_cluster(), readtup_datum(), readtup_heap(), and readtup_index().

3481 {
3482  SlabSlot *buf;
3483 
3484  /*
3485  * We pre-allocate enough slots in the slab arena that we should never run
3486  * out.
3487  */
3488  Assert(state->slabFreeHead);
3489 
3490  if (tuplen > SLAB_SLOT_SIZE || !state->slabFreeHead)
3491  return MemoryContextAlloc(state->sortcontext, tuplen);
3492  else
3493  {
3494  buf = state->slabFreeHead;
3495  /* Reuse this slot */
3496  state->slabFreeHead = buf->nextfree;
3497 
3498  return buf;
3499  }
3500 }
#define SLAB_SLOT_SIZE
Definition: tuplesort.c:188
union SlabSlot * nextfree
Definition: tuplesort.c:192
MemoryContext sortcontext
Definition: tuplesort.c:246
static char * buf
Definition: pg_test_fsync.c:67
#define Assert(condition)
Definition: c.h:688
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:693
SlabSlot * slabFreeHead
Definition: tuplesort.c:331

◆ readtup_cluster()

static void readtup_cluster ( Tuplesortstate state,
SortTuple stup,
int  tapenum,
unsigned int  len 
)
static

Definition at line 3915 of file tuplesort.c.

References SortTuple::datum1, heap_getattr, HEAPTUPLESIZE, IndexInfo::ii_KeyAttrNumbers, Tuplesortstate::indexInfo, InvalidOid, SortTuple::isnull1, LogicalTapeReadExact, Tuplesortstate::randomAccess, readtup_alloc(), HeapTupleData::t_data, HeapTupleData::t_len, HeapTupleData::t_self, HeapTupleData::t_tableOid, Tuplesortstate::tapeset, Tuplesortstate::tupDesc, and SortTuple::tuple.

Referenced by tuplesort_begin_cluster().

3917 {
3918  unsigned int t_len = tuplen - sizeof(ItemPointerData) - sizeof(int);
3919  HeapTuple tuple = (HeapTuple) readtup_alloc(state,
3920  t_len + HEAPTUPLESIZE);
3921 
3922  /* Reconstruct the HeapTupleData header */
3923  tuple->t_data = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE);
3924  tuple->t_len = t_len;
3925  LogicalTapeReadExact(state->tapeset, tapenum,
3926  &tuple->t_self, sizeof(ItemPointerData));
3927  /* We don't currently bother to reconstruct t_tableOid */
3928  tuple->t_tableOid = InvalidOid;
3929  /* Read in the tuple body */
3930  LogicalTapeReadExact(state->tapeset, tapenum,
3931  tuple->t_data, tuple->t_len);
3932  if (state->randomAccess) /* need trailing length word? */
3933  LogicalTapeReadExact(state->tapeset, tapenum,
3934  &tuplen, sizeof(tuplen));
3935  stup->tuple = (void *) tuple;
3936  /* set up first-column key value, if it's a simple column */
3937  if (state->indexInfo->ii_KeyAttrNumbers[0] != 0)
3938  stup->datum1 = heap_getattr(tuple,
3939  state->indexInfo->ii_KeyAttrNumbers[0],
3940  state->tupDesc,
3941  &stup->isnull1);
3942 }
HeapTupleData * HeapTuple
Definition: htup.h:70
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
bool randomAccess
Definition: tuplesort.c:236
Datum datum1
Definition: tuplesort.c:172
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
Definition: tuplesort.c:584
bool isnull1
Definition: tuplesort.c:173
HeapTupleHeader t_data
Definition: htup.h:67
void * tuple
Definition: tuplesort.c:171
ItemPointerData t_self
Definition: htup.h:65
uint32 t_len
Definition: htup.h:64
IndexInfo * indexInfo
Definition: tuplesort.c:435
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
Oid t_tableOid
Definition: htup.h:66
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:774
#define InvalidOid
Definition: postgres_ext.h:36
struct ItemPointerData ItemPointerData
AttrNumber ii_KeyAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:147
static void * readtup_alloc(Tuplesortstate *state, Size tuplen)
Definition: tuplesort.c:3480
#define HEAPTUPLESIZE
Definition: htup.h:72
TupleDesc tupDesc
Definition: tuplesort.c:413

◆ readtup_datum()

static void readtup_datum ( Tuplesortstate state,
SortTuple stup,
int  tapenum,
unsigned int  len 
)
static

Definition at line 4315 of file tuplesort.c.

References Assert, SortTuple::datum1, SortTuple::isnull1, LogicalTapeReadExact, PointerGetDatum, Tuplesortstate::randomAccess, readtup_alloc(), Tuplesortstate::tapeset, SortTuple::tuple, and Tuplesortstate::tuples.

Referenced by tuplesort_begin_datum().

4317 {
4318  unsigned int tuplen = len - sizeof(unsigned int);
4319 
4320  if (tuplen == 0)
4321  {
4322  /* it's NULL */
4323  stup->datum1 = (Datum) 0;
4324  stup->isnull1 = true;
4325  stup->tuple = NULL;
4326  }
4327  else if (!state->tuples)
4328  {
4329  Assert(tuplen == sizeof(Datum));
4330  LogicalTapeReadExact(state->tapeset, tapenum,
4331  &stup->datum1, tuplen);
4332  stup->isnull1 = false;
4333  stup->tuple = NULL;
4334  }
4335  else
4336  {
4337  void *raddr = readtup_alloc(state, tuplen);
4338 
4339  LogicalTapeReadExact(state->tapeset, tapenum,
4340  raddr, tuplen);
4341  stup->datum1 = PointerGetDatum(raddr);
4342  stup->isnull1 = false;
4343  stup->tuple = raddr;
4344  }
4345 
4346  if (state->randomAccess) /* need trailing length word? */
4347  LogicalTapeReadExact(state->tapeset, tapenum,
4348  &tuplen, sizeof(tuplen));
4349 }
#define PointerGetDatum(X)
Definition: postgres.h:539
bool randomAccess
Definition: tuplesort.c:236
Datum datum1
Definition: tuplesort.c:172
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
Definition: tuplesort.c:584
bool isnull1
Definition: tuplesort.c:173
void * tuple
Definition: tuplesort.c:171
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
uintptr_t Datum
Definition: postgres.h:365
#define Assert(condition)
Definition: c.h:688
static void * readtup_alloc(Tuplesortstate *state, Size tuplen)
Definition: tuplesort.c:3480

◆ readtup_heap()

static void readtup_heap ( Tuplesortstate state,
SortTuple stup,
int  tapenum,
unsigned int  len 
)
static

Definition at line 3675 of file tuplesort.c.

References SortTuple::datum1, heap_getattr, SortTuple::isnull1, LogicalTapeReadExact, MINIMAL_TUPLE_DATA_OFFSET, MINIMAL_TUPLE_OFFSET, Tuplesortstate::randomAccess, readtup_alloc(), Tuplesortstate::sortKeys, SortSupportData::ssup_attno, HeapTupleData::t_data, HeapTupleData::t_len, MinimalTupleData::t_len, Tuplesortstate::tapeset, Tuplesortstate::tupDesc, and SortTuple::tuple.

Referenced by tuplesort_begin_heap().

3677 {
3678  unsigned int tupbodylen = len - sizeof(int);
3679  unsigned int tuplen = tupbodylen + MINIMAL_TUPLE_DATA_OFFSET;
3680  MinimalTuple tuple = (MinimalTuple) readtup_alloc(state, tuplen);
3681  char *tupbody = (char *) tuple + MINIMAL_TUPLE_DATA_OFFSET;
3682  HeapTupleData htup;
3683 
3684  /* read in the tuple proper */
3685  tuple->t_len = tuplen;
3686  LogicalTapeReadExact(state->tapeset, tapenum,
3687  tupbody, tupbodylen);
3688  if (state->randomAccess) /* need trailing length word? */
3689  LogicalTapeReadExact(state->tapeset, tapenum,
3690  &tuplen, sizeof(tuplen));
3691  stup->tuple = (void *) tuple;
3692  /* set up first-column key value */
3693  htup.t_len = tuple->t_len + MINIMAL_TUPLE_OFFSET;
3694  htup.t_data = (HeapTupleHeader) ((char *) tuple - MINIMAL_TUPLE_OFFSET);
3695  stup->datum1 = heap_getattr(&htup,
3696  state->sortKeys[0].ssup_attno,
3697  state->tupDesc,
3698  &stup->isnull1);
3699 }
#define MINIMAL_TUPLE_DATA_OFFSET
Definition: htup_details.h:629
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
SortSupport sortKeys
Definition: tuplesort.c:414
bool randomAccess
Definition: tuplesort.c:236
Datum datum1
Definition: tuplesort.c:172
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
Definition: tuplesort.c:584
bool isnull1
Definition: tuplesort.c:173
HeapTupleHeader t_data
Definition: htup.h:67
void * tuple
Definition: tuplesort.c:171
uint32 t_len
Definition: htup.h:64
MinimalTupleData * MinimalTuple
Definition: htup.h:27
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:774
AttrNumber ssup_attno
Definition: sortsupport.h:81
#define MINIMAL_TUPLE_OFFSET
Definition: htup_details.h:625
static void * readtup_alloc(Tuplesortstate *state, Size tuplen)
Definition: tuplesort.c:3480
TupleDesc tupDesc
Definition: tuplesort.c:413

◆ readtup_index()

static void readtup_index ( Tuplesortstate state,
SortTuple stup,
int  tapenum,
unsigned int  len 
)
static

Definition at line 4222 of file tuplesort.c.

References SortTuple::datum1, index_getattr, Tuplesortstate::indexRel, SortTuple::isnull1, LogicalTapeReadExact, Tuplesortstate::randomAccess, readtup_alloc(), RelationGetDescr, Tuplesortstate::tapeset, and SortTuple::tuple.

Referenced by tuplesort_begin_index_btree(), and tuplesort_begin_index_hash().

4224 {
4225  unsigned int tuplen = len - sizeof(unsigned int);
4226  IndexTuple tuple = (IndexTuple) readtup_alloc(state, tuplen);
4227 
4228  LogicalTapeReadExact(state->tapeset, tapenum,
4229  tuple, tuplen);
4230  if (state->randomAccess) /* need trailing length word? */
4231  LogicalTapeReadExact(state->tapeset, tapenum,
4232  &tuplen, sizeof(tuplen));
4233  stup->tuple = (void *) tuple;
4234  /* set up first-column key value */
4235  stup->datum1 = index_getattr(tuple,
4236  1,
4237  RelationGetDescr(state->indexRel),
4238  &stup->isnull1);
4239 }
#define RelationGetDescr(relation)
Definition: rel.h:437
bool randomAccess
Definition: tuplesort.c:236
Datum datum1
Definition: tuplesort.c:172
#define LogicalTapeReadExact(tapeset, tapenum, ptr, len)
Definition: tuplesort.c:584
bool isnull1
Definition: tuplesort.c:173
void * tuple
Definition: tuplesort.c:171
IndexTupleData * IndexTuple
Definition: itup.h:53
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
Relation indexRel
Definition: tuplesort.c:443
#define index_getattr(tup, attnum, tupleDesc, isnull)
Definition: itup.h:100
static void * readtup_alloc(Tuplesortstate *state, Size tuplen)
Definition: tuplesort.c:3480

◆ reversedirection()

static void reversedirection ( Tuplesortstate state)
static

Definition at line 3435 of file tuplesort.c.

References Tuplesortstate::nKeys, Tuplesortstate::sortKeys, SortSupportData::ssup_nulls_first, and SortSupportData::ssup_reverse.

Referenced by make_bounded_heap(), and sort_bounded_heap().

3436 {
3437  SortSupport sortKey = state->sortKeys;
3438  int nkey;
3439 
3440  for (nkey = 0; nkey < state->nKeys; nkey++, sortKey++)
3441  {
3442  sortKey->ssup_reverse = !sortKey->ssup_reverse;
3443  sortKey->ssup_nulls_first = !sortKey->ssup_nulls_first;
3444  }
3445 }
bool ssup_nulls_first
Definition: sortsupport.h:75
SortSupport sortKeys
Definition: tuplesort.c:414

◆ selectnewtape()

static void selectnewtape ( Tuplesortstate state)
static

Definition at line 2492 of file tuplesort.c.

References Tuplesortstate::destTape, Tuplesortstate::Level, Tuplesortstate::tapeRange, Tuplesortstate::tp_dummy, and Tuplesortstate::tp_fib.

Referenced by dumptuples().

2493 {
2494  int j;
2495  int a;
2496 
2497  /* Step D3: advance j (destTape) */
2498  if (state->tp_dummy[state->destTape] < state->tp_dummy[state->destTape + 1])
2499  {
2500  state->destTape++;
2501  return;
2502  }
2503  if (state->tp_dummy[state->destTape] != 0)
2504  {
2505  state->destTape = 0;
2506  return;
2507  }
2508 
2509  /* Step D4: increase level */
2510  state->Level++;
2511  a = state->tp_fib[0];
2512  for (j = 0; j < state->tapeRange; j++)
2513  {
2514  state->tp_dummy[j] = a + state->tp_fib[j + 1] - state->tp_fib[j];
2515  state->tp_fib[j] = a + state->tp_fib[j + 1];
2516  }
2517  state->destTape = 0;
2518 }
int * tp_dummy
Definition: tuplesort.c:371

◆ sort_bounded_heap()

static void sort_bounded_heap ( Tuplesortstate state)
static

Definition at line 3268 of file tuplesort.c.

References Assert, Tuplesortstate::bound, Tuplesortstate::bounded, Tuplesortstate::boundUsed, Tuplesortstate::memtupcount, Tuplesortstate::memtuples, reversedirection(), SERIAL, Tuplesortstate::status, TSS_BOUNDED, TSS_SORTEDINMEM, and tuplesort_heap_delete_top().

Referenced by tuplesort_performsort().

3269 {
3270  int tupcount = state->memtupcount;
3271 
3272  Assert(state->status == TSS_BOUNDED);
3273  Assert(state->bounded);
3274  Assert(tupcount == state->bound);
3275  Assert(SERIAL(state));
3276 
3277  /*
3278  * We can unheapify in place because each delete-top call will remove the
3279  * largest entry, which we can promptly store in the newly freed slot at
3280  * the end. Once we're down to a single-entry heap, we're done.
3281  */
3282  while (state->memtupcount > 1)
3283  {
3284  SortTuple stup = state->memtuples[0];
3285 
3286  /* this sifts-up the next-largest entry and decreases memtupcount */
3288  state->memtuples[state->memtupcount] = stup;
3289  }
3290  state->memtupcount = tupcount;
3291 
3292  /*
3293  * Reverse sort direction back to the original state. This is not
3294  * actually necessary but seems like a good idea for tidiness.
3295  */
3296  reversedirection(state);
3297 
3298  state->status = TSS_SORTEDINMEM;
3299  state->boundUsed = true;
3300 }
static void reversedirection(Tuplesortstate *state)
Definition: tuplesort.c:3435
TupSortStatus status
Definition: tuplesort.c:234
#define SERIAL(state)
Definition: tuplesort.c:532
static void tuplesort_heap_delete_top(Tuplesortstate *state)
Definition: tuplesort.c:3371
#define Assert(condition)
Definition: c.h:688
SortTuple * memtuples
Definition: tuplesort.c:295

◆ tuplesort_attach_shared()

void tuplesort_attach_shared ( Sharedsort shared,
dsm_segment seg 
)

Definition at line 4407 of file tuplesort.c.

References Sharedsort::fileset, and SharedFileSetAttach().

Referenced by _bt_parallel_build_main().

4408 {
4409  /* Attach to SharedFileSet */
4410  SharedFileSetAttach(&shared->fileset, seg);
4411 }
void SharedFileSetAttach(SharedFileSet *fileset, dsm_segment *seg)
Definition: sharedfileset.c:76
SharedFileSet fileset
Definition: tuplesort.c:490

◆ tuplesort_begin_cluster()

Tuplesortstate* tuplesort_begin_cluster ( TupleDesc  tupDesc,
Relation  indexRel,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 880 of file tuplesort.c.

References _bt_freeskey(), _bt_mkscankey_nodata(), SortSupportData::abbreviate, Tuplesortstate::abbrevNext, Assert, AssertState, BTGreaterStrategyNumber, BTLessStrategyNumber, BTREE_AM_OID, BuildIndexInfo(), CLUSTER_SORT, Tuplesortstate::comparetup, comparetup_cluster(), Tuplesortstate::copytup, copytup_cluster(), CreateExecutorState(), CurrentMemoryContext, ExprContext::ecxt_scantuple, elog, Tuplesortstate::estate, GetPerTupleExprContext, i, IndexInfo::ii_Expressions, Tuplesortstate::indexInfo, LOG, MakeSingleTupleTableSlot(), MemoryContextSwitchTo(), Tuplesortstate::nKeys, palloc0(), PARALLEL_SORT, PrepareSortSupportFromIndexRel(), RelationData::rd_rel, Tuplesortstate::readtup, readtup_cluster(), RelationGetNumberOfAttributes, ScanKeyData::sk_attno, SK_BT_DESC, SK_BT_NULLS_FIRST, ScanKeyData::sk_collation, ScanKeyData::sk_flags, Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, trace_sort, Tuplesortstate::tupDesc, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_cluster().

Referenced by copy_heap_data().

884 {
885  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
886  randomAccess);
887  ScanKey indexScanKey;
888  MemoryContext oldcontext;
889  int i;
890 
891  Assert(indexRel->rd_rel->relam == BTREE_AM_OID);
892 
893  oldcontext = MemoryContextSwitchTo(state->sortcontext);
894 
895 #ifdef TRACE_SORT
896  if (trace_sort)
897  elog(LOG,
898  "begin tuple sort: nkeys = %d, workMem = %d, randomAccess = %c",
900  workMem, randomAccess ? 't' : 'f');
901 #endif
902 
903  state->nKeys = RelationGetNumberOfAttributes(indexRel);
904 
905  TRACE_POSTGRESQL_SORT_START(CLUSTER_SORT,
906  false, /* no unique check */
907  state->nKeys,
908  workMem,
909  randomAccess,
910  PARALLEL_SORT(state));
911 
913  state->copytup = copytup_cluster;
914  state->writetup = writetup_cluster;
915  state->readtup = readtup_cluster;
916  state->abbrevNext = 10;
917 
918  state->indexInfo = BuildIndexInfo(indexRel);
919 
920  state->tupDesc = tupDesc; /* assume we need not copy tupDesc */
921 
922  indexScanKey = _bt_mkscankey_nodata(indexRel);
923 
924  if (state->indexInfo->ii_Expressions != NULL)
925  {
926  TupleTableSlot *slot;
927  ExprContext *econtext;
928 
929  /*
930  * We will need to use FormIndexDatum to evaluate the index
931  * expressions. To do that, we need an EState, as well as a
932  * TupleTableSlot to put the table tuples into. The econtext's
933  * scantuple has to point to that slot, too.
934  */
935  state->estate = CreateExecutorState();
936  slot = MakeSingleTupleTableSlot(tupDesc);
937  econtext = GetPerTupleExprContext(state->estate);
938  econtext->ecxt_scantuple = slot;
939  }
940 
941  /* Prepare SortSupport data for each column */
942  state->sortKeys = (SortSupport) palloc0(state->nKeys *
943  sizeof(SortSupportData));
944 
945  for (i = 0; i < state->nKeys; i++)
946  {
947  SortSupport sortKey = state->sortKeys + i;
948  ScanKey scanKey = indexScanKey + i;
949  int16 strategy;
950 
951  sortKey->ssup_cxt = CurrentMemoryContext;
952  sortKey->ssup_collation = scanKey->sk_collation;
953  sortKey->ssup_nulls_first =
954  (scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0;
955  sortKey->ssup_attno = scanKey->sk_attno;
956  /* Convey if abbreviation optimization is applicable in principle */
957  sortKey->abbreviate = (i == 0);
958 
959  AssertState(sortKey->ssup_attno != 0);
960 
961  strategy = (scanKey->sk_flags & SK_BT_DESC) != 0 ?
963 
964  PrepareSortSupportFromIndexRel(indexRel, strategy, sortKey);
965  }
966 
967  _bt_freeskey(indexScanKey);
968 
969  MemoryContextSwitchTo(oldcontext);
970 
971  return state;
972 }
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
signed short int16
Definition: c.h:301
bool ssup_nulls_first
Definition: sortsupport.h:75
ScanKey _bt_mkscankey_nodata(Relation rel)
Definition: nbtutils.c:115
static void writetup_cluster(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:3891
#define BTGreaterStrategyNumber
Definition: stratnum.h:33
#define AssertState(condition)
Definition: c.h:691
int64 abbrevNext
Definition: tuplesort.c:428
#define RelationGetNumberOfAttributes(relation)
Definition: rel.h:431
EState * estate
Definition: tuplesort.c:436
SortSupport sortKeys
Definition: tuplesort.c:414
void _bt_freeskey(ScanKey skey)
Definition: nbtutils.c:155
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:267
#define BTREE_AM_OID
Definition: pg_am.h:70
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:259
#define CLUSTER_SORT
Definition: tuplesort.c:122
static int comparetup_cluster(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:3707
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:1741
#define LOG
Definition: elog.h:26
Form_pg_class rd_rel
Definition: rel.h:114
static void copytup_cluster(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:3818
bool trace_sort
Definition: tuplesort.c:130
#define PARALLEL_SORT(state)
Definition: tuplesort.c:125
#define GetPerTupleExprContext(estate)
Definition: executor.h:490
static void readtup_cluster(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:3915
MemoryContext sortcontext
Definition: tuplesort.c:246
MemoryContext ssup_cxt
Definition: sortsupport.h:66
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:285
IndexInfo * indexInfo
Definition: tuplesort.c:435
MemoryContext CurrentMemoryContext
Definition: mcxt.c:37
TupleTableSlot * MakeSingleTupleTableSlot(TupleDesc tupdesc)
Definition: execTuples.c:232
void PrepareSortSupportFromIndexRel(Relation indexRel, int16 strategy, SortSupport ssup)
Definition: sortsupport.c:160
EState * CreateExecutorState(void)
Definition: execUtils.c:80
#define SK_BT_NULLS_FIRST
Definition: nbtree.h:435
void * palloc0(Size size)
Definition: mcxt.c:864
AttrNumber ssup_attno
Definition: sortsupport.h:81
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:277
int sk_flags
Definition: skey.h:66
List * ii_Expressions
Definition: execnodes.h:148
#define Assert(condition)
Definition: c.h:688
#define SK_BT_DESC
Definition: nbtree.h:434
Definition: regguts.h:298
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:211
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
Oid sk_collation
Definition: skey.h:70
int i
#define elog
Definition: elog.h:219
#define BTLessStrategyNumber
Definition: stratnum.h:29
AttrNumber sk_attno
Definition: skey.h:67
TupleDesc tupDesc
Definition: tuplesort.c:413

◆ tuplesort_begin_common()

static Tuplesortstate * tuplesort_begin_common ( int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)
static

Definition at line 681 of file tuplesort.c.

References ALLOCSET_DEFAULT_SIZES, ALLOCSET_SEPARATE_THRESHOLD, AllocSetContextCreate, Tuplesortstate::allowedMem, Assert, Tuplesortstate::availMem, Tuplesortstate::bounded, Tuplesortstate::boundUsed, CurrentMemoryContext, Tuplesortstate::currentRun, elog, ERROR, GetMemoryChunkSpace(), Tuplesortstate::growmemtuples, SortCoordinateData::isWorker, LACKMEM, Max, MemoryContextSwitchTo(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, Tuplesortstate::memtupsize, SortCoordinateData::nParticipants, Tuplesortstate::nParticipants, palloc(), palloc0(), pg_rusage_init(), Tuplesortstate::randomAccess, Tuplesortstate::result_tape, Tuplesortstate::ru_start, Tuplesortstate::shared, SortCoordinateData::sharedsort, Tuplesortstate::slabAllocatorUsed, Tuplesortstate::sortcontext, Tuplesortstate::status, Tuplesortstate::tapeset, trace_sort, TSS_INITIAL, Tuplesortstate::tuplecontext, Tuplesortstate::tuples, USEMEM, Tuplesortstate::worker, and worker_get_identifier().

Referenced by tuplesort_begin_cluster(), tuplesort_begin_datum(), tuplesort_begin_heap(), tuplesort_begin_index_btree(), and tuplesort_begin_index_hash().

683 {
685  MemoryContext sortcontext;
686  MemoryContext tuplecontext;
687  MemoryContext oldcontext;
688 
689  /* See leader_takeover_tapes() remarks on randomAccess support */
690  if (coordinate && randomAccess)
691  elog(ERROR, "random access disallowed under parallel sort");
692 
693  /*
694  * Create a working memory context for this sort operation. All data
695  * needed by the sort will live inside this context.
696  */
698  "TupleSort main",
700 
701  /*
702  * Caller tuple (e.g. IndexTuple) memory context.
703  *
704  * A dedicated child context used exclusively for caller passed tuples
705  * eases memory management. Resetting at key points reduces
706  * fragmentation. Note that the memtuples array of SortTuples is allocated
707  * in the parent context, not this context, because there is no need to
708  * free memtuples early.
709  */
710  tuplecontext = AllocSetContextCreate(sortcontext,
711  "Caller tuples",
713 
714  /*
715  * Make the Tuplesortstate within the per-sort context. This way, we
716  * don't need a separate pfree() operation for it at shutdown.
717  */
718  oldcontext = MemoryContextSwitchTo(sortcontext);
719 
720  state = (Tuplesortstate *) palloc0(sizeof(Tuplesortstate));
721 
722 #ifdef TRACE_SORT
723  if (trace_sort)
724  pg_rusage_init(&state->ru_start);
725 #endif
726 
727  state->status = TSS_INITIAL;
728  state->randomAccess = randomAccess;
729  state->bounded = false;
730  state->tuples = true;
731  state->boundUsed = false;
732 
733  /*
734  * workMem is forced to be at least 64KB, the current minimum valid value
735  * for the work_mem GUC. This is a defense against parallel sort callers
736  * that divide out memory among many workers in a way that leaves each
737  * with very little memory.
738  */
739  state->allowedMem = Max(workMem, 64) * (int64) 1024;
740  state->availMem = state->allowedMem;
741  state->sortcontext = sortcontext;
742  state->tuplecontext = tuplecontext;
743  state->tapeset = NULL;
744 
745  state->memtupcount = 0;
746 
747  /*
748  * Initial size of array must be more than ALLOCSET_SEPARATE_THRESHOLD;
749  * see comments in grow_memtuples().
750  */
751  state->memtupsize = Max(1024,
752  ALLOCSET_SEPARATE_THRESHOLD / sizeof(SortTuple) + 1);
753 
754  state->growmemtuples = true;
755  state->slabAllocatorUsed = false;
756  state->memtuples = (SortTuple *) palloc(state->memtupsize * sizeof(SortTuple));
757 
758  USEMEM(state, GetMemoryChunkSpace(state->memtuples));
759 
760  /* workMem must be large enough for the minimal memtuples array */
761  if (LACKMEM(state))
762  elog(ERROR, "insufficient memory allowed for sort");
763 
764  state->currentRun = 0;
765 
766  /*
767  * maxTapes, tapeRange, and Algorithm D variables will be initialized by
768  * inittapes(), if needed
769  */
770 
771  state->result_tape = -1; /* flag that result tape has not been formed */
772 
773  /*
774  * Initialize parallel-related state based on coordination information
775  * from caller
776  */
777  if (!coordinate)
778  {
779  /* Serial sort */
780  state->shared = NULL;
781  state->worker = -1;
782  state->nParticipants = -1;
783  }
784  else if (coordinate->isWorker)
785  {
786  /* Parallel worker produces exactly one final run from all input */
787  state->shared = coordinate->sharedsort;
788  state->worker = worker_get_identifier(state);
789  state->nParticipants = -1;
790  }
791  else
792  {
793  /* Parallel leader state only used for final merge */
794  state->shared = coordinate->sharedsort;
795  state->worker = -1;
796  state->nParticipants = coordinate->nParticipants;
797  Assert(state->nParticipants >= 1);
798  }
799 
800  MemoryContextSwitchTo(oldcontext);
801 
802  return state;
803 }
int64 availMem
Definition: tuplesort.c:242
TupSortStatus status
Definition: tuplesort.c:234
PGRUsage ru_start
Definition: tuplesort.c:465
bool randomAccess
Definition: tuplesort.c:236
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
Sharedsort * sharedsort
Definition: tuplesort.h:56
bool growmemtuples
Definition: tuplesort.c:298
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:390
static int worker_get_identifier(Tuplesortstate *state)
Definition: tuplesort.c:4427
bool trace_sort
Definition: tuplesort.c:130
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
#define ERROR
Definition: elog.h:43
MemoryContext sortcontext
Definition: tuplesort.c:246
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:197
Sharedsort * shared
Definition: tuplesort.c:405
#define ALLOCSET_SEPARATE_THRESHOLD
Definition: memutils.h:224
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
MemoryContext CurrentMemoryContext
Definition: mcxt.c:37
int64 allowedMem
Definition: tuplesort.c:243
#define AllocSetContextCreate(parent, name, allocparams)
Definition: memutils.h:165
void * palloc0(Size size)
Definition: mcxt.c:864
#define Max(x, y)
Definition: c.h:840
#define Assert(condition)
Definition: c.h:688
Definition: regguts.h:298
bool slabAllocatorUsed
Definition: tuplesort.c:327
MemoryContext tuplecontext
Definition: tuplesort.c:247
void * palloc(Size size)
Definition: mcxt.c:835
#define USEMEM(state, amt)
Definition: tuplesort.c:530
#define elog
Definition: elog.h:219
#define LACKMEM(state)
Definition: tuplesort.c:529
SortTuple * memtuples
Definition: tuplesort.c:295

◆ tuplesort_begin_datum()

Tuplesortstate* tuplesort_begin_datum ( Oid  datumType,
Oid  sortOperator,
Oid  sortCollation,
bool  nullsFirstFlag,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 1100 of file tuplesort.c.

References SortSupportData::abbrev_converter, SortSupportData::abbreviate, Tuplesortstate::abbrevNext, Tuplesortstate::comparetup, comparetup_datum(), Tuplesortstate::copytup, copytup_datum(), CurrentMemoryContext, DATUM_SORT, Tuplesortstate::datumType, Tuplesortstate::datumTypeLen, elog, get_typlenbyval(), LOG, MemoryContextSwitchTo(), Tuplesortstate::nKeys, Tuplesortstate::onlyKey, palloc0(), PARALLEL_SORT, PrepareSortSupportFromOrderingOp(), Tuplesortstate::readtup, readtup_datum(), Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, trace_sort, Tuplesortstate::tuples, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_datum().

Referenced by initialize_aggregate(), ordered_set_startup(), and validate_index().

1103 {
1104  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
1105  randomAccess);
1106  MemoryContext oldcontext;
1107  int16 typlen;
1108  bool typbyval;
1109 
1110  oldcontext = MemoryContextSwitchTo(state->sortcontext);
1111 
1112 #ifdef TRACE_SORT
1113  if (trace_sort)
1114  elog(LOG,
1115  "begin datum sort: workMem = %d, randomAccess = %c",
1116  workMem, randomAccess ? 't' : 'f');
1117 #endif
1118 
1119  state->nKeys = 1; /* always a one-column sort */
1120 
1121  TRACE_POSTGRESQL_SORT_START(DATUM_SORT,
1122  false, /* no unique check */
1123  1,
1124  workMem,
1125  randomAccess,
1126  PARALLEL_SORT(state));
1127 
1128  state->comparetup = comparetup_datum;
1129  state->copytup = copytup_datum;
1130  state->writetup = writetup_datum;
1131  state->readtup = readtup_datum;
1132  state->abbrevNext = 10;
1133 
1134  state->datumType = datumType;
1135 
1136  /* lookup necessary attributes of the datum type */
1137  get_typlenbyval(datumType, &typlen, &typbyval);
1138  state->datumTypeLen = typlen;
1139  state->tuples = !typbyval;
1140 
1141  /* Prepare SortSupport data */
1142  state->sortKeys = (SortSupport) palloc0(sizeof(SortSupportData));
1143 
1145  state->sortKeys->ssup_collation = sortCollation;
1146  state->sortKeys->ssup_nulls_first = nullsFirstFlag;
1147 
1148  /*
1149  * Abbreviation is possible here only for by-reference types. In theory,
1150  * a pass-by-value datatype could have an abbreviated form that is cheaper
1151  * to compare. In a tuple sort, we could support that, because we can
1152  * always extract the original datum from the tuple is needed. Here, we
1153  * can't, because a datum sort only stores a single copy of the datum; the
1154  * "tuple" field of each sortTuple is NULL.
1155  */
1156  state->sortKeys->abbreviate = !typbyval;
1157 
1158  PrepareSortSupportFromOrderingOp(sortOperator, state->sortKeys);
1159 
1160  /*
1161  * The "onlyKey" optimization cannot be used with abbreviated keys, since
1162  * tie-breaker comparisons may be required. Typically, the optimization
1163  * is only of value to pass-by-value types anyway, whereas abbreviated
1164  * keys are typically only of value to pass-by-reference types.
1165  */
1166  if (!state->sortKeys->abbrev_converter)
1167  state->onlyKey = state->sortKeys;
1168 
1169  MemoryContextSwitchTo(oldcontext);
1170 
1171  return state;
1172 }
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
signed short int16
Definition: c.h:301
bool ssup_nulls_first
Definition: sortsupport.h:75
int64 abbrevNext
Definition: tuplesort.c:428
SortSupport sortKeys
Definition: tuplesort.c:414
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:267
void PrepareSortSupportFromOrderingOp(Oid orderingOp, SortSupport ssup)
Definition: sortsupport.c:133
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:259
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
#define PARALLEL_SORT(state)
Definition: tuplesort.c:125
#define DATUM_SORT
Definition: tuplesort.c:121
MemoryContext sortcontext
Definition: tuplesort.c:246
MemoryContext ssup_cxt
Definition: sortsupport.h:66
static int comparetup_datum(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:4246
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:285
static void copytup_datum(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:4267
static void readtup_datum(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:4315
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
MemoryContext CurrentMemoryContext
Definition: mcxt.c:37
static void writetup_datum(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:4274
void * palloc0(Size size)
Definition: mcxt.c:864
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:277
Definition: regguts.h:298
void get_typlenbyval(Oid typid, int16 *typlen, bool *typbyval)
Definition: lsyscache.c:2005
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
SortSupport onlyKey
Definition: tuplesort.c:420
#define elog
Definition: elog.h:219

◆ tuplesort_begin_heap()

Tuplesortstate* tuplesort_begin_heap ( TupleDesc  tupDesc,
int  nkeys,
AttrNumber attNums,
Oid sortOperators,
Oid sortCollations,
bool nullsFirstFlags,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 806 of file tuplesort.c.

References SortSupportData::abbrev_converter, SortSupportData::abbreviate, Tuplesortstate::abbrevNext, AssertArg, Tuplesortstate::comparetup, comparetup_heap(), Tuplesortstate::copytup, copytup_heap(), CurrentMemoryContext, elog, HEAP_SORT, i, LOG, MemoryContextSwitchTo(), Tuplesortstate::nKeys, Tuplesortstate::onlyKey, palloc0(), PARALLEL_SORT, PrepareSortSupportFromOrderingOp(), Tuplesortstate::readtup, readtup_heap(), Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, trace_sort, Tuplesortstate::tupDesc, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_heap().

Referenced by ExecSort(), initialize_aggregate(), initialize_phase(), and ordered_set_startup().

811 {
812  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
813  randomAccess);
814  MemoryContext oldcontext;
815  int i;
816 
817  oldcontext = MemoryContextSwitchTo(state->sortcontext);
818 
819  AssertArg(nkeys > 0);
820 
821 #ifdef TRACE_SORT
822  if (trace_sort)
823  elog(LOG,
824  "begin tuple sort: nkeys = %d, workMem = %d, randomAccess = %c",
825  nkeys, workMem, randomAccess ? 't' : 'f');
826 #endif
827 
828  state->nKeys = nkeys;
829 
830  TRACE_POSTGRESQL_SORT_START(HEAP_SORT,
831  false, /* no unique check */
832  nkeys,
833  workMem,
834  randomAccess,
835  PARALLEL_SORT(state));
836 
837  state->comparetup = comparetup_heap;
838  state->copytup = copytup_heap;
839  state->writetup = writetup_heap;
840  state->readtup = readtup_heap;
841 
842  state->tupDesc = tupDesc; /* assume we need not copy tupDesc */
843  state->abbrevNext = 10;
844 
845  /* Prepare SortSupport data for each column */
846  state->sortKeys = (SortSupport) palloc0(nkeys * sizeof(SortSupportData));
847 
848  for (i = 0; i < nkeys; i++)
849  {
850  SortSupport sortKey = state->sortKeys + i;
851 
852  AssertArg(attNums[i] != 0);
853  AssertArg(sortOperators[i] != 0);
854 
855  sortKey->ssup_cxt = CurrentMemoryContext;
856  sortKey->ssup_collation = sortCollations[i];
857  sortKey->ssup_nulls_first = nullsFirstFlags[i];
858  sortKey->ssup_attno = attNums[i];
859  /* Convey if abbreviation optimization is applicable in principle */
860  sortKey->abbreviate = (i == 0);
861 
862  PrepareSortSupportFromOrderingOp(sortOperators[i], sortKey);
863  }
864 
865  /*
866  * The "onlyKey" optimization cannot be used with abbreviated keys, since
867  * tie-breaker comparisons may be required. Typically, the optimization
868  * is only of value to pass-by-value types anyway, whereas abbreviated
869  * keys are typically only of value to pass-by-reference types.
870  */
871  if (nkeys == 1 && !state->sortKeys->abbrev_converter)
872  state->onlyKey = state->sortKeys;
873 
874  MemoryContextSwitchTo(oldcontext);
875 
876  return state;
877 }
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
bool ssup_nulls_first
Definition: sortsupport.h:75
static int comparetup_heap(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:3508
int64 abbrevNext
Definition: tuplesort.c:428
SortSupport sortKeys
Definition: tuplesort.c:414
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:267
void PrepareSortSupportFromOrderingOp(Oid orderingOp, SortSupport ssup)
Definition: sortsupport.c:133
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:259
#define LOG
Definition: elog.h:26
#define HEAP_SORT
Definition: tuplesort.c:119
bool trace_sort
Definition: tuplesort.c:130
#define PARALLEL_SORT(state)
Definition: tuplesort.c:125
MemoryContext sortcontext
Definition: tuplesort.c:246
static void writetup_heap(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:3648
MemoryContext ssup_cxt
Definition: sortsupport.h:66
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:285
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
MemoryContext CurrentMemoryContext
Definition: mcxt.c:37
#define AssertArg(condition)
Definition: c.h:690
static void copytup_heap(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:3570
void * palloc0(Size size)
Definition: mcxt.c:864
AttrNumber ssup_attno
Definition: sortsupport.h:81
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:277
Definition: regguts.h:298
static void readtup_heap(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:3675
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
int i
SortSupport onlyKey
Definition: tuplesort.c:420
#define elog
Definition: elog.h:219
TupleDesc tupDesc
Definition: tuplesort.c:413

◆ tuplesort_begin_index_btree()

Tuplesortstate* tuplesort_begin_index_btree ( Relation  heapRel,
Relation  indexRel,
bool  enforceUnique,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 975 of file tuplesort.c.

References _bt_freeskey(), _bt_mkscankey_nodata(), SortSupportData::abbreviate, Tuplesortstate::abbrevNext, AssertState, BTGreaterStrategyNumber, BTLessStrategyNumber, Tuplesortstate::comparetup, comparetup_index_btree(), Tuplesortstate::copytup, copytup_index(), CurrentMemoryContext, elog, Tuplesortstate::enforceUnique, Tuplesortstate::heapRel, i, INDEX_SORT, Tuplesortstate::indexRel, LOG, MemoryContextSwitchTo(), Tuplesortstate::nKeys, palloc0(), PARALLEL_SORT, PrepareSortSupportFromIndexRel(), Tuplesortstate::readtup, readtup_index(), RelationGetNumberOfAttributes, ScanKeyData::sk_attno, SK_BT_DESC, SK_BT_NULLS_FIRST, ScanKeyData::sk_collation, ScanKeyData::sk_flags, Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortSupportData::ssup_attno, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, trace_sort, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_index().

Referenced by _bt_parallel_scan_and_sort(), and _bt_spools_heapscan().

981 {
982  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
983  randomAccess);
984  ScanKey indexScanKey;
985  MemoryContext oldcontext;
986  int i;
987 
988  oldcontext = MemoryContextSwitchTo(state->sortcontext);
989 
990 #ifdef TRACE_SORT
991  if (trace_sort)
992  elog(LOG,
993  "begin index sort: unique = %c, workMem = %d, randomAccess = %c",
994  enforceUnique ? 't' : 'f',
995  workMem, randomAccess ? 't' : 'f');
996 #endif
997 
998  state->nKeys = RelationGetNumberOfAttributes(indexRel);
999 
1000  TRACE_POSTGRESQL_SORT_START(INDEX_SORT,
1001  enforceUnique,
1002  state->nKeys,
1003  workMem,
1004  randomAccess,
1005  PARALLEL_SORT(state));
1006 
1008  state->copytup = copytup_index;
1009  state->writetup = writetup_index;
1010  state->readtup = readtup_index;
1011  state->abbrevNext = 10;
1012 
1013  state->heapRel = heapRel;
1014  state->indexRel = indexRel;
1015  state->enforceUnique = enforceUnique;
1016 
1017  indexScanKey = _bt_mkscankey_nodata(indexRel);
1018  state->nKeys = RelationGetNumberOfAttributes(indexRel);
1019 
1020  /* Prepare SortSupport data for each column */
1021  state->sortKeys = (SortSupport) palloc0(state->nKeys *
1022  sizeof(SortSupportData));
1023 
1024  for (i = 0; i < state->nKeys; i++)
1025  {
1026  SortSupport sortKey = state->sortKeys + i;
1027  ScanKey scanKey = indexScanKey + i;
1028  int16 strategy;
1029 
1030  sortKey->ssup_cxt = CurrentMemoryContext;
1031  sortKey->ssup_collation = scanKey->sk_collation;
1032  sortKey->ssup_nulls_first =
1033  (scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0;
1034  sortKey->ssup_attno = scanKey->sk_attno;
1035  /* Convey if abbreviation optimization is applicable in principle */
1036  sortKey->abbreviate = (i == 0);
1037 
1038  AssertState(sortKey->ssup_attno != 0);
1039 
1040  strategy = (scanKey->sk_flags & SK_BT_DESC) != 0 ?
1042 
1043  PrepareSortSupportFromIndexRel(indexRel, strategy, sortKey);
1044  }
1045 
1046  _bt_freeskey(indexScanKey);
1047 
1048  MemoryContextSwitchTo(oldcontext);
1049 
1050  return state;
1051 }
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
signed short int16
Definition: c.h:301
bool ssup_nulls_first
Definition: sortsupport.h:75
ScanKey _bt_mkscankey_nodata(Relation rel)
Definition: nbtutils.c:115
Relation heapRel
Definition: tuplesort.c:442
#define BTGreaterStrategyNumber
Definition: stratnum.h:33
#define AssertState(condition)
Definition: c.h:691
int64 abbrevNext
Definition: tuplesort.c:428
#define RelationGetNumberOfAttributes(relation)
Definition: rel.h:431
static void copytup_index(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:4134
SortSupport sortKeys
Definition: tuplesort.c:414
void _bt_freeskey(ScanKey skey)
Definition: nbtutils.c:155
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:267
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:259
#define INDEX_SORT
Definition: tuplesort.c:120
#define LOG
Definition: elog.h:26
static int comparetup_index_btree(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:3953
bool trace_sort
Definition: tuplesort.c:130
#define PARALLEL_SORT(state)
Definition: tuplesort.c:125
MemoryContext sortcontext
Definition: tuplesort.c:246
static void writetup_index(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:4200
MemoryContext ssup_cxt
Definition: sortsupport.h:66
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:285
static void readtup_index(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:4222
MemoryContext CurrentMemoryContext
Definition: mcxt.c:37
void PrepareSortSupportFromIndexRel(Relation indexRel, int16 strategy, SortSupport ssup)
Definition: sortsupport.c:160
#define SK_BT_NULLS_FIRST
Definition: nbtree.h:435
void * palloc0(Size size)
Definition: mcxt.c:864
Relation indexRel
Definition: tuplesort.c:443
AttrNumber ssup_attno
Definition: sortsupport.h:81
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:277
int sk_flags
Definition: skey.h:66
#define SK_BT_DESC
Definition: nbtree.h:434
Definition: regguts.h:298
bool enforceUnique
Definition: tuplesort.c:446
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
Oid sk_collation
Definition: skey.h:70
int i
#define elog
Definition: elog.h:219
#define BTLessStrategyNumber
Definition: stratnum.h:29
AttrNumber sk_attno
Definition: skey.h:67

◆ tuplesort_begin_index_hash()

Tuplesortstate* tuplesort_begin_index_hash ( Relation  heapRel,
Relation  indexRel,
uint32  high_mask,
uint32  low_mask,
uint32  max_buckets,
int  workMem,
SortCoordinate  coordinate,
bool  randomAccess 
)

Definition at line 1054 of file tuplesort.c.

References Tuplesortstate::comparetup, comparetup_index_hash(), Tuplesortstate::copytup, copytup_index(), elog, Tuplesortstate::heapRel, Tuplesortstate::high_mask, Tuplesortstate::indexRel, LOG, Tuplesortstate::low_mask, Tuplesortstate::max_buckets, MemoryContextSwitchTo(), Tuplesortstate::nKeys, Tuplesortstate::readtup, readtup_index(), Tuplesortstate::sortcontext, trace_sort, tuplesort_begin_common(), Tuplesortstate::writetup, and writetup_index().

Referenced by _h_spoolinit().

1062 {
1063  Tuplesortstate *state = tuplesort_begin_common(workMem, coordinate,
1064  randomAccess);
1065  MemoryContext oldcontext;
1066 
1067  oldcontext = MemoryContextSwitchTo(state->sortcontext);
1068 
1069 #ifdef TRACE_SORT
1070  if (trace_sort)
1071  elog(LOG,
1072  "begin index sort: high_mask = 0x%x, low_mask = 0x%x, "
1073  "max_buckets = 0x%x, workMem = %d, randomAccess = %c",
1074  high_mask,
1075  low_mask,
1076  max_buckets,
1077  workMem, randomAccess ? 't' : 'f');
1078 #endif
1079 
1080  state->nKeys = 1; /* Only one sort column, the hash code */
1081 
1083  state->copytup = copytup_index;
1084  state->writetup = writetup_index;
1085  state->readtup = readtup_index;
1086 
1087  state->heapRel = heapRel;
1088  state->indexRel = indexRel;
1089 
1090  state->high_mask = high_mask;
1091  state->low_mask = low_mask;
1092  state->max_buckets = max_buckets;
1093 
1094  MemoryContextSwitchTo(oldcontext);
1095 
1096  return state;
1097 }
static int comparetup_index_hash(const SortTuple *a, const SortTuple *b, Tuplesortstate *state)
Definition: tuplesort.c:4082
Relation heapRel
Definition: tuplesort.c:442
static void copytup_index(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:4134
void(* copytup)(Tuplesortstate *state, SortTuple *stup, void *tup)
Definition: tuplesort.c:267
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
SortTupleComparator comparetup
Definition: tuplesort.c:259
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
MemoryContext sortcontext
Definition: tuplesort.c:246
static void writetup_index(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:4200
uint32 high_mask
Definition: tuplesort.c:449
void(* readtup)(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:285
static void readtup_index(Tuplesortstate *state, SortTuple *stup, int tapenum, unsigned int len)
Definition: tuplesort.c:4222
Relation indexRel
Definition: tuplesort.c:443
void(* writetup)(Tuplesortstate *state, int tapenum, SortTuple *stup)
Definition: tuplesort.c:277
Definition: regguts.h:298
uint32 max_buckets
Definition: tuplesort.c:451
static Tuplesortstate * tuplesort_begin_common(int workMem, SortCoordinate coordinate, bool randomAccess)
Definition: tuplesort.c:681
uint32 low_mask
Definition: tuplesort.c:450
#define elog
Definition: elog.h:219

◆ tuplesort_end()

void tuplesort_end ( Tuplesortstate state)

Definition at line 1236 of file tuplesort.c.

References Tuplesortstate::allowedMem, Tuplesortstate::availMem, ExprContext::ecxt_scantuple, elog, Tuplesortstate::estate, ExecDropSingleTupleTableSlot(), FreeExecutorState(), GetPerTupleExprContext, LOG, LogicalTapeSetBlocks(), LogicalTapeSetClose(), MemoryContextDelete(), MemoryContextSwitchTo(), pg_rusage_show(), Tuplesortstate::ru_start, SERIAL, Tuplesortstate::sortcontext, Tuplesortstate::tapeset, trace_sort, and Tuplesortstate::worker.

Referenced by _bt_parallel_scan_and_sort(), _bt_spooldestroy(), _h_spooldestroy(), copy_heap_data(), ExecEndAgg(), ExecEndSort(), ExecReScanAgg(), ExecReScanSort(), initialize_aggregate(), initialize_phase(), ordered_set_shutdown(), process_ordered_aggregate_multi(), process_ordered_aggregate_single(), and validate_index().

1237 {
1238  /* context swap probably not needed, but let's be safe */
1239  MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
1240 
1241 #ifdef TRACE_SORT
1242  long spaceUsed;
1243 
1244  if (state->tapeset)
1245  spaceUsed = LogicalTapeSetBlocks(state->tapeset);
1246  else
1247  spaceUsed = (state->allowedMem - state->availMem + 1023) / 1024;
1248 #endif
1249 
1250  /*
1251  * Delete temporary "tape" files, if any.
1252  *
1253  * Note: want to include this in reported total cost of sort, hence need
1254  * for two #ifdef TRACE_SORT sections.
1255  */
1256  if (state->tapeset)
1257  LogicalTapeSetClose(state->tapeset);
1258 
1259 #ifdef TRACE_SORT
1260  if (trace_sort)
1261  {
1262  if (state->tapeset)
1263  elog(LOG, "%s of %d ended, %ld disk blocks used: %s",
1264  SERIAL(state) ? "external sort" : "parallel external sort",
1265  state->worker, spaceUsed, pg_rusage_show(&state->ru_start));
1266  else
1267  elog(LOG, "%s of %d ended, %ld KB used: %s",
1268  SERIAL(state) ? "internal sort" : "unperformed parallel sort",
1269  state->worker, spaceUsed, pg_rusage_show(&state->ru_start));
1270  }
1271 
1272  TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, spaceUsed);
1273 #else
1274 
1275  /*
1276  * If you disabled TRACE_SORT, you can still probe sort__done, but you
1277  * ain't getting space-used stats.
1278  */
1279  TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, 0L);
1280 #endif
1281 
1282  /* Free any execution state created for CLUSTER case */
1283  if (state->estate != NULL)
1284  {
1285  ExprContext *econtext = GetPerTupleExprContext(state->estate);
1286 
1288  FreeExecutorState(state->estate);
1289  }
1290 
1291  MemoryContextSwitchTo(oldcontext);
1292 
1293  /*
1294  * Free the per-sort memory context, thereby releasing all working memory,
1295  * including the Tuplesortstate struct itself.
1296  */
1298 }
int64 availMem
Definition: tuplesort.c:242
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:198
PGRUsage ru_start
Definition: tuplesort.c:465
#define SERIAL(state)
Definition: tuplesort.c:532
EState * estate
Definition: tuplesort.c:436
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
#define LOG
Definition: elog.h:26
bool trace_sort
Definition: tuplesort.c:130
void FreeExecutorState(EState *estate)
Definition: execUtils.c:185
#define GetPerTupleExprContext(estate)
Definition: executor.h:490
MemoryContext sortcontext
Definition: tuplesort.c:246
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:247
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
int64 allowedMem
Definition: tuplesort.c:243
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:211
void LogicalTapeSetClose(LogicalTapeSet *lts)
Definition: logtape.c:583
#define elog
Definition: elog.h:219
long LogicalTapeSetBlocks(LogicalTapeSet *lts)
Definition: logtape.c:1070

◆ tuplesort_estimate_shared()

Size tuplesort_estimate_shared ( int  nWorkers)

Definition at line 4362 of file tuplesort.c.

References add_size(), Assert, MAXALIGN, mul_size(), and offsetof.

Referenced by _bt_begin_parallel().

4363 {
4364  Size tapesSize;
4365 
4366  Assert(nWorkers > 0);
4367 
4368  /* Make sure that BufFile shared state is MAXALIGN'd */
4369  tapesSize = mul_size(sizeof(TapeShare), nWorkers);
4370  tapesSize = MAXALIGN(add_size(tapesSize, offsetof(Sharedsort, tapes)));
4371 
4372  return tapesSize;
4373 }
Size mul_size(Size s1, Size s2)
Definition: shmem.c:492
Size add_size(Size s1, Size s2)
Definition: shmem.c:475
#define Assert(condition)
Definition: c.h:688
size_t Size
Definition: c.h:422
#define MAXALIGN(LEN)
Definition: c.h:641
#define offsetof(type, field)
Definition: c.h:611

◆ tuplesort_get_stats()

void tuplesort_get_stats ( Tuplesortstate state,
TuplesortInstrumentation stats 
)

Definition at line 3128 of file tuplesort.c.

References Tuplesortstate::allowedMem, Tuplesortstate::availMem, Tuplesortstate::boundUsed, LogicalTapeSetBlocks(), SORT_SPACE_TYPE_DISK, SORT_SPACE_TYPE_MEMORY, SORT_TYPE_EXTERNAL_MERGE, SORT_TYPE_EXTERNAL_SORT, SORT_TYPE_QUICKSORT, SORT_TYPE_STILL_IN_PROGRESS, SORT_TYPE_TOP_N_HEAPSORT, TuplesortInstrumentation::sortMethod, TuplesortInstrumentation::spaceType, TuplesortInstrumentation::spaceUsed, Tuplesortstate::status, Tuplesortstate::tapeset, TSS_FINALMERGE, TSS_SORTEDINMEM, and TSS_SORTEDONTAPE.

Referenced by ExecSort(), and show_sort_info().

3130 {
3131  /*
3132  * Note: it might seem we should provide both memory and disk usage for a
3133  * disk-based sort. However, the current code doesn't track memory space
3134  * accurately once we have begun to return tuples to the caller (since we
3135  * don't account for pfree's the caller is expected to do), so we cannot
3136  * rely on availMem in a disk sort. This does not seem worth the overhead
3137  * to fix. Is it worth creating an API for the memory context code to
3138  * tell us how much is actually used in sortcontext?
3139  */
3140  if (state->tapeset)
3141  {
3143  stats->spaceUsed = LogicalTapeSetBlocks(state->tapeset) * (BLCKSZ / 1024);
3144  }
3145  else
3146  {
3148  stats->spaceUsed = (state->allowedMem - state->availMem + 1023) / 1024;
3149  }
3150 
3151  switch (state->status)
3152  {
3153  case TSS_SORTEDINMEM:
3154  if (state->boundUsed)
3156  else
3158  break;
3159  case TSS_SORTEDONTAPE:
3161  break;
3162  case TSS_FINALMERGE:
3164  break;
3165  default:
3167  break;
3168  }
3169 }
int64 availMem
Definition: tuplesort.c:242
TupSortStatus status
Definition: tuplesort.c:234
TuplesortMethod sortMethod
Definition: tuplesort.h:83
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
int64 allowedMem
Definition: tuplesort.c:243
TuplesortSpaceType spaceType
Definition: tuplesort.h:84
long LogicalTapeSetBlocks(LogicalTapeSet *lts)
Definition: logtape.c:1070

◆ tuplesort_getdatum()

bool tuplesort_getdatum ( Tuplesortstate state,
bool  forward,
Datum val,
bool isNull,
Datum abbrev 
)

Definition at line 2244 of file tuplesort.c.

References SortSupportData::abbrev_converter, SortTuple::datum1, datumCopy(), Tuplesortstate::datumTypeLen, SortTuple::isnull1, MemoryContextSwitchTo(), PointerGetDatum, Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortTuple::tuple, Tuplesortstate::tuples, and tuplesort_gettuple_common().

Referenced by mode_final(), percentile_cont_final_common(), percentile_cont_multi_final_common(), percentile_disc_final(), percentile_disc_multi_final(), process_ordered_aggregate_single(), and validate_index_heapscan().

2246 {
2247  MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2248  SortTuple stup;
2249 
2250  if (!tuplesort_gettuple_common(state, forward, &stup))
2251  {
2252  MemoryContextSwitchTo(oldcontext);
2253  return false;
2254  }
2255 
2256  /* Record abbreviated key for caller */
2257  if (state->sortKeys->abbrev_converter && abbrev)
2258  *abbrev = stup.datum1;
2259 
2260  if (stup.isnull1 || !state->tuples)
2261  {
2262  *val = stup.datum1;
2263  *isNull = stup.isnull1;
2264  }
2265  else
2266  {
2267  /* use stup.tuple because stup.datum1 may be an abbreviation */
2268  *val = datumCopy(PointerGetDatum(stup.tuple), false, state->datumTypeLen);
2269  *isNull = false;
2270  }
2271 
2272  MemoryContextSwitchTo(oldcontext);
2273 
2274  return true;
2275 }
#define PointerGetDatum(X)
Definition: postgres.h:539
SortSupport sortKeys
Definition: tuplesort.c:414
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
Datum datum1
Definition: tuplesort.c:172
bool isnull1
Definition: tuplesort.c:173
void * tuple
Definition: tuplesort.c:171
MemoryContext sortcontext
Definition: tuplesort.c:246
Datum(* abbrev_converter)(Datum original, SortSupport ssup)
Definition: sortsupport.h:173
static bool tuplesort_gettuple_common(Tuplesortstate *state, bool forward, SortTuple *stup)
Definition: tuplesort.c:1902
Datum datumCopy(Datum value, bool typByVal, int typLen)
Definition: datum.c:128
long val
Definition: informix.c:689

◆ tuplesort_getheaptuple()

HeapTuple tuplesort_getheaptuple ( Tuplesortstate state,
bool  forward 
)

Definition at line 2195 of file tuplesort.c.

References MemoryContextSwitchTo(), Tuplesortstate::sortcontext, SortTuple::tuple, and tuplesort_gettuple_common().

Referenced by copy_heap_data().

2196 {
2197  MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2198  SortTuple stup;
2199 
2200  if (!tuplesort_gettuple_common(state, forward, &stup))
2201  stup.tuple = NULL;
2202 
2203  MemoryContextSwitchTo(oldcontext);
2204 
2205  return stup.tuple;
2206 }
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
void * tuple
Definition: tuplesort.c:171
MemoryContext sortcontext
Definition: tuplesort.c:246
static bool tuplesort_gettuple_common(Tuplesortstate *state, bool forward, SortTuple *stup)
Definition: tuplesort.c:1902

◆ tuplesort_getindextuple()

IndexTuple tuplesort_getindextuple ( Tuplesortstate state,
bool  forward 
)

Definition at line 2215 of file tuplesort.c.

References MemoryContextSwitchTo(), Tuplesortstate::sortcontext, SortTuple::tuple, and tuplesort_gettuple_common().

Referenced by _bt_load(), and _h_indexbuild().

2216 {
2217  MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2218  SortTuple stup;
2219 
2220  if (!tuplesort_gettuple_common(state, forward, &stup))
2221  stup.tuple = NULL;
2222 
2223  MemoryContextSwitchTo(oldcontext);
2224 
2225  return (IndexTuple) stup.tuple;
2226 }
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
void * tuple
Definition: tuplesort.c:171
MemoryContext sortcontext
Definition: tuplesort.c:246
static bool tuplesort_gettuple_common(Tuplesortstate *state, bool forward, SortTuple *stup)
Definition: tuplesort.c:1902

◆ tuplesort_gettuple_common()

static bool tuplesort_gettuple_common ( Tuplesortstate state,
bool  forward,
SortTuple stup 
)
static

Definition at line 1902 of file tuplesort.c.

References Assert, Tuplesortstate::bound, Tuplesortstate::bounded, Tuplesortstate::current, elog, Tuplesortstate::eof_reached, ERROR, getlen(), Tuplesortstate::lastReturnedTuple, LogicalTapeBackspace(), LogicalTapeRewindForWrite(), Tuplesortstate::memtupcount, Tuplesortstate::memtuples, mergereadnext(), Tuplesortstate::randomAccess, READTUP, RELEASE_SLAB_SLOT, Tuplesortstate::result_tape, Tuplesortstate::slabAllocatorUsed, Tuplesortstate::status, Tuplesortstate::tapeset, TSS_FINALMERGE, TSS_SORTEDINMEM, TSS_SORTEDONTAPE, SortTuple::tupindex, SortTuple::tuple, tuplesort_heap_delete_top(), tuplesort_heap_replace_top(), and WORKER.

Referenced by tuplesort_getdatum(), tuplesort_getheaptuple(), tuplesort_getindextuple(), tuplesort_gettupleslot(), and tuplesort_skiptuples().

1904 {
1905  unsigned int tuplen;
1906  size_t nmoved;
1907 
1908  Assert(!WORKER(state));
1909 
1910  switch (state->status)
1911  {
1912  case TSS_SORTEDINMEM:
1913  Assert(forward || state->randomAccess);
1914  Assert(!state->slabAllocatorUsed);
1915  if (forward)
1916  {
1917  if (state->current < state->memtupcount)
1918  {
1919  *stup = state->memtuples[state->current++];
1920  return true;
1921  }
1922  state->eof_reached = true;
1923 
1924  /*
1925  * Complain if caller tries to retrieve more tuples than
1926  * originally asked for in a bounded sort. This is because
1927  * returning EOF here might be the wrong thing.
1928  */
1929  if (state->bounded && state->current >= state->bound)
1930  elog(ERROR, "retrieved too many tuples in a bounded sort");
1931 
1932  return false;
1933  }
1934  else
1935  {
1936  if (state->current <= 0)
1937  return false;
1938 
1939  /*
1940  * if all tuples are fetched already then we return last
1941  * tuple, else - tuple before last returned.
1942  */
1943  if (state->eof_reached)
1944  state->eof_reached = false;
1945  else
1946  {
1947  state->current--; /* last returned tuple */
1948  if (state->current <= 0)
1949  return false;
1950  }
1951  *stup = state->memtuples[state->current - 1];
1952  return true;
1953  }
1954  break;
1955 
1956  case TSS_SORTEDONTAPE:
1957  Assert(forward || state->randomAccess);
1958  Assert(state->slabAllocatorUsed);
1959 
1960  /*
1961  * The slot that held the tuple that we returned in previous
1962  * gettuple call can now be reused.
1963  */
1964  if (state->lastReturnedTuple)
1965  {
1966  RELEASE_SLAB_SLOT(state, state->lastReturnedTuple);
1967  state->lastReturnedTuple = NULL;
1968  }
1969 
1970  if (forward)
1971  {
1972  if (state->eof_reached)
1973  return false;
1974 
1975  if ((tuplen = getlen(state, state->result_tape, true)) != 0)
1976  {
1977  READTUP(state, stup, state->result_tape, tuplen);
1978 
1979  /*
1980  * Remember the tuple we return, so that we can recycle
1981  * its memory on next call. (This can be NULL, in the
1982  * !state->tuples case).
1983  */
1984  state->lastReturnedTuple = stup->tuple;
1985 
1986  return true;
1987  }
1988  else
1989  {
1990  state->eof_reached = true;
1991  return false;
1992  }
1993  }
1994 
1995  /*
1996  * Backward.
1997  *
1998  * if all tuples are fetched already then we return last tuple,
1999  * else - tuple before last returned.
2000  */
2001  if (state->eof_reached)
2002  {
2003  /*
2004  * Seek position is pointing just past the zero tuplen at the
2005  * end of file; back up to fetch last tuple's ending length
2006  * word. If seek fails we must have a completely empty file.
2007  */
2008  nmoved = LogicalTapeBackspace(state->tapeset,
2009  state->result_tape,
2010  2 * sizeof(unsigned int));
2011  if (nmoved == 0)
2012  return false;
2013  else if (nmoved != 2 * sizeof(unsigned int))
2014  elog(ERROR, "unexpected tape position");
2015  state->eof_reached = false;
2016  }
2017  else
2018  {
2019  /*
2020  * Back up and fetch previously-returned tuple's ending length
2021  * word. If seek fails, assume we are at start of file.
2022  */
2023  nmoved = LogicalTapeBackspace(state->tapeset,
2024  state->result_tape,
2025  sizeof(unsigned int));
2026  if (nmoved == 0)
2027  return false;
2028  else if (nmoved != sizeof(unsigned int))
2029  elog(ERROR, "unexpected tape position");
2030  tuplen = getlen(state, state->result_tape, false);
2031 
2032  /*
2033  * Back up to get ending length word of tuple before it.
2034  */
2035  nmoved = LogicalTapeBackspace(state->tapeset,
2036  state->result_tape,
2037  tuplen + 2 * sizeof(unsigned int));
2038  if (nmoved == tuplen + sizeof(unsigned int))
2039  {
2040  /*
2041  * We backed up over the previous tuple, but there was no
2042  * ending length word before it. That means that the prev
2043  * tuple is the first tuple in the file. It is now the
2044  * next to read in forward direction (not obviously right,
2045  * but that is what in-memory case does).
2046  */
2047  return false;
2048  }
2049  else if (nmoved != tuplen + 2 * sizeof(unsigned int))
2050  elog(ERROR, "bogus tuple length in backward scan");
2051  }
2052 
2053  tuplen = getlen(state, state->result_tape, false);
2054 
2055  /*
2056  * Now we have the length of the prior tuple, back up and read it.
2057  * Note: READTUP expects we are positioned after the initial
2058  * length word of the tuple, so back up to that point.
2059  */
2060  nmoved = LogicalTapeBackspace(state->tapeset,
2061  state->result_tape,
2062  tuplen);
2063  if (nmoved != tuplen)
2064  elog(ERROR, "bogus tuple length in backward scan");
2065  READTUP(state, stup, state->result_tape, tuplen);
2066 
2067  /*
2068  * Remember the tuple we return, so that we can recycle its memory
2069  * on next call. (This can be NULL, in the Datum case).
2070  */
2071  state->lastReturnedTuple = stup->tuple;
2072 
2073  return true;
2074 
2075  case TSS_FINALMERGE:
2076  Assert(forward);
2077  /* We are managing memory ourselves, with the slab allocator. */
2078  Assert(state->slabAllocatorUsed);
2079 
2080  /*
2081  * The slab slot holding the tuple that we returned in previous
2082  * gettuple call can now be reused.
2083  */
2084  if (state->lastReturnedTuple)
2085  {
2086  RELEASE_SLAB_SLOT(state, state->lastReturnedTuple);
2087  state->lastReturnedTuple = NULL;
2088  }
2089 
2090  /*
2091  * This code should match the inner loop of mergeonerun().
2092  */
2093  if (state->memtupcount > 0)
2094  {
2095  int srcTape = state->memtuples[0].tupindex;
2096  SortTuple newtup;
2097 
2098  *stup = state->memtuples[0];
2099 
2100  /*
2101  * Remember the tuple we return, so that we can recycle its
2102  * memory on next call. (This can be NULL, in the Datum case).
2103  */
2104  state->lastReturnedTuple = stup->tuple;
2105 
2106  /*
2107  * Pull next tuple from tape, and replace the returned tuple
2108  * at top of the heap with it.
2109  */
2110  if (!mergereadnext(state, srcTape, &newtup))
2111  {
2112  /*
2113  * If no more data, we've reached end of run on this tape.
2114  * Remove the top node from the heap.
2115  */
2117 
2118  /*
2119  * Rewind to free the read buffer. It'd go away at the
2120  * end of the sort anyway, but better to release the
2121  * memory early.
2122  */
2123  LogicalTapeRewindForWrite(state->tapeset, srcTape);
2124  return true;
2125  }
2126  newtup.tupindex = srcTape;
2127  tuplesort_heap_replace_top(state, &newtup);
2128  return true;
2129  }
2130  return false;
2131 
2132  default:
2133  elog(ERROR, "invalid tuplesort state");
2134  return false; /* keep compiler quiet */
2135  }
2136 }
TupSortStatus status
Definition: tuplesort.c:234
bool randomAccess
Definition: tuplesort.c:236
void LogicalTapeRewindForWrite(LogicalTapeSet *lts, int tapenum)
Definition: logtape.c:783
static unsigned int getlen(Tuplesortstate *state, int tapenum, bool eofOK)
Definition: tuplesort.c:3453
void * tuple
Definition: tuplesort.c:171
#define ERROR
Definition: elog.h:43
void * lastReturnedTuple
Definition: tuplesort.c:342
size_t LogicalTapeBackspace(LogicalTapeSet *lts, int tapenum, size_t size)
Definition: logtape.c:948
LogicalTapeSet * tapeset
Definition: tuplesort.c:248
#define WORKER(state)
Definition: tuplesort.c:533
#define READTUP(state, stup, tape, len)
Definition: tuplesort.c:528
#define RELEASE_SLAB_SLOT(state, tuple)
Definition: tuplesort.c:513
static void tuplesort_heap_delete_top(Tuplesortstate *state)
Definition: tuplesort.c:3371
static bool mergereadnext(Tuplesortstate *state, int srcTape, SortTuple *stup)
Definition: tuplesort.c:2899
#define Assert(condition)
Definition: c.h:688
bool eof_reached
Definition: tuplesort.c:382
int tupindex
Definition: tuplesort.c:174
bool slabAllocatorUsed
Definition: tuplesort.c:327
#define elog
Definition: elog.h:219
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:3395
SortTuple * memtuples
Definition: tuplesort.c:295

◆ tuplesort_gettupleslot()

bool tuplesort_gettupleslot ( Tuplesortstate state,
bool  forward,
bool  copy,
TupleTableSlot slot,
Datum abbrev 
)

Definition at line 2158 of file tuplesort.c.

References SortSupportData::abbrev_converter, SortTuple::datum1, ExecClearTuple(), ExecStoreMinimalTuple(), heap_copy_minimal_tuple(), MemoryContextSwitchTo(), Tuplesortstate::sortcontext, Tuplesortstate::sortKeys, SortTuple::tuple, and tuplesort_gettuple_common().

Referenced by ExecSort(), fetch_input_tuple(), hypothetical_dense_rank_final(), hypothetical_rank_common(), and process_ordered_aggregate_multi().

2160 {
2161  MemoryContext oldcontext = MemoryContextSwitchTo(state->sortcontext);
2162  SortTuple stup;
2163 
2164  if (!tuplesort_gettuple_common(state, forward, &stup))
2165  stup.tuple = NULL;
2166 
2167  MemoryContextSwitchTo(oldcontext);
2168 
2169  if (stup.tuple)
2170  {
2171  /* Record abbreviated key for caller */
2172  if (state->sortKeys->abbrev_converter && abbrev)
2173  *abbrev = stup.datum1;
2174 
2175  if (copy)