PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
array_selfuncs.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * array_selfuncs.c
4 * Functions for selectivity estimation of array operators
5 *
6 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/utils/adt/array_selfuncs.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include <math.h>
18
19#include "access/htup_details.h"
20#include "catalog/pg_operator.h"
22#include "utils/array.h"
23#include "utils/fmgrprotos.h"
24#include "utils/lsyscache.h"
25#include "utils/selfuncs.h"
26#include "utils/typcache.h"
27
28
29/* Default selectivity constant for "@>" and "<@" operators */
30#define DEFAULT_CONTAIN_SEL 0.005
31
32/* Default selectivity constant for "&&" operator */
33#define DEFAULT_OVERLAP_SEL 0.01
34
35/* Default selectivity for given operator */
36#define DEFAULT_SEL(operator) \
37 ((operator) == OID_ARRAY_OVERLAP_OP ? \
38 DEFAULT_OVERLAP_SEL : DEFAULT_CONTAIN_SEL)
39
40static Selectivity calc_arraycontsel(VariableStatData *vardata, Datum constval,
41 Oid elemtype, Oid operator);
43 TypeCacheEntry *typentry,
44 Datum *mcelem, int nmcelem,
45 float4 *numbers, int nnumbers,
46 float4 *hist, int nhist,
47 Oid operator);
48static Selectivity mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem,
49 float4 *numbers, int nnumbers,
50 Datum *array_data, int nitems,
51 Oid operator, TypeCacheEntry *typentry);
52static Selectivity mcelem_array_contained_selec(Datum *mcelem, int nmcelem,
53 float4 *numbers, int nnumbers,
54 Datum *array_data, int nitems,
55 float4 *hist, int nhist,
56 Oid operator, TypeCacheEntry *typentry);
57static float *calc_hist(const float4 *hist, int nhist, int n);
58static float *calc_distr(const float *p, int n, int m, float rest);
59static int floor_log2(uint32 n);
60static bool find_next_mcelem(Datum *mcelem, int nmcelem, Datum value,
61 int *index, TypeCacheEntry *typentry);
62static int element_compare(const void *key1, const void *key2, void *arg);
63static int float_compare_desc(const void *key1, const void *key2);
64
65
66/*
67 * scalararraysel_containment
68 * Estimate selectivity of ScalarArrayOpExpr via array containment.
69 *
70 * If we have const =/<> ANY/ALL (array_var) then we can estimate the
71 * selectivity as though this were an array containment operator,
72 * array_var op ARRAY[const].
73 *
74 * scalararraysel() has already verified that the ScalarArrayOpExpr's operator
75 * is the array element type's default equality or inequality operator, and
76 * has aggressively simplified both inputs to constants.
77 *
78 * Returns selectivity (0..1), or -1 if we fail to estimate selectivity.
79 */
82 Node *leftop, Node *rightop,
83 Oid elemtype, bool isEquality, bool useOr,
84 int varRelid)
85{
86 Selectivity selec;
87 VariableStatData vardata;
88 Datum constval;
89 TypeCacheEntry *typentry;
90 FmgrInfo *cmpfunc;
91
92 /*
93 * rightop must be a variable, else punt.
94 */
95 examine_variable(root, rightop, varRelid, &vardata);
96 if (!vardata.rel)
97 {
98 ReleaseVariableStats(vardata);
99 return -1.0;
100 }
101
102 /*
103 * leftop must be a constant, else punt.
104 */
105 if (!IsA(leftop, Const))
106 {
107 ReleaseVariableStats(vardata);
108 return -1.0;
109 }
110 if (((Const *) leftop)->constisnull)
111 {
112 /* qual can't succeed if null on left */
113 ReleaseVariableStats(vardata);
114 return (Selectivity) 0.0;
115 }
116 constval = ((Const *) leftop)->constvalue;
117
118 /* Get element type's default comparison function */
119 typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
120 if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
121 {
122 ReleaseVariableStats(vardata);
123 return -1.0;
124 }
125 cmpfunc = &typentry->cmp_proc_finfo;
126
127 /*
128 * If the operator is <>, swap ANY/ALL, then invert the result later.
129 */
130 if (!isEquality)
131 useOr = !useOr;
132
133 /* Get array element stats for var, if available */
134 if (HeapTupleIsValid(vardata.statsTuple) &&
135 statistic_proc_security_check(&vardata, cmpfunc->fn_oid))
136 {
137 Form_pg_statistic stats;
138 AttStatsSlot sslot;
139 AttStatsSlot hslot;
140
141 stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
142
143 /* MCELEM will be an array of same type as element */
144 if (get_attstatsslot(&sslot, vardata.statsTuple,
145 STATISTIC_KIND_MCELEM, InvalidOid,
147 {
148 /* For ALL case, also get histogram of distinct-element counts */
149 if (useOr ||
150 !get_attstatsslot(&hslot, vardata.statsTuple,
151 STATISTIC_KIND_DECHIST, InvalidOid,
153 memset(&hslot, 0, sizeof(hslot));
154
155 /*
156 * For = ANY, estimate as var @> ARRAY[const].
157 *
158 * For = ALL, estimate as var <@ ARRAY[const].
159 */
160 if (useOr)
162 sslot.nvalues,
163 sslot.numbers,
164 sslot.nnumbers,
165 &constval, 1,
166 OID_ARRAY_CONTAINS_OP,
167 typentry);
168 else
170 sslot.nvalues,
171 sslot.numbers,
172 sslot.nnumbers,
173 &constval, 1,
174 hslot.numbers,
175 hslot.nnumbers,
176 OID_ARRAY_CONTAINED_OP,
177 typentry);
178
179 free_attstatsslot(&hslot);
180 free_attstatsslot(&sslot);
181 }
182 else
183 {
184 /* No most-common-elements info, so do without */
185 if (useOr)
187 NULL, 0,
188 &constval, 1,
189 OID_ARRAY_CONTAINS_OP,
190 typentry);
191 else
192 selec = mcelem_array_contained_selec(NULL, 0,
193 NULL, 0,
194 &constval, 1,
195 NULL, 0,
196 OID_ARRAY_CONTAINED_OP,
197 typentry);
198 }
199
200 /*
201 * MCE stats count only non-null rows, so adjust for null rows.
202 */
203 selec *= (1.0 - stats->stanullfrac);
204 }
205 else
206 {
207 /* No stats at all, so do without */
208 if (useOr)
210 NULL, 0,
211 &constval, 1,
212 OID_ARRAY_CONTAINS_OP,
213 typentry);
214 else
215 selec = mcelem_array_contained_selec(NULL, 0,
216 NULL, 0,
217 &constval, 1,
218 NULL, 0,
219 OID_ARRAY_CONTAINED_OP,
220 typentry);
221 /* we assume no nulls here, so no stanullfrac correction */
222 }
223
224 ReleaseVariableStats(vardata);
225
226 /*
227 * If the operator is <>, invert the results.
228 */
229 if (!isEquality)
230 selec = 1.0 - selec;
231
232 CLAMP_PROBABILITY(selec);
233
234 return selec;
235}
236
237/*
238 * arraycontsel -- restriction selectivity for array @>, &&, <@ operators
239 */
240Datum
242{
244 Oid operator = PG_GETARG_OID(1);
246 int varRelid = PG_GETARG_INT32(3);
247 VariableStatData vardata;
248 Node *other;
249 bool varonleft;
250 Selectivity selec;
251 Oid element_typeid;
252
253 /*
254 * If expression is not (variable op something) or (something op
255 * variable), then punt and return a default estimate.
256 */
257 if (!get_restriction_variable(root, args, varRelid,
258 &vardata, &other, &varonleft))
259 PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
260
261 /*
262 * Can't do anything useful if the something is not a constant, either.
263 */
264 if (!IsA(other, Const))
265 {
266 ReleaseVariableStats(vardata);
267 PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
268 }
269
270 /*
271 * The "&&", "@>" and "<@" operators are strict, so we can cope with a
272 * NULL constant right away.
273 */
274 if (((Const *) other)->constisnull)
275 {
276 ReleaseVariableStats(vardata);
277 PG_RETURN_FLOAT8(0.0);
278 }
279
280 /*
281 * If var is on the right, commute the operator, so that we can assume the
282 * var is on the left in what follows.
283 */
284 if (!varonleft)
285 {
286 if (operator == OID_ARRAY_CONTAINS_OP)
287 operator = OID_ARRAY_CONTAINED_OP;
288 else if (operator == OID_ARRAY_CONTAINED_OP)
289 operator = OID_ARRAY_CONTAINS_OP;
290 }
291
292 /*
293 * OK, there's a Var and a Const we're dealing with here. We need the
294 * Const to be an array with same element type as column, else we can't do
295 * anything useful. (Such cases will likely fail at runtime, but here
296 * we'd rather just return a default estimate.)
297 */
298 element_typeid = get_base_element_type(((Const *) other)->consttype);
299 if (element_typeid != InvalidOid &&
300 element_typeid == get_base_element_type(vardata.vartype))
301 {
302 selec = calc_arraycontsel(&vardata, ((Const *) other)->constvalue,
303 element_typeid, operator);
304 }
305 else
306 {
307 selec = DEFAULT_SEL(operator);
308 }
309
310 ReleaseVariableStats(vardata);
311
312 CLAMP_PROBABILITY(selec);
313
314 PG_RETURN_FLOAT8((float8) selec);
315}
316
317/*
318 * arraycontjoinsel -- join selectivity for array @>, &&, <@ operators
319 */
320Datum
322{
323 /* For the moment this is just a stub */
324 Oid operator = PG_GETARG_OID(1);
325
326 PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
327}
328
329/*
330 * Calculate selectivity for "arraycolumn @> const", "arraycolumn && const"
331 * or "arraycolumn <@ const" based on the statistics
332 *
333 * This function is mainly responsible for extracting the pg_statistic data
334 * to be used; we then pass the problem on to mcelem_array_selec().
335 */
336static Selectivity
338 Oid elemtype, Oid operator)
339{
340 Selectivity selec;
341 TypeCacheEntry *typentry;
342 FmgrInfo *cmpfunc;
343 ArrayType *array;
344
345 /* Get element type's default comparison function */
346 typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
347 if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
348 return DEFAULT_SEL(operator);
349 cmpfunc = &typentry->cmp_proc_finfo;
350
351 /*
352 * The caller made sure the const is an array with same element type, so
353 * get it now
354 */
355 array = DatumGetArrayTypeP(constval);
356
357 if (HeapTupleIsValid(vardata->statsTuple) &&
358 statistic_proc_security_check(vardata, cmpfunc->fn_oid))
359 {
360 Form_pg_statistic stats;
361 AttStatsSlot sslot;
362 AttStatsSlot hslot;
363
364 stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
365
366 /* MCELEM will be an array of same type as column */
367 if (get_attstatsslot(&sslot, vardata->statsTuple,
368 STATISTIC_KIND_MCELEM, InvalidOid,
370 {
371 /*
372 * For "array <@ const" case we also need histogram of distinct
373 * element counts.
374 */
375 if (operator != OID_ARRAY_CONTAINED_OP ||
376 !get_attstatsslot(&hslot, vardata->statsTuple,
377 STATISTIC_KIND_DECHIST, InvalidOid,
379 memset(&hslot, 0, sizeof(hslot));
380
381 /* Use the most-common-elements slot for the array Var. */
382 selec = mcelem_array_selec(array, typentry,
383 sslot.values, sslot.nvalues,
384 sslot.numbers, sslot.nnumbers,
385 hslot.numbers, hslot.nnumbers,
386 operator);
387
388 free_attstatsslot(&hslot);
389 free_attstatsslot(&sslot);
390 }
391 else
392 {
393 /* No most-common-elements info, so do without */
394 selec = mcelem_array_selec(array, typentry,
395 NULL, 0, NULL, 0, NULL, 0,
396 operator);
397 }
398
399 /*
400 * MCE stats count only non-null rows, so adjust for null rows.
401 */
402 selec *= (1.0 - stats->stanullfrac);
403 }
404 else
405 {
406 /* No stats at all, so do without */
407 selec = mcelem_array_selec(array, typentry,
408 NULL, 0, NULL, 0, NULL, 0,
409 operator);
410 /* we assume no nulls here, so no stanullfrac correction */
411 }
412
413 /* If constant was toasted, release the copy we made */
414 if (PointerGetDatum(array) != constval)
415 pfree(array);
416
417 return selec;
418}
419
420/*
421 * Array selectivity estimation based on most common elements statistics
422 *
423 * This function just deconstructs and sorts the array constant's contents,
424 * and then passes the problem on to mcelem_array_contain_overlap_selec or
425 * mcelem_array_contained_selec depending on the operator.
426 */
427static Selectivity
429 Datum *mcelem, int nmcelem,
430 float4 *numbers, int nnumbers,
431 float4 *hist, int nhist,
432 Oid operator)
433{
434 Selectivity selec;
435 int num_elems;
436 Datum *elem_values;
437 bool *elem_nulls;
438 bool null_present;
439 int nonnull_nitems;
440 int i;
441
442 /*
443 * Prepare constant array data for sorting. Sorting lets us find unique
444 * elements and efficiently merge with the MCELEM array.
445 */
446 deconstruct_array(array,
447 typentry->type_id,
448 typentry->typlen,
449 typentry->typbyval,
450 typentry->typalign,
451 &elem_values, &elem_nulls, &num_elems);
452
453 /* Collapse out any null elements */
454 nonnull_nitems = 0;
455 null_present = false;
456 for (i = 0; i < num_elems; i++)
457 {
458 if (elem_nulls[i])
459 null_present = true;
460 else
461 elem_values[nonnull_nitems++] = elem_values[i];
462 }
463
464 /*
465 * Query "column @> '{anything, null}'" matches nothing. For the other
466 * two operators, presence of a null in the constant can be ignored.
467 */
468 if (null_present && operator == OID_ARRAY_CONTAINS_OP)
469 {
470 pfree(elem_values);
471 pfree(elem_nulls);
472 return (Selectivity) 0.0;
473 }
474
475 /* Sort extracted elements using their default comparison function. */
476 qsort_arg(elem_values, nonnull_nitems, sizeof(Datum),
477 element_compare, typentry);
478
479 /* Separate cases according to operator */
480 if (operator == OID_ARRAY_CONTAINS_OP || operator == OID_ARRAY_OVERLAP_OP)
481 selec = mcelem_array_contain_overlap_selec(mcelem, nmcelem,
482 numbers, nnumbers,
483 elem_values, nonnull_nitems,
484 operator, typentry);
485 else if (operator == OID_ARRAY_CONTAINED_OP)
486 selec = mcelem_array_contained_selec(mcelem, nmcelem,
487 numbers, nnumbers,
488 elem_values, nonnull_nitems,
489 hist, nhist,
490 operator, typentry);
491 else
492 {
493 elog(ERROR, "arraycontsel called for unrecognized operator %u",
494 operator);
495 selec = 0.0; /* keep compiler quiet */
496 }
497
498 pfree(elem_values);
499 pfree(elem_nulls);
500 return selec;
501}
502
503/*
504 * Estimate selectivity of "column @> const" and "column && const" based on
505 * most common element statistics. This estimation assumes element
506 * occurrences are independent.
507 *
508 * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
509 * the array column's MCELEM statistics slot, or are NULL/0 if stats are
510 * not available. array_data (of length nitems) is the constant's elements.
511 *
512 * Both the mcelem and array_data arrays are assumed presorted according
513 * to the element type's cmpfunc. Null elements are not present.
514 *
515 * TODO: this estimate probably could be improved by using the distinct
516 * elements count histogram. For example, excepting the special case of
517 * "column @> '{}'", we can multiply the calculated selectivity by the
518 * fraction of nonempty arrays in the column.
519 */
520static Selectivity
522 float4 *numbers, int nnumbers,
523 Datum *array_data, int nitems,
524 Oid operator, TypeCacheEntry *typentry)
525{
526 Selectivity selec,
527 elem_selec;
528 int mcelem_index,
529 i;
530 bool use_bsearch;
531 float4 minfreq;
532
533 /*
534 * There should be three more Numbers than Values, because the last three
535 * cells should hold minimal and maximal frequency among the non-null
536 * elements, and then the frequency of null elements. Ignore the Numbers
537 * if not right.
538 */
539 if (nnumbers != nmcelem + 3)
540 {
541 numbers = NULL;
542 nnumbers = 0;
543 }
544
545 if (numbers)
546 {
547 /* Grab the lowest observed frequency */
548 minfreq = numbers[nmcelem];
549 }
550 else
551 {
552 /* Without statistics make some default assumptions */
553 minfreq = 2 * (float4) DEFAULT_CONTAIN_SEL;
554 }
555
556 /* Decide whether it is faster to use binary search or not. */
557 if (nitems * floor_log2((uint32) nmcelem) < nmcelem + nitems)
558 use_bsearch = true;
559 else
560 use_bsearch = false;
561
562 if (operator == OID_ARRAY_CONTAINS_OP)
563 {
564 /*
565 * Initial selectivity for "column @> const" query is 1.0, and it will
566 * be decreased with each element of constant array.
567 */
568 selec = 1.0;
569 }
570 else
571 {
572 /*
573 * Initial selectivity for "column && const" query is 0.0, and it will
574 * be increased with each element of constant array.
575 */
576 selec = 0.0;
577 }
578
579 /* Scan mcelem and array in parallel. */
580 mcelem_index = 0;
581 for (i = 0; i < nitems; i++)
582 {
583 bool match = false;
584
585 /* Ignore any duplicates in the array data. */
586 if (i > 0 &&
587 element_compare(&array_data[i - 1], &array_data[i], typentry) == 0)
588 continue;
589
590 /* Find the smallest MCELEM >= this array item. */
591 if (use_bsearch)
592 {
593 match = find_next_mcelem(mcelem, nmcelem, array_data[i],
594 &mcelem_index, typentry);
595 }
596 else
597 {
598 while (mcelem_index < nmcelem)
599 {
600 int cmp = element_compare(&mcelem[mcelem_index],
601 &array_data[i],
602 typentry);
603
604 if (cmp < 0)
605 mcelem_index++;
606 else
607 {
608 if (cmp == 0)
609 match = true; /* mcelem is found */
610 break;
611 }
612 }
613 }
614
615 if (match && numbers)
616 {
617 /* MCELEM matches the array item; use its frequency. */
618 elem_selec = numbers[mcelem_index];
619 mcelem_index++;
620 }
621 else
622 {
623 /*
624 * The element is not in MCELEM. Punt, but assume that the
625 * selectivity cannot be more than minfreq / 2.
626 */
627 elem_selec = Min(DEFAULT_CONTAIN_SEL, minfreq / 2);
628 }
629
630 /*
631 * Update overall selectivity using the current element's selectivity
632 * and an assumption of element occurrence independence.
633 */
634 if (operator == OID_ARRAY_CONTAINS_OP)
635 selec *= elem_selec;
636 else
637 selec = selec + elem_selec - selec * elem_selec;
638
639 /* Clamp intermediate results to stay sane despite roundoff error */
640 CLAMP_PROBABILITY(selec);
641 }
642
643 return selec;
644}
645
646/*
647 * Estimate selectivity of "column <@ const" based on most common element
648 * statistics.
649 *
650 * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
651 * the array column's MCELEM statistics slot, or are NULL/0 if stats are
652 * not available. array_data (of length nitems) is the constant's elements.
653 * hist (of length nhist) is from the array column's DECHIST statistics slot,
654 * or is NULL/0 if those stats are not available.
655 *
656 * Both the mcelem and array_data arrays are assumed presorted according
657 * to the element type's cmpfunc. Null elements are not present.
658 *
659 * Independent element occurrence would imply a particular distribution of
660 * distinct element counts among matching rows. Real data usually falsifies
661 * that assumption. For example, in a set of 11-element integer arrays having
662 * elements in the range [0..10], element occurrences are typically not
663 * independent. If they were, a sufficiently-large set would include all
664 * distinct element counts 0 through 11. We correct for this using the
665 * histogram of distinct element counts.
666 *
667 * In the "column @> const" and "column && const" cases, we usually have a
668 * "const" with low number of elements (otherwise we have selectivity close
669 * to 0 or 1 respectively). That's why the effect of dependence related
670 * to distinct element count distribution is negligible there. In the
671 * "column <@ const" case, number of elements is usually high (otherwise we
672 * have selectivity close to 0). That's why we should do a correction with
673 * the array distinct element count distribution here.
674 *
675 * Using the histogram of distinct element counts produces a different
676 * distribution law than independent occurrences of elements. This
677 * distribution law can be described as follows:
678 *
679 * P(o1, o2, ..., on) = f1^o1 * (1 - f1)^(1 - o1) * f2^o2 *
680 * (1 - f2)^(1 - o2) * ... * fn^on * (1 - fn)^(1 - on) * hist[m] / ind[m]
681 *
682 * where:
683 * o1, o2, ..., on - occurrences of elements 1, 2, ..., n
684 * (1 - occurrence, 0 - no occurrence) in row
685 * f1, f2, ..., fn - frequencies of elements 1, 2, ..., n
686 * (scalar values in [0..1]) according to collected statistics
687 * m = o1 + o2 + ... + on = total number of distinct elements in row
688 * hist[m] - histogram data for occurrence of m elements.
689 * ind[m] - probability of m occurrences from n events assuming their
690 * probabilities to be equal to frequencies of array elements.
691 *
692 * ind[m] = sum(f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * (1 - f2)^(1 - o2) *
693 * ... * fn^on * (1 - fn)^(1 - on), o1, o2, ..., on) | o1 + o2 + .. on = m
694 */
695static Selectivity
697 float4 *numbers, int nnumbers,
698 Datum *array_data, int nitems,
699 float4 *hist, int nhist,
700 Oid operator, TypeCacheEntry *typentry)
701{
702 int mcelem_index,
703 i,
704 unique_nitems = 0;
705 float selec,
706 minfreq,
707 nullelem_freq;
708 float *dist,
709 *mcelem_dist,
710 *hist_part;
711 float avg_count,
712 mult,
713 rest;
714 float *elem_selec;
715
716 /*
717 * There should be three more Numbers than Values in the MCELEM slot,
718 * because the last three cells should hold minimal and maximal frequency
719 * among the non-null elements, and then the frequency of null elements.
720 * Punt if not right, because we can't do much without the element freqs.
721 */
722 if (numbers == NULL || nnumbers != nmcelem + 3)
723 return DEFAULT_CONTAIN_SEL;
724
725 /* Can't do much without a count histogram, either */
726 if (hist == NULL || nhist < 3)
727 return DEFAULT_CONTAIN_SEL;
728
729 /*
730 * Grab some of the summary statistics that compute_array_stats() stores:
731 * lowest frequency, frequency of null elements, and average distinct
732 * element count.
733 */
734 minfreq = numbers[nmcelem];
735 nullelem_freq = numbers[nmcelem + 2];
736 avg_count = hist[nhist - 1];
737
738 /*
739 * "rest" will be the sum of the frequencies of all elements not
740 * represented in MCELEM. The average distinct element count is the sum
741 * of the frequencies of *all* elements. Begin with that; we will proceed
742 * to subtract the MCELEM frequencies.
743 */
744 rest = avg_count;
745
746 /*
747 * mult is a multiplier representing estimate of probability that each
748 * mcelem that is not present in constant doesn't occur.
749 */
750 mult = 1.0f;
751
752 /*
753 * elem_selec is array of estimated frequencies for elements in the
754 * constant.
755 */
756 elem_selec = (float *) palloc(sizeof(float) * nitems);
757
758 /* Scan mcelem and array in parallel. */
759 mcelem_index = 0;
760 for (i = 0; i < nitems; i++)
761 {
762 bool match = false;
763
764 /* Ignore any duplicates in the array data. */
765 if (i > 0 &&
766 element_compare(&array_data[i - 1], &array_data[i], typentry) == 0)
767 continue;
768
769 /*
770 * Iterate over MCELEM until we find an entry greater than or equal to
771 * this element of the constant. Update "rest" and "mult" for mcelem
772 * entries skipped over.
773 */
774 while (mcelem_index < nmcelem)
775 {
776 int cmp = element_compare(&mcelem[mcelem_index],
777 &array_data[i],
778 typentry);
779
780 if (cmp < 0)
781 {
782 mult *= (1.0f - numbers[mcelem_index]);
783 rest -= numbers[mcelem_index];
784 mcelem_index++;
785 }
786 else
787 {
788 if (cmp == 0)
789 match = true; /* mcelem is found */
790 break;
791 }
792 }
793
794 if (match)
795 {
796 /* MCELEM matches the array item. */
797 elem_selec[unique_nitems] = numbers[mcelem_index];
798 /* "rest" is decremented for all mcelems, matched or not */
799 rest -= numbers[mcelem_index];
800 mcelem_index++;
801 }
802 else
803 {
804 /*
805 * The element is not in MCELEM. Punt, but assume that the
806 * selectivity cannot be more than minfreq / 2.
807 */
808 elem_selec[unique_nitems] = Min(DEFAULT_CONTAIN_SEL,
809 minfreq / 2);
810 }
811
812 unique_nitems++;
813 }
814
815 /*
816 * If we handled all constant elements without exhausting the MCELEM
817 * array, finish walking it to complete calculation of "rest" and "mult".
818 */
819 while (mcelem_index < nmcelem)
820 {
821 mult *= (1.0f - numbers[mcelem_index]);
822 rest -= numbers[mcelem_index];
823 mcelem_index++;
824 }
825
826 /*
827 * The presence of many distinct rare elements materially decreases
828 * selectivity. Use the Poisson distribution to estimate the probability
829 * of a column value having zero occurrences of such elements. See above
830 * for the definition of "rest".
831 */
832 mult *= exp(-rest);
833
834 /*----------
835 * Using the distinct element count histogram requires
836 * O(unique_nitems * (nmcelem + unique_nitems))
837 * operations. Beyond a certain computational cost threshold, it's
838 * reasonable to sacrifice accuracy for decreased planning time. We limit
839 * the number of operations to EFFORT * nmcelem; since nmcelem is limited
840 * by the column's statistics target, the work done is user-controllable.
841 *
842 * If the number of operations would be too large, we can reduce it
843 * without losing all accuracy by reducing unique_nitems and considering
844 * only the most-common elements of the constant array. To make the
845 * results exactly match what we would have gotten with only those
846 * elements to start with, we'd have to remove any discarded elements'
847 * frequencies from "mult", but since this is only an approximation
848 * anyway, we don't bother with that. Therefore it's sufficient to qsort
849 * elem_selec[] and take the largest elements. (They will no longer match
850 * up with the elements of array_data[], but we don't care.)
851 *----------
852 */
853#define EFFORT 100
854
855 if ((nmcelem + unique_nitems) > 0 &&
856 unique_nitems > EFFORT * nmcelem / (nmcelem + unique_nitems))
857 {
858 /*
859 * Use the quadratic formula to solve for largest allowable N. We
860 * have A = 1, B = nmcelem, C = - EFFORT * nmcelem.
861 */
862 double b = (double) nmcelem;
863 int n;
864
865 n = (int) ((sqrt(b * b + 4 * EFFORT * b) - b) / 2);
866
867 /* Sort, then take just the first n elements */
868 qsort(elem_selec, unique_nitems, sizeof(float),
870 unique_nitems = n;
871 }
872
873 /*
874 * Calculate probabilities of each distinct element count for both mcelems
875 * and constant elements. At this point, assume independent element
876 * occurrence.
877 */
878 dist = calc_distr(elem_selec, unique_nitems, unique_nitems, 0.0f);
879 mcelem_dist = calc_distr(numbers, nmcelem, unique_nitems, rest);
880
881 /* ignore hist[nhist-1], which is the average not a histogram member */
882 hist_part = calc_hist(hist, nhist - 1, unique_nitems);
883
884 selec = 0.0f;
885 for (i = 0; i <= unique_nitems; i++)
886 {
887 /*
888 * mult * dist[i] / mcelem_dist[i] gives us probability of qual
889 * matching from assumption of independent element occurrence with the
890 * condition that distinct element count = i.
891 */
892 if (mcelem_dist[i] > 0)
893 selec += hist_part[i] * mult * dist[i] / mcelem_dist[i];
894 }
895
896 pfree(dist);
897 pfree(mcelem_dist);
898 pfree(hist_part);
899 pfree(elem_selec);
900
901 /* Take into account occurrence of NULL element. */
902 selec *= (1.0f - nullelem_freq);
903
904 CLAMP_PROBABILITY(selec);
905
906 return selec;
907}
908
909/*
910 * Calculate the first n distinct element count probabilities from a
911 * histogram of distinct element counts.
912 *
913 * Returns a palloc'd array of n+1 entries, with array[k] being the
914 * probability of element count k, k in [0..n].
915 *
916 * We assume that a histogram box with bounds a and b gives 1 / ((b - a + 1) *
917 * (nhist - 1)) probability to each value in (a,b) and an additional half of
918 * that to a and b themselves.
919 */
920static float *
921calc_hist(const float4 *hist, int nhist, int n)
922{
923 float *hist_part;
924 int k,
925 i = 0;
926 float prev_interval = 0,
927 next_interval;
928 float frac;
929
930 hist_part = (float *) palloc((n + 1) * sizeof(float));
931
932 /*
933 * frac is a probability contribution for each interval between histogram
934 * values. We have nhist - 1 intervals, so contribution of each one will
935 * be 1 / (nhist - 1).
936 */
937 frac = 1.0f / ((float) (nhist - 1));
938
939 for (k = 0; k <= n; k++)
940 {
941 int count = 0;
942
943 /*
944 * Count the histogram boundaries equal to k. (Although the histogram
945 * should theoretically contain only exact integers, entries are
946 * floats so there could be roundoff error in large values. Treat any
947 * fractional value as equal to the next larger k.)
948 */
949 while (i < nhist && hist[i] <= k)
950 {
951 count++;
952 i++;
953 }
954
955 if (count > 0)
956 {
957 /* k is an exact bound for at least one histogram box. */
958 float val;
959
960 /* Find length between current histogram value and the next one */
961 if (i < nhist)
962 next_interval = hist[i] - hist[i - 1];
963 else
964 next_interval = 0;
965
966 /*
967 * count - 1 histogram boxes contain k exclusively. They
968 * contribute a total of (count - 1) * frac probability. Also
969 * factor in the partial histogram boxes on either side.
970 */
971 val = (float) (count - 1);
972 if (next_interval > 0)
973 val += 0.5f / next_interval;
974 if (prev_interval > 0)
975 val += 0.5f / prev_interval;
976 hist_part[k] = frac * val;
977
978 prev_interval = next_interval;
979 }
980 else
981 {
982 /* k does not appear as an exact histogram bound. */
983 if (prev_interval > 0)
984 hist_part[k] = frac / prev_interval;
985 else
986 hist_part[k] = 0.0f;
987 }
988 }
989
990 return hist_part;
991}
992
993/*
994 * Consider n independent events with probabilities p[]. This function
995 * calculates probabilities of exact k of events occurrence for k in [0..m].
996 * Returns a palloc'd array of size m+1.
997 *
998 * "rest" is the sum of the probabilities of all low-probability events not
999 * included in p.
1000 *
1001 * Imagine matrix M of size (n + 1) x (m + 1). Element M[i,j] denotes the
1002 * probability that exactly j of first i events occur. Obviously M[0,0] = 1.
1003 * For any constant j, each increment of i increases the probability iff the
1004 * event occurs. So, by the law of total probability:
1005 * M[i,j] = M[i - 1, j] * (1 - p[i]) + M[i - 1, j - 1] * p[i]
1006 * for i > 0, j > 0.
1007 * M[i,0] = M[i - 1, 0] * (1 - p[i]) for i > 0.
1008 */
1009static float *
1010calc_distr(const float *p, int n, int m, float rest)
1011{
1012 float *row,
1013 *prev_row,
1014 *tmp;
1015 int i,
1016 j;
1017
1018 /*
1019 * Since we return only the last row of the matrix and need only the
1020 * current and previous row for calculations, allocate two rows.
1021 */
1022 row = (float *) palloc((m + 1) * sizeof(float));
1023 prev_row = (float *) palloc((m + 1) * sizeof(float));
1024
1025 /* M[0,0] = 1 */
1026 row[0] = 1.0f;
1027 for (i = 1; i <= n; i++)
1028 {
1029 float t = p[i - 1];
1030
1031 /* Swap rows */
1032 tmp = row;
1033 row = prev_row;
1034 prev_row = tmp;
1035
1036 /* Calculate next row */
1037 for (j = 0; j <= i && j <= m; j++)
1038 {
1039 float val = 0.0f;
1040
1041 if (j < i)
1042 val += prev_row[j] * (1.0f - t);
1043 if (j > 0)
1044 val += prev_row[j - 1] * t;
1045 row[j] = val;
1046 }
1047 }
1048
1049 /*
1050 * The presence of many distinct rare (not in "p") elements materially
1051 * decreases selectivity. Model their collective occurrence with the
1052 * Poisson distribution.
1053 */
1054 if (rest > DEFAULT_CONTAIN_SEL)
1055 {
1056 float t;
1057
1058 /* Swap rows */
1059 tmp = row;
1060 row = prev_row;
1061 prev_row = tmp;
1062
1063 for (i = 0; i <= m; i++)
1064 row[i] = 0.0f;
1065
1066 /* Value of Poisson distribution for 0 occurrences */
1067 t = exp(-rest);
1068
1069 /*
1070 * Calculate convolution of previously computed distribution and the
1071 * Poisson distribution.
1072 */
1073 for (i = 0; i <= m; i++)
1074 {
1075 for (j = 0; j <= m - i; j++)
1076 row[j + i] += prev_row[j] * t;
1077
1078 /* Get Poisson distribution value for (i + 1) occurrences */
1079 t *= rest / (float) (i + 1);
1080 }
1081 }
1082
1083 pfree(prev_row);
1084 return row;
1085}
1086
1087/* Fast function for floor value of 2 based logarithm calculation. */
1088static int
1090{
1091 int logval = 0;
1092
1093 if (n == 0)
1094 return -1;
1095 if (n >= (1 << 16))
1096 {
1097 n >>= 16;
1098 logval += 16;
1099 }
1100 if (n >= (1 << 8))
1101 {
1102 n >>= 8;
1103 logval += 8;
1104 }
1105 if (n >= (1 << 4))
1106 {
1107 n >>= 4;
1108 logval += 4;
1109 }
1110 if (n >= (1 << 2))
1111 {
1112 n >>= 2;
1113 logval += 2;
1114 }
1115 if (n >= (1 << 1))
1116 {
1117 logval += 1;
1118 }
1119 return logval;
1120}
1121
1122/*
1123 * find_next_mcelem binary-searches a most common elements array, starting
1124 * from *index, for the first member >= value. It saves the position of the
1125 * match into *index and returns true if it's an exact match. (Note: we
1126 * assume the mcelem elements are distinct so there can't be more than one
1127 * exact match.)
1128 */
1129static bool
1130find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, int *index,
1131 TypeCacheEntry *typentry)
1132{
1133 int l = *index,
1134 r = nmcelem - 1,
1135 i,
1136 res;
1137
1138 while (l <= r)
1139 {
1140 i = (l + r) / 2;
1141 res = element_compare(&mcelem[i], &value, typentry);
1142 if (res == 0)
1143 {
1144 *index = i;
1145 return true;
1146 }
1147 else if (res < 0)
1148 l = i + 1;
1149 else
1150 r = i - 1;
1151 }
1152 *index = l;
1153 return false;
1154}
1155
1156/*
1157 * Comparison function for elements.
1158 *
1159 * We use the element type's default btree opclass, and its default collation
1160 * if the type is collation-sensitive.
1161 *
1162 * XXX consider using SortSupport infrastructure
1163 */
1164static int
1165element_compare(const void *key1, const void *key2, void *arg)
1166{
1167 Datum d1 = *((const Datum *) key1);
1168 Datum d2 = *((const Datum *) key2);
1169 TypeCacheEntry *typentry = (TypeCacheEntry *) arg;
1170 FmgrInfo *cmpfunc = &typentry->cmp_proc_finfo;
1171 Datum c;
1172
1173 c = FunctionCall2Coll(cmpfunc, typentry->typcollation, d1, d2);
1174 return DatumGetInt32(c);
1175}
1176
1177/*
1178 * Comparison function for sorting floats into descending order.
1179 */
1180static int
1181float_compare_desc(const void *key1, const void *key2)
1182{
1183 float d1 = *((const float *) key1);
1184 float d2 = *((const float *) key2);
1185
1186 if (d1 > d2)
1187 return -1;
1188 else if (d1 < d2)
1189 return 1;
1190 else
1191 return 0;
1192}
#define DatumGetArrayTypeP(X)
Definition: array.h:261
Selectivity scalararraysel_containment(PlannerInfo *root, Node *leftop, Node *rightop, Oid elemtype, bool isEquality, bool useOr, int varRelid)
static int float_compare_desc(const void *key1, const void *key2)
static Selectivity mcelem_array_contained_selec(Datum *mcelem, int nmcelem, float4 *numbers, int nnumbers, Datum *array_data, int nitems, float4 *hist, int nhist, Oid operator, TypeCacheEntry *typentry)
#define DEFAULT_CONTAIN_SEL
static Selectivity calc_arraycontsel(VariableStatData *vardata, Datum constval, Oid elemtype, Oid operator)
static int floor_log2(uint32 n)
#define EFFORT
static float * calc_hist(const float4 *hist, int nhist, int n)
static int element_compare(const void *key1, const void *key2, void *arg)
static float * calc_distr(const float *p, int n, int m, float rest)
Datum arraycontsel(PG_FUNCTION_ARGS)
static Selectivity mcelem_array_selec(ArrayType *array, TypeCacheEntry *typentry, Datum *mcelem, int nmcelem, float4 *numbers, int nnumbers, float4 *hist, int nhist, Oid operator)
static Selectivity mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem, float4 *numbers, int nnumbers, Datum *array_data, int nitems, Oid operator, TypeCacheEntry *typentry)
Datum arraycontjoinsel(PG_FUNCTION_ARGS)
#define DEFAULT_SEL(operator)
static bool find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, int *index, TypeCacheEntry *typentry)
void deconstruct_array(ArrayType *array, Oid elmtype, int elmlen, bool elmbyval, char elmalign, Datum **elemsp, bool **nullsp, int *nelemsp)
Definition: arrayfuncs.c:3631
#define Min(x, y)
Definition: c.h:958
double float8
Definition: c.h:584
uint32_t uint32
Definition: c.h:485
float float4
Definition: c.h:583
#define OidIsValid(objectId)
Definition: c.h:729
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
Datum FunctionCall2Coll(FmgrInfo *flinfo, Oid collation, Datum arg1, Datum arg2)
Definition: fmgr.c:1149
#define PG_GETARG_OID(n)
Definition: fmgr.h:275
#define PG_RETURN_FLOAT8(x)
Definition: fmgr.h:367
#define PG_GETARG_POINTER(n)
Definition: fmgr.h:276
#define PG_GETARG_INT32(n)
Definition: fmgr.h:269
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
#define nitems(x)
Definition: indent.h:31
static struct @161 value
long val
Definition: informix.c:689
int b
Definition: isn.c:69
int j
Definition: isn.c:73
int i
Definition: isn.c:72
void free_attstatsslot(AttStatsSlot *sslot)
Definition: lsyscache.c:3344
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2832
bool get_attstatsslot(AttStatsSlot *sslot, HeapTuple statstuple, int reqkind, Oid reqop, int flags)
Definition: lsyscache.c:3234
#define ATTSTATSSLOT_NUMBERS
Definition: lsyscache.h:43
#define ATTSTATSSLOT_VALUES
Definition: lsyscache.h:42
void pfree(void *pointer)
Definition: mcxt.c:1521
void * palloc(Size size)
Definition: mcxt.c:1317
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
double Selectivity
Definition: nodes.h:250
void * arg
FormData_pg_statistic * Form_pg_statistic
Definition: pg_statistic.h:135
void qsort_arg(void *base, size_t nel, size_t elsize, qsort_arg_comparator cmp, void *arg)
#define qsort(a, b, c, d)
Definition: port.h:447
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static int32 DatumGetInt32(Datum X)
Definition: postgres.h:202
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
char * c
tree ctl root
Definition: radixtree.h:1888
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:743
bool get_restriction_variable(PlannerInfo *root, List *args, int varRelid, VariableStatData *vardata, Node **other, bool *varonleft)
Definition: selfuncs.c:4894
void examine_variable(PlannerInfo *root, Node *node, int varRelid, VariableStatData *vardata)
Definition: selfuncs.c:5023
bool statistic_proc_security_check(VariableStatData *vardata, Oid func_oid)
Definition: selfuncs.c:5746
#define ReleaseVariableStats(vardata)
Definition: selfuncs.h:99
#define CLAMP_PROBABILITY(p)
Definition: selfuncs.h:63
Datum * values
Definition: lsyscache.h:53
float4 * numbers
Definition: lsyscache.h:56
int nnumbers
Definition: lsyscache.h:57
Definition: fmgr.h:57
Oid fn_oid
Definition: fmgr.h:59
Definition: pg_list.h:54
Definition: nodes.h:129
FmgrInfo cmp_proc_finfo
Definition: typcache.h:76
char typalign
Definition: typcache.h:41
bool typbyval
Definition: typcache.h:40
int16 typlen
Definition: typcache.h:39
Oid typcollation
Definition: typcache.h:47
HeapTuple statsTuple
Definition: selfuncs.h:89
RelOptInfo * rel
Definition: selfuncs.h:88
Definition: type.h:96
TypeCacheEntry * lookup_type_cache(Oid type_id, int flags)
Definition: typcache.c:386
#define TYPECACHE_CMP_PROC_FINFO
Definition: typcache.h:143