PostgreSQL Source Code  git master
brin_bloom.c
Go to the documentation of this file.
1 /*
2  * brin_bloom.c
3  * Implementation of Bloom opclass for BRIN
4  *
5  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
6  * Portions Copyright (c) 1994, Regents of the University of California
7  *
8  *
9  * A BRIN opclass summarizing page range into a bloom filter.
10  *
11  * Bloom filters allow efficient testing whether a given page range contains
12  * a particular value. Therefore, if we summarize each page range into a small
13  * bloom filter, we can easily (and cheaply) test whether it contains values
14  * we get later.
15  *
16  * The index only supports equality operators, similarly to hash indexes.
17  * Bloom indexes are however much smaller, and support only bitmap scans.
18  *
19  * Note: Don't confuse this with bloom indexes, implemented in a contrib
20  * module. That extension implements an entirely new AM, building a bloom
21  * filter on multiple columns in a single row. This opclass works with an
22  * existing AM (BRIN) and builds bloom filter on a column.
23  *
24  *
25  * values vs. hashes
26  * -----------------
27  *
28  * The original column values are not used directly, but are first hashed
29  * using the regular type-specific hash function, producing a uint32 hash.
30  * And this hash value is then added to the summary - i.e. it's hashed
31  * again and added to the bloom filter.
32  *
33  * This allows the code to treat all data types (byval/byref/...) the same
34  * way, with only minimal space requirements, because we're working with
35  * hashes and not the original values. Everything is uint32.
36  *
37  * Of course, this assumes the built-in hash function is reasonably good,
38  * without too many collisions etc. But that does seem to be the case, at
39  * least based on past experience. After all, the same hash functions are
40  * used for hash indexes, hash partitioning and so on.
41  *
42  *
43  * hashing scheme
44  * --------------
45  *
46  * Bloom filters require a number of independent hash functions. There are
47  * different schemes how to construct them - for example we might use
48  * hash_uint32_extended with random seeds, but that seems fairly expensive.
49  * We use a scheme requiring only two functions described in this paper:
50  *
51  * Less Hashing, Same Performance:Building a Better Bloom Filter
52  * Adam Kirsch, Michael Mitzenmacher, Harvard School of Engineering and
53  * Applied Sciences, Cambridge, Massachusetts [DOI 10.1002/rsa.20208]
54  *
55  * The two hash functions h1 and h2 are calculated using hard-coded seeds,
56  * and then combined using (h1 + i * h2) to generate the hash functions.
57  *
58  *
59  * sizing the bloom filter
60  * -----------------------
61  *
62  * Size of a bloom filter depends on the number of distinct values we will
63  * store in it, and the desired false positive rate. The higher the number
64  * of distinct values and/or the lower the false positive rate, the larger
65  * the bloom filter. On the other hand, we want to keep the index as small
66  * as possible - that's one of the basic advantages of BRIN indexes.
67  *
68  * Although the number of distinct elements (in a page range) depends on
69  * the data, we can consider it fixed. This simplifies the trade-off to
70  * just false positive rate vs. size.
71  *
72  * At the page range level, false positive rate is a probability the bloom
73  * filter matches a random value. For the whole index (with sufficiently
74  * many page ranges) it represents the fraction of the index ranges (and
75  * thus fraction of the table to be scanned) matching the random value.
76  *
77  * Furthermore, the size of the bloom filter is subject to implementation
78  * limits - it has to fit onto a single index page (8kB by default). As
79  * the bitmap is inherently random (when "full" about half the bits is set
80  * to 1, randomly), compression can't help very much.
81  *
82  * To reduce the size of a filter (to fit to a page), we have to either
83  * accept higher false positive rate (undesirable), or reduce the number
84  * of distinct items to be stored in the filter. We can't alter the input
85  * data, of course, but we may make the BRIN page ranges smaller - instead
86  * of the default 128 pages (1MB) we may build index with 16-page ranges,
87  * or something like that. This should reduce the number of distinct values
88  * in the page range, making the filter smaller (with fixed false positive
89  * rate). Even for random data sets this should help, as the number of rows
90  * per heap page is limited (to ~290 with very narrow tables, likely ~20
91  * in practice).
92  *
93  * Of course, good sizing decisions depend on having the necessary data,
94  * i.e. number of distinct values in a page range (of a given size) and
95  * table size (to estimate cost change due to change in false positive
96  * rate due to having larger index vs. scanning larger indexes). We may
97  * not have that data - for example when building an index on empty table
98  * it's not really possible. And for some data we only have estimates for
99  * the whole table and we can only estimate per-range values (ndistinct).
100  *
101  * Another challenge is that while the bloom filter is per-column, it's
102  * the whole index tuple that has to fit into a page. And for multi-column
103  * indexes that may include pieces we have no control over (not necessarily
104  * bloom filters, the other columns may use other BRIN opclasses). So it's
105  * not entirely clear how to distribute the space between those columns.
106  *
107  * The current logic, implemented in brin_bloom_get_ndistinct, attempts to
108  * make some basic sizing decisions, based on the size of BRIN ranges, and
109  * the maximum number of rows per range.
110  *
111  *
112  * IDENTIFICATION
113  * src/backend/access/brin/brin_bloom.c
114  */
115 #include "postgres.h"
116 
117 #include <math.h>
118 
119 #include "access/brin.h"
120 #include "access/brin_internal.h"
121 #include "access/brin_page.h"
122 #include "access/brin_tuple.h"
123 #include "access/genam.h"
124 #include "access/htup_details.h"
125 #include "access/reloptions.h"
126 #include "catalog/pg_am.h"
127 #include "catalog/pg_amop.h"
128 #include "catalog/pg_type.h"
129 #include "common/hashfn.h"
130 #include "utils/fmgrprotos.h"
131 #include "utils/rel.h"
132 
133 #define BloomEqualStrategyNumber 1
134 
135 /*
136  * Additional SQL level support functions. We only have one, which is
137  * used to calculate hash of the input value.
138  *
139  * Procedure numbers must not use values reserved for BRIN itself; see
140  * brin_internal.h.
141  */
142 #define BLOOM_MAX_PROCNUMS 1 /* maximum support procs we need */
143 #define PROCNUM_HASH 11 /* required */
144 
145 /*
146  * Subtract this from procnum to obtain index in BloomOpaque arrays
147  * (Must be equal to minimum of private procnums).
148  */
149 #define PROCNUM_BASE 11
150 
151 /*
152  * Storage type for BRIN's reloptions.
153  */
154 typedef struct BloomOptions
155 {
156  int32 vl_len_; /* varlena header (do not touch directly!) */
157  double nDistinctPerRange; /* number of distinct values per range */
158  double falsePositiveRate; /* false positive for bloom filter */
160 
161 /*
162  * The current min value (16) is somewhat arbitrary, but it's based
163  * on the fact that the filter header is ~20B alone, which is about
164  * the same as the filter bitmap for 16 distinct items with 1% false
165  * positive rate. So by allowing lower values we'd not gain much. In
166  * any case, the min should not be larger than MaxHeapTuplesPerPage
167  * (~290), which is the theoretical maximum for single-page ranges.
168  */
169 #define BLOOM_MIN_NDISTINCT_PER_RANGE 16
170 
171 /*
172  * Used to determine number of distinct items, based on the number of rows
173  * in a page range. The 10% is somewhat similar to what estimate_num_groups
174  * does, so we use the same factor here.
175  */
176 #define BLOOM_DEFAULT_NDISTINCT_PER_RANGE -0.1 /* 10% of values */
177 
178 /*
179  * Allowed range and default value for the false positive range. The exact
180  * values are somewhat arbitrary, but were chosen considering the various
181  * parameters (size of filter vs. page size, etc.).
182  *
183  * The lower the false-positive rate, the more accurate the filter is, but
184  * it also gets larger - at some point this eliminates the main advantage
185  * of BRIN indexes, which is the tiny size. At 0.01% the index is about
186  * 10% of the table (assuming 290 distinct values per 8kB page).
187  *
188  * On the other hand, as the false-positive rate increases, larger part of
189  * the table has to be scanned due to mismatches - at 25% we're probably
190  * close to sequential scan being cheaper.
191  */
192 #define BLOOM_MIN_FALSE_POSITIVE_RATE 0.0001 /* 0.01% fp rate */
193 #define BLOOM_MAX_FALSE_POSITIVE_RATE 0.25 /* 25% fp rate */
194 #define BLOOM_DEFAULT_FALSE_POSITIVE_RATE 0.01 /* 1% fp rate */
195 
196 #define BloomGetNDistinctPerRange(opts) \
197  ((opts) && (((BloomOptions *) (opts))->nDistinctPerRange != 0) ? \
198  (((BloomOptions *) (opts))->nDistinctPerRange) : \
199  BLOOM_DEFAULT_NDISTINCT_PER_RANGE)
200 
201 #define BloomGetFalsePositiveRate(opts) \
202  ((opts) && (((BloomOptions *) (opts))->falsePositiveRate != 0.0) ? \
203  (((BloomOptions *) (opts))->falsePositiveRate) : \
204  BLOOM_DEFAULT_FALSE_POSITIVE_RATE)
205 
206 /*
207  * And estimate of the largest bloom we can fit onto a page. This is not
208  * a perfect guarantee, for a couple of reasons. For example, the row may
209  * be larger because the index has multiple columns.
210  */
211 #define BloomMaxFilterSize \
212  MAXALIGN_DOWN(BLCKSZ - \
213  (MAXALIGN(SizeOfPageHeaderData + \
214  sizeof(ItemIdData)) + \
215  MAXALIGN(sizeof(BrinSpecialSpace)) + \
216  SizeOfBrinTuple))
217 
218 /*
219  * Seeds used to calculate two hash functions h1 and h2, which are then used
220  * to generate k hashes using the (h1 + i * h2) scheme.
221  */
222 #define BLOOM_SEED_1 0x71d924af
223 #define BLOOM_SEED_2 0xba48b314
224 
225 /*
226  * Bloom Filter
227  *
228  * Represents a bloom filter, built on hashes of the indexed values. That is,
229  * we compute a uint32 hash of the value, and then store this hash into the
230  * bloom filter (and compute additional hashes on it).
231  *
232  * XXX We could implement "sparse" bloom filters, keeping only the bytes that
233  * are not entirely 0. But while indexes don't support TOAST, the varlena can
234  * still be compressed. So this seems unnecessary, because the compression
235  * should do the same job.
236  *
237  * XXX We can also watch the number of bits set in the bloom filter, and then
238  * stop using it (and not store the bitmap, to save space) when the false
239  * positive rate gets too high. But even if the false positive rate exceeds the
240  * desired value, it still can eliminate some page ranges.
241  */
242 typedef struct BloomFilter
243 {
244  /* varlena header (do not touch directly!) */
246 
247  /* space for various flags (unused for now) */
249 
250  /* fields for the HASHED phase */
251  uint8 nhashes; /* number of hash functions */
252  uint32 nbits; /* number of bits in the bitmap (size) */
253  uint32 nbits_set; /* number of bits set to 1 */
254 
255  /* data of the bloom filter */
258 
259 /*
260  * bloom_filter_size
261  * Calculate Bloom filter parameters (nbits, nbytes, nhashes).
262  *
263  * Given expected number of distinct values and desired false positive rate,
264  * calculates the optimal parameters of the Bloom filter.
265  *
266  * The resulting parameters are returned through nbytesp (number of bytes),
267  * nbitsp (number of bits) and nhashesp (number of hash functions). If a
268  * pointer is NULL, the parameter is not returned.
269  */
270 static void
271 bloom_filter_size(int ndistinct, double false_positive_rate,
272  int *nbytesp, int *nbitsp, int *nhashesp)
273 {
274  double k;
275  int nbits,
276  nbytes;
277 
278  /* sizing bloom filter: -(n * ln(p)) / (ln(2))^2 */
279  nbits = ceil(-(ndistinct * log(false_positive_rate)) / pow(log(2.0), 2));
280 
281  /* round m to whole bytes */
282  nbytes = ((nbits + 7) / 8);
283  nbits = nbytes * 8;
284 
285  /*
286  * round(log(2.0) * m / ndistinct), but assume round() may not be
287  * available on Windows
288  */
289  k = log(2.0) * nbits / ndistinct;
290  k = (k - floor(k) >= 0.5) ? ceil(k) : floor(k);
291 
292  if (nbytesp)
293  *nbytesp = nbytes;
294 
295  if (nbitsp)
296  *nbitsp = nbits;
297 
298  if (nhashesp)
299  *nhashesp = (int) k;
300 }
301 
302 /*
303  * bloom_init
304  * Initialize the Bloom Filter, allocate all the memory.
305  *
306  * The filter is initialized with optimal size for ndistinct expected values
307  * and the requested false positive rate. The filter is stored as varlena.
308  */
309 static BloomFilter *
310 bloom_init(int ndistinct, double false_positive_rate)
311 {
312  Size len;
313  BloomFilter *filter;
314 
315  int nbits; /* size of filter / number of bits */
316  int nbytes; /* size of filter / number of bytes */
317  int nhashes; /* number of hash functions */
318 
319  Assert(ndistinct > 0);
320  Assert(false_positive_rate > 0 && false_positive_rate < 1);
321 
322  /* calculate bloom filter size / parameters */
323  bloom_filter_size(ndistinct, false_positive_rate,
324  &nbytes, &nbits, &nhashes);
325 
326  /*
327  * Reject filters that are obviously too large to store on a page.
328  *
329  * Initially the bloom filter is just zeroes and so very compressible, but
330  * as we add values it gets more and more random, and so less and less
331  * compressible. So initially everything fits on the page, but we might
332  * get surprising failures later - we want to prevent that, so we reject
333  * bloom filter that are obviously too large.
334  *
335  * XXX It's not uncommon to oversize the bloom filter a bit, to defend
336  * against unexpected data anomalies (parts of table with more distinct
337  * values per range etc.). But we still need to make sure even the
338  * oversized filter fits on page, if such need arises.
339  *
340  * XXX This check is not perfect, because the index may have multiple
341  * filters that are small individually, but too large when combined.
342  */
343  if (nbytes > BloomMaxFilterSize)
344  elog(ERROR, "the bloom filter is too large (%d > %zu)", nbytes,
346 
347  /*
348  * We allocate the whole filter. Most of it is going to be 0 bits, so the
349  * varlena is easy to compress.
350  */
351  len = offsetof(BloomFilter, data) + nbytes;
352 
353  filter = (BloomFilter *) palloc0(len);
354 
355  filter->flags = 0;
356  filter->nhashes = nhashes;
357  filter->nbits = nbits;
358 
359  SET_VARSIZE(filter, len);
360 
361  return filter;
362 }
363 
364 
365 /*
366  * bloom_add_value
367  * Add value to the bloom filter.
368  */
369 static BloomFilter *
370 bloom_add_value(BloomFilter *filter, uint32 value, bool *updated)
371 {
372  int i;
373  uint64 h1,
374  h2;
375 
376  /* compute the hashes, used for the bloom filter */
379 
380  /* compute the requested number of hashes */
381  for (i = 0; i < filter->nhashes; i++)
382  {
383  /* h1 + h2 + f(i) */
384  uint32 h = (h1 + i * h2) % filter->nbits;
385  uint32 byte = (h / 8);
386  uint32 bit = (h % 8);
387 
388  /* if the bit is not set, set it and remember we did that */
389  if (!(filter->data[byte] & (0x01 << bit)))
390  {
391  filter->data[byte] |= (0x01 << bit);
392  filter->nbits_set++;
393  if (updated)
394  *updated = true;
395  }
396  }
397 
398  return filter;
399 }
400 
401 
402 /*
403  * bloom_contains_value
404  * Check if the bloom filter contains a particular value.
405  */
406 static bool
408 {
409  int i;
410  uint64 h1,
411  h2;
412 
413  /* calculate the two hashes */
416 
417  /* compute the requested number of hashes */
418  for (i = 0; i < filter->nhashes; i++)
419  {
420  /* h1 + h2 + f(i) */
421  uint32 h = (h1 + i * h2) % filter->nbits;
422  uint32 byte = (h / 8);
423  uint32 bit = (h % 8);
424 
425  /* if the bit is not set, the value is not there */
426  if (!(filter->data[byte] & (0x01 << bit)))
427  return false;
428  }
429 
430  /* all hashes found in bloom filter */
431  return true;
432 }
433 
434 typedef struct BloomOpaque
435 {
436  /*
437  * XXX At this point we only need a single proc (to compute the hash), but
438  * let's keep the array just like inclusion and minmax opclasses, for
439  * consistency. We may need additional procs in the future.
440  */
444 
445 static FmgrInfo *bloom_get_procinfo(BrinDesc *bdesc, uint16 attno,
446  uint16 procnum);
447 
448 
449 Datum
451 {
452  BrinOpcInfo *result;
453 
454  /*
455  * opaque->strategy_procinfos is initialized lazily; here it is set to
456  * all-uninitialized by palloc0 which sets fn_oid to InvalidOid.
457  *
458  * bloom indexes only store the filter as a single BYTEA column
459  */
460 
461  result = palloc0(MAXALIGN(SizeofBrinOpcInfo(1)) +
462  sizeof(BloomOpaque));
463  result->oi_nstored = 1;
464  result->oi_regular_nulls = true;
465  result->oi_opaque = (BloomOpaque *)
466  MAXALIGN((char *) result + SizeofBrinOpcInfo(1));
467  result->oi_typcache[0] = lookup_type_cache(PG_BRIN_BLOOM_SUMMARYOID, 0);
468 
469  PG_RETURN_POINTER(result);
470 }
471 
472 /*
473  * brin_bloom_get_ndistinct
474  * Determine the ndistinct value used to size bloom filter.
475  *
476  * Adjust the ndistinct value based on the pagesPerRange value. First,
477  * if it's negative, it's assumed to be relative to maximum number of
478  * tuples in the range (assuming each page gets MaxHeapTuplesPerPage
479  * tuples, which is likely a significant over-estimate). We also clamp
480  * the value, not to over-size the bloom filter unnecessarily.
481  *
482  * XXX We can only do this when the pagesPerRange value was supplied.
483  * If it wasn't, it has to be a read-only access to the index, in which
484  * case we don't really care. But perhaps we should fall-back to the
485  * default pagesPerRange value?
486  *
487  * XXX We might also fetch info about ndistinct estimate for the column,
488  * and compute the expected number of distinct values in a range. But
489  * that may be tricky due to data being sorted in various ways, so it
490  * seems better to rely on the upper estimate.
491  *
492  * XXX We might also calculate a better estimate of rows per BRIN range,
493  * instead of using MaxHeapTuplesPerPage (which probably produces values
494  * much higher than reality).
495  */
496 static int
498 {
499  double ndistinct;
500  double maxtuples;
501  BlockNumber pagesPerRange;
502 
503  pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
504  ndistinct = BloomGetNDistinctPerRange(opts);
505 
506  Assert(BlockNumberIsValid(pagesPerRange));
507 
508  maxtuples = MaxHeapTuplesPerPage * pagesPerRange;
509 
510  /*
511  * Similarly to n_distinct, negative values are relative - in this case to
512  * maximum number of tuples in the page range (maxtuples).
513  */
514  if (ndistinct < 0)
515  ndistinct = (-ndistinct) * maxtuples;
516 
517  /*
518  * Positive values are to be used directly, but we still apply a couple of
519  * safeties to avoid using unreasonably small bloom filters.
520  */
521  ndistinct = Max(ndistinct, BLOOM_MIN_NDISTINCT_PER_RANGE);
522 
523  /*
524  * And don't use more than the maximum possible number of tuples, in the
525  * range, which would be entirely wasteful.
526  */
527  ndistinct = Min(ndistinct, maxtuples);
528 
529  return (int) ndistinct;
530 }
531 
532 /*
533  * Examine the given index tuple (which contains partial status of a certain
534  * page range) by comparing it to the given value that comes from another heap
535  * tuple. If the new value is outside the bloom filter specified by the
536  * existing tuple values, update the index tuple and return true. Otherwise,
537  * return false and do not modify in this case.
538  */
539 Datum
541 {
542  BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
543  BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
545  bool isnull PG_USED_FOR_ASSERTS_ONLY = PG_GETARG_DATUM(3);
547  Oid colloid = PG_GET_COLLATION();
548  FmgrInfo *hashFn;
549  uint32 hashValue;
550  bool updated = false;
551  AttrNumber attno;
552  BloomFilter *filter;
553 
554  Assert(!isnull);
555 
556  attno = column->bv_attno;
557 
558  /*
559  * If this is the first non-null value, we need to initialize the bloom
560  * filter. Otherwise just extract the existing bloom filter from
561  * BrinValues.
562  */
563  if (column->bv_allnulls)
564  {
565  filter = bloom_init(brin_bloom_get_ndistinct(bdesc, opts),
567  column->bv_values[0] = PointerGetDatum(filter);
568  column->bv_allnulls = false;
569  updated = true;
570  }
571  else
572  filter = (BloomFilter *) PG_DETOAST_DATUM(column->bv_values[0]);
573 
574  /*
575  * Compute the hash of the new value, using the supplied hash function,
576  * and then add the hash value to the bloom filter.
577  */
578  hashFn = bloom_get_procinfo(bdesc, attno, PROCNUM_HASH);
579 
580  hashValue = DatumGetUInt32(FunctionCall1Coll(hashFn, colloid, newval));
581 
582  filter = bloom_add_value(filter, hashValue, &updated);
583 
584  column->bv_values[0] = PointerGetDatum(filter);
585 
586  PG_RETURN_BOOL(updated);
587 }
588 
589 /*
590  * Given an index tuple corresponding to a certain page range and a scan key,
591  * return whether the scan key is consistent with the index tuple's bloom
592  * filter. Return true if so, false otherwise.
593  */
594 Datum
596 {
597  BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
598  BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
599  ScanKey *keys = (ScanKey *) PG_GETARG_POINTER(2);
600  int nkeys = PG_GETARG_INT32(3);
601  Oid colloid = PG_GET_COLLATION();
602  AttrNumber attno;
603  Datum value;
604  bool matches;
605  FmgrInfo *finfo;
606  uint32 hashValue;
607  BloomFilter *filter;
608  int keyno;
609 
610  filter = (BloomFilter *) PG_DETOAST_DATUM(column->bv_values[0]);
611 
612  Assert(filter);
613 
614  /*
615  * Assume all scan keys match. We'll be searching for a scan key
616  * eliminating the page range (we can stop on the first such key).
617  */
618  matches = true;
619 
620  for (keyno = 0; keyno < nkeys; keyno++)
621  {
622  ScanKey key = keys[keyno];
623 
624  /* NULL keys are handled and filtered-out in bringetbitmap */
625  Assert(!(key->sk_flags & SK_ISNULL));
626 
627  attno = key->sk_attno;
628  value = key->sk_argument;
629 
630  switch (key->sk_strategy)
631  {
633 
634  /*
635  * We want to return the current page range if the bloom
636  * filter seems to contain the value.
637  */
638  finfo = bloom_get_procinfo(bdesc, attno, PROCNUM_HASH);
639 
640  hashValue = DatumGetUInt32(FunctionCall1Coll(finfo, colloid, value));
641  matches &= bloom_contains_value(filter, hashValue);
642 
643  break;
644  default:
645  /* shouldn't happen */
646  elog(ERROR, "invalid strategy number %d", key->sk_strategy);
647  matches = false;
648  break;
649  }
650 
651  if (!matches)
652  break;
653  }
654 
655  PG_RETURN_BOOL(matches);
656 }
657 
658 /*
659  * Given two BrinValues, update the first of them as a union of the summary
660  * values contained in both. The second one is untouched.
661  *
662  * XXX We assume the bloom filters have the same parameters for now. In the
663  * future we should have 'can union' function, to decide if we can combine
664  * two particular bloom filters.
665  */
666 Datum
668 {
669  int i;
670  int nbytes;
671  BrinValues *col_a = (BrinValues *) PG_GETARG_POINTER(1);
672  BrinValues *col_b = (BrinValues *) PG_GETARG_POINTER(2);
673  BloomFilter *filter_a;
674  BloomFilter *filter_b;
675 
676  Assert(col_a->bv_attno == col_b->bv_attno);
677  Assert(!col_a->bv_allnulls && !col_b->bv_allnulls);
678 
679  filter_a = (BloomFilter *) PG_DETOAST_DATUM(col_a->bv_values[0]);
680  filter_b = (BloomFilter *) PG_DETOAST_DATUM(col_b->bv_values[0]);
681 
682  /* make sure the filters use the same parameters */
683  Assert(filter_a && filter_b);
684  Assert(filter_a->nbits == filter_b->nbits);
685  Assert(filter_a->nhashes == filter_b->nhashes);
686  Assert((filter_a->nbits > 0) && (filter_a->nbits % 8 == 0));
687 
688  nbytes = (filter_a->nbits) / 8;
689 
690  /* simply OR the bitmaps */
691  for (i = 0; i < nbytes; i++)
692  filter_a->data[i] |= filter_b->data[i];
693 
694  /* update the number of bits set in the filter */
695  filter_a->nbits_set = pg_popcount((const char *) filter_a->data, nbytes);
696 
697  PG_RETURN_VOID();
698 }
699 
700 /*
701  * Cache and return inclusion opclass support procedure
702  *
703  * Return the procedure corresponding to the given function support number
704  * or null if it does not exist.
705  */
706 static FmgrInfo *
707 bloom_get_procinfo(BrinDesc *bdesc, uint16 attno, uint16 procnum)
708 {
709  BloomOpaque *opaque;
710  uint16 basenum = procnum - PROCNUM_BASE;
711 
712  /*
713  * We cache these in the opaque struct, to avoid repetitive syscache
714  * lookups.
715  */
716  opaque = (BloomOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
717 
718  /*
719  * If we already searched for this proc and didn't find it, don't bother
720  * searching again.
721  */
722  if (opaque->extra_proc_missing[basenum])
723  return NULL;
724 
725  if (opaque->extra_procinfos[basenum].fn_oid == InvalidOid)
726  {
727  if (RegProcedureIsValid(index_getprocid(bdesc->bd_index, attno,
728  procnum)))
729  {
730  fmgr_info_copy(&opaque->extra_procinfos[basenum],
731  index_getprocinfo(bdesc->bd_index, attno, procnum),
732  bdesc->bd_context);
733  }
734  else
735  {
736  opaque->extra_proc_missing[basenum] = true;
737  return NULL;
738  }
739  }
740 
741  return &opaque->extra_procinfos[basenum];
742 }
743 
744 Datum
746 {
748 
749  init_local_reloptions(relopts, sizeof(BloomOptions));
750 
751  add_local_real_reloption(relopts, "n_distinct_per_range",
752  "number of distinct items expected in a BRIN page range",
754  -1.0, INT_MAX, offsetof(BloomOptions, nDistinctPerRange));
755 
756  add_local_real_reloption(relopts, "false_positive_rate",
757  "desired false-positive rate for the bloom filters",
761  offsetof(BloomOptions, falsePositiveRate));
762 
763  PG_RETURN_VOID();
764 }
765 
766 /*
767  * brin_bloom_summary_in
768  * - input routine for type brin_bloom_summary.
769  *
770  * brin_bloom_summary is only used internally to represent summaries
771  * in BRIN bloom indexes, so it has no operations of its own, and we
772  * disallow input too.
773  */
774 Datum
776 {
777  /*
778  * brin_bloom_summary stores the data in binary form and parsing text
779  * input is not needed, so disallow this.
780  */
781  ereport(ERROR,
782  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
783  errmsg("cannot accept a value of type %s", "pg_brin_bloom_summary")));
784 
785  PG_RETURN_VOID(); /* keep compiler quiet */
786 }
787 
788 
789 /*
790  * brin_bloom_summary_out
791  * - output routine for type brin_bloom_summary.
792  *
793  * BRIN bloom summaries are serialized into a bytea value, but we want
794  * to output something nicer humans can understand.
795  */
796 Datum
798 {
799  BloomFilter *filter;
801 
802  /* detoast the data to get value with a full 4B header */
804 
806  appendStringInfoChar(&str, '{');
807 
808  appendStringInfo(&str, "mode: hashed nhashes: %u nbits: %u nbits_set: %u",
809  filter->nhashes, filter->nbits, filter->nbits_set);
810 
811  appendStringInfoChar(&str, '}');
812 
813  PG_RETURN_CSTRING(str.data);
814 }
815 
816 /*
817  * brin_bloom_summary_recv
818  * - binary input routine for type brin_bloom_summary.
819  */
820 Datum
822 {
823  ereport(ERROR,
824  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
825  errmsg("cannot accept a value of type %s", "pg_brin_bloom_summary")));
826 
827  PG_RETURN_VOID(); /* keep compiler quiet */
828 }
829 
830 /*
831  * brin_bloom_summary_send
832  * - binary output routine for type brin_bloom_summary.
833  *
834  * BRIN bloom summaries are serialized in a bytea value (although the
835  * type is named differently), so let's just send that.
836  */
837 Datum
839 {
840  return byteasend(fcinfo);
841 }
int16 AttrNumber
Definition: attnum.h:21
uint32 BlockNumber
Definition: block.h:31
static bool BlockNumberIsValid(BlockNumber blockNumber)
Definition: block.h:71
#define BrinGetPagesPerRange(relation)
Definition: brin.h:40
static int brin_bloom_get_ndistinct(BrinDesc *bdesc, BloomOptions *opts)
Definition: brin_bloom.c:497
#define PROCNUM_HASH
Definition: brin_bloom.c:143
#define BLOOM_SEED_1
Definition: brin_bloom.c:222
#define BLOOM_DEFAULT_NDISTINCT_PER_RANGE
Definition: brin_bloom.c:176
Datum brin_bloom_consistent(PG_FUNCTION_ARGS)
Definition: brin_bloom.c:595
static void bloom_filter_size(int ndistinct, double false_positive_rate, int *nbytesp, int *nbitsp, int *nhashesp)
Definition: brin_bloom.c:271
#define BloomGetNDistinctPerRange(opts)
Definition: brin_bloom.c:196
struct BloomFilter BloomFilter
static BloomFilter * bloom_init(int ndistinct, double false_positive_rate)
Definition: brin_bloom.c:310
Datum brin_bloom_options(PG_FUNCTION_ARGS)
Definition: brin_bloom.c:745
struct BloomOptions BloomOptions
#define BLOOM_MAX_FALSE_POSITIVE_RATE
Definition: brin_bloom.c:193
#define BLOOM_DEFAULT_FALSE_POSITIVE_RATE
Definition: brin_bloom.c:194
static bool bloom_contains_value(BloomFilter *filter, uint32 value)
Definition: brin_bloom.c:407
#define BLOOM_MAX_PROCNUMS
Definition: brin_bloom.c:142
#define BloomGetFalsePositiveRate(opts)
Definition: brin_bloom.c:201
static BloomFilter * bloom_add_value(BloomFilter *filter, uint32 value, bool *updated)
Definition: brin_bloom.c:370
#define BloomMaxFilterSize
Definition: brin_bloom.c:211
#define BLOOM_MIN_NDISTINCT_PER_RANGE
Definition: brin_bloom.c:169
#define BloomEqualStrategyNumber
Definition: brin_bloom.c:133
struct BloomOpaque BloomOpaque
#define BLOOM_MIN_FALSE_POSITIVE_RATE
Definition: brin_bloom.c:192
#define BLOOM_SEED_2
Definition: brin_bloom.c:223
#define PROCNUM_BASE
Definition: brin_bloom.c:149
Datum brin_bloom_union(PG_FUNCTION_ARGS)
Definition: brin_bloom.c:667
Datum brin_bloom_summary_send(PG_FUNCTION_ARGS)
Definition: brin_bloom.c:838
Datum brin_bloom_summary_out(PG_FUNCTION_ARGS)
Definition: brin_bloom.c:797
static FmgrInfo * bloom_get_procinfo(BrinDesc *bdesc, uint16 attno, uint16 procnum)
Definition: brin_bloom.c:707
Datum brin_bloom_add_value(PG_FUNCTION_ARGS)
Definition: brin_bloom.c:540
Datum brin_bloom_summary_in(PG_FUNCTION_ARGS)
Definition: brin_bloom.c:775
Datum brin_bloom_summary_recv(PG_FUNCTION_ARGS)
Definition: brin_bloom.c:821
Datum brin_bloom_opcinfo(PG_FUNCTION_ARGS)
Definition: brin_bloom.c:450
#define SizeofBrinOpcInfo(ncols)
Definition: brin_internal.h:41
unsigned short uint16
Definition: c.h:505
unsigned int uint32
Definition: c.h:506
#define RegProcedureIsValid(p)
Definition: c.h:768
#define Min(x, y)
Definition: c.h:995
#define MAXALIGN(LEN)
Definition: c.h:802
signed int int32
Definition: c.h:496
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:185
#define Max(x, y)
Definition: c.h:989
#define Assert(condition)
Definition: c.h:849
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:401
unsigned char uint8
Definition: c.h:504
size_t Size
Definition: c.h:596
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
Datum FunctionCall1Coll(FmgrInfo *flinfo, Oid collation, Datum arg1)
Definition: fmgr.c:1129
void fmgr_info_copy(FmgrInfo *dstinfo, FmgrInfo *srcinfo, MemoryContext destcxt)
Definition: fmgr.c:580
#define PG_RETURN_VOID()
Definition: fmgr.h:349
#define PG_GETARG_POINTER(n)
Definition: fmgr.h:276
#define PG_RETURN_CSTRING(x)
Definition: fmgr.h:362
#define PG_GETARG_DATUM(n)
Definition: fmgr.h:268
#define PG_GET_OPCLASS_OPTIONS()
Definition: fmgr.h:342
#define PG_DETOAST_DATUM(datum)
Definition: fmgr.h:240
#define PG_GETARG_INT32(n)
Definition: fmgr.h:269
#define PG_RETURN_POINTER(x)
Definition: fmgr.h:361
#define PG_GET_COLLATION()
Definition: fmgr.h:198
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
#define PG_RETURN_BOOL(x)
Definition: fmgr.h:359
#define newval
uint64 hash_bytes_uint32_extended(uint32 k, uint64 seed)
Definition: hashfn.c:631
const char * str
#define MaxHeapTuplesPerPage
Definition: htup_details.h:572
FmgrInfo * index_getprocinfo(Relation irel, AttrNumber attnum, uint16 procnum)
Definition: indexam.c:862
RegProcedure index_getprocid(Relation irel, AttrNumber attnum, uint16 procnum)
Definition: indexam.c:828
static struct @157 value
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
void * palloc0(Size size)
Definition: mcxt.c:1347
static AmcheckOptions opts
Definition: pg_amcheck.c:111
static uint64 pg_popcount(const char *buf, int bytes)
Definition: pg_bitutils.h:339
const void size_t len
const void * data
static uint32 DatumGetUInt32(Datum X)
Definition: postgres.h:222
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
void init_local_reloptions(local_relopts *relopts, Size relopt_struct_size)
Definition: reloptions.c:734
void add_local_real_reloption(local_relopts *relopts, const char *name, const char *desc, double default_val, double min_val, double max_val, int offset)
Definition: reloptions.c:972
#define SK_ISNULL
Definition: skey.h:115
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:97
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:194
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
uint8 nhashes
Definition: brin_bloom.c:251
char data[FLEXIBLE_ARRAY_MEMBER]
Definition: brin_bloom.c:256
uint32 nbits_set
Definition: brin_bloom.c:253
uint32 nbits
Definition: brin_bloom.c:252
uint16 flags
Definition: brin_bloom.c:248
int32 vl_len_
Definition: brin_bloom.c:245
FmgrInfo extra_procinfos[BLOOM_MAX_PROCNUMS]
Definition: brin_bloom.c:441
bool extra_proc_missing[BLOOM_MAX_PROCNUMS]
Definition: brin_bloom.c:442
double falsePositiveRate
Definition: brin_bloom.c:158
int32 vl_len_
Definition: bloom.h:103
double nDistinctPerRange
Definition: brin_bloom.c:157
BrinOpcInfo * bd_info[FLEXIBLE_ARRAY_MEMBER]
Definition: brin_internal.h:62
Relation bd_index
Definition: brin_internal.h:50
MemoryContext bd_context
Definition: brin_internal.h:47
TypeCacheEntry * oi_typcache[FLEXIBLE_ARRAY_MEMBER]
Definition: brin_internal.h:37
uint16 oi_nstored
Definition: brin_internal.h:28
bool oi_regular_nulls
Definition: brin_internal.h:31
void * oi_opaque
Definition: brin_internal.h:34
Datum * bv_values
Definition: brin_tuple.h:34
AttrNumber bv_attno
Definition: brin_tuple.h:31
bool bv_allnulls
Definition: brin_tuple.h:33
Definition: fmgr.h:57
Oid fn_oid
Definition: fmgr.h:59
TypeCacheEntry * lookup_type_cache(Oid type_id, int flags)
Definition: typcache.c:356
#define SET_VARSIZE(PTR, len)
Definition: varatt.h:305
Datum bit(PG_FUNCTION_ARGS)
Definition: varbit.c:391
Datum byteasend(PG_FUNCTION_ARGS)
Definition: varlena.c:490