PostgreSQL Source Code git master
px-crypt.h File Reference
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Macros

#define PX_MAX_CRYPT   128
 
#define PX_MAX_SALT_LEN   128
 
#define PX_XDES_ROUNDS   (29 * 25)
 
#define PX_BF_ROUNDS   6
 

Functions

char * px_crypt (const char *psw, const char *salt, char *buf, unsigned len)
 
int px_gen_salt (const char *salt_type, char *buf, int rounds)
 
char * _crypt_gensalt_traditional_rn (unsigned long count, const char *input, int size, char *output, int output_size)
 
char * _crypt_gensalt_extended_rn (unsigned long count, const char *input, int size, char *output, int output_size)
 
char * _crypt_gensalt_md5_rn (unsigned long count, const char *input, int size, char *output, int output_size)
 
char * _crypt_gensalt_blowfish_rn (unsigned long count, const char *input, int size, char *output, int output_size)
 
char * _crypt_blowfish_rn (const char *key, const char *setting, char *output, int size)
 
char * px_crypt_des (const char *key, const char *setting)
 
char * px_crypt_md5 (const char *pw, const char *salt, char *passwd, unsigned dstlen)
 

Macro Definition Documentation

◆ PX_BF_ROUNDS

#define PX_BF_ROUNDS   6

Definition at line 46 of file px-crypt.h.

◆ PX_MAX_CRYPT

#define PX_MAX_CRYPT   128

Definition at line 36 of file px-crypt.h.

◆ PX_MAX_SALT_LEN

#define PX_MAX_SALT_LEN   128

Definition at line 39 of file px-crypt.h.

◆ PX_XDES_ROUNDS

#define PX_XDES_ROUNDS   (29 * 25)

Definition at line 43 of file px-crypt.h.

Function Documentation

◆ _crypt_blowfish_rn()

char * _crypt_blowfish_rn ( const char *  key,
const char *  setting,
char *  output,
int  size 
)

Definition at line 582 of file crypt-blowfish.c.

584{
585 struct
586 {
587 BF_ctx ctx;
588 BF_key expanded_key;
589 union
590 {
591 BF_word salt[4];
592 BF_word output[6];
593 } binary;
594 } data;
595 BF_word L,
596 R;
597 BF_word tmp1,
598 tmp2,
599 tmp3,
600 tmp4;
601 BF_word *ptr;
602 BF_word count;
603 int i;
604
605 if (size < 7 + 22 + 31 + 1)
606 return NULL;
607
608 /*
609 * Blowfish salt value must be formatted as follows: "$2a$" or "$2x$", a
610 * two digit cost parameter, "$", and 22 digits from the alphabet
611 * "./0-9A-Za-z". -- from the PHP crypt docs. Apparently we enforce a few
612 * more restrictions on the count in the salt as well.
613 */
614 if (strlen(setting) < 29)
616 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
617 errmsg("invalid salt")));
618
619 if (setting[0] != '$' ||
620 setting[1] != '2' ||
621 (setting[2] != 'a' && setting[2] != 'x') ||
622 setting[3] != '$' ||
623 setting[4] < '0' || setting[4] > '3' ||
624 setting[5] < '0' || setting[5] > '9' ||
625 (setting[4] == '3' && setting[5] > '1') ||
626 setting[6] != '$')
627 {
629 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
630 errmsg("invalid salt")));
631 }
632
633 count = (BF_word) 1 << ((setting[4] - '0') * 10 + (setting[5] - '0'));
634 if (count < 16 || BF_decode(data.binary.salt, &setting[7], 16))
635 {
636 px_memset(data.binary.salt, 0, sizeof(data.binary.salt));
638 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
639 errmsg("invalid salt")));
640 }
641 BF_swap(data.binary.salt, 4);
642
643 BF_set_key(key, data.expanded_key, data.ctx.P, setting[2] == 'x');
644
645 memcpy(data.ctx.S, BF_init_state.S, sizeof(data.ctx.S));
646
647 L = R = 0;
648 for (i = 0; i < BF_N + 2; i += 2)
649 {
650 L ^= data.binary.salt[i & 2];
651 R ^= data.binary.salt[(i & 2) + 1];
653 data.ctx.P[i] = L;
654 data.ctx.P[i + 1] = R;
655 }
656
657 ptr = data.ctx.S[0];
658 do
659 {
660 ptr += 4;
661 L ^= data.binary.salt[(BF_N + 2) & 3];
662 R ^= data.binary.salt[(BF_N + 3) & 3];
664 *(ptr - 4) = L;
665 *(ptr - 3) = R;
666
667 L ^= data.binary.salt[(BF_N + 4) & 3];
668 R ^= data.binary.salt[(BF_N + 5) & 3];
670 *(ptr - 2) = L;
671 *(ptr - 1) = R;
672 } while (ptr < &data.ctx.S[3][0xFF]);
673
674 do
675 {
677
678 data.ctx.P[0] ^= data.expanded_key[0];
679 data.ctx.P[1] ^= data.expanded_key[1];
680 data.ctx.P[2] ^= data.expanded_key[2];
681 data.ctx.P[3] ^= data.expanded_key[3];
682 data.ctx.P[4] ^= data.expanded_key[4];
683 data.ctx.P[5] ^= data.expanded_key[5];
684 data.ctx.P[6] ^= data.expanded_key[6];
685 data.ctx.P[7] ^= data.expanded_key[7];
686 data.ctx.P[8] ^= data.expanded_key[8];
687 data.ctx.P[9] ^= data.expanded_key[9];
688 data.ctx.P[10] ^= data.expanded_key[10];
689 data.ctx.P[11] ^= data.expanded_key[11];
690 data.ctx.P[12] ^= data.expanded_key[12];
691 data.ctx.P[13] ^= data.expanded_key[13];
692 data.ctx.P[14] ^= data.expanded_key[14];
693 data.ctx.P[15] ^= data.expanded_key[15];
694 data.ctx.P[16] ^= data.expanded_key[16];
695 data.ctx.P[17] ^= data.expanded_key[17];
696
697 BF_body();
698
699 tmp1 = data.binary.salt[0];
700 tmp2 = data.binary.salt[1];
701 tmp3 = data.binary.salt[2];
702 tmp4 = data.binary.salt[3];
703 data.ctx.P[0] ^= tmp1;
704 data.ctx.P[1] ^= tmp2;
705 data.ctx.P[2] ^= tmp3;
706 data.ctx.P[3] ^= tmp4;
707 data.ctx.P[4] ^= tmp1;
708 data.ctx.P[5] ^= tmp2;
709 data.ctx.P[6] ^= tmp3;
710 data.ctx.P[7] ^= tmp4;
711 data.ctx.P[8] ^= tmp1;
712 data.ctx.P[9] ^= tmp2;
713 data.ctx.P[10] ^= tmp3;
714 data.ctx.P[11] ^= tmp4;
715 data.ctx.P[12] ^= tmp1;
716 data.ctx.P[13] ^= tmp2;
717 data.ctx.P[14] ^= tmp3;
718 data.ctx.P[15] ^= tmp4;
719 data.ctx.P[16] ^= tmp1;
720 data.ctx.P[17] ^= tmp2;
721
722 BF_body();
723 } while (--count);
724
725 for (i = 0; i < 6; i += 2)
726 {
727 L = BF_magic_w[i];
728 R = BF_magic_w[i + 1];
729
730 count = 64;
731 do
732 {
734 } while (--count);
735
736 data.binary.output[i] = L;
737 data.binary.output[i + 1] = R;
738 }
739
740 memcpy(output, setting, 7 + 22 - 1);
741 output[7 + 22 - 1] = BF_itoa64[(int)
742 BF_atoi64[(int) setting[7 + 22 - 1] - 0x20] & 0x30];
743
744/* This has to be bug-compatible with the original implementation, so
745 * only encode 23 of the 24 bytes. :-) */
746 BF_swap(data.binary.output, 6);
747 BF_encode(&output[7 + 22], data.binary.output, 23);
748 output[7 + 22 + 31] = '\0';
749
750/* Overwrite the most obvious sensitive data we have on the stack. Note
751 * that this does not guarantee there's no sensitive data left on the
752 * stack and/or in registers; I'm not aware of portable code that does. */
753 px_memset(&data, 0, sizeof(data));
754
755 return output;
756}
static int BF_decode(BF_word *dst, const char *src, int size)
static void BF_set_key(const char *key, BF_key expanded, BF_key initial, int sign_extension_bug)
static void BF_swap(BF_word *x, int count)
#define BF_ENCRYPT
#define BF_N
static BF_word BF_magic_w[6]
static unsigned char BF_itoa64[64+1]
static unsigned char BF_atoi64[0x60]
static BF_ctx BF_init_state
static void BF_encode(char *dst, const BF_word *src, int size)
#define BF_body()
unsigned int BF_word
BF_word BF_key[BF_N+2]
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define ERROR
Definition: elog.h:39
#define ereport(elevel,...)
Definition: elog.h:149
FILE * output
int i
Definition: isn.c:72
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
const void * data
void px_memset(void *ptr, int c, size_t len)
Definition: px.c:123
#define R(b, x)
Definition: sha2.c:132
static pg_noinline void Size size
Definition: slab.c:607
BF_word S[4][0x100]

References BF_atoi64, BF_body, BF_decode(), BF_encode(), BF_ENCRYPT, BF_init_state, BF_itoa64, BF_magic_w, BF_N, BF_set_key(), BF_swap(), CHECK_FOR_INTERRUPTS, data, ereport, errcode(), errmsg(), ERROR, i, sort-test::key, output, px_memset(), R, BF_ctx::S, and size.

Referenced by run_crypt_bf().

◆ _crypt_gensalt_blowfish_rn()

char * _crypt_gensalt_blowfish_rn ( unsigned long  count,
const char *  input,
int  size,
char *  output,
int  output_size 
)

Definition at line 161 of file crypt-gensalt.c.

163{
164 if (size < 16 || output_size < 7 + 22 + 1 ||
165 (count && (count < 4 || count > 31)))
166 {
167 if (output_size > 0)
168 output[0] = '\0';
169 return NULL;
170 }
171
172 if (!count)
173 count = 5;
174
175 output[0] = '$';
176 output[1] = '2';
177 output[2] = 'a';
178 output[3] = '$';
179 output[4] = '0' + count / 10;
180 output[5] = '0' + count % 10;
181 output[6] = '$';
182
183 BF_encode(&output[7], (const BF_word *) input, 16);
184 output[7 + 22] = '\0';
185
186 return output;
187}
static void BF_encode(char *dst, const BF_word *src, int size)
FILE * input

References BF_encode(), input, output, and size.

◆ _crypt_gensalt_extended_rn()

char * _crypt_gensalt_extended_rn ( unsigned long  count,
const char *  input,
int  size,
char *  output,
int  output_size 
)

Definition at line 43 of file crypt-gensalt.c.

45{
46 unsigned long value;
47
48/* Even iteration counts make it easier to detect weak DES keys from a look
49 * at the hash, so they should be avoided */
50 if (size < 3 || output_size < 1 + 4 + 4 + 1 ||
51 (count && (count > 0xffffff || !(count & 1))))
52 {
53 if (output_size > 0)
54 output[0] = '\0';
55 return NULL;
56 }
57
58 if (!count)
59 count = 725;
60
61 output[0] = '_';
62 output[1] = _crypt_itoa64[count & 0x3f];
63 output[2] = _crypt_itoa64[(count >> 6) & 0x3f];
64 output[3] = _crypt_itoa64[(count >> 12) & 0x3f];
65 output[4] = _crypt_itoa64[(count >> 18) & 0x3f];
66 value = (unsigned long) (unsigned char) input[0] |
67 ((unsigned long) (unsigned char) input[1] << 8) |
68 ((unsigned long) (unsigned char) input[2] << 16);
69 output[5] = _crypt_itoa64[value & 0x3f];
70 output[6] = _crypt_itoa64[(value >> 6) & 0x3f];
71 output[7] = _crypt_itoa64[(value >> 12) & 0x3f];
72 output[8] = _crypt_itoa64[(value >> 18) & 0x3f];
73 output[9] = '\0';
74
75 return output;
76}
static unsigned char _crypt_itoa64[64+1]
Definition: crypt-gensalt.c:21
static struct @162 value

References _crypt_itoa64, input, output, size, and value.

◆ _crypt_gensalt_md5_rn()

char * _crypt_gensalt_md5_rn ( unsigned long  count,
const char *  input,
int  size,
char *  output,
int  output_size 
)

Definition at line 79 of file crypt-gensalt.c.

81{
82 unsigned long value;
83
84 if (size < 3 || output_size < 3 + 4 + 1 || (count && count != 1000))
85 {
86 if (output_size > 0)
87 output[0] = '\0';
88 return NULL;
89 }
90
91 output[0] = '$';
92 output[1] = '1';
93 output[2] = '$';
94 value = (unsigned long) (unsigned char) input[0] |
95 ((unsigned long) (unsigned char) input[1] << 8) |
96 ((unsigned long) (unsigned char) input[2] << 16);
97 output[3] = _crypt_itoa64[value & 0x3f];
98 output[4] = _crypt_itoa64[(value >> 6) & 0x3f];
99 output[5] = _crypt_itoa64[(value >> 12) & 0x3f];
100 output[6] = _crypt_itoa64[(value >> 18) & 0x3f];
101 output[7] = '\0';
102
103 if (size >= 6 && output_size >= 3 + 4 + 4 + 1)
104 {
105 value = (unsigned long) (unsigned char) input[3] |
106 ((unsigned long) (unsigned char) input[4] << 8) |
107 ((unsigned long) (unsigned char) input[5] << 16);
108 output[7] = _crypt_itoa64[value & 0x3f];
109 output[8] = _crypt_itoa64[(value >> 6) & 0x3f];
110 output[9] = _crypt_itoa64[(value >> 12) & 0x3f];
111 output[10] = _crypt_itoa64[(value >> 18) & 0x3f];
112 output[11] = '\0';
113 }
114
115 return output;
116}

References _crypt_itoa64, input, output, size, and value.

◆ _crypt_gensalt_traditional_rn()

char * _crypt_gensalt_traditional_rn ( unsigned long  count,
const char *  input,
int  size,
char *  output,
int  output_size 
)

Definition at line 25 of file crypt-gensalt.c.

27{
28 if (size < 2 || output_size < 2 + 1 || (count && count != 25))
29 {
30 if (output_size > 0)
31 output[0] = '\0';
32 return NULL;
33 }
34
35 output[0] = _crypt_itoa64[(unsigned int) input[0] & 0x3f];
36 output[1] = _crypt_itoa64[(unsigned int) input[1] & 0x3f];
37 output[2] = '\0';
38
39 return output;
40}

References _crypt_itoa64, input, output, and size.

◆ px_crypt()

char * px_crypt ( const char *  psw,
const char *  salt,
char *  buf,
unsigned  len 
)

Definition at line 90 of file px-crypt.c.

91{
92 const struct px_crypt_algo *c;
93
95
96 for (c = px_crypt_list; c->id; c++)
97 {
98 if (!c->id_len)
99 break;
100 if (strncmp(salt, c->id, c->id_len) == 0)
101 break;
102 }
103
104 if (c->crypt == NULL)
105 return NULL;
106
107 return c->crypt(psw, salt, buf, len);
108}
void CheckBuiltinCryptoMode(void)
Definition: openssl.c:835
const void size_t len
static char * buf
Definition: pg_test_fsync.c:72
char * c
static const struct px_crypt_algo px_crypt_list[]
Definition: px-crypt.c:79
char * id
Definition: px-crypt.c:72

References buf, CheckBuiltinCryptoMode(), px_crypt_algo::id, len, and px_crypt_list.

Referenced by pg_crypt().

◆ px_crypt_des()

char * px_crypt_des ( const char *  key,
const char *  setting 
)

Definition at line 651 of file crypt-des.c.

652{
653 int i;
654 uint32 count,
655 salt,
656 l,
657 r0,
658 r1,
659 keybuf[2];
660 char *p;
661 uint8 *q;
662 static char output[21];
663
664 if (!des_initialised)
665 des_init();
666
667
668 /*
669 * Copy the key, shifting each character up by one bit and padding with
670 * zeros.
671 */
672 q = (uint8 *) keybuf;
673 while (q - (uint8 *) keybuf - 8)
674 {
675 *q++ = *key << 1;
676 if (*key != '\0')
677 key++;
678 }
679 if (des_setkey((char *) keybuf))
680 return NULL;
681
682#ifndef DISABLE_XDES
683 if (*setting == _PASSWORD_EFMT1)
684 {
685 /*
686 * "new"-style: setting must be a 9-character (underscore, then 4
687 * bytes of count, then 4 bytes of salt) string. See CRYPT(3) under
688 * the "Extended crypt" heading for further details.
689 *
690 * Unlimited characters of the input key are used. This is known as
691 * the "Extended crypt" DES method.
692 *
693 */
694 if (strlen(setting) < 9)
696 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
697 errmsg("invalid salt")));
698
699 for (i = 1, count = 0L; i < 5; i++)
700 count |= ascii_to_bin(setting[i]) << (i - 1) * 6;
701
702 for (i = 5, salt = 0L; i < 9; i++)
703 salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;
704
705 while (*key)
706 {
707 /*
708 * Encrypt the key with itself.
709 */
710 if (des_cipher((char *) keybuf, (char *) keybuf, 0L, 1))
711 return NULL;
712
713 /*
714 * And XOR with the next 8 characters of the key.
715 */
716 q = (uint8 *) keybuf;
717 while (q - (uint8 *) keybuf - 8 && *key)
718 *q++ ^= *key++ << 1;
719
720 if (des_setkey((char *) keybuf))
721 return NULL;
722 }
723 strlcpy(output, setting, 10);
724
725 /*
726 * Double check that we weren't given a short setting. If we were, the
727 * above code will probably have created weird values for count and
728 * salt, but we don't really care. Just make sure the output string
729 * doesn't have an extra NUL in it.
730 */
731 p = output + strlen(output);
732 }
733 else
734#endif /* !DISABLE_XDES */
735 {
736 /*
737 * "old"-style: setting - 2 bytes of salt key - only up to the first 8
738 * characters of the input key are used.
739 */
740 count = 25;
741
742 if (strlen(setting) < 2)
744 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
745 errmsg("invalid salt")));
746
747 salt = (ascii_to_bin(setting[1]) << 6)
748 | ascii_to_bin(setting[0]);
749
750 output[0] = setting[0];
751
752 /*
753 * If the encrypted password that the salt was extracted from is only
754 * 1 character long, the salt will be corrupted. We need to ensure
755 * that the output string doesn't have an extra NUL in it!
756 */
757 output[1] = setting[1] ? setting[1] : output[0];
758
759 p = output + 2;
760 }
761 setup_salt(salt);
762
763 /*
764 * Do it.
765 */
766 if (do_des(0L, 0L, &r0, &r1, count))
767 return NULL;
768
769 /*
770 * Now encode the result...
771 */
772 l = (r0 >> 8);
773 *p++ = _crypt_a64[(l >> 18) & 0x3f];
774 *p++ = _crypt_a64[(l >> 12) & 0x3f];
775 *p++ = _crypt_a64[(l >> 6) & 0x3f];
776 *p++ = _crypt_a64[l & 0x3f];
777
778 l = (r0 << 16) | ((r1 >> 16) & 0xffff);
779 *p++ = _crypt_a64[(l >> 18) & 0x3f];
780 *p++ = _crypt_a64[(l >> 12) & 0x3f];
781 *p++ = _crypt_a64[(l >> 6) & 0x3f];
782 *p++ = _crypt_a64[l & 0x3f];
783
784 l = r1 << 2;
785 *p++ = _crypt_a64[(l >> 12) & 0x3f];
786 *p++ = _crypt_a64[(l >> 6) & 0x3f];
787 *p++ = _crypt_a64[l & 0x3f];
788 *p = 0;
789
790 return output;
791}
uint8_t uint8
Definition: c.h:486
uint32_t uint32
Definition: c.h:488
static int des_cipher(const char *in, char *out, long salt, int count)
Definition: crypt-des.c:617
static int ascii_to_bin(char ch)
Definition: crypt-des.c:203
static void des_init(void)
Definition: crypt-des.c:221
static void setup_salt(long salt)
Definition: crypt-des.c:373
static int des_initialised
Definition: crypt-des.c:188
#define _PASSWORD_EFMT1
Definition: crypt-des.c:69
static int do_des(uint32 l_in, uint32 r_in, uint32 *l_out, uint32 *r_out, int count)
Definition: crypt-des.c:483
static int des_setkey(const char *key)
Definition: crypt-des.c:396
static const char _crypt_a64[]
Definition: crypt-des.c:71
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45

References _crypt_a64, _PASSWORD_EFMT1, ascii_to_bin(), des_cipher(), des_init(), des_initialised, des_setkey(), do_des(), ereport, errcode(), errmsg(), ERROR, i, sort-test::key, output, setup_salt(), and strlcpy().

Referenced by run_crypt_des().

◆ px_crypt_md5()

char * px_crypt_md5 ( const char *  pw,
const char *  salt,
char *  passwd,
unsigned  dstlen 
)

Definition at line 34 of file crypt-md5.c.

35{
36 static const char *magic = "$1$"; /* This string is magic for this
37 * algorithm. Having it this way, we
38 * can get better later on */
39 char *p;
40 const char *sp,
41 *ep;
42 unsigned char final[MD5_SIZE];
43 int sl,
44 pl,
45 i;
46 PX_MD *ctx,
47 *ctx1;
48 int err;
49 unsigned long l;
50
51 if (!passwd || dstlen < 120)
52 return NULL;
53
54 /* Refine the Salt first */
55 sp = salt;
56
57 /* If it starts with the magic string, then skip that */
58 if (strncmp(sp, magic, strlen(magic)) == 0)
59 sp += strlen(magic);
60
61 /* It stops at the first '$', max 8 chars */
62 for (ep = sp; *ep && *ep != '$' && ep < (sp + 8); ep++)
63 continue;
64
65 /* get the length of the true salt */
66 sl = ep - sp;
67
68 /* we need two PX_MD objects */
69 err = px_find_digest("md5", &ctx);
70 if (err)
71 return NULL;
72 err = px_find_digest("md5", &ctx1);
73 if (err)
74 {
75 /* this path is possible under low-memory circumstances */
76 px_md_free(ctx);
77 return NULL;
78 }
79
80 /* The password first, since that is what is most unknown */
81 px_md_update(ctx, (const uint8 *) pw, strlen(pw));
82
83 /* Then our magic string */
84 px_md_update(ctx, (const uint8 *) magic, strlen(magic));
85
86 /* Then the raw salt */
87 px_md_update(ctx, (const uint8 *) sp, sl);
88
89 /* Then just as many characters of the MD5(pw,salt,pw) */
90 px_md_update(ctx1, (const uint8 *) pw, strlen(pw));
91 px_md_update(ctx1, (const uint8 *) sp, sl);
92 px_md_update(ctx1, (const uint8 *) pw, strlen(pw));
93 px_md_finish(ctx1, final);
94 for (pl = strlen(pw); pl > 0; pl -= MD5_SIZE)
95 px_md_update(ctx, final, pl > MD5_SIZE ? MD5_SIZE : pl);
96
97 /* Don't leave anything around in vm they could use. */
98 px_memset(final, 0, sizeof final);
99
100 /* Then something really weird... */
101 for (i = strlen(pw); i; i >>= 1)
102 if (i & 1)
103 px_md_update(ctx, final, 1);
104 else
105 px_md_update(ctx, (const uint8 *) pw, 1);
106
107 /* Now make the output string */
108 strcpy(passwd, magic);
109 strncat(passwd, sp, sl);
110 strcat(passwd, "$");
111
112 px_md_finish(ctx, final);
113
114 /*
115 * and now, just to make sure things don't run too fast On a 60 Mhz
116 * Pentium this takes 34 msec, so you would need 30 seconds to build a
117 * 1000 entry dictionary...
118 */
119 for (i = 0; i < 1000; i++)
120 {
121 px_md_reset(ctx1);
122 if (i & 1)
123 px_md_update(ctx1, (const uint8 *) pw, strlen(pw));
124 else
125 px_md_update(ctx1, final, MD5_SIZE);
126
127 if (i % 3)
128 px_md_update(ctx1, (const uint8 *) sp, sl);
129
130 if (i % 7)
131 px_md_update(ctx1, (const uint8 *) pw, strlen(pw));
132
133 if (i & 1)
134 px_md_update(ctx1, final, MD5_SIZE);
135 else
136 px_md_update(ctx1, (const uint8 *) pw, strlen(pw));
137 px_md_finish(ctx1, final);
138 }
139
140 p = passwd + strlen(passwd);
141
142 l = (final[0] << 16) | (final[6] << 8) | final[12];
143 _crypt_to64(p, l, 4);
144 p += 4;
145 l = (final[1] << 16) | (final[7] << 8) | final[13];
146 _crypt_to64(p, l, 4);
147 p += 4;
148 l = (final[2] << 16) | (final[8] << 8) | final[14];
149 _crypt_to64(p, l, 4);
150 p += 4;
151 l = (final[3] << 16) | (final[9] << 8) | final[15];
152 _crypt_to64(p, l, 4);
153 p += 4;
154 l = (final[4] << 16) | (final[10] << 8) | final[5];
155 _crypt_to64(p, l, 4);
156 p += 4;
157 l = final[11];
158 _crypt_to64(p, l, 2);
159 p += 2;
160 *p = '\0';
161
162 /* Don't leave anything around in vm they could use. */
163 px_memset(final, 0, sizeof final);
164
165 px_md_free(ctx1);
166 px_md_free(ctx);
167
168 return passwd;
169}
#define MD5_SIZE
Definition: crypt-md5.c:14
static void _crypt_to64(char *s, unsigned long v, int n)
Definition: crypt-md5.c:20
void err(int eval, const char *fmt,...)
Definition: err.c:43
int px_find_digest(const char *name, PX_MD **res)
Definition: openssl.c:161
#define px_md_finish(md, buf)
Definition: px.h:206
#define px_md_free(md)
Definition: px.h:207
#define px_md_reset(md)
Definition: px.h:204
#define px_md_update(md, data, dlen)
Definition: px.h:205
Definition: px.h:108

References _crypt_to64(), err(), i, MD5_SIZE, px_find_digest(), px_md_finish, px_md_free, px_md_reset, px_md_update, and px_memset().

Referenced by run_crypt_md5().

◆ px_gen_salt()

int px_gen_salt ( const char *  salt_type,
char *  buf,
int  rounds 
)

Definition at line 134 of file px-crypt.c.

135{
136 struct generator *g;
137 char *p;
138 char rbuf[16];
139
141
142 for (g = gen_list; g->name; g++)
143 if (pg_strcasecmp(g->name, salt_type) == 0)
144 break;
145
146 if (g->name == NULL)
148
149 if (g->def_rounds)
150 {
151 if (rounds == 0)
152 rounds = g->def_rounds;
153
154 if (rounds < g->min_rounds || rounds > g->max_rounds)
155 return PXE_BAD_SALT_ROUNDS;
156 }
157
158 if (!pg_strong_random(rbuf, g->input_len))
159 return PXE_NO_RANDOM;
160
161 p = g->gen(rounds, rbuf, g->input_len, buf, PX_MAX_SALT_LEN);
162 px_memset(rbuf, 0, sizeof(rbuf));
163
164 if (p == NULL)
165 return PXE_BAD_SALT_ROUNDS;
166
167 return strlen(p);
168}
bool pg_strong_random(void *buf, size_t len)
int pg_strcasecmp(const char *s1, const char *s2)
Definition: pgstrcasecmp.c:36
static struct generator gen_list[]
Definition: px-crypt.c:125
#define PX_MAX_SALT_LEN
Definition: px-crypt.h:39
#define PXE_BAD_SALT_ROUNDS
Definition: px.h:61
#define PXE_NO_RANDOM
Definition: px.h:63
#define PXE_UNKNOWN_SALT_ALGO
Definition: px.h:60
int input_len
Definition: px-crypt.c:119
int max_rounds
Definition: px-crypt.c:122
char *(* gen)(unsigned long count, const char *input, int size, char *output, int output_size)
Definition: px-crypt.c:117
int def_rounds
Definition: px-crypt.c:120
char * name
Definition: px-crypt.c:116
int min_rounds
Definition: px-crypt.c:121

References buf, CheckBuiltinCryptoMode(), generator::def_rounds, generator::gen, gen_list, generator::input_len, generator::max_rounds, generator::min_rounds, generator::name, pg_strcasecmp(), pg_strong_random(), PX_MAX_SALT_LEN, px_memset(), PXE_BAD_SALT_ROUNDS, PXE_NO_RANDOM, and PXE_UNKNOWN_SALT_ALGO.

Referenced by pg_gen_salt(), and pg_gen_salt_rounds().