PostgreSQL Source Code  git master
slab.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * slab.c
4  * SLAB allocator definitions.
5  *
6  * SLAB is a MemoryContext implementation designed for cases where large
7  * numbers of equally-sized objects can be allocated and freed efficiently
8  * with minimal memory wastage and fragmentation.
9  *
10  *
11  * Portions Copyright (c) 2017-2023, PostgreSQL Global Development Group
12  *
13  * IDENTIFICATION
14  * src/backend/utils/mmgr/slab.c
15  *
16  *
17  * NOTE:
18  * The constant allocation size allows significant simplification and various
19  * optimizations over more general purpose allocators. The blocks are carved
20  * into chunks of exactly the right size, wasting only the space required to
21  * MAXALIGN the allocated chunks.
22  *
23  * Slab can also help reduce memory fragmentation in cases where longer-lived
24  * chunks remain stored on blocks while most of the other chunks have already
25  * been pfree'd. We give priority to putting new allocations into the
26  * "fullest" block. This help avoid having too many sparsely used blocks
27  * around and allows blocks to more easily become completely unused which
28  * allows them to be eventually free'd.
29  *
30  * We identify the "fullest" block to put new allocations on by using a block
31  * from the lowest populated element of the context's "blocklist" array.
32  * This is an array of dlists containing blocks which we partition by the
33  * number of free chunks which block has. Blocks with fewer free chunks are
34  * stored in a lower indexed dlist array slot. Full blocks go on the 0th
35  * element of the blocklist array. So that we don't have to have too many
36  * elements in the array, each dlist in the array is responsible for a range
37  * of free chunks. When a chunk is palloc'd or pfree'd we may need to move
38  * the block onto another dlist if the number of free chunks crosses the
39  * range boundary that the current list is responsible for. Having just a
40  * few blocklist elements reduces the number of times we must move the block
41  * onto another dlist element.
42  *
43  * We keep track of free chunks within each block by using a block-level free
44  * list. We consult this list when we allocate a new chunk in the block.
45  * The free list is a linked list, the head of which is pointed to with
46  * SlabBlock's freehead field. Each subsequent list item is stored in the
47  * free chunk's memory. We ensure chunks are large enough to store this
48  * address.
49  *
50  * When we allocate a new block, technically all chunks are free, however, to
51  * avoid having to write out the entire block to set the linked list for the
52  * free chunks for every chunk in the block, we instead store a pointer to
53  * the next "unused" chunk on the block and keep track of how many of these
54  * unused chunks there are. When a new block is malloc'd, all chunks are
55  * unused. The unused pointer starts with the first chunk on the block and
56  * as chunks are allocated, the unused pointer is incremented. As chunks are
57  * pfree'd, the unused pointer never goes backwards. The unused pointer can
58  * be thought of as a high watermark for the maximum number of chunks in the
59  * block which have been in use concurrently. When a chunk is pfree'd the
60  * chunk is put onto the head of the free list and the unused pointer is not
61  * changed. We only consume more unused chunks if we run out of free chunks
62  * on the free list. This method effectively gives priority to using
63  * previously used chunks over previously unused chunks, which should perform
64  * better due to CPU caching effects.
65  *
66  *-------------------------------------------------------------------------
67  */
68 
69 #include "postgres.h"
70 
71 #include "lib/ilist.h"
72 #include "utils/memdebug.h"
73 #include "utils/memutils.h"
76 
77 #define Slab_BLOCKHDRSZ MAXALIGN(sizeof(SlabBlock))
78 
79 #ifdef MEMORY_CONTEXT_CHECKING
80 /*
81  * Size of the memory required to store the SlabContext.
82  * MEMORY_CONTEXT_CHECKING builds need some extra memory for the isChunkFree
83  * array.
84  */
85 #define Slab_CONTEXT_HDRSZ(chunksPerBlock) \
86  (sizeof(SlabContext) + ((chunksPerBlock) * sizeof(bool)))
87 #else
88 #define Slab_CONTEXT_HDRSZ(chunksPerBlock) sizeof(SlabContext)
89 #endif
90 
91 /*
92  * The number of partitions to divide the blocklist into based their number of
93  * free chunks. There must be at least 2.
94  */
95 #define SLAB_BLOCKLIST_COUNT 3
96 
97 /* The maximum number of completely empty blocks to keep around for reuse. */
98 #define SLAB_MAXIMUM_EMPTY_BLOCKS 10
99 
100 /*
101  * SlabContext is a specialized implementation of MemoryContext.
102  */
103 typedef struct SlabContext
104 {
105  MemoryContextData header; /* Standard memory-context fields */
106  /* Allocation parameters for this context: */
107  uint32 chunkSize; /* the requested (non-aligned) chunk size */
108  uint32 fullChunkSize; /* chunk size with chunk header and alignment */
109  uint32 blockSize; /* the size to make each block of chunks */
110  int32 chunksPerBlock; /* number of chunks that fit in 1 block */
111  int32 curBlocklistIndex; /* index into the blocklist[] element
112  * containing the fullest, blocks */
113 #ifdef MEMORY_CONTEXT_CHECKING
114  bool *isChunkFree; /* array to mark free chunks in a block during
115  * SlabCheck */
116 #endif
117 
118  int32 blocklist_shift; /* number of bits to shift the nfree count
119  * by to get the index into blocklist[] */
120  dclist_head emptyblocks; /* empty blocks to use up first instead of
121  * mallocing new blocks */
122 
123  /*
124  * Blocks with free space, grouped by the number of free chunks they
125  * contain. Completely full blocks are stored in the 0th element.
126  * Completely empty blocks are stored in emptyblocks or free'd if we have
127  * enough empty blocks already.
128  */
131 
132 /*
133  * SlabBlock
134  * Structure of a single slab block.
135  *
136  * slab: pointer back to the owning MemoryContext
137  * nfree: number of chunks on the block which are unallocated
138  * nunused: number of chunks on the block unallocated and not on the block's
139  * freelist.
140  * freehead: linked-list header storing a pointer to the first free chunk on
141  * the block. Subsequent pointers are stored in the chunk's memory. NULL
142  * indicates the end of the list.
143  * unused: pointer to the next chunk which has yet to be used.
144  * node: doubly-linked list node for the context's blocklist
145  */
146 typedef struct SlabBlock
147 {
148  SlabContext *slab; /* owning context */
149  int32 nfree; /* number of chunks on free + unused chunks */
150  int32 nunused; /* number of unused chunks */
151  MemoryChunk *freehead; /* pointer to the first free chunk */
152  MemoryChunk *unused; /* pointer to the next unused chunk */
153  dlist_node node; /* doubly-linked list for blocklist[] */
155 
156 
157 #define Slab_CHUNKHDRSZ sizeof(MemoryChunk)
158 #define SlabChunkGetPointer(chk) \
159  ((void *) (((char *) (chk)) + sizeof(MemoryChunk)))
160 
161 /*
162  * SlabBlockGetChunk
163  * Obtain a pointer to the nth (0-based) chunk in the block
164  */
165 #define SlabBlockGetChunk(slab, block, n) \
166  ((MemoryChunk *) ((char *) (block) + Slab_BLOCKHDRSZ \
167  + ((n) * (slab)->fullChunkSize)))
168 
169 #if defined(MEMORY_CONTEXT_CHECKING) || defined(USE_ASSERT_CHECKING)
170 
171 /*
172  * SlabChunkIndex
173  * Get the 0-based index of how many chunks into the block the given
174  * chunk is.
175 */
176 #define SlabChunkIndex(slab, block, chunk) \
177  (((char *) (chunk) - (char *) SlabBlockGetChunk(slab, block, 0)) / \
178  (slab)->fullChunkSize)
179 
180 /*
181  * SlabChunkMod
182  * A MemoryChunk should always be at an address which is a multiple of
183  * fullChunkSize starting from the 0th chunk position. This will return
184  * non-zero if it's not.
185  */
186 #define SlabChunkMod(slab, block, chunk) \
187  (((char *) (chunk) - (char *) SlabBlockGetChunk(slab, block, 0)) % \
188  (slab)->fullChunkSize)
189 
190 #endif
191 
192 /*
193  * SlabIsValid
194  * True iff set is a valid slab allocation set.
195  */
196 #define SlabIsValid(set) (PointerIsValid(set) && IsA(set, SlabContext))
197 
198 /*
199  * SlabBlockIsValid
200  * True iff block is a valid block of slab allocation set.
201  */
202 #define SlabBlockIsValid(block) \
203  (PointerIsValid(block) && SlabIsValid((block)->slab))
204 
205 /*
206  * SlabBlocklistIndex
207  * Determine the blocklist index that a block should be in for the given
208  * number of free chunks.
209  */
210 static inline int32
212 {
213  int32 index;
214  int32 blocklist_shift = slab->blocklist_shift;
215 
216  Assert(nfree >= 0 && nfree <= slab->chunksPerBlock);
217 
218  /*
219  * Determine the blocklist index based on the number of free chunks. We
220  * must ensure that 0 free chunks is dedicated to index 0. Everything
221  * else must be >= 1 and < SLAB_BLOCKLIST_COUNT.
222  *
223  * To make this as efficient as possible, we exploit some two's complement
224  * arithmetic where we reverse the sign before bit shifting. This results
225  * in an nfree of 0 using index 0 and anything non-zero staying non-zero.
226  * This is exploiting 0 and -0 being the same in two's complement. When
227  * we're done, we just need to flip the sign back over again for a
228  * positive index.
229  */
230  index = -((-nfree) >> blocklist_shift);
231 
232  if (nfree == 0)
233  Assert(index == 0);
234  else
236 
237  return index;
238 }
239 
240 /*
241  * SlabFindNextBlockListIndex
242  * Search blocklist for blocks which have free chunks and return the
243  * index of the blocklist found containing at least 1 block with free
244  * chunks. If no block can be found we return 0.
245  *
246  * Note: We give priority to fuller blocks so that these are filled before
247  * emptier blocks. This is done to increase the chances that mostly-empty
248  * blocks will eventually become completely empty so they can be free'd.
249  */
250 static int32
252 {
253  /* start at 1 as blocklist[0] is for full blocks. */
254  for (int i = 1; i < SLAB_BLOCKLIST_COUNT; i++)
255  {
256  /* return the first found non-empty index */
257  if (!dlist_is_empty(&slab->blocklist[i]))
258  return i;
259  }
260 
261  /* no blocks with free space */
262  return 0;
263 }
264 
265 /*
266  * SlabGetNextFreeChunk
267  * Return the next free chunk in block and update the block to account
268  * for the returned chunk now being used.
269  */
270 static inline MemoryChunk *
272 {
273  MemoryChunk *chunk;
274 
275  Assert(block->nfree > 0);
276 
277  if (block->freehead != NULL)
278  {
279  chunk = block->freehead;
280 
281  /*
282  * Pop the chunk from the linked list of free chunks. The pointer to
283  * the next free chunk is stored in the chunk itself.
284  */
286  block->freehead = *(MemoryChunk **) SlabChunkGetPointer(chunk);
287 
288  /* check nothing stomped on the free chunk's memory */
289  Assert(block->freehead == NULL ||
290  (block->freehead >= SlabBlockGetChunk(slab, block, 0) &&
291  block->freehead <= SlabBlockGetChunk(slab, block, slab->chunksPerBlock - 1) &&
292  SlabChunkMod(slab, block, block->freehead) == 0));
293  }
294  else
295  {
296  Assert(block->nunused > 0);
297 
298  chunk = block->unused;
299  block->unused = (MemoryChunk *) (((char *) block->unused) + slab->fullChunkSize);
300  block->nunused--;
301  }
302 
303  block->nfree--;
304 
305  return chunk;
306 }
307 
308 /*
309  * SlabContextCreate
310  * Create a new Slab context.
311  *
312  * parent: parent context, or NULL if top-level context
313  * name: name of context (must be statically allocated)
314  * blockSize: allocation block size
315  * chunkSize: allocation chunk size
316  *
317  * The Slab_CHUNKHDRSZ + MAXALIGN(chunkSize + 1) may not exceed
318  * MEMORYCHUNK_MAX_VALUE.
319  * 'blockSize' may not exceed MEMORYCHUNK_MAX_BLOCKOFFSET.
320  */
323  const char *name,
324  Size blockSize,
325  Size chunkSize)
326 {
327  int chunksPerBlock;
328  Size fullChunkSize;
329  SlabContext *slab;
330  int i;
331 
332  /* ensure MemoryChunk's size is properly maxaligned */
334  "sizeof(MemoryChunk) is not maxaligned");
335  Assert(blockSize <= MEMORYCHUNK_MAX_BLOCKOFFSET);
336 
337  /*
338  * Ensure there's enough space to store the pointer to the next free chunk
339  * in the memory of the (otherwise) unused allocation.
340  */
341  if (chunkSize < sizeof(MemoryChunk *))
342  chunkSize = sizeof(MemoryChunk *);
343 
344  /* length of the maxaligned chunk including the chunk header */
345 #ifdef MEMORY_CONTEXT_CHECKING
346  /* ensure there's always space for the sentinel byte */
347  fullChunkSize = Slab_CHUNKHDRSZ + MAXALIGN(chunkSize + 1);
348 #else
349  fullChunkSize = Slab_CHUNKHDRSZ + MAXALIGN(chunkSize);
350 #endif
351 
352  Assert(fullChunkSize <= MEMORYCHUNK_MAX_VALUE);
353 
354  /* compute the number of chunks that will fit on each block */
355  chunksPerBlock = (blockSize - Slab_BLOCKHDRSZ) / fullChunkSize;
356 
357  /* Make sure the block can store at least one chunk. */
358  if (chunksPerBlock == 0)
359  elog(ERROR, "block size %zu for slab is too small for %zu-byte chunks",
360  blockSize, chunkSize);
361 
362 
363 
364  slab = (SlabContext *) malloc(Slab_CONTEXT_HDRSZ(chunksPerBlock));
365  if (slab == NULL)
366  {
368  ereport(ERROR,
369  (errcode(ERRCODE_OUT_OF_MEMORY),
370  errmsg("out of memory"),
371  errdetail("Failed while creating memory context \"%s\".",
372  name)));
373  }
374 
375  /*
376  * Avoid writing code that can fail between here and MemoryContextCreate;
377  * we'd leak the header if we ereport in this stretch.
378  */
379 
380  /* Fill in SlabContext-specific header fields */
381  slab->chunkSize = (uint32) chunkSize;
382  slab->fullChunkSize = (uint32) fullChunkSize;
383  slab->blockSize = (uint32) blockSize;
384  slab->chunksPerBlock = chunksPerBlock;
385  slab->curBlocklistIndex = 0;
386 
387  /*
388  * Compute a shift that guarantees that shifting chunksPerBlock with it is
389  * < SLAB_BLOCKLIST_COUNT - 1. The reason that we subtract 1 from
390  * SLAB_BLOCKLIST_COUNT in this calculation is that we reserve the 0th
391  * blocklist element for blocks which have no free chunks.
392  *
393  * We calculate the number of bits to shift by rather than a divisor to
394  * divide by as performing division each time we need to find the
395  * blocklist index would be much slower.
396  */
397  slab->blocklist_shift = 0;
398  while ((slab->chunksPerBlock >> slab->blocklist_shift) >= (SLAB_BLOCKLIST_COUNT - 1))
399  slab->blocklist_shift++;
400 
401  /* initialize the list to store empty blocks to be reused */
402  dclist_init(&slab->emptyblocks);
403 
404  /* initialize each blocklist slot */
405  for (i = 0; i < SLAB_BLOCKLIST_COUNT; i++)
406  dlist_init(&slab->blocklist[i]);
407 
408 #ifdef MEMORY_CONTEXT_CHECKING
409  /* set the isChunkFree pointer right after the end of the context */
410  slab->isChunkFree = (bool *) ((char *) slab + sizeof(SlabContext));
411 #endif
412 
413  /* Finally, do the type-independent part of context creation */
415  T_SlabContext,
416  MCTX_SLAB_ID,
417  parent,
418  name);
419 
420  return (MemoryContext) slab;
421 }
422 
423 /*
424  * SlabReset
425  * Frees all memory which is allocated in the given set.
426  *
427  * The code simply frees all the blocks in the context - we don't keep any
428  * keeper blocks or anything like that.
429  */
430 void
432 {
433  SlabContext *slab = (SlabContext *) context;
434  dlist_mutable_iter miter;
435  int i;
436 
437  Assert(SlabIsValid(slab));
438 
439 #ifdef MEMORY_CONTEXT_CHECKING
440  /* Check for corruption and leaks before freeing */
441  SlabCheck(context);
442 #endif
443 
444  /* release any retained empty blocks */
445  dclist_foreach_modify(miter, &slab->emptyblocks)
446  {
447  SlabBlock *block = dlist_container(SlabBlock, node, miter.cur);
448 
449  dclist_delete_from(&slab->emptyblocks, miter.cur);
450 
451 #ifdef CLOBBER_FREED_MEMORY
452  wipe_mem(block, slab->blockSize);
453 #endif
454  free(block);
455  context->mem_allocated -= slab->blockSize;
456  }
457 
458  /* walk over blocklist and free the blocks */
459  for (i = 0; i < SLAB_BLOCKLIST_COUNT; i++)
460  {
461  dlist_foreach_modify(miter, &slab->blocklist[i])
462  {
463  SlabBlock *block = dlist_container(SlabBlock, node, miter.cur);
464 
465  dlist_delete(miter.cur);
466 
467 #ifdef CLOBBER_FREED_MEMORY
468  wipe_mem(block, slab->blockSize);
469 #endif
470  free(block);
471  context->mem_allocated -= slab->blockSize;
472  }
473  }
474 
475  slab->curBlocklistIndex = 0;
476 
477  Assert(context->mem_allocated == 0);
478 }
479 
480 /*
481  * SlabDelete
482  * Free all memory which is allocated in the given context.
483  */
484 void
486 {
487  /* Reset to release all the SlabBlocks */
488  SlabReset(context);
489  /* And free the context header */
490  free(context);
491 }
492 
493 /*
494  * SlabAlloc
495  * Returns a pointer to allocated memory of given size or NULL if
496  * request could not be completed; memory is added to the slab.
497  */
498 void *
500 {
501  SlabContext *slab = (SlabContext *) context;
502  SlabBlock *block;
503  MemoryChunk *chunk;
504 
505  Assert(SlabIsValid(slab));
506 
507  /* sanity check that this is pointing to a valid blocklist */
508  Assert(slab->curBlocklistIndex >= 0);
510 
511  /* make sure we only allow correct request size */
512  if (unlikely(size != slab->chunkSize))
513  elog(ERROR, "unexpected alloc chunk size %zu (expected %u)",
514  size, slab->chunkSize);
515 
516  /*
517  * Handle the case when there are no partially filled blocks available.
518  * SlabFree() will have updated the curBlocklistIndex setting it to zero
519  * to indicate that it has freed the final block. Also later in
520  * SlabAlloc() we will set the curBlocklistIndex to zero if we end up
521  * filling the final block.
522  */
523  if (unlikely(slab->curBlocklistIndex == 0))
524  {
525  dlist_head *blocklist;
526  int blocklist_idx;
527 
528  /* to save allocating a new one, first check the empty blocks list */
529  if (dclist_count(&slab->emptyblocks) > 0)
530  {
532 
533  block = dlist_container(SlabBlock, node, node);
534 
535  /*
536  * SlabFree() should have left this block in a valid state with
537  * all chunks free. Ensure that's the case.
538  */
539  Assert(block->nfree == slab->chunksPerBlock);
540 
541  /* fetch the next chunk from this block */
542  chunk = SlabGetNextFreeChunk(slab, block);
543  }
544  else
545  {
546  block = (SlabBlock *) malloc(slab->blockSize);
547 
548  if (unlikely(block == NULL))
549  return NULL;
550 
551  block->slab = slab;
552  context->mem_allocated += slab->blockSize;
553 
554  /* use the first chunk in the new block */
555  chunk = SlabBlockGetChunk(slab, block, 0);
556 
557  block->nfree = slab->chunksPerBlock - 1;
558  block->unused = SlabBlockGetChunk(slab, block, 1);
559  block->freehead = NULL;
560  block->nunused = slab->chunksPerBlock - 1;
561  }
562 
563  /* find the blocklist element for storing blocks with 1 used chunk */
564  blocklist_idx = SlabBlocklistIndex(slab, block->nfree);
565  blocklist = &slab->blocklist[blocklist_idx];
566 
567  /* this better be empty. We just added a block thinking it was */
568  Assert(dlist_is_empty(blocklist));
569 
570  dlist_push_head(blocklist, &block->node);
571 
572  slab->curBlocklistIndex = blocklist_idx;
573  }
574  else
575  {
576  dlist_head *blocklist = &slab->blocklist[slab->curBlocklistIndex];
577  int new_blocklist_idx;
578 
579  Assert(!dlist_is_empty(blocklist));
580 
581  /* grab the block from the blocklist */
582  block = dlist_head_element(SlabBlock, node, blocklist);
583 
584  /* make sure we actually got a valid block, with matching nfree */
585  Assert(block != NULL);
586  Assert(slab->curBlocklistIndex == SlabBlocklistIndex(slab, block->nfree));
587  Assert(block->nfree > 0);
588 
589  /* fetch the next chunk from this block */
590  chunk = SlabGetNextFreeChunk(slab, block);
591 
592  /* get the new blocklist index based on the new free chunk count */
593  new_blocklist_idx = SlabBlocklistIndex(slab, block->nfree);
594 
595  /*
596  * Handle the case where the blocklist index changes. This also deals
597  * with blocks becoming full as only full blocks go at index 0.
598  */
599  if (unlikely(slab->curBlocklistIndex != new_blocklist_idx))
600  {
601  dlist_delete_from(blocklist, &block->node);
602  dlist_push_head(&slab->blocklist[new_blocklist_idx], &block->node);
603 
604  if (dlist_is_empty(blocklist))
606  }
607  }
608 
609  /*
610  * Check that the chunk pointer is actually somewhere on the block and is
611  * aligned as expected.
612  */
613  Assert(chunk >= SlabBlockGetChunk(slab, block, 0));
614  Assert(chunk <= SlabBlockGetChunk(slab, block, slab->chunksPerBlock - 1));
615  Assert(SlabChunkMod(slab, block, chunk) == 0);
616 
617  /* Prepare to initialize the chunk header. */
619 
620  MemoryChunkSetHdrMask(chunk, block, MAXALIGN(slab->chunkSize),
621  MCTX_SLAB_ID);
622 #ifdef MEMORY_CONTEXT_CHECKING
623  /* slab mark to catch clobber of "unused" space */
624  Assert(slab->chunkSize < (slab->fullChunkSize - Slab_CHUNKHDRSZ));
625  set_sentinel(MemoryChunkGetPointer(chunk), size);
626  VALGRIND_MAKE_MEM_NOACCESS(((char *) chunk) +
627  Slab_CHUNKHDRSZ + slab->chunkSize,
628  slab->fullChunkSize -
629  (slab->chunkSize + Slab_CHUNKHDRSZ));
630 #endif
631 
632 #ifdef RANDOMIZE_ALLOCATED_MEMORY
633  /* fill the allocated space with junk */
634  randomize_mem((char *) MemoryChunkGetPointer(chunk), size);
635 #endif
636 
637  /* Disallow access to the chunk header. */
639 
640  return MemoryChunkGetPointer(chunk);
641 }
642 
643 /*
644  * SlabFree
645  * Frees allocated memory; memory is removed from the slab.
646  */
647 void
648 SlabFree(void *pointer)
649 {
650  MemoryChunk *chunk = PointerGetMemoryChunk(pointer);
651  SlabBlock *block;
652  SlabContext *slab;
653  int curBlocklistIdx;
654  int newBlocklistIdx;
655 
656  /* Allow access to the chunk header. */
658 
659  block = MemoryChunkGetBlock(chunk);
660 
661  /*
662  * For speed reasons we just Assert that the referenced block is good.
663  * Future field experience may show that this Assert had better become a
664  * regular runtime test-and-elog check.
665  */
666  Assert(SlabBlockIsValid(block));
667  slab = block->slab;
668 
669 #ifdef MEMORY_CONTEXT_CHECKING
670  /* Test for someone scribbling on unused space in chunk */
671  Assert(slab->chunkSize < (slab->fullChunkSize - Slab_CHUNKHDRSZ));
672  if (!sentinel_ok(pointer, slab->chunkSize))
673  elog(WARNING, "detected write past chunk end in %s %p",
674  slab->header.name, chunk);
675 #endif
676 
677  /* push this chunk onto the head of the block's free list */
678  *(MemoryChunk **) pointer = block->freehead;
679  block->freehead = chunk;
680 
681  block->nfree++;
682 
683  Assert(block->nfree > 0);
684  Assert(block->nfree <= slab->chunksPerBlock);
685 
686 #ifdef CLOBBER_FREED_MEMORY
687  /* don't wipe the free list MemoryChunk pointer stored in the chunk */
688  wipe_mem((char *) pointer + sizeof(MemoryChunk *),
689  slab->chunkSize - sizeof(MemoryChunk *));
690 #endif
691 
692  curBlocklistIdx = SlabBlocklistIndex(slab, block->nfree - 1);
693  newBlocklistIdx = SlabBlocklistIndex(slab, block->nfree);
694 
695  /*
696  * Check if the block needs to be moved to another element on the
697  * blocklist based on it now having 1 more free chunk.
698  */
699  if (unlikely(curBlocklistIdx != newBlocklistIdx))
700  {
701  /* do the move */
702  dlist_delete_from(&slab->blocklist[curBlocklistIdx], &block->node);
703  dlist_push_head(&slab->blocklist[newBlocklistIdx], &block->node);
704 
705  /*
706  * The blocklist[curBlocklistIdx] may now be empty or we may now be
707  * able to use a lower-element blocklist. We'll need to redetermine
708  * what the slab->curBlocklistIndex is if the current blocklist was
709  * changed or if a lower element one was changed. We must ensure we
710  * use the list with the fullest block(s).
711  */
712  if (slab->curBlocklistIndex >= curBlocklistIdx)
713  {
715 
716  /*
717  * We know there must be a block with at least 1 unused chunk as
718  * we just pfree'd one. Ensure curBlocklistIndex reflects this.
719  */
720  Assert(slab->curBlocklistIndex > 0);
721  }
722  }
723 
724  /* Handle when a block becomes completely empty */
725  if (unlikely(block->nfree == slab->chunksPerBlock))
726  {
727  /* remove the block */
728  dlist_delete_from(&slab->blocklist[newBlocklistIdx], &block->node);
729 
730  /*
731  * To avoid thrashing malloc/free, we keep a list of empty blocks that
732  * we can reuse again instead of having to malloc a new one.
733  */
735  dclist_push_head(&slab->emptyblocks, &block->node);
736  else
737  {
738  /*
739  * When we have enough empty blocks stored already, we actually
740  * free the block.
741  */
742 #ifdef CLOBBER_FREED_MEMORY
743  wipe_mem(block, slab->blockSize);
744 #endif
745  free(block);
746  slab->header.mem_allocated -= slab->blockSize;
747  }
748 
749  /*
750  * Check if we need to reset the blocklist index. This is required
751  * when the blocklist this block is on has become completely empty.
752  */
753  if (slab->curBlocklistIndex == newBlocklistIdx &&
754  dlist_is_empty(&slab->blocklist[newBlocklistIdx]))
756  }
757 }
758 
759 /*
760  * SlabRealloc
761  * Change the allocated size of a chunk.
762  *
763  * As Slab is designed for allocating equally-sized chunks of memory, it can't
764  * do an actual chunk size change. We try to be gentle and allow calls with
765  * exactly the same size, as in that case we can simply return the same
766  * chunk. When the size differs, we throw an error.
767  *
768  * We could also allow requests with size < chunkSize. That however seems
769  * rather pointless - Slab is meant for chunks of constant size, and moreover
770  * realloc is usually used to enlarge the chunk.
771  */
772 void *
773 SlabRealloc(void *pointer, Size size)
774 {
775  MemoryChunk *chunk = PointerGetMemoryChunk(pointer);
776  SlabBlock *block;
777  SlabContext *slab;
778 
779  /* Allow access to the chunk header. */
781 
782  block = MemoryChunkGetBlock(chunk);
783 
784  /* Disallow access to the chunk header. */
786 
787  /*
788  * Try to verify that we have a sane block pointer: the block header
789  * should reference a slab context. (We use a test-and-elog, not just
790  * Assert, because it seems highly likely that we're here in error in the
791  * first place.)
792  */
793  if (!SlabBlockIsValid(block))
794  elog(ERROR, "could not find block containing chunk %p", chunk);
795  slab = block->slab;
796 
797  /* can't do actual realloc with slab, but let's try to be gentle */
798  if (size == slab->chunkSize)
799  return pointer;
800 
801  elog(ERROR, "slab allocator does not support realloc()");
802  return NULL; /* keep compiler quiet */
803 }
804 
805 /*
806  * SlabGetChunkContext
807  * Return the MemoryContext that 'pointer' belongs to.
808  */
810 SlabGetChunkContext(void *pointer)
811 {
812  MemoryChunk *chunk = PointerGetMemoryChunk(pointer);
813  SlabBlock *block;
814 
815  /* Allow access to the chunk header. */
817 
818  block = MemoryChunkGetBlock(chunk);
819 
820  /* Disallow access to the chunk header. */
822 
823  Assert(SlabBlockIsValid(block));
824 
825  return &block->slab->header;
826 }
827 
828 /*
829  * SlabGetChunkSpace
830  * Given a currently-allocated chunk, determine the total space
831  * it occupies (including all memory-allocation overhead).
832  */
833 Size
834 SlabGetChunkSpace(void *pointer)
835 {
836  MemoryChunk *chunk = PointerGetMemoryChunk(pointer);
837  SlabBlock *block;
838  SlabContext *slab;
839 
840  /* Allow access to the chunk header. */
842 
843  block = MemoryChunkGetBlock(chunk);
844 
845  /* Disallow access to the chunk header. */
847 
848  Assert(SlabBlockIsValid(block));
849  slab = block->slab;
850 
851  return slab->fullChunkSize;
852 }
853 
854 /*
855  * SlabIsEmpty
856  * Is the slab empty of any allocated space?
857  */
858 bool
860 {
861  Assert(SlabIsValid((SlabContext *) context));
862 
863  return (context->mem_allocated == 0);
864 }
865 
866 /*
867  * SlabStats
868  * Compute stats about memory consumption of a Slab context.
869  *
870  * printfunc: if not NULL, pass a human-readable stats string to this.
871  * passthru: pass this pointer through to printfunc.
872  * totals: if not NULL, add stats about this context into *totals.
873  * print_to_stderr: print stats to stderr if true, elog otherwise.
874  */
875 void
877  MemoryStatsPrintFunc printfunc, void *passthru,
878  MemoryContextCounters *totals,
879  bool print_to_stderr)
880 {
881  SlabContext *slab = (SlabContext *) context;
882  Size nblocks = 0;
883  Size freechunks = 0;
884  Size totalspace;
885  Size freespace = 0;
886  int i;
887 
888  Assert(SlabIsValid(slab));
889 
890  /* Include context header in totalspace */
891  totalspace = Slab_CONTEXT_HDRSZ(slab->chunksPerBlock);
892 
893  /* Add the space consumed by blocks in the emptyblocks list */
894  totalspace += dclist_count(&slab->emptyblocks) * slab->blockSize;
895 
896  for (i = 0; i < SLAB_BLOCKLIST_COUNT; i++)
897  {
898  dlist_iter iter;
899 
900  dlist_foreach(iter, &slab->blocklist[i])
901  {
902  SlabBlock *block = dlist_container(SlabBlock, node, iter.cur);
903 
904  nblocks++;
905  totalspace += slab->blockSize;
906  freespace += slab->fullChunkSize * block->nfree;
907  freechunks += block->nfree;
908  }
909  }
910 
911  if (printfunc)
912  {
913  char stats_string[200];
914 
915  /* XXX should we include free chunks on empty blocks? */
916  snprintf(stats_string, sizeof(stats_string),
917  "%zu total in %zu blocks; %u empty blocks; %zu free (%zu chunks); %zu used",
918  totalspace, nblocks, dclist_count(&slab->emptyblocks),
919  freespace, freechunks, totalspace - freespace);
920  printfunc(context, passthru, stats_string, print_to_stderr);
921  }
922 
923  if (totals)
924  {
925  totals->nblocks += nblocks;
926  totals->freechunks += freechunks;
927  totals->totalspace += totalspace;
928  totals->freespace += freespace;
929  }
930 }
931 
932 
933 #ifdef MEMORY_CONTEXT_CHECKING
934 
935 /*
936  * SlabCheck
937  * Walk through all blocks looking for inconsistencies.
938  *
939  * NOTE: report errors as WARNING, *not* ERROR or FATAL. Otherwise you'll
940  * find yourself in an infinite loop when trouble occurs, because this
941  * routine will be entered again when elog cleanup tries to release memory!
942  */
943 void
944 SlabCheck(MemoryContext context)
945 {
946  SlabContext *slab = (SlabContext *) context;
947  int i;
948  int nblocks = 0;
949  const char *name = slab->header.name;
950  dlist_iter iter;
951 
952  Assert(SlabIsValid(slab));
953  Assert(slab->chunksPerBlock > 0);
954 
955  /*
956  * Have a look at the empty blocks. These should have all their chunks
957  * marked as free. Ensure that's the case.
958  */
959  dclist_foreach(iter, &slab->emptyblocks)
960  {
961  SlabBlock *block = dlist_container(SlabBlock, node, iter.cur);
962 
963  if (block->nfree != slab->chunksPerBlock)
964  elog(WARNING, "problem in slab %s: empty block %p should have %d free chunks but has %d chunks free",
965  name, block, slab->chunksPerBlock, block->nfree);
966  }
967 
968  /* walk the non-empty block lists */
969  for (i = 0; i < SLAB_BLOCKLIST_COUNT; i++)
970  {
971  int j,
972  nfree;
973 
974  /* walk all blocks on this blocklist */
975  dlist_foreach(iter, &slab->blocklist[i])
976  {
977  SlabBlock *block = dlist_container(SlabBlock, node, iter.cur);
978  MemoryChunk *cur_chunk;
979 
980  /*
981  * Make sure the number of free chunks (in the block header)
982  * matches the position in the blocklist.
983  */
984  if (SlabBlocklistIndex(slab, block->nfree) != i)
985  elog(WARNING, "problem in slab %s: block %p is on blocklist %d but should be on blocklist %d",
986  name, block, i, SlabBlocklistIndex(slab, block->nfree));
987 
988  /* make sure the block is not empty */
989  if (block->nfree >= slab->chunksPerBlock)
990  elog(WARNING, "problem in slab %s: empty block %p incorrectly stored on blocklist element %d",
991  name, block, i);
992 
993  /* make sure the slab pointer correctly points to this context */
994  if (block->slab != slab)
995  elog(WARNING, "problem in slab %s: bogus slab link in block %p",
996  name, block);
997 
998  /* reset the array of free chunks for this block */
999  memset(slab->isChunkFree, 0, (slab->chunksPerBlock * sizeof(bool)));
1000  nfree = 0;
1001 
1002  /* walk through the block's free list chunks */
1003  cur_chunk = block->freehead;
1004  while (cur_chunk != NULL)
1005  {
1006  int chunkidx = SlabChunkIndex(slab, block, cur_chunk);
1007 
1008  /*
1009  * Ensure the free list link points to something on the block
1010  * at an address aligned according to the full chunk size.
1011  */
1012  if (cur_chunk < SlabBlockGetChunk(slab, block, 0) ||
1013  cur_chunk > SlabBlockGetChunk(slab, block, slab->chunksPerBlock - 1) ||
1014  SlabChunkMod(slab, block, cur_chunk) != 0)
1015  elog(WARNING, "problem in slab %s: bogus free list link %p in block %p",
1016  name, cur_chunk, block);
1017 
1018  /* count the chunk and mark it free on the free chunk array */
1019  nfree++;
1020  slab->isChunkFree[chunkidx] = true;
1021 
1022  /* read pointer of the next free chunk */
1024  cur_chunk = *(MemoryChunk **) SlabChunkGetPointer(cur_chunk);
1025  }
1026 
1027  /* check that the unused pointer matches what nunused claims */
1028  if (SlabBlockGetChunk(slab, block, slab->chunksPerBlock - block->nunused) !=
1029  block->unused)
1030  elog(WARNING, "problem in slab %s: mismatch detected between nunused chunks and unused pointer in block %p",
1031  name, block);
1032 
1033  /*
1034  * count the remaining free chunks that have yet to make it onto
1035  * the block's free list.
1036  */
1037  cur_chunk = block->unused;
1038  for (j = 0; j < block->nunused; j++)
1039  {
1040  int chunkidx = SlabChunkIndex(slab, block, cur_chunk);
1041 
1042 
1043  /* count the chunk as free and mark it as so in the array */
1044  nfree++;
1045  if (chunkidx < slab->chunksPerBlock)
1046  slab->isChunkFree[chunkidx] = true;
1047 
1048  /* move forward 1 chunk */
1049  cur_chunk = (MemoryChunk *) (((char *) cur_chunk) + slab->fullChunkSize);
1050  }
1051 
1052  for (j = 0; j < slab->chunksPerBlock; j++)
1053  {
1054  if (!slab->isChunkFree[j])
1055  {
1056  MemoryChunk *chunk = SlabBlockGetChunk(slab, block, j);
1057  SlabBlock *chunkblock;
1058 
1059  /* Allow access to the chunk header. */
1061 
1062  chunkblock = (SlabBlock *) MemoryChunkGetBlock(chunk);
1063 
1064  /* Disallow access to the chunk header. */
1066 
1067  /*
1068  * check the chunk's blockoffset correctly points back to
1069  * the block
1070  */
1071  if (chunkblock != block)
1072  elog(WARNING, "problem in slab %s: bogus block link in block %p, chunk %p",
1073  name, block, chunk);
1074 
1075  /* check the sentinel byte is intact */
1076  Assert(slab->chunkSize < (slab->fullChunkSize - Slab_CHUNKHDRSZ));
1077  if (!sentinel_ok(chunk, Slab_CHUNKHDRSZ + slab->chunkSize))
1078  elog(WARNING, "problem in slab %s: detected write past chunk end in block %p, chunk %p",
1079  name, block, chunk);
1080  }
1081  }
1082 
1083  /*
1084  * Make sure we got the expected number of free chunks (as tracked
1085  * in the block header).
1086  */
1087  if (nfree != block->nfree)
1088  elog(WARNING, "problem in slab %s: nfree in block %p is %d but %d chunk were found as free",
1089  name, block, block->nfree, nfree);
1090 
1091  nblocks++;
1092  }
1093  }
1094 
1095  /* the stored empty blocks are tracked in mem_allocated too */
1096  nblocks += dclist_count(&slab->emptyblocks);
1097 
1098  Assert(nblocks * slab->blockSize == context->mem_allocated);
1099 }
1100 
1101 #endif /* MEMORY_CONTEXT_CHECKING */
unsigned int uint32
Definition: c.h:495
#define MAXALIGN(LEN)
Definition: c.h:800
signed int int32
Definition: c.h:483
#define unlikely(x)
Definition: c.h:300
#define StaticAssertDecl(condition, errmessage)
Definition: c.h:925
size_t Size
Definition: c.h:594
int errdetail(const char *fmt,...)
Definition: elog.c:1202
int errcode(int sqlerrcode)
Definition: elog.c:858
int errmsg(const char *fmt,...)
Definition: elog.c:1069
#define WARNING
Definition: elog.h:36
#define ERROR
Definition: elog.h:39
#define ereport(elevel,...)
Definition: elog.h:149
#define free(a)
Definition: header.h:65
#define malloc(a)
Definition: header.h:50
#define dlist_foreach(iter, lhead)
Definition: ilist.h:623
static void dlist_init(dlist_head *head)
Definition: ilist.h:314
static void dlist_delete_from(dlist_head *head, dlist_node *node)
Definition: ilist.h:429
#define dlist_head_element(type, membername, lhead)
Definition: ilist.h:603
static void dlist_delete(dlist_node *node)
Definition: ilist.h:405
static uint32 dclist_count(const dclist_head *head)
Definition: ilist.h:932
static void dlist_push_head(dlist_head *head, dlist_node *node)
Definition: ilist.h:347
#define dlist_foreach_modify(iter, lhead)
Definition: ilist.h:640
static bool dlist_is_empty(const dlist_head *head)
Definition: ilist.h:336
static void dclist_delete_from(dclist_head *head, dlist_node *node)
Definition: ilist.h:763
static void dclist_push_head(dclist_head *head, dlist_node *node)
Definition: ilist.h:693
static void dclist_init(dclist_head *head)
Definition: ilist.h:671
#define dclist_foreach_modify(iter, lhead)
Definition: ilist.h:973
#define dlist_container(type, membername, ptr)
Definition: ilist.h:593
#define dclist_foreach(iter, lhead)
Definition: ilist.h:970
static dlist_node * dclist_pop_head_node(dclist_head *head)
Definition: ilist.h:789
int j
Definition: isn.c:74
int i
Definition: isn.c:73
Assert(fmt[strlen(fmt) - 1] !='\n')
void MemoryContextCreate(MemoryContext node, NodeTag tag, MemoryContextMethodID method_id, MemoryContext parent, const char *name)
Definition: mcxt.c:973
MemoryContext TopMemoryContext
Definition: mcxt.c:141
void MemoryContextStats(MemoryContext context)
Definition: mcxt.c:699
#define VALGRIND_MAKE_MEM_DEFINED(addr, size)
Definition: memdebug.h:26
#define VALGRIND_MAKE_MEM_NOACCESS(addr, size)
Definition: memdebug.h:27
#define VALGRIND_MAKE_MEM_UNDEFINED(addr, size)
Definition: memdebug.h:28
void(* MemoryStatsPrintFunc)(MemoryContext context, void *passthru, const char *stats_string, bool print_to_stderr)
Definition: memnodes.h:54
@ MCTX_SLAB_ID
#define MEMORYCHUNK_MAX_BLOCKOFFSET
#define MEMORYCHUNK_MAX_VALUE
#define MemoryChunkGetPointer(c)
static void * MemoryChunkGetBlock(MemoryChunk *chunk)
#define PointerGetMemoryChunk(p)
static void MemoryChunkSetHdrMask(MemoryChunk *chunk, void *block, Size value, MemoryContextMethodID methodid)
#define snprintf
Definition: port.h:238
#define Slab_BLOCKHDRSZ
Definition: slab.c:77
struct SlabBlock SlabBlock
#define SlabIsValid(set)
Definition: slab.c:196
void * SlabAlloc(MemoryContext context, Size size)
Definition: slab.c:499
void SlabFree(void *pointer)
Definition: slab.c:648
void SlabReset(MemoryContext context)
Definition: slab.c:431
#define Slab_CHUNKHDRSZ
Definition: slab.c:157
struct SlabContext SlabContext
#define SlabChunkGetPointer(chk)
Definition: slab.c:158
MemoryContext SlabContextCreate(MemoryContext parent, const char *name, Size blockSize, Size chunkSize)
Definition: slab.c:322
static int32 SlabBlocklistIndex(SlabContext *slab, int nfree)
Definition: slab.c:211
Size SlabGetChunkSpace(void *pointer)
Definition: slab.c:834
#define Slab_CONTEXT_HDRSZ(chunksPerBlock)
Definition: slab.c:88
bool SlabIsEmpty(MemoryContext context)
Definition: slab.c:859
MemoryContext SlabGetChunkContext(void *pointer)
Definition: slab.c:810
static int32 SlabFindNextBlockListIndex(SlabContext *slab)
Definition: slab.c:251
static MemoryChunk * SlabGetNextFreeChunk(SlabContext *slab, SlabBlock *block)
Definition: slab.c:271
#define SlabBlockGetChunk(slab, block, n)
Definition: slab.c:165
void SlabStats(MemoryContext context, MemoryStatsPrintFunc printfunc, void *passthru, MemoryContextCounters *totals, bool print_to_stderr)
Definition: slab.c:876
void * SlabRealloc(void *pointer, Size size)
Definition: slab.c:773
void SlabDelete(MemoryContext context)
Definition: slab.c:485
#define SLAB_BLOCKLIST_COUNT
Definition: slab.c:95
#define SlabBlockIsValid(block)
Definition: slab.c:202
#define SLAB_MAXIMUM_EMPTY_BLOCKS
Definition: slab.c:98
Size mem_allocated
Definition: memnodes.h:87
const char * name
Definition: memnodes.h:93
int32 nfree
Definition: slab.c:149
MemoryChunk * freehead
Definition: slab.c:151
MemoryChunk * unused
Definition: slab.c:152
SlabContext * slab
Definition: slab.c:148
dlist_node node
Definition: slab.c:153
int32 nunused
Definition: slab.c:150
dlist_head blocklist[SLAB_BLOCKLIST_COUNT]
Definition: slab.c:129
int32 chunksPerBlock
Definition: slab.c:110
uint32 fullChunkSize
Definition: slab.c:108
MemoryContextData header
Definition: slab.c:105
uint32 blockSize
Definition: slab.c:109
int32 curBlocklistIndex
Definition: slab.c:111
int32 blocklist_shift
Definition: slab.c:118
uint32 chunkSize
Definition: slab.c:107
dclist_head emptyblocks
Definition: slab.c:120
dlist_node * cur
Definition: ilist.h:179
dlist_node * cur
Definition: ilist.h:200
Definition: type.h:95
const char * name