PostgreSQL Source Code  git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
pg_lzcompress.c
Go to the documentation of this file.
1 /* ----------
2  * pg_lzcompress.c -
3  *
4  * This is an implementation of LZ compression for PostgreSQL.
5  * It uses a simple history table and generates 2-3 byte tags
6  * capable of backward copy information for 3-273 bytes with
7  * a max offset of 4095.
8  *
9  * Entry routines:
10  *
11  * int32
12  * pglz_compress(const char *source, int32 slen, char *dest,
13  * const PGLZ_Strategy *strategy);
14  *
15  * source is the input data to be compressed.
16  *
17  * slen is the length of the input data.
18  *
19  * dest is the output area for the compressed result.
20  * It must be at least as big as PGLZ_MAX_OUTPUT(slen).
21  *
22  * strategy is a pointer to some information controlling
23  * the compression algorithm. If NULL, the compiled
24  * in default strategy is used.
25  *
26  * The return value is the number of bytes written in the
27  * buffer dest, or -1 if compression fails; in the latter
28  * case the contents of dest are undefined.
29  *
30  * int32
31  * pglz_decompress(const char *source, int32 slen, char *dest,
32  * int32 rawsize, bool check_complete)
33  *
34  * source is the compressed input.
35  *
36  * slen is the length of the compressed input.
37  *
38  * dest is the area where the uncompressed data will be
39  * written to. It is the callers responsibility to
40  * provide enough space.
41  *
42  * The data is written to buff exactly as it was handed
43  * to pglz_compress(). No terminating zero byte is added.
44  *
45  * rawsize is the length of the uncompressed data.
46  *
47  * check_complete is a flag to let us know if -1 should be
48  * returned in cases where we don't reach the end of the
49  * source or dest buffers, or not. This should be false
50  * if the caller is asking for only a partial result and
51  * true otherwise.
52  *
53  * The return value is the number of bytes written in the
54  * buffer dest, or -1 if decompression fails.
55  *
56  * The decompression algorithm and internal data format:
57  *
58  * It is made with the compressed data itself.
59  *
60  * The data representation is easiest explained by describing
61  * the process of decompression.
62  *
63  * If compressed_size == rawsize, then the data
64  * is stored uncompressed as plain bytes. Thus, the decompressor
65  * simply copies rawsize bytes to the destination.
66  *
67  * Otherwise the first byte tells what to do the next 8 times.
68  * We call this the control byte.
69  *
70  * An unset bit in the control byte means, that one uncompressed
71  * byte follows, which is copied from input to output.
72  *
73  * A set bit in the control byte means, that a tag of 2-3 bytes
74  * follows. A tag contains information to copy some bytes, that
75  * are already in the output buffer, to the current location in
76  * the output. Let's call the three tag bytes T1, T2 and T3. The
77  * position of the data to copy is coded as an offset from the
78  * actual output position.
79  *
80  * The offset is in the upper nibble of T1 and in T2.
81  * The length is in the lower nibble of T1.
82  *
83  * So the 16 bits of a 2 byte tag are coded as
84  *
85  * 7---T1--0 7---T2--0
86  * OOOO LLLL OOOO OOOO
87  *
88  * This limits the offset to 1-4095 (12 bits) and the length
89  * to 3-18 (4 bits) because 3 is always added to it. To emit
90  * a tag of 2 bytes with a length of 2 only saves one control
91  * bit. But we lose one byte in the possible length of a tag.
92  *
93  * In the actual implementation, the 2 byte tag's length is
94  * limited to 3-17, because the value 0xF in the length nibble
95  * has special meaning. It means, that the next following
96  * byte (T3) has to be added to the length value of 18. That
97  * makes total limits of 1-4095 for offset and 3-273 for length.
98  *
99  * Now that we have successfully decoded a tag. We simply copy
100  * the output that occurred <offset> bytes back to the current
101  * output location in the specified <length>. Thus, a
102  * sequence of 200 spaces (think about bpchar fields) could be
103  * coded in 4 bytes. One literal space and a three byte tag to
104  * copy 199 bytes with a -1 offset. Whow - that's a compression
105  * rate of 98%! Well, the implementation needs to save the
106  * original data size too, so we need another 4 bytes for it
107  * and end up with a total compression rate of 96%, what's still
108  * worth a Whow.
109  *
110  * The compression algorithm
111  *
112  * The following uses numbers used in the default strategy.
113  *
114  * The compressor works best for attributes of a size between
115  * 1K and 1M. For smaller items there's not that much chance of
116  * redundancy in the character sequence (except for large areas
117  * of identical bytes like trailing spaces) and for bigger ones
118  * our 4K maximum look-back distance is too small.
119  *
120  * The compressor creates a table for lists of positions.
121  * For each input position (except the last 3), a hash key is
122  * built from the 4 next input bytes and the position remembered
123  * in the appropriate list. Thus, the table points to linked
124  * lists of likely to be at least in the first 4 characters
125  * matching strings. This is done on the fly while the input
126  * is compressed into the output area. Table entries are only
127  * kept for the last 4096 input positions, since we cannot use
128  * back-pointers larger than that anyway. The size of the hash
129  * table is chosen based on the size of the input - a larger table
130  * has a larger startup cost, as it needs to be initialized to
131  * zero, but reduces the number of hash collisions on long inputs.
132  *
133  * For each byte in the input, its hash key (built from this
134  * byte and the next 3) is used to find the appropriate list
135  * in the table. The lists remember the positions of all bytes
136  * that had the same hash key in the past in increasing backward
137  * offset order. Now for all entries in the used lists, the
138  * match length is computed by comparing the characters from the
139  * entries position with the characters from the actual input
140  * position.
141  *
142  * The compressor starts with a so called "good_match" of 128.
143  * It is a "prefer speed against compression ratio" optimizer.
144  * So if the first entry looked at already has 128 or more
145  * matching characters, the lookup stops and that position is
146  * used for the next tag in the output.
147  *
148  * For each subsequent entry in the history list, the "good_match"
149  * is lowered by 10%. So the compressor will be more happy with
150  * short matches the further it has to go back in the history.
151  * Another "speed against ratio" preference characteristic of
152  * the algorithm.
153  *
154  * Thus there are 3 stop conditions for the lookup of matches:
155  *
156  * - a match >= good_match is found
157  * - there are no more history entries to look at
158  * - the next history entry is already too far back
159  * to be coded into a tag.
160  *
161  * Finally the match algorithm checks that at least a match
162  * of 3 or more bytes has been found, because that is the smallest
163  * amount of copy information to code into a tag. If so, a tag
164  * is omitted and all the input bytes covered by that are just
165  * scanned for the history add's, otherwise a literal character
166  * is omitted and only his history entry added.
167  *
168  * Acknowledgments:
169  *
170  * Many thanks to Adisak Pochanayon, who's article about SLZ
171  * inspired me to write the PostgreSQL compression this way.
172  *
173  * Jan Wieck
174  *
175  * Copyright (c) 1999-2024, PostgreSQL Global Development Group
176  *
177  * src/common/pg_lzcompress.c
178  * ----------
179  */
180 #ifndef FRONTEND
181 #include "postgres.h"
182 #else
183 #include "postgres_fe.h"
184 #endif
185 
186 #include <limits.h>
187 
188 #include "common/pg_lzcompress.h"
189 
190 
191 /* ----------
192  * Local definitions
193  * ----------
194  */
195 #define PGLZ_MAX_HISTORY_LISTS 8192 /* must be power of 2 */
196 #define PGLZ_HISTORY_SIZE 4096
197 #define PGLZ_MAX_MATCH 273
198 
199 
200 /* ----------
201  * PGLZ_HistEntry -
202  *
203  * Linked list for the backward history lookup
204  *
205  * All the entries sharing a hash key are linked in a doubly linked list.
206  * This makes it easy to remove an entry when it's time to recycle it
207  * (because it's more than 4K positions old).
208  * ----------
209  */
210 typedef struct PGLZ_HistEntry
211 {
212  struct PGLZ_HistEntry *next; /* links for my hash key's list */
214  int hindex; /* my current hash key */
215  const char *pos; /* my input position */
217 
218 
219 /* ----------
220  * The provided standard strategies
221  * ----------
222  */
224  32, /* Data chunks less than 32 bytes are not
225  * compressed */
226  INT_MAX, /* No upper limit on what we'll try to
227  * compress */
228  25, /* Require 25% compression rate, or not worth
229  * it */
230  1024, /* Give up if no compression in the first 1KB */
231  128, /* Stop history lookup if a match of 128 bytes
232  * is found */
233  10 /* Lower good match size by 10% at every loop
234  * iteration */
235 };
237 
238 
240  0, /* Chunks of any size are compressed */
241  INT_MAX,
242  0, /* It's enough to save one single byte */
243  INT_MAX, /* Never give up early */
244  128, /* Stop history lookup if a match of 128 bytes
245  * is found */
246  6 /* Look harder for a good match */
247 };
249 
250 
251 /* ----------
252  * Statically allocated work arrays for history
253  * ----------
254  */
257 
258 /*
259  * Element 0 in hist_entries is unused, and means 'invalid'. Likewise,
260  * INVALID_ENTRY_PTR in next/prev pointers mean 'invalid'.
261  */
262 #define INVALID_ENTRY 0
263 #define INVALID_ENTRY_PTR (&hist_entries[INVALID_ENTRY])
264 
265 /* ----------
266  * pglz_hist_idx -
267  *
268  * Computes the history table slot for the lookup by the next 4
269  * characters in the input.
270  *
271  * NB: because we use the next 4 characters, we are not guaranteed to
272  * find 3-character matches; they very possibly will be in the wrong
273  * hash list. This seems an acceptable tradeoff for spreading out the
274  * hash keys more.
275  * ----------
276  */
277 #define pglz_hist_idx(_s,_e, _mask) ( \
278  ((((_e) - (_s)) < 4) ? (int) (_s)[0] : \
279  (((_s)[0] << 6) ^ ((_s)[1] << 4) ^ \
280  ((_s)[2] << 2) ^ (_s)[3])) & (_mask) \
281  )
282 
283 
284 /* ----------
285  * pglz_hist_add -
286  *
287  * Adds a new entry to the history table.
288  *
289  * If _recycle is true, then we are recycling a previously used entry,
290  * and must first delink it from its old hashcode's linked list.
291  *
292  * NOTE: beware of multiple evaluations of macro's arguments, and note that
293  * _hn and _recycle are modified in the macro.
294  * ----------
295  */
296 #define pglz_hist_add(_hs,_he,_hn,_recycle,_s,_e, _mask) \
297 do { \
298  int __hindex = pglz_hist_idx((_s),(_e), (_mask)); \
299  int16 *__myhsp = &(_hs)[__hindex]; \
300  PGLZ_HistEntry *__myhe = &(_he)[_hn]; \
301  if (_recycle) { \
302  if (__myhe->prev == NULL) \
303  (_hs)[__myhe->hindex] = __myhe->next - (_he); \
304  else \
305  __myhe->prev->next = __myhe->next; \
306  if (__myhe->next != NULL) \
307  __myhe->next->prev = __myhe->prev; \
308  } \
309  __myhe->next = &(_he)[*__myhsp]; \
310  __myhe->prev = NULL; \
311  __myhe->hindex = __hindex; \
312  __myhe->pos = (_s); \
313  /* If there was an existing entry in this hash slot, link */ \
314  /* this new entry to it. However, the 0th entry in the */ \
315  /* entries table is unused, so we can freely scribble on it. */ \
316  /* So don't bother checking if the slot was used - we'll */ \
317  /* scribble on the unused entry if it was not, but that's */ \
318  /* harmless. Avoiding the branch in this critical path */ \
319  /* speeds this up a little bit. */ \
320  /* if (*__myhsp != INVALID_ENTRY) */ \
321  (_he)[(*__myhsp)].prev = __myhe; \
322  *__myhsp = _hn; \
323  if (++(_hn) >= PGLZ_HISTORY_SIZE + 1) { \
324  (_hn) = 1; \
325  (_recycle) = true; \
326  } \
327 } while (0)
328 
329 
330 /* ----------
331  * pglz_out_ctrl -
332  *
333  * Outputs the last and allocates a new control byte if needed.
334  * ----------
335  */
336 #define pglz_out_ctrl(__ctrlp,__ctrlb,__ctrl,__buf) \
337 do { \
338  if ((__ctrl & 0xff) == 0) \
339  { \
340  *(__ctrlp) = __ctrlb; \
341  __ctrlp = (__buf)++; \
342  __ctrlb = 0; \
343  __ctrl = 1; \
344  } \
345 } while (0)
346 
347 
348 /* ----------
349  * pglz_out_literal -
350  *
351  * Outputs a literal byte to the destination buffer including the
352  * appropriate control bit.
353  * ----------
354  */
355 #define pglz_out_literal(_ctrlp,_ctrlb,_ctrl,_buf,_byte) \
356 do { \
357  pglz_out_ctrl(_ctrlp,_ctrlb,_ctrl,_buf); \
358  *(_buf)++ = (unsigned char)(_byte); \
359  _ctrl <<= 1; \
360 } while (0)
361 
362 
363 /* ----------
364  * pglz_out_tag -
365  *
366  * Outputs a backward reference tag of 2-4 bytes (depending on
367  * offset and length) to the destination buffer including the
368  * appropriate control bit.
369  * ----------
370  */
371 #define pglz_out_tag(_ctrlp,_ctrlb,_ctrl,_buf,_len,_off) \
372 do { \
373  pglz_out_ctrl(_ctrlp,_ctrlb,_ctrl,_buf); \
374  _ctrlb |= _ctrl; \
375  _ctrl <<= 1; \
376  if (_len > 17) \
377  { \
378  (_buf)[0] = (unsigned char)((((_off) & 0xf00) >> 4) | 0x0f); \
379  (_buf)[1] = (unsigned char)(((_off) & 0xff)); \
380  (_buf)[2] = (unsigned char)((_len) - 18); \
381  (_buf) += 3; \
382  } else { \
383  (_buf)[0] = (unsigned char)((((_off) & 0xf00) >> 4) | ((_len) - 3)); \
384  (_buf)[1] = (unsigned char)((_off) & 0xff); \
385  (_buf) += 2; \
386  } \
387 } while (0)
388 
389 
390 /* ----------
391  * pglz_find_match -
392  *
393  * Lookup the history table if the actual input stream matches
394  * another sequence of characters, starting somewhere earlier
395  * in the input buffer.
396  * ----------
397  */
398 static inline int
399 pglz_find_match(int16 *hstart, const char *input, const char *end,
400  int *lenp, int *offp, int good_match, int good_drop, int mask)
401 {
402  PGLZ_HistEntry *hent;
403  int16 hentno;
404  int32 len = 0;
405  int32 off = 0;
406 
407  /*
408  * Traverse the linked history list until a good enough match is found.
409  */
410  hentno = hstart[pglz_hist_idx(input, end, mask)];
411  hent = &hist_entries[hentno];
412  while (hent != INVALID_ENTRY_PTR)
413  {
414  const char *ip = input;
415  const char *hp = hent->pos;
416  int32 thisoff;
417  int32 thislen;
418 
419  /*
420  * Stop if the offset does not fit into our tag anymore.
421  */
422  thisoff = ip - hp;
423  if (thisoff >= 0x0fff)
424  break;
425 
426  /*
427  * Determine length of match. A better match must be larger than the
428  * best so far. And if we already have a match of 16 or more bytes,
429  * it's worth the call overhead to use memcmp() to check if this match
430  * is equal for the same size. After that we must fallback to
431  * character by character comparison to know the exact position where
432  * the diff occurred.
433  */
434  thislen = 0;
435  if (len >= 16)
436  {
437  if (memcmp(ip, hp, len) == 0)
438  {
439  thislen = len;
440  ip += len;
441  hp += len;
442  while (ip < end && *ip == *hp && thislen < PGLZ_MAX_MATCH)
443  {
444  thislen++;
445  ip++;
446  hp++;
447  }
448  }
449  }
450  else
451  {
452  while (ip < end && *ip == *hp && thislen < PGLZ_MAX_MATCH)
453  {
454  thislen++;
455  ip++;
456  hp++;
457  }
458  }
459 
460  /*
461  * Remember this match as the best (if it is)
462  */
463  if (thislen > len)
464  {
465  len = thislen;
466  off = thisoff;
467  }
468 
469  /*
470  * Advance to the next history entry
471  */
472  hent = hent->next;
473 
474  /*
475  * Be happy with lesser good matches the more entries we visited. But
476  * no point in doing calculation if we're at end of list.
477  */
478  if (hent != INVALID_ENTRY_PTR)
479  {
480  if (len >= good_match)
481  break;
482  good_match -= (good_match * good_drop) / 100;
483  }
484  }
485 
486  /*
487  * Return match information only if it results at least in one byte
488  * reduction.
489  */
490  if (len > 2)
491  {
492  *lenp = len;
493  *offp = off;
494  return 1;
495  }
496 
497  return 0;
498 }
499 
500 
501 /* ----------
502  * pglz_compress -
503  *
504  * Compresses source into dest using strategy. Returns the number of
505  * bytes written in buffer dest, or -1 if compression fails.
506  * ----------
507  */
508 int32
509 pglz_compress(const char *source, int32 slen, char *dest,
510  const PGLZ_Strategy *strategy)
511 {
512  unsigned char *bp = (unsigned char *) dest;
513  unsigned char *bstart = bp;
514  int hist_next = 1;
515  bool hist_recycle = false;
516  const char *dp = source;
517  const char *dend = source + slen;
518  unsigned char ctrl_dummy = 0;
519  unsigned char *ctrlp = &ctrl_dummy;
520  unsigned char ctrlb = 0;
521  unsigned char ctrl = 0;
522  bool found_match = false;
523  int32 match_len;
524  int32 match_off;
525  int32 good_match;
526  int32 good_drop;
527  int32 result_size;
528  int32 result_max;
529  int32 need_rate;
530  int hashsz;
531  int mask;
532 
533  /*
534  * Our fallback strategy is the default.
535  */
536  if (strategy == NULL)
537  strategy = PGLZ_strategy_default;
538 
539  /*
540  * If the strategy forbids compression (at all or if source chunk size out
541  * of range), fail.
542  */
543  if (strategy->match_size_good <= 0 ||
544  slen < strategy->min_input_size ||
545  slen > strategy->max_input_size)
546  return -1;
547 
548  /*
549  * Limit the match parameters to the supported range.
550  */
551  good_match = strategy->match_size_good;
552  if (good_match > PGLZ_MAX_MATCH)
553  good_match = PGLZ_MAX_MATCH;
554  else if (good_match < 17)
555  good_match = 17;
556 
557  good_drop = strategy->match_size_drop;
558  if (good_drop < 0)
559  good_drop = 0;
560  else if (good_drop > 100)
561  good_drop = 100;
562 
563  need_rate = strategy->min_comp_rate;
564  if (need_rate < 0)
565  need_rate = 0;
566  else if (need_rate > 99)
567  need_rate = 99;
568 
569  /*
570  * Compute the maximum result size allowed by the strategy, namely the
571  * input size minus the minimum wanted compression rate. This had better
572  * be <= slen, else we might overrun the provided output buffer.
573  */
574  if (slen > (INT_MAX / 100))
575  {
576  /* Approximate to avoid overflow */
577  result_max = (slen / 100) * (100 - need_rate);
578  }
579  else
580  result_max = (slen * (100 - need_rate)) / 100;
581 
582  /*
583  * Experiments suggest that these hash sizes work pretty well. A large
584  * hash table minimizes collision, but has a higher startup cost. For a
585  * small input, the startup cost dominates. The table size must be a power
586  * of two.
587  */
588  if (slen < 128)
589  hashsz = 512;
590  else if (slen < 256)
591  hashsz = 1024;
592  else if (slen < 512)
593  hashsz = 2048;
594  else if (slen < 1024)
595  hashsz = 4096;
596  else
597  hashsz = 8192;
598  mask = hashsz - 1;
599 
600  /*
601  * Initialize the history lists to empty. We do not need to zero the
602  * hist_entries[] array; its entries are initialized as they are used.
603  */
604  memset(hist_start, 0, hashsz * sizeof(int16));
605 
606  /*
607  * Compress the source directly into the output buffer.
608  */
609  while (dp < dend)
610  {
611  /*
612  * If we already exceeded the maximum result size, fail.
613  *
614  * We check once per loop; since the loop body could emit as many as 4
615  * bytes (a control byte and 3-byte tag), PGLZ_MAX_OUTPUT() had better
616  * allow 4 slop bytes.
617  */
618  if (bp - bstart >= result_max)
619  return -1;
620 
621  /*
622  * If we've emitted more than first_success_by bytes without finding
623  * anything compressible at all, fail. This lets us fall out
624  * reasonably quickly when looking at incompressible input (such as
625  * pre-compressed data).
626  */
627  if (!found_match && bp - bstart >= strategy->first_success_by)
628  return -1;
629 
630  /*
631  * Try to find a match in the history
632  */
633  if (pglz_find_match(hist_start, dp, dend, &match_len,
634  &match_off, good_match, good_drop, mask))
635  {
636  /*
637  * Create the tag and add history entries for all matched
638  * characters.
639  */
640  pglz_out_tag(ctrlp, ctrlb, ctrl, bp, match_len, match_off);
641  while (match_len--)
642  {
644  hist_next, hist_recycle,
645  dp, dend, mask);
646  dp++; /* Do not do this ++ in the line above! */
647  /* The macro would do it four times - Jan. */
648  }
649  found_match = true;
650  }
651  else
652  {
653  /*
654  * No match found. Copy one literal byte.
655  */
656  pglz_out_literal(ctrlp, ctrlb, ctrl, bp, *dp);
658  hist_next, hist_recycle,
659  dp, dend, mask);
660  dp++; /* Do not do this ++ in the line above! */
661  /* The macro would do it four times - Jan. */
662  }
663  }
664 
665  /*
666  * Write out the last control byte and check that we haven't overrun the
667  * output size allowed by the strategy.
668  */
669  *ctrlp = ctrlb;
670  result_size = bp - bstart;
671  if (result_size >= result_max)
672  return -1;
673 
674  /* success */
675  return result_size;
676 }
677 
678 
679 /* ----------
680  * pglz_decompress -
681  *
682  * Decompresses source into dest. Returns the number of bytes
683  * decompressed into the destination buffer, or -1 if the
684  * compressed data is corrupted.
685  *
686  * If check_complete is true, the data is considered corrupted
687  * if we don't exactly fill the destination buffer. Callers that
688  * are extracting a slice typically can't apply this check.
689  * ----------
690  */
691 int32
692 pglz_decompress(const char *source, int32 slen, char *dest,
693  int32 rawsize, bool check_complete)
694 {
695  const unsigned char *sp;
696  const unsigned char *srcend;
697  unsigned char *dp;
698  unsigned char *destend;
699 
700  sp = (const unsigned char *) source;
701  srcend = ((const unsigned char *) source) + slen;
702  dp = (unsigned char *) dest;
703  destend = dp + rawsize;
704 
705  while (sp < srcend && dp < destend)
706  {
707  /*
708  * Read one control byte and process the next 8 items (or as many as
709  * remain in the compressed input).
710  */
711  unsigned char ctrl = *sp++;
712  int ctrlc;
713 
714  for (ctrlc = 0; ctrlc < 8 && sp < srcend && dp < destend; ctrlc++)
715  {
716  if (ctrl & 1)
717  {
718  /*
719  * Set control bit means we must read a match tag. The match
720  * is coded with two bytes. First byte uses lower nibble to
721  * code length - 3. Higher nibble contains upper 4 bits of the
722  * offset. The next following byte contains the lower 8 bits
723  * of the offset. If the length is coded as 18, another
724  * extension tag byte tells how much longer the match really
725  * was (0-255).
726  */
727  int32 len;
728  int32 off;
729 
730  len = (sp[0] & 0x0f) + 3;
731  off = ((sp[0] & 0xf0) << 4) | sp[1];
732  sp += 2;
733  if (len == 18)
734  len += *sp++;
735 
736  /*
737  * Check for corrupt data: if we fell off the end of the
738  * source, or if we obtained off = 0, or if off is more than
739  * the distance back to the buffer start, we have problems.
740  * (We must check for off = 0, else we risk an infinite loop
741  * below in the face of corrupt data. Likewise, the upper
742  * limit on off prevents accessing outside the buffer
743  * boundaries.)
744  */
745  if (unlikely(sp > srcend || off == 0 ||
746  off > (dp - (unsigned char *) dest)))
747  return -1;
748 
749  /*
750  * Don't emit more data than requested.
751  */
752  len = Min(len, destend - dp);
753 
754  /*
755  * Now we copy the bytes specified by the tag from OUTPUT to
756  * OUTPUT (copy len bytes from dp - off to dp). The copied
757  * areas could overlap, so to avoid undefined behavior in
758  * memcpy(), be careful to copy only non-overlapping regions.
759  *
760  * Note that we cannot use memmove() instead, since while its
761  * behavior is well-defined, it's also not what we want.
762  */
763  while (off < len)
764  {
765  /*
766  * We can safely copy "off" bytes since that clearly
767  * results in non-overlapping source and destination.
768  */
769  memcpy(dp, dp - off, off);
770  len -= off;
771  dp += off;
772 
773  /*----------
774  * This bit is less obvious: we can double "off" after
775  * each such step. Consider this raw input:
776  * 112341234123412341234
777  * This will be encoded as 5 literal bytes "11234" and
778  * then a match tag with length 16 and offset 4. After
779  * memcpy'ing the first 4 bytes, we will have emitted
780  * 112341234
781  * so we can double "off" to 8, then after the next step
782  * we have emitted
783  * 11234123412341234
784  * Then we can double "off" again, after which it is more
785  * than the remaining "len" so we fall out of this loop
786  * and finish with a non-overlapping copy of the
787  * remainder. In general, a match tag with off < len
788  * implies that the decoded data has a repeat length of
789  * "off". We can handle 1, 2, 4, etc repetitions of the
790  * repeated string per memcpy until we get to a situation
791  * where the final copy step is non-overlapping.
792  *
793  * (Another way to understand this is that we are keeping
794  * the copy source point dp - off the same throughout.)
795  *----------
796  */
797  off += off;
798  }
799  memcpy(dp, dp - off, len);
800  dp += len;
801  }
802  else
803  {
804  /*
805  * An unset control bit means LITERAL BYTE. So we just copy
806  * one from INPUT to OUTPUT.
807  */
808  *dp++ = *sp++;
809  }
810 
811  /*
812  * Advance the control bit
813  */
814  ctrl >>= 1;
815  }
816  }
817 
818  /*
819  * If requested, check we decompressed the right amount.
820  */
821  if (check_complete && (dp != destend || sp != srcend))
822  return -1;
823 
824  /*
825  * That's it.
826  */
827  return (char *) dp - dest;
828 }
829 
830 
831 /* ----------
832  * pglz_maximum_compressed_size -
833  *
834  * Calculate the maximum compressed size for a given amount of raw data.
835  * Return the maximum size, or total compressed size if maximum size is
836  * larger than total compressed size.
837  *
838  * We can't use PGLZ_MAX_OUTPUT for this purpose, because that's used to size
839  * the compression buffer (and abort the compression). It does not really say
840  * what's the maximum compressed size for an input of a given length, and it
841  * may happen that while the whole value is compressible (and thus fits into
842  * PGLZ_MAX_OUTPUT nicely), the prefix is not compressible at all.
843  * ----------
844  */
845 int32
846 pglz_maximum_compressed_size(int32 rawsize, int32 total_compressed_size)
847 {
848  int64 compressed_size;
849 
850  /*
851  * pglz uses one control bit per byte, so if the entire desired prefix is
852  * represented as literal bytes, we'll need (rawsize * 9) bits. We care
853  * about bytes though, so be sure to round up not down.
854  *
855  * Use int64 here to prevent overflow during calculation.
856  */
857  compressed_size = ((int64) rawsize * 9 + 7) / 8;
858 
859  /*
860  * The above fails to account for a corner case: we could have compressed
861  * data that starts with N-1 or N-2 literal bytes and then has a match tag
862  * of 2 or 3 bytes. It's therefore possible that we need to fetch 1 or 2
863  * more bytes in order to have the whole match tag. (Match tags earlier
864  * in the compressed data don't cause a problem, since they should
865  * represent more decompressed bytes than they occupy themselves.)
866  */
867  compressed_size += 2;
868 
869  /*
870  * Maximum compressed size can't be larger than total compressed size.
871  * (This also ensures that our result fits in int32.)
872  */
873  compressed_size = Min(compressed_size, total_compressed_size);
874 
875  return (int32) compressed_size;
876 }
#define Min(x, y)
Definition: c.h:1007
signed short int16
Definition: c.h:507
signed int int32
Definition: c.h:508
#define unlikely(x)
Definition: c.h:326
FILE * input
const void size_t len
const PGLZ_Strategy *const PGLZ_strategy_always
static int16 hist_start[PGLZ_MAX_HISTORY_LISTS]
const PGLZ_Strategy *const PGLZ_strategy_default
static int pglz_find_match(int16 *hstart, const char *input, const char *end, int *lenp, int *offp, int good_match, int good_drop, int mask)
#define INVALID_ENTRY_PTR
#define pglz_hist_idx(_s, _e, _mask)
static const PGLZ_Strategy strategy_default_data
#define PGLZ_MAX_MATCH
struct PGLZ_HistEntry PGLZ_HistEntry
static PGLZ_HistEntry hist_entries[PGLZ_HISTORY_SIZE+1]
static const PGLZ_Strategy strategy_always_data
#define pglz_out_tag(_ctrlp, _ctrlb, _ctrl, _buf, _len, _off)
#define PGLZ_MAX_HISTORY_LISTS
#define pglz_out_literal(_ctrlp, _ctrlb, _ctrl, _buf, _byte)
int32 pglz_decompress(const char *source, int32 slen, char *dest, int32 rawsize, bool check_complete)
#define PGLZ_HISTORY_SIZE
int32 pglz_compress(const char *source, int32 slen, char *dest, const PGLZ_Strategy *strategy)
#define pglz_hist_add(_hs, _he, _hn, _recycle, _s, _e, _mask)
int32 pglz_maximum_compressed_size(int32 rawsize, int32 total_compressed_size)
static rewind_source * source
Definition: pg_rewind.c:89
const char * pos
struct PGLZ_HistEntry * next
struct PGLZ_HistEntry * prev
int32 first_success_by
Definition: pg_lzcompress.h:62
int32 match_size_drop
Definition: pg_lzcompress.h:64
int32 match_size_good
Definition: pg_lzcompress.h:63
int32 min_comp_rate
Definition: pg_lzcompress.h:61
int32 max_input_size
Definition: pg_lzcompress.h:60