PostgreSQL Source Code  git master
jsonb_util.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * jsonb_util.c
4  * converting between Jsonb and JsonbValues, and iterating.
5  *
6  * Copyright (c) 2014-2023, PostgreSQL Global Development Group
7  *
8  *
9  * IDENTIFICATION
10  * src/backend/utils/adt/jsonb_util.c
11  *
12  *-------------------------------------------------------------------------
13  */
14 #include "postgres.h"
15 
16 #include "catalog/pg_collation.h"
17 #include "catalog/pg_type.h"
18 #include "common/hashfn.h"
19 #include "common/jsonapi.h"
20 #include "miscadmin.h"
21 #include "port/pg_bitutils.h"
22 #include "utils/builtins.h"
23 #include "utils/datetime.h"
24 #include "utils/json.h"
25 #include "utils/jsonb.h"
26 #include "utils/memutils.h"
27 #include "utils/varlena.h"
28 
29 /*
30  * Maximum number of elements in an array (or key/value pairs in an object).
31  * This is limited by two things: the size of the JEntry array must fit
32  * in MaxAllocSize, and the number of elements (or pairs) must fit in the bits
33  * reserved for that in the JsonbContainer.header field.
34  *
35  * (The total size of an array's or object's elements is also limited by
36  * JENTRY_OFFLENMASK, but we're not concerned about that here.)
37  */
38 #define JSONB_MAX_ELEMS (Min(MaxAllocSize / sizeof(JsonbValue), JB_CMASK))
39 #define JSONB_MAX_PAIRS (Min(MaxAllocSize / sizeof(JsonbPair), JB_CMASK))
40 
41 static void fillJsonbValue(JsonbContainer *container, int index,
42  char *base_addr, uint32 offset,
43  JsonbValue *result);
47 static void convertJsonbValue(StringInfo buffer, JEntry *header, JsonbValue *val, int level);
48 static void convertJsonbArray(StringInfo buffer, JEntry *header, JsonbValue *val, int level);
49 static void convertJsonbObject(StringInfo buffer, JEntry *header, JsonbValue *val, int level);
50 static void convertJsonbScalar(StringInfo buffer, JEntry *header, JsonbValue *scalarVal);
51 
52 static int reserveFromBuffer(StringInfo buffer, int len);
53 static void appendToBuffer(StringInfo buffer, const char *data, int len);
54 static void copyToBuffer(StringInfo buffer, int offset, const char *data, int len);
55 static short padBufferToInt(StringInfo buffer);
56 
59 static JsonbParseState *pushState(JsonbParseState **pstate);
60 static void appendKey(JsonbParseState *pstate, JsonbValue *string);
61 static void appendValue(JsonbParseState *pstate, JsonbValue *scalarVal);
62 static void appendElement(JsonbParseState *pstate, JsonbValue *scalarVal);
63 static int lengthCompareJsonbStringValue(const void *a, const void *b);
64 static int lengthCompareJsonbString(const char *val1, int len1,
65  const char *val2, int len2);
66 static int lengthCompareJsonbPair(const void *a, const void *b, void *binequal);
67 static void uniqueifyJsonbObject(JsonbValue *object, bool unique_keys,
68  bool skip_nulls);
71  JsonbValue *scalarVal);
72 
73 void
75 {
76  val->type = jbvBinary;
77  val->val.binary.data = &jsonb->root;
78  val->val.binary.len = VARSIZE(jsonb) - VARHDRSZ;
79 }
80 
81 /*
82  * Turn an in-memory JsonbValue into a Jsonb for on-disk storage.
83  *
84  * Generally we find it more convenient to directly iterate through the Jsonb
85  * representation and only really convert nested scalar values.
86  * JsonbIteratorNext() does this, so that clients of the iteration code don't
87  * have to directly deal with the binary representation (JsonbDeepContains() is
88  * a notable exception, although all exceptions are internal to this module).
89  * In general, functions that accept a JsonbValue argument are concerned with
90  * the manipulation of scalar values, or simple containers of scalar values,
91  * where it would be inconvenient to deal with a great amount of other state.
92  */
93 Jsonb *
95 {
96  Jsonb *out;
97 
98  if (IsAJsonbScalar(val))
99  {
100  /* Scalar value */
101  JsonbParseState *pstate = NULL;
102  JsonbValue *res;
103  JsonbValue scalarArray;
104 
105  scalarArray.type = jbvArray;
106  scalarArray.val.array.rawScalar = true;
107  scalarArray.val.array.nElems = 1;
108 
109  pushJsonbValue(&pstate, WJB_BEGIN_ARRAY, &scalarArray);
110  pushJsonbValue(&pstate, WJB_ELEM, val);
111  res = pushJsonbValue(&pstate, WJB_END_ARRAY, NULL);
112 
113  out = convertToJsonb(res);
114  }
115  else if (val->type == jbvObject || val->type == jbvArray)
116  {
117  out = convertToJsonb(val);
118  }
119  else
120  {
121  Assert(val->type == jbvBinary);
122  out = palloc(VARHDRSZ + val->val.binary.len);
123  SET_VARSIZE(out, VARHDRSZ + val->val.binary.len);
124  memcpy(VARDATA(out), val->val.binary.data, val->val.binary.len);
125  }
126 
127  return out;
128 }
129 
130 /*
131  * Get the offset of the variable-length portion of a Jsonb node within
132  * the variable-length-data part of its container. The node is identified
133  * by index within the container's JEntry array.
134  */
135 uint32
137 {
138  uint32 offset = 0;
139  int i;
140 
141  /*
142  * Start offset of this entry is equal to the end offset of the previous
143  * entry. Walk backwards to the most recent entry stored as an end
144  * offset, returning that offset plus any lengths in between.
145  */
146  for (i = index - 1; i >= 0; i--)
147  {
148  offset += JBE_OFFLENFLD(jc->children[i]);
149  if (JBE_HAS_OFF(jc->children[i]))
150  break;
151  }
152 
153  return offset;
154 }
155 
156 /*
157  * Get the length of the variable-length portion of a Jsonb node.
158  * The node is identified by index within the container's JEntry array.
159  */
160 uint32
162 {
163  uint32 off;
164  uint32 len;
165 
166  /*
167  * If the length is stored directly in the JEntry, just return it.
168  * Otherwise, get the begin offset of the entry, and subtract that from
169  * the stored end+1 offset.
170  */
171  if (JBE_HAS_OFF(jc->children[index]))
172  {
173  off = getJsonbOffset(jc, index);
174  len = JBE_OFFLENFLD(jc->children[index]) - off;
175  }
176  else
178 
179  return len;
180 }
181 
182 /*
183  * BT comparator worker function. Returns an integer less than, equal to, or
184  * greater than zero, indicating whether a is less than, equal to, or greater
185  * than b. Consistent with the requirements for a B-Tree operator class
186  *
187  * Strings are compared lexically, in contrast with other places where we use a
188  * much simpler comparator logic for searching through Strings. Since this is
189  * called from B-Tree support function 1, we're careful about not leaking
190  * memory here.
191  */
192 int
194 {
195  JsonbIterator *ita,
196  *itb;
197  int res = 0;
198 
199  ita = JsonbIteratorInit(a);
200  itb = JsonbIteratorInit(b);
201 
202  do
203  {
204  JsonbValue va,
205  vb;
207  rb;
208 
209  ra = JsonbIteratorNext(&ita, &va, false);
210  rb = JsonbIteratorNext(&itb, &vb, false);
211 
212  if (ra == rb)
213  {
214  if (ra == WJB_DONE)
215  {
216  /* Decisively equal */
217  break;
218  }
219 
220  if (ra == WJB_END_ARRAY || ra == WJB_END_OBJECT)
221  {
222  /*
223  * There is no array or object to compare at this stage of
224  * processing. jbvArray/jbvObject values are compared
225  * initially, at the WJB_BEGIN_ARRAY and WJB_BEGIN_OBJECT
226  * tokens.
227  */
228  continue;
229  }
230 
231  if (va.type == vb.type)
232  {
233  switch (va.type)
234  {
235  case jbvString:
236  case jbvNull:
237  case jbvNumeric:
238  case jbvBool:
239  res = compareJsonbScalarValue(&va, &vb);
240  break;
241  case jbvArray:
242 
243  /*
244  * This could be a "raw scalar" pseudo array. That's
245  * a special case here though, since we still want the
246  * general type-based comparisons to apply, and as far
247  * as we're concerned a pseudo array is just a scalar.
248  */
249  if (va.val.array.rawScalar != vb.val.array.rawScalar)
250  res = (va.val.array.rawScalar) ? -1 : 1;
251  if (va.val.array.nElems != vb.val.array.nElems)
252  res = (va.val.array.nElems > vb.val.array.nElems) ? 1 : -1;
253  break;
254  case jbvObject:
255  if (va.val.object.nPairs != vb.val.object.nPairs)
256  res = (va.val.object.nPairs > vb.val.object.nPairs) ? 1 : -1;
257  break;
258  case jbvBinary:
259  elog(ERROR, "unexpected jbvBinary value");
260  break;
261  case jbvDatetime:
262  elog(ERROR, "unexpected jbvDatetime value");
263  break;
264  }
265  }
266  else
267  {
268  /* Type-defined order */
269  res = (va.type > vb.type) ? 1 : -1;
270  }
271  }
272  else
273  {
274  /*
275  * It's safe to assume that the types differed, and that the va
276  * and vb values passed were set.
277  *
278  * If the two values were of the same container type, then there'd
279  * have been a chance to observe the variation in the number of
280  * elements/pairs (when processing WJB_BEGIN_OBJECT, say). They're
281  * either two heterogeneously-typed containers, or a container and
282  * some scalar type.
283  *
284  * We don't have to consider the WJB_END_ARRAY and WJB_END_OBJECT
285  * cases here, because we would have seen the corresponding
286  * WJB_BEGIN_ARRAY and WJB_BEGIN_OBJECT tokens first, and
287  * concluded that they don't match.
288  */
289  Assert(ra != WJB_END_ARRAY && ra != WJB_END_OBJECT);
290  Assert(rb != WJB_END_ARRAY && rb != WJB_END_OBJECT);
291 
292  Assert(va.type != vb.type);
293  Assert(va.type != jbvBinary);
294  Assert(vb.type != jbvBinary);
295  /* Type-defined order */
296  res = (va.type > vb.type) ? 1 : -1;
297  }
298  }
299  while (res == 0);
300 
301  while (ita != NULL)
302  {
303  JsonbIterator *i = ita->parent;
304 
305  pfree(ita);
306  ita = i;
307  }
308  while (itb != NULL)
309  {
310  JsonbIterator *i = itb->parent;
311 
312  pfree(itb);
313  itb = i;
314  }
315 
316  return res;
317 }
318 
319 /*
320  * Find value in object (i.e. the "value" part of some key/value pair in an
321  * object), or find a matching element if we're looking through an array. Do
322  * so on the basis of equality of the object keys only, or alternatively
323  * element values only, with a caller-supplied value "key". The "flags"
324  * argument allows the caller to specify which container types are of interest.
325  *
326  * This exported utility function exists to facilitate various cases concerned
327  * with "containment". If asked to look through an object, the caller had
328  * better pass a Jsonb String, because their keys can only be strings.
329  * Otherwise, for an array, any type of JsonbValue will do.
330  *
331  * In order to proceed with the search, it is necessary for callers to have
332  * both specified an interest in exactly one particular container type with an
333  * appropriate flag, as well as having the pointed-to Jsonb container be of
334  * one of those same container types at the top level. (Actually, we just do
335  * whichever makes sense to save callers the trouble of figuring it out - at
336  * most one can make sense, because the container either points to an array
337  * (possibly a "raw scalar" pseudo array) or an object.)
338  *
339  * Note that we can return a jbvBinary JsonbValue if this is called on an
340  * object, but we never do so on an array. If the caller asks to look through
341  * a container type that is not of the type pointed to by the container,
342  * immediately fall through and return NULL. If we cannot find the value,
343  * return NULL. Otherwise, return palloc()'d copy of value.
344  */
345 JsonbValue *
347  JsonbValue *key)
348 {
349  JEntry *children = container->children;
350  int count = JsonContainerSize(container);
351 
352  Assert((flags & ~(JB_FARRAY | JB_FOBJECT)) == 0);
353 
354  /* Quick out without a palloc cycle if object/array is empty */
355  if (count <= 0)
356  return NULL;
357 
358  if ((flags & JB_FARRAY) && JsonContainerIsArray(container))
359  {
360  JsonbValue *result = palloc(sizeof(JsonbValue));
361  char *base_addr = (char *) (children + count);
362  uint32 offset = 0;
363  int i;
364 
365  for (i = 0; i < count; i++)
366  {
367  fillJsonbValue(container, i, base_addr, offset, result);
368 
369  if (key->type == result->type)
370  {
371  if (equalsJsonbScalarValue(key, result))
372  return result;
373  }
374 
375  JBE_ADVANCE_OFFSET(offset, children[i]);
376  }
377 
378  pfree(result);
379  }
380  else if ((flags & JB_FOBJECT) && JsonContainerIsObject(container))
381  {
382  /* Object key passed by caller must be a string */
383  Assert(key->type == jbvString);
384 
385  return getKeyJsonValueFromContainer(container, key->val.string.val,
386  key->val.string.len, NULL);
387  }
388 
389  /* Not found */
390  return NULL;
391 }
392 
393 /*
394  * Find value by key in Jsonb object and fetch it into 'res', which is also
395  * returned.
396  *
397  * 'res' can be passed in as NULL, in which case it's newly palloc'ed here.
398  */
399 JsonbValue *
401  const char *keyVal, int keyLen, JsonbValue *res)
402 {
403  JEntry *children = container->children;
404  int count = JsonContainerSize(container);
405  char *baseAddr;
406  uint32 stopLow,
407  stopHigh;
408 
409  Assert(JsonContainerIsObject(container));
410 
411  /* Quick out without a palloc cycle if object is empty */
412  if (count <= 0)
413  return NULL;
414 
415  /*
416  * Binary search the container. Since we know this is an object, account
417  * for *Pairs* of Jentrys
418  */
419  baseAddr = (char *) (children + count * 2);
420  stopLow = 0;
421  stopHigh = count;
422  while (stopLow < stopHigh)
423  {
424  uint32 stopMiddle;
425  int difference;
426  const char *candidateVal;
427  int candidateLen;
428 
429  stopMiddle = stopLow + (stopHigh - stopLow) / 2;
430 
431  candidateVal = baseAddr + getJsonbOffset(container, stopMiddle);
432  candidateLen = getJsonbLength(container, stopMiddle);
433 
434  difference = lengthCompareJsonbString(candidateVal, candidateLen,
435  keyVal, keyLen);
436 
437  if (difference == 0)
438  {
439  /* Found our key, return corresponding value */
440  int index = stopMiddle + count;
441 
442  if (!res)
443  res = palloc(sizeof(JsonbValue));
444 
445  fillJsonbValue(container, index, baseAddr,
446  getJsonbOffset(container, index),
447  res);
448 
449  return res;
450  }
451  else
452  {
453  if (difference < 0)
454  stopLow = stopMiddle + 1;
455  else
456  stopHigh = stopMiddle;
457  }
458  }
459 
460  /* Not found */
461  return NULL;
462 }
463 
464 /*
465  * Get i-th value of a Jsonb array.
466  *
467  * Returns palloc()'d copy of the value, or NULL if it does not exist.
468  */
469 JsonbValue *
471 {
472  JsonbValue *result;
473  char *base_addr;
474  uint32 nelements;
475 
476  if (!JsonContainerIsArray(container))
477  elog(ERROR, "not a jsonb array");
478 
479  nelements = JsonContainerSize(container);
480  base_addr = (char *) &container->children[nelements];
481 
482  if (i >= nelements)
483  return NULL;
484 
485  result = palloc(sizeof(JsonbValue));
486 
487  fillJsonbValue(container, i, base_addr,
488  getJsonbOffset(container, i),
489  result);
490 
491  return result;
492 }
493 
494 /*
495  * A helper function to fill in a JsonbValue to represent an element of an
496  * array, or a key or value of an object.
497  *
498  * The node's JEntry is at container->children[index], and its variable-length
499  * data is at base_addr + offset. We make the caller determine the offset
500  * since in many cases the caller can amortize that work across multiple
501  * children. When it can't, it can just call getJsonbOffset().
502  *
503  * A nested array or object will be returned as jbvBinary, ie. it won't be
504  * expanded.
505  */
506 static void
508  char *base_addr, uint32 offset,
509  JsonbValue *result)
510 {
511  JEntry entry = container->children[index];
512 
513  if (JBE_ISNULL(entry))
514  {
515  result->type = jbvNull;
516  }
517  else if (JBE_ISSTRING(entry))
518  {
519  result->type = jbvString;
520  result->val.string.val = base_addr + offset;
521  result->val.string.len = getJsonbLength(container, index);
522  Assert(result->val.string.len >= 0);
523  }
524  else if (JBE_ISNUMERIC(entry))
525  {
526  result->type = jbvNumeric;
527  result->val.numeric = (Numeric) (base_addr + INTALIGN(offset));
528  }
529  else if (JBE_ISBOOL_TRUE(entry))
530  {
531  result->type = jbvBool;
532  result->val.boolean = true;
533  }
534  else if (JBE_ISBOOL_FALSE(entry))
535  {
536  result->type = jbvBool;
537  result->val.boolean = false;
538  }
539  else
540  {
541  Assert(JBE_ISCONTAINER(entry));
542  result->type = jbvBinary;
543  /* Remove alignment padding from data pointer and length */
544  result->val.binary.data = (JsonbContainer *) (base_addr + INTALIGN(offset));
545  result->val.binary.len = getJsonbLength(container, index) -
546  (INTALIGN(offset) - offset);
547  }
548 }
549 
550 /*
551  * Push JsonbValue into JsonbParseState.
552  *
553  * Used when parsing JSON tokens to form Jsonb, or when converting an in-memory
554  * JsonbValue to a Jsonb.
555  *
556  * Initial state of *JsonbParseState is NULL, since it'll be allocated here
557  * originally (caller will get JsonbParseState back by reference).
558  *
559  * Only sequential tokens pertaining to non-container types should pass a
560  * JsonbValue. There is one exception -- WJB_BEGIN_ARRAY callers may pass a
561  * "raw scalar" pseudo array to append it - the actual scalar should be passed
562  * next and it will be added as the only member of the array.
563  *
564  * Values of type jbvBinary, which are rolled up arrays and objects,
565  * are unpacked before being added to the result.
566  */
567 JsonbValue *
569  JsonbValue *jbval)
570 {
571  JsonbIterator *it;
572  JsonbValue *res = NULL;
573  JsonbValue v;
574  JsonbIteratorToken tok;
575  int i;
576 
577  if (jbval && (seq == WJB_ELEM || seq == WJB_VALUE) && jbval->type == jbvObject)
578  {
579  pushJsonbValue(pstate, WJB_BEGIN_OBJECT, NULL);
580  for (i = 0; i < jbval->val.object.nPairs; i++)
581  {
582  pushJsonbValue(pstate, WJB_KEY, &jbval->val.object.pairs[i].key);
583  pushJsonbValue(pstate, WJB_VALUE, &jbval->val.object.pairs[i].value);
584  }
585 
586  return pushJsonbValue(pstate, WJB_END_OBJECT, NULL);
587  }
588 
589  if (jbval && (seq == WJB_ELEM || seq == WJB_VALUE) && jbval->type == jbvArray)
590  {
591  pushJsonbValue(pstate, WJB_BEGIN_ARRAY, NULL);
592  for (i = 0; i < jbval->val.array.nElems; i++)
593  {
594  pushJsonbValue(pstate, WJB_ELEM, &jbval->val.array.elems[i]);
595  }
596 
597  return pushJsonbValue(pstate, WJB_END_ARRAY, NULL);
598  }
599 
600  if (!jbval || (seq != WJB_ELEM && seq != WJB_VALUE) ||
601  jbval->type != jbvBinary)
602  {
603  /* drop through */
604  return pushJsonbValueScalar(pstate, seq, jbval);
605  }
606 
607  /* unpack the binary and add each piece to the pstate */
608  it = JsonbIteratorInit(jbval->val.binary.data);
609 
610  if ((jbval->val.binary.data->header & JB_FSCALAR) && *pstate)
611  {
612  tok = JsonbIteratorNext(&it, &v, true);
613  Assert(tok == WJB_BEGIN_ARRAY);
614  Assert(v.type == jbvArray && v.val.array.rawScalar);
615 
616  tok = JsonbIteratorNext(&it, &v, true);
617  Assert(tok == WJB_ELEM);
618 
619  res = pushJsonbValueScalar(pstate, seq, &v);
620 
621  tok = JsonbIteratorNext(&it, &v, true);
622  Assert(tok == WJB_END_ARRAY);
623  Assert(it == NULL);
624 
625  return res;
626  }
627 
628  while ((tok = JsonbIteratorNext(&it, &v, false)) != WJB_DONE)
629  res = pushJsonbValueScalar(pstate, tok,
630  tok < WJB_BEGIN_ARRAY ||
631  (tok == WJB_BEGIN_ARRAY &&
632  v.val.array.rawScalar) ? &v : NULL);
633 
634  return res;
635 }
636 
637 /*
638  * Do the actual pushing, with only scalar or pseudo-scalar-array values
639  * accepted.
640  */
641 static JsonbValue *
643  JsonbValue *scalarVal)
644 {
645  JsonbValue *result = NULL;
646 
647  switch (seq)
648  {
649  case WJB_BEGIN_ARRAY:
650  Assert(!scalarVal || scalarVal->val.array.rawScalar);
651  *pstate = pushState(pstate);
652  result = &(*pstate)->contVal;
653  (*pstate)->contVal.type = jbvArray;
654  (*pstate)->contVal.val.array.nElems = 0;
655  (*pstate)->contVal.val.array.rawScalar = (scalarVal &&
656  scalarVal->val.array.rawScalar);
657  if (scalarVal && scalarVal->val.array.nElems > 0)
658  {
659  /* Assume that this array is still really a scalar */
660  Assert(scalarVal->type == jbvArray);
661  (*pstate)->size = scalarVal->val.array.nElems;
662  }
663  else
664  {
665  (*pstate)->size = 4;
666  }
667  (*pstate)->contVal.val.array.elems = palloc(sizeof(JsonbValue) *
668  (*pstate)->size);
669  break;
670  case WJB_BEGIN_OBJECT:
671  Assert(!scalarVal);
672  *pstate = pushState(pstate);
673  result = &(*pstate)->contVal;
674  (*pstate)->contVal.type = jbvObject;
675  (*pstate)->contVal.val.object.nPairs = 0;
676  (*pstate)->size = 4;
677  (*pstate)->contVal.val.object.pairs = palloc(sizeof(JsonbPair) *
678  (*pstate)->size);
679  break;
680  case WJB_KEY:
681  Assert(scalarVal->type == jbvString);
682  appendKey(*pstate, scalarVal);
683  break;
684  case WJB_VALUE:
685  Assert(IsAJsonbScalar(scalarVal));
686  appendValue(*pstate, scalarVal);
687  break;
688  case WJB_ELEM:
689  Assert(IsAJsonbScalar(scalarVal));
690  appendElement(*pstate, scalarVal);
691  break;
692  case WJB_END_OBJECT:
693  uniqueifyJsonbObject(&(*pstate)->contVal,
694  (*pstate)->unique_keys,
695  (*pstate)->skip_nulls);
696  /* fall through! */
697  case WJB_END_ARRAY:
698  /* Steps here common to WJB_END_OBJECT case */
699  Assert(!scalarVal);
700  result = &(*pstate)->contVal;
701 
702  /*
703  * Pop stack and push current array/object as value in parent
704  * array/object
705  */
706  *pstate = (*pstate)->next;
707  if (*pstate)
708  {
709  switch ((*pstate)->contVal.type)
710  {
711  case jbvArray:
712  appendElement(*pstate, result);
713  break;
714  case jbvObject:
715  appendValue(*pstate, result);
716  break;
717  default:
718  elog(ERROR, "invalid jsonb container type");
719  }
720  }
721  break;
722  default:
723  elog(ERROR, "unrecognized jsonb sequential processing token");
724  }
725 
726  return result;
727 }
728 
729 /*
730  * pushJsonbValue() worker: Iteration-like forming of Jsonb
731  */
732 static JsonbParseState *
734 {
735  JsonbParseState *ns = palloc(sizeof(JsonbParseState));
736 
737  ns->next = *pstate;
738  ns->unique_keys = false;
739  ns->skip_nulls = false;
740 
741  return ns;
742 }
743 
744 /*
745  * pushJsonbValue() worker: Append a pair key to state when generating a Jsonb
746  */
747 static void
749 {
750  JsonbValue *object = &pstate->contVal;
751 
752  Assert(object->type == jbvObject);
753  Assert(string->type == jbvString);
754 
755  if (object->val.object.nPairs >= JSONB_MAX_PAIRS)
756  ereport(ERROR,
757  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
758  errmsg("number of jsonb object pairs exceeds the maximum allowed (%zu)",
759  JSONB_MAX_PAIRS)));
760 
761  if (object->val.object.nPairs >= pstate->size)
762  {
763  pstate->size *= 2;
764  object->val.object.pairs = repalloc(object->val.object.pairs,
765  sizeof(JsonbPair) * pstate->size);
766  }
767 
768  object->val.object.pairs[object->val.object.nPairs].key = *string;
769  object->val.object.pairs[object->val.object.nPairs].order = object->val.object.nPairs;
770 }
771 
772 /*
773  * pushJsonbValue() worker: Append a pair value to state when generating a
774  * Jsonb
775  */
776 static void
778 {
779  JsonbValue *object = &pstate->contVal;
780 
781  Assert(object->type == jbvObject);
782 
783  object->val.object.pairs[object->val.object.nPairs++].value = *scalarVal;
784 }
785 
786 /*
787  * pushJsonbValue() worker: Append an element to state when generating a Jsonb
788  */
789 static void
791 {
792  JsonbValue *array = &pstate->contVal;
793 
794  Assert(array->type == jbvArray);
795 
796  if (array->val.array.nElems >= JSONB_MAX_ELEMS)
797  ereport(ERROR,
798  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
799  errmsg("number of jsonb array elements exceeds the maximum allowed (%zu)",
800  JSONB_MAX_ELEMS)));
801 
802  if (array->val.array.nElems >= pstate->size)
803  {
804  pstate->size *= 2;
805  array->val.array.elems = repalloc(array->val.array.elems,
806  sizeof(JsonbValue) * pstate->size);
807  }
808 
809  array->val.array.elems[array->val.array.nElems++] = *scalarVal;
810 }
811 
812 /*
813  * Given a JsonbContainer, expand to JsonbIterator to iterate over items
814  * fully expanded to in-memory representation for manipulation.
815  *
816  * See JsonbIteratorNext() for notes on memory management.
817  */
820 {
821  return iteratorFromContainer(container, NULL);
822 }
823 
824 /*
825  * Get next JsonbValue while iterating
826  *
827  * Caller should initially pass their own, original iterator. They may get
828  * back a child iterator palloc()'d here instead. The function can be relied
829  * on to free those child iterators, lest the memory allocated for highly
830  * nested objects become unreasonable, but only if callers don't end iteration
831  * early (by breaking upon having found something in a search, for example).
832  *
833  * Callers in such a scenario, that are particularly sensitive to leaking
834  * memory in a long-lived context may walk the ancestral tree from the final
835  * iterator we left them with to its oldest ancestor, pfree()ing as they go.
836  * They do not have to free any other memory previously allocated for iterators
837  * but not accessible as direct ancestors of the iterator they're last passed
838  * back.
839  *
840  * Returns "Jsonb sequential processing" token value. Iterator "state"
841  * reflects the current stage of the process in a less granular fashion, and is
842  * mostly used here to track things internally with respect to particular
843  * iterators.
844  *
845  * Clients of this function should not have to handle any jbvBinary values
846  * (since recursive calls will deal with this), provided skipNested is false.
847  * It is our job to expand the jbvBinary representation without bothering them
848  * with it. However, clients should not take it upon themselves to touch array
849  * or Object element/pair buffers, since their element/pair pointers are
850  * garbage. Also, *val will not be set when returning WJB_END_ARRAY or
851  * WJB_END_OBJECT, on the assumption that it's only useful to access values
852  * when recursing in.
853  */
856 {
857  if (*it == NULL)
858  return WJB_DONE;
859 
860  /*
861  * When stepping into a nested container, we jump back here to start
862  * processing the child. We will not recurse further in one call, because
863  * processing the child will always begin in JBI_ARRAY_START or
864  * JBI_OBJECT_START state.
865  */
866 recurse:
867  switch ((*it)->state)
868  {
869  case JBI_ARRAY_START:
870  /* Set v to array on first array call */
871  val->type = jbvArray;
872  val->val.array.nElems = (*it)->nElems;
873 
874  /*
875  * v->val.array.elems is not actually set, because we aren't doing
876  * a full conversion
877  */
878  val->val.array.rawScalar = (*it)->isScalar;
879  (*it)->curIndex = 0;
880  (*it)->curDataOffset = 0;
881  (*it)->curValueOffset = 0; /* not actually used */
882  /* Set state for next call */
883  (*it)->state = JBI_ARRAY_ELEM;
884  return WJB_BEGIN_ARRAY;
885 
886  case JBI_ARRAY_ELEM:
887  if ((*it)->curIndex >= (*it)->nElems)
888  {
889  /*
890  * All elements within array already processed. Report this
891  * to caller, and give it back original parent iterator (which
892  * independently tracks iteration progress at its level of
893  * nesting).
894  */
895  *it = freeAndGetParent(*it);
896  return WJB_END_ARRAY;
897  }
898 
899  fillJsonbValue((*it)->container, (*it)->curIndex,
900  (*it)->dataProper, (*it)->curDataOffset,
901  val);
902 
903  JBE_ADVANCE_OFFSET((*it)->curDataOffset,
904  (*it)->children[(*it)->curIndex]);
905  (*it)->curIndex++;
906 
907  if (!IsAJsonbScalar(val) && !skipNested)
908  {
909  /* Recurse into container. */
910  *it = iteratorFromContainer(val->val.binary.data, *it);
911  goto recurse;
912  }
913  else
914  {
915  /*
916  * Scalar item in array, or a container and caller didn't want
917  * us to recurse into it.
918  */
919  return WJB_ELEM;
920  }
921 
922  case JBI_OBJECT_START:
923  /* Set v to object on first object call */
924  val->type = jbvObject;
925  val->val.object.nPairs = (*it)->nElems;
926 
927  /*
928  * v->val.object.pairs is not actually set, because we aren't
929  * doing a full conversion
930  */
931  (*it)->curIndex = 0;
932  (*it)->curDataOffset = 0;
933  (*it)->curValueOffset = getJsonbOffset((*it)->container,
934  (*it)->nElems);
935  /* Set state for next call */
936  (*it)->state = JBI_OBJECT_KEY;
937  return WJB_BEGIN_OBJECT;
938 
939  case JBI_OBJECT_KEY:
940  if ((*it)->curIndex >= (*it)->nElems)
941  {
942  /*
943  * All pairs within object already processed. Report this to
944  * caller, and give it back original containing iterator
945  * (which independently tracks iteration progress at its level
946  * of nesting).
947  */
948  *it = freeAndGetParent(*it);
949  return WJB_END_OBJECT;
950  }
951  else
952  {
953  /* Return key of a key/value pair. */
954  fillJsonbValue((*it)->container, (*it)->curIndex,
955  (*it)->dataProper, (*it)->curDataOffset,
956  val);
957  if (val->type != jbvString)
958  elog(ERROR, "unexpected jsonb type as object key");
959 
960  /* Set state for next call */
961  (*it)->state = JBI_OBJECT_VALUE;
962  return WJB_KEY;
963  }
964 
965  case JBI_OBJECT_VALUE:
966  /* Set state for next call */
967  (*it)->state = JBI_OBJECT_KEY;
968 
969  fillJsonbValue((*it)->container, (*it)->curIndex + (*it)->nElems,
970  (*it)->dataProper, (*it)->curValueOffset,
971  val);
972 
973  JBE_ADVANCE_OFFSET((*it)->curDataOffset,
974  (*it)->children[(*it)->curIndex]);
975  JBE_ADVANCE_OFFSET((*it)->curValueOffset,
976  (*it)->children[(*it)->curIndex + (*it)->nElems]);
977  (*it)->curIndex++;
978 
979  /*
980  * Value may be a container, in which case we recurse with new,
981  * child iterator (unless the caller asked not to, by passing
982  * skipNested).
983  */
984  if (!IsAJsonbScalar(val) && !skipNested)
985  {
986  *it = iteratorFromContainer(val->val.binary.data, *it);
987  goto recurse;
988  }
989  else
990  return WJB_VALUE;
991  }
992 
993  elog(ERROR, "invalid iterator state");
994  return -1;
995 }
996 
997 /*
998  * Initialize an iterator for iterating all elements in a container.
999  */
1000 static JsonbIterator *
1002 {
1003  JsonbIterator *it;
1004 
1005  it = palloc0(sizeof(JsonbIterator));
1006  it->container = container;
1007  it->parent = parent;
1008  it->nElems = JsonContainerSize(container);
1009 
1010  /* Array starts just after header */
1011  it->children = container->children;
1012 
1013  switch (container->header & (JB_FARRAY | JB_FOBJECT))
1014  {
1015  case JB_FARRAY:
1016  it->dataProper =
1017  (char *) it->children + it->nElems * sizeof(JEntry);
1018  it->isScalar = JsonContainerIsScalar(container);
1019  /* This is either a "raw scalar", or an array */
1020  Assert(!it->isScalar || it->nElems == 1);
1021 
1022  it->state = JBI_ARRAY_START;
1023  break;
1024 
1025  case JB_FOBJECT:
1026  it->dataProper =
1027  (char *) it->children + it->nElems * sizeof(JEntry) * 2;
1028  it->state = JBI_OBJECT_START;
1029  break;
1030 
1031  default:
1032  elog(ERROR, "unknown type of jsonb container");
1033  }
1034 
1035  return it;
1036 }
1037 
1038 /*
1039  * JsonbIteratorNext() worker: Return parent, while freeing memory for current
1040  * iterator
1041  */
1042 static JsonbIterator *
1044 {
1045  JsonbIterator *v = it->parent;
1046 
1047  pfree(it);
1048  return v;
1049 }
1050 
1051 /*
1052  * Worker for "contains" operator's function
1053  *
1054  * Formally speaking, containment is top-down, unordered subtree isomorphism.
1055  *
1056  * Takes iterators that belong to some container type. These iterators
1057  * "belong" to those values in the sense that they've just been initialized in
1058  * respect of them by the caller (perhaps in a nested fashion).
1059  *
1060  * "val" is lhs Jsonb, and mContained is rhs Jsonb when called from top level.
1061  * We determine if mContained is contained within val.
1062  */
1063 bool
1065 {
1066  JsonbValue vval,
1067  vcontained;
1068  JsonbIteratorToken rval,
1069  rcont;
1070 
1071  /*
1072  * Guard against stack overflow due to overly complex Jsonb.
1073  *
1074  * Functions called here independently take this precaution, but that
1075  * might not be sufficient since this is also a recursive function.
1076  */
1078 
1079  rval = JsonbIteratorNext(val, &vval, false);
1080  rcont = JsonbIteratorNext(mContained, &vcontained, false);
1081 
1082  if (rval != rcont)
1083  {
1084  /*
1085  * The differing return values can immediately be taken as indicating
1086  * two differing container types at this nesting level, which is
1087  * sufficient reason to give up entirely (but it should be the case
1088  * that they're both some container type).
1089  */
1090  Assert(rval == WJB_BEGIN_OBJECT || rval == WJB_BEGIN_ARRAY);
1091  Assert(rcont == WJB_BEGIN_OBJECT || rcont == WJB_BEGIN_ARRAY);
1092  return false;
1093  }
1094  else if (rcont == WJB_BEGIN_OBJECT)
1095  {
1096  Assert(vval.type == jbvObject);
1097  Assert(vcontained.type == jbvObject);
1098 
1099  /*
1100  * If the lhs has fewer pairs than the rhs, it can't possibly contain
1101  * the rhs. (This conclusion is safe only because we de-duplicate
1102  * keys in all Jsonb objects; thus there can be no corresponding
1103  * optimization in the array case.) The case probably won't arise
1104  * often, but since it's such a cheap check we may as well make it.
1105  */
1106  if (vval.val.object.nPairs < vcontained.val.object.nPairs)
1107  return false;
1108 
1109  /* Work through rhs "is it contained within?" object */
1110  for (;;)
1111  {
1112  JsonbValue *lhsVal; /* lhsVal is from pair in lhs object */
1113  JsonbValue lhsValBuf;
1114 
1115  rcont = JsonbIteratorNext(mContained, &vcontained, false);
1116 
1117  /*
1118  * When we get through caller's rhs "is it contained within?"
1119  * object without failing to find one of its values, it's
1120  * contained.
1121  */
1122  if (rcont == WJB_END_OBJECT)
1123  return true;
1124 
1125  Assert(rcont == WJB_KEY);
1126  Assert(vcontained.type == jbvString);
1127 
1128  /* First, find value by key... */
1129  lhsVal =
1130  getKeyJsonValueFromContainer((*val)->container,
1131  vcontained.val.string.val,
1132  vcontained.val.string.len,
1133  &lhsValBuf);
1134  if (!lhsVal)
1135  return false;
1136 
1137  /*
1138  * ...at this stage it is apparent that there is at least a key
1139  * match for this rhs pair.
1140  */
1141  rcont = JsonbIteratorNext(mContained, &vcontained, true);
1142 
1143  Assert(rcont == WJB_VALUE);
1144 
1145  /*
1146  * Compare rhs pair's value with lhs pair's value just found using
1147  * key
1148  */
1149  if (lhsVal->type != vcontained.type)
1150  {
1151  return false;
1152  }
1153  else if (IsAJsonbScalar(lhsVal))
1154  {
1155  if (!equalsJsonbScalarValue(lhsVal, &vcontained))
1156  return false;
1157  }
1158  else
1159  {
1160  /* Nested container value (object or array) */
1161  JsonbIterator *nestval,
1162  *nestContained;
1163 
1164  Assert(lhsVal->type == jbvBinary);
1165  Assert(vcontained.type == jbvBinary);
1166 
1167  nestval = JsonbIteratorInit(lhsVal->val.binary.data);
1168  nestContained = JsonbIteratorInit(vcontained.val.binary.data);
1169 
1170  /*
1171  * Match "value" side of rhs datum object's pair recursively.
1172  * It's a nested structure.
1173  *
1174  * Note that nesting still has to "match up" at the right
1175  * nesting sub-levels. However, there need only be zero or
1176  * more matching pairs (or elements) at each nesting level
1177  * (provided the *rhs* pairs/elements *all* match on each
1178  * level), which enables searching nested structures for a
1179  * single String or other primitive type sub-datum quite
1180  * effectively (provided the user constructed the rhs nested
1181  * structure such that we "know where to look").
1182  *
1183  * In other words, the mapping of container nodes in the rhs
1184  * "vcontained" Jsonb to internal nodes on the lhs is
1185  * injective, and parent-child edges on the rhs must be mapped
1186  * to parent-child edges on the lhs to satisfy the condition
1187  * of containment (plus of course the mapped nodes must be
1188  * equal).
1189  */
1190  if (!JsonbDeepContains(&nestval, &nestContained))
1191  return false;
1192  }
1193  }
1194  }
1195  else if (rcont == WJB_BEGIN_ARRAY)
1196  {
1197  JsonbValue *lhsConts = NULL;
1198  uint32 nLhsElems = vval.val.array.nElems;
1199 
1200  Assert(vval.type == jbvArray);
1201  Assert(vcontained.type == jbvArray);
1202 
1203  /*
1204  * Handle distinction between "raw scalar" pseudo arrays, and real
1205  * arrays.
1206  *
1207  * A raw scalar may contain another raw scalar, and an array may
1208  * contain a raw scalar, but a raw scalar may not contain an array. We
1209  * don't do something like this for the object case, since objects can
1210  * only contain pairs, never raw scalars (a pair is represented by an
1211  * rhs object argument with a single contained pair).
1212  */
1213  if (vval.val.array.rawScalar && !vcontained.val.array.rawScalar)
1214  return false;
1215 
1216  /* Work through rhs "is it contained within?" array */
1217  for (;;)
1218  {
1219  rcont = JsonbIteratorNext(mContained, &vcontained, true);
1220 
1221  /*
1222  * When we get through caller's rhs "is it contained within?"
1223  * array without failing to find one of its values, it's
1224  * contained.
1225  */
1226  if (rcont == WJB_END_ARRAY)
1227  return true;
1228 
1229  Assert(rcont == WJB_ELEM);
1230 
1231  if (IsAJsonbScalar(&vcontained))
1232  {
1233  if (!findJsonbValueFromContainer((*val)->container,
1234  JB_FARRAY,
1235  &vcontained))
1236  return false;
1237  }
1238  else
1239  {
1240  uint32 i;
1241 
1242  /*
1243  * If this is first container found in rhs array (at this
1244  * depth), initialize temp lhs array of containers
1245  */
1246  if (lhsConts == NULL)
1247  {
1248  uint32 j = 0;
1249 
1250  /* Make room for all possible values */
1251  lhsConts = palloc(sizeof(JsonbValue) * nLhsElems);
1252 
1253  for (i = 0; i < nLhsElems; i++)
1254  {
1255  /* Store all lhs elements in temp array */
1256  rcont = JsonbIteratorNext(val, &vval, true);
1257  Assert(rcont == WJB_ELEM);
1258 
1259  if (vval.type == jbvBinary)
1260  lhsConts[j++] = vval;
1261  }
1262 
1263  /* No container elements in temp array, so give up now */
1264  if (j == 0)
1265  return false;
1266 
1267  /* We may have only partially filled array */
1268  nLhsElems = j;
1269  }
1270 
1271  /* XXX: Nested array containment is O(N^2) */
1272  for (i = 0; i < nLhsElems; i++)
1273  {
1274  /* Nested container value (object or array) */
1275  JsonbIterator *nestval,
1276  *nestContained;
1277  bool contains;
1278 
1279  nestval = JsonbIteratorInit(lhsConts[i].val.binary.data);
1280  nestContained = JsonbIteratorInit(vcontained.val.binary.data);
1281 
1282  contains = JsonbDeepContains(&nestval, &nestContained);
1283 
1284  if (nestval)
1285  pfree(nestval);
1286  if (nestContained)
1287  pfree(nestContained);
1288  if (contains)
1289  break;
1290  }
1291 
1292  /*
1293  * Report rhs container value is not contained if couldn't
1294  * match rhs container to *some* lhs cont
1295  */
1296  if (i == nLhsElems)
1297  return false;
1298  }
1299  }
1300  }
1301  else
1302  {
1303  elog(ERROR, "invalid jsonb container type");
1304  }
1305 
1306  elog(ERROR, "unexpectedly fell off end of jsonb container");
1307  return false;
1308 }
1309 
1310 /*
1311  * Hash a JsonbValue scalar value, mixing the hash value into an existing
1312  * hash provided by the caller.
1313  *
1314  * Some callers may wish to independently XOR in JB_FOBJECT and JB_FARRAY
1315  * flags.
1316  */
1317 void
1319 {
1320  uint32 tmp;
1321 
1322  /* Compute hash value for scalarVal */
1323  switch (scalarVal->type)
1324  {
1325  case jbvNull:
1326  tmp = 0x01;
1327  break;
1328  case jbvString:
1329  tmp = DatumGetUInt32(hash_any((const unsigned char *) scalarVal->val.string.val,
1330  scalarVal->val.string.len));
1331  break;
1332  case jbvNumeric:
1333  /* Must hash equal numerics to equal hash codes */
1335  NumericGetDatum(scalarVal->val.numeric)));
1336  break;
1337  case jbvBool:
1338  tmp = scalarVal->val.boolean ? 0x02 : 0x04;
1339 
1340  break;
1341  default:
1342  elog(ERROR, "invalid jsonb scalar type");
1343  tmp = 0; /* keep compiler quiet */
1344  break;
1345  }
1346 
1347  /*
1348  * Combine hash values of successive keys, values and elements by rotating
1349  * the previous value left 1 bit, then XOR'ing in the new
1350  * key/value/element's hash value.
1351  */
1352  *hash = pg_rotate_left32(*hash, 1);
1353  *hash ^= tmp;
1354 }
1355 
1356 /*
1357  * Hash a value to a 64-bit value, with a seed. Otherwise, similar to
1358  * JsonbHashScalarValue.
1359  */
1360 void
1362  uint64 seed)
1363 {
1364  uint64 tmp;
1365 
1366  switch (scalarVal->type)
1367  {
1368  case jbvNull:
1369  tmp = seed + 0x01;
1370  break;
1371  case jbvString:
1372  tmp = DatumGetUInt64(hash_any_extended((const unsigned char *) scalarVal->val.string.val,
1373  scalarVal->val.string.len,
1374  seed));
1375  break;
1376  case jbvNumeric:
1378  NumericGetDatum(scalarVal->val.numeric),
1379  UInt64GetDatum(seed)));
1380  break;
1381  case jbvBool:
1382  if (seed)
1384  BoolGetDatum(scalarVal->val.boolean),
1385  UInt64GetDatum(seed)));
1386  else
1387  tmp = scalarVal->val.boolean ? 0x02 : 0x04;
1388 
1389  break;
1390  default:
1391  elog(ERROR, "invalid jsonb scalar type");
1392  break;
1393  }
1394 
1396  *hash ^= tmp;
1397 }
1398 
1399 /*
1400  * Are two scalar JsonbValues of the same type a and b equal?
1401  */
1402 static bool
1404 {
1405  if (a->type == b->type)
1406  {
1407  switch (a->type)
1408  {
1409  case jbvNull:
1410  return true;
1411  case jbvString:
1412  return lengthCompareJsonbStringValue(a, b) == 0;
1413  case jbvNumeric:
1415  PointerGetDatum(a->val.numeric),
1416  PointerGetDatum(b->val.numeric)));
1417  case jbvBool:
1418  return a->val.boolean == b->val.boolean;
1419 
1420  default:
1421  elog(ERROR, "invalid jsonb scalar type");
1422  }
1423  }
1424  elog(ERROR, "jsonb scalar type mismatch");
1425  return false;
1426 }
1427 
1428 /*
1429  * Compare two scalar JsonbValues, returning -1, 0, or 1.
1430  *
1431  * Strings are compared using the default collation. Used by B-tree
1432  * operators, where a lexical sort order is generally expected.
1433  */
1434 static int
1436 {
1437  if (a->type == b->type)
1438  {
1439  switch (a->type)
1440  {
1441  case jbvNull:
1442  return 0;
1443  case jbvString:
1444  return varstr_cmp(a->val.string.val,
1445  a->val.string.len,
1446  b->val.string.val,
1447  b->val.string.len,
1448  DEFAULT_COLLATION_OID);
1449  case jbvNumeric:
1451  PointerGetDatum(a->val.numeric),
1452  PointerGetDatum(b->val.numeric)));
1453  case jbvBool:
1454  if (a->val.boolean == b->val.boolean)
1455  return 0;
1456  else if (a->val.boolean > b->val.boolean)
1457  return 1;
1458  else
1459  return -1;
1460  default:
1461  elog(ERROR, "invalid jsonb scalar type");
1462  }
1463  }
1464  elog(ERROR, "jsonb scalar type mismatch");
1465  return -1;
1466 }
1467 
1468 
1469 /*
1470  * Functions for manipulating the resizable buffer used by convertJsonb and
1471  * its subroutines.
1472  */
1473 
1474 /*
1475  * Reserve 'len' bytes, at the end of the buffer, enlarging it if necessary.
1476  * Returns the offset to the reserved area. The caller is expected to fill
1477  * the reserved area later with copyToBuffer().
1478  */
1479 static int
1481 {
1482  int offset;
1483 
1484  /* Make more room if needed */
1485  enlargeStringInfo(buffer, len);
1486 
1487  /* remember current offset */
1488  offset = buffer->len;
1489 
1490  /* reserve the space */
1491  buffer->len += len;
1492 
1493  /*
1494  * Keep a trailing null in place, even though it's not useful for us; it
1495  * seems best to preserve the invariants of StringInfos.
1496  */
1497  buffer->data[buffer->len] = '\0';
1498 
1499  return offset;
1500 }
1501 
1502 /*
1503  * Copy 'len' bytes to a previously reserved area in buffer.
1504  */
1505 static void
1506 copyToBuffer(StringInfo buffer, int offset, const char *data, int len)
1507 {
1508  memcpy(buffer->data + offset, data, len);
1509 }
1510 
1511 /*
1512  * A shorthand for reserveFromBuffer + copyToBuffer.
1513  */
1514 static void
1515 appendToBuffer(StringInfo buffer, const char *data, int len)
1516 {
1517  int offset;
1518 
1519  offset = reserveFromBuffer(buffer, len);
1520  copyToBuffer(buffer, offset, data, len);
1521 }
1522 
1523 
1524 /*
1525  * Append padding, so that the length of the StringInfo is int-aligned.
1526  * Returns the number of padding bytes appended.
1527  */
1528 static short
1530 {
1531  int padlen,
1532  p,
1533  offset;
1534 
1535  padlen = INTALIGN(buffer->len) - buffer->len;
1536 
1537  offset = reserveFromBuffer(buffer, padlen);
1538 
1539  /* padlen must be small, so this is probably faster than a memset */
1540  for (p = 0; p < padlen; p++)
1541  buffer->data[offset + p] = '\0';
1542 
1543  return padlen;
1544 }
1545 
1546 /*
1547  * Given a JsonbValue, convert to Jsonb. The result is palloc'd.
1548  */
1549 static Jsonb *
1551 {
1552  StringInfoData buffer;
1553  JEntry jentry;
1554  Jsonb *res;
1555 
1556  /* Should not already have binary representation */
1557  Assert(val->type != jbvBinary);
1558 
1559  /* Allocate an output buffer. It will be enlarged as needed */
1560  initStringInfo(&buffer);
1561 
1562  /* Make room for the varlena header */
1563  reserveFromBuffer(&buffer, VARHDRSZ);
1564 
1565  convertJsonbValue(&buffer, &jentry, val, 0);
1566 
1567  /*
1568  * Note: the JEntry of the root is discarded. Therefore the root
1569  * JsonbContainer struct must contain enough information to tell what kind
1570  * of value it is.
1571  */
1572 
1573  res = (Jsonb *) buffer.data;
1574 
1575  SET_VARSIZE(res, buffer.len);
1576 
1577  return res;
1578 }
1579 
1580 /*
1581  * Subroutine of convertJsonb: serialize a single JsonbValue into buffer.
1582  *
1583  * The JEntry header for this node is returned in *header. It is filled in
1584  * with the length of this value and appropriate type bits. If we wish to
1585  * store an end offset rather than a length, it is the caller's responsibility
1586  * to adjust for that.
1587  *
1588  * If the value is an array or an object, this recurses. 'level' is only used
1589  * for debugging purposes.
1590  */
1591 static void
1592 convertJsonbValue(StringInfo buffer, JEntry *header, JsonbValue *val, int level)
1593 {
1595 
1596  if (!val)
1597  return;
1598 
1599  /*
1600  * A JsonbValue passed as val should never have a type of jbvBinary, and
1601  * neither should any of its sub-components. Those values will be produced
1602  * by convertJsonbArray and convertJsonbObject, the results of which will
1603  * not be passed back to this function as an argument.
1604  */
1605 
1606  if (IsAJsonbScalar(val))
1607  convertJsonbScalar(buffer, header, val);
1608  else if (val->type == jbvArray)
1609  convertJsonbArray(buffer, header, val, level);
1610  else if (val->type == jbvObject)
1611  convertJsonbObject(buffer, header, val, level);
1612  else
1613  elog(ERROR, "unknown type of jsonb container to convert");
1614 }
1615 
1616 static void
1617 convertJsonbArray(StringInfo buffer, JEntry *header, JsonbValue *val, int level)
1618 {
1619  int base_offset;
1620  int jentry_offset;
1621  int i;
1622  int totallen;
1623  uint32 containerhead;
1624  int nElems = val->val.array.nElems;
1625 
1626  /* Remember where in the buffer this array starts. */
1627  base_offset = buffer->len;
1628 
1629  /* Align to 4-byte boundary (any padding counts as part of my data) */
1630  padBufferToInt(buffer);
1631 
1632  /*
1633  * Construct the header Jentry and store it in the beginning of the
1634  * variable-length payload.
1635  */
1636  containerhead = nElems | JB_FARRAY;
1637  if (val->val.array.rawScalar)
1638  {
1639  Assert(nElems == 1);
1640  Assert(level == 0);
1641  containerhead |= JB_FSCALAR;
1642  }
1643 
1644  appendToBuffer(buffer, (char *) &containerhead, sizeof(uint32));
1645 
1646  /* Reserve space for the JEntries of the elements. */
1647  jentry_offset = reserveFromBuffer(buffer, sizeof(JEntry) * nElems);
1648 
1649  totallen = 0;
1650  for (i = 0; i < nElems; i++)
1651  {
1652  JsonbValue *elem = &val->val.array.elems[i];
1653  int len;
1654  JEntry meta;
1655 
1656  /*
1657  * Convert element, producing a JEntry and appending its
1658  * variable-length data to buffer
1659  */
1660  convertJsonbValue(buffer, &meta, elem, level + 1);
1661 
1662  len = JBE_OFFLENFLD(meta);
1663  totallen += len;
1664 
1665  /*
1666  * Bail out if total variable-length data exceeds what will fit in a
1667  * JEntry length field. We check this in each iteration, not just
1668  * once at the end, to forestall possible integer overflow.
1669  */
1670  if (totallen > JENTRY_OFFLENMASK)
1671  ereport(ERROR,
1672  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1673  errmsg("total size of jsonb array elements exceeds the maximum of %d bytes",
1674  JENTRY_OFFLENMASK)));
1675 
1676  /*
1677  * Convert each JB_OFFSET_STRIDE'th length to an offset.
1678  */
1679  if ((i % JB_OFFSET_STRIDE) == 0)
1680  meta = (meta & JENTRY_TYPEMASK) | totallen | JENTRY_HAS_OFF;
1681 
1682  copyToBuffer(buffer, jentry_offset, (char *) &meta, sizeof(JEntry));
1683  jentry_offset += sizeof(JEntry);
1684  }
1685 
1686  /* Total data size is everything we've appended to buffer */
1687  totallen = buffer->len - base_offset;
1688 
1689  /* Check length again, since we didn't include the metadata above */
1690  if (totallen > JENTRY_OFFLENMASK)
1691  ereport(ERROR,
1692  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1693  errmsg("total size of jsonb array elements exceeds the maximum of %d bytes",
1694  JENTRY_OFFLENMASK)));
1695 
1696  /* Initialize the header of this node in the container's JEntry array */
1697  *header = JENTRY_ISCONTAINER | totallen;
1698 }
1699 
1700 static void
1701 convertJsonbObject(StringInfo buffer, JEntry *header, JsonbValue *val, int level)
1702 {
1703  int base_offset;
1704  int jentry_offset;
1705  int i;
1706  int totallen;
1707  uint32 containerheader;
1708  int nPairs = val->val.object.nPairs;
1709 
1710  /* Remember where in the buffer this object starts. */
1711  base_offset = buffer->len;
1712 
1713  /* Align to 4-byte boundary (any padding counts as part of my data) */
1714  padBufferToInt(buffer);
1715 
1716  /*
1717  * Construct the header Jentry and store it in the beginning of the
1718  * variable-length payload.
1719  */
1720  containerheader = nPairs | JB_FOBJECT;
1721  appendToBuffer(buffer, (char *) &containerheader, sizeof(uint32));
1722 
1723  /* Reserve space for the JEntries of the keys and values. */
1724  jentry_offset = reserveFromBuffer(buffer, sizeof(JEntry) * nPairs * 2);
1725 
1726  /*
1727  * Iterate over the keys, then over the values, since that is the ordering
1728  * we want in the on-disk representation.
1729  */
1730  totallen = 0;
1731  for (i = 0; i < nPairs; i++)
1732  {
1733  JsonbPair *pair = &val->val.object.pairs[i];
1734  int len;
1735  JEntry meta;
1736 
1737  /*
1738  * Convert key, producing a JEntry and appending its variable-length
1739  * data to buffer
1740  */
1741  convertJsonbScalar(buffer, &meta, &pair->key);
1742 
1743  len = JBE_OFFLENFLD(meta);
1744  totallen += len;
1745 
1746  /*
1747  * Bail out if total variable-length data exceeds what will fit in a
1748  * JEntry length field. We check this in each iteration, not just
1749  * once at the end, to forestall possible integer overflow.
1750  */
1751  if (totallen > JENTRY_OFFLENMASK)
1752  ereport(ERROR,
1753  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1754  errmsg("total size of jsonb object elements exceeds the maximum of %d bytes",
1755  JENTRY_OFFLENMASK)));
1756 
1757  /*
1758  * Convert each JB_OFFSET_STRIDE'th length to an offset.
1759  */
1760  if ((i % JB_OFFSET_STRIDE) == 0)
1761  meta = (meta & JENTRY_TYPEMASK) | totallen | JENTRY_HAS_OFF;
1762 
1763  copyToBuffer(buffer, jentry_offset, (char *) &meta, sizeof(JEntry));
1764  jentry_offset += sizeof(JEntry);
1765  }
1766  for (i = 0; i < nPairs; i++)
1767  {
1768  JsonbPair *pair = &val->val.object.pairs[i];
1769  int len;
1770  JEntry meta;
1771 
1772  /*
1773  * Convert value, producing a JEntry and appending its variable-length
1774  * data to buffer
1775  */
1776  convertJsonbValue(buffer, &meta, &pair->value, level + 1);
1777 
1778  len = JBE_OFFLENFLD(meta);
1779  totallen += len;
1780 
1781  /*
1782  * Bail out if total variable-length data exceeds what will fit in a
1783  * JEntry length field. We check this in each iteration, not just
1784  * once at the end, to forestall possible integer overflow.
1785  */
1786  if (totallen > JENTRY_OFFLENMASK)
1787  ereport(ERROR,
1788  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1789  errmsg("total size of jsonb object elements exceeds the maximum of %d bytes",
1790  JENTRY_OFFLENMASK)));
1791 
1792  /*
1793  * Convert each JB_OFFSET_STRIDE'th length to an offset.
1794  */
1795  if (((i + nPairs) % JB_OFFSET_STRIDE) == 0)
1796  meta = (meta & JENTRY_TYPEMASK) | totallen | JENTRY_HAS_OFF;
1797 
1798  copyToBuffer(buffer, jentry_offset, (char *) &meta, sizeof(JEntry));
1799  jentry_offset += sizeof(JEntry);
1800  }
1801 
1802  /* Total data size is everything we've appended to buffer */
1803  totallen = buffer->len - base_offset;
1804 
1805  /* Check length again, since we didn't include the metadata above */
1806  if (totallen > JENTRY_OFFLENMASK)
1807  ereport(ERROR,
1808  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1809  errmsg("total size of jsonb object elements exceeds the maximum of %d bytes",
1810  JENTRY_OFFLENMASK)));
1811 
1812  /* Initialize the header of this node in the container's JEntry array */
1813  *header = JENTRY_ISCONTAINER | totallen;
1814 }
1815 
1816 static void
1817 convertJsonbScalar(StringInfo buffer, JEntry *header, JsonbValue *scalarVal)
1818 {
1819  int numlen;
1820  short padlen;
1821 
1822  switch (scalarVal->type)
1823  {
1824  case jbvNull:
1825  *header = JENTRY_ISNULL;
1826  break;
1827 
1828  case jbvString:
1829  appendToBuffer(buffer, scalarVal->val.string.val, scalarVal->val.string.len);
1830 
1831  *header = scalarVal->val.string.len;
1832  break;
1833 
1834  case jbvNumeric:
1835  numlen = VARSIZE_ANY(scalarVal->val.numeric);
1836  padlen = padBufferToInt(buffer);
1837 
1838  appendToBuffer(buffer, (char *) scalarVal->val.numeric, numlen);
1839 
1840  *header = JENTRY_ISNUMERIC | (padlen + numlen);
1841  break;
1842 
1843  case jbvBool:
1844  *header = (scalarVal->val.boolean) ?
1846  break;
1847 
1848  case jbvDatetime:
1849  {
1850  char buf[MAXDATELEN + 1];
1851  size_t len;
1852 
1854  scalarVal->val.datetime.value,
1855  scalarVal->val.datetime.typid,
1856  &scalarVal->val.datetime.tz);
1857  len = strlen(buf);
1858  appendToBuffer(buffer, buf, len);
1859 
1860  *header = len;
1861  }
1862  break;
1863 
1864  default:
1865  elog(ERROR, "invalid jsonb scalar type");
1866  }
1867 }
1868 
1869 /*
1870  * Compare two jbvString JsonbValue values, a and b.
1871  *
1872  * This is a special qsort() comparator used to sort strings in certain
1873  * internal contexts where it is sufficient to have a well-defined sort order.
1874  * In particular, object pair keys are sorted according to this criteria to
1875  * facilitate cheap binary searches where we don't care about lexical sort
1876  * order.
1877  *
1878  * a and b are first sorted based on their length. If a tie-breaker is
1879  * required, only then do we consider string binary equality.
1880  */
1881 static int
1882 lengthCompareJsonbStringValue(const void *a, const void *b)
1883 {
1884  const JsonbValue *va = (const JsonbValue *) a;
1885  const JsonbValue *vb = (const JsonbValue *) b;
1886 
1887  Assert(va->type == jbvString);
1888  Assert(vb->type == jbvString);
1889 
1890  return lengthCompareJsonbString(va->val.string.val, va->val.string.len,
1891  vb->val.string.val, vb->val.string.len);
1892 }
1893 
1894 /*
1895  * Subroutine for lengthCompareJsonbStringValue
1896  *
1897  * This is also useful separately to implement binary search on
1898  * JsonbContainers.
1899  */
1900 static int
1901 lengthCompareJsonbString(const char *val1, int len1, const char *val2, int len2)
1902 {
1903  if (len1 == len2)
1904  return memcmp(val1, val2, len1);
1905  else
1906  return len1 > len2 ? 1 : -1;
1907 }
1908 
1909 /*
1910  * qsort_arg() comparator to compare JsonbPair values.
1911  *
1912  * Third argument 'binequal' may point to a bool. If it's set, *binequal is set
1913  * to true iff a and b have full binary equality, since some callers have an
1914  * interest in whether the two values are equal or merely equivalent.
1915  *
1916  * N.B: String comparisons here are "length-wise"
1917  *
1918  * Pairs with equals keys are ordered such that the order field is respected.
1919  */
1920 static int
1921 lengthCompareJsonbPair(const void *a, const void *b, void *binequal)
1922 {
1923  const JsonbPair *pa = (const JsonbPair *) a;
1924  const JsonbPair *pb = (const JsonbPair *) b;
1925  int res;
1926 
1927  res = lengthCompareJsonbStringValue(&pa->key, &pb->key);
1928  if (res == 0 && binequal)
1929  *((bool *) binequal) = true;
1930 
1931  /*
1932  * Guarantee keeping order of equal pair. Unique algorithm will prefer
1933  * first element as value.
1934  */
1935  if (res == 0)
1936  res = (pa->order > pb->order) ? -1 : 1;
1937 
1938  return res;
1939 }
1940 
1941 /*
1942  * Sort and unique-ify pairs in JsonbValue object
1943  */
1944 static void
1945 uniqueifyJsonbObject(JsonbValue *object, bool unique_keys, bool skip_nulls)
1946 {
1947  bool hasNonUniq = false;
1948 
1949  Assert(object->type == jbvObject);
1950 
1951  if (object->val.object.nPairs > 1)
1952  qsort_arg(object->val.object.pairs, object->val.object.nPairs, sizeof(JsonbPair),
1953  lengthCompareJsonbPair, &hasNonUniq);
1954 
1955  if (hasNonUniq && unique_keys)
1956  ereport(ERROR,
1957  errcode(ERRCODE_DUPLICATE_JSON_OBJECT_KEY_VALUE),
1958  errmsg("duplicate JSON object key value"));
1959 
1960  if (hasNonUniq || skip_nulls)
1961  {
1962  JsonbPair *ptr,
1963  *res;
1964 
1965  while (skip_nulls && object->val.object.nPairs > 0 &&
1966  object->val.object.pairs->value.type == jbvNull)
1967  {
1968  /* If skip_nulls is true, remove leading items with null */
1969  object->val.object.pairs++;
1970  object->val.object.nPairs--;
1971  }
1972 
1973  if (object->val.object.nPairs > 0)
1974  {
1975  ptr = object->val.object.pairs + 1;
1976  res = object->val.object.pairs;
1977 
1978  while (ptr - object->val.object.pairs < object->val.object.nPairs)
1979  {
1980  /* Avoid copying over duplicate or null */
1981  if (lengthCompareJsonbStringValue(ptr, res) != 0 &&
1982  (!skip_nulls || ptr->value.type != jbvNull))
1983  {
1984  res++;
1985  if (ptr != res)
1986  memcpy(res, ptr, sizeof(JsonbPair));
1987  }
1988  ptr++;
1989  }
1990 
1991  object->val.object.nPairs = res + 1 - object->val.object.pairs;
1992  }
1993  }
1994 }
Datum hash_numeric(PG_FUNCTION_ARGS)
Definition: numeric.c:2696
Datum hash_numeric_extended(PG_FUNCTION_ARGS)
Definition: numeric.c:2776
Datum numeric_cmp(PG_FUNCTION_ARGS)
Definition: numeric.c:2398
Datum numeric_eq(PG_FUNCTION_ARGS)
Definition: numeric.c:2414
unsigned int uint32
Definition: c.h:495
#define INTALIGN(LEN)
Definition: c.h:797
#define VARHDRSZ
Definition: c.h:681
int errcode(int sqlerrcode)
Definition: elog.c:858
int errmsg(const char *fmt,...)
Definition: elog.c:1069
#define ERROR
Definition: elog.h:39
#define ereport(elevel,...)
Definition: elog.h:149
#define DirectFunctionCall2(func, arg1, arg2)
Definition: fmgr.h:644
#define DirectFunctionCall1(func, arg1)
Definition: fmgr.h:642
Datum difference(PG_FUNCTION_ARGS)
#define ROTATE_HIGH_AND_LOW_32BITS(v)
Definition: hashfn.h:18
static Datum hash_any_extended(const unsigned char *k, int keylen, uint64 seed)
Definition: hashfn.h:37
static Datum hash_any(const unsigned char *k, int keylen)
Definition: hashfn.h:31
Datum hashcharextended(PG_FUNCTION_ARGS)
Definition: hashfunc.c:55
#define MAXDATELEN
Definition: datetime.h:200
long val
Definition: informix.c:664
int b
Definition: isn.c:70
int a
Definition: isn.c:69
int j
Definition: isn.c:74
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
char * JsonEncodeDateTime(char *buf, Datum value, Oid typid, const int *tzp)
Definition: json.c:283
@ jbvObject
Definition: jsonb.h:234
@ jbvNumeric
Definition: jsonb.h:230
@ jbvBool
Definition: jsonb.h:231
@ jbvArray
Definition: jsonb.h:233
@ jbvBinary
Definition: jsonb.h:236
@ jbvNull
Definition: jsonb.h:228
@ jbvDatetime
Definition: jsonb.h:244
@ jbvString
Definition: jsonb.h:229
#define JsonContainerIsScalar(jc)
Definition: jsonb.h:207
#define JBE_ISNULL(je_)
Definition: jsonb.h:156
#define JsonContainerIsArray(jc)
Definition: jsonb.h:209
@ JBI_OBJECT_VALUE
Definition: jsonb.h:338
@ JBI_ARRAY_START
Definition: jsonb.h:334
@ JBI_ARRAY_ELEM
Definition: jsonb.h:335
@ JBI_OBJECT_START
Definition: jsonb.h:336
@ JBI_OBJECT_KEY
Definition: jsonb.h:337
#define JsonContainerSize(jc)
Definition: jsonb.h:206
#define JB_FSCALAR
Definition: jsonb.h:201
#define JB_OFFSET_STRIDE
Definition: jsonb.h:178
#define JENTRY_ISNUMERIC
Definition: jsonb.h:144
#define JBE_ISBOOL_TRUE(je_)
Definition: jsonb.h:157
#define IsAJsonbScalar(jsonbval)
Definition: jsonb.h:297
#define JENTRY_OFFLENMASK
Definition: jsonb.h:138
#define JBE_ISNUMERIC(je_)
Definition: jsonb.h:154
#define JBE_ISBOOL_FALSE(je_)
Definition: jsonb.h:158
#define JENTRY_ISCONTAINER
Definition: jsonb.h:148
#define JENTRY_TYPEMASK
Definition: jsonb.h:139
#define JBE_HAS_OFF(je_)
Definition: jsonb.h:152
#define JENTRY_ISNULL
Definition: jsonb.h:147
#define JBE_ISSTRING(je_)
Definition: jsonb.h:153
#define JENTRY_ISBOOL_FALSE
Definition: jsonb.h:145
#define JBE_OFFLENFLD(je_)
Definition: jsonb.h:151
#define JsonContainerIsObject(jc)
Definition: jsonb.h:208
#define JENTRY_HAS_OFF
Definition: jsonb.h:140
#define JB_FARRAY
Definition: jsonb.h:203
uint32 JEntry
Definition: jsonb.h:136
JsonbIteratorToken
Definition: jsonb.h:21
@ WJB_KEY
Definition: jsonb.h:23
@ WJB_DONE
Definition: jsonb.h:22
@ WJB_END_ARRAY
Definition: jsonb.h:27
@ WJB_VALUE
Definition: jsonb.h:24
@ WJB_END_OBJECT
Definition: jsonb.h:29
@ WJB_ELEM
Definition: jsonb.h:25
@ WJB_BEGIN_OBJECT
Definition: jsonb.h:28
@ WJB_BEGIN_ARRAY
Definition: jsonb.h:26
#define JENTRY_ISBOOL_TRUE
Definition: jsonb.h:146
#define JBE_ISCONTAINER(je_)
Definition: jsonb.h:155
#define JB_FOBJECT
Definition: jsonb.h:202
#define JBE_ADVANCE_OFFSET(offset, je)
Definition: jsonb.h:162
static int lengthCompareJsonbString(const char *val1, int len1, const char *val2, int len2)
Definition: jsonb_util.c:1901
static void appendElement(JsonbParseState *pstate, JsonbValue *scalarVal)
Definition: jsonb_util.c:790
JsonbIterator * JsonbIteratorInit(JsonbContainer *container)
Definition: jsonb_util.c:819
static void convertJsonbScalar(StringInfo buffer, JEntry *header, JsonbValue *scalarVal)
Definition: jsonb_util.c:1817
Jsonb * JsonbValueToJsonb(JsonbValue *val)
Definition: jsonb_util.c:94
static void convertJsonbObject(StringInfo buffer, JEntry *header, JsonbValue *val, int level)
Definition: jsonb_util.c:1701
static int lengthCompareJsonbStringValue(const void *a, const void *b)
Definition: jsonb_util.c:1882
static JsonbIterator * iteratorFromContainer(JsonbContainer *container, JsonbIterator *parent)
Definition: jsonb_util.c:1001
static void fillJsonbValue(JsonbContainer *container, int index, char *base_addr, uint32 offset, JsonbValue *result)
Definition: jsonb_util.c:507
static void convertJsonbArray(StringInfo buffer, JEntry *header, JsonbValue *val, int level)
Definition: jsonb_util.c:1617
#define JSONB_MAX_PAIRS
Definition: jsonb_util.c:39
static void uniqueifyJsonbObject(JsonbValue *object, bool unique_keys, bool skip_nulls)
Definition: jsonb_util.c:1945
static void appendValue(JsonbParseState *pstate, JsonbValue *scalarVal)
Definition: jsonb_util.c:777
static JsonbValue * pushJsonbValueScalar(JsonbParseState **pstate, JsonbIteratorToken seq, JsonbValue *scalarVal)
Definition: jsonb_util.c:642
int compareJsonbContainers(JsonbContainer *a, JsonbContainer *b)
Definition: jsonb_util.c:193
JsonbValue * getIthJsonbValueFromContainer(JsonbContainer *container, uint32 i)
Definition: jsonb_util.c:470
#define JSONB_MAX_ELEMS
Definition: jsonb_util.c:38
uint32 getJsonbLength(const JsonbContainer *jc, int index)
Definition: jsonb_util.c:161
static short padBufferToInt(StringInfo buffer)
Definition: jsonb_util.c:1529
void JsonbHashScalarValue(const JsonbValue *scalarVal, uint32 *hash)
Definition: jsonb_util.c:1318
JsonbValue * getKeyJsonValueFromContainer(JsonbContainer *container, const char *keyVal, int keyLen, JsonbValue *res)
Definition: jsonb_util.c:400
static JsonbParseState * pushState(JsonbParseState **pstate)
Definition: jsonb_util.c:733
void JsonbToJsonbValue(Jsonb *jsonb, JsonbValue *val)
Definition: jsonb_util.c:74
static void appendToBuffer(StringInfo buffer, const char *data, int len)
Definition: jsonb_util.c:1515
JsonbIteratorToken JsonbIteratorNext(JsonbIterator **it, JsonbValue *val, bool skipNested)
Definition: jsonb_util.c:855
static int compareJsonbScalarValue(JsonbValue *a, JsonbValue *b)
Definition: jsonb_util.c:1435
static void copyToBuffer(StringInfo buffer, int offset, const char *data, int len)
Definition: jsonb_util.c:1506
JsonbValue * pushJsonbValue(JsonbParseState **pstate, JsonbIteratorToken seq, JsonbValue *jbval)
Definition: jsonb_util.c:568
static void appendKey(JsonbParseState *pstate, JsonbValue *string)
Definition: jsonb_util.c:748
JsonbValue * findJsonbValueFromContainer(JsonbContainer *container, uint32 flags, JsonbValue *key)
Definition: jsonb_util.c:346
static bool equalsJsonbScalarValue(JsonbValue *a, JsonbValue *b)
Definition: jsonb_util.c:1403
uint32 getJsonbOffset(const JsonbContainer *jc, int index)
Definition: jsonb_util.c:136
void JsonbHashScalarValueExtended(const JsonbValue *scalarVal, uint64 *hash, uint64 seed)
Definition: jsonb_util.c:1361
static Jsonb * convertToJsonb(JsonbValue *val)
Definition: jsonb_util.c:1550
static int lengthCompareJsonbPair(const void *a, const void *b, void *binequal)
Definition: jsonb_util.c:1921
bool JsonbDeepContains(JsonbIterator **val, JsonbIterator **mContained)
Definition: jsonb_util.c:1064
static JsonbIterator * freeAndGetParent(JsonbIterator *it)
Definition: jsonb_util.c:1043
static void convertJsonbValue(StringInfo buffer, JEntry *header, JsonbValue *val, int level)
Definition: jsonb_util.c:1592
static int reserveFromBuffer(StringInfo buffer, int len)
Definition: jsonb_util.c:1480
Assert(fmt[strlen(fmt) - 1] !='\n')
void pfree(void *pointer)
Definition: mcxt.c:1456
void * palloc0(Size size)
Definition: mcxt.c:1257
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1476
void * palloc(Size size)
Definition: mcxt.c:1226
struct NumericData * Numeric
Definition: numeric.h:53
static Datum NumericGetDatum(Numeric X)
Definition: numeric.h:72
static uint32 pg_rotate_left32(uint32 word, int n)
Definition: pg_bitutils.h:326
const void size_t len
const void * data
static char * buf
Definition: pg_test_fsync.c:67
void qsort_arg(void *base, size_t nel, size_t elsize, qsort_arg_comparator cmp, void *arg)
void check_stack_depth(void)
Definition: postgres.c:3523
static uint32 DatumGetUInt32(Datum X)
Definition: postgres.h:222
static uint64 DatumGetUInt64(Datum X)
Definition: postgres.h:419
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
static Datum UInt64GetDatum(uint64 X)
Definition: postgres.h:436
static Datum BoolGetDatum(bool X)
Definition: postgres.h:102
static int32 DatumGetInt32(Datum X)
Definition: postgres.h:202
char string[11]
Definition: preproc-type.c:52
static unsigned hash(unsigned *uv, int n)
Definition: rege_dfa.c:715
void enlargeStringInfo(StringInfo str, int needed)
Definition: stringinfo.c:283
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
JEntry children[FLEXIBLE_ARRAY_MEMBER]
Definition: jsonb.h:194
uint32 header
Definition: jsonb.h:192
JsonbIterState state
Definition: jsonb.h:366
JEntry * children
Definition: jsonb.h:348
uint32 nElems
Definition: jsonb.h:345
struct JsonbIterator * parent
Definition: jsonb.h:368
JsonbContainer * container
Definition: jsonb.h:344
bool isScalar
Definition: jsonb.h:347
char * dataProper
Definition: jsonb.h:350
uint32 order
Definition: jsonb.h:315
JsonbValue key
Definition: jsonb.h:313
JsonbValue value
Definition: jsonb.h:314
bool unique_keys
Definition: jsonb.h:324
struct JsonbParseState * next
Definition: jsonb.h:323
bool skip_nulls
Definition: jsonb.h:325
JsonbValue contVal
Definition: jsonb.h:321
enum jbvType type
Definition: jsonb.h:255
char * val
Definition: jsonb.h:264
Definition: jsonb.h:213
JsonbContainer root
Definition: jsonb.h:215
Definition: type.h:95
#define VARSIZE_ANY(PTR)
Definition: varatt.h:311
#define VARDATA(PTR)
Definition: varatt.h:278
#define SET_VARSIZE(PTR, len)
Definition: varatt.h:305
#define VARSIZE(PTR)
Definition: varatt.h:279
int varstr_cmp(const char *arg1, int len1, const char *arg2, int len2, Oid collid)
Definition: varlena.c:1536