PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
crypt-sha.c
Go to the documentation of this file.
1/*
2 * contrib/pgcrypto/crypt-sha.c
3 *
4 * This implements shacrypt password hash functions and follows the
5 * public available reference implementation from
6 *
7 * https://www.akkadia.org/drepper/SHA-crypt.txt
8 *
9 * This code is public domain.
10 *
11 * Please see the inline comments for details about the algorithm.
12 *
13 * Basically the following code implements password hashing with sha256 and
14 * sha512 digest via OpenSSL. Additionally, an extended salt generation (see
15 * crypt-gensalt.c for details) is provided, which generates a salt suitable
16 * for either sha256crypt and sha512crypt password hash generation.
17 *
18 * Official identifiers for suitable password hashes used in salts are
19 * 5 : sha256crypt and
20 * 6 : sha512crypt
21 *
22 * The hashing code below supports and uses salt length up to 16 bytes. Longer
23 * input is possible, but any additional byte of the input is disregarded.
24 * gen_salt(), when called with a sha256crypt or sha512crypt identifier will
25 * always generate a 16 byte long salt string.
26 *
27 * Output is compatible with any sha256crypt and sha512crypt output
28 * generated by e.g. OpenSSL or libc crypt().
29 *
30 * The described algorithm uses default computing rounds of 5000. Currently,
31 * even when no specific rounds specification is used, we always explicitly
32 * print out the rounds option flag with the final hash password string.
33 *
34 * The length of the specific password hash (without magic bytes and salt
35 * string) is:
36 *
37 * sha256crypt: 43 bytes and
38 * sha512crypt: 86 bytes.
39 *
40 * Overall hashed password length is:
41 *
42 * sha256crypt: 80 bytes and
43 * sha512crypt: 123 bytes
44 *
45 */
46#include "postgres.h"
47
48#include "common/string.h"
49#include "mb/pg_wchar.h"
50#include "miscadmin.h"
51
52#include "px-crypt.h"
53#include "px.h"
54
55typedef enum
56{
61
62static const char _crypt_itoa64[64 + 1] =
63"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
64
65/*
66 * Modern UNIX password, based on SHA crypt hashes
67 */
68char *
69px_crypt_shacrypt(const char *pw, const char *salt, char *passwd, unsigned dstlen)
70{
71 static const char rounds_prefix[] = "rounds=";
72 static const char *magic_bytes[2] = {"$5$", "$6$"};
73
74 /* Used to create the password hash string */
75 StringInfo out_buf = NULL;
76
78 PX_MD *digestA = NULL;
79 PX_MD *digestB = NULL;
80 int err;
81
82 const char *dec_salt_binary; /* pointer into the real salt string */
83 StringInfo decoded_salt = NULL; /* decoded salt string */
84 unsigned char sha_buf[PX_SHACRYPT_DIGEST_MAX_LEN];
85
86 /* temporary buffer for digests */
87 unsigned char sha_buf_tmp[PX_SHACRYPT_DIGEST_MAX_LEN];
88 char rounds_custom = 0;
89 char *p_bytes = NULL;
90 char *s_bytes = NULL;
91 char *cp = NULL;
92 const char *fp = NULL; /* intermediate pointer within salt string */
93 const char *ep = NULL; /* holds pointer to the end of the salt string */
94 size_t buf_size = 0; /* buffer size for sha256crypt/sha512crypt */
95 unsigned int block; /* number of bytes processed */
97 unsigned int len,
98 salt_len = 0;
99
100 /* Sanity checks */
101 if (!passwd)
102 return NULL;
103
104 if (pw == NULL)
105 elog(ERROR, "null value for password rejected");
106
107 if (salt == NULL)
108 elog(ERROR, "null value for salt rejected");
109
110 /*
111 * Make sure result buffers are large enough.
112 */
113 if (dstlen < PX_SHACRYPT_BUF_LEN)
114 elog(ERROR, "insufficient result buffer size to encrypt password");
115
116 /* Init result buffer */
119
120 /* Init contents of buffers properly */
121 memset(&sha_buf, '\0', sizeof(sha_buf));
122 memset(&sha_buf_tmp, '\0', sizeof(sha_buf_tmp));
123
124 /*
125 * Decode the salt string. We need to know how many rounds and which
126 * digest we have to use to hash the password.
127 */
128 len = strlen(pw);
129 dec_salt_binary = salt;
130
131 /*
132 * Analyze and prepare the salt string
133 *
134 * The magic string should be specified in the first three bytes of the
135 * salt string. Do some sanity checks first.
136 */
137 if (strlen(dec_salt_binary) < 3)
139 errcode(ERRCODE_INVALID_PARAMETER_VALUE),
140 errmsg("invalid salt"));
141
142 /*
143 * Check format of magic bytes. These should define either 5=sha256crypt
144 * or 6=sha512crypt in the second byte, enclosed by ascii dollar signs.
145 */
146 if ((dec_salt_binary[0] != '$') || (dec_salt_binary[2] != '$'))
148 errcode(ERRCODE_INVALID_PARAMETER_VALUE),
149 errmsg("invalid format of salt"),
150 errhint("magic byte format for shacrypt is either \"$5$\" or \"$6$\""));
151
152 /*
153 * Check magic byte for supported shacrypt digest.
154 *
155 * We're just interested in the very first 3 bytes of the salt string,
156 * since this defines the digest length to use.
157 */
158 if (strncmp(dec_salt_binary, magic_bytes[0], strlen(magic_bytes[0])) == 0)
159 {
161 dec_salt_binary += strlen(magic_bytes[0]);
162 }
163 else if (strncmp(dec_salt_binary, magic_bytes[1], strlen(magic_bytes[1])) == 0)
164 {
166 dec_salt_binary += strlen(magic_bytes[1]);
167 }
168
169 /*
170 * dec_salt_binary pointer is positioned after the magic bytes now
171 *
172 * We extract any options in the following code branch. The only optional
173 * setting we need to take care of is the "rounds" option. Note that the
174 * salt generator already checked for invalid settings before, but we need
175 * to do it here again to protect against injection of wrong values when
176 * called without the generator.
177 *
178 * If there is any garbage added after the magic byte and the options/salt
179 * string, we don't treat this special: This is just absorbed as part of
180 * the salt with up to PX_SHACRYPT_SALT_LEN_MAX.
181 *
182 * Unknown magic byte is handled further below.
183 */
184 if (strncmp(dec_salt_binary,
185 rounds_prefix, sizeof(rounds_prefix) - 1) == 0)
186 {
187 const char *num = dec_salt_binary + sizeof(rounds_prefix) - 1;
188 char *endp;
189 int srounds = strtoint(num, &endp, 10);
190
191 if (*endp != '$')
193 errcode(ERRCODE_SYNTAX_ERROR),
194 errmsg("could not parse salt options"));
195
196 dec_salt_binary = endp + 1;
197
198 /*
199 * We violate supported lower or upper bound of rounds, but in this
200 * case we change this value to the supported lower or upper value. We
201 * don't do this silently and print a NOTICE in such a case.
202 *
203 * Note that a salt string generated with gen_salt() would never
204 * generated such a salt string, since it would error out.
205 *
206 * But Drepper's upstream reference implementation supports this when
207 * passing the salt string directly, so we maintain compatibility.
208 */
209 if (srounds > PX_SHACRYPT_ROUNDS_MAX)
210 {
212 errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
213 errmsg("rounds=%d exceeds maximum supported value (%d), using %d instead",
214 srounds, PX_SHACRYPT_ROUNDS_MAX,
216 srounds = PX_SHACRYPT_ROUNDS_MAX;
217 }
218 else if (srounds < PX_SHACRYPT_ROUNDS_MIN)
219 {
221 errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
222 errmsg("rounds=%d is below supported value (%d), using %d instead",
223 srounds, PX_SHACRYPT_ROUNDS_MIN,
225 srounds = PX_SHACRYPT_ROUNDS_MIN;
226 }
227
228 rounds = (uint32) srounds;
229 rounds_custom = 1;
230 }
231
232 /*
233 * Choose the correct digest length and add the magic bytes to the result
234 * buffer. Also handle possible invalid magic byte we've extracted above.
235 */
236 switch (type)
237 {
239 {
240 /* Two PX_MD objects required */
241 err = px_find_digest("sha256", &digestA);
242 if (err)
243 goto error;
244
245 err = px_find_digest("sha256", &digestB);
246 if (err)
247 goto error;
248
249 /* digest buffer length is 32 for sha256 */
250 buf_size = 32;
251
252 appendStringInfoString(out_buf, magic_bytes[0]);
253 break;
254 }
255
257 {
258 /* Two PX_MD objects required */
259 err = px_find_digest("sha512", &digestA);
260 if (err)
261 goto error;
262
263 err = px_find_digest("sha512", &digestB);
264 if (err)
265 goto error;
266
268
269 appendStringInfoString(out_buf, magic_bytes[1]);
270 break;
271 }
272
274 elog(ERROR, "unknown crypt identifier \"%c\"", salt[1]);
275 }
276
277 if (rounds_custom > 0)
278 appendStringInfo(out_buf, "rounds=%u$", rounds);
279
280 /*
281 * We need the real decoded salt string from salt input, this is every
282 * character before the last '$' in the preamble. Append every compatible
283 * character up to PX_SHACRYPT_SALT_MAX_LEN to the result buffer. Note
284 * that depending on the input, there might be no '$' marker after the
285 * salt, when there is no password hash attached at the end.
286 *
287 * We try hard to recognize mistakes, but since we might get an input
288 * string which might also have the password hash after the salt string
289 * section we give up as soon we reach the end of the input or if there
290 * are any bytes consumed for the salt string until we reach the first '$'
291 * marker thereafter.
292 */
293 for (ep = dec_salt_binary;
294 *ep && ep < (dec_salt_binary + PX_SHACRYPT_SALT_MAX_LEN);
295 ep++)
296 {
297 /*
298 * Filter out any string which shouldn't be here.
299 *
300 * First check for accidentally embedded magic strings here. We don't
301 * support '$' in salt strings anyways and seeing a magic byte trying
302 * to identify shacrypt hashes might indicate that something went
303 * wrong when generating this salt string. Note that we later check
304 * for non-supported literals anyways, but any '$' here confuses us at
305 * this point.
306 */
307 fp = strstr(dec_salt_binary, magic_bytes[0]);
308 if (fp != NULL)
309 elog(ERROR, "bogus magic byte found in salt string");
310
311 fp = strstr(dec_salt_binary, magic_bytes[1]);
312 if (fp != NULL)
313 elog(ERROR, "bogus magic byte found in salt string");
314
315 /*
316 * This looks very strict, but we assume the caller did something
317 * wrong when we see a "rounds=" option here.
318 */
319 fp = strstr(dec_salt_binary, rounds_prefix);
320 if (fp != NULL)
321 elog(ERROR, "invalid rounds option specified in salt string");
322
323 if (*ep != '$')
324 {
325 if (strchr(_crypt_itoa64, *ep) != NULL)
326 appendStringInfoCharMacro(decoded_salt, *ep);
327 else
329 errcode(ERRCODE_INVALID_PARAMETER_VALUE),
330 errmsg("invalid character in salt string: \"%.*s\"",
331 pg_mblen(ep), ep));
332 }
333 else
334 {
335 /*
336 * We encountered a '$' marker. Check if we already absorbed some
337 * bytes from input. If true, we are optimistic and terminate at
338 * this stage. If not, we try further.
339 *
340 * If we already consumed enough bytes for the salt string,
341 * everything that is after this marker is considered to be part
342 * of an optionally specified password hash and ignored.
343 */
344 if (decoded_salt->len > 0)
345 break;
346 }
347 }
348
349 salt_len = decoded_salt->len;
350 appendStringInfoString(out_buf, decoded_salt->data);
351 elog(DEBUG1, "using salt \"%s\", salt len = %d, rounds = %u",
352 decoded_salt->data, decoded_salt->len, rounds);
353
354 /*
355 * Sanity check: at this point the salt string buffer must not exceed
356 * expected size.
357 */
358 if (out_buf->len > (3 + 17 * rounds_custom + salt_len))
359 elog(ERROR, "unexpected length of salt string");
360
361 /*-
362 * 1. Start digest A
363 * 2. Add the password string to digest A
364 * 3. Add the salt to digest A
365 */
366 px_md_update(digestA, (const unsigned char *) pw, len);
367 px_md_update(digestA, (const unsigned char *) decoded_salt->data, salt_len);
368
369 /*-
370 * 4. Create digest B
371 * 5. Add password to digest B
372 * 6. Add the salt string to digest B
373 * 7. Add the password again to digest B
374 * 8. Finalize digest B
375 */
376 px_md_update(digestB, (const unsigned char *) pw, len);
377 px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
378 px_md_update(digestB, (const unsigned char *) pw, len);
379 px_md_finish(digestB, sha_buf);
380
381 /*
382 * 9. For each block (excluding the NULL byte), add digest B to digest A.
383 */
384 for (block = len; block > buf_size; block -= buf_size)
385 px_md_update(digestA, sha_buf, buf_size);
386
387 /*-
388 * 10. For the remaining N bytes of the password string, add the first N
389 * bytes of digest B to A.
390 */
391 px_md_update(digestA, sha_buf, block);
392
393 /*-
394 * 11. For each bit of the binary representation of the length of the
395 * password string up to and including the highest 1-digit, starting from
396 * to lowest bit position (numeric value 1)
397 *
398 * a) for a 1-digit add digest B (sha_buf) to digest A
399 * b) for a 0-digit add the password string
400 */
401 block = len;
402 while (block)
403 {
404 px_md_update(digestA,
405 (block & 1) ? sha_buf : (const unsigned char *) pw,
406 (block & 1) ? buf_size : len);
407
408 /* right shift to next byte */
409 block >>= 1;
410 }
411
412 /* 12. Finalize digest A */
413 px_md_finish(digestA, sha_buf);
414
415 /* 13. Start digest DP */
416 px_md_reset(digestB);
417
418 /*-
419 * 14 Add every byte of the password string (excluding trailing NULL)
420 * to the digest DP
421 */
422 for (block = len; block > 0; block--)
423 px_md_update(digestB, (const unsigned char *) pw, len);
424
425 /* 15. Finalize digest DP */
426 px_md_finish(digestB, sha_buf_tmp);
427
428 /*-
429 * 16. produce byte sequence P with same length as password.
430 * a) for each block of 32 or 64 bytes of length of the password
431 * string the entire digest DP is used
432 * b) for the remaining N (up to 31 or 63) bytes use the
433 * first N bytes of digest DP
434 */
435 if ((p_bytes = palloc0(len)) == NULL)
436 {
437 goto error;
438 }
439
440 /* N step of 16, copy over the bytes from password */
441 for (cp = p_bytes, block = len; block > buf_size; block -= buf_size, cp += buf_size)
442 memcpy(cp, sha_buf_tmp, buf_size);
443 memcpy(cp, sha_buf_tmp, block);
444
445 /*
446 * 17. Start digest DS
447 */
448 px_md_reset(digestB);
449
450 /*-
451 * 18. Repeat the following 16+A[0] times, where A[0] represents the first
452 * byte in digest A interpreted as an 8-bit unsigned value
453 * add the salt to digest DS
454 */
455 for (block = 16 + sha_buf[0]; block > 0; block--)
456 px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
457
458 /*
459 * 19. Finalize digest DS
460 */
461 px_md_finish(digestB, sha_buf_tmp);
462
463 /*-
464 * 20. Produce byte sequence S of the same length as the salt string where
465 *
466 * a) for each block of 32 or 64 bytes of length of the salt string the
467 * entire digest DS is used
468 *
469 * b) for the remaining N (up to 31 or 63) bytes use the first N
470 * bytes of digest DS
471 */
472 if ((s_bytes = palloc0(salt_len)) == NULL)
473 goto error;
474
475 for (cp = s_bytes, block = salt_len; block > buf_size; block -= buf_size, cp += buf_size)
476 memcpy(cp, sha_buf_tmp, buf_size);
477 memcpy(cp, sha_buf_tmp, block);
478
479 /* Make sure we don't leave something important behind */
480 px_memset(&sha_buf_tmp, 0, sizeof sha_buf);
481
482 /*-
483 * 21. Repeat a loop according to the number specified in the rounds=<N>
484 * specification in the salt (or the default value if none is
485 * present). Each round is numbered, starting with 0 and up to N-1.
486 *
487 * The loop uses a digest as input. In the first round it is the
488 * digest produced in step 12. In the latter steps it is the digest
489 * produced in step 21.h of the previous round. The following text
490 * uses the notation "digest A/B" to describe this behavior.
491 */
492 for (block = 0; block < rounds; block++)
493 {
494 /*
495 * Make it possible to abort in case large values for "rounds" are
496 * specified.
497 */
499
500 /* a) start digest B */
501 px_md_reset(digestB);
502
503 /*-
504 * b) for odd round numbers add the byte sequence P to digest B
505 * c) for even round numbers add digest A/B
506 */
507 px_md_update(digestB,
508 (block & 1) ? (const unsigned char *) p_bytes : sha_buf,
509 (block & 1) ? len : buf_size);
510
511 /* d) for all round numbers not divisible by 3 add the byte sequence S */
512 if ((block % 3) != 0)
513 px_md_update(digestB, (const unsigned char *) s_bytes, salt_len);
514
515 /* e) for all round numbers not divisible by 7 add the byte sequence P */
516 if ((block % 7) != 0)
517 px_md_update(digestB, (const unsigned char *) p_bytes, len);
518
519 /*-
520 * f) for odd round numbers add digest A/C
521 * g) for even round numbers add the byte sequence P
522 */
523 px_md_update(digestB,
524 (block & 1) ? sha_buf : (const unsigned char *) p_bytes,
525 (block & 1) ? buf_size : len);
526
527 /* h) finish digest C. */
528 px_md_finish(digestB, sha_buf);
529 }
530
531 px_md_free(digestA);
532 px_md_free(digestB);
533
534 digestA = NULL;
535 digestB = NULL;
536
537 pfree(s_bytes);
538 pfree(p_bytes);
539
540 s_bytes = NULL;
541 p_bytes = NULL;
542
543 /* prepare final result buffer */
544 appendStringInfoCharMacro(out_buf, '$');
545
546#define b64_from_24bit(B2, B1, B0, N) \
547 do { \
548 unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
549 int i = (N); \
550 while (i-- > 0) \
551 { \
552 appendStringInfoCharMacro(out_buf, _crypt_itoa64[w & 0x3f]); \
553 w >>= 6; \
554 } \
555 } while (0)
556
557 switch (type)
558 {
560 {
561 b64_from_24bit(sha_buf[0], sha_buf[10], sha_buf[20], 4);
562 b64_from_24bit(sha_buf[21], sha_buf[1], sha_buf[11], 4);
563 b64_from_24bit(sha_buf[12], sha_buf[22], sha_buf[2], 4);
564 b64_from_24bit(sha_buf[3], sha_buf[13], sha_buf[23], 4);
565 b64_from_24bit(sha_buf[24], sha_buf[4], sha_buf[14], 4);
566 b64_from_24bit(sha_buf[15], sha_buf[25], sha_buf[5], 4);
567 b64_from_24bit(sha_buf[6], sha_buf[16], sha_buf[26], 4);
568 b64_from_24bit(sha_buf[27], sha_buf[7], sha_buf[17], 4);
569 b64_from_24bit(sha_buf[18], sha_buf[28], sha_buf[8], 4);
570 b64_from_24bit(sha_buf[9], sha_buf[19], sha_buf[29], 4);
571 b64_from_24bit(0, sha_buf[31], sha_buf[30], 3);
572
573 break;
574 }
575
577 {
578 b64_from_24bit(sha_buf[0], sha_buf[21], sha_buf[42], 4);
579 b64_from_24bit(sha_buf[22], sha_buf[43], sha_buf[1], 4);
580 b64_from_24bit(sha_buf[44], sha_buf[2], sha_buf[23], 4);
581 b64_from_24bit(sha_buf[3], sha_buf[24], sha_buf[45], 4);
582 b64_from_24bit(sha_buf[25], sha_buf[46], sha_buf[4], 4);
583 b64_from_24bit(sha_buf[47], sha_buf[5], sha_buf[26], 4);
584 b64_from_24bit(sha_buf[6], sha_buf[27], sha_buf[48], 4);
585 b64_from_24bit(sha_buf[28], sha_buf[49], sha_buf[7], 4);
586 b64_from_24bit(sha_buf[50], sha_buf[8], sha_buf[29], 4);
587 b64_from_24bit(sha_buf[9], sha_buf[30], sha_buf[51], 4);
588 b64_from_24bit(sha_buf[31], sha_buf[52], sha_buf[10], 4);
589 b64_from_24bit(sha_buf[53], sha_buf[11], sha_buf[32], 4);
590 b64_from_24bit(sha_buf[12], sha_buf[33], sha_buf[54], 4);
591 b64_from_24bit(sha_buf[34], sha_buf[55], sha_buf[13], 4);
592 b64_from_24bit(sha_buf[56], sha_buf[14], sha_buf[35], 4);
593 b64_from_24bit(sha_buf[15], sha_buf[36], sha_buf[57], 4);
594 b64_from_24bit(sha_buf[37], sha_buf[58], sha_buf[16], 4);
595 b64_from_24bit(sha_buf[59], sha_buf[17], sha_buf[38], 4);
596 b64_from_24bit(sha_buf[18], sha_buf[39], sha_buf[60], 4);
597 b64_from_24bit(sha_buf[40], sha_buf[61], sha_buf[19], 4);
598 b64_from_24bit(sha_buf[62], sha_buf[20], sha_buf[41], 4);
599 b64_from_24bit(0, 0, sha_buf[63], 2);
600
601 break;
602 }
603
605 /* we shouldn't land here ... */
606 elog(ERROR, "unsupported digest length");
607 }
608
609 /*
610 * Copy over result to specified buffer.
611 *
612 * The passwd character buffer should have at least PX_SHACRYPT_BUF_LEN
613 * allocated, since we checked above if dstlen is smaller than
614 * PX_SHACRYPT_BUF_LEN (which also includes the NULL byte).
615 *
616 * In that case we would have failed above already.
617 */
618 memcpy(passwd, out_buf->data, out_buf->len);
619
620 /* make sure nothing important is left behind */
621 px_memset(&sha_buf, 0, sizeof sha_buf);
622 destroyStringInfo(out_buf);
623 destroyStringInfo(decoded_salt);
624
625 /* ...and we're done */
626 return passwd;
627
628error:
629 if (digestA != NULL)
630 px_md_free(digestA);
631
632 if (digestB != NULL)
633 px_md_free(digestB);
634
635 destroyStringInfo(out_buf);
636 destroyStringInfo(decoded_salt);
637
639 errcode(ERRCODE_INTERNAL_ERROR),
640 errmsg("cannot create encrypted password"));
641 return NULL; /* keep compiler quiet */
642}
uint32_t uint32
Definition: c.h:502
char * px_crypt_shacrypt(const char *pw, const char *salt, char *passwd, unsigned dstlen)
Definition: crypt-sha.c:69
PGCRYPTO_SHA_t
Definition: crypt-sha.c:56
@ PGCRYPTO_SHA256CRYPT
Definition: crypt-sha.c:57
@ PGCRYPTO_SHA_UNKOWN
Definition: crypt-sha.c:59
@ PGCRYPTO_SHA512CRYPT
Definition: crypt-sha.c:58
#define b64_from_24bit(B2, B1, B0, N)
static const char _crypt_itoa64[64+1]
Definition: crypt-sha.c:62
int errhint(const char *fmt,...)
Definition: elog.c:1318
int errcode(int sqlerrcode)
Definition: elog.c:854
int errmsg(const char *fmt,...)
Definition: elog.c:1071
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define NOTICE
Definition: elog.h:35
#define ereport(elevel,...)
Definition: elog.h:149
void err(int eval, const char *fmt,...)
Definition: err.c:43
int pg_mblen(const char *mbstr)
Definition: mbutils.c:1023
void pfree(void *pointer)
Definition: mcxt.c:2147
void * palloc0(Size size)
Definition: mcxt.c:1970
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
int px_find_digest(const char *name, PX_MD **res)
Definition: openssl.c:161
const void size_t len
#define PX_SHACRYPT_ROUNDS_MAX
Definition: px-crypt.h:70
#define PX_SHACRYPT_BUF_LEN
Definition: px-crypt.h:61
#define PX_SHACRYPT_ROUNDS_MIN
Definition: px-crypt.h:67
#define PX_SHACRYPT_DIGEST_MAX_LEN
Definition: px-crypt.h:52
#define PX_SHACRYPT_SALT_MAX_LEN
Definition: px-crypt.h:49
#define PX_SHACRYPT_ROUNDS_DEFAULT
Definition: px-crypt.h:64
void px_memset(void *ptr, int c, size_t len)
Definition: px.c:123
#define px_md_finish(md, buf)
Definition: px.h:206
#define px_md_free(md)
Definition: px.h:207
#define px_md_reset(md)
Definition: px.h:204
#define px_md_update(md, data, dlen)
Definition: px.h:205
static void error(void)
Definition: sql-dyntest.c:147
int strtoint(const char *pg_restrict str, char **pg_restrict endptr, int base)
Definition: string.c:50
void destroyStringInfo(StringInfo str)
Definition: stringinfo.c:409
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:145
StringInfo makeStringInfoExt(int initsize)
Definition: stringinfo.c:85
void appendStringInfoString(StringInfo str, const char *s)
Definition: stringinfo.c:230
#define appendStringInfoCharMacro(str, ch)
Definition: stringinfo.h:231
Definition: px.h:108
const char * type