PostgreSQL Source Code  git master
tuplesort.c File Reference
#include "postgres.h"
#include <limits.h>
#include "commands/tablespace.h"
#include "miscadmin.h"
#include "pg_trace.h"
#include "storage/shmem.h"
#include "utils/guc.h"
#include "utils/memutils.h"
#include "utils/pg_rusage.h"
#include "utils/tuplesort.h"
#include "lib/sort_template.h"
Include dependency graph for tuplesort.c:

Go to the source code of this file.

Data Structures

union  SlabSlot
 
struct  Tuplesortstate
 
struct  Sharedsort
 

Macros

#define INITIAL_MEMTUPSIZE
 
#define SLAB_SLOT_SIZE   1024
 
#define MINORDER   6 /* minimum merge order */
 
#define MAXORDER   500 /* maximum merge order */
 
#define TAPE_BUFFER_OVERHEAD   BLCKSZ
 
#define MERGE_BUFFER_SIZE   (BLCKSZ * 32)
 
#define IS_SLAB_SLOT(state, tuple)
 
#define RELEASE_SLAB_SLOT(state, tuple)
 
#define REMOVEABBREV(state, stup, count)   ((*(state)->base.removeabbrev) (state, stup, count))
 
#define COMPARETUP(state, a, b)   ((*(state)->base.comparetup) (a, b, state))
 
#define WRITETUP(state, tape, stup)   ((*(state)->base.writetup) (state, tape, stup))
 
#define READTUP(state, stup, tape, len)   ((*(state)->base.readtup) (state, stup, tape, len))
 
#define FREESTATE(state)   ((state)->base.freestate ? (*(state)->base.freestate) (state) : (void) 0)
 
#define LACKMEM(state)   ((state)->availMem < 0 && !(state)->slabAllocatorUsed)
 
#define USEMEM(state, amt)   ((state)->availMem -= (amt))
 
#define FREEMEM(state, amt)   ((state)->availMem += (amt))
 
#define SERIAL(state)   ((state)->shared == NULL)
 
#define WORKER(state)   ((state)->shared && (state)->worker != -1)
 
#define LEADER(state)   ((state)->shared && (state)->worker == -1)
 
#define ST_SORT   qsort_tuple_unsigned
 
#define ST_ELEMENT_TYPE   SortTuple
 
#define ST_COMPARE(a, b, state)   qsort_tuple_unsigned_compare(a, b, state)
 
#define ST_COMPARE_ARG_TYPE   Tuplesortstate
 
#define ST_CHECK_FOR_INTERRUPTS
 
#define ST_SCOPE   static
 
#define ST_DEFINE
 
#define ST_SORT   qsort_tuple_int32
 
#define ST_ELEMENT_TYPE   SortTuple
 
#define ST_COMPARE(a, b, state)   qsort_tuple_int32_compare(a, b, state)
 
#define ST_COMPARE_ARG_TYPE   Tuplesortstate
 
#define ST_CHECK_FOR_INTERRUPTS
 
#define ST_SCOPE   static
 
#define ST_DEFINE
 
#define ST_SORT   qsort_tuple
 
#define ST_ELEMENT_TYPE   SortTuple
 
#define ST_COMPARE_RUNTIME_POINTER
 
#define ST_COMPARE_ARG_TYPE   Tuplesortstate
 
#define ST_CHECK_FOR_INTERRUPTS
 
#define ST_SCOPE   static
 
#define ST_DECLARE
 
#define ST_DEFINE
 
#define ST_SORT   qsort_ssup
 
#define ST_ELEMENT_TYPE   SortTuple
 
#define ST_COMPARE(a, b, ssup)
 
#define ST_COMPARE_ARG_TYPE   SortSupportData
 
#define ST_CHECK_FOR_INTERRUPTS
 
#define ST_SCOPE   static
 
#define ST_DEFINE
 

Typedefs

typedef union SlabSlot SlabSlot
 

Enumerations

enum  TupSortStatus {
  TSS_INITIAL , TSS_BOUNDED , TSS_BUILDRUNS , TSS_SORTEDINMEM ,
  TSS_SORTEDONTAPE , TSS_FINALMERGE
}
 

Functions

static void tuplesort_begin_batch (Tuplesortstate *state)
 
static bool consider_abort_common (Tuplesortstate *state)
 
static void inittapes (Tuplesortstate *state, bool mergeruns)
 
static void inittapestate (Tuplesortstate *state, int maxTapes)
 
static void selectnewtape (Tuplesortstate *state)
 
static void init_slab_allocator (Tuplesortstate *state, int numSlots)
 
static void mergeruns (Tuplesortstate *state)
 
static void mergeonerun (Tuplesortstate *state)
 
static void beginmerge (Tuplesortstate *state)
 
static bool mergereadnext (Tuplesortstate *state, LogicalTape *srcTape, SortTuple *stup)
 
static void dumptuples (Tuplesortstate *state, bool alltuples)
 
static void make_bounded_heap (Tuplesortstate *state)
 
static void sort_bounded_heap (Tuplesortstate *state)
 
static void tuplesort_sort_memtuples (Tuplesortstate *state)
 
static void tuplesort_heap_insert (Tuplesortstate *state, SortTuple *tuple)
 
static void tuplesort_heap_replace_top (Tuplesortstate *state, SortTuple *tuple)
 
static void tuplesort_heap_delete_top (Tuplesortstate *state)
 
static void reversedirection (Tuplesortstate *state)
 
static unsigned int getlen (LogicalTape *tape, bool eofOK)
 
static void markrunend (LogicalTape *tape)
 
static int worker_get_identifier (Tuplesortstate *state)
 
static void worker_freeze_result_tape (Tuplesortstate *state)
 
static void worker_nomergeruns (Tuplesortstate *state)
 
static void leader_takeover_tapes (Tuplesortstate *state)
 
static void free_sort_tuple (Tuplesortstate *state, SortTuple *stup)
 
static void tuplesort_free (Tuplesortstate *state)
 
static void tuplesort_updatemax (Tuplesortstate *state)
 
static pg_attribute_always_inline int qsort_tuple_unsigned_compare (SortTuple *a, SortTuple *b, Tuplesortstate *state)
 
static pg_attribute_always_inline int qsort_tuple_int32_compare (SortTuple *a, SortTuple *b, Tuplesortstate *state)
 
Tuplesortstatetuplesort_begin_common (int workMem, SortCoordinate coordinate, int sortopt)
 
void tuplesort_set_bound (Tuplesortstate *state, int64 bound)
 
bool tuplesort_used_bound (Tuplesortstate *state)
 
void tuplesort_end (Tuplesortstate *state)
 
void tuplesort_reset (Tuplesortstate *state)
 
static bool grow_memtuples (Tuplesortstate *state)
 
void tuplesort_puttuple_common (Tuplesortstate *state, SortTuple *tuple, bool useAbbrev, Size tuplen)
 
void tuplesort_performsort (Tuplesortstate *state)
 
bool tuplesort_gettuple_common (Tuplesortstate *state, bool forward, SortTuple *stup)
 
bool tuplesort_skiptuples (Tuplesortstate *state, int64 ntuples, bool forward)
 
int tuplesort_merge_order (int64 allowedMem)
 
static int64 merge_read_buffer_size (int64 avail_mem, int nInputTapes, int nInputRuns, int maxOutputTapes)
 
void tuplesort_rescan (Tuplesortstate *state)
 
void tuplesort_markpos (Tuplesortstate *state)
 
void tuplesort_restorepos (Tuplesortstate *state)
 
void tuplesort_get_stats (Tuplesortstate *state, TuplesortInstrumentation *stats)
 
const char * tuplesort_method_name (TuplesortMethod m)
 
const char * tuplesort_space_type_name (TuplesortSpaceType t)
 
void * tuplesort_readtup_alloc (Tuplesortstate *state, Size tuplen)
 
Size tuplesort_estimate_shared (int nWorkers)
 
void tuplesort_initialize_shared (Sharedsort *shared, int nWorkers, dsm_segment *seg)
 
void tuplesort_attach_shared (Sharedsort *shared, dsm_segment *seg)
 
int ssup_datum_unsigned_cmp (Datum x, Datum y, SortSupport ssup)
 
int ssup_datum_int32_cmp (Datum x, Datum y, SortSupport ssup)
 

Variables

bool trace_sort = false
 

Macro Definition Documentation

◆ COMPARETUP

#define COMPARETUP (   state,
  a,
  b 
)    ((*(state)->base.comparetup) (a, b, state))

Definition at line 400 of file tuplesort.c.

◆ FREEMEM

#define FREEMEM (   state,
  amt 
)    ((state)->availMem += (amt))

Definition at line 406 of file tuplesort.c.

◆ FREESTATE

#define FREESTATE (   state)    ((state)->base.freestate ? (*(state)->base.freestate) (state) : (void) 0)

Definition at line 403 of file tuplesort.c.

◆ INITIAL_MEMTUPSIZE

#define INITIAL_MEMTUPSIZE
Value:
Max(1024, \
#define Max(x, y)
Definition: c.h:998
#define ALLOCSET_SEPARATE_THRESHOLD
Definition: memutils.h:187

Definition at line 120 of file tuplesort.c.

◆ IS_SLAB_SLOT

#define IS_SLAB_SLOT (   state,
  tuple 
)
Value:
((char *) (tuple) >= (state)->slabMemoryBegin && \
(char *) (tuple) < (state)->slabMemoryEnd)
Definition: regguts.h:323

Definition at line 379 of file tuplesort.c.

◆ LACKMEM

#define LACKMEM (   state)    ((state)->availMem < 0 && !(state)->slabAllocatorUsed)

Definition at line 404 of file tuplesort.c.

◆ LEADER

#define LEADER (   state)    ((state)->shared && (state)->worker == -1)

Definition at line 409 of file tuplesort.c.

◆ MAXORDER

#define MAXORDER   500 /* maximum merge order */

Definition at line 179 of file tuplesort.c.

◆ MERGE_BUFFER_SIZE

#define MERGE_BUFFER_SIZE   (BLCKSZ * 32)

Definition at line 181 of file tuplesort.c.

◆ MINORDER

#define MINORDER   6 /* minimum merge order */

Definition at line 178 of file tuplesort.c.

◆ READTUP

#define READTUP (   state,
  stup,
  tape,
  len 
)    ((*(state)->base.readtup) (state, stup, tape, len))

Definition at line 402 of file tuplesort.c.

◆ RELEASE_SLAB_SLOT

#define RELEASE_SLAB_SLOT (   state,
  tuple 
)
Value:
do { \
SlabSlot *buf = (SlabSlot *) tuple; \
{ \
buf->nextfree = (state)->slabFreeHead; \
(state)->slabFreeHead = buf; \
} while(0)
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
void pfree(void *pointer)
Definition: mcxt.c:1521
static char * buf
Definition: pg_test_fsync.c:73
#define IS_SLAB_SLOT(state, tuple)
Definition: tuplesort.c:379

Definition at line 387 of file tuplesort.c.

◆ REMOVEABBREV

#define REMOVEABBREV (   state,
  stup,
  count 
)    ((*(state)->base.removeabbrev) (state, stup, count))

Definition at line 399 of file tuplesort.c.

◆ SERIAL

#define SERIAL (   state)    ((state)->shared == NULL)

Definition at line 407 of file tuplesort.c.

◆ SLAB_SLOT_SIZE

#define SLAB_SLOT_SIZE   1024

Definition at line 144 of file tuplesort.c.

◆ ST_CHECK_FOR_INTERRUPTS [1/4]

#define ST_CHECK_FOR_INTERRUPTS

Definition at line 621 of file tuplesort.c.

◆ ST_CHECK_FOR_INTERRUPTS [2/4]

#define ST_CHECK_FOR_INTERRUPTS

Definition at line 621 of file tuplesort.c.

◆ ST_CHECK_FOR_INTERRUPTS [3/4]

#define ST_CHECK_FOR_INTERRUPTS

Definition at line 621 of file tuplesort.c.

◆ ST_CHECK_FOR_INTERRUPTS [4/4]

#define ST_CHECK_FOR_INTERRUPTS

Definition at line 621 of file tuplesort.c.

◆ ST_COMPARE [1/3]

#define ST_COMPARE (   a,
  b,
  ssup 
)
Value:
ApplySortComparator((a)->datum1, (a)->isnull1, \
(b)->datum1, (b)->isnull1, (ssup))
int b
Definition: isn.c:70
int a
Definition: isn.c:69
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:200

Definition at line 617 of file tuplesort.c.

◆ ST_COMPARE [2/3]

#define ST_COMPARE (   a,
  b,
  state 
)    qsort_tuple_unsigned_compare(a, b, state)

Definition at line 617 of file tuplesort.c.

◆ ST_COMPARE [3/3]

#define ST_COMPARE (   a,
  b,
  state 
)    qsort_tuple_int32_compare(a, b, state)

Definition at line 617 of file tuplesort.c.

◆ ST_COMPARE_ARG_TYPE [1/4]

#define ST_COMPARE_ARG_TYPE   Tuplesortstate

Definition at line 620 of file tuplesort.c.

◆ ST_COMPARE_ARG_TYPE [2/4]

#define ST_COMPARE_ARG_TYPE   Tuplesortstate

Definition at line 620 of file tuplesort.c.

◆ ST_COMPARE_ARG_TYPE [3/4]

#define ST_COMPARE_ARG_TYPE   Tuplesortstate

Definition at line 620 of file tuplesort.c.

◆ ST_COMPARE_ARG_TYPE [4/4]

#define ST_COMPARE_ARG_TYPE   SortSupportData

Definition at line 620 of file tuplesort.c.

◆ ST_COMPARE_RUNTIME_POINTER

#define ST_COMPARE_RUNTIME_POINTER

Definition at line 607 of file tuplesort.c.

◆ ST_DECLARE

#define ST_DECLARE

Definition at line 611 of file tuplesort.c.

◆ ST_DEFINE [1/4]

#define ST_DEFINE

Definition at line 623 of file tuplesort.c.

◆ ST_DEFINE [2/4]

#define ST_DEFINE

Definition at line 623 of file tuplesort.c.

◆ ST_DEFINE [3/4]

#define ST_DEFINE

Definition at line 623 of file tuplesort.c.

◆ ST_DEFINE [4/4]

#define ST_DEFINE

Definition at line 623 of file tuplesort.c.

◆ ST_ELEMENT_TYPE [1/4]

#define ST_ELEMENT_TYPE   SortTuple

Definition at line 616 of file tuplesort.c.

◆ ST_ELEMENT_TYPE [2/4]

#define ST_ELEMENT_TYPE   SortTuple

Definition at line 616 of file tuplesort.c.

◆ ST_ELEMENT_TYPE [3/4]

#define ST_ELEMENT_TYPE   SortTuple

Definition at line 616 of file tuplesort.c.

◆ ST_ELEMENT_TYPE [4/4]

#define ST_ELEMENT_TYPE   SortTuple

Definition at line 616 of file tuplesort.c.

◆ ST_SCOPE [1/4]

#define ST_SCOPE   static

Definition at line 622 of file tuplesort.c.

◆ ST_SCOPE [2/4]

#define ST_SCOPE   static

Definition at line 622 of file tuplesort.c.

◆ ST_SCOPE [3/4]

#define ST_SCOPE   static

Definition at line 622 of file tuplesort.c.

◆ ST_SCOPE [4/4]

#define ST_SCOPE   static

Definition at line 622 of file tuplesort.c.

◆ ST_SORT [1/4]

#define ST_SORT   qsort_tuple_unsigned

Definition at line 615 of file tuplesort.c.

◆ ST_SORT [2/4]

#define ST_SORT   qsort_tuple_int32

Definition at line 615 of file tuplesort.c.

◆ ST_SORT [3/4]

#define ST_SORT   qsort_tuple

Definition at line 615 of file tuplesort.c.

◆ ST_SORT [4/4]

#define ST_SORT   qsort_ssup

Definition at line 615 of file tuplesort.c.

◆ TAPE_BUFFER_OVERHEAD

#define TAPE_BUFFER_OVERHEAD   BLCKSZ

Definition at line 180 of file tuplesort.c.

◆ USEMEM

#define USEMEM (   state,
  amt 
)    ((state)->availMem -= (amt))

Definition at line 405 of file tuplesort.c.

◆ WORKER

#define WORKER (   state)    ((state)->shared && (state)->worker != -1)

Definition at line 408 of file tuplesort.c.

◆ WRITETUP

#define WRITETUP (   state,
  tape,
  stup 
)    ((*(state)->base.writetup) (state, tape, stup))

Definition at line 401 of file tuplesort.c.

Typedef Documentation

◆ SlabSlot

typedef union SlabSlot SlabSlot

Enumeration Type Documentation

◆ TupSortStatus

Enumerator
TSS_INITIAL 
TSS_BOUNDED 
TSS_BUILDRUNS 
TSS_SORTEDINMEM 
TSS_SORTEDONTAPE 
TSS_FINALMERGE 

Definition at line 156 of file tuplesort.c.

157 {
158  TSS_INITIAL, /* Loading tuples; still within memory limit */
159  TSS_BOUNDED, /* Loading tuples into bounded-size heap */
160  TSS_BUILDRUNS, /* Loading tuples; writing to tape */
161  TSS_SORTEDINMEM, /* Sort completed entirely in memory */
162  TSS_SORTEDONTAPE, /* Sort completed, final run is on tape */
163  TSS_FINALMERGE, /* Performing final merge on-the-fly */
164 } TupSortStatus;
TupSortStatus
Definition: tuplesort.c:157
@ TSS_SORTEDONTAPE
Definition: tuplesort.c:162
@ TSS_SORTEDINMEM
Definition: tuplesort.c:161
@ TSS_INITIAL
Definition: tuplesort.c:158
@ TSS_FINALMERGE
Definition: tuplesort.c:163
@ TSS_BUILDRUNS
Definition: tuplesort.c:160
@ TSS_BOUNDED
Definition: tuplesort.c:159

Function Documentation

◆ beginmerge()

static void beginmerge ( Tuplesortstate state)
static

Definition at line 2293 of file tuplesort.c.

2294 {
2295  int activeTapes;
2296  int srcTapeIndex;
2297 
2298  /* Heap should be empty here */
2299  Assert(state->memtupcount == 0);
2300 
2301  activeTapes = Min(state->nInputTapes, state->nInputRuns);
2302 
2303  for (srcTapeIndex = 0; srcTapeIndex < activeTapes; srcTapeIndex++)
2304  {
2305  SortTuple tup;
2306 
2307  if (mergereadnext(state, state->inputTapes[srcTapeIndex], &tup))
2308  {
2309  tup.srctape = srcTapeIndex;
2311  }
2312  }
2313 }
#define Min(x, y)
Definition: c.h:1004
#define Assert(condition)
Definition: c.h:858
int srctape
Definition: tuplesort.h:152
static void tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:2778
static bool mergereadnext(Tuplesortstate *state, LogicalTape *srcTape, SortTuple *stup)
Definition: tuplesort.c:2321

References Assert, mergereadnext(), Min, SortTuple::srctape, and tuplesort_heap_insert().

Referenced by mergeonerun(), and mergeruns().

◆ consider_abort_common()

static bool consider_abort_common ( Tuplesortstate state)
static

Definition at line 1342 of file tuplesort.c.

1343 {
1344  Assert(state->base.sortKeys[0].abbrev_converter != NULL);
1345  Assert(state->base.sortKeys[0].abbrev_abort != NULL);
1346  Assert(state->base.sortKeys[0].abbrev_full_comparator != NULL);
1347 
1348  /*
1349  * Check effectiveness of abbreviation optimization. Consider aborting
1350  * when still within memory limit.
1351  */
1352  if (state->status == TSS_INITIAL &&
1353  state->memtupcount >= state->abbrevNext)
1354  {
1355  state->abbrevNext *= 2;
1356 
1357  /*
1358  * Check opclass-supplied abbreviation abort routine. It may indicate
1359  * that abbreviation should not proceed.
1360  */
1361  if (!state->base.sortKeys->abbrev_abort(state->memtupcount,
1362  state->base.sortKeys))
1363  return false;
1364 
1365  /*
1366  * Finally, restore authoritative comparator, and indicate that
1367  * abbreviation is not in play by setting abbrev_converter to NULL
1368  */
1369  state->base.sortKeys[0].comparator = state->base.sortKeys[0].abbrev_full_comparator;
1370  state->base.sortKeys[0].abbrev_converter = NULL;
1371  /* Not strictly necessary, but be tidy */
1372  state->base.sortKeys[0].abbrev_abort = NULL;
1373  state->base.sortKeys[0].abbrev_full_comparator = NULL;
1374 
1375  /* Give up - expect original pass-by-value representation */
1376  return true;
1377  }
1378 
1379  return false;
1380 }

References Assert, and TSS_INITIAL.

Referenced by tuplesort_puttuple_common().

◆ dumptuples()

static void dumptuples ( Tuplesortstate state,
bool  alltuples 
)
static

Definition at line 2340 of file tuplesort.c.

2341 {
2342  int memtupwrite;
2343  int i;
2344 
2345  /*
2346  * Nothing to do if we still fit in available memory and have array slots,
2347  * unless this is the final call during initial run generation.
2348  */
2349  if (state->memtupcount < state->memtupsize && !LACKMEM(state) &&
2350  !alltuples)
2351  return;
2352 
2353  /*
2354  * Final call might require no sorting, in rare cases where we just so
2355  * happen to have previously LACKMEM()'d at the point where exactly all
2356  * remaining tuples are loaded into memory, just before input was
2357  * exhausted. In general, short final runs are quite possible, but avoid
2358  * creating a completely empty run. In a worker, though, we must produce
2359  * at least one tape, even if it's empty.
2360  */
2361  if (state->memtupcount == 0 && state->currentRun > 0)
2362  return;
2363 
2364  Assert(state->status == TSS_BUILDRUNS);
2365 
2366  /*
2367  * It seems unlikely that this limit will ever be exceeded, but take no
2368  * chances
2369  */
2370  if (state->currentRun == INT_MAX)
2371  ereport(ERROR,
2372  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
2373  errmsg("cannot have more than %d runs for an external sort",
2374  INT_MAX)));
2375 
2376  if (state->currentRun > 0)
2378 
2379  state->currentRun++;
2380 
2381 #ifdef TRACE_SORT
2382  if (trace_sort)
2383  elog(LOG, "worker %d starting quicksort of run %d: %s",
2384  state->worker, state->currentRun,
2385  pg_rusage_show(&state->ru_start));
2386 #endif
2387 
2388  /*
2389  * Sort all tuples accumulated within the allowed amount of memory for
2390  * this run using quicksort
2391  */
2393 
2394 #ifdef TRACE_SORT
2395  if (trace_sort)
2396  elog(LOG, "worker %d finished quicksort of run %d: %s",
2397  state->worker, state->currentRun,
2398  pg_rusage_show(&state->ru_start));
2399 #endif
2400 
2401  memtupwrite = state->memtupcount;
2402  for (i = 0; i < memtupwrite; i++)
2403  {
2404  SortTuple *stup = &state->memtuples[i];
2405 
2406  WRITETUP(state, state->destTape, stup);
2407  }
2408 
2409  state->memtupcount = 0;
2410 
2411  /*
2412  * Reset tuple memory. We've freed all of the tuples that we previously
2413  * allocated. It's important to avoid fragmentation when there is a stark
2414  * change in the sizes of incoming tuples. In bounded sorts,
2415  * fragmentation due to AllocSetFree's bucketing by size class might be
2416  * particularly bad if this step wasn't taken.
2417  */
2418  MemoryContextReset(state->base.tuplecontext);
2419 
2420  /*
2421  * Now update the memory accounting to subtract the memory used by the
2422  * tuple.
2423  */
2424  FREEMEM(state, state->tupleMem);
2425  state->tupleMem = 0;
2426 
2427  markrunend(state->destTape);
2428 
2429 #ifdef TRACE_SORT
2430  if (trace_sort)
2431  elog(LOG, "worker %d finished writing run %d to tape %d: %s",
2432  state->worker, state->currentRun, (state->currentRun - 1) % state->nOutputTapes + 1,
2433  pg_rusage_show(&state->ru_start));
2434 #endif
2435 }
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define LOG
Definition: elog.h:31
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define ereport(elevel,...)
Definition: elog.h:149
int i
Definition: isn.c:73
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:383
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
static void selectnewtape(Tuplesortstate *state)
Definition: tuplesort.c:1977
static void markrunend(LogicalTape *tape)
Definition: tuplesort.c:2908
#define LACKMEM(state)
Definition: tuplesort.c:404
#define WRITETUP(state, tape, stup)
Definition: tuplesort.c:401
#define FREEMEM(state, amt)
Definition: tuplesort.c:406
static void tuplesort_sort_memtuples(Tuplesortstate *state)
Definition: tuplesort.c:2715
bool trace_sort
Definition: tuplesort.c:125

References Assert, elog, ereport, errcode(), errmsg(), ERROR, FREEMEM, i, LACKMEM, LOG, markrunend(), MemoryContextReset(), pg_rusage_show(), selectnewtape(), trace_sort, TSS_BUILDRUNS, tuplesort_sort_memtuples(), and WRITETUP.

Referenced by tuplesort_performsort(), and tuplesort_puttuple_common().

◆ free_sort_tuple()

static void free_sort_tuple ( Tuplesortstate state,
SortTuple stup 
)
static

Definition at line 3167 of file tuplesort.c.

3168 {
3169  if (stup->tuple)
3170  {
3172  pfree(stup->tuple);
3173  stup->tuple = NULL;
3174  }
3175 }
Size GetMemoryChunkSpace(void *pointer)
Definition: mcxt.c:721
void * tuple
Definition: tuplesort.h:149

References FREEMEM, GetMemoryChunkSpace(), pfree(), and SortTuple::tuple.

Referenced by make_bounded_heap(), and tuplesort_puttuple_common().

◆ getlen()

static unsigned int getlen ( LogicalTape tape,
bool  eofOK 
)
static

Definition at line 2895 of file tuplesort.c.

2896 {
2897  unsigned int len;
2898 
2899  if (LogicalTapeRead(tape,
2900  &len, sizeof(len)) != sizeof(len))
2901  elog(ERROR, "unexpected end of tape");
2902  if (len == 0 && !eofOK)
2903  elog(ERROR, "unexpected end of data");
2904  return len;
2905 }
size_t LogicalTapeRead(LogicalTape *lt, void *ptr, size_t size)
Definition: logtape.c:928
const void size_t len

References elog, ERROR, len, and LogicalTapeRead().

Referenced by mergereadnext(), and tuplesort_gettuple_common().

◆ grow_memtuples()

static bool grow_memtuples ( Tuplesortstate state)
static

Definition at line 1073 of file tuplesort.c.

1074 {
1075  int newmemtupsize;
1076  int memtupsize = state->memtupsize;
1077  int64 memNowUsed = state->allowedMem - state->availMem;
1078 
1079  /* Forget it if we've already maxed out memtuples, per comment above */
1080  if (!state->growmemtuples)
1081  return false;
1082 
1083  /* Select new value of memtupsize */
1084  if (memNowUsed <= state->availMem)
1085  {
1086  /*
1087  * We've used no more than half of allowedMem; double our usage,
1088  * clamping at INT_MAX tuples.
1089  */
1090  if (memtupsize < INT_MAX / 2)
1091  newmemtupsize = memtupsize * 2;
1092  else
1093  {
1094  newmemtupsize = INT_MAX;
1095  state->growmemtuples = false;
1096  }
1097  }
1098  else
1099  {
1100  /*
1101  * This will be the last increment of memtupsize. Abandon doubling
1102  * strategy and instead increase as much as we safely can.
1103  *
1104  * To stay within allowedMem, we can't increase memtupsize by more
1105  * than availMem / sizeof(SortTuple) elements. In practice, we want
1106  * to increase it by considerably less, because we need to leave some
1107  * space for the tuples to which the new array slots will refer. We
1108  * assume the new tuples will be about the same size as the tuples
1109  * we've already seen, and thus we can extrapolate from the space
1110  * consumption so far to estimate an appropriate new size for the
1111  * memtuples array. The optimal value might be higher or lower than
1112  * this estimate, but it's hard to know that in advance. We again
1113  * clamp at INT_MAX tuples.
1114  *
1115  * This calculation is safe against enlarging the array so much that
1116  * LACKMEM becomes true, because the memory currently used includes
1117  * the present array; thus, there would be enough allowedMem for the
1118  * new array elements even if no other memory were currently used.
1119  *
1120  * We do the arithmetic in float8, because otherwise the product of
1121  * memtupsize and allowedMem could overflow. Any inaccuracy in the
1122  * result should be insignificant; but even if we computed a
1123  * completely insane result, the checks below will prevent anything
1124  * really bad from happening.
1125  */
1126  double grow_ratio;
1127 
1128  grow_ratio = (double) state->allowedMem / (double) memNowUsed;
1129  if (memtupsize * grow_ratio < INT_MAX)
1130  newmemtupsize = (int) (memtupsize * grow_ratio);
1131  else
1132  newmemtupsize = INT_MAX;
1133 
1134  /* We won't make any further enlargement attempts */
1135  state->growmemtuples = false;
1136  }
1137 
1138  /* Must enlarge array by at least one element, else report failure */
1139  if (newmemtupsize <= memtupsize)
1140  goto noalloc;
1141 
1142  /*
1143  * On a 32-bit machine, allowedMem could exceed MaxAllocHugeSize. Clamp
1144  * to ensure our request won't be rejected. Note that we can easily
1145  * exhaust address space before facing this outcome. (This is presently
1146  * impossible due to guc.c's MAX_KILOBYTES limitation on work_mem, but
1147  * don't rely on that at this distance.)
1148  */
1149  if ((Size) newmemtupsize >= MaxAllocHugeSize / sizeof(SortTuple))
1150  {
1151  newmemtupsize = (int) (MaxAllocHugeSize / sizeof(SortTuple));
1152  state->growmemtuples = false; /* can't grow any more */
1153  }
1154 
1155  /*
1156  * We need to be sure that we do not cause LACKMEM to become true, else
1157  * the space management algorithm will go nuts. The code above should
1158  * never generate a dangerous request, but to be safe, check explicitly
1159  * that the array growth fits within availMem. (We could still cause
1160  * LACKMEM if the memory chunk overhead associated with the memtuples
1161  * array were to increase. That shouldn't happen because we chose the
1162  * initial array size large enough to ensure that palloc will be treating
1163  * both old and new arrays as separate chunks. But we'll check LACKMEM
1164  * explicitly below just in case.)
1165  */
1166  if (state->availMem < (int64) ((newmemtupsize - memtupsize) * sizeof(SortTuple)))
1167  goto noalloc;
1168 
1169  /* OK, do it */
1170  FREEMEM(state, GetMemoryChunkSpace(state->memtuples));
1171  state->memtupsize = newmemtupsize;
1172  state->memtuples = (SortTuple *)
1173  repalloc_huge(state->memtuples,
1174  state->memtupsize * sizeof(SortTuple));
1175  USEMEM(state, GetMemoryChunkSpace(state->memtuples));
1176  if (LACKMEM(state))
1177  elog(ERROR, "unexpected out-of-memory situation in tuplesort");
1178  return true;
1179 
1180 noalloc:
1181  /* If for any reason we didn't realloc, shut off future attempts */
1182  state->growmemtuples = false;
1183  return false;
1184 }
size_t Size
Definition: c.h:605
void * repalloc_huge(void *pointer, Size size)
Definition: mcxt.c:1672
#define MaxAllocHugeSize
Definition: memutils.h:45
#define USEMEM(state, amt)
Definition: tuplesort.c:405

References elog, ERROR, FREEMEM, GetMemoryChunkSpace(), LACKMEM, MaxAllocHugeSize, repalloc_huge(), and USEMEM.

Referenced by tuplesort_puttuple_common().

◆ init_slab_allocator()

static void init_slab_allocator ( Tuplesortstate state,
int  numSlots 
)
static

Definition at line 2010 of file tuplesort.c.

2011 {
2012  if (numSlots > 0)
2013  {
2014  char *p;
2015  int i;
2016 
2017  state->slabMemoryBegin = palloc(numSlots * SLAB_SLOT_SIZE);
2018  state->slabMemoryEnd = state->slabMemoryBegin +
2019  numSlots * SLAB_SLOT_SIZE;
2020  state->slabFreeHead = (SlabSlot *) state->slabMemoryBegin;
2021  USEMEM(state, numSlots * SLAB_SLOT_SIZE);
2022 
2023  p = state->slabMemoryBegin;
2024  for (i = 0; i < numSlots - 1; i++)
2025  {
2026  ((SlabSlot *) p)->nextfree = (SlabSlot *) (p + SLAB_SLOT_SIZE);
2027  p += SLAB_SLOT_SIZE;
2028  }
2029  ((SlabSlot *) p)->nextfree = NULL;
2030  }
2031  else
2032  {
2033  state->slabMemoryBegin = state->slabMemoryEnd = NULL;
2034  state->slabFreeHead = NULL;
2035  }
2036  state->slabAllocatorUsed = true;
2037 }
void * palloc(Size size)
Definition: mcxt.c:1317
#define SLAB_SLOT_SIZE
Definition: tuplesort.c:144

References i, palloc(), SLAB_SLOT_SIZE, and USEMEM.

Referenced by mergeruns().

◆ inittapes()

static void inittapes ( Tuplesortstate state,
bool  mergeruns 
)
static

Definition at line 1892 of file tuplesort.c.

1893 {
1894  Assert(!LEADER(state));
1895 
1896  if (mergeruns)
1897  {
1898  /* Compute number of input tapes to use when merging */
1899  state->maxTapes = tuplesort_merge_order(state->allowedMem);
1900  }
1901  else
1902  {
1903  /* Workers can sometimes produce single run, output without merge */
1904  Assert(WORKER(state));
1905  state->maxTapes = MINORDER;
1906  }
1907 
1908 #ifdef TRACE_SORT
1909  if (trace_sort)
1910  elog(LOG, "worker %d switching to external sort with %d tapes: %s",
1911  state->worker, state->maxTapes, pg_rusage_show(&state->ru_start));
1912 #endif
1913 
1914  /* Create the tape set */
1915  inittapestate(state, state->maxTapes);
1916  state->tapeset =
1917  LogicalTapeSetCreate(false,
1918  state->shared ? &state->shared->fileset : NULL,
1919  state->worker);
1920 
1921  state->currentRun = 0;
1922 
1923  /*
1924  * Initialize logical tape arrays.
1925  */
1926  state->inputTapes = NULL;
1927  state->nInputTapes = 0;
1928  state->nInputRuns = 0;
1929 
1930  state->outputTapes = palloc0(state->maxTapes * sizeof(LogicalTape *));
1931  state->nOutputTapes = 0;
1932  state->nOutputRuns = 0;
1933 
1934  state->status = TSS_BUILDRUNS;
1935 
1937 }
LogicalTapeSet * LogicalTapeSetCreate(bool preallocate, SharedFileSet *fileset, int worker)
Definition: logtape.c:556
void * palloc0(Size size)
Definition: mcxt.c:1347
int tuplesort_merge_order(int64 allowedMem)
Definition: tuplesort.c:1805
static void inittapestate(Tuplesortstate *state, int maxTapes)
Definition: tuplesort.c:1943
#define LEADER(state)
Definition: tuplesort.c:409
#define WORKER(state)
Definition: tuplesort.c:408
static void mergeruns(Tuplesortstate *state)
Definition: tuplesort.c:2046
#define MINORDER
Definition: tuplesort.c:178

References Assert, elog, inittapestate(), LEADER, LOG, LogicalTapeSetCreate(), mergeruns(), MINORDER, palloc0(), pg_rusage_show(), selectnewtape(), trace_sort, TSS_BUILDRUNS, tuplesort_merge_order(), and WORKER.

Referenced by tuplesort_performsort(), and tuplesort_puttuple_common().

◆ inittapestate()

static void inittapestate ( Tuplesortstate state,
int  maxTapes 
)
static

Definition at line 1943 of file tuplesort.c.

1944 {
1945  int64 tapeSpace;
1946 
1947  /*
1948  * Decrease availMem to reflect the space needed for tape buffers; but
1949  * don't decrease it to the point that we have no room for tuples. (That
1950  * case is only likely to occur if sorting pass-by-value Datums; in all
1951  * other scenarios the memtuples[] array is unlikely to occupy more than
1952  * half of allowedMem. In the pass-by-value case it's not important to
1953  * account for tuple space, so we don't care if LACKMEM becomes
1954  * inaccurate.)
1955  */
1956  tapeSpace = (int64) maxTapes * TAPE_BUFFER_OVERHEAD;
1957 
1958  if (tapeSpace + GetMemoryChunkSpace(state->memtuples) < state->allowedMem)
1959  USEMEM(state, tapeSpace);
1960 
1961  /*
1962  * Make sure that the temp file(s) underlying the tape set are created in
1963  * suitable temp tablespaces. For parallel sorts, this should have been
1964  * called already, but it doesn't matter if it is called a second time.
1965  */
1967 }
void PrepareTempTablespaces(void)
Definition: tablespace.c:1331
#define TAPE_BUFFER_OVERHEAD
Definition: tuplesort.c:180

References GetMemoryChunkSpace(), PrepareTempTablespaces(), TAPE_BUFFER_OVERHEAD, and USEMEM.

Referenced by inittapes(), and leader_takeover_tapes().

◆ leader_takeover_tapes()

static void leader_takeover_tapes ( Tuplesortstate state)
static

Definition at line 3108 of file tuplesort.c.

3109 {
3110  Sharedsort *shared = state->shared;
3111  int nParticipants = state->nParticipants;
3112  int workersFinished;
3113  int j;
3114 
3115  Assert(LEADER(state));
3116  Assert(nParticipants >= 1);
3117 
3118  SpinLockAcquire(&shared->mutex);
3119  workersFinished = shared->workersFinished;
3120  SpinLockRelease(&shared->mutex);
3121 
3122  if (nParticipants != workersFinished)
3123  elog(ERROR, "cannot take over tapes before all workers finish");
3124 
3125  /*
3126  * Create the tapeset from worker tapes, including a leader-owned tape at
3127  * the end. Parallel workers are far more expensive than logical tapes,
3128  * so the number of tapes allocated here should never be excessive.
3129  */
3130  inittapestate(state, nParticipants);
3131  state->tapeset = LogicalTapeSetCreate(false, &shared->fileset, -1);
3132 
3133  /*
3134  * Set currentRun to reflect the number of runs we will merge (it's not
3135  * used for anything, this is just pro forma)
3136  */
3137  state->currentRun = nParticipants;
3138 
3139  /*
3140  * Initialize the state to look the same as after building the initial
3141  * runs.
3142  *
3143  * There will always be exactly 1 run per worker, and exactly one input
3144  * tape per run, because workers always output exactly 1 run, even when
3145  * there were no input tuples for workers to sort.
3146  */
3147  state->inputTapes = NULL;
3148  state->nInputTapes = 0;
3149  state->nInputRuns = 0;
3150 
3151  state->outputTapes = palloc0(nParticipants * sizeof(LogicalTape *));
3152  state->nOutputTapes = nParticipants;
3153  state->nOutputRuns = nParticipants;
3154 
3155  for (j = 0; j < nParticipants; j++)
3156  {
3157  state->outputTapes[j] = LogicalTapeImport(state->tapeset, j, &shared->tapes[j]);
3158  }
3159 
3160  state->status = TSS_BUILDRUNS;
3161 }
int j
Definition: isn.c:74
LogicalTape * LogicalTapeImport(LogicalTapeSet *lts, int worker, TapeShare *shared)
Definition: logtape.c:609
#define SpinLockRelease(lock)
Definition: spin.h:64
#define SpinLockAcquire(lock)
Definition: spin.h:62
SharedFileSet fileset
Definition: tuplesort.c:364
TapeShare tapes[FLEXIBLE_ARRAY_MEMBER]
Definition: tuplesort.c:373
int workersFinished
Definition: tuplesort.c:361
slock_t mutex
Definition: tuplesort.c:350

References Assert, elog, ERROR, Sharedsort::fileset, inittapestate(), j, LEADER, LogicalTapeImport(), LogicalTapeSetCreate(), Sharedsort::mutex, palloc0(), SpinLockAcquire, SpinLockRelease, Sharedsort::tapes, TSS_BUILDRUNS, and Sharedsort::workersFinished.

Referenced by tuplesort_performsort().

◆ make_bounded_heap()

static void make_bounded_heap ( Tuplesortstate state)
static

Definition at line 2626 of file tuplesort.c.

2627 {
2628  int tupcount = state->memtupcount;
2629  int i;
2630 
2631  Assert(state->status == TSS_INITIAL);
2632  Assert(state->bounded);
2633  Assert(tupcount >= state->bound);
2634  Assert(SERIAL(state));
2635 
2636  /* Reverse sort direction so largest entry will be at root */
2638 
2639  state->memtupcount = 0; /* make the heap empty */
2640  for (i = 0; i < tupcount; i++)
2641  {
2642  if (state->memtupcount < state->bound)
2643  {
2644  /* Insert next tuple into heap */
2645  /* Must copy source tuple to avoid possible overwrite */
2646  SortTuple stup = state->memtuples[i];
2647 
2648  tuplesort_heap_insert(state, &stup);
2649  }
2650  else
2651  {
2652  /*
2653  * The heap is full. Replace the largest entry with the new
2654  * tuple, or just discard it, if it's larger than anything already
2655  * in the heap.
2656  */
2657  if (COMPARETUP(state, &state->memtuples[i], &state->memtuples[0]) <= 0)
2658  {
2659  free_sort_tuple(state, &state->memtuples[i]);
2661  }
2662  else
2663  tuplesort_heap_replace_top(state, &state->memtuples[i]);
2664  }
2665  }
2666 
2667  Assert(state->memtupcount == state->bound);
2668  state->status = TSS_BOUNDED;
2669 }
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
#define COMPARETUP(state, a, b)
Definition: tuplesort.c:400
#define SERIAL(state)
Definition: tuplesort.c:407
static void free_sort_tuple(Tuplesortstate *state, SortTuple *stup)
Definition: tuplesort.c:3167
static void reversedirection(Tuplesortstate *state)
Definition: tuplesort.c:2877
static void tuplesort_heap_replace_top(Tuplesortstate *state, SortTuple *tuple)
Definition: tuplesort.c:2837

References Assert, CHECK_FOR_INTERRUPTS, COMPARETUP, free_sort_tuple(), i, reversedirection(), SERIAL, TSS_BOUNDED, TSS_INITIAL, tuplesort_heap_insert(), and tuplesort_heap_replace_top().

Referenced by tuplesort_puttuple_common().

◆ markrunend()

static void markrunend ( LogicalTape tape)
static

Definition at line 2908 of file tuplesort.c.

2909 {
2910  unsigned int len = 0;
2911 
2912  LogicalTapeWrite(tape, &len, sizeof(len));
2913 }
void LogicalTapeWrite(LogicalTape *lt, const void *ptr, size_t size)
Definition: logtape.c:761

References len, and LogicalTapeWrite().

Referenced by dumptuples(), and mergeonerun().

◆ merge_read_buffer_size()

static int64 merge_read_buffer_size ( int64  avail_mem,
int  nInputTapes,
int  nInputRuns,
int  maxOutputTapes 
)
static

Definition at line 1860 of file tuplesort.c.

1862 {
1863  int nOutputRuns;
1864  int nOutputTapes;
1865 
1866  /*
1867  * How many output tapes will we produce in this pass?
1868  *
1869  * This is nInputRuns / nInputTapes, rounded up.
1870  */
1871  nOutputRuns = (nInputRuns + nInputTapes - 1) / nInputTapes;
1872 
1873  nOutputTapes = Min(nOutputRuns, maxOutputTapes);
1874 
1875  /*
1876  * Each output tape consumes TAPE_BUFFER_OVERHEAD bytes of memory. All
1877  * remaining memory is divided evenly between the input tapes.
1878  *
1879  * This also follows from the formula in tuplesort_merge_order, but here
1880  * we derive the input buffer size from the amount of memory available,
1881  * and M and N.
1882  */
1883  return Max((avail_mem - TAPE_BUFFER_OVERHEAD * nOutputTapes) / nInputTapes, 0);
1884 }

References Max, Min, and TAPE_BUFFER_OVERHEAD.

Referenced by mergeruns().

◆ mergeonerun()

static void mergeonerun ( Tuplesortstate state)
static

Definition at line 2233 of file tuplesort.c.

2234 {
2235  int srcTapeIndex;
2236  LogicalTape *srcTape;
2237 
2238  /*
2239  * Start the merge by loading one tuple from each active source tape into
2240  * the heap.
2241  */
2242  beginmerge(state);
2243 
2244  Assert(state->slabAllocatorUsed);
2245 
2246  /*
2247  * Execute merge by repeatedly extracting lowest tuple in heap, writing it
2248  * out, and replacing it with next tuple from same tape (if there is
2249  * another one).
2250  */
2251  while (state->memtupcount > 0)
2252  {
2253  SortTuple stup;
2254 
2255  /* write the tuple to destTape */
2256  srcTapeIndex = state->memtuples[0].srctape;
2257  srcTape = state->inputTapes[srcTapeIndex];
2258  WRITETUP(state, state->destTape, &state->memtuples[0]);
2259 
2260  /* recycle the slot of the tuple we just wrote out, for the next read */
2261  if (state->memtuples[0].tuple)
2262  RELEASE_SLAB_SLOT(state, state->memtuples[0].tuple);
2263 
2264  /*
2265  * pull next tuple from the tape, and replace the written-out tuple in
2266  * the heap with it.
2267  */
2268  if (mergereadnext(state, srcTape, &stup))
2269  {
2270  stup.srctape = srcTapeIndex;
2272  }
2273  else
2274  {
2276  state->nInputRuns--;
2277  }
2278  }
2279 
2280  /*
2281  * When the heap empties, we're done. Write an end-of-run marker on the
2282  * output tape.
2283  */
2284  markrunend(state->destTape);
2285 }
static void tuplesort_heap_delete_top(Tuplesortstate *state)
Definition: tuplesort.c:2813
static void beginmerge(Tuplesortstate *state)
Definition: tuplesort.c:2293
#define RELEASE_SLAB_SLOT(state, tuple)
Definition: tuplesort.c:387

References Assert, beginmerge(), markrunend(), mergereadnext(), RELEASE_SLAB_SLOT, SortTuple::srctape, tuplesort_heap_delete_top(), tuplesort_heap_replace_top(), and WRITETUP.

Referenced by mergeruns().

◆ mergereadnext()

static bool mergereadnext ( Tuplesortstate state,
LogicalTape srcTape,
SortTuple stup 
)
static

Definition at line 2321 of file tuplesort.c.

2322 {
2323  unsigned int tuplen;
2324 
2325  /* read next tuple, if any */
2326  if ((tuplen = getlen(srcTape, true)) == 0)
2327  return false;
2328  READTUP(state, stup, srcTape, tuplen);
2329 
2330  return true;
2331 }
static unsigned int getlen(LogicalTape *tape, bool eofOK)
Definition: tuplesort.c:2895
#define READTUP(state, stup, tape, len)
Definition: tuplesort.c:402

References getlen(), and READTUP.

Referenced by beginmerge(), mergeonerun(), and tuplesort_gettuple_common().

◆ mergeruns()

static void mergeruns ( Tuplesortstate state)
static

Definition at line 2046 of file tuplesort.c.

2047 {
2048  int tapenum;
2049 
2050  Assert(state->status == TSS_BUILDRUNS);
2051  Assert(state->memtupcount == 0);
2052 
2053  if (state->base.sortKeys != NULL && state->base.sortKeys->abbrev_converter != NULL)
2054  {
2055  /*
2056  * If there are multiple runs to be merged, when we go to read back
2057  * tuples from disk, abbreviated keys will not have been stored, and
2058  * we don't care to regenerate them. Disable abbreviation from this
2059  * point on.
2060  */
2061  state->base.sortKeys->abbrev_converter = NULL;
2062  state->base.sortKeys->comparator = state->base.sortKeys->abbrev_full_comparator;
2063 
2064  /* Not strictly necessary, but be tidy */
2065  state->base.sortKeys->abbrev_abort = NULL;
2066  state->base.sortKeys->abbrev_full_comparator = NULL;
2067  }
2068 
2069  /*
2070  * Reset tuple memory. We've freed all the tuples that we previously
2071  * allocated. We will use the slab allocator from now on.
2072  */
2073  MemoryContextResetOnly(state->base.tuplecontext);
2074 
2075  /*
2076  * We no longer need a large memtuples array. (We will allocate a smaller
2077  * one for the heap later.)
2078  */
2079  FREEMEM(state, GetMemoryChunkSpace(state->memtuples));
2080  pfree(state->memtuples);
2081  state->memtuples = NULL;
2082 
2083  /*
2084  * Initialize the slab allocator. We need one slab slot per input tape,
2085  * for the tuples in the heap, plus one to hold the tuple last returned
2086  * from tuplesort_gettuple. (If we're sorting pass-by-val Datums,
2087  * however, we don't need to do allocate anything.)
2088  *
2089  * In a multi-pass merge, we could shrink this allocation for the last
2090  * merge pass, if it has fewer tapes than previous passes, but we don't
2091  * bother.
2092  *
2093  * From this point on, we no longer use the USEMEM()/LACKMEM() mechanism
2094  * to track memory usage of individual tuples.
2095  */
2096  if (state->base.tuples)
2097  init_slab_allocator(state, state->nOutputTapes + 1);
2098  else
2100 
2101  /*
2102  * Allocate a new 'memtuples' array, for the heap. It will hold one tuple
2103  * from each input tape.
2104  *
2105  * We could shrink this, too, between passes in a multi-pass merge, but we
2106  * don't bother. (The initial input tapes are still in outputTapes. The
2107  * number of input tapes will not increase between passes.)
2108  */
2109  state->memtupsize = state->nOutputTapes;
2110  state->memtuples = (SortTuple *) MemoryContextAlloc(state->base.maincontext,
2111  state->nOutputTapes * sizeof(SortTuple));
2112  USEMEM(state, GetMemoryChunkSpace(state->memtuples));
2113 
2114  /*
2115  * Use all the remaining memory we have available for tape buffers among
2116  * all the input tapes. At the beginning of each merge pass, we will
2117  * divide this memory between the input and output tapes in the pass.
2118  */
2119  state->tape_buffer_mem = state->availMem;
2120  USEMEM(state, state->tape_buffer_mem);
2121 #ifdef TRACE_SORT
2122  if (trace_sort)
2123  elog(LOG, "worker %d using %zu KB of memory for tape buffers",
2124  state->worker, state->tape_buffer_mem / 1024);
2125 #endif
2126 
2127  for (;;)
2128  {
2129  /*
2130  * On the first iteration, or if we have read all the runs from the
2131  * input tapes in a multi-pass merge, it's time to start a new pass.
2132  * Rewind all the output tapes, and make them inputs for the next
2133  * pass.
2134  */
2135  if (state->nInputRuns == 0)
2136  {
2137  int64 input_buffer_size;
2138 
2139  /* Close the old, emptied, input tapes */
2140  if (state->nInputTapes > 0)
2141  {
2142  for (tapenum = 0; tapenum < state->nInputTapes; tapenum++)
2143  LogicalTapeClose(state->inputTapes[tapenum]);
2144  pfree(state->inputTapes);
2145  }
2146 
2147  /* Previous pass's outputs become next pass's inputs. */
2148  state->inputTapes = state->outputTapes;
2149  state->nInputTapes = state->nOutputTapes;
2150  state->nInputRuns = state->nOutputRuns;
2151 
2152  /*
2153  * Reset output tape variables. The actual LogicalTapes will be
2154  * created as needed, here we only allocate the array to hold
2155  * them.
2156  */
2157  state->outputTapes = palloc0(state->nInputTapes * sizeof(LogicalTape *));
2158  state->nOutputTapes = 0;
2159  state->nOutputRuns = 0;
2160 
2161  /*
2162  * Redistribute the memory allocated for tape buffers, among the
2163  * new input and output tapes.
2164  */
2165  input_buffer_size = merge_read_buffer_size(state->tape_buffer_mem,
2166  state->nInputTapes,
2167  state->nInputRuns,
2168  state->maxTapes);
2169 
2170 #ifdef TRACE_SORT
2171  if (trace_sort)
2172  elog(LOG, "starting merge pass of %d input runs on %d tapes, " INT64_FORMAT " KB of memory for each input tape: %s",
2173  state->nInputRuns, state->nInputTapes, input_buffer_size / 1024,
2174  pg_rusage_show(&state->ru_start));
2175 #endif
2176 
2177  /* Prepare the new input tapes for merge pass. */
2178  for (tapenum = 0; tapenum < state->nInputTapes; tapenum++)
2179  LogicalTapeRewindForRead(state->inputTapes[tapenum], input_buffer_size);
2180 
2181  /*
2182  * If there's just one run left on each input tape, then only one
2183  * merge pass remains. If we don't have to produce a materialized
2184  * sorted tape, we can stop at this point and do the final merge
2185  * on-the-fly.
2186  */
2187  if ((state->base.sortopt & TUPLESORT_RANDOMACCESS) == 0
2188  && state->nInputRuns <= state->nInputTapes
2189  && !WORKER(state))
2190  {
2191  /* Tell logtape.c we won't be writing anymore */
2193  /* Initialize for the final merge pass */
2194  beginmerge(state);
2195  state->status = TSS_FINALMERGE;
2196  return;
2197  }
2198  }
2199 
2200  /* Select an output tape */
2202 
2203  /* Merge one run from each input tape. */
2204  mergeonerun(state);
2205 
2206  /*
2207  * If the input tapes are empty, and we output only one output run,
2208  * we're done. The current output tape contains the final result.
2209  */
2210  if (state->nInputRuns == 0 && state->nOutputRuns <= 1)
2211  break;
2212  }
2213 
2214  /*
2215  * Done. The result is on a single run on a single tape.
2216  */
2217  state->result_tape = state->outputTapes[0];
2218  if (!WORKER(state))
2219  LogicalTapeFreeze(state->result_tape, NULL);
2220  else
2222  state->status = TSS_SORTEDONTAPE;
2223 
2224  /* Close all the now-empty input tapes, to release their read buffers. */
2225  for (tapenum = 0; tapenum < state->nInputTapes; tapenum++)
2226  LogicalTapeClose(state->inputTapes[tapenum]);
2227 }
#define INT64_FORMAT
Definition: c.h:548
void LogicalTapeRewindForRead(LogicalTape *lt, size_t buffer_size)
Definition: logtape.c:846
void LogicalTapeSetForgetFreeSpace(LogicalTapeSet *lts)
Definition: logtape.c:750
void LogicalTapeClose(LogicalTape *lt)
Definition: logtape.c:733
void LogicalTapeFreeze(LogicalTape *lt, TapeShare *share)
Definition: logtape.c:981
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1181
void MemoryContextResetOnly(MemoryContext context)
Definition: mcxt.c:402
static void mergeonerun(Tuplesortstate *state)
Definition: tuplesort.c:2233
static int64 merge_read_buffer_size(int64 avail_mem, int nInputTapes, int nInputRuns, int maxOutputTapes)
Definition: tuplesort.c:1860
static void worker_freeze_result_tape(Tuplesortstate *state)
Definition: tuplesort.c:3048
static void init_slab_allocator(Tuplesortstate *state, int numSlots)
Definition: tuplesort.c:2010
#define TUPLESORT_RANDOMACCESS
Definition: tuplesort.h:96

References Assert, beginmerge(), elog, FREEMEM, GetMemoryChunkSpace(), init_slab_allocator(), INT64_FORMAT, LOG, LogicalTapeClose(), LogicalTapeFreeze(), LogicalTapeRewindForRead(), LogicalTapeSetForgetFreeSpace(), MemoryContextAlloc(), MemoryContextResetOnly(), merge_read_buffer_size(), mergeonerun(), palloc0(), pfree(), pg_rusage_show(), selectnewtape(), trace_sort, TSS_BUILDRUNS, TSS_FINALMERGE, TSS_SORTEDONTAPE, TUPLESORT_RANDOMACCESS, USEMEM, WORKER, and worker_freeze_result_tape().

Referenced by inittapes(), and tuplesort_performsort().

◆ qsort_tuple_int32_compare()

static pg_attribute_always_inline int qsort_tuple_int32_compare ( SortTuple a,
SortTuple b,
Tuplesortstate state 
)
static

Definition at line 546 of file tuplesort.c.

547 {
548  int compare;
549 
550  compare = ApplyInt32SortComparator(a->datum1, a->isnull1,
551  b->datum1, b->isnull1,
552  &state->base.sortKeys[0]);
553 
554  if (compare != 0)
555  return compare;
556 
557  /*
558  * No need to waste effort calling the tiebreak function when there are no
559  * other keys to sort on.
560  */
561  if (state->base.onlyKey != NULL)
562  return 0;
563 
564  return state->base.comparetup_tiebreak(a, b, state);
565 }
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
static int ApplyInt32SortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:302

References a, ApplyInt32SortComparator(), b, and compare().

◆ qsort_tuple_unsigned_compare()

static pg_attribute_always_inline int qsort_tuple_unsigned_compare ( SortTuple a,
SortTuple b,
Tuplesortstate state 
)
static

Definition at line 499 of file tuplesort.c.

500 {
501  int compare;
502 
503  compare = ApplyUnsignedSortComparator(a->datum1, a->isnull1,
504  b->datum1, b->isnull1,
505  &state->base.sortKeys[0]);
506  if (compare != 0)
507  return compare;
508 
509  /*
510  * No need to waste effort calling the tiebreak function when there are no
511  * other keys to sort on.
512  */
513  if (state->base.onlyKey != NULL)
514  return 0;
515 
516  return state->base.comparetup_tiebreak(a, b, state);
517 }
static int ApplyUnsignedSortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:233

References a, ApplyUnsignedSortComparator(), b, and compare().

◆ reversedirection()

static void reversedirection ( Tuplesortstate state)
static

Definition at line 2877 of file tuplesort.c.

2878 {
2879  SortSupport sortKey = state->base.sortKeys;
2880  int nkey;
2881 
2882  for (nkey = 0; nkey < state->base.nKeys; nkey++, sortKey++)
2883  {
2884  sortKey->ssup_reverse = !sortKey->ssup_reverse;
2885  sortKey->ssup_nulls_first = !sortKey->ssup_nulls_first;
2886  }
2887 }
bool ssup_nulls_first
Definition: sortsupport.h:75

References SortSupportData::ssup_nulls_first, and SortSupportData::ssup_reverse.

Referenced by make_bounded_heap(), and sort_bounded_heap().

◆ selectnewtape()

static void selectnewtape ( Tuplesortstate state)
static

Definition at line 1977 of file tuplesort.c.

1978 {
1979  /*
1980  * At the beginning of each merge pass, nOutputTapes and nOutputRuns are
1981  * both zero. On each call, we create a new output tape to hold the next
1982  * run, until maxTapes is reached. After that, we assign new runs to the
1983  * existing tapes in a round robin fashion.
1984  */
1985  if (state->nOutputTapes < state->maxTapes)
1986  {
1987  /* Create a new tape to hold the next run */
1988  Assert(state->outputTapes[state->nOutputRuns] == NULL);
1989  Assert(state->nOutputRuns == state->nOutputTapes);
1990  state->destTape = LogicalTapeCreate(state->tapeset);
1991  state->outputTapes[state->nOutputTapes] = state->destTape;
1992  state->nOutputTapes++;
1993  state->nOutputRuns++;
1994  }
1995  else
1996  {
1997  /*
1998  * We have reached the max number of tapes. Append to an existing
1999  * tape.
2000  */
2001  state->destTape = state->outputTapes[state->nOutputRuns % state->nOutputTapes];
2002  state->nOutputRuns++;
2003  }
2004 }
LogicalTape * LogicalTapeCreate(LogicalTapeSet *lts)
Definition: logtape.c:680

References Assert, and LogicalTapeCreate().

Referenced by dumptuples(), inittapes(), and mergeruns().

◆ sort_bounded_heap()

static void sort_bounded_heap ( Tuplesortstate state)
static

Definition at line 2675 of file tuplesort.c.

2676 {
2677  int tupcount = state->memtupcount;
2678 
2679  Assert(state->status == TSS_BOUNDED);
2680  Assert(state->bounded);
2681  Assert(tupcount == state->bound);
2682  Assert(SERIAL(state));
2683 
2684  /*
2685  * We can unheapify in place because each delete-top call will remove the
2686  * largest entry, which we can promptly store in the newly freed slot at
2687  * the end. Once we're down to a single-entry heap, we're done.
2688  */
2689  while (state->memtupcount > 1)
2690  {
2691  SortTuple stup = state->memtuples[0];
2692 
2693  /* this sifts-up the next-largest entry and decreases memtupcount */
2695  state->memtuples[state->memtupcount] = stup;
2696  }
2697  state->memtupcount = tupcount;
2698 
2699  /*
2700  * Reverse sort direction back to the original state. This is not
2701  * actually necessary but seems like a good idea for tidiness.
2702  */
2704 
2705  state->status = TSS_SORTEDINMEM;
2706  state->boundUsed = true;
2707 }

References Assert, reversedirection(), SERIAL, TSS_BOUNDED, TSS_SORTEDINMEM, and tuplesort_heap_delete_top().

Referenced by tuplesort_performsort().

◆ ssup_datum_int32_cmp()

int ssup_datum_int32_cmp ( Datum  x,
Datum  y,
SortSupport  ssup 
)

Definition at line 3205 of file tuplesort.c.

3206 {
3207  int32 xx = DatumGetInt32(x);
3208  int32 yy = DatumGetInt32(y);
3209 
3210  if (xx < yy)
3211  return -1;
3212  else if (xx > yy)
3213  return 1;
3214  else
3215  return 0;
3216 }
signed int int32
Definition: c.h:494
int y
Definition: isn.c:72
int x
Definition: isn.c:71
static int32 DatumGetInt32(Datum X)
Definition: postgres.h:202

References DatumGetInt32(), x, and y.

Referenced by btint4sortsupport(), date_sortsupport(), and tuplesort_sort_memtuples().

◆ ssup_datum_unsigned_cmp()

int ssup_datum_unsigned_cmp ( Datum  x,
Datum  y,
SortSupport  ssup 
)

Definition at line 3178 of file tuplesort.c.

3179 {
3180  if (x < y)
3181  return -1;
3182  else if (x > y)
3183  return 1;
3184  else
3185  return 0;
3186 }

References x, and y.

Referenced by gist_point_sortsupport(), macaddr_sortsupport(), network_sortsupport(), tuplesort_sort_memtuples(), uuid_sortsupport(), and varstr_sortsupport().

◆ tuplesort_attach_shared()

void tuplesort_attach_shared ( Sharedsort shared,
dsm_segment seg 
)

Definition at line 3000 of file tuplesort.c.

3001 {
3002  /* Attach to SharedFileSet */
3003  SharedFileSetAttach(&shared->fileset, seg);
3004 }
void SharedFileSetAttach(SharedFileSet *fileset, dsm_segment *seg)
Definition: sharedfileset.c:56

References Sharedsort::fileset, and SharedFileSetAttach().

Referenced by _brin_parallel_build_main(), and _bt_parallel_build_main().

◆ tuplesort_begin_batch()

static void tuplesort_begin_batch ( Tuplesortstate state)
static

Definition at line 758 of file tuplesort.c.

759 {
760  MemoryContext oldcontext;
761 
762  oldcontext = MemoryContextSwitchTo(state->base.maincontext);
763 
764  /*
765  * Caller tuple (e.g. IndexTuple) memory context.
766  *
767  * A dedicated child context used exclusively for caller passed tuples
768  * eases memory management. Resetting at key points reduces
769  * fragmentation. Note that the memtuples array of SortTuples is allocated
770  * in the parent context, not this context, because there is no need to
771  * free memtuples early. For bounded sorts, tuples may be pfreed in any
772  * order, so we use a regular aset.c context so that it can make use of
773  * free'd memory. When the sort is not bounded, we make use of a bump.c
774  * context as this keeps allocations more compact with less wastage.
775  * Allocations are also slightly more CPU efficient.
776  */
777  if (TupleSortUseBumpTupleCxt(state->base.sortopt))
778  state->base.tuplecontext = BumpContextCreate(state->base.sortcontext,
779  "Caller tuples",
781  else
782  state->base.tuplecontext = AllocSetContextCreate(state->base.sortcontext,
783  "Caller tuples",
785 
786 
787  state->status = TSS_INITIAL;
788  state->bounded = false;
789  state->boundUsed = false;
790 
791  state->availMem = state->allowedMem;
792 
793  state->tapeset = NULL;
794 
795  state->memtupcount = 0;
796 
797  /*
798  * Initial size of array must be more than ALLOCSET_SEPARATE_THRESHOLD;
799  * see comments in grow_memtuples().
800  */
801  state->growmemtuples = true;
802  state->slabAllocatorUsed = false;
803  if (state->memtuples != NULL && state->memtupsize != INITIAL_MEMTUPSIZE)
804  {
805  pfree(state->memtuples);
806  state->memtuples = NULL;
807  state->memtupsize = INITIAL_MEMTUPSIZE;
808  }
809  if (state->memtuples == NULL)
810  {
811  state->memtuples = (SortTuple *) palloc(state->memtupsize * sizeof(SortTuple));
812  USEMEM(state, GetMemoryChunkSpace(state->memtuples));
813  }
814 
815  /* workMem must be large enough for the minimal memtuples array */
816  if (LACKMEM(state))
817  elog(ERROR, "insufficient memory allowed for sort");
818 
819  state->currentRun = 0;
820 
821  /*
822  * Tape variables (inputTapes, outputTapes, etc.) will be initialized by
823  * inittapes(), if needed.
824  */
825 
826  state->result_tape = NULL; /* flag that result tape has not been formed */
827 
828  MemoryContextSwitchTo(oldcontext);
829 }
MemoryContext BumpContextCreate(MemoryContext parent, const char *name, Size minContextSize, Size initBlockSize, Size maxBlockSize)
Definition: bump.c:131
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
MemoryContextSwitchTo(old_ctx)
#define INITIAL_MEMTUPSIZE
Definition: tuplesort.c:120
#define TupleSortUseBumpTupleCxt(opt)
Definition: tuplesort.h:108

References ALLOCSET_DEFAULT_SIZES, AllocSetContextCreate, BumpContextCreate(), elog, ERROR, GetMemoryChunkSpace(), INITIAL_MEMTUPSIZE, LACKMEM, MemoryContextSwitchTo(), palloc(), pfree(), TSS_INITIAL, TupleSortUseBumpTupleCxt, and USEMEM.

Referenced by tuplesort_begin_common(), and tuplesort_reset().

◆ tuplesort_begin_common()

Tuplesortstate* tuplesort_begin_common ( int  workMem,
SortCoordinate  coordinate,
int  sortopt 
)

Definition at line 646 of file tuplesort.c.

647 {
649  MemoryContext maincontext;
650  MemoryContext sortcontext;
651  MemoryContext oldcontext;
652 
653  /* See leader_takeover_tapes() remarks on random access support */
654  if (coordinate && (sortopt & TUPLESORT_RANDOMACCESS))
655  elog(ERROR, "random access disallowed under parallel sort");
656 
657  /*
658  * Memory context surviving tuplesort_reset. This memory context holds
659  * data which is useful to keep while sorting multiple similar batches.
660  */
662  "TupleSort main",
664 
665  /*
666  * Create a working memory context for one sort operation. The content of
667  * this context is deleted by tuplesort_reset.
668  */
669  sortcontext = AllocSetContextCreate(maincontext,
670  "TupleSort sort",
672 
673  /*
674  * Additionally a working memory context for tuples is setup in
675  * tuplesort_begin_batch.
676  */
677 
678  /*
679  * Make the Tuplesortstate within the per-sortstate context. This way, we
680  * don't need a separate pfree() operation for it at shutdown.
681  */
682  oldcontext = MemoryContextSwitchTo(maincontext);
683 
685 
686 #ifdef TRACE_SORT
687  if (trace_sort)
688  pg_rusage_init(&state->ru_start);
689 #endif
690 
691  state->base.sortopt = sortopt;
692  state->base.tuples = true;
693  state->abbrevNext = 10;
694 
695  /*
696  * workMem is forced to be at least 64KB, the current minimum valid value
697  * for the work_mem GUC. This is a defense against parallel sort callers
698  * that divide out memory among many workers in a way that leaves each
699  * with very little memory.
700  */
701  state->allowedMem = Max(workMem, 64) * (int64) 1024;
702  state->base.sortcontext = sortcontext;
703  state->base.maincontext = maincontext;
704 
705  /*
706  * Initial size of array must be more than ALLOCSET_SEPARATE_THRESHOLD;
707  * see comments in grow_memtuples().
708  */
709  state->memtupsize = INITIAL_MEMTUPSIZE;
710  state->memtuples = NULL;
711 
712  /*
713  * After all of the other non-parallel-related state, we setup all of the
714  * state needed for each batch.
715  */
717 
718  /*
719  * Initialize parallel-related state based on coordination information
720  * from caller
721  */
722  if (!coordinate)
723  {
724  /* Serial sort */
725  state->shared = NULL;
726  state->worker = -1;
727  state->nParticipants = -1;
728  }
729  else if (coordinate->isWorker)
730  {
731  /* Parallel worker produces exactly one final run from all input */
732  state->shared = coordinate->sharedsort;
733  state->worker = worker_get_identifier(state);
734  state->nParticipants = -1;
735  }
736  else
737  {
738  /* Parallel leader state only used for final merge */
739  state->shared = coordinate->sharedsort;
740  state->worker = -1;
741  state->nParticipants = coordinate->nParticipants;
742  Assert(state->nParticipants >= 1);
743  }
744 
745  MemoryContextSwitchTo(oldcontext);
746 
747  return state;
748 }
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
Sharedsort * sharedsort
Definition: tuplesort.h:58
static int worker_get_identifier(Tuplesortstate *state)
Definition: tuplesort.c:3020
static void tuplesort_begin_batch(Tuplesortstate *state)
Definition: tuplesort.c:758

References ALLOCSET_DEFAULT_SIZES, AllocSetContextCreate, Assert, CurrentMemoryContext, elog, ERROR, INITIAL_MEMTUPSIZE, SortCoordinateData::isWorker, Max, MemoryContextSwitchTo(), SortCoordinateData::nParticipants, palloc0(), pg_rusage_init(), SortCoordinateData::sharedsort, trace_sort, tuplesort_begin_batch(), TUPLESORT_RANDOMACCESS, and worker_get_identifier().

Referenced by tuplesort_begin_cluster(), tuplesort_begin_datum(), tuplesort_begin_heap(), tuplesort_begin_index_brin(), tuplesort_begin_index_btree(), tuplesort_begin_index_gist(), and tuplesort_begin_index_hash().

◆ tuplesort_end()

void tuplesort_end ( Tuplesortstate state)

Definition at line 972 of file tuplesort.c.

973 {
975 
976  /*
977  * Free the main memory context, including the Tuplesortstate struct
978  * itself.
979  */
980  MemoryContextDelete(state->base.maincontext);
981 }
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
static void tuplesort_free(Tuplesortstate *state)
Definition: tuplesort.c:903

References MemoryContextDelete(), and tuplesort_free().

Referenced by _brin_parallel_merge(), _brin_parallel_scan_and_build(), _bt_parallel_scan_and_sort(), _bt_spooldestroy(), _h_spooldestroy(), ExecEndAgg(), ExecEndIncrementalSort(), ExecEndSort(), ExecReScanAgg(), ExecReScanSort(), gistbuild(), heapam_relation_copy_for_cluster(), initialize_aggregate(), initialize_phase(), ordered_set_shutdown(), process_ordered_aggregate_multi(), process_ordered_aggregate_single(), and validate_index().

◆ tuplesort_estimate_shared()

Size tuplesort_estimate_shared ( int  nWorkers)

Definition at line 2956 of file tuplesort.c.

2957 {
2958  Size tapesSize;
2959 
2960  Assert(nWorkers > 0);
2961 
2962  /* Make sure that BufFile shared state is MAXALIGN'd */
2963  tapesSize = mul_size(sizeof(TapeShare), nWorkers);
2964  tapesSize = MAXALIGN(add_size(tapesSize, offsetof(Sharedsort, tapes)));
2965 
2966  return tapesSize;
2967 }
#define MAXALIGN(LEN)
Definition: c.h:811
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510

References add_size(), Assert, MAXALIGN, and mul_size().

Referenced by _brin_begin_parallel(), and _bt_begin_parallel().

◆ tuplesort_free()

static void tuplesort_free ( Tuplesortstate state)
static

Definition at line 903 of file tuplesort.c.

904 {
905  /* context swap probably not needed, but let's be safe */
906  MemoryContext oldcontext = MemoryContextSwitchTo(state->base.sortcontext);
907 
908 #ifdef TRACE_SORT
909  int64 spaceUsed;
910 
911  if (state->tapeset)
912  spaceUsed = LogicalTapeSetBlocks(state->tapeset);
913  else
914  spaceUsed = (state->allowedMem - state->availMem + 1023) / 1024;
915 #endif
916 
917  /*
918  * Delete temporary "tape" files, if any.
919  *
920  * Note: want to include this in reported total cost of sort, hence need
921  * for two #ifdef TRACE_SORT sections.
922  *
923  * We don't bother to destroy the individual tapes here. They will go away
924  * with the sortcontext. (In TSS_FINALMERGE state, we have closed
925  * finished tapes already.)
926  */
927  if (state->tapeset)
928  LogicalTapeSetClose(state->tapeset);
929 
930 #ifdef TRACE_SORT
931  if (trace_sort)
932  {
933  if (state->tapeset)
934  elog(LOG, "%s of worker %d ended, %lld disk blocks used: %s",
935  SERIAL(state) ? "external sort" : "parallel external sort",
936  state->worker, (long long) spaceUsed, pg_rusage_show(&state->ru_start));
937  else
938  elog(LOG, "%s of worker %d ended, %lld KB used: %s",
939  SERIAL(state) ? "internal sort" : "unperformed parallel sort",
940  state->worker, (long long) spaceUsed, pg_rusage_show(&state->ru_start));
941  }
942 
943  TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, spaceUsed);
944 #else
945 
946  /*
947  * If you disabled TRACE_SORT, you can still probe sort__done, but you
948  * ain't getting space-used stats.
949  */
950  TRACE_POSTGRESQL_SORT_DONE(state->tapeset != NULL, 0L);
951 #endif
952 
953  FREESTATE(state);
954  MemoryContextSwitchTo(oldcontext);
955 
956  /*
957  * Free the per-sort memory context, thereby releasing all working memory.
958  */
959  MemoryContextReset(state->base.sortcontext);
960 }
int64 LogicalTapeSetBlocks(LogicalTapeSet *lts)
Definition: logtape.c:1181
void LogicalTapeSetClose(LogicalTapeSet *lts)
Definition: logtape.c:667
#define FREESTATE(state)
Definition: tuplesort.c:403

References elog, FREESTATE, LOG, LogicalTapeSetBlocks(), LogicalTapeSetClose(), MemoryContextReset(), MemoryContextSwitchTo(), pg_rusage_show(), SERIAL, and trace_sort.

Referenced by tuplesort_end(), and tuplesort_reset().

◆ tuplesort_get_stats()

void tuplesort_get_stats ( Tuplesortstate state,
TuplesortInstrumentation stats 
)

Definition at line 2538 of file tuplesort.c.

2540 {
2541  /*
2542  * Note: it might seem we should provide both memory and disk usage for a
2543  * disk-based sort. However, the current code doesn't track memory space
2544  * accurately once we have begun to return tuples to the caller (since we
2545  * don't account for pfree's the caller is expected to do), so we cannot
2546  * rely on availMem in a disk sort. This does not seem worth the overhead
2547  * to fix. Is it worth creating an API for the memory context code to
2548  * tell us how much is actually used in sortcontext?
2549  */
2551 
2552  if (state->isMaxSpaceDisk)
2554  else
2556  stats->spaceUsed = (state->maxSpace + 1023) / 1024;
2557 
2558  switch (state->maxSpaceStatus)
2559  {
2560  case TSS_SORTEDINMEM:
2561  if (state->boundUsed)
2563  else
2565  break;
2566  case TSS_SORTEDONTAPE:
2568  break;
2569  case TSS_FINALMERGE:
2571  break;
2572  default:
2574  break;
2575  }
2576 }
TuplesortMethod sortMethod
Definition: tuplesort.h:112
TuplesortSpaceType spaceType
Definition: tuplesort.h:113
static void tuplesort_updatemax(Tuplesortstate *state)
Definition: tuplesort.c:989
@ SORT_SPACE_TYPE_DISK
Definition: tuplesort.h:88
@ SORT_SPACE_TYPE_MEMORY
Definition: tuplesort.h:89
@ SORT_TYPE_EXTERNAL_SORT
Definition: tuplesort.h:80
@ SORT_TYPE_TOP_N_HEAPSORT
Definition: tuplesort.h:78
@ SORT_TYPE_QUICKSORT
Definition: tuplesort.h:79
@ SORT_TYPE_STILL_IN_PROGRESS
Definition: tuplesort.h:77
@ SORT_TYPE_EXTERNAL_MERGE
Definition: tuplesort.h:81

References SORT_SPACE_TYPE_DISK, SORT_SPACE_TYPE_MEMORY, SORT_TYPE_EXTERNAL_MERGE, SORT_TYPE_EXTERNAL_SORT, SORT_TYPE_QUICKSORT, SORT_TYPE_STILL_IN_PROGRESS, SORT_TYPE_TOP_N_HEAPSORT, TuplesortInstrumentation::sortMethod, TuplesortInstrumentation::spaceType, TuplesortInstrumentation::spaceUsed, TSS_FINALMERGE, TSS_SORTEDINMEM, TSS_SORTEDONTAPE, and tuplesort_updatemax().

Referenced by ExecSort(), instrumentSortedGroup(), and show_sort_info().

◆ tuplesort_gettuple_common()

bool tuplesort_gettuple_common ( Tuplesortstate state,
bool  forward,
SortTuple stup 
)

Definition at line 1497 of file tuplesort.c.

1499 {
1500  unsigned int tuplen;
1501  size_t nmoved;
1502 
1503  Assert(!WORKER(state));
1504 
1505  switch (state->status)
1506  {
1507  case TSS_SORTEDINMEM:
1508  Assert(forward || state->base.sortopt & TUPLESORT_RANDOMACCESS);
1509  Assert(!state->slabAllocatorUsed);
1510  if (forward)
1511  {
1512  if (state->current < state->memtupcount)
1513  {
1514  *stup = state->memtuples[state->current++];
1515  return true;
1516  }
1517  state->eof_reached = true;
1518 
1519  /*
1520  * Complain if caller tries to retrieve more tuples than
1521  * originally asked for in a bounded sort. This is because
1522  * returning EOF here might be the wrong thing.
1523  */
1524  if (state->bounded && state->current >= state->bound)
1525  elog(ERROR, "retrieved too many tuples in a bounded sort");
1526 
1527  return false;
1528  }
1529  else
1530  {
1531  if (state->current <= 0)
1532  return false;
1533 
1534  /*
1535  * if all tuples are fetched already then we return last
1536  * tuple, else - tuple before last returned.
1537  */
1538  if (state->eof_reached)
1539  state->eof_reached = false;
1540  else
1541  {
1542  state->current--; /* last returned tuple */
1543  if (state->current <= 0)
1544  return false;
1545  }
1546  *stup = state->memtuples[state->current - 1];
1547  return true;
1548  }
1549  break;
1550 
1551  case TSS_SORTEDONTAPE:
1552  Assert(forward || state->base.sortopt & TUPLESORT_RANDOMACCESS);
1553  Assert(state->slabAllocatorUsed);
1554 
1555  /*
1556  * The slot that held the tuple that we returned in previous
1557  * gettuple call can now be reused.
1558  */
1559  if (state->lastReturnedTuple)
1560  {
1561  RELEASE_SLAB_SLOT(state, state->lastReturnedTuple);
1562  state->lastReturnedTuple = NULL;
1563  }
1564 
1565  if (forward)
1566  {
1567  if (state->eof_reached)
1568  return false;
1569 
1570  if ((tuplen = getlen(state->result_tape, true)) != 0)
1571  {
1572  READTUP(state, stup, state->result_tape, tuplen);
1573 
1574  /*
1575  * Remember the tuple we return, so that we can recycle
1576  * its memory on next call. (This can be NULL, in the
1577  * !state->tuples case).
1578  */
1579  state->lastReturnedTuple = stup->tuple;
1580 
1581  return true;
1582  }
1583  else
1584  {
1585  state->eof_reached = true;
1586  return false;
1587  }
1588  }
1589 
1590  /*
1591  * Backward.
1592  *
1593  * if all tuples are fetched already then we return last tuple,
1594  * else - tuple before last returned.
1595  */
1596  if (state->eof_reached)
1597  {
1598  /*
1599  * Seek position is pointing just past the zero tuplen at the
1600  * end of file; back up to fetch last tuple's ending length
1601  * word. If seek fails we must have a completely empty file.
1602  */
1603  nmoved = LogicalTapeBackspace(state->result_tape,
1604  2 * sizeof(unsigned int));
1605  if (nmoved == 0)
1606  return false;
1607  else if (nmoved != 2 * sizeof(unsigned int))
1608  elog(ERROR, "unexpected tape position");
1609  state->eof_reached = false;
1610  }
1611  else
1612  {
1613  /*
1614  * Back up and fetch previously-returned tuple's ending length
1615  * word. If seek fails, assume we are at start of file.
1616  */
1617  nmoved = LogicalTapeBackspace(state->result_tape,
1618  sizeof(unsigned int));
1619  if (nmoved == 0)
1620  return false;
1621  else if (nmoved != sizeof(unsigned int))
1622  elog(ERROR, "unexpected tape position");
1623  tuplen = getlen(state->result_tape, false);
1624 
1625  /*
1626  * Back up to get ending length word of tuple before it.
1627  */
1628  nmoved = LogicalTapeBackspace(state->result_tape,
1629  tuplen + 2 * sizeof(unsigned int));
1630  if (nmoved == tuplen + sizeof(unsigned int))
1631  {
1632  /*
1633  * We backed up over the previous tuple, but there was no
1634  * ending length word before it. That means that the prev
1635  * tuple is the first tuple in the file. It is now the
1636  * next to read in forward direction (not obviously right,
1637  * but that is what in-memory case does).
1638  */
1639  return false;
1640  }
1641  else if (nmoved != tuplen + 2 * sizeof(unsigned int))
1642  elog(ERROR, "bogus tuple length in backward scan");
1643  }
1644 
1645  tuplen = getlen(state->result_tape, false);
1646 
1647  /*
1648  * Now we have the length of the prior tuple, back up and read it.
1649  * Note: READTUP expects we are positioned after the initial
1650  * length word of the tuple, so back up to that point.
1651  */
1652  nmoved = LogicalTapeBackspace(state->result_tape,
1653  tuplen);
1654  if (nmoved != tuplen)
1655  elog(ERROR, "bogus tuple length in backward scan");
1656  READTUP(state, stup, state->result_tape, tuplen);
1657 
1658  /*
1659  * Remember the tuple we return, so that we can recycle its memory
1660  * on next call. (This can be NULL, in the Datum case).
1661  */
1662  state->lastReturnedTuple = stup->tuple;
1663 
1664  return true;
1665 
1666  case TSS_FINALMERGE:
1667  Assert(forward);
1668  /* We are managing memory ourselves, with the slab allocator. */
1669  Assert(state->slabAllocatorUsed);
1670 
1671  /*
1672  * The slab slot holding the tuple that we returned in previous
1673  * gettuple call can now be reused.
1674  */
1675  if (state->lastReturnedTuple)
1676  {
1677  RELEASE_SLAB_SLOT(state, state->lastReturnedTuple);
1678  state->lastReturnedTuple = NULL;
1679  }
1680 
1681  /*
1682  * This code should match the inner loop of mergeonerun().
1683  */
1684  if (state->memtupcount > 0)
1685  {
1686  int srcTapeIndex = state->memtuples[0].srctape;
1687  LogicalTape *srcTape = state->inputTapes[srcTapeIndex];
1688  SortTuple newtup;
1689 
1690  *stup = state->memtuples[0];
1691 
1692  /*
1693  * Remember the tuple we return, so that we can recycle its
1694  * memory on next call. (This can be NULL, in the Datum case).
1695  */
1696  state->lastReturnedTuple = stup->tuple;
1697 
1698  /*
1699  * Pull next tuple from tape, and replace the returned tuple
1700  * at top of the heap with it.
1701  */
1702  if (!mergereadnext(state, srcTape, &newtup))
1703  {
1704  /*
1705  * If no more data, we've reached end of run on this tape.
1706  * Remove the top node from the heap.
1707  */
1709  state->nInputRuns--;
1710 
1711  /*
1712  * Close the tape. It'd go away at the end of the sort
1713  * anyway, but better to release the memory early.
1714  */
1715  LogicalTapeClose(srcTape);
1716  return true;
1717  }
1718  newtup.srctape = srcTapeIndex;
1720  return true;
1721  }
1722  return false;
1723 
1724  default:
1725  elog(ERROR, "invalid tuplesort state");
1726  return false; /* keep compiler quiet */
1727  }
1728 }
size_t LogicalTapeBackspace(LogicalTape *lt, size_t size)
Definition: logtape.c:1062

References Assert, elog, ERROR, getlen(), LogicalTapeBackspace(), LogicalTapeClose(), mergereadnext(), READTUP, RELEASE_SLAB_SLOT, SortTuple::srctape, TSS_FINALMERGE, TSS_SORTEDINMEM, TSS_SORTEDONTAPE, SortTuple::tuple, tuplesort_heap_delete_top(), tuplesort_heap_replace_top(), TUPLESORT_RANDOMACCESS, and WORKER.

Referenced by tuplesort_getbrintuple(), tuplesort_getdatum(), tuplesort_getheaptuple(), tuplesort_getindextuple(), tuplesort_gettupleslot(), and tuplesort_skiptuples().

◆ tuplesort_heap_delete_top()

static void tuplesort_heap_delete_top ( Tuplesortstate state)
static

Definition at line 2813 of file tuplesort.c.

2814 {
2815  SortTuple *memtuples = state->memtuples;
2816  SortTuple *tuple;
2817 
2818  if (--state->memtupcount <= 0)
2819  return;
2820 
2821  /*
2822  * Remove the last tuple in the heap, and re-insert it, by replacing the
2823  * current top node with it.
2824  */
2825  tuple = &memtuples[state->memtupcount];
2827 }

References tuplesort_heap_replace_top().

Referenced by mergeonerun(), sort_bounded_heap(), and tuplesort_gettuple_common().

◆ tuplesort_heap_insert()

static void tuplesort_heap_insert ( Tuplesortstate state,
SortTuple tuple 
)
static

Definition at line 2778 of file tuplesort.c.

2779 {
2780  SortTuple *memtuples;
2781  int j;
2782 
2783  memtuples = state->memtuples;
2784  Assert(state->memtupcount < state->memtupsize);
2785 
2787 
2788  /*
2789  * Sift-up the new entry, per Knuth 5.2.3 exercise 16. Note that Knuth is
2790  * using 1-based array indexes, not 0-based.
2791  */
2792  j = state->memtupcount++;
2793  while (j > 0)
2794  {
2795  int i = (j - 1) >> 1;
2796 
2797  if (COMPARETUP(state, tuple, &memtuples[i]) >= 0)
2798  break;
2799  memtuples[j] = memtuples[i];
2800  j = i;
2801  }
2802  memtuples[j] = *tuple;
2803 }

References Assert, CHECK_FOR_INTERRUPTS, COMPARETUP, i, and j.

Referenced by beginmerge(), and make_bounded_heap().

◆ tuplesort_heap_replace_top()

static void tuplesort_heap_replace_top ( Tuplesortstate state,
SortTuple tuple 
)
static

Definition at line 2837 of file tuplesort.c.

2838 {
2839  SortTuple *memtuples = state->memtuples;
2840  unsigned int i,
2841  n;
2842 
2843  Assert(state->memtupcount >= 1);
2844 
2846 
2847  /*
2848  * state->memtupcount is "int", but we use "unsigned int" for i, j, n.
2849  * This prevents overflow in the "2 * i + 1" calculation, since at the top
2850  * of the loop we must have i < n <= INT_MAX <= UINT_MAX/2.
2851  */
2852  n = state->memtupcount;
2853  i = 0; /* i is where the "hole" is */
2854  for (;;)
2855  {
2856  unsigned int j = 2 * i + 1;
2857 
2858  if (j >= n)
2859  break;
2860  if (j + 1 < n &&
2861  COMPARETUP(state, &memtuples[j], &memtuples[j + 1]) > 0)
2862  j++;
2863  if (COMPARETUP(state, tuple, &memtuples[j]) <= 0)
2864  break;
2865  memtuples[i] = memtuples[j];
2866  i = j;
2867  }
2868  memtuples[i] = *tuple;
2869 }

References Assert, CHECK_FOR_INTERRUPTS, COMPARETUP, i, and j.

Referenced by make_bounded_heap(), mergeonerun(), tuplesort_gettuple_common(), tuplesort_heap_delete_top(), and tuplesort_puttuple_common().

◆ tuplesort_initialize_shared()

void tuplesort_initialize_shared ( Sharedsort shared,
int  nWorkers,
dsm_segment seg 
)

Definition at line 2977 of file tuplesort.c.

2978 {
2979  int i;
2980 
2981  Assert(nWorkers > 0);
2982 
2983  SpinLockInit(&shared->mutex);
2984  shared->currentWorker = 0;
2985  shared->workersFinished = 0;
2986  SharedFileSetInit(&shared->fileset, seg);
2987  shared->nTapes = nWorkers;
2988  for (i = 0; i < nWorkers; i++)
2989  {
2990  shared->tapes[i].firstblocknumber = 0L;
2991  }
2992 }
void SharedFileSetInit(SharedFileSet *fileset, dsm_segment *seg)
Definition: sharedfileset.c:38
#define SpinLockInit(lock)
Definition: spin.h:60
int nTapes
Definition: tuplesort.c:367
int currentWorker
Definition: tuplesort.c:360
int64 firstblocknumber
Definition: logtape.h:54

References Assert, Sharedsort::currentWorker, Sharedsort::fileset, TapeShare::firstblocknumber, i, Sharedsort::mutex, Sharedsort::nTapes, SharedFileSetInit(), SpinLockInit, Sharedsort::tapes, and Sharedsort::workersFinished.

Referenced by _brin_begin_parallel(), and _bt_begin_parallel().

◆ tuplesort_markpos()

void tuplesort_markpos ( Tuplesortstate state)

Definition at line 2474 of file tuplesort.c.

2475 {
2476  MemoryContext oldcontext = MemoryContextSwitchTo(state->base.sortcontext);
2477 
2478  Assert(state->base.sortopt & TUPLESORT_RANDOMACCESS);
2479 
2480  switch (state->status)
2481  {
2482  case TSS_SORTEDINMEM:
2483  state->markpos_offset = state->current;
2484  state->markpos_eof = state->eof_reached;
2485  break;
2486  case TSS_SORTEDONTAPE:
2487  LogicalTapeTell(state->result_tape,
2488  &state->markpos_block,
2489  &state->markpos_offset);
2490  state->markpos_eof = state->eof_reached;
2491  break;
2492  default:
2493  elog(ERROR, "invalid tuplesort state");
2494  break;
2495  }
2496 
2497  MemoryContextSwitchTo(oldcontext);
2498 }
void LogicalTapeTell(LogicalTape *lt, int64 *blocknum, int *offset)
Definition: logtape.c:1162

References Assert, elog, ERROR, LogicalTapeTell(), MemoryContextSwitchTo(), TSS_SORTEDINMEM, TSS_SORTEDONTAPE, and TUPLESORT_RANDOMACCESS.

Referenced by ExecSortMarkPos().

◆ tuplesort_merge_order()

int tuplesort_merge_order ( int64  allowedMem)

Definition at line 1805 of file tuplesort.c.

1806 {
1807  int mOrder;
1808 
1809  /*----------
1810  * In the merge phase, we need buffer space for each input and output tape.
1811  * Each pass in the balanced merge algorithm reads from M input tapes, and
1812  * writes to N output tapes. Each tape consumes TAPE_BUFFER_OVERHEAD bytes
1813  * of memory. In addition to that, we want MERGE_BUFFER_SIZE workspace per
1814  * input tape.
1815  *
1816  * totalMem = M * (TAPE_BUFFER_OVERHEAD + MERGE_BUFFER_SIZE) +
1817  * N * TAPE_BUFFER_OVERHEAD
1818  *
1819  * Except for the last and next-to-last merge passes, where there can be
1820  * fewer tapes left to process, M = N. We choose M so that we have the
1821  * desired amount of memory available for the input buffers
1822  * (TAPE_BUFFER_OVERHEAD + MERGE_BUFFER_SIZE), given the total memory
1823  * available for the tape buffers (allowedMem).
1824  *
1825  * Note: you might be thinking we need to account for the memtuples[]
1826  * array in this calculation, but we effectively treat that as part of the
1827  * MERGE_BUFFER_SIZE workspace.
1828  *----------
1829  */
1830  mOrder = allowedMem /
1832 
1833  /*
1834  * Even in minimum memory, use at least a MINORDER merge. On the other
1835  * hand, even when we have lots of memory, do not use more than a MAXORDER
1836  * merge. Tapes are pretty cheap, but they're not entirely free. Each
1837  * additional tape reduces the amount of memory available to build runs,
1838  * which in turn can cause the same sort to need more runs, which makes
1839  * merging slower even if it can still be done in a single pass. Also,
1840  * high order merges are quite slow due to CPU cache effects; it can be
1841  * faster to pay the I/O cost of a multi-pass merge than to perform a
1842  * single merge pass across many hundreds of tapes.
1843  */
1844  mOrder = Max(mOrder, MINORDER);
1845  mOrder = Min(mOrder, MAXORDER);
1846 
1847  return mOrder;
1848 }
#define MAXORDER
Definition: tuplesort.c:179
#define MERGE_BUFFER_SIZE
Definition: tuplesort.c:181

References Max, MAXORDER, MERGE_BUFFER_SIZE, Min, MINORDER, and TAPE_BUFFER_OVERHEAD.

Referenced by cost_tuplesort(), and inittapes().

◆ tuplesort_method_name()

const char* tuplesort_method_name ( TuplesortMethod  m)

Definition at line 2582 of file tuplesort.c.

2583 {
2584  switch (m)
2585  {
2587  return "still in progress";
2589  return "top-N heapsort";
2590  case SORT_TYPE_QUICKSORT:
2591  return "quicksort";
2593  return "external sort";
2595  return "external merge";
2596  }
2597 
2598  return "unknown";
2599 }

References SORT_TYPE_EXTERNAL_MERGE, SORT_TYPE_EXTERNAL_SORT, SORT_TYPE_QUICKSORT, SORT_TYPE_STILL_IN_PROGRESS, and SORT_TYPE_TOP_N_HEAPSORT.

Referenced by show_incremental_sort_group_info(), and show_sort_info().

◆ tuplesort_performsort()

void tuplesort_performsort ( Tuplesortstate state)

Definition at line 1386 of file tuplesort.c.

1387 {
1388  MemoryContext oldcontext = MemoryContextSwitchTo(state->base.sortcontext);
1389 
1390 #ifdef TRACE_SORT
1391  if (trace_sort)
1392  elog(LOG, "performsort of worker %d starting: %s",
1393  state->worker, pg_rusage_show(&state->ru_start));
1394 #endif
1395 
1396  switch (state->status)
1397  {
1398  case TSS_INITIAL:
1399 
1400  /*
1401  * We were able to accumulate all the tuples within the allowed
1402  * amount of memory, or leader to take over worker tapes
1403  */
1404  if (SERIAL(state))
1405  {
1406  /* Just qsort 'em and we're done */
1408  state->status = TSS_SORTEDINMEM;
1409  }
1410  else if (WORKER(state))
1411  {
1412  /*
1413  * Parallel workers must still dump out tuples to tape. No
1414  * merge is required to produce single output run, though.
1415  */
1416  inittapes(state, false);
1417  dumptuples(state, true);
1419  state->status = TSS_SORTEDONTAPE;
1420  }
1421  else
1422  {
1423  /*
1424  * Leader will take over worker tapes and merge worker runs.
1425  * Note that mergeruns sets the correct state->status.
1426  */
1428  mergeruns(state);
1429  }
1430  state->current = 0;
1431  state->eof_reached = false;
1432  state->markpos_block = 0L;
1433  state->markpos_offset = 0;
1434  state->markpos_eof = false;
1435  break;
1436 
1437  case TSS_BOUNDED:
1438 
1439  /*
1440  * We were able to accumulate all the tuples required for output
1441  * in memory, using a heap to eliminate excess tuples. Now we
1442  * have to transform the heap to a properly-sorted array. Note
1443  * that sort_bounded_heap sets the correct state->status.
1444  */
1446  state->current = 0;
1447  state->eof_reached = false;
1448  state->markpos_offset = 0;
1449  state->markpos_eof = false;
1450  break;
1451 
1452  case TSS_BUILDRUNS:
1453 
1454  /*
1455  * Finish tape-based sort. First, flush all tuples remaining in
1456  * memory out to tape; then merge until we have a single remaining
1457  * run (or, if !randomAccess and !WORKER(), one run per tape).
1458  * Note that mergeruns sets the correct state->status.
1459  */
1460  dumptuples(state, true);
1461  mergeruns(state);
1462  state->eof_reached = false;
1463  state->markpos_block = 0L;
1464  state->markpos_offset = 0;
1465  state->markpos_eof = false;
1466  break;
1467 
1468  default:
1469  elog(ERROR, "invalid tuplesort state");
1470  break;
1471  }
1472 
1473 #ifdef TRACE_SORT
1474  if (trace_sort)
1475  {
1476  if (state->status == TSS_FINALMERGE)
1477  elog(LOG, "performsort of worker %d done (except %d-way final merge): %s",
1478  state->worker, state->nInputTapes,
1479  pg_rusage_show(&state->ru_start));
1480  else
1481  elog(LOG, "performsort of worker %d done: %s",
1482  state->worker, pg_rusage_show(&state->ru_start));
1483  }
1484 #endif
1485 
1486  MemoryContextSwitchTo(oldcontext);
1487 }
static void sort_bounded_heap(Tuplesortstate *state)
Definition: tuplesort.c:2675
static void leader_takeover_tapes(Tuplesortstate *state)
Definition: tuplesort.c:3108
static void inittapes(Tuplesortstate *state, bool mergeruns)
Definition: tuplesort.c:1892
static void worker_nomergeruns(Tuplesortstate *state)
Definition: tuplesort.c:3086
static void dumptuples(Tuplesortstate *state, bool alltuples)
Definition: tuplesort.c:2340

References dumptuples(), elog, ERROR, inittapes(), leader_takeover_tapes(), LOG, MemoryContextSwitchTo(), mergeruns(), pg_rusage_show(), SERIAL, sort_bounded_heap(), trace_sort, TSS_BOUNDED, TSS_BUILDRUNS, TSS_FINALMERGE, TSS_INITIAL, TSS_SORTEDINMEM, TSS_SORTEDONTAPE, tuplesort_sort_memtuples(), WORKER, and worker_nomergeruns().

Referenced by _brin_parallel_merge(), _brin_parallel_scan_and_build(), _bt_leafbuild(), _bt_parallel_scan_and_sort(), _h_indexbuild(), ExecIncrementalSort(), ExecSort(), gistbuild(), heapam_relation_copy_for_cluster(), hypothetical_dense_rank_final(), hypothetical_rank_common(), initialize_phase(), mode_final(), percentile_cont_final_common(), percentile_cont_multi_final_common(), percentile_disc_final(), percentile_disc_multi_final(), process_ordered_aggregate_multi(), process_ordered_aggregate_single(), switchToPresortedPrefixMode(), and validate_index().

◆ tuplesort_puttuple_common()

void tuplesort_puttuple_common ( Tuplesortstate state,
SortTuple tuple,
bool  useAbbrev,
Size  tuplen 
)

Definition at line 1190 of file tuplesort.c.

1192 {
1193  MemoryContext oldcontext = MemoryContextSwitchTo(state->base.sortcontext);
1194 
1195  Assert(!LEADER(state));
1196 
1197  /* account for the memory used for this tuple */
1198  USEMEM(state, tuplen);
1199  state->tupleMem += tuplen;
1200 
1201  if (!useAbbrev)
1202  {
1203  /*
1204  * Leave ordinary Datum representation, or NULL value. If there is a
1205  * converter it won't expect NULL values, and cost model is not
1206  * required to account for NULL, so in that case we avoid calling
1207  * converter and just set datum1 to zeroed representation (to be
1208  * consistent, and to support cheap inequality tests for NULL
1209  * abbreviated keys).
1210  */
1211  }
1212  else if (!consider_abort_common(state))
1213  {
1214  /* Store abbreviated key representation */
1215  tuple->datum1 = state->base.sortKeys->abbrev_converter(tuple->datum1,
1216  state->base.sortKeys);
1217  }
1218  else
1219  {
1220  /*
1221  * Set state to be consistent with never trying abbreviation.
1222  *
1223  * Alter datum1 representation in already-copied tuples, so as to
1224  * ensure a consistent representation (current tuple was just
1225  * handled). It does not matter if some dumped tuples are already
1226  * sorted on tape, since serialized tuples lack abbreviated keys
1227  * (TSS_BUILDRUNS state prevents control reaching here in any case).
1228  */
1229  REMOVEABBREV(state, state->memtuples, state->memtupcount);
1230  }
1231 
1232  switch (state->status)
1233  {
1234  case TSS_INITIAL:
1235 
1236  /*
1237  * Save the tuple into the unsorted array. First, grow the array
1238  * as needed. Note that we try to grow the array when there is
1239  * still one free slot remaining --- if we fail, there'll still be
1240  * room to store the incoming tuple, and then we'll switch to
1241  * tape-based operation.
1242  */
1243  if (state->memtupcount >= state->memtupsize - 1)
1244  {
1245  (void) grow_memtuples(state);
1246  Assert(state->memtupcount < state->memtupsize);
1247  }
1248  state->memtuples[state->memtupcount++] = *tuple;
1249 
1250  /*
1251  * Check if it's time to switch over to a bounded heapsort. We do
1252  * so if the input tuple count exceeds twice the desired tuple
1253  * count (this is a heuristic for where heapsort becomes cheaper
1254  * than a quicksort), or if we've just filled workMem and have
1255  * enough tuples to meet the bound.
1256  *
1257  * Note that once we enter TSS_BOUNDED state we will always try to
1258  * complete the sort that way. In the worst case, if later input
1259  * tuples are larger than earlier ones, this might cause us to
1260  * exceed workMem significantly.
1261  */
1262  if (state->bounded &&
1263  (state->memtupcount > state->bound * 2 ||
1264  (state->memtupcount > state->bound && LACKMEM(state))))
1265  {
1266 #ifdef TRACE_SORT
1267  if (trace_sort)
1268  elog(LOG, "switching to bounded heapsort at %d tuples: %s",
1269  state->memtupcount,
1270  pg_rusage_show(&state->ru_start));
1271 #endif
1273  MemoryContextSwitchTo(oldcontext);
1274  return;
1275  }
1276 
1277  /*
1278  * Done if we still fit in available memory and have array slots.
1279  */
1280  if (state->memtupcount < state->memtupsize && !LACKMEM(state))
1281  {
1282  MemoryContextSwitchTo(oldcontext);
1283  return;
1284  }
1285 
1286  /*
1287  * Nope; time to switch to tape-based operation.
1288  */
1289  inittapes(state, true);
1290 
1291  /*
1292  * Dump all tuples.
1293  */
1294  dumptuples(state, false);
1295  break;
1296 
1297  case TSS_BOUNDED:
1298 
1299  /*
1300  * We don't want to grow the array here, so check whether the new
1301  * tuple can be discarded before putting it in. This should be a
1302  * good speed optimization, too, since when there are many more
1303  * input tuples than the bound, most input tuples can be discarded
1304  * with just this one comparison. Note that because we currently
1305  * have the sort direction reversed, we must check for <= not >=.
1306  */
1307  if (COMPARETUP(state, tuple, &state->memtuples[0]) <= 0)
1308  {
1309  /* new tuple <= top of the heap, so we can discard it */
1310  free_sort_tuple(state, tuple);
1312  }
1313  else
1314  {
1315  /* discard top of heap, replacing it with the new tuple */
1316  free_sort_tuple(state, &state->memtuples[0]);
1318  }
1319  break;
1320 
1321  case TSS_BUILDRUNS:
1322 
1323  /*
1324  * Save the tuple into the unsorted array (there must be space)
1325  */
1326  state->memtuples[state->memtupcount++] = *tuple;
1327 
1328  /*
1329  * If we are over the memory limit, dump all tuples.
1330  */
1331  dumptuples(state, false);
1332  break;
1333 
1334  default:
1335  elog(ERROR, "invalid tuplesort state");
1336  break;
1337  }
1338  MemoryContextSwitchTo(oldcontext);
1339 }
Datum datum1
Definition: tuplesort.h:150
#define REMOVEABBREV(state, stup, count)
Definition: tuplesort.c:399
static bool grow_memtuples(Tuplesortstate *state)
Definition: tuplesort.c:1073
static void make_bounded_heap(Tuplesortstate *state)
Definition: tuplesort.c:2626
static bool consider_abort_common(Tuplesortstate *state)
Definition: tuplesort.c:1342

References Assert, CHECK_FOR_INTERRUPTS, COMPARETUP, consider_abort_common(), SortTuple::datum1, dumptuples(), elog, ERROR, free_sort_tuple(), grow_memtuples(), inittapes(), LACKMEM, LEADER, LOG, make_bounded_heap(), MemoryContextSwitchTo(), pg_rusage_show(), REMOVEABBREV, trace_sort, TSS_BOUNDED, TSS_BUILDRUNS, TSS_INITIAL, tuplesort_heap_replace_top(), and USEMEM.

Referenced by tuplesort_putbrintuple(), tuplesort_putdatum(), tuplesort_putheaptuple(), tuplesort_putindextuplevalues(), and tuplesort_puttupleslot().

◆ tuplesort_readtup_alloc()

void* tuplesort_readtup_alloc ( Tuplesortstate state,
Size  tuplen 
)

Definition at line 2922 of file tuplesort.c.

2923 {
2924  SlabSlot *buf;
2925 
2926  /*
2927  * We pre-allocate enough slots in the slab arena that we should never run
2928  * out.
2929  */
2930  Assert(state->slabFreeHead);
2931 
2932  if (tuplen > SLAB_SLOT_SIZE || !state->slabFreeHead)
2933  return MemoryContextAlloc(state->base.sortcontext, tuplen);
2934  else
2935  {
2936  buf = state->slabFreeHead;
2937  /* Reuse this slot */
2938  state->slabFreeHead = buf->nextfree;
2939 
2940  return buf;
2941  }
2942 }

References Assert, buf, MemoryContextAlloc(), and SLAB_SLOT_SIZE.

Referenced by readtup_cluster(), readtup_datum(), readtup_heap(), readtup_index(), and readtup_index_brin().

◆ tuplesort_rescan()

void tuplesort_rescan ( Tuplesortstate state)

Definition at line 2441 of file tuplesort.c.

2442 {
2443  MemoryContext oldcontext = MemoryContextSwitchTo(state->base.sortcontext);
2444 
2445  Assert(state->base.sortopt & TUPLESORT_RANDOMACCESS);
2446 
2447  switch (state->status)
2448  {
2449  case TSS_SORTEDINMEM:
2450  state->current = 0;
2451  state->eof_reached = false;
2452  state->markpos_offset = 0;
2453  state->markpos_eof = false;
2454  break;
2455  case TSS_SORTEDONTAPE:
2456  LogicalTapeRewindForRead(state->result_tape, 0);
2457  state->eof_reached = false;
2458  state->markpos_block = 0L;
2459  state->markpos_offset = 0;
2460  state->markpos_eof = false;
2461  break;
2462  default:
2463  elog(ERROR, "invalid tuplesort state");
2464  break;
2465  }
2466 
2467  MemoryContextSwitchTo(oldcontext);
2468 }

References Assert, elog, ERROR, LogicalTapeRewindForRead(), MemoryContextSwitchTo(), TSS_SORTEDINMEM, TSS_SORTEDONTAPE, and TUPLESORT_RANDOMACCESS.

Referenced by ExecReScanSort(), mode_final(), percentile_cont_final_common(), percentile_cont_multi_final_common(), percentile_disc_final(), and percentile_disc_multi_final().

◆ tuplesort_reset()

void tuplesort_reset ( Tuplesortstate state)

Definition at line 1040 of file tuplesort.c.

1041 {
1044 
1045  /*
1046  * After we've freed up per-batch memory, re-setup all of the state common
1047  * to both the first batch and any subsequent batch.
1048  */
1050 
1051  state->lastReturnedTuple = NULL;
1052  state->slabMemoryBegin = NULL;
1053  state->slabMemoryEnd = NULL;
1054  state->slabFreeHead = NULL;
1055 }

References tuplesort_begin_batch(), tuplesort_free(), and tuplesort_updatemax().

Referenced by ExecIncrementalSort(), ExecReScanIncrementalSort(), and switchToPresortedPrefixMode().

◆ tuplesort_restorepos()

void tuplesort_restorepos ( Tuplesortstate state)

Definition at line 2505 of file tuplesort.c.

2506 {
2507  MemoryContext oldcontext = MemoryContextSwitchTo(state->base.sortcontext);
2508 
2509  Assert(state->base.sortopt & TUPLESORT_RANDOMACCESS);
2510 
2511  switch (state->status)
2512  {
2513  case TSS_SORTEDINMEM:
2514  state->current = state->markpos_offset;
2515  state->eof_reached = state->markpos_eof;
2516  break;
2517  case TSS_SORTEDONTAPE:
2518  LogicalTapeSeek(state->result_tape,
2519  state->markpos_block,
2520  state->markpos_offset);
2521  state->eof_reached = state->markpos_eof;
2522  break;
2523  default:
2524  elog(ERROR, "invalid tuplesort state");
2525  break;
2526  }
2527 
2528  MemoryContextSwitchTo(oldcontext);
2529 }
void LogicalTapeSeek(LogicalTape *lt, int64 blocknum, int offset)
Definition: logtape.c:1133

References Assert, elog, ERROR, LogicalTapeSeek(), MemoryContextSwitchTo(), TSS_SORTEDINMEM, TSS_SORTEDONTAPE, and TUPLESORT_RANDOMACCESS.

Referenced by ExecSortRestrPos().

◆ tuplesort_set_bound()

void tuplesort_set_bound ( Tuplesortstate state,
int64  bound 
)

Definition at line 844 of file tuplesort.c.

845 {
846  /* Assert we're called before loading any tuples */
847  Assert(state->status == TSS_INITIAL && state->memtupcount == 0);
848  /* Assert we allow bounded sorts */
849  Assert(state->base.sortopt & TUPLESORT_ALLOWBOUNDED);
850  /* Can't set the bound twice, either */
851  Assert(!state->bounded);
852  /* Also, this shouldn't be called in a parallel worker */
853  Assert(!WORKER(state));
854 
855  /* Parallel leader allows but ignores hint */
856  if (LEADER(state))
857  return;
858 
859 #ifdef DEBUG_BOUNDED_SORT
860  /* Honor GUC setting that disables the feature (for easy testing) */
861  if (!optimize_bounded_sort)
862  return;
863 #endif
864 
865  /* We want to be able to compute bound * 2, so limit the setting */
866  if (bound > (int64) (INT_MAX / 2))
867  return;
868 
869  state->bounded = true;
870  state->bound = (int) bound;
871 
872  /*
873  * Bounded sorts are not an effective target for abbreviated key
874  * optimization. Disable by setting state to be consistent with no
875  * abbreviation support.
876  */
877  state->base.sortKeys->abbrev_converter = NULL;
878  if (state->base.sortKeys->abbrev_full_comparator)
879  state->base.sortKeys->comparator = state->base.sortKeys->abbrev_full_comparator;
880 
881  /* Not strictly necessary, but be tidy */
882  state->base.sortKeys->abbrev_abort = NULL;
883  state->base.sortKeys->abbrev_full_comparator = NULL;
884 }
#define TUPLESORT_ALLOWBOUNDED
Definition: tuplesort.h:99

References Assert, LEADER, TSS_INITIAL, TUPLESORT_ALLOWBOUNDED, and WORKER.

Referenced by ExecIncrementalSort(), ExecSort(), and switchToPresortedPrefixMode().

◆ tuplesort_skiptuples()

bool tuplesort_skiptuples ( Tuplesortstate state,
int64  ntuples,
bool  forward 
)

Definition at line 1737 of file tuplesort.c.

1738 {
1739  MemoryContext oldcontext;
1740 
1741  /*
1742  * We don't actually support backwards skip yet, because no callers need
1743  * it. The API is designed to allow for that later, though.
1744  */
1745  Assert(forward);
1746  Assert(ntuples >= 0);
1747  Assert(!WORKER(state));
1748 
1749  switch (state->status)
1750  {
1751  case TSS_SORTEDINMEM:
1752  if (state->memtupcount - state->current >= ntuples)
1753  {
1754  state->current += ntuples;
1755  return true;
1756  }
1757  state->current = state->memtupcount;
1758  state->eof_reached = true;
1759 
1760  /*
1761  * Complain if caller tries to retrieve more tuples than
1762  * originally asked for in a bounded sort. This is because
1763  * returning EOF here might be the wrong thing.
1764  */
1765  if (state->bounded && state->current >= state->bound)
1766  elog(ERROR, "retrieved too many tuples in a bounded sort");
1767 
1768  return false;
1769 
1770  case TSS_SORTEDONTAPE:
1771  case TSS_FINALMERGE:
1772 
1773  /*
1774  * We could probably optimize these cases better, but for now it's
1775  * not worth the trouble.
1776  */
1777  oldcontext = MemoryContextSwitchTo(state->base.sortcontext);
1778  while (ntuples-- > 0)
1779  {
1780  SortTuple stup;
1781 
1782  if (!tuplesort_gettuple_common(state, forward, &stup))
1783  {
1784  MemoryContextSwitchTo(oldcontext);
1785  return false;
1786  }
1788  }
1789  MemoryContextSwitchTo(oldcontext);
1790  return true;
1791 
1792  default:
1793  elog(ERROR, "invalid tuplesort state");
1794  return false; /* keep compiler quiet */
1795  }
1796 }
bool tuplesort_gettuple_common(Tuplesortstate *state, bool forward, SortTuple *stup)
Definition: tuplesort.c:1497

References Assert, CHECK_FOR_INTERRUPTS, elog, ERROR, MemoryContextSwitchTo(), TSS_FINALMERGE, TSS_SORTEDINMEM, TSS_SORTEDONTAPE, tuplesort_gettuple_common(), and WORKER.

Referenced by percentile_cont_final_common(), percentile_cont_multi_final_common(), percentile_disc_final(), and percentile_disc_multi_final().

◆ tuplesort_sort_memtuples()

static void tuplesort_sort_memtuples ( Tuplesortstate state)
static

Definition at line 2715 of file tuplesort.c.

2716 {
2717  Assert(!LEADER(state));
2718 
2719  if (state->memtupcount > 1)
2720  {
2721  /*
2722  * Do we have the leading column's value or abbreviation in datum1,
2723  * and is there a specialization for its comparator?
2724  */
2725  if (state->base.haveDatum1 && state->base.sortKeys)
2726  {
2727  if (state->base.sortKeys[0].comparator == ssup_datum_unsigned_cmp)
2728  {
2729  qsort_tuple_unsigned(state->memtuples,
2730  state->memtupcount,
2731  state);
2732  return;
2733  }
2734 #if SIZEOF_DATUM >= 8
2735  else if (state->base.sortKeys[0].comparator == ssup_datum_signed_cmp)
2736  {
2737  qsort_tuple_signed(state->memtuples,
2738  state->memtupcount,
2739  state);
2740  return;
2741  }
2742 #endif
2743  else if (state->base.sortKeys[0].comparator == ssup_datum_int32_cmp)
2744  {
2745  qsort_tuple_int32(state->memtuples,
2746  state->memtupcount,
2747  state);
2748  return;
2749  }
2750  }
2751 
2752  /* Can we use the single-key sort function? */
2753  if (state->base.onlyKey != NULL)
2754  {
2755  qsort_ssup(state->memtuples, state->memtupcount,
2756  state->base.onlyKey);
2757  }
2758  else
2759  {
2760  qsort_tuple(state->memtuples,
2761  state->memtupcount,
2762  state->base.comparetup,
2763  state);
2764  }
2765  }
2766 }
int ssup_datum_unsigned_cmp(Datum x, Datum y, SortSupport ssup)
Definition: tuplesort.c:3178
int ssup_datum_int32_cmp(Datum x, Datum y, SortSupport ssup)
Definition: tuplesort.c:3205

References Assert, LEADER, ssup_datum_int32_cmp(), and ssup_datum_unsigned_cmp().

Referenced by dumptuples(), and tuplesort_performsort().

◆ tuplesort_space_type_name()

const char* tuplesort_space_type_name ( TuplesortSpaceType  t)

Definition at line 2605 of file tuplesort.c.

2606 {
2608  return t == SORT_SPACE_TYPE_DISK ? "Disk" : "Memory";
2609 }

References Assert, SORT_SPACE_TYPE_DISK, and SORT_SPACE_TYPE_MEMORY.

Referenced by show_incremental_sort_group_info(), and show_sort_info().

◆ tuplesort_updatemax()

static void tuplesort_updatemax ( Tuplesortstate state)
static

Definition at line 989 of file tuplesort.c.

990 {
991  int64 spaceUsed;
992  bool isSpaceDisk;
993 
994  /*
995  * Note: it might seem we should provide both memory and disk usage for a
996  * disk-based sort. However, the current code doesn't track memory space
997  * accurately once we have begun to return tuples to the caller (since we
998  * don't account for pfree's the caller is expected to do), so we cannot
999  * rely on availMem in a disk sort. This does not seem worth the overhead
1000  * to fix. Is it worth creating an API for the memory context code to
1001  * tell us how much is actually used in sortcontext?
1002  */
1003  if (state->tapeset)
1004  {
1005  isSpaceDisk = true;
1006  spaceUsed = LogicalTapeSetBlocks(state->tapeset) * BLCKSZ;
1007  }
1008  else
1009  {
1010  isSpaceDisk = false;
1011  spaceUsed = state->allowedMem - state->availMem;
1012  }
1013 
1014  /*
1015  * Sort evicts data to the disk when it wasn't able to fit that data into
1016  * main memory. This is why we assume space used on the disk to be more
1017  * important for tracking resource usage than space used in memory. Note
1018  * that the amount of space occupied by some tupleset on the disk might be
1019  * less than amount of space occupied by the same tupleset in memory due
1020  * to more compact representation.
1021  */
1022  if ((isSpaceDisk && !state->isMaxSpaceDisk) ||
1023  (isSpaceDisk == state->isMaxSpaceDisk && spaceUsed > state->maxSpace))
1024  {
1025  state->maxSpace = spaceUsed;
1026  state->isMaxSpaceDisk = isSpaceDisk;
1027  state->maxSpaceStatus = state->status;
1028  }
1029 }

References LogicalTapeSetBlocks().

Referenced by tuplesort_get_stats(), and tuplesort_reset().

◆ tuplesort_used_bound()

bool tuplesort_used_bound ( Tuplesortstate state)

Definition at line 892 of file tuplesort.c.

893 {
894  return state->boundUsed;
895 }

Referenced by ExecIncrementalSort().

◆ worker_freeze_result_tape()

static void worker_freeze_result_tape ( Tuplesortstate state)
static

Definition at line 3048 of file tuplesort.c.

3049 {
3050  Sharedsort *shared = state->shared;
3051  TapeShare output;
3052 
3053  Assert(WORKER(state));
3054  Assert(state->result_tape != NULL);
3055  Assert(state->memtupcount == 0);
3056 
3057  /*
3058  * Free most remaining memory, in case caller is sensitive to our holding
3059  * on to it. memtuples may not be a tiny merge heap at this point.
3060  */
3061  pfree(state->memtuples);
3062  /* Be tidy */
3063  state->memtuples = NULL;
3064  state->memtupsize = 0;
3065 
3066  /*
3067  * Parallel worker requires result tape metadata, which is to be stored in
3068  * shared memory for leader
3069  */
3070  LogicalTapeFreeze(state->result_tape, &output);
3071 
3072  /* Store properties of output tape, and update finished worker count */
3073  SpinLockAcquire(&shared->mutex);
3074  shared->tapes[state->worker] = output;
3075  shared->workersFinished++;
3076  SpinLockRelease(&shared->mutex);
3077 }
FILE * output

References Assert, LogicalTapeFreeze(), Sharedsort::mutex, output, pfree(), SpinLockAcquire, SpinLockRelease, Sharedsort::tapes, WORKER, and Sharedsort::workersFinished.

Referenced by mergeruns(), and worker_nomergeruns().

◆ worker_get_identifier()

static int worker_get_identifier ( Tuplesortstate state)
static

Definition at line 3020 of file tuplesort.c.

3021 {
3022  Sharedsort *shared = state->shared;
3023  int worker;
3024 
3025  Assert(WORKER(state));
3026 
3027  SpinLockAcquire(&shared->mutex);
3028  worker = shared->currentWorker++;
3029  SpinLockRelease(&shared->mutex);
3030 
3031  return worker;
3032 }

References Assert, Sharedsort::currentWorker, Sharedsort::mutex, SpinLockAcquire, SpinLockRelease, and WORKER.

Referenced by tuplesort_begin_common().

◆ worker_nomergeruns()

static void worker_nomergeruns ( Tuplesortstate state)
static

Definition at line 3086 of file tuplesort.c.

3087 {
3088  Assert(WORKER(state));
3089  Assert(state->result_tape == NULL);
3090  Assert(state->nOutputRuns == 1);
3091 
3092  state->result_tape = state->destTape;
3094 }

References Assert, WORKER, and worker_freeze_result_tape().

Referenced by tuplesort_performsort().

Variable Documentation

◆ trace_sort