PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
array_selfuncs.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * array_selfuncs.c
4 * Functions for selectivity estimation of array operators
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/utils/adt/array_selfuncs.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include <math.h>
18
19#include "access/htup_details.h"
20#include "catalog/pg_operator.h"
22#include "utils/array.h"
23#include "utils/fmgrprotos.h"
24#include "utils/lsyscache.h"
25#include "utils/selfuncs.h"
26#include "utils/typcache.h"
27
28
29/* Default selectivity constant for "@>" and "<@" operators */
30#define DEFAULT_CONTAIN_SEL 0.005
31
32/* Default selectivity constant for "&&" operator */
33#define DEFAULT_OVERLAP_SEL 0.01
34
35/* Default selectivity for given operator */
36#define DEFAULT_SEL(operator) \
37 ((operator) == OID_ARRAY_OVERLAP_OP ? \
38 DEFAULT_OVERLAP_SEL : DEFAULT_CONTAIN_SEL)
39
40static Selectivity calc_arraycontsel(VariableStatData *vardata, Datum constval,
41 Oid elemtype, Oid operator);
43 TypeCacheEntry *typentry,
44 Datum *mcelem, int nmcelem,
45 float4 *numbers, int nnumbers,
46 float4 *hist, int nhist,
47 Oid operator);
48static Selectivity mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem,
49 float4 *numbers, int nnumbers,
50 Datum *array_data, int nitems,
51 Oid operator, TypeCacheEntry *typentry);
52static Selectivity mcelem_array_contained_selec(Datum *mcelem, int nmcelem,
53 float4 *numbers, int nnumbers,
54 Datum *array_data, int nitems,
55 float4 *hist, int nhist,
56 Oid operator, TypeCacheEntry *typentry);
57static float *calc_hist(const float4 *hist, int nhist, int n);
58static float *calc_distr(const float *p, int n, int m, float rest);
59static int floor_log2(uint32 n);
60static bool find_next_mcelem(Datum *mcelem, int nmcelem, Datum value,
61 int *index, TypeCacheEntry *typentry);
62static int element_compare(const void *key1, const void *key2, void *arg);
63static int float_compare_desc(const void *key1, const void *key2);
64
65
66/*
67 * scalararraysel_containment
68 * Estimate selectivity of ScalarArrayOpExpr via array containment.
69 *
70 * If we have const =/<> ANY/ALL (array_var) then we can estimate the
71 * selectivity as though this were an array containment operator,
72 * array_var op ARRAY[const].
73 *
74 * scalararraysel() has already verified that the ScalarArrayOpExpr's operator
75 * is the array element type's default equality or inequality operator, and
76 * has aggressively simplified both inputs to constants.
77 *
78 * Returns selectivity (0..1), or -1 if we fail to estimate selectivity.
79 */
82 Node *leftop, Node *rightop,
83 Oid elemtype, bool isEquality, bool useOr,
84 int varRelid)
85{
86 Selectivity selec;
87 VariableStatData vardata;
88 Datum constval;
89 TypeCacheEntry *typentry;
90 FmgrInfo *cmpfunc;
91
92 /*
93 * rightop must be a variable, else punt.
94 */
95 examine_variable(root, rightop, varRelid, &vardata);
96 if (!vardata.rel)
97 {
98 ReleaseVariableStats(vardata);
99 return -1.0;
100 }
101
102 /*
103 * leftop must be a constant, else punt.
104 */
105 if (!IsA(leftop, Const))
106 {
107 ReleaseVariableStats(vardata);
108 return -1.0;
109 }
110 if (((Const *) leftop)->constisnull)
111 {
112 /* qual can't succeed if null on left */
113 ReleaseVariableStats(vardata);
114 return (Selectivity) 0.0;
115 }
116 constval = ((Const *) leftop)->constvalue;
117
118 /* Get element type's default comparison function */
119 typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
120 if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
121 {
122 ReleaseVariableStats(vardata);
123 return -1.0;
124 }
125 cmpfunc = &typentry->cmp_proc_finfo;
126
127 /*
128 * If the operator is <>, swap ANY/ALL, then invert the result later.
129 */
130 if (!isEquality)
131 useOr = !useOr;
132
133 /* Get array element stats for var, if available */
134 if (HeapTupleIsValid(vardata.statsTuple) &&
135 statistic_proc_security_check(&vardata, cmpfunc->fn_oid))
136 {
137 Form_pg_statistic stats;
138 AttStatsSlot sslot;
139 AttStatsSlot hslot;
140
141 stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
142
143 /* MCELEM will be an array of same type as element */
144 if (get_attstatsslot(&sslot, vardata.statsTuple,
145 STATISTIC_KIND_MCELEM, InvalidOid,
147 {
148 /* For ALL case, also get histogram of distinct-element counts */
149 if (useOr ||
150 !get_attstatsslot(&hslot, vardata.statsTuple,
151 STATISTIC_KIND_DECHIST, InvalidOid,
153 memset(&hslot, 0, sizeof(hslot));
154
155 /*
156 * For = ANY, estimate as var @> ARRAY[const].
157 *
158 * For = ALL, estimate as var <@ ARRAY[const].
159 */
160 if (useOr)
162 sslot.nvalues,
163 sslot.numbers,
164 sslot.nnumbers,
165 &constval, 1,
166 OID_ARRAY_CONTAINS_OP,
167 typentry);
168 else
170 sslot.nvalues,
171 sslot.numbers,
172 sslot.nnumbers,
173 &constval, 1,
174 hslot.numbers,
175 hslot.nnumbers,
176 OID_ARRAY_CONTAINED_OP,
177 typentry);
178
179 free_attstatsslot(&hslot);
180 free_attstatsslot(&sslot);
181 }
182 else
183 {
184 /* No most-common-elements info, so do without */
185 if (useOr)
187 NULL, 0,
188 &constval, 1,
189 OID_ARRAY_CONTAINS_OP,
190 typentry);
191 else
192 selec = mcelem_array_contained_selec(NULL, 0,
193 NULL, 0,
194 &constval, 1,
195 NULL, 0,
196 OID_ARRAY_CONTAINED_OP,
197 typentry);
198 }
199
200 /*
201 * MCE stats count only non-null rows, so adjust for null rows.
202 */
203 selec *= (1.0 - stats->stanullfrac);
204 }
205 else
206 {
207 /* No stats at all, so do without */
208 if (useOr)
210 NULL, 0,
211 &constval, 1,
212 OID_ARRAY_CONTAINS_OP,
213 typentry);
214 else
215 selec = mcelem_array_contained_selec(NULL, 0,
216 NULL, 0,
217 &constval, 1,
218 NULL, 0,
219 OID_ARRAY_CONTAINED_OP,
220 typentry);
221 /* we assume no nulls here, so no stanullfrac correction */
222 }
223
224 ReleaseVariableStats(vardata);
225
226 /*
227 * If the operator is <>, invert the results.
228 */
229 if (!isEquality)
230 selec = 1.0 - selec;
231
232 CLAMP_PROBABILITY(selec);
233
234 return selec;
235}
236
237/*
238 * arraycontsel -- restriction selectivity for array @>, &&, <@ operators
239 */
240Datum
242{
244 Oid operator = PG_GETARG_OID(1);
246 int varRelid = PG_GETARG_INT32(3);
247 VariableStatData vardata;
248 Node *other;
249 bool varonleft;
250 Selectivity selec;
251 Oid element_typeid;
252
253 /*
254 * If expression is not (variable op something) or (something op
255 * variable), then punt and return a default estimate.
256 */
257 if (!get_restriction_variable(root, args, varRelid,
258 &vardata, &other, &varonleft))
259 PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
260
261 /*
262 * Can't do anything useful if the something is not a constant, either.
263 */
264 if (!IsA(other, Const))
265 {
266 ReleaseVariableStats(vardata);
267 PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
268 }
269
270 /*
271 * The "&&", "@>" and "<@" operators are strict, so we can cope with a
272 * NULL constant right away.
273 */
274 if (((Const *) other)->constisnull)
275 {
276 ReleaseVariableStats(vardata);
277 PG_RETURN_FLOAT8(0.0);
278 }
279
280 /*
281 * If var is on the right, commute the operator, so that we can assume the
282 * var is on the left in what follows.
283 */
284 if (!varonleft)
285 {
286 if (operator == OID_ARRAY_CONTAINS_OP)
287 operator = OID_ARRAY_CONTAINED_OP;
288 else if (operator == OID_ARRAY_CONTAINED_OP)
289 operator = OID_ARRAY_CONTAINS_OP;
290 }
291
292 /*
293 * OK, there's a Var and a Const we're dealing with here. We need the
294 * Const to be an array with same element type as column, else we can't do
295 * anything useful. (Such cases will likely fail at runtime, but here
296 * we'd rather just return a default estimate.)
297 */
298 element_typeid = get_base_element_type(((Const *) other)->consttype);
299 if (element_typeid != InvalidOid &&
300 element_typeid == get_base_element_type(vardata.vartype))
301 {
302 selec = calc_arraycontsel(&vardata, ((Const *) other)->constvalue,
303 element_typeid, operator);
304 }
305 else
306 {
307 selec = DEFAULT_SEL(operator);
308 }
309
310 ReleaseVariableStats(vardata);
311
312 CLAMP_PROBABILITY(selec);
313
314 PG_RETURN_FLOAT8((float8) selec);
315}
316
317/*
318 * arraycontjoinsel -- join selectivity for array @>, &&, <@ operators
319 */
320Datum
322{
323 /* For the moment this is just a stub */
324 Oid operator = PG_GETARG_OID(1);
325
326 PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
327}
328
329/*
330 * Calculate selectivity for "arraycolumn @> const", "arraycolumn && const"
331 * or "arraycolumn <@ const" based on the statistics
332 *
333 * This function is mainly responsible for extracting the pg_statistic data
334 * to be used; we then pass the problem on to mcelem_array_selec().
335 */
336static Selectivity
338 Oid elemtype, Oid operator)
339{
340 Selectivity selec;
341 TypeCacheEntry *typentry;
342 FmgrInfo *cmpfunc;
343 ArrayType *array;
344
345 /* Get element type's default comparison function */
346 typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
347 if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
348 return DEFAULT_SEL(operator);
349 cmpfunc = &typentry->cmp_proc_finfo;
350
351 /*
352 * The caller made sure the const is an array with same element type, so
353 * get it now
354 */
355 array = DatumGetArrayTypeP(constval);
356
357 if (HeapTupleIsValid(vardata->statsTuple) &&
358 statistic_proc_security_check(vardata, cmpfunc->fn_oid))
359 {
360 Form_pg_statistic stats;
361 AttStatsSlot sslot;
362 AttStatsSlot hslot;
363
364 stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
365
366 /* MCELEM will be an array of same type as column */
367 if (get_attstatsslot(&sslot, vardata->statsTuple,
368 STATISTIC_KIND_MCELEM, InvalidOid,
370 {
371 /*
372 * For "array <@ const" case we also need histogram of distinct
373 * element counts.
374 */
375 if (operator != OID_ARRAY_CONTAINED_OP ||
376 !get_attstatsslot(&hslot, vardata->statsTuple,
377 STATISTIC_KIND_DECHIST, InvalidOid,
379 memset(&hslot, 0, sizeof(hslot));
380
381 /* Use the most-common-elements slot for the array Var. */
382 selec = mcelem_array_selec(array, typentry,
383 sslot.values, sslot.nvalues,
384 sslot.numbers, sslot.nnumbers,
385 hslot.numbers, hslot.nnumbers,
386 operator);
387
388 free_attstatsslot(&hslot);
389 free_attstatsslot(&sslot);
390 }
391 else
392 {
393 /* No most-common-elements info, so do without */
394 selec = mcelem_array_selec(array, typentry,
395 NULL, 0, NULL, 0, NULL, 0,
396 operator);
397 }
398
399 /*
400 * MCE stats count only non-null rows, so adjust for null rows.
401 */
402 selec *= (1.0 - stats->stanullfrac);
403 }
404 else
405 {
406 /* No stats at all, so do without */
407 selec = mcelem_array_selec(array, typentry,
408 NULL, 0, NULL, 0, NULL, 0,
409 operator);
410 /* we assume no nulls here, so no stanullfrac correction */
411 }
412
413 /* If constant was toasted, release the copy we made */
414 if (PointerGetDatum(array) != constval)
415 pfree(array);
416
417 return selec;
418}
419
420/*
421 * Array selectivity estimation based on most common elements statistics
422 *
423 * This function just deconstructs and sorts the array constant's contents,
424 * and then passes the problem on to mcelem_array_contain_overlap_selec or
425 * mcelem_array_contained_selec depending on the operator.
426 */
427static Selectivity
429 Datum *mcelem, int nmcelem,
430 float4 *numbers, int nnumbers,
431 float4 *hist, int nhist,
432 Oid operator)
433{
434 Selectivity selec;
435 int num_elems;
436 Datum *elem_values;
437 bool *elem_nulls;
438 bool null_present;
439 int nonnull_nitems;
440 int i;
441
442 /*
443 * Prepare constant array data for sorting. Sorting lets us find unique
444 * elements and efficiently merge with the MCELEM array.
445 */
446 deconstruct_array(array,
447 typentry->type_id,
448 typentry->typlen,
449 typentry->typbyval,
450 typentry->typalign,
451 &elem_values, &elem_nulls, &num_elems);
452
453 /* Collapse out any null elements */
454 nonnull_nitems = 0;
455 null_present = false;
456 for (i = 0; i < num_elems; i++)
457 {
458 if (elem_nulls[i])
459 null_present = true;
460 else
461 elem_values[nonnull_nitems++] = elem_values[i];
462 }
463
464 /*
465 * Query "column @> '{anything, null}'" matches nothing. For the other
466 * two operators, presence of a null in the constant can be ignored.
467 */
468 if (null_present && operator == OID_ARRAY_CONTAINS_OP)
469 {
470 pfree(elem_values);
471 pfree(elem_nulls);
472 return (Selectivity) 0.0;
473 }
474
475 /* Sort extracted elements using their default comparison function. */
476 qsort_arg(elem_values, nonnull_nitems, sizeof(Datum),
477 element_compare, typentry);
478
479 /* Separate cases according to operator */
480 if (operator == OID_ARRAY_CONTAINS_OP || operator == OID_ARRAY_OVERLAP_OP)
481 selec = mcelem_array_contain_overlap_selec(mcelem, nmcelem,
482 numbers, nnumbers,
483 elem_values, nonnull_nitems,
484 operator, typentry);
485 else if (operator == OID_ARRAY_CONTAINED_OP)
486 selec = mcelem_array_contained_selec(mcelem, nmcelem,
487 numbers, nnumbers,
488 elem_values, nonnull_nitems,
489 hist, nhist,
490 operator, typentry);
491 else
492 {
493 elog(ERROR, "arraycontsel called for unrecognized operator %u",
494 operator);
495 selec = 0.0; /* keep compiler quiet */
496 }
497
498 pfree(elem_values);
499 pfree(elem_nulls);
500 return selec;
501}
502
503/*
504 * Estimate selectivity of "column @> const" and "column && const" based on
505 * most common element statistics. This estimation assumes element
506 * occurrences are independent.
507 *
508 * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
509 * the array column's MCELEM statistics slot, or are NULL/0 if stats are
510 * not available. array_data (of length nitems) is the constant's elements.
511 *
512 * Both the mcelem and array_data arrays are assumed presorted according
513 * to the element type's cmpfunc. Null elements are not present.
514 *
515 * TODO: this estimate probably could be improved by using the distinct
516 * elements count histogram. For example, excepting the special case of
517 * "column @> '{}'", we can multiply the calculated selectivity by the
518 * fraction of nonempty arrays in the column.
519 */
520static Selectivity
522 float4 *numbers, int nnumbers,
523 Datum *array_data, int nitems,
524 Oid operator, TypeCacheEntry *typentry)
525{
526 Selectivity selec,
527 elem_selec;
528 int mcelem_index,
529 i;
530 bool use_bsearch;
531 float4 minfreq;
532
533 /*
534 * There should be three more Numbers than Values, because the last three
535 * cells should hold minimal and maximal frequency among the non-null
536 * elements, and then the frequency of null elements. Ignore the Numbers
537 * if not right.
538 */
539 if (nnumbers != nmcelem + 3)
540 {
541 numbers = NULL;
542 nnumbers = 0;
543 }
544
545 if (numbers)
546 {
547 /* Grab the minimal MCE frequency */
548 minfreq = numbers[nmcelem];
549 }
550 else
551 {
552 /*
553 * Without statistics, use DEFAULT_CONTAIN_SEL (the factor of 2 will
554 * be removed again below).
555 */
556 minfreq = 2 * (float4) DEFAULT_CONTAIN_SEL;
557 }
558
559 /* Decide whether it is faster to use binary search or not. */
560 if (nitems * floor_log2((uint32) nmcelem) < nmcelem + nitems)
561 use_bsearch = true;
562 else
563 use_bsearch = false;
564
565 if (operator == OID_ARRAY_CONTAINS_OP)
566 {
567 /*
568 * Initial selectivity for "column @> const" query is 1.0, and it will
569 * be decreased with each element of constant array.
570 */
571 selec = 1.0;
572 }
573 else
574 {
575 /*
576 * Initial selectivity for "column && const" query is 0.0, and it will
577 * be increased with each element of constant array.
578 */
579 selec = 0.0;
580 }
581
582 /* Scan mcelem and array in parallel. */
583 mcelem_index = 0;
584 for (i = 0; i < nitems; i++)
585 {
586 bool match = false;
587
588 /* Ignore any duplicates in the array data. */
589 if (i > 0 &&
590 element_compare(&array_data[i - 1], &array_data[i], typentry) == 0)
591 continue;
592
593 /* Find the smallest MCELEM >= this array item. */
594 if (use_bsearch)
595 {
596 match = find_next_mcelem(mcelem, nmcelem, array_data[i],
597 &mcelem_index, typentry);
598 }
599 else
600 {
601 while (mcelem_index < nmcelem)
602 {
603 int cmp = element_compare(&mcelem[mcelem_index],
604 &array_data[i],
605 typentry);
606
607 if (cmp < 0)
608 mcelem_index++;
609 else
610 {
611 if (cmp == 0)
612 match = true; /* mcelem is found */
613 break;
614 }
615 }
616 }
617
618 if (match && numbers)
619 {
620 /* MCELEM matches the array item; use its frequency. */
621 elem_selec = numbers[mcelem_index];
622 mcelem_index++;
623 }
624 else
625 {
626 /*
627 * The element is not in MCELEM. Estimate its frequency as half
628 * that of the least-frequent MCE. (We know it cannot be more
629 * than minfreq, and it could be a great deal less. Half seems
630 * like a good compromise.) For probably-historical reasons,
631 * clamp to not more than DEFAULT_CONTAIN_SEL.
632 */
633 elem_selec = Min(DEFAULT_CONTAIN_SEL, minfreq / 2);
634 }
635
636 /*
637 * Update overall selectivity using the current element's selectivity
638 * and an assumption of element occurrence independence.
639 */
640 if (operator == OID_ARRAY_CONTAINS_OP)
641 selec *= elem_selec;
642 else
643 selec = selec + elem_selec - selec * elem_selec;
644
645 /* Clamp intermediate results to stay sane despite roundoff error */
646 CLAMP_PROBABILITY(selec);
647 }
648
649 return selec;
650}
651
652/*
653 * Estimate selectivity of "column <@ const" based on most common element
654 * statistics.
655 *
656 * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
657 * the array column's MCELEM statistics slot, or are NULL/0 if stats are
658 * not available. array_data (of length nitems) is the constant's elements.
659 * hist (of length nhist) is from the array column's DECHIST statistics slot,
660 * or is NULL/0 if those stats are not available.
661 *
662 * Both the mcelem and array_data arrays are assumed presorted according
663 * to the element type's cmpfunc. Null elements are not present.
664 *
665 * Independent element occurrence would imply a particular distribution of
666 * distinct element counts among matching rows. Real data usually falsifies
667 * that assumption. For example, in a set of 11-element integer arrays having
668 * elements in the range [0..10], element occurrences are typically not
669 * independent. If they were, a sufficiently-large set would include all
670 * distinct element counts 0 through 11. We correct for this using the
671 * histogram of distinct element counts.
672 *
673 * In the "column @> const" and "column && const" cases, we usually have a
674 * "const" with low number of elements (otherwise we have selectivity close
675 * to 0 or 1 respectively). That's why the effect of dependence related
676 * to distinct element count distribution is negligible there. In the
677 * "column <@ const" case, number of elements is usually high (otherwise we
678 * have selectivity close to 0). That's why we should do a correction with
679 * the array distinct element count distribution here.
680 *
681 * Using the histogram of distinct element counts produces a different
682 * distribution law than independent occurrences of elements. This
683 * distribution law can be described as follows:
684 *
685 * P(o1, o2, ..., on) = f1^o1 * (1 - f1)^(1 - o1) * f2^o2 *
686 * (1 - f2)^(1 - o2) * ... * fn^on * (1 - fn)^(1 - on) * hist[m] / ind[m]
687 *
688 * where:
689 * o1, o2, ..., on - occurrences of elements 1, 2, ..., n
690 * (1 - occurrence, 0 - no occurrence) in row
691 * f1, f2, ..., fn - frequencies of elements 1, 2, ..., n
692 * (scalar values in [0..1]) according to collected statistics
693 * m = o1 + o2 + ... + on = total number of distinct elements in row
694 * hist[m] - histogram data for occurrence of m elements.
695 * ind[m] - probability of m occurrences from n events assuming their
696 * probabilities to be equal to frequencies of array elements.
697 *
698 * ind[m] = sum(f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * (1 - f2)^(1 - o2) *
699 * ... * fn^on * (1 - fn)^(1 - on), o1, o2, ..., on) | o1 + o2 + .. on = m
700 */
701static Selectivity
703 float4 *numbers, int nnumbers,
704 Datum *array_data, int nitems,
705 float4 *hist, int nhist,
706 Oid operator, TypeCacheEntry *typentry)
707{
708 int mcelem_index,
709 i,
710 unique_nitems = 0;
711 float selec,
712 minfreq,
713 nullelem_freq;
714 float *dist,
715 *mcelem_dist,
716 *hist_part;
717 float avg_count,
718 mult,
719 rest;
720 float *elem_selec;
721
722 /*
723 * There should be three more Numbers than Values in the MCELEM slot,
724 * because the last three cells should hold minimal and maximal frequency
725 * among the non-null elements, and then the frequency of null elements.
726 * Punt if not right, because we can't do much without the element freqs.
727 */
728 if (numbers == NULL || nnumbers != nmcelem + 3)
729 return DEFAULT_CONTAIN_SEL;
730
731 /* Can't do much without a count histogram, either */
732 if (hist == NULL || nhist < 3)
733 return DEFAULT_CONTAIN_SEL;
734
735 /*
736 * Grab some of the summary statistics that compute_array_stats() stores:
737 * lowest MCE frequency, frequency of null elements, and average distinct
738 * element count.
739 */
740 minfreq = numbers[nmcelem];
741 nullelem_freq = numbers[nmcelem + 2];
742 avg_count = hist[nhist - 1];
743
744 /*
745 * "rest" will be the sum of the frequencies of all elements not
746 * represented in MCELEM. The average distinct element count is the sum
747 * of the frequencies of *all* elements. Begin with that; we will proceed
748 * to subtract the MCELEM frequencies.
749 */
750 rest = avg_count;
751
752 /*
753 * mult is a multiplier representing estimate of probability that each
754 * mcelem that is not present in constant doesn't occur.
755 */
756 mult = 1.0f;
757
758 /*
759 * elem_selec is array of estimated frequencies for elements in the
760 * constant.
761 */
762 elem_selec = (float *) palloc(sizeof(float) * nitems);
763
764 /* Scan mcelem and array in parallel. */
765 mcelem_index = 0;
766 for (i = 0; i < nitems; i++)
767 {
768 bool match = false;
769
770 /* Ignore any duplicates in the array data. */
771 if (i > 0 &&
772 element_compare(&array_data[i - 1], &array_data[i], typentry) == 0)
773 continue;
774
775 /*
776 * Iterate over MCELEM until we find an entry greater than or equal to
777 * this element of the constant. Update "rest" and "mult" for mcelem
778 * entries skipped over.
779 */
780 while (mcelem_index < nmcelem)
781 {
782 int cmp = element_compare(&mcelem[mcelem_index],
783 &array_data[i],
784 typentry);
785
786 if (cmp < 0)
787 {
788 mult *= (1.0f - numbers[mcelem_index]);
789 rest -= numbers[mcelem_index];
790 mcelem_index++;
791 }
792 else
793 {
794 if (cmp == 0)
795 match = true; /* mcelem is found */
796 break;
797 }
798 }
799
800 if (match)
801 {
802 /* MCELEM matches the array item. */
803 elem_selec[unique_nitems] = numbers[mcelem_index];
804 /* "rest" is decremented for all mcelems, matched or not */
805 rest -= numbers[mcelem_index];
806 mcelem_index++;
807 }
808 else
809 {
810 /*
811 * The element is not in MCELEM. Estimate its frequency as half
812 * that of the least-frequent MCE. (We know it cannot be more
813 * than minfreq, and it could be a great deal less. Half seems
814 * like a good compromise.) For probably-historical reasons,
815 * clamp to not more than DEFAULT_CONTAIN_SEL.
816 */
817 elem_selec[unique_nitems] = Min(DEFAULT_CONTAIN_SEL,
818 minfreq / 2);
819 }
820
821 unique_nitems++;
822 }
823
824 /*
825 * If we handled all constant elements without exhausting the MCELEM
826 * array, finish walking it to complete calculation of "rest" and "mult".
827 */
828 while (mcelem_index < nmcelem)
829 {
830 mult *= (1.0f - numbers[mcelem_index]);
831 rest -= numbers[mcelem_index];
832 mcelem_index++;
833 }
834
835 /*
836 * The presence of many distinct rare elements materially decreases
837 * selectivity. Use the Poisson distribution to estimate the probability
838 * of a column value having zero occurrences of such elements. See above
839 * for the definition of "rest".
840 */
841 mult *= exp(-rest);
842
843 /*----------
844 * Using the distinct element count histogram requires
845 * O(unique_nitems * (nmcelem + unique_nitems))
846 * operations. Beyond a certain computational cost threshold, it's
847 * reasonable to sacrifice accuracy for decreased planning time. We limit
848 * the number of operations to EFFORT * nmcelem; since nmcelem is limited
849 * by the column's statistics target, the work done is user-controllable.
850 *
851 * If the number of operations would be too large, we can reduce it
852 * without losing all accuracy by reducing unique_nitems and considering
853 * only the most-common elements of the constant array. To make the
854 * results exactly match what we would have gotten with only those
855 * elements to start with, we'd have to remove any discarded elements'
856 * frequencies from "mult", but since this is only an approximation
857 * anyway, we don't bother with that. Therefore it's sufficient to qsort
858 * elem_selec[] and take the largest elements. (They will no longer match
859 * up with the elements of array_data[], but we don't care.)
860 *----------
861 */
862#define EFFORT 100
863
864 if ((nmcelem + unique_nitems) > 0 &&
865 unique_nitems > EFFORT * nmcelem / (nmcelem + unique_nitems))
866 {
867 /*
868 * Use the quadratic formula to solve for largest allowable N. We
869 * have A = 1, B = nmcelem, C = - EFFORT * nmcelem.
870 */
871 double b = (double) nmcelem;
872 int n;
873
874 n = (int) ((sqrt(b * b + 4 * EFFORT * b) - b) / 2);
875
876 /* Sort, then take just the first n elements */
877 qsort(elem_selec, unique_nitems, sizeof(float),
879 unique_nitems = n;
880 }
881
882 /*
883 * Calculate probabilities of each distinct element count for both mcelems
884 * and constant elements. At this point, assume independent element
885 * occurrence.
886 */
887 dist = calc_distr(elem_selec, unique_nitems, unique_nitems, 0.0f);
888 mcelem_dist = calc_distr(numbers, nmcelem, unique_nitems, rest);
889
890 /* ignore hist[nhist-1], which is the average not a histogram member */
891 hist_part = calc_hist(hist, nhist - 1, unique_nitems);
892
893 selec = 0.0f;
894 for (i = 0; i <= unique_nitems; i++)
895 {
896 /*
897 * mult * dist[i] / mcelem_dist[i] gives us probability of qual
898 * matching from assumption of independent element occurrence with the
899 * condition that distinct element count = i.
900 */
901 if (mcelem_dist[i] > 0)
902 selec += hist_part[i] * mult * dist[i] / mcelem_dist[i];
903 }
904
905 pfree(dist);
906 pfree(mcelem_dist);
907 pfree(hist_part);
908 pfree(elem_selec);
909
910 /* Take into account occurrence of NULL element. */
911 selec *= (1.0f - nullelem_freq);
912
913 CLAMP_PROBABILITY(selec);
914
915 return selec;
916}
917
918/*
919 * Calculate the first n distinct element count probabilities from a
920 * histogram of distinct element counts.
921 *
922 * Returns a palloc'd array of n+1 entries, with array[k] being the
923 * probability of element count k, k in [0..n].
924 *
925 * We assume that a histogram box with bounds a and b gives 1 / ((b - a + 1) *
926 * (nhist - 1)) probability to each value in (a,b) and an additional half of
927 * that to a and b themselves.
928 */
929static float *
930calc_hist(const float4 *hist, int nhist, int n)
931{
932 float *hist_part;
933 int k,
934 i = 0;
935 float prev_interval = 0,
936 next_interval;
937 float frac;
938
939 hist_part = (float *) palloc((n + 1) * sizeof(float));
940
941 /*
942 * frac is a probability contribution for each interval between histogram
943 * values. We have nhist - 1 intervals, so contribution of each one will
944 * be 1 / (nhist - 1).
945 */
946 frac = 1.0f / ((float) (nhist - 1));
947
948 for (k = 0; k <= n; k++)
949 {
950 int count = 0;
951
952 /*
953 * Count the histogram boundaries equal to k. (Although the histogram
954 * should theoretically contain only exact integers, entries are
955 * floats so there could be roundoff error in large values. Treat any
956 * fractional value as equal to the next larger k.)
957 */
958 while (i < nhist && hist[i] <= k)
959 {
960 count++;
961 i++;
962 }
963
964 if (count > 0)
965 {
966 /* k is an exact bound for at least one histogram box. */
967 float val;
968
969 /* Find length between current histogram value and the next one */
970 if (i < nhist)
971 next_interval = hist[i] - hist[i - 1];
972 else
973 next_interval = 0;
974
975 /*
976 * count - 1 histogram boxes contain k exclusively. They
977 * contribute a total of (count - 1) * frac probability. Also
978 * factor in the partial histogram boxes on either side.
979 */
980 val = (float) (count - 1);
981 if (next_interval > 0)
982 val += 0.5f / next_interval;
983 if (prev_interval > 0)
984 val += 0.5f / prev_interval;
985 hist_part[k] = frac * val;
986
987 prev_interval = next_interval;
988 }
989 else
990 {
991 /* k does not appear as an exact histogram bound. */
992 if (prev_interval > 0)
993 hist_part[k] = frac / prev_interval;
994 else
995 hist_part[k] = 0.0f;
996 }
997 }
998
999 return hist_part;
1000}
1001
1002/*
1003 * Consider n independent events with probabilities p[]. This function
1004 * calculates probabilities of exact k of events occurrence for k in [0..m].
1005 * Returns a palloc'd array of size m+1.
1006 *
1007 * "rest" is the sum of the probabilities of all low-probability events not
1008 * included in p.
1009 *
1010 * Imagine matrix M of size (n + 1) x (m + 1). Element M[i,j] denotes the
1011 * probability that exactly j of first i events occur. Obviously M[0,0] = 1.
1012 * For any constant j, each increment of i increases the probability iff the
1013 * event occurs. So, by the law of total probability:
1014 * M[i,j] = M[i - 1, j] * (1 - p[i]) + M[i - 1, j - 1] * p[i]
1015 * for i > 0, j > 0.
1016 * M[i,0] = M[i - 1, 0] * (1 - p[i]) for i > 0.
1017 */
1018static float *
1019calc_distr(const float *p, int n, int m, float rest)
1020{
1021 float *row,
1022 *prev_row,
1023 *tmp;
1024 int i,
1025 j;
1026
1027 /*
1028 * Since we return only the last row of the matrix and need only the
1029 * current and previous row for calculations, allocate two rows.
1030 */
1031 row = (float *) palloc((m + 1) * sizeof(float));
1032 prev_row = (float *) palloc((m + 1) * sizeof(float));
1033
1034 /* M[0,0] = 1 */
1035 row[0] = 1.0f;
1036 for (i = 1; i <= n; i++)
1037 {
1038 float t = p[i - 1];
1039
1040 /* Swap rows */
1041 tmp = row;
1042 row = prev_row;
1043 prev_row = tmp;
1044
1045 /* Calculate next row */
1046 for (j = 0; j <= i && j <= m; j++)
1047 {
1048 float val = 0.0f;
1049
1050 if (j < i)
1051 val += prev_row[j] * (1.0f - t);
1052 if (j > 0)
1053 val += prev_row[j - 1] * t;
1054 row[j] = val;
1055 }
1056 }
1057
1058 /*
1059 * The presence of many distinct rare (not in "p") elements materially
1060 * decreases selectivity. Model their collective occurrence with the
1061 * Poisson distribution.
1062 */
1063 if (rest > DEFAULT_CONTAIN_SEL)
1064 {
1065 float t;
1066
1067 /* Swap rows */
1068 tmp = row;
1069 row = prev_row;
1070 prev_row = tmp;
1071
1072 for (i = 0; i <= m; i++)
1073 row[i] = 0.0f;
1074
1075 /* Value of Poisson distribution for 0 occurrences */
1076 t = exp(-rest);
1077
1078 /*
1079 * Calculate convolution of previously computed distribution and the
1080 * Poisson distribution.
1081 */
1082 for (i = 0; i <= m; i++)
1083 {
1084 for (j = 0; j <= m - i; j++)
1085 row[j + i] += prev_row[j] * t;
1086
1087 /* Get Poisson distribution value for (i + 1) occurrences */
1088 t *= rest / (float) (i + 1);
1089 }
1090 }
1091
1092 pfree(prev_row);
1093 return row;
1094}
1095
1096/* Fast function for floor value of 2 based logarithm calculation. */
1097static int
1099{
1100 int logval = 0;
1101
1102 if (n == 0)
1103 return -1;
1104 if (n >= (1 << 16))
1105 {
1106 n >>= 16;
1107 logval += 16;
1108 }
1109 if (n >= (1 << 8))
1110 {
1111 n >>= 8;
1112 logval += 8;
1113 }
1114 if (n >= (1 << 4))
1115 {
1116 n >>= 4;
1117 logval += 4;
1118 }
1119 if (n >= (1 << 2))
1120 {
1121 n >>= 2;
1122 logval += 2;
1123 }
1124 if (n >= (1 << 1))
1125 {
1126 logval += 1;
1127 }
1128 return logval;
1129}
1130
1131/*
1132 * find_next_mcelem binary-searches a most common elements array, starting
1133 * from *index, for the first member >= value. It saves the position of the
1134 * match into *index and returns true if it's an exact match. (Note: we
1135 * assume the mcelem elements are distinct so there can't be more than one
1136 * exact match.)
1137 */
1138static bool
1139find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, int *index,
1140 TypeCacheEntry *typentry)
1141{
1142 int l = *index,
1143 r = nmcelem - 1,
1144 i,
1145 res;
1146
1147 while (l <= r)
1148 {
1149 i = (l + r) / 2;
1150 res = element_compare(&mcelem[i], &value, typentry);
1151 if (res == 0)
1152 {
1153 *index = i;
1154 return true;
1155 }
1156 else if (res < 0)
1157 l = i + 1;
1158 else
1159 r = i - 1;
1160 }
1161 *index = l;
1162 return false;
1163}
1164
1165/*
1166 * Comparison function for elements.
1167 *
1168 * We use the element type's default btree opclass, and its default collation
1169 * if the type is collation-sensitive.
1170 *
1171 * XXX consider using SortSupport infrastructure
1172 */
1173static int
1174element_compare(const void *key1, const void *key2, void *arg)
1175{
1176 Datum d1 = *((const Datum *) key1);
1177 Datum d2 = *((const Datum *) key2);
1178 TypeCacheEntry *typentry = (TypeCacheEntry *) arg;
1179 FmgrInfo *cmpfunc = &typentry->cmp_proc_finfo;
1180 Datum c;
1181
1182 c = FunctionCall2Coll(cmpfunc, typentry->typcollation, d1, d2);
1183 return DatumGetInt32(c);
1184}
1185
1186/*
1187 * Comparison function for sorting floats into descending order.
1188 */
1189static int
1190float_compare_desc(const void *key1, const void *key2)
1191{
1192 float d1 = *((const float *) key1);
1193 float d2 = *((const float *) key2);
1194
1195 if (d1 > d2)
1196 return -1;
1197 else if (d1 < d2)
1198 return 1;
1199 else
1200 return 0;
1201}
#define DatumGetArrayTypeP(X)
Definition: array.h:261
Selectivity scalararraysel_containment(PlannerInfo *root, Node *leftop, Node *rightop, Oid elemtype, bool isEquality, bool useOr, int varRelid)
static int float_compare_desc(const void *key1, const void *key2)
static Selectivity mcelem_array_contained_selec(Datum *mcelem, int nmcelem, float4 *numbers, int nnumbers, Datum *array_data, int nitems, float4 *hist, int nhist, Oid operator, TypeCacheEntry *typentry)
#define DEFAULT_CONTAIN_SEL
static Selectivity calc_arraycontsel(VariableStatData *vardata, Datum constval, Oid elemtype, Oid operator)
static int floor_log2(uint32 n)
#define EFFORT
static float * calc_hist(const float4 *hist, int nhist, int n)
static int element_compare(const void *key1, const void *key2, void *arg)
static float * calc_distr(const float *p, int n, int m, float rest)
Datum arraycontsel(PG_FUNCTION_ARGS)
static Selectivity mcelem_array_selec(ArrayType *array, TypeCacheEntry *typentry, Datum *mcelem, int nmcelem, float4 *numbers, int nnumbers, float4 *hist, int nhist, Oid operator)
static Selectivity mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem, float4 *numbers, int nnumbers, Datum *array_data, int nitems, Oid operator, TypeCacheEntry *typentry)
Datum arraycontjoinsel(PG_FUNCTION_ARGS)
#define DEFAULT_SEL(operator)
static bool find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, int *index, TypeCacheEntry *typentry)
void deconstruct_array(ArrayType *array, Oid elmtype, int elmlen, bool elmbyval, char elmalign, Datum **elemsp, bool **nullsp, int *nelemsp)
Definition: arrayfuncs.c:3632
#define Min(x, y)
Definition: c.h:1003
double float8
Definition: c.h:635
uint32_t uint32
Definition: c.h:538
float float4
Definition: c.h:634
#define OidIsValid(objectId)
Definition: c.h:774
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
Datum FunctionCall2Coll(FmgrInfo *flinfo, Oid collation, Datum arg1, Datum arg2)
Definition: fmgr.c:1150
#define PG_GETARG_OID(n)
Definition: fmgr.h:275
#define PG_RETURN_FLOAT8(x)
Definition: fmgr.h:367
#define PG_GETARG_POINTER(n)
Definition: fmgr.h:276
#define PG_GETARG_INT32(n)
Definition: fmgr.h:269
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
#define nitems(x)
Definition: indent.h:31
static struct @169 value
long val
Definition: informix.c:689
int b
Definition: isn.c:74
int j
Definition: isn.c:78
int i
Definition: isn.c:77
void free_attstatsslot(AttStatsSlot *sslot)
Definition: lsyscache.c:3511
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2999
bool get_attstatsslot(AttStatsSlot *sslot, HeapTuple statstuple, int reqkind, Oid reqop, int flags)
Definition: lsyscache.c:3401
#define ATTSTATSSLOT_NUMBERS
Definition: lsyscache.h:44
#define ATTSTATSSLOT_VALUES
Definition: lsyscache.h:43
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc(Size size)
Definition: mcxt.c:1365
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
double Selectivity
Definition: nodes.h:260
void * arg
FormData_pg_statistic * Form_pg_statistic
Definition: pg_statistic.h:135
void qsort_arg(void *base, size_t nel, size_t elsize, qsort_arg_comparator cmp, void *arg)
#define qsort(a, b, c, d)
Definition: port.h:479
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:332
uint64_t Datum
Definition: postgres.h:70
static int32 DatumGetInt32(Datum X)
Definition: postgres.h:212
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
char * c
tree ctl root
Definition: radixtree.h:1857
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:743
bool get_restriction_variable(PlannerInfo *root, List *args, int varRelid, VariableStatData *vardata, Node **other, bool *varonleft)
Definition: selfuncs.c:5180
void examine_variable(PlannerInfo *root, Node *node, int varRelid, VariableStatData *vardata)
Definition: selfuncs.c:5309
bool statistic_proc_security_check(VariableStatData *vardata, Oid func_oid)
Definition: selfuncs.c:6180
#define ReleaseVariableStats(vardata)
Definition: selfuncs.h:101
#define CLAMP_PROBABILITY(p)
Definition: selfuncs.h:63
Datum * values
Definition: lsyscache.h:54
float4 * numbers
Definition: lsyscache.h:57
int nnumbers
Definition: lsyscache.h:58
Definition: fmgr.h:57
Oid fn_oid
Definition: fmgr.h:59
Definition: pg_list.h:54
Definition: nodes.h:135
FmgrInfo cmp_proc_finfo
Definition: typcache.h:77
char typalign
Definition: typcache.h:41
bool typbyval
Definition: typcache.h:40
int16 typlen
Definition: typcache.h:39
Oid typcollation
Definition: typcache.h:48
HeapTuple statsTuple
Definition: selfuncs.h:89
RelOptInfo * rel
Definition: selfuncs.h:88
Definition: type.h:96
TypeCacheEntry * lookup_type_cache(Oid type_id, int flags)
Definition: typcache.c:386
#define TYPECACHE_CMP_PROC_FINFO
Definition: typcache.h:144