PostgreSQL Source Code  git master
multirangetypes_selfuncs.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * multirangetypes_selfuncs.c
4  * Functions for selectivity estimation of multirange operators
5  *
6  * Estimates are based on histograms of lower and upper bounds, and the
7  * fraction of empty multiranges.
8  *
9  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
10  * Portions Copyright (c) 1994, Regents of the University of California
11  *
12  *
13  * IDENTIFICATION
14  * src/backend/utils/adt/multirangetypes_selfuncs.c
15  *
16  *-------------------------------------------------------------------------
17  */
18 #include "postgres.h"
19 
20 #include <math.h>
21 
22 #include "access/htup_details.h"
23 #include "catalog/pg_operator.h"
24 #include "catalog/pg_statistic.h"
25 #include "utils/float.h"
26 #include "utils/fmgrprotos.h"
27 #include "utils/lsyscache.h"
28 #include "utils/multirangetypes.h"
29 #include "utils/rangetypes.h"
30 #include "utils/selfuncs.h"
31 #include "utils/typcache.h"
32 
33 static double calc_multirangesel(TypeCacheEntry *typcache,
34  VariableStatData *vardata,
35  const MultirangeType *constval, Oid operator);
36 static double default_multirange_selectivity(Oid operator);
37 static double calc_hist_selectivity(TypeCacheEntry *typcache,
38  VariableStatData *vardata,
39  const MultirangeType *constval,
40  Oid operator);
41 static double calc_hist_selectivity_scalar(TypeCacheEntry *typcache,
42  const RangeBound *constbound,
43  const RangeBound *hist,
44  int hist_nvalues, bool equal);
45 static int rbound_bsearch(TypeCacheEntry *typcache, const RangeBound *value,
46  const RangeBound *hist, int hist_length, bool equal);
47 static float8 get_position(TypeCacheEntry *typcache, const RangeBound *value,
48  const RangeBound *hist1, const RangeBound *hist2);
49 static float8 get_len_position(double value, double hist1, double hist2);
50 static float8 get_distance(TypeCacheEntry *typcache, const RangeBound *bound1,
51  const RangeBound *bound2);
52 static int length_hist_bsearch(Datum *length_hist_values,
53  int length_hist_nvalues, double value,
54  bool equal);
55 static double calc_length_hist_frac(Datum *length_hist_values,
56  int length_hist_nvalues, double length1,
57  double length2, bool equal);
58 static double calc_hist_selectivity_contained(TypeCacheEntry *typcache,
59  const RangeBound *lower,
61  const RangeBound *hist_lower,
62  int hist_nvalues,
63  Datum *length_hist_values,
64  int length_hist_nvalues);
65 static double calc_hist_selectivity_contains(TypeCacheEntry *typcache,
66  const RangeBound *lower,
67  const RangeBound *upper,
68  const RangeBound *hist_lower,
69  int hist_nvalues,
70  Datum *length_hist_values,
71  int length_hist_nvalues);
72 
73 /*
74  * Returns a default selectivity estimate for given operator, when we don't
75  * have statistics or cannot use them for some reason.
76  */
77 static double
79 {
80  switch (operator)
81  {
82  case OID_MULTIRANGE_OVERLAPS_MULTIRANGE_OP:
83  case OID_MULTIRANGE_OVERLAPS_RANGE_OP:
84  case OID_RANGE_OVERLAPS_MULTIRANGE_OP:
85  return 0.01;
86 
87  case OID_RANGE_CONTAINS_MULTIRANGE_OP:
88  case OID_RANGE_MULTIRANGE_CONTAINED_OP:
89  case OID_MULTIRANGE_CONTAINS_RANGE_OP:
90  case OID_MULTIRANGE_CONTAINS_MULTIRANGE_OP:
91  case OID_MULTIRANGE_RANGE_CONTAINED_OP:
92  case OID_MULTIRANGE_MULTIRANGE_CONTAINED_OP:
93  return 0.005;
94 
95  case OID_MULTIRANGE_CONTAINS_ELEM_OP:
96  case OID_MULTIRANGE_ELEM_CONTAINED_OP:
97 
98  /*
99  * "multirange @> elem" is more or less identical to a scalar
100  * inequality "A >= b AND A <= c".
101  */
103 
104  case OID_MULTIRANGE_LESS_OP:
105  case OID_MULTIRANGE_LESS_EQUAL_OP:
106  case OID_MULTIRANGE_GREATER_OP:
107  case OID_MULTIRANGE_GREATER_EQUAL_OP:
108  case OID_MULTIRANGE_LEFT_RANGE_OP:
109  case OID_MULTIRANGE_LEFT_MULTIRANGE_OP:
110  case OID_RANGE_LEFT_MULTIRANGE_OP:
111  case OID_MULTIRANGE_RIGHT_RANGE_OP:
112  case OID_MULTIRANGE_RIGHT_MULTIRANGE_OP:
113  case OID_RANGE_RIGHT_MULTIRANGE_OP:
114  case OID_MULTIRANGE_OVERLAPS_LEFT_RANGE_OP:
115  case OID_RANGE_OVERLAPS_LEFT_MULTIRANGE_OP:
116  case OID_MULTIRANGE_OVERLAPS_LEFT_MULTIRANGE_OP:
117  case OID_MULTIRANGE_OVERLAPS_RIGHT_RANGE_OP:
118  case OID_RANGE_OVERLAPS_RIGHT_MULTIRANGE_OP:
119  case OID_MULTIRANGE_OVERLAPS_RIGHT_MULTIRANGE_OP:
120  /* these are similar to regular scalar inequalities */
121  return DEFAULT_INEQ_SEL;
122 
123  default:
124 
125  /*
126  * all multirange operators should be handled above, but just in
127  * case
128  */
129  return 0.01;
130  }
131 }
132 
133 /*
134  * multirangesel -- restriction selectivity for multirange operators
135  */
136 Datum
138 {
140  Oid operator = PG_GETARG_OID(1);
141  List *args = (List *) PG_GETARG_POINTER(2);
142  int varRelid = PG_GETARG_INT32(3);
143  VariableStatData vardata;
144  Node *other;
145  bool varonleft;
146  Selectivity selec;
147  TypeCacheEntry *typcache = NULL;
148  MultirangeType *constmultirange = NULL;
149  RangeType *constrange = NULL;
150 
151  /*
152  * If expression is not (variable op something) or (something op
153  * variable), then punt and return a default estimate.
154  */
155  if (!get_restriction_variable(root, args, varRelid,
156  &vardata, &other, &varonleft))
158 
159  /*
160  * Can't do anything useful if the something is not a constant, either.
161  */
162  if (!IsA(other, Const))
163  {
164  ReleaseVariableStats(vardata);
166  }
167 
168  /*
169  * All the multirange operators are strict, so we can cope with a NULL
170  * constant right away.
171  */
172  if (((Const *) other)->constisnull)
173  {
174  ReleaseVariableStats(vardata);
175  PG_RETURN_FLOAT8(0.0);
176  }
177 
178  /*
179  * If var is on the right, commute the operator, so that we can assume the
180  * var is on the left in what follows.
181  */
182  if (!varonleft)
183  {
184  /* we have other Op var, commute to make var Op other */
185  operator = get_commutator(operator);
186  if (!operator)
187  {
188  /* Use default selectivity (should we raise an error instead?) */
189  ReleaseVariableStats(vardata);
191  }
192  }
193 
194  /*
195  * OK, there's a Var and a Const we're dealing with here. We need the
196  * Const to be of same multirange type as the column, else we can't do
197  * anything useful. (Such cases will likely fail at runtime, but here we'd
198  * rather just return a default estimate.)
199  *
200  * If the operator is "multirange @> element", the constant should be of
201  * the element type of the multirange column. Convert it to a multirange
202  * that includes only that single point, so that we don't need special
203  * handling for that in what follows.
204  */
205  if (operator == OID_MULTIRANGE_CONTAINS_ELEM_OP)
206  {
207  typcache = multirange_get_typcache(fcinfo, vardata.vartype);
208 
209  if (((Const *) other)->consttype == typcache->rngtype->rngelemtype->type_id)
210  {
212  upper;
213 
214  lower.inclusive = true;
215  lower.val = ((Const *) other)->constvalue;
216  lower.infinite = false;
217  lower.lower = true;
218  upper.inclusive = true;
219  upper.val = ((Const *) other)->constvalue;
220  upper.infinite = false;
221  upper.lower = false;
222  constrange = range_serialize(typcache->rngtype, &lower, &upper,
223  false, NULL);
224  constmultirange = make_multirange(typcache->type_id, typcache->rngtype,
225  1, &constrange);
226  }
227  }
228  else if (operator == OID_RANGE_MULTIRANGE_CONTAINED_OP ||
229  operator == OID_MULTIRANGE_CONTAINS_RANGE_OP ||
230  operator == OID_MULTIRANGE_OVERLAPS_RANGE_OP ||
231  operator == OID_MULTIRANGE_OVERLAPS_LEFT_RANGE_OP ||
232  operator == OID_MULTIRANGE_OVERLAPS_RIGHT_RANGE_OP ||
233  operator == OID_MULTIRANGE_LEFT_RANGE_OP ||
234  operator == OID_MULTIRANGE_RIGHT_RANGE_OP)
235  {
236  /*
237  * Promote a range in "multirange OP range" just like we do an element
238  * in "multirange OP element".
239  */
240  typcache = multirange_get_typcache(fcinfo, vardata.vartype);
241  if (((Const *) other)->consttype == typcache->rngtype->type_id)
242  {
243  constrange = DatumGetRangeTypeP(((Const *) other)->constvalue);
244  constmultirange = make_multirange(typcache->type_id, typcache->rngtype,
245  1, &constrange);
246  }
247  }
248  else if (operator == OID_RANGE_OVERLAPS_MULTIRANGE_OP ||
249  operator == OID_RANGE_OVERLAPS_LEFT_MULTIRANGE_OP ||
250  operator == OID_RANGE_OVERLAPS_RIGHT_MULTIRANGE_OP ||
251  operator == OID_RANGE_LEFT_MULTIRANGE_OP ||
252  operator == OID_RANGE_RIGHT_MULTIRANGE_OP ||
253  operator == OID_RANGE_CONTAINS_MULTIRANGE_OP ||
254  operator == OID_MULTIRANGE_ELEM_CONTAINED_OP ||
255  operator == OID_MULTIRANGE_RANGE_CONTAINED_OP)
256  {
257  /*
258  * Here, the Var is the elem/range, not the multirange. For now we
259  * just punt and return the default estimate. In future we could
260  * disassemble the multirange constant to do something more
261  * intelligent.
262  */
263  }
264  else if (((Const *) other)->consttype == vardata.vartype)
265  {
266  /* Both sides are the same multirange type */
267  typcache = multirange_get_typcache(fcinfo, vardata.vartype);
268 
269  constmultirange = DatumGetMultirangeTypeP(((Const *) other)->constvalue);
270  }
271 
272  /*
273  * If we got a valid constant on one side of the operator, proceed to
274  * estimate using statistics. Otherwise punt and return a default constant
275  * estimate. Note that calc_multirangesel need not handle
276  * OID_MULTIRANGE_*_CONTAINED_OP.
277  */
278  if (constmultirange)
279  selec = calc_multirangesel(typcache, &vardata, constmultirange, operator);
280  else
281  selec = default_multirange_selectivity(operator);
282 
283  ReleaseVariableStats(vardata);
284 
285  CLAMP_PROBABILITY(selec);
286 
287  PG_RETURN_FLOAT8((float8) selec);
288 }
289 
290 static double
292  const MultirangeType *constval, Oid operator)
293 {
294  double hist_selec;
295  double selec;
296  float4 empty_frac,
297  null_frac;
298 
299  /*
300  * First look up the fraction of NULLs and empty multiranges from
301  * pg_statistic.
302  */
303  if (HeapTupleIsValid(vardata->statsTuple))
304  {
305  Form_pg_statistic stats;
306  AttStatsSlot sslot;
307 
308  stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
309  null_frac = stats->stanullfrac;
310 
311  /* Try to get fraction of empty multiranges */
312  if (get_attstatsslot(&sslot, vardata->statsTuple,
313  STATISTIC_KIND_RANGE_LENGTH_HISTOGRAM,
314  InvalidOid,
316  {
317  if (sslot.nnumbers != 1)
318  elog(ERROR, "invalid empty fraction statistic"); /* shouldn't happen */
319  empty_frac = sslot.numbers[0];
320  free_attstatsslot(&sslot);
321  }
322  else
323  {
324  /* No empty fraction statistic. Assume no empty ranges. */
325  empty_frac = 0.0;
326  }
327  }
328  else
329  {
330  /*
331  * No stats are available. Follow through the calculations below
332  * anyway, assuming no NULLs and no empty multiranges. This still
333  * allows us to give a better-than-nothing estimate based on whether
334  * the constant is an empty multirange or not.
335  */
336  null_frac = 0.0;
337  empty_frac = 0.0;
338  }
339 
340  if (MultirangeIsEmpty(constval))
341  {
342  /*
343  * An empty multirange matches all multiranges, all empty multiranges,
344  * or nothing, depending on the operator
345  */
346  switch (operator)
347  {
348  /* these return false if either argument is empty */
349  case OID_MULTIRANGE_OVERLAPS_RANGE_OP:
350  case OID_MULTIRANGE_OVERLAPS_MULTIRANGE_OP:
351  case OID_MULTIRANGE_OVERLAPS_LEFT_RANGE_OP:
352  case OID_MULTIRANGE_OVERLAPS_LEFT_MULTIRANGE_OP:
353  case OID_MULTIRANGE_OVERLAPS_RIGHT_RANGE_OP:
354  case OID_MULTIRANGE_OVERLAPS_RIGHT_MULTIRANGE_OP:
355  case OID_MULTIRANGE_LEFT_RANGE_OP:
356  case OID_MULTIRANGE_LEFT_MULTIRANGE_OP:
357  case OID_MULTIRANGE_RIGHT_RANGE_OP:
358  case OID_MULTIRANGE_RIGHT_MULTIRANGE_OP:
359  /* nothing is less than an empty multirange */
360  case OID_MULTIRANGE_LESS_OP:
361  selec = 0.0;
362  break;
363 
364  /*
365  * only empty multiranges can be contained by an empty
366  * multirange
367  */
368  case OID_RANGE_MULTIRANGE_CONTAINED_OP:
369  case OID_MULTIRANGE_MULTIRANGE_CONTAINED_OP:
370  /* only empty ranges are <= an empty multirange */
371  case OID_MULTIRANGE_LESS_EQUAL_OP:
372  selec = empty_frac;
373  break;
374 
375  /* everything contains an empty multirange */
376  case OID_MULTIRANGE_CONTAINS_RANGE_OP:
377  case OID_MULTIRANGE_CONTAINS_MULTIRANGE_OP:
378  /* everything is >= an empty multirange */
379  case OID_MULTIRANGE_GREATER_EQUAL_OP:
380  selec = 1.0;
381  break;
382 
383  /* all non-empty multiranges are > an empty multirange */
384  case OID_MULTIRANGE_GREATER_OP:
385  selec = 1.0 - empty_frac;
386  break;
387 
388  /* an element cannot be empty */
389  case OID_MULTIRANGE_CONTAINS_ELEM_OP:
390 
391  /* filtered out by multirangesel() */
392  case OID_RANGE_OVERLAPS_MULTIRANGE_OP:
393  case OID_RANGE_OVERLAPS_LEFT_MULTIRANGE_OP:
394  case OID_RANGE_OVERLAPS_RIGHT_MULTIRANGE_OP:
395  case OID_RANGE_LEFT_MULTIRANGE_OP:
396  case OID_RANGE_RIGHT_MULTIRANGE_OP:
397  case OID_RANGE_CONTAINS_MULTIRANGE_OP:
398  case OID_MULTIRANGE_ELEM_CONTAINED_OP:
399  case OID_MULTIRANGE_RANGE_CONTAINED_OP:
400 
401  default:
402  elog(ERROR, "unexpected operator %u", operator);
403  selec = 0.0; /* keep compiler quiet */
404  break;
405  }
406  }
407  else
408  {
409  /*
410  * Calculate selectivity using bound histograms. If that fails for
411  * some reason, e.g no histogram in pg_statistic, use the default
412  * constant estimate for the fraction of non-empty values. This is
413  * still somewhat better than just returning the default estimate,
414  * because this still takes into account the fraction of empty and
415  * NULL tuples, if we had statistics for them.
416  */
417  hist_selec = calc_hist_selectivity(typcache, vardata, constval,
418  operator);
419  if (hist_selec < 0.0)
420  hist_selec = default_multirange_selectivity(operator);
421 
422  /*
423  * Now merge the results for the empty multiranges and histogram
424  * calculations, realizing that the histogram covers only the
425  * non-null, non-empty values.
426  */
427  if (operator == OID_RANGE_MULTIRANGE_CONTAINED_OP ||
428  operator == OID_MULTIRANGE_MULTIRANGE_CONTAINED_OP)
429  {
430  /* empty is contained by anything non-empty */
431  selec = (1.0 - empty_frac) * hist_selec + empty_frac;
432  }
433  else
434  {
435  /* with any other operator, empty Op non-empty matches nothing */
436  selec = (1.0 - empty_frac) * hist_selec;
437  }
438  }
439 
440  /* all multirange operators are strict */
441  selec *= (1.0 - null_frac);
442 
443  /* result should be in range, but make sure... */
444  CLAMP_PROBABILITY(selec);
445 
446  return selec;
447 }
448 
449 /*
450  * Calculate multirange operator selectivity using histograms of multirange bounds.
451  *
452  * This estimate is for the portion of values that are not empty and not
453  * NULL.
454  */
455 static double
457  const MultirangeType *constval, Oid operator)
458 {
459  TypeCacheEntry *rng_typcache = typcache->rngtype;
460  AttStatsSlot hslot;
461  AttStatsSlot lslot;
462  int nhist;
463  RangeBound *hist_lower;
464  RangeBound *hist_upper;
465  int i;
466  RangeBound const_lower;
467  RangeBound const_upper;
468  RangeBound tmp;
469  double hist_selec;
470 
471  /* Can't use the histogram with insecure multirange support functions */
472  if (!statistic_proc_security_check(vardata,
473  rng_typcache->rng_cmp_proc_finfo.fn_oid))
474  return -1;
475  if (OidIsValid(rng_typcache->rng_subdiff_finfo.fn_oid) &&
477  rng_typcache->rng_subdiff_finfo.fn_oid))
478  return -1;
479 
480  /* Try to get histogram of ranges */
481  if (!(HeapTupleIsValid(vardata->statsTuple) &&
482  get_attstatsslot(&hslot, vardata->statsTuple,
483  STATISTIC_KIND_BOUNDS_HISTOGRAM, InvalidOid,
485  return -1.0;
486 
487  /* check that it's a histogram, not just a dummy entry */
488  if (hslot.nvalues < 2)
489  {
490  free_attstatsslot(&hslot);
491  return -1.0;
492  }
493 
494  /*
495  * Convert histogram of ranges into histograms of its lower and upper
496  * bounds.
497  */
498  nhist = hslot.nvalues;
499  hist_lower = (RangeBound *) palloc(sizeof(RangeBound) * nhist);
500  hist_upper = (RangeBound *) palloc(sizeof(RangeBound) * nhist);
501  for (i = 0; i < nhist; i++)
502  {
503  bool empty;
504 
505  range_deserialize(rng_typcache, DatumGetRangeTypeP(hslot.values[i]),
506  &hist_lower[i], &hist_upper[i], &empty);
507  /* The histogram should not contain any empty ranges */
508  if (empty)
509  elog(ERROR, "bounds histogram contains an empty range");
510  }
511 
512  /* @> and @< also need a histogram of range lengths */
513  if (operator == OID_MULTIRANGE_CONTAINS_RANGE_OP ||
514  operator == OID_MULTIRANGE_CONTAINS_MULTIRANGE_OP ||
515  operator == OID_MULTIRANGE_RANGE_CONTAINED_OP ||
516  operator == OID_MULTIRANGE_MULTIRANGE_CONTAINED_OP)
517  {
518  if (!(HeapTupleIsValid(vardata->statsTuple) &&
519  get_attstatsslot(&lslot, vardata->statsTuple,
520  STATISTIC_KIND_RANGE_LENGTH_HISTOGRAM,
521  InvalidOid,
523  {
524  free_attstatsslot(&hslot);
525  return -1.0;
526  }
527 
528  /* check that it's a histogram, not just a dummy entry */
529  if (lslot.nvalues < 2)
530  {
531  free_attstatsslot(&lslot);
532  free_attstatsslot(&hslot);
533  return -1.0;
534  }
535  }
536  else
537  memset(&lslot, 0, sizeof(lslot));
538 
539  /* Extract the bounds of the constant value. */
540  Assert(constval->rangeCount > 0);
541  multirange_get_bounds(rng_typcache, constval, 0,
542  &const_lower, &tmp);
543  multirange_get_bounds(rng_typcache, constval, constval->rangeCount - 1,
544  &tmp, &const_upper);
545 
546  /*
547  * Calculate selectivity comparing the lower or upper bound of the
548  * constant with the histogram of lower or upper bounds.
549  */
550  switch (operator)
551  {
552  case OID_MULTIRANGE_LESS_OP:
553 
554  /*
555  * The regular b-tree comparison operators (<, <=, >, >=) compare
556  * the lower bounds first, and the upper bounds for values with
557  * equal lower bounds. Estimate that by comparing the lower bounds
558  * only. This gives a fairly accurate estimate assuming there
559  * aren't many rows with a lower bound equal to the constant's
560  * lower bound.
561  */
562  hist_selec =
563  calc_hist_selectivity_scalar(rng_typcache, &const_lower,
564  hist_lower, nhist, false);
565  break;
566 
567  case OID_MULTIRANGE_LESS_EQUAL_OP:
568  hist_selec =
569  calc_hist_selectivity_scalar(rng_typcache, &const_lower,
570  hist_lower, nhist, true);
571  break;
572 
573  case OID_MULTIRANGE_GREATER_OP:
574  hist_selec =
575  1 - calc_hist_selectivity_scalar(rng_typcache, &const_lower,
576  hist_lower, nhist, false);
577  break;
578 
579  case OID_MULTIRANGE_GREATER_EQUAL_OP:
580  hist_selec =
581  1 - calc_hist_selectivity_scalar(rng_typcache, &const_lower,
582  hist_lower, nhist, true);
583  break;
584 
585  case OID_MULTIRANGE_LEFT_RANGE_OP:
586  case OID_MULTIRANGE_LEFT_MULTIRANGE_OP:
587  /* var << const when upper(var) < lower(const) */
588  hist_selec =
589  calc_hist_selectivity_scalar(rng_typcache, &const_lower,
590  hist_upper, nhist, false);
591  break;
592 
593  case OID_MULTIRANGE_RIGHT_RANGE_OP:
594  case OID_MULTIRANGE_RIGHT_MULTIRANGE_OP:
595  /* var >> const when lower(var) > upper(const) */
596  hist_selec =
597  1 - calc_hist_selectivity_scalar(rng_typcache, &const_upper,
598  hist_lower, nhist, true);
599  break;
600 
601  case OID_MULTIRANGE_OVERLAPS_RIGHT_RANGE_OP:
602  case OID_MULTIRANGE_OVERLAPS_RIGHT_MULTIRANGE_OP:
603  /* compare lower bounds */
604  hist_selec =
605  1 - calc_hist_selectivity_scalar(rng_typcache, &const_lower,
606  hist_lower, nhist, false);
607  break;
608 
609  case OID_MULTIRANGE_OVERLAPS_LEFT_RANGE_OP:
610  case OID_MULTIRANGE_OVERLAPS_LEFT_MULTIRANGE_OP:
611  /* compare upper bounds */
612  hist_selec =
613  calc_hist_selectivity_scalar(rng_typcache, &const_upper,
614  hist_upper, nhist, true);
615  break;
616 
617  case OID_MULTIRANGE_OVERLAPS_RANGE_OP:
618  case OID_MULTIRANGE_OVERLAPS_MULTIRANGE_OP:
619  case OID_MULTIRANGE_CONTAINS_ELEM_OP:
620 
621  /*
622  * A && B <=> NOT (A << B OR A >> B).
623  *
624  * Since A << B and A >> B are mutually exclusive events we can
625  * sum their probabilities to find probability of (A << B OR A >>
626  * B).
627  *
628  * "multirange @> elem" is equivalent to "multirange &&
629  * {[elem,elem]}". The caller already constructed the singular
630  * range from the element constant, so just treat it the same as
631  * &&.
632  */
633  hist_selec =
634  calc_hist_selectivity_scalar(rng_typcache,
635  &const_lower, hist_upper,
636  nhist, false);
637  hist_selec +=
638  (1.0 - calc_hist_selectivity_scalar(rng_typcache,
639  &const_upper, hist_lower,
640  nhist, true));
641  hist_selec = 1.0 - hist_selec;
642  break;
643 
644  case OID_MULTIRANGE_CONTAINS_RANGE_OP:
645  case OID_MULTIRANGE_CONTAINS_MULTIRANGE_OP:
646  hist_selec =
647  calc_hist_selectivity_contains(rng_typcache, &const_lower,
648  &const_upper, hist_lower, nhist,
649  lslot.values, lslot.nvalues);
650  break;
651 
652  case OID_MULTIRANGE_MULTIRANGE_CONTAINED_OP:
653  case OID_RANGE_MULTIRANGE_CONTAINED_OP:
654  if (const_lower.infinite)
655  {
656  /*
657  * Lower bound no longer matters. Just estimate the fraction
658  * with an upper bound <= const upper bound
659  */
660  hist_selec =
661  calc_hist_selectivity_scalar(rng_typcache, &const_upper,
662  hist_upper, nhist, true);
663  }
664  else if (const_upper.infinite)
665  {
666  hist_selec =
667  1.0 - calc_hist_selectivity_scalar(rng_typcache, &const_lower,
668  hist_lower, nhist, false);
669  }
670  else
671  {
672  hist_selec =
673  calc_hist_selectivity_contained(rng_typcache, &const_lower,
674  &const_upper, hist_lower, nhist,
675  lslot.values, lslot.nvalues);
676  }
677  break;
678 
679  /* filtered out by multirangesel() */
680  case OID_RANGE_OVERLAPS_MULTIRANGE_OP:
681  case OID_RANGE_OVERLAPS_LEFT_MULTIRANGE_OP:
682  case OID_RANGE_OVERLAPS_RIGHT_MULTIRANGE_OP:
683  case OID_RANGE_LEFT_MULTIRANGE_OP:
684  case OID_RANGE_RIGHT_MULTIRANGE_OP:
685  case OID_RANGE_CONTAINS_MULTIRANGE_OP:
686  case OID_MULTIRANGE_ELEM_CONTAINED_OP:
687  case OID_MULTIRANGE_RANGE_CONTAINED_OP:
688 
689  default:
690  elog(ERROR, "unknown multirange operator %u", operator);
691  hist_selec = -1.0; /* keep compiler quiet */
692  break;
693  }
694 
695  free_attstatsslot(&lslot);
696  free_attstatsslot(&hslot);
697 
698  return hist_selec;
699 }
700 
701 
702 /*
703  * Look up the fraction of values less than (or equal, if 'equal' argument
704  * is true) a given const in a histogram of range bounds.
705  */
706 static double
708  const RangeBound *hist, int hist_nvalues, bool equal)
709 {
710  Selectivity selec;
711  int index;
712 
713  /*
714  * Find the histogram bin the given constant falls into. Estimate
715  * selectivity as the number of preceding whole bins.
716  */
717  index = rbound_bsearch(typcache, constbound, hist, hist_nvalues, equal);
718  selec = (Selectivity) (Max(index, 0)) / (Selectivity) (hist_nvalues - 1);
719 
720  /* Adjust using linear interpolation within the bin */
721  if (index >= 0 && index < hist_nvalues - 1)
722  selec += get_position(typcache, constbound, &hist[index],
723  &hist[index + 1]) / (Selectivity) (hist_nvalues - 1);
724 
725  return selec;
726 }
727 
728 /*
729  * Binary search on an array of range bounds. Returns greatest index of range
730  * bound in array which is less(less or equal) than given range bound. If all
731  * range bounds in array are greater or equal(greater) than given range bound,
732  * return -1. When "equal" flag is set conditions in brackets are used.
733  *
734  * This function is used in scalar operator selectivity estimation. Another
735  * goal of this function is to find a histogram bin where to stop
736  * interpolation of portion of bounds which are less than or equal to given bound.
737  */
738 static int
739 rbound_bsearch(TypeCacheEntry *typcache, const RangeBound *value, const RangeBound *hist,
740  int hist_length, bool equal)
741 {
742  int lower = -1,
743  upper = hist_length - 1,
744  cmp,
745  middle;
746 
747  while (lower < upper)
748  {
749  middle = (lower + upper + 1) / 2;
750  cmp = range_cmp_bounds(typcache, &hist[middle], value);
751 
752  if (cmp < 0 || (equal && cmp == 0))
753  lower = middle;
754  else
755  upper = middle - 1;
756  }
757  return lower;
758 }
759 
760 
761 /*
762  * Binary search on length histogram. Returns greatest index of range length in
763  * histogram which is less than (less than or equal) the given length value. If
764  * all lengths in the histogram are greater than (greater than or equal) the
765  * given length, returns -1.
766  */
767 static int
768 length_hist_bsearch(Datum *length_hist_values, int length_hist_nvalues,
769  double value, bool equal)
770 {
771  int lower = -1,
772  upper = length_hist_nvalues - 1,
773  middle;
774 
775  while (lower < upper)
776  {
777  double middleval;
778 
779  middle = (lower + upper + 1) / 2;
780 
781  middleval = DatumGetFloat8(length_hist_values[middle]);
782  if (middleval < value || (equal && middleval <= value))
783  lower = middle;
784  else
785  upper = middle - 1;
786  }
787  return lower;
788 }
789 
790 /*
791  * Get relative position of value in histogram bin in [0,1] range.
792  */
793 static float8
794 get_position(TypeCacheEntry *typcache, const RangeBound *value, const RangeBound *hist1,
795  const RangeBound *hist2)
796 {
797  bool has_subdiff = OidIsValid(typcache->rng_subdiff_finfo.fn_oid);
798  float8 position;
799 
800  if (!hist1->infinite && !hist2->infinite)
801  {
802  float8 bin_width;
803 
804  /*
805  * Both bounds are finite. Assuming the subtype's comparison function
806  * works sanely, the value must be finite, too, because it lies
807  * somewhere between the bounds. If it doesn't, arbitrarily return
808  * 0.5.
809  */
810  if (value->infinite)
811  return 0.5;
812 
813  /* Can't interpolate without subdiff function */
814  if (!has_subdiff)
815  return 0.5;
816 
817  /* Calculate relative position using subdiff function. */
818  bin_width = DatumGetFloat8(FunctionCall2Coll(&typcache->rng_subdiff_finfo,
819  typcache->rng_collation,
820  hist2->val,
821  hist1->val));
822  if (isnan(bin_width) || bin_width <= 0.0)
823  return 0.5; /* punt for NaN or zero-width bin */
824 
825  position = DatumGetFloat8(FunctionCall2Coll(&typcache->rng_subdiff_finfo,
826  typcache->rng_collation,
827  value->val,
828  hist1->val))
829  / bin_width;
830 
831  if (isnan(position))
832  return 0.5; /* punt for NaN from subdiff, Inf/Inf, etc */
833 
834  /* Relative position must be in [0,1] range */
835  position = Max(position, 0.0);
836  position = Min(position, 1.0);
837  return position;
838  }
839  else if (hist1->infinite && !hist2->infinite)
840  {
841  /*
842  * Lower bin boundary is -infinite, upper is finite. If the value is
843  * -infinite, return 0.0 to indicate it's equal to the lower bound.
844  * Otherwise return 1.0 to indicate it's infinitely far from the lower
845  * bound.
846  */
847  return ((value->infinite && value->lower) ? 0.0 : 1.0);
848  }
849  else if (!hist1->infinite && hist2->infinite)
850  {
851  /* same as above, but in reverse */
852  return ((value->infinite && !value->lower) ? 1.0 : 0.0);
853  }
854  else
855  {
856  /*
857  * If both bin boundaries are infinite, they should be equal to each
858  * other, and the value should also be infinite and equal to both
859  * bounds. (But don't Assert that, to avoid crashing if a user creates
860  * a datatype with a broken comparison function).
861  *
862  * Assume the value to lie in the middle of the infinite bounds.
863  */
864  return 0.5;
865  }
866 }
867 
868 
869 /*
870  * Get relative position of value in a length histogram bin in [0,1] range.
871  */
872 static double
873 get_len_position(double value, double hist1, double hist2)
874 {
875  if (!isinf(hist1) && !isinf(hist2))
876  {
877  /*
878  * Both bounds are finite. The value should be finite too, because it
879  * lies somewhere between the bounds. If it doesn't, just return
880  * something.
881  */
882  if (isinf(value))
883  return 0.5;
884 
885  return 1.0 - (hist2 - value) / (hist2 - hist1);
886  }
887  else if (isinf(hist1) && !isinf(hist2))
888  {
889  /*
890  * Lower bin boundary is -infinite, upper is finite. Return 1.0 to
891  * indicate the value is infinitely far from the lower bound.
892  */
893  return 1.0;
894  }
895  else if (isinf(hist1) && isinf(hist2))
896  {
897  /* same as above, but in reverse */
898  return 0.0;
899  }
900  else
901  {
902  /*
903  * If both bin boundaries are infinite, they should be equal to each
904  * other, and the value should also be infinite and equal to both
905  * bounds. (But don't Assert that, to avoid crashing unnecessarily if
906  * the caller messes up)
907  *
908  * Assume the value to lie in the middle of the infinite bounds.
909  */
910  return 0.5;
911  }
912 }
913 
914 /*
915  * Measure distance between two range bounds.
916  */
917 static float8
918 get_distance(TypeCacheEntry *typcache, const RangeBound *bound1, const RangeBound *bound2)
919 {
920  bool has_subdiff = OidIsValid(typcache->rng_subdiff_finfo.fn_oid);
921 
922  if (!bound1->infinite && !bound2->infinite)
923  {
924  /*
925  * Neither bound is infinite, use subdiff function or return default
926  * value of 1.0 if no subdiff is available.
927  */
928  if (has_subdiff)
929  {
930  float8 res;
931 
933  typcache->rng_collation,
934  bound2->val,
935  bound1->val));
936  /* Reject possible NaN result, also negative result */
937  if (isnan(res) || res < 0.0)
938  return 1.0;
939  else
940  return res;
941  }
942  else
943  return 1.0;
944  }
945  else if (bound1->infinite && bound2->infinite)
946  {
947  /* Both bounds are infinite */
948  if (bound1->lower == bound2->lower)
949  return 0.0;
950  else
951  return get_float8_infinity();
952  }
953  else
954  {
955  /* One bound is infinite, the other is not */
956  return get_float8_infinity();
957  }
958 }
959 
960 /*
961  * Calculate the average of function P(x), in the interval [length1, length2],
962  * where P(x) is the fraction of tuples with length < x (or length <= x if
963  * 'equal' is true).
964  */
965 static double
966 calc_length_hist_frac(Datum *length_hist_values, int length_hist_nvalues,
967  double length1, double length2, bool equal)
968 {
969  double frac;
970  double A,
971  B,
972  PA,
973  PB;
974  double pos;
975  int i;
976  double area;
977 
978  Assert(length2 >= length1);
979 
980  if (length2 < 0.0)
981  return 0.0; /* shouldn't happen, but doesn't hurt to check */
982 
983  /* All lengths in the table are <= infinite. */
984  if (isinf(length2) && equal)
985  return 1.0;
986 
987  /*----------
988  * The average of a function between A and B can be calculated by the
989  * formula:
990  *
991  * B
992  * 1 /
993  * ------- | P(x)dx
994  * B - A /
995  * A
996  *
997  * The geometrical interpretation of the integral is the area under the
998  * graph of P(x). P(x) is defined by the length histogram. We calculate
999  * the area in a piecewise fashion, iterating through the length histogram
1000  * bins. Each bin is a trapezoid:
1001  *
1002  * P(x2)
1003  * /|
1004  * / |
1005  * P(x1)/ |
1006  * | |
1007  * | |
1008  * ---+---+--
1009  * x1 x2
1010  *
1011  * where x1 and x2 are the boundaries of the current histogram, and P(x1)
1012  * and P(x1) are the cumulative fraction of tuples at the boundaries.
1013  *
1014  * The area of each trapezoid is 1/2 * (P(x2) + P(x1)) * (x2 - x1)
1015  *
1016  * The first bin contains the lower bound passed by the caller, so we
1017  * use linear interpolation between the previous and next histogram bin
1018  * boundary to calculate P(x1). Likewise for the last bin: we use linear
1019  * interpolation to calculate P(x2). For the bins in between, x1 and x2
1020  * lie on histogram bin boundaries, so P(x1) and P(x2) are simply:
1021  * P(x1) = (bin index) / (number of bins)
1022  * P(x2) = (bin index + 1 / (number of bins)
1023  */
1024 
1025  /* First bin, the one that contains lower bound */
1026  i = length_hist_bsearch(length_hist_values, length_hist_nvalues, length1, equal);
1027  if (i >= length_hist_nvalues - 1)
1028  return 1.0;
1029 
1030  if (i < 0)
1031  {
1032  i = 0;
1033  pos = 0.0;
1034  }
1035  else
1036  {
1037  /* interpolate length1's position in the bin */
1038  pos = get_len_position(length1,
1039  DatumGetFloat8(length_hist_values[i]),
1040  DatumGetFloat8(length_hist_values[i + 1]));
1041  }
1042  PB = (((double) i) + pos) / (double) (length_hist_nvalues - 1);
1043  B = length1;
1044 
1045  /*
1046  * In the degenerate case that length1 == length2, simply return
1047  * P(length1). This is not merely an optimization: if length1 == length2,
1048  * we'd divide by zero later on.
1049  */
1050  if (length2 == length1)
1051  return PB;
1052 
1053  /*
1054  * Loop through all the bins, until we hit the last bin, the one that
1055  * contains the upper bound. (if lower and upper bounds are in the same
1056  * bin, this falls out immediately)
1057  */
1058  area = 0.0;
1059  for (; i < length_hist_nvalues - 1; i++)
1060  {
1061  double bin_upper = DatumGetFloat8(length_hist_values[i + 1]);
1062 
1063  /* check if we've reached the last bin */
1064  if (!(bin_upper < length2 || (equal && bin_upper <= length2)))
1065  break;
1066 
1067  /* the upper bound of previous bin is the lower bound of this bin */
1068  A = B;
1069  PA = PB;
1070 
1071  B = bin_upper;
1072  PB = (double) i / (double) (length_hist_nvalues - 1);
1073 
1074  /*
1075  * Add the area of this trapezoid to the total. The point of the
1076  * if-check is to avoid NaN, in the corner case that PA == PB == 0,
1077  * and B - A == Inf. The area of a zero-height trapezoid (PA == PB ==
1078  * 0) is zero, regardless of the width (B - A).
1079  */
1080  if (PA > 0 || PB > 0)
1081  area += 0.5 * (PB + PA) * (B - A);
1082  }
1083 
1084  /* Last bin */
1085  A = B;
1086  PA = PB;
1087 
1088  B = length2; /* last bin ends at the query upper bound */
1089  if (i >= length_hist_nvalues - 1)
1090  pos = 0.0;
1091  else
1092  {
1093  if (DatumGetFloat8(length_hist_values[i]) == DatumGetFloat8(length_hist_values[i + 1]))
1094  pos = 0.0;
1095  else
1096  pos = get_len_position(length2,
1097  DatumGetFloat8(length_hist_values[i]),
1098  DatumGetFloat8(length_hist_values[i + 1]));
1099  }
1100  PB = (((double) i) + pos) / (double) (length_hist_nvalues - 1);
1101 
1102  if (PA > 0 || PB > 0)
1103  area += 0.5 * (PB + PA) * (B - A);
1104 
1105  /*
1106  * Ok, we have calculated the area, ie. the integral. Divide by width to
1107  * get the requested average.
1108  *
1109  * Avoid NaN arising from infinite / infinite. This happens at least if
1110  * length2 is infinite. It's not clear what the correct value would be in
1111  * that case, so 0.5 seems as good as any value.
1112  */
1113  if (isinf(area) && isinf(length2))
1114  frac = 0.5;
1115  else
1116  frac = area / (length2 - length1);
1117 
1118  return frac;
1119 }
1120 
1121 /*
1122  * Calculate selectivity of "var <@ const" operator, ie. estimate the fraction
1123  * of multiranges that fall within the constant lower and upper bounds. This uses
1124  * the histograms of range lower bounds and range lengths, on the assumption
1125  * that the range lengths are independent of the lower bounds.
1126  *
1127  * The caller has already checked that constant lower and upper bounds are
1128  * finite.
1129  */
1130 static double
1132  const RangeBound *lower, RangeBound *upper,
1133  const RangeBound *hist_lower, int hist_nvalues,
1134  Datum *length_hist_values, int length_hist_nvalues)
1135 {
1136  int i,
1137  upper_index;
1138  float8 prev_dist;
1139  double bin_width;
1140  double upper_bin_width;
1141  double sum_frac;
1142 
1143  /*
1144  * Begin by finding the bin containing the upper bound, in the lower bound
1145  * histogram. Any range with a lower bound > constant upper bound can't
1146  * match, ie. there are no matches in bins greater than upper_index.
1147  */
1148  upper->inclusive = !upper->inclusive;
1149  upper->lower = true;
1150  upper_index = rbound_bsearch(typcache, upper, hist_lower, hist_nvalues,
1151  false);
1152 
1153  /*
1154  * If the upper bound value is below the histogram's lower limit, there
1155  * are no matches.
1156  */
1157  if (upper_index < 0)
1158  return 0.0;
1159 
1160  /*
1161  * If the upper bound value is at or beyond the histogram's upper limit,
1162  * start our loop at the last actual bin, as though the upper bound were
1163  * within that bin; get_position will clamp its result to 1.0 anyway.
1164  * (This corresponds to assuming that the data population above the
1165  * histogram's upper limit is empty, exactly like what we just assumed for
1166  * the lower limit.)
1167  */
1168  upper_index = Min(upper_index, hist_nvalues - 2);
1169 
1170  /*
1171  * Calculate upper_bin_width, ie. the fraction of the (upper_index,
1172  * upper_index + 1) bin which is greater than upper bound of query range
1173  * using linear interpolation of subdiff function.
1174  */
1175  upper_bin_width = get_position(typcache, upper,
1176  &hist_lower[upper_index],
1177  &hist_lower[upper_index + 1]);
1178 
1179  /*
1180  * In the loop, dist and prev_dist are the distance of the "current" bin's
1181  * lower and upper bounds from the constant upper bound.
1182  *
1183  * bin_width represents the width of the current bin. Normally it is 1.0,
1184  * meaning a full width bin, but can be less in the corner cases: start
1185  * and end of the loop. We start with bin_width = upper_bin_width, because
1186  * we begin at the bin containing the upper bound.
1187  */
1188  prev_dist = 0.0;
1189  bin_width = upper_bin_width;
1190 
1191  sum_frac = 0.0;
1192  for (i = upper_index; i >= 0; i--)
1193  {
1194  double dist;
1195  double length_hist_frac;
1196  bool final_bin = false;
1197 
1198  /*
1199  * dist -- distance from upper bound of query range to lower bound of
1200  * the current bin in the lower bound histogram. Or to the lower bound
1201  * of the constant range, if this is the final bin, containing the
1202  * constant lower bound.
1203  */
1204  if (range_cmp_bounds(typcache, &hist_lower[i], lower) < 0)
1205  {
1206  dist = get_distance(typcache, lower, upper);
1207 
1208  /*
1209  * Subtract from bin_width the portion of this bin that we want to
1210  * ignore.
1211  */
1212  bin_width -= get_position(typcache, lower, &hist_lower[i],
1213  &hist_lower[i + 1]);
1214  if (bin_width < 0.0)
1215  bin_width = 0.0;
1216  final_bin = true;
1217  }
1218  else
1219  dist = get_distance(typcache, &hist_lower[i], upper);
1220 
1221  /*
1222  * Estimate the fraction of tuples in this bin that are narrow enough
1223  * to not exceed the distance to the upper bound of the query range.
1224  */
1225  length_hist_frac = calc_length_hist_frac(length_hist_values,
1226  length_hist_nvalues,
1227  prev_dist, dist, true);
1228 
1229  /*
1230  * Add the fraction of tuples in this bin, with a suitable length, to
1231  * the total.
1232  */
1233  sum_frac += length_hist_frac * bin_width / (double) (hist_nvalues - 1);
1234 
1235  if (final_bin)
1236  break;
1237 
1238  bin_width = 1.0;
1239  prev_dist = dist;
1240  }
1241 
1242  return sum_frac;
1243 }
1244 
1245 /*
1246  * Calculate selectivity of "var @> const" operator, ie. estimate the fraction
1247  * of multiranges that contain the constant lower and upper bounds. This uses
1248  * the histograms of range lower bounds and range lengths, on the assumption
1249  * that the range lengths are independent of the lower bounds.
1250  */
1251 static double
1253  const RangeBound *lower, const RangeBound *upper,
1254  const RangeBound *hist_lower, int hist_nvalues,
1255  Datum *length_hist_values, int length_hist_nvalues)
1256 {
1257  int i,
1258  lower_index;
1259  double bin_width,
1260  lower_bin_width;
1261  double sum_frac;
1262  float8 prev_dist;
1263 
1264  /* Find the bin containing the lower bound of query range. */
1265  lower_index = rbound_bsearch(typcache, lower, hist_lower, hist_nvalues,
1266  true);
1267 
1268  /*
1269  * If the lower bound value is below the histogram's lower limit, there
1270  * are no matches.
1271  */
1272  if (lower_index < 0)
1273  return 0.0;
1274 
1275  /*
1276  * If the lower bound value is at or beyond the histogram's upper limit,
1277  * start our loop at the last actual bin, as though the upper bound were
1278  * within that bin; get_position will clamp its result to 1.0 anyway.
1279  * (This corresponds to assuming that the data population above the
1280  * histogram's upper limit is empty, exactly like what we just assumed for
1281  * the lower limit.)
1282  */
1283  lower_index = Min(lower_index, hist_nvalues - 2);
1284 
1285  /*
1286  * Calculate lower_bin_width, ie. the fraction of the of (lower_index,
1287  * lower_index + 1) bin which is greater than lower bound of query range
1288  * using linear interpolation of subdiff function.
1289  */
1290  lower_bin_width = get_position(typcache, lower, &hist_lower[lower_index],
1291  &hist_lower[lower_index + 1]);
1292 
1293  /*
1294  * Loop through all the lower bound bins, smaller than the query lower
1295  * bound. In the loop, dist and prev_dist are the distance of the
1296  * "current" bin's lower and upper bounds from the constant upper bound.
1297  * We begin from query lower bound, and walk backwards, so the first bin's
1298  * upper bound is the query lower bound, and its distance to the query
1299  * upper bound is the length of the query range.
1300  *
1301  * bin_width represents the width of the current bin. Normally it is 1.0,
1302  * meaning a full width bin, except for the first bin, which is only
1303  * counted up to the constant lower bound.
1304  */
1305  prev_dist = get_distance(typcache, lower, upper);
1306  sum_frac = 0.0;
1307  bin_width = lower_bin_width;
1308  for (i = lower_index; i >= 0; i--)
1309  {
1310  float8 dist;
1311  double length_hist_frac;
1312 
1313  /*
1314  * dist -- distance from upper bound of query range to current value
1315  * of lower bound histogram or lower bound of query range (if we've
1316  * reach it).
1317  */
1318  dist = get_distance(typcache, &hist_lower[i], upper);
1319 
1320  /*
1321  * Get average fraction of length histogram which covers intervals
1322  * longer than (or equal to) distance to upper bound of query range.
1323  */
1324  length_hist_frac =
1325  1.0 - calc_length_hist_frac(length_hist_values,
1326  length_hist_nvalues,
1327  prev_dist, dist, false);
1328 
1329  sum_frac += length_hist_frac * bin_width / (double) (hist_nvalues - 1);
1330 
1331  bin_width = 1.0;
1332  prev_dist = dist;
1333  }
1334 
1335  return sum_frac;
1336 }
#define Min(x, y)
Definition: c.h:1004
#define Max(x, y)
Definition: c.h:998
#define Assert(condition)
Definition: c.h:858
double float8
Definition: c.h:630
float float4
Definition: c.h:629
#define OidIsValid(objectId)
Definition: c.h:775
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
static float8 get_float8_infinity(void)
Definition: float.h:94
Datum FunctionCall2Coll(FmgrInfo *flinfo, Oid collation, Datum arg1, Datum arg2)
Definition: fmgr.c:1149
#define PG_GETARG_OID(n)
Definition: fmgr.h:275
#define PG_RETURN_FLOAT8(x)
Definition: fmgr.h:367
#define PG_GETARG_POINTER(n)
Definition: fmgr.h:276
#define PG_GETARG_INT32(n)
Definition: fmgr.h:269
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
static struct @157 value
int i
Definition: isn.c:73
void free_attstatsslot(AttStatsSlot *sslot)
Definition: lsyscache.c:3344
bool get_attstatsslot(AttStatsSlot *sslot, HeapTuple statstuple, int reqkind, Oid reqop, int flags)
Definition: lsyscache.c:3234
Oid get_commutator(Oid opno)
Definition: lsyscache.c:1509
#define ATTSTATSSLOT_NUMBERS
Definition: lsyscache.h:43
#define ATTSTATSSLOT_VALUES
Definition: lsyscache.h:42
void * palloc(Size size)
Definition: mcxt.c:1317
TypeCacheEntry * multirange_get_typcache(FunctionCallInfo fcinfo, Oid mltrngtypid)
void multirange_get_bounds(TypeCacheEntry *rangetyp, const MultirangeType *multirange, uint32 i, RangeBound *lower, RangeBound *upper)
MultirangeType * make_multirange(Oid mltrngtypoid, TypeCacheEntry *rangetyp, int32 range_count, RangeType **ranges)
#define MultirangeIsEmpty(mr)
static MultirangeType * DatumGetMultirangeTypeP(Datum X)
static double calc_length_hist_frac(Datum *length_hist_values, int length_hist_nvalues, double length1, double length2, bool equal)
static double calc_hist_selectivity_contained(TypeCacheEntry *typcache, const RangeBound *lower, RangeBound *upper, const RangeBound *hist_lower, int hist_nvalues, Datum *length_hist_values, int length_hist_nvalues)
static float8 get_position(TypeCacheEntry *typcache, const RangeBound *value, const RangeBound *hist1, const RangeBound *hist2)
static double calc_hist_selectivity_scalar(TypeCacheEntry *typcache, const RangeBound *constbound, const RangeBound *hist, int hist_nvalues, bool equal)
static double calc_hist_selectivity_contains(TypeCacheEntry *typcache, const RangeBound *lower, const RangeBound *upper, const RangeBound *hist_lower, int hist_nvalues, Datum *length_hist_values, int length_hist_nvalues)
static double calc_multirangesel(TypeCacheEntry *typcache, VariableStatData *vardata, const MultirangeType *constval, Oid operator)
static int length_hist_bsearch(Datum *length_hist_values, int length_hist_nvalues, double value, bool equal)
static int rbound_bsearch(TypeCacheEntry *typcache, const RangeBound *value, const RangeBound *hist, int hist_length, bool equal)
static double calc_hist_selectivity(TypeCacheEntry *typcache, VariableStatData *vardata, const MultirangeType *constval, Oid operator)
static double default_multirange_selectivity(Oid operator)
static float8 get_len_position(double value, double hist1, double hist2)
Datum multirangesel(PG_FUNCTION_ARGS)
static float8 get_distance(TypeCacheEntry *typcache, const RangeBound *bound1, const RangeBound *bound2)
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
double Selectivity
Definition: nodes.h:250
Datum lower(PG_FUNCTION_ARGS)
Definition: oracle_compat.c:49
Datum upper(PG_FUNCTION_ARGS)
Definition: oracle_compat.c:80
FormData_pg_statistic * Form_pg_statistic
Definition: pg_statistic.h:135
uintptr_t Datum
Definition: postgres.h:64
static float8 DatumGetFloat8(Datum X)
Definition: postgres.h:494
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
tree ctl root
Definition: radixtree.h:1886
int range_cmp_bounds(TypeCacheEntry *typcache, const RangeBound *b1, const RangeBound *b2)
Definition: rangetypes.c:2016
void range_deserialize(TypeCacheEntry *typcache, const RangeType *range, RangeBound *lower, RangeBound *upper, bool *empty)
Definition: rangetypes.c:1856
RangeType * range_serialize(TypeCacheEntry *typcache, RangeBound *lower, RangeBound *upper, bool empty, struct Node *escontext)
Definition: rangetypes.c:1727
static RangeType * DatumGetRangeTypeP(Datum X)
Definition: rangetypes.h:73
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:743
bool get_restriction_variable(PlannerInfo *root, List *args, int varRelid, VariableStatData *vardata, Node **other, bool *varonleft)
Definition: selfuncs.c:4891
bool statistic_proc_security_check(VariableStatData *vardata, Oid func_oid)
Definition: selfuncs.c:5743
#define ReleaseVariableStats(vardata)
Definition: selfuncs.h:99
#define CLAMP_PROBABILITY(p)
Definition: selfuncs.h:63
#define DEFAULT_MULTIRANGE_INEQ_SEL
Definition: selfuncs.h:43
#define DEFAULT_INEQ_SEL
Definition: selfuncs.h:37
Datum * values
Definition: lsyscache.h:53
float4 * numbers
Definition: lsyscache.h:56
int nnumbers
Definition: lsyscache.h:57
Oid fn_oid
Definition: fmgr.h:59
Definition: pg_list.h:54
Definition: nodes.h:129
bool lower
Definition: rangetypes.h:66
bool infinite
Definition: rangetypes.h:64
Datum val
Definition: rangetypes.h:63
FmgrInfo rng_cmp_proc_finfo
Definition: typcache.h:101
Oid rng_collation
Definition: typcache.h:100
struct TypeCacheEntry * rngelemtype
Definition: typcache.h:98
struct TypeCacheEntry * rngtype
Definition: typcache.h:108
FmgrInfo rng_subdiff_finfo
Definition: typcache.h:103
HeapTuple statsTuple
Definition: selfuncs.h:89
Definition: type.h:95