PostgreSQL Source Code  git master
network.c
Go to the documentation of this file.
1 /*
2  * PostgreSQL type definitions for the INET and CIDR types.
3  *
4  * src/backend/utils/adt/network.c
5  *
6  * Jon Postel RIP 16 Oct 1998
7  */
8 
9 #include "postgres.h"
10 
11 #include <sys/socket.h>
12 #include <netinet/in.h>
13 #include <arpa/inet.h>
14 
15 #include "access/hash.h"
16 #include "catalog/pg_type.h"
17 #include "common/ip.h"
18 #include "libpq/libpq-be.h"
19 #include "libpq/pqformat.h"
20 #include "miscadmin.h"
21 #include "utils/builtins.h"
22 #include "utils/inet.h"
23 
24 
26 static bool addressOK(unsigned char *a, int bits, int family);
27 static inet *internal_inetpl(inet *ip, int64 addend);
28 
29 
30 /*
31  * Common INET/CIDR input routine
32  */
33 static inet *
34 network_in(char *src, bool is_cidr)
35 {
36  int bits;
37  inet *dst;
38 
39  dst = (inet *) palloc0(sizeof(inet));
40 
41  /*
42  * First, check to see if this is an IPv6 or IPv4 address. IPv6 addresses
43  * will have a : somewhere in them (several, in fact) so if there is one
44  * present, assume it's V6, otherwise assume it's V4.
45  */
46 
47  if (strchr(src, ':') != NULL)
49  else
50  ip_family(dst) = PGSQL_AF_INET;
51 
52  bits = inet_net_pton(ip_family(dst), src, ip_addr(dst),
53  is_cidr ? ip_addrsize(dst) : -1);
54  if ((bits < 0) || (bits > ip_maxbits(dst)))
55  ereport(ERROR,
56  (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
57  /* translator: first %s is inet or cidr */
58  errmsg("invalid input syntax for type %s: \"%s\"",
59  is_cidr ? "cidr" : "inet", src)));
60 
61  /*
62  * Error check: CIDR values must not have any bits set beyond the masklen.
63  */
64  if (is_cidr)
65  {
66  if (!addressOK(ip_addr(dst), bits, ip_family(dst)))
67  ereport(ERROR,
68  (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
69  errmsg("invalid cidr value: \"%s\"", src),
70  errdetail("Value has bits set to right of mask.")));
71  }
72 
73  ip_bits(dst) = bits;
74  SET_INET_VARSIZE(dst);
75 
76  return dst;
77 }
78 
79 Datum
81 {
82  char *src = PG_GETARG_CSTRING(0);
83 
84  PG_RETURN_INET_P(network_in(src, false));
85 }
86 
87 Datum
89 {
90  char *src = PG_GETARG_CSTRING(0);
91 
92  PG_RETURN_INET_P(network_in(src, true));
93 }
94 
95 
96 /*
97  * Common INET/CIDR output routine
98  */
99 static char *
100 network_out(inet *src, bool is_cidr)
101 {
102  char tmp[sizeof("xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:255.255.255.255/128")];
103  char *dst;
104  int len;
105 
106  dst = inet_net_ntop(ip_family(src), ip_addr(src), ip_bits(src),
107  tmp, sizeof(tmp));
108  if (dst == NULL)
109  ereport(ERROR,
110  (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
111  errmsg("could not format inet value: %m")));
112 
113  /* For CIDR, add /n if not present */
114  if (is_cidr && strchr(tmp, '/') == NULL)
115  {
116  len = strlen(tmp);
117  snprintf(tmp + len, sizeof(tmp) - len, "/%u", ip_bits(src));
118  }
119 
120  return pstrdup(tmp);
121 }
122 
123 Datum
125 {
126  inet *src = PG_GETARG_INET_PP(0);
127 
128  PG_RETURN_CSTRING(network_out(src, false));
129 }
130 
131 Datum
133 {
134  inet *src = PG_GETARG_INET_PP(0);
135 
136  PG_RETURN_CSTRING(network_out(src, true));
137 }
138 
139 
140 /*
141  * network_recv - converts external binary format to inet
142  *
143  * The external representation is (one byte apiece for)
144  * family, bits, is_cidr, address length, address in network byte order.
145  *
146  * Presence of is_cidr is largely for historical reasons, though it might
147  * allow some code-sharing on the client side. We send it correctly on
148  * output, but ignore the value on input.
149  */
150 static inet *
152 {
153  inet *addr;
154  char *addrptr;
155  int bits;
156  int nb,
157  i;
158 
159  /* make sure any unused bits in a CIDR value are zeroed */
160  addr = (inet *) palloc0(sizeof(inet));
161 
162  ip_family(addr) = pq_getmsgbyte(buf);
163  if (ip_family(addr) != PGSQL_AF_INET &&
164  ip_family(addr) != PGSQL_AF_INET6)
165  ereport(ERROR,
166  (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
167  /* translator: %s is inet or cidr */
168  errmsg("invalid address family in external \"%s\" value",
169  is_cidr ? "cidr" : "inet")));
170  bits = pq_getmsgbyte(buf);
171  if (bits < 0 || bits > ip_maxbits(addr))
172  ereport(ERROR,
173  (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
174  /* translator: %s is inet or cidr */
175  errmsg("invalid bits in external \"%s\" value",
176  is_cidr ? "cidr" : "inet")));
177  ip_bits(addr) = bits;
178  i = pq_getmsgbyte(buf); /* ignore is_cidr */
179  nb = pq_getmsgbyte(buf);
180  if (nb != ip_addrsize(addr))
181  ereport(ERROR,
182  (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
183  /* translator: %s is inet or cidr */
184  errmsg("invalid length in external \"%s\" value",
185  is_cidr ? "cidr" : "inet")));
186 
187  addrptr = (char *) ip_addr(addr);
188  for (i = 0; i < nb; i++)
189  addrptr[i] = pq_getmsgbyte(buf);
190 
191  /*
192  * Error check: CIDR values must not have any bits set beyond the masklen.
193  */
194  if (is_cidr)
195  {
196  if (!addressOK(ip_addr(addr), bits, ip_family(addr)))
197  ereport(ERROR,
198  (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
199  errmsg("invalid external \"cidr\" value"),
200  errdetail("Value has bits set to right of mask.")));
201  }
202 
203  SET_INET_VARSIZE(addr);
204 
205  return addr;
206 }
207 
208 Datum
210 {
212 
213  PG_RETURN_INET_P(network_recv(buf, false));
214 }
215 
216 Datum
218 {
220 
221  PG_RETURN_INET_P(network_recv(buf, true));
222 }
223 
224 
225 /*
226  * network_send - converts inet to binary format
227  */
228 static bytea *
229 network_send(inet *addr, bool is_cidr)
230 {
232  char *addrptr;
233  int nb,
234  i;
235 
236  pq_begintypsend(&buf);
237  pq_sendbyte(&buf, ip_family(addr));
238  pq_sendbyte(&buf, ip_bits(addr));
239  pq_sendbyte(&buf, is_cidr);
240  nb = ip_addrsize(addr);
241  if (nb < 0)
242  nb = 0;
243  pq_sendbyte(&buf, nb);
244  addrptr = (char *) ip_addr(addr);
245  for (i = 0; i < nb; i++)
246  pq_sendbyte(&buf, addrptr[i]);
247  return pq_endtypsend(&buf);
248 }
249 
250 Datum
252 {
253  inet *addr = PG_GETARG_INET_PP(0);
254 
255  PG_RETURN_BYTEA_P(network_send(addr, false));
256 }
257 
258 Datum
260 {
261  inet *addr = PG_GETARG_INET_PP(0);
262 
263  PG_RETURN_BYTEA_P(network_send(addr, true));
264 }
265 
266 
267 Datum
269 {
270  inet *src = PG_GETARG_INET_PP(0);
271  int bits;
272 
273  bits = ip_bits(src);
274 
275  /* safety check */
276  if ((bits < 0) || (bits > ip_maxbits(src)))
277  elog(ERROR, "invalid inet bit length: %d", bits);
278 
280 }
281 
282 Datum
284 {
285  inet *src = PG_GETARG_INET_PP(0);
286  int bits = PG_GETARG_INT32(1);
287  inet *dst;
288 
289  if (bits == -1)
290  bits = ip_maxbits(src);
291 
292  if ((bits < 0) || (bits > ip_maxbits(src)))
293  ereport(ERROR,
294  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
295  errmsg("invalid mask length: %d", bits)));
296 
297  /* clone the original data */
298  dst = (inet *) palloc(VARSIZE_ANY(src));
299  memcpy(dst, src, VARSIZE_ANY(src));
300 
301  ip_bits(dst) = bits;
302 
303  PG_RETURN_INET_P(dst);
304 }
305 
306 Datum
308 {
309  inet *src = PG_GETARG_INET_PP(0);
310  int bits = PG_GETARG_INT32(1);
311 
312  if (bits == -1)
313  bits = ip_maxbits(src);
314 
315  if ((bits < 0) || (bits > ip_maxbits(src)))
316  ereport(ERROR,
317  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
318  errmsg("invalid mask length: %d", bits)));
319 
321 }
322 
323 /*
324  * Copy src and set mask length to 'bits' (which must be valid for the family)
325  */
326 inet *
327 cidr_set_masklen_internal(const inet *src, int bits)
328 {
329  inet *dst = (inet *) palloc0(sizeof(inet));
330 
331  ip_family(dst) = ip_family(src);
332  ip_bits(dst) = bits;
333 
334  if (bits > 0)
335  {
336  Assert(bits <= ip_maxbits(dst));
337 
338  /* Clone appropriate bytes of the address, leaving the rest 0 */
339  memcpy(ip_addr(dst), ip_addr(src), (bits + 7) / 8);
340 
341  /* Clear any unwanted bits in the last partial byte */
342  if (bits % 8)
343  ip_addr(dst)[bits / 8] &= ~(0xFF >> (bits % 8));
344  }
345 
346  /* Set varlena header correctly */
347  SET_INET_VARSIZE(dst);
348 
349  return dst;
350 }
351 
352 /*
353  * Basic comparison function for sorting and inet/cidr comparisons.
354  *
355  * Comparison is first on the common bits of the network part, then on
356  * the length of the network part, and then on the whole unmasked address.
357  * The effect is that the network part is the major sort key, and for
358  * equal network parts we sort on the host part. Note this is only sane
359  * for CIDR if address bits to the right of the mask are guaranteed zero;
360  * otherwise logically-equal CIDRs might compare different.
361  */
362 
363 static int32
365 {
366  if (ip_family(a1) == ip_family(a2))
367  {
368  int order;
369 
370  order = bitncmp(ip_addr(a1), ip_addr(a2),
371  Min(ip_bits(a1), ip_bits(a2)));
372  if (order != 0)
373  return order;
374  order = ((int) ip_bits(a1)) - ((int) ip_bits(a2));
375  if (order != 0)
376  return order;
377  return bitncmp(ip_addr(a1), ip_addr(a2), ip_maxbits(a1));
378  }
379 
380  return ip_family(a1) - ip_family(a2);
381 }
382 
383 Datum
385 {
386  inet *a1 = PG_GETARG_INET_PP(0);
387  inet *a2 = PG_GETARG_INET_PP(1);
388 
390 }
391 
392 /*
393  * Boolean ordering tests.
394  */
395 Datum
397 {
398  inet *a1 = PG_GETARG_INET_PP(0);
399  inet *a2 = PG_GETARG_INET_PP(1);
400 
402 }
403 
404 Datum
406 {
407  inet *a1 = PG_GETARG_INET_PP(0);
408  inet *a2 = PG_GETARG_INET_PP(1);
409 
410  PG_RETURN_BOOL(network_cmp_internal(a1, a2) <= 0);
411 }
412 
413 Datum
415 {
416  inet *a1 = PG_GETARG_INET_PP(0);
417  inet *a2 = PG_GETARG_INET_PP(1);
418 
419  PG_RETURN_BOOL(network_cmp_internal(a1, a2) == 0);
420 }
421 
422 Datum
424 {
425  inet *a1 = PG_GETARG_INET_PP(0);
426  inet *a2 = PG_GETARG_INET_PP(1);
427 
428  PG_RETURN_BOOL(network_cmp_internal(a1, a2) >= 0);
429 }
430 
431 Datum
433 {
434  inet *a1 = PG_GETARG_INET_PP(0);
435  inet *a2 = PG_GETARG_INET_PP(1);
436 
438 }
439 
440 Datum
442 {
443  inet *a1 = PG_GETARG_INET_PP(0);
444  inet *a2 = PG_GETARG_INET_PP(1);
445 
446  PG_RETURN_BOOL(network_cmp_internal(a1, a2) != 0);
447 }
448 
449 /*
450  * MIN/MAX support functions.
451  */
452 Datum
454 {
455  inet *a1 = PG_GETARG_INET_PP(0);
456  inet *a2 = PG_GETARG_INET_PP(1);
457 
458  if (network_cmp_internal(a1, a2) < 0)
459  PG_RETURN_INET_P(a1);
460  else
461  PG_RETURN_INET_P(a2);
462 }
463 
464 Datum
466 {
467  inet *a1 = PG_GETARG_INET_PP(0);
468  inet *a2 = PG_GETARG_INET_PP(1);
469 
470  if (network_cmp_internal(a1, a2) > 0)
471  PG_RETURN_INET_P(a1);
472  else
473  PG_RETURN_INET_P(a2);
474 }
475 
476 /*
477  * Support function for hash indexes on inet/cidr.
478  */
479 Datum
481 {
482  inet *addr = PG_GETARG_INET_PP(0);
483  int addrsize = ip_addrsize(addr);
484 
485  /* XXX this assumes there are no pad bytes in the data structure */
486  return hash_any((unsigned char *) VARDATA_ANY(addr), addrsize + 2);
487 }
488 
489 Datum
491 {
492  inet *addr = PG_GETARG_INET_PP(0);
493  int addrsize = ip_addrsize(addr);
494 
495  return hash_any_extended((unsigned char *) VARDATA_ANY(addr), addrsize + 2,
496  PG_GETARG_INT64(1));
497 }
498 
499 /*
500  * Boolean network-inclusion tests.
501  */
502 Datum
504 {
505  inet *a1 = PG_GETARG_INET_PP(0);
506  inet *a2 = PG_GETARG_INET_PP(1);
507 
508  if (ip_family(a1) == ip_family(a2))
509  {
510  PG_RETURN_BOOL(ip_bits(a1) > ip_bits(a2) &&
511  bitncmp(ip_addr(a1), ip_addr(a2), ip_bits(a2)) == 0);
512  }
513 
514  PG_RETURN_BOOL(false);
515 }
516 
517 Datum
519 {
520  inet *a1 = PG_GETARG_INET_PP(0);
521  inet *a2 = PG_GETARG_INET_PP(1);
522 
523  if (ip_family(a1) == ip_family(a2))
524  {
525  PG_RETURN_BOOL(ip_bits(a1) >= ip_bits(a2) &&
526  bitncmp(ip_addr(a1), ip_addr(a2), ip_bits(a2)) == 0);
527  }
528 
529  PG_RETURN_BOOL(false);
530 }
531 
532 Datum
534 {
535  inet *a1 = PG_GETARG_INET_PP(0);
536  inet *a2 = PG_GETARG_INET_PP(1);
537 
538  if (ip_family(a1) == ip_family(a2))
539  {
540  PG_RETURN_BOOL(ip_bits(a1) < ip_bits(a2) &&
541  bitncmp(ip_addr(a1), ip_addr(a2), ip_bits(a1)) == 0);
542  }
543 
544  PG_RETURN_BOOL(false);
545 }
546 
547 Datum
549 {
550  inet *a1 = PG_GETARG_INET_PP(0);
551  inet *a2 = PG_GETARG_INET_PP(1);
552 
553  if (ip_family(a1) == ip_family(a2))
554  {
555  PG_RETURN_BOOL(ip_bits(a1) <= ip_bits(a2) &&
556  bitncmp(ip_addr(a1), ip_addr(a2), ip_bits(a1)) == 0);
557  }
558 
559  PG_RETURN_BOOL(false);
560 }
561 
562 Datum
564 {
565  inet *a1 = PG_GETARG_INET_PP(0);
566  inet *a2 = PG_GETARG_INET_PP(1);
567 
568  if (ip_family(a1) == ip_family(a2))
569  {
571  Min(ip_bits(a1), ip_bits(a2))) == 0);
572  }
573 
574  PG_RETURN_BOOL(false);
575 }
576 
577 /*
578  * Extract data from a network datatype.
579  */
580 Datum
582 {
583  inet *ip = PG_GETARG_INET_PP(0);
584  char *ptr;
585  char tmp[sizeof("xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:255.255.255.255/128")];
586 
587  /* force display of max bits, regardless of masklen... */
588  if (inet_net_ntop(ip_family(ip), ip_addr(ip), ip_maxbits(ip),
589  tmp, sizeof(tmp)) == NULL)
590  ereport(ERROR,
591  (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
592  errmsg("could not format inet value: %m")));
593 
594  /* Suppress /n if present (shouldn't happen now) */
595  if ((ptr = strchr(tmp, '/')) != NULL)
596  *ptr = '\0';
597 
599 }
600 
601 /*
602  * network_show implements the inet and cidr casts to text. This is not
603  * quite the same behavior as network_out, hence we can't drop it in favor
604  * of CoerceViaIO.
605  */
606 Datum
608 {
609  inet *ip = PG_GETARG_INET_PP(0);
610  int len;
611  char tmp[sizeof("xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:255.255.255.255/128")];
612 
613  if (inet_net_ntop(ip_family(ip), ip_addr(ip), ip_maxbits(ip),
614  tmp, sizeof(tmp)) == NULL)
615  ereport(ERROR,
616  (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
617  errmsg("could not format inet value: %m")));
618 
619  /* Add /n if not present (which it won't be) */
620  if (strchr(tmp, '/') == NULL)
621  {
622  len = strlen(tmp);
623  snprintf(tmp + len, sizeof(tmp) - len, "/%u", ip_bits(ip));
624  }
625 
627 }
628 
629 Datum
631 {
632  inet *ip = PG_GETARG_INET_PP(0);
633  char *dst;
634  char tmp[sizeof("xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:255.255.255.255/128")];
635 
636  dst = inet_net_ntop(ip_family(ip), ip_addr(ip),
637  ip_bits(ip), tmp, sizeof(tmp));
638 
639  if (dst == NULL)
640  ereport(ERROR,
641  (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
642  errmsg("could not format inet value: %m")));
643 
645 }
646 
647 Datum
649 {
650  inet *ip = PG_GETARG_INET_PP(0);
651  char *dst;
652  char tmp[sizeof("xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:255.255.255.255/128")];
653 
654  dst = inet_cidr_ntop(ip_family(ip), ip_addr(ip),
655  ip_bits(ip), tmp, sizeof(tmp));
656 
657  if (dst == NULL)
658  ereport(ERROR,
659  (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
660  errmsg("could not format cidr value: %m")));
661 
663 }
664 
665 Datum
667 {
668  inet *ip = PG_GETARG_INET_PP(0);
669 
671 }
672 
673 Datum
675 {
676  inet *ip = PG_GETARG_INET_PP(0);
677 
678  switch (ip_family(ip))
679  {
680  case PGSQL_AF_INET:
681  PG_RETURN_INT32(4);
682  break;
683  case PGSQL_AF_INET6:
684  PG_RETURN_INT32(6);
685  break;
686  default:
687  PG_RETURN_INT32(0);
688  break;
689  }
690 }
691 
692 Datum
694 {
695  inet *ip = PG_GETARG_INET_PP(0);
696  inet *dst;
697  int byte;
698  int bits;
699  int maxbytes;
700  unsigned char mask;
701  unsigned char *a,
702  *b;
703 
704  /* make sure any unused bits are zeroed */
705  dst = (inet *) palloc0(sizeof(inet));
706 
707  maxbytes = ip_addrsize(ip);
708  bits = ip_bits(ip);
709  a = ip_addr(ip);
710  b = ip_addr(dst);
711 
712  for (byte = 0; byte < maxbytes; byte++)
713  {
714  if (bits >= 8)
715  {
716  mask = 0x00;
717  bits -= 8;
718  }
719  else if (bits == 0)
720  mask = 0xff;
721  else
722  {
723  mask = 0xff >> bits;
724  bits = 0;
725  }
726 
727  b[byte] = a[byte] | mask;
728  }
729 
730  ip_family(dst) = ip_family(ip);
731  ip_bits(dst) = ip_bits(ip);
732  SET_INET_VARSIZE(dst);
733 
734  PG_RETURN_INET_P(dst);
735 }
736 
737 Datum
739 {
740  inet *ip = PG_GETARG_INET_PP(0);
741  inet *dst;
742  int byte;
743  int bits;
744  unsigned char mask;
745  unsigned char *a,
746  *b;
747 
748  /* make sure any unused bits are zeroed */
749  dst = (inet *) palloc0(sizeof(inet));
750 
751  bits = ip_bits(ip);
752  a = ip_addr(ip);
753  b = ip_addr(dst);
754 
755  byte = 0;
756 
757  while (bits)
758  {
759  if (bits >= 8)
760  {
761  mask = 0xff;
762  bits -= 8;
763  }
764  else
765  {
766  mask = 0xff << (8 - bits);
767  bits = 0;
768  }
769 
770  b[byte] = a[byte] & mask;
771  byte++;
772  }
773 
774  ip_family(dst) = ip_family(ip);
775  ip_bits(dst) = ip_bits(ip);
776  SET_INET_VARSIZE(dst);
777 
778  PG_RETURN_INET_P(dst);
779 }
780 
781 Datum
783 {
784  inet *ip = PG_GETARG_INET_PP(0);
785  inet *dst;
786  int byte;
787  int bits;
788  unsigned char mask;
789  unsigned char *b;
790 
791  /* make sure any unused bits are zeroed */
792  dst = (inet *) palloc0(sizeof(inet));
793 
794  bits = ip_bits(ip);
795  b = ip_addr(dst);
796 
797  byte = 0;
798 
799  while (bits)
800  {
801  if (bits >= 8)
802  {
803  mask = 0xff;
804  bits -= 8;
805  }
806  else
807  {
808  mask = 0xff << (8 - bits);
809  bits = 0;
810  }
811 
812  b[byte] = mask;
813  byte++;
814  }
815 
816  ip_family(dst) = ip_family(ip);
817  ip_bits(dst) = ip_maxbits(ip);
818  SET_INET_VARSIZE(dst);
819 
820  PG_RETURN_INET_P(dst);
821 }
822 
823 Datum
825 {
826  inet *ip = PG_GETARG_INET_PP(0);
827  inet *dst;
828  int byte;
829  int bits;
830  int maxbytes;
831  unsigned char mask;
832  unsigned char *b;
833 
834  /* make sure any unused bits are zeroed */
835  dst = (inet *) palloc0(sizeof(inet));
836 
837  maxbytes = ip_addrsize(ip);
838  bits = ip_maxbits(ip) - ip_bits(ip);
839  b = ip_addr(dst);
840 
841  byte = maxbytes - 1;
842 
843  while (bits)
844  {
845  if (bits >= 8)
846  {
847  mask = 0xff;
848  bits -= 8;
849  }
850  else
851  {
852  mask = 0xff >> (8 - bits);
853  bits = 0;
854  }
855 
856  b[byte] = mask;
857  byte--;
858  }
859 
860  ip_family(dst) = ip_family(ip);
861  ip_bits(dst) = ip_maxbits(ip);
862  SET_INET_VARSIZE(dst);
863 
864  PG_RETURN_INET_P(dst);
865 }
866 
867 /*
868  * Returns true if the addresses are from the same family, or false. Used to
869  * check that we can create a network which contains both of the networks.
870  */
871 Datum
873 {
874  inet *a1 = PG_GETARG_INET_PP(0);
875  inet *a2 = PG_GETARG_INET_PP(1);
876 
877  PG_RETURN_BOOL(ip_family(a1) == ip_family(a2));
878 }
879 
880 /*
881  * Returns the smallest CIDR which contains both of the inputs.
882  */
883 Datum
885 {
886  inet *a1 = PG_GETARG_INET_PP(0),
887  *a2 = PG_GETARG_INET_PP(1);
888  int commonbits;
889 
890  if (ip_family(a1) != ip_family(a2))
891  ereport(ERROR,
892  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
893  errmsg("cannot merge addresses from different families")));
894 
895  commonbits = bitncommon(ip_addr(a1), ip_addr(a2),
896  Min(ip_bits(a1), ip_bits(a2)));
897 
899 }
900 
901 /*
902  * Convert a value of a network datatype to an approximate scalar value.
903  * This is used for estimating selectivities of inequality operators
904  * involving network types.
905  *
906  * On failure (e.g., unsupported typid), set *failure to true;
907  * otherwise, that variable is not changed.
908  */
909 double
910 convert_network_to_scalar(Datum value, Oid typid, bool *failure)
911 {
912  switch (typid)
913  {
914  case INETOID:
915  case CIDROID:
916  {
917  inet *ip = DatumGetInetPP(value);
918  int len;
919  double res;
920  int i;
921 
922  /*
923  * Note that we don't use the full address for IPv6.
924  */
925  if (ip_family(ip) == PGSQL_AF_INET)
926  len = 4;
927  else
928  len = 5;
929 
930  res = ip_family(ip);
931  for (i = 0; i < len; i++)
932  {
933  res *= 256;
934  res += ip_addr(ip)[i];
935  }
936  return res;
937  }
938  case MACADDROID:
939  {
940  macaddr *mac = DatumGetMacaddrP(value);
941  double res;
942 
943  res = (mac->a << 16) | (mac->b << 8) | (mac->c);
944  res *= 256 * 256 * 256;
945  res += (mac->d << 16) | (mac->e << 8) | (mac->f);
946  return res;
947  }
948  case MACADDR8OID:
949  {
950  macaddr8 *mac = DatumGetMacaddr8P(value);
951  double res;
952 
953  res = (mac->a << 24) | (mac->b << 16) | (mac->c << 8) | (mac->d);
954  res *= ((double) 256) * 256 * 256 * 256;
955  res += (mac->e << 24) | (mac->f << 16) | (mac->g << 8) | (mac->h);
956  return res;
957  }
958  }
959 
960  *failure = true;
961  return 0;
962 }
963 
964 /*
965  * int
966  * bitncmp(l, r, n)
967  * compare bit masks l and r, for n bits.
968  * return:
969  * <0, >0, or 0 in the libc tradition.
970  * note:
971  * network byte order assumed. this means 192.5.5.240/28 has
972  * 0x11110000 in its fourth octet.
973  * author:
974  * Paul Vixie (ISC), June 1996
975  */
976 int
977 bitncmp(const unsigned char *l, const unsigned char *r, int n)
978 {
979  unsigned int lb,
980  rb;
981  int x,
982  b;
983 
984  b = n / 8;
985  x = memcmp(l, r, b);
986  if (x || (n % 8) == 0)
987  return x;
988 
989  lb = l[b];
990  rb = r[b];
991  for (b = n % 8; b > 0; b--)
992  {
993  if (IS_HIGHBIT_SET(lb) != IS_HIGHBIT_SET(rb))
994  {
995  if (IS_HIGHBIT_SET(lb))
996  return 1;
997  return -1;
998  }
999  lb <<= 1;
1000  rb <<= 1;
1001  }
1002  return 0;
1003 }
1004 
1005 /*
1006  * bitncommon: compare bit masks l and r, for up to n bits.
1007  *
1008  * Returns the number of leading bits that match (0 to n).
1009  */
1010 int
1011 bitncommon(const unsigned char *l, const unsigned char *r, int n)
1012 {
1013  int byte,
1014  nbits;
1015 
1016  /* number of bits to examine in last byte */
1017  nbits = n % 8;
1018 
1019  /* check whole bytes */
1020  for (byte = 0; byte < n / 8; byte++)
1021  {
1022  if (l[byte] != r[byte])
1023  {
1024  /* at least one bit in the last byte is not common */
1025  nbits = 7;
1026  break;
1027  }
1028  }
1029 
1030  /* check bits in last partial byte */
1031  if (nbits != 0)
1032  {
1033  /* calculate diff of first non-matching bytes */
1034  unsigned int diff = l[byte] ^ r[byte];
1035 
1036  /* compare the bits from the most to the least */
1037  while ((diff >> (8 - nbits)) != 0)
1038  nbits--;
1039  }
1040 
1041  return (8 * byte) + nbits;
1042 }
1043 
1044 
1045 /*
1046  * Verify a CIDR address is OK (doesn't have bits set past the masklen)
1047  */
1048 static bool
1049 addressOK(unsigned char *a, int bits, int family)
1050 {
1051  int byte;
1052  int nbits;
1053  int maxbits;
1054  int maxbytes;
1055  unsigned char mask;
1056 
1057  if (family == PGSQL_AF_INET)
1058  {
1059  maxbits = 32;
1060  maxbytes = 4;
1061  }
1062  else
1063  {
1064  maxbits = 128;
1065  maxbytes = 16;
1066  }
1067  Assert(bits <= maxbits);
1068 
1069  if (bits == maxbits)
1070  return true;
1071 
1072  byte = bits / 8;
1073 
1074  nbits = bits % 8;
1075  mask = 0xff;
1076  if (bits != 0)
1077  mask >>= nbits;
1078 
1079  while (byte < maxbytes)
1080  {
1081  if ((a[byte] & mask) != 0)
1082  return false;
1083  mask = 0xff;
1084  byte++;
1085  }
1086 
1087  return true;
1088 }
1089 
1090 
1091 /*
1092  * These functions are used by planner to generate indexscan limits
1093  * for clauses a << b and a <<= b
1094  */
1095 
1096 /* return the minimal value for an IP on a given network */
1097 Datum
1099 {
1101 }
1102 
1103 /*
1104  * return "last" IP on a given network. It's the broadcast address,
1105  * however, masklen has to be set to its max bits, since
1106  * 192.168.0.255/24 is considered less than 192.168.0.255/32
1107  *
1108  * inet_set_masklen() hacked to max out the masklength to 128 for IPv6
1109  * and 32 for IPv4 when given '-1' as argument.
1110  */
1111 Datum
1113 {
1116  Int32GetDatum(-1));
1117 }
1118 
1119 
1120 /*
1121  * IP address that the client is connecting from (NULL if Unix socket)
1122  */
1123 Datum
1125 {
1126  Port *port = MyProcPort;
1127  char remote_host[NI_MAXHOST];
1128  int ret;
1129 
1130  if (port == NULL)
1131  PG_RETURN_NULL();
1132 
1133  switch (port->raddr.addr.ss_family)
1134  {
1135  case AF_INET:
1136 #ifdef HAVE_IPV6
1137  case AF_INET6:
1138 #endif
1139  break;
1140  default:
1141  PG_RETURN_NULL();
1142  }
1143 
1144  remote_host[0] = '\0';
1145 
1146  ret = pg_getnameinfo_all(&port->raddr.addr, port->raddr.salen,
1147  remote_host, sizeof(remote_host),
1148  NULL, 0,
1150  if (ret != 0)
1151  PG_RETURN_NULL();
1152 
1153  clean_ipv6_addr(port->raddr.addr.ss_family, remote_host);
1154 
1155  PG_RETURN_INET_P(network_in(remote_host, false));
1156 }
1157 
1158 
1159 /*
1160  * port that the client is connecting from (NULL if Unix socket)
1161  */
1162 Datum
1164 {
1165  Port *port = MyProcPort;
1166  char remote_port[NI_MAXSERV];
1167  int ret;
1168 
1169  if (port == NULL)
1170  PG_RETURN_NULL();
1171 
1172  switch (port->raddr.addr.ss_family)
1173  {
1174  case AF_INET:
1175 #ifdef HAVE_IPV6
1176  case AF_INET6:
1177 #endif
1178  break;
1179  default:
1180  PG_RETURN_NULL();
1181  }
1182 
1183  remote_port[0] = '\0';
1184 
1185  ret = pg_getnameinfo_all(&port->raddr.addr, port->raddr.salen,
1186  NULL, 0,
1187  remote_port, sizeof(remote_port),
1189  if (ret != 0)
1190  PG_RETURN_NULL();
1191 
1193 }
1194 
1195 
1196 /*
1197  * IP address that the server accepted the connection on (NULL if Unix socket)
1198  */
1199 Datum
1201 {
1202  Port *port = MyProcPort;
1203  char local_host[NI_MAXHOST];
1204  int ret;
1205 
1206  if (port == NULL)
1207  PG_RETURN_NULL();
1208 
1209  switch (port->laddr.addr.ss_family)
1210  {
1211  case AF_INET:
1212 #ifdef HAVE_IPV6
1213  case AF_INET6:
1214 #endif
1215  break;
1216  default:
1217  PG_RETURN_NULL();
1218  }
1219 
1220  local_host[0] = '\0';
1221 
1222  ret = pg_getnameinfo_all(&port->laddr.addr, port->laddr.salen,
1223  local_host, sizeof(local_host),
1224  NULL, 0,
1226  if (ret != 0)
1227  PG_RETURN_NULL();
1228 
1229  clean_ipv6_addr(port->laddr.addr.ss_family, local_host);
1230 
1231  PG_RETURN_INET_P(network_in(local_host, false));
1232 }
1233 
1234 
1235 /*
1236  * port that the server accepted the connection on (NULL if Unix socket)
1237  */
1238 Datum
1240 {
1241  Port *port = MyProcPort;
1242  char local_port[NI_MAXSERV];
1243  int ret;
1244 
1245  if (port == NULL)
1246  PG_RETURN_NULL();
1247 
1248  switch (port->laddr.addr.ss_family)
1249  {
1250  case AF_INET:
1251 #ifdef HAVE_IPV6
1252  case AF_INET6:
1253 #endif
1254  break;
1255  default:
1256  PG_RETURN_NULL();
1257  }
1258 
1259  local_port[0] = '\0';
1260 
1261  ret = pg_getnameinfo_all(&port->laddr.addr, port->laddr.salen,
1262  NULL, 0,
1263  local_port, sizeof(local_port),
1265  if (ret != 0)
1266  PG_RETURN_NULL();
1267 
1269 }
1270 
1271 
1272 Datum
1274 {
1275  inet *ip = PG_GETARG_INET_PP(0);
1276  inet *dst;
1277 
1278  dst = (inet *) palloc0(sizeof(inet));
1279 
1280  {
1281  int nb = ip_addrsize(ip);
1282  unsigned char *pip = ip_addr(ip);
1283  unsigned char *pdst = ip_addr(dst);
1284 
1285  while (nb-- > 0)
1286  pdst[nb] = ~pip[nb];
1287  }
1288  ip_bits(dst) = ip_bits(ip);
1289 
1290  ip_family(dst) = ip_family(ip);
1291  SET_INET_VARSIZE(dst);
1292 
1293  PG_RETURN_INET_P(dst);
1294 }
1295 
1296 
1297 Datum
1299 {
1300  inet *ip = PG_GETARG_INET_PP(0);
1301  inet *ip2 = PG_GETARG_INET_PP(1);
1302  inet *dst;
1303 
1304  dst = (inet *) palloc0(sizeof(inet));
1305 
1306  if (ip_family(ip) != ip_family(ip2))
1307  ereport(ERROR,
1308  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1309  errmsg("cannot AND inet values of different sizes")));
1310  else
1311  {
1312  int nb = ip_addrsize(ip);
1313  unsigned char *pip = ip_addr(ip);
1314  unsigned char *pip2 = ip_addr(ip2);
1315  unsigned char *pdst = ip_addr(dst);
1316 
1317  while (nb-- > 0)
1318  pdst[nb] = pip[nb] & pip2[nb];
1319  }
1320  ip_bits(dst) = Max(ip_bits(ip), ip_bits(ip2));
1321 
1322  ip_family(dst) = ip_family(ip);
1323  SET_INET_VARSIZE(dst);
1324 
1325  PG_RETURN_INET_P(dst);
1326 }
1327 
1328 
1329 Datum
1331 {
1332  inet *ip = PG_GETARG_INET_PP(0);
1333  inet *ip2 = PG_GETARG_INET_PP(1);
1334  inet *dst;
1335 
1336  dst = (inet *) palloc0(sizeof(inet));
1337 
1338  if (ip_family(ip) != ip_family(ip2))
1339  ereport(ERROR,
1340  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1341  errmsg("cannot OR inet values of different sizes")));
1342  else
1343  {
1344  int nb = ip_addrsize(ip);
1345  unsigned char *pip = ip_addr(ip);
1346  unsigned char *pip2 = ip_addr(ip2);
1347  unsigned char *pdst = ip_addr(dst);
1348 
1349  while (nb-- > 0)
1350  pdst[nb] = pip[nb] | pip2[nb];
1351  }
1352  ip_bits(dst) = Max(ip_bits(ip), ip_bits(ip2));
1353 
1354  ip_family(dst) = ip_family(ip);
1355  SET_INET_VARSIZE(dst);
1356 
1357  PG_RETURN_INET_P(dst);
1358 }
1359 
1360 
1361 static inet *
1362 internal_inetpl(inet *ip, int64 addend)
1363 {
1364  inet *dst;
1365 
1366  dst = (inet *) palloc0(sizeof(inet));
1367 
1368  {
1369  int nb = ip_addrsize(ip);
1370  unsigned char *pip = ip_addr(ip);
1371  unsigned char *pdst = ip_addr(dst);
1372  int carry = 0;
1373 
1374  while (nb-- > 0)
1375  {
1376  carry = pip[nb] + (int) (addend & 0xFF) + carry;
1377  pdst[nb] = (unsigned char) (carry & 0xFF);
1378  carry >>= 8;
1379 
1380  /*
1381  * We have to be careful about right-shifting addend because
1382  * right-shift isn't portable for negative values, while simply
1383  * dividing by 256 doesn't work (the standard rounding is in the
1384  * wrong direction, besides which there may be machines out there
1385  * that round the wrong way). So, explicitly clear the low-order
1386  * byte to remove any doubt about the correct result of the
1387  * division, and then divide rather than shift.
1388  */
1389  addend &= ~((int64) 0xFF);
1390  addend /= 0x100;
1391  }
1392 
1393  /*
1394  * At this point we should have addend and carry both zero if original
1395  * addend was >= 0, or addend -1 and carry 1 if original addend was <
1396  * 0. Anything else means overflow.
1397  */
1398  if (!((addend == 0 && carry == 0) ||
1399  (addend == -1 && carry == 1)))
1400  ereport(ERROR,
1401  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1402  errmsg("result is out of range")));
1403  }
1404 
1405  ip_bits(dst) = ip_bits(ip);
1406  ip_family(dst) = ip_family(ip);
1407  SET_INET_VARSIZE(dst);
1408 
1409  return dst;
1410 }
1411 
1412 
1413 Datum
1415 {
1416  inet *ip = PG_GETARG_INET_PP(0);
1417  int64 addend = PG_GETARG_INT64(1);
1418 
1419  PG_RETURN_INET_P(internal_inetpl(ip, addend));
1420 }
1421 
1422 
1423 Datum
1425 {
1426  inet *ip = PG_GETARG_INET_PP(0);
1427  int64 addend = PG_GETARG_INT64(1);
1428 
1429  PG_RETURN_INET_P(internal_inetpl(ip, -addend));
1430 }
1431 
1432 
1433 Datum
1435 {
1436  inet *ip = PG_GETARG_INET_PP(0);
1437  inet *ip2 = PG_GETARG_INET_PP(1);
1438  int64 res = 0;
1439 
1440  if (ip_family(ip) != ip_family(ip2))
1441  ereport(ERROR,
1442  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1443  errmsg("cannot subtract inet values of different sizes")));
1444  else
1445  {
1446  /*
1447  * We form the difference using the traditional complement, increment,
1448  * and add rule, with the increment part being handled by starting the
1449  * carry off at 1. If you don't think integer arithmetic is done in
1450  * two's complement, too bad.
1451  */
1452  int nb = ip_addrsize(ip);
1453  int byte = 0;
1454  unsigned char *pip = ip_addr(ip);
1455  unsigned char *pip2 = ip_addr(ip2);
1456  int carry = 1;
1457 
1458  while (nb-- > 0)
1459  {
1460  int lobyte;
1461 
1462  carry = pip[nb] + (~pip2[nb] & 0xFF) + carry;
1463  lobyte = carry & 0xFF;
1464  if (byte < sizeof(int64))
1465  {
1466  res |= ((int64) lobyte) << (byte * 8);
1467  }
1468  else
1469  {
1470  /*
1471  * Input wider than int64: check for overflow. All bytes to
1472  * the left of what will fit should be 0 or 0xFF, depending on
1473  * sign of the now-complete result.
1474  */
1475  if ((res < 0) ? (lobyte != 0xFF) : (lobyte != 0))
1476  ereport(ERROR,
1477  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1478  errmsg("result is out of range")));
1479  }
1480  carry >>= 8;
1481  byte++;
1482  }
1483 
1484  /*
1485  * If input is narrower than int64, overflow is not possible, but we
1486  * have to do proper sign extension.
1487  */
1488  if (carry == 0 && byte < sizeof(int64))
1489  res |= ((uint64) (int64) -1) << (byte * 8);
1490  }
1491 
1492  PG_RETURN_INT64(res);
1493 }
1494 
1495 
1496 /*
1497  * clean_ipv6_addr --- remove any '%zone' part from an IPv6 address string
1498  *
1499  * XXX This should go away someday!
1500  *
1501  * This is a kluge needed because we don't yet support zones in stored inet
1502  * values. Since the result of getnameinfo() might include a zone spec,
1503  * call this to remove it anywhere we want to feed getnameinfo's output to
1504  * network_in. Beats failing entirely.
1505  *
1506  * An alternative approach would be to let network_in ignore %-parts for
1507  * itself, but that would mean we'd silently drop zone specs in user input,
1508  * which seems not such a good idea.
1509  */
1510 void
1511 clean_ipv6_addr(int addr_family, char *addr)
1512 {
1513 #ifdef HAVE_IPV6
1514  if (addr_family == AF_INET6)
1515  {
1516  char *pct = strchr(addr, '%');
1517 
1518  if (pct)
1519  *pct = '\0';
1520  }
1521 #endif
1522 }
Datum network_broadcast(PG_FUNCTION_ARGS)
Definition: network.c:693
#define PG_GETARG_INT32(n)
Definition: fmgr.h:239
Datum inet_same_family(PG_FUNCTION_ARGS)
Definition: network.c:872
Datum hashinet(PG_FUNCTION_ARGS)
Definition: network.c:480
#define DatumGetMacaddrP(X)
Definition: inet.h:131
#define NI_NUMERICHOST
Definition: getaddrinfo.h:78
#define VARDATA_ANY(PTR)
Definition: postgres.h:348
Datum inetpl(PG_FUNCTION_ARGS)
Definition: network.c:1414
#define ip_bits(inetptr)
Definition: inet.h:74
struct Port * MyProcPort
Definition: globals.c:42
#define ip_family(inetptr)
Definition: inet.h:71
static bool addressOK(unsigned char *a, int bits, int family)
Definition: network.c:1049
#define PGSQL_AF_INET
Definition: inet.h:39
Datum cidr_recv(PG_FUNCTION_ARGS)
Definition: network.c:217
#define PG_RETURN_INT64(x)
Definition: fmgr.h:332
Datum network_scan_last(Datum in)
Definition: network.c:1112
#define DatumGetInetPP(X)
Definition: inet.h:122
void pq_begintypsend(StringInfo buf)
Definition: pqformat.c:328
char * pstrdup(const char *in)
Definition: mcxt.c:1161
unsigned char f
Definition: inet.h:101
#define ip_addr(inetptr)
Definition: inet.h:77
Datum int4in(PG_FUNCTION_ARGS)
Definition: int.c:264
StringInfoData * StringInfo
Definition: stringinfo.h:43
#define Min(x, y)
Definition: c.h:857
#define SET_INET_VARSIZE(dst)
Definition: inet.h:86
struct sockaddr_storage addr
Definition: pqcomm.h:64
Datum cidr_set_masklen(PG_FUNCTION_ARGS)
Definition: network.c:307
#define PG_RETURN_INT32(x)
Definition: fmgr.h:319
Datum cidr_send(PG_FUNCTION_ARGS)
Definition: network.c:259
#define PG_RETURN_INET_P(x)
Definition: inet.h:125
int bitncommon(const unsigned char *l, const unsigned char *r, int n)
Definition: network.c:1011
int errcode(int sqlerrcode)
Definition: elog.c:575
Datum network_family(PG_FUNCTION_ARGS)
Definition: network.c:674
Definition: libpq-be.h:116
Datum cidr_out(PG_FUNCTION_ARGS)
Definition: network.c:132
Datum inet_out(PG_FUNCTION_ARGS)
Definition: network.c:124
Datum network_host(PG_FUNCTION_ARGS)
Definition: network.c:581
int snprintf(char *str, size_t count, const char *fmt,...) pg_attribute_printf(3
#define PG_GETARG_POINTER(n)
Definition: fmgr.h:246
Datum network_le(PG_FUNCTION_ARGS)
Definition: network.c:405
static inet * network_in(char *src, bool is_cidr)
Definition: network.c:34
#define ip_addrsize(inetptr)
Definition: inet.h:80
#define DirectFunctionCall1(func, arg1)
Definition: fmgr.h:590
#define PG_RETURN_BYTEA_P(x)
Definition: fmgr.h:335
static void pq_sendbyte(StringInfo buf, int8 byt)
Definition: pqformat.h:164
Datum network_netmask(PG_FUNCTION_ARGS)
Definition: network.c:782
unsigned int Oid
Definition: postgres_ext.h:31
#define PGSQL_AF_INET6
Definition: inet.h:40
bytea * pq_endtypsend(StringInfo buf)
Definition: pqformat.c:348
unsigned char h
Definition: inet.h:116
Datum network_masklen(PG_FUNCTION_ARGS)
Definition: network.c:666
Datum network_ne(PG_FUNCTION_ARGS)
Definition: network.c:441
Datum inet_set_masklen(PG_FUNCTION_ARGS)
Definition: network.c:283
Datum network_lt(PG_FUNCTION_ARGS)
Definition: network.c:396
signed int int32
Definition: c.h:313
unsigned char f
Definition: inet.h:114
unsigned char g
Definition: inet.h:115
#define ip_maxbits(inetptr)
Definition: inet.h:83
SockAddr raddr
Definition: libpq-be.h:122
char * inet_cidr_ntop(int af, const void *src, int bits, char *dst, size_t size)
unsigned char c
Definition: inet.h:98
unsigned char a
Definition: inet.h:109
#define NI_MAXHOST
Definition: getaddrinfo.h:88
#define IS_HIGHBIT_SET(ch)
Definition: c.h:994
#define ERROR
Definition: elog.h:43
unsigned char a
Definition: inet.h:96
Definition: inet.h:107
double convert_network_to_scalar(Datum value, Oid typid, bool *failure)
Definition: network.c:910
unsigned char d
Definition: inet.h:99
static int32 network_cmp_internal(inet *a1, inet *a2)
Definition: network.c:364
Datum network_show(PG_FUNCTION_ARGS)
Definition: network.c:607
static char * buf
Definition: pg_test_fsync.c:67
unsigned char b
Definition: inet.h:110
#define PG_GETARG_INET_PP(n)
Definition: inet.h:124
int errdetail(const char *fmt,...)
Definition: elog.c:873
#define CStringGetDatum(X)
Definition: postgres.h:563
Definition: inet.h:52
#define NI_MAXSERV
Definition: getaddrinfo.h:91
ACCEPT_TYPE_ARG3 salen
Definition: pqcomm.h:65
unsigned char e
Definition: inet.h:113
Datum network_smaller(PG_FUNCTION_ARGS)
Definition: network.c:453
static inet * internal_inetpl(inet *ip, int64 addend)
Definition: network.c:1362
int inet_net_pton(int af, const char *src, void *dst, size_t size)
Definition: inet_net_pton.c:62
char * inet_net_ntop(int af, const void *src, int bits, char *dst, size_t size)
Definition: inet_net_ntop.c:77
#define ereport(elevel, rest)
Definition: elog.h:122
Datum inetmi_int8(PG_FUNCTION_ARGS)
Definition: network.c:1424
SockAddr laddr
Definition: libpq-be.h:121
static int port
Definition: pg_regress.c:90
Datum network_gt(PG_FUNCTION_ARGS)
Definition: network.c:432
#define byte(x, n)
Definition: rijndael.c:68
Datum network_eq(PG_FUNCTION_ARGS)
Definition: network.c:414
Datum network_ge(PG_FUNCTION_ARGS)
Definition: network.c:423
Datum network_scan_first(Datum in)
Definition: network.c:1098
unsigned char c
Definition: inet.h:111
Datum inet_abbrev(PG_FUNCTION_ARGS)
Definition: network.c:630
void * palloc0(Size size)
Definition: mcxt.c:955
Datum cidr_abbrev(PG_FUNCTION_ARGS)
Definition: network.c:648
unsigned char b
Definition: inet.h:97
#define PG_RETURN_BOOL(x)
Definition: fmgr.h:324
uintptr_t Datum
Definition: postgres.h:367
#define PG_RETURN_DATUM(x)
Definition: fmgr.h:318
unsigned char e
Definition: inet.h:100
Datum network_subeq(PG_FUNCTION_ARGS)
Definition: network.c:518
static struct @131 value
#define VARSIZE_ANY(PTR)
Definition: postgres.h:335
#define NI_NUMERICSERV
Definition: getaddrinfo.h:81
Datum inet_to_cidr(PG_FUNCTION_ARGS)
Definition: network.c:268
Datum inet_send(PG_FUNCTION_ARGS)
Definition: network.c:251
static FormData_pg_attribute a1
Definition: heap.c:147
int pq_getmsgbyte(StringInfo msg)
Definition: pqformat.c:401
Datum inetmi(PG_FUNCTION_ARGS)
Definition: network.c:1434
#define PG_RETURN_TEXT_P(x)
Definition: fmgr.h:336
static bytea * network_send(inet *addr, bool is_cidr)
Definition: network.c:229
#define Max(x, y)
Definition: c.h:851
text * cstring_to_text(const char *s)
Definition: varlena.c:149
Datum network_overlap(PG_FUNCTION_ARGS)
Definition: network.c:563
#define Assert(condition)
Definition: c.h:699
int pg_getnameinfo_all(const struct sockaddr_storage *addr, int salen, char *node, int nodelen, char *service, int servicelen, int flags)
Definition: ip.c:122
Datum hash_any(register const unsigned char *k, register int keylen)
Definition: hashfunc.c:428
Datum inet_in(PG_FUNCTION_ARGS)
Definition: network.c:80
static char * network_out(inet *src, bool is_cidr)
Definition: network.c:100
#define PG_RETURN_CSTRING(x)
Definition: fmgr.h:327
Datum hashinetextended(PG_FUNCTION_ARGS)
Definition: network.c:490
Datum inet_client_addr(PG_FUNCTION_ARGS)
Definition: network.c:1124
void clean_ipv6_addr(int addr_family, char *addr)
Definition: network.c:1511
Datum network_sup(PG_FUNCTION_ARGS)
Definition: network.c:533
inet * cidr_set_masklen_internal(const inet *src, int bits)
Definition: network.c:327
Definition: inet.h:94
Datum inet_recv(PG_FUNCTION_ARGS)
Definition: network.c:209
Datum cidr_in(PG_FUNCTION_ARGS)
Definition: network.c:88
static inet * network_recv(StringInfo buf, bool is_cidr)
Definition: network.c:151
Datum network_hostmask(PG_FUNCTION_ARGS)
Definition: network.c:824
Datum inet_client_port(PG_FUNCTION_ARGS)
Definition: network.c:1163
Datum inetor(PG_FUNCTION_ARGS)
Definition: network.c:1330
Datum inet_server_port(PG_FUNCTION_ARGS)
Definition: network.c:1239
#define Int32GetDatum(X)
Definition: postgres.h:464
#define DatumGetMacaddr8P(X)
Definition: inet.h:137
Datum inetnot(PG_FUNCTION_ARGS)
Definition: network.c:1273
void * palloc(Size size)
Definition: mcxt.c:924
int errmsg(const char *fmt,...)
Definition: elog.c:797
unsigned char d
Definition: inet.h:112
int bitncmp(const unsigned char *l, const unsigned char *r, int n)
Definition: network.c:977
Datum network_larger(PG_FUNCTION_ARGS)
Definition: network.c:465
int i
#define PG_GETARG_CSTRING(n)
Definition: fmgr.h:247
Definition: c.h:516
#define PG_FUNCTION_ARGS
Definition: fmgr.h:163
Datum network_sub(PG_FUNCTION_ARGS)
Definition: network.c:503
Datum network_cmp(PG_FUNCTION_ARGS)
Definition: network.c:384
#define elog
Definition: elog.h:219
Datum network_supeq(PG_FUNCTION_ARGS)
Definition: network.c:548
Datum inet_merge(PG_FUNCTION_ARGS)
Definition: network.c:884
Datum inet_server_addr(PG_FUNCTION_ARGS)
Definition: network.c:1200
#define PG_GETARG_INT64(n)
Definition: fmgr.h:252
Datum network_network(PG_FUNCTION_ARGS)
Definition: network.c:738
#define DirectFunctionCall2(func, arg1, arg2)
Definition: fmgr.h:592
#define PG_RETURN_NULL()
Definition: fmgr.h:310
Datum hash_any_extended(register const unsigned char *k, register int keylen, uint64 seed)
Definition: hashfunc.c:654
Datum inetand(PG_FUNCTION_ARGS)
Definition: network.c:1298
static FormData_pg_attribute a2
Definition: heap.c:153