PostgreSQL Source Code  git master
be-secure-gssapi.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * be-secure-gssapi.c
4  * GSSAPI encryption support
5  *
6  * Portions Copyright (c) 2018-2024, PostgreSQL Global Development Group
7  *
8  * IDENTIFICATION
9  * src/backend/libpq/be-secure-gssapi.c
10  *
11  *-------------------------------------------------------------------------
12  */
13 
14 #include "postgres.h"
15 
16 #include <unistd.h>
17 
18 #include "libpq/auth.h"
19 #include "libpq/be-gssapi-common.h"
20 #include "libpq/libpq.h"
21 #include "libpq/pqformat.h"
22 #include "miscadmin.h"
23 #include "pgstat.h"
24 #include "utils/injection_point.h"
25 #include "utils/memutils.h"
26 
27 
28 /*
29  * Handle the encryption/decryption of data using GSSAPI.
30  *
31  * In the encrypted data stream on the wire, we break up the data
32  * into packets where each packet starts with a uint32-size length
33  * word (in network byte order), then encrypted data of that length
34  * immediately following. Decryption yields the same data stream
35  * that would appear when not using encryption.
36  *
37  * Encrypted data typically ends up being larger than the same data
38  * unencrypted, so we use fixed-size buffers for handling the
39  * encryption/decryption which are larger than PQComm's buffer will
40  * typically be to minimize the times where we have to make multiple
41  * packets (and therefore multiple recv/send calls for a single
42  * read/write call to us).
43  *
44  * NOTE: The client and server have to agree on the max packet size,
45  * because we have to pass an entire packet to GSSAPI at a time and we
46  * don't want the other side to send arbitrarily huge packets as we
47  * would have to allocate memory for them to then pass them to GSSAPI.
48  *
49  * Therefore, these two #define's are effectively part of the protocol
50  * spec and can't ever be changed.
51  */
52 #define PQ_GSS_SEND_BUFFER_SIZE 16384
53 #define PQ_GSS_RECV_BUFFER_SIZE 16384
54 
55 /*
56  * Since we manage at most one GSS-encrypted connection per backend,
57  * we can just keep all this state in static variables. The char *
58  * variables point to buffers that are allocated once and re-used.
59  */
60 static char *PqGSSSendBuffer; /* Encrypted data waiting to be sent */
61 static int PqGSSSendLength; /* End of data available in PqGSSSendBuffer */
62 static int PqGSSSendNext; /* Next index to send a byte from
63  * PqGSSSendBuffer */
64 static int PqGSSSendConsumed; /* Number of source bytes encrypted but not
65  * yet reported as sent */
66 
67 static char *PqGSSRecvBuffer; /* Received, encrypted data */
68 static int PqGSSRecvLength; /* End of data available in PqGSSRecvBuffer */
69 
70 static char *PqGSSResultBuffer; /* Decryption of data in gss_RecvBuffer */
71 static int PqGSSResultLength; /* End of data available in PqGSSResultBuffer */
72 static int PqGSSResultNext; /* Next index to read a byte from
73  * PqGSSResultBuffer */
74 
75 static uint32 PqGSSMaxPktSize; /* Maximum size we can encrypt and fit the
76  * results into our output buffer */
77 
78 
79 /*
80  * Attempt to write len bytes of data from ptr to a GSSAPI-encrypted connection.
81  *
82  * The connection must be already set up for GSSAPI encryption (i.e., GSSAPI
83  * transport negotiation is complete).
84  *
85  * On success, returns the number of data bytes consumed (possibly less than
86  * len). On failure, returns -1 with errno set appropriately. For retryable
87  * errors, caller should call again (passing the same or more data) once the
88  * socket is ready.
89  *
90  * Dealing with fatal errors here is a bit tricky: we can't invoke elog(FATAL)
91  * since it would try to write to the client, probably resulting in infinite
92  * recursion. Instead, use elog(COMMERROR) to log extra info about the
93  * failure if necessary, and then return an errno indicating connection loss.
94  */
95 ssize_t
96 be_gssapi_write(Port *port, void *ptr, size_t len)
97 {
98  OM_uint32 major,
99  minor;
100  gss_buffer_desc input,
101  output;
102  size_t bytes_to_encrypt;
103  size_t bytes_encrypted;
104  gss_ctx_id_t gctx = port->gss->ctx;
105 
106  /*
107  * When we get a retryable failure, we must not tell the caller we have
108  * successfully transmitted everything, else it won't retry. For
109  * simplicity, we claim we haven't transmitted anything until we have
110  * successfully transmitted all "len" bytes. Between calls, the amount of
111  * the current input data that's already been encrypted and placed into
112  * PqGSSSendBuffer (and perhaps transmitted) is remembered in
113  * PqGSSSendConsumed. On a retry, the caller *must* be sending that data
114  * again, so if it offers a len less than that, something is wrong.
115  *
116  * Note: it may seem attractive to report partial write completion once
117  * we've successfully sent any encrypted packets. However, that can cause
118  * problems for callers; notably, pqPutMsgEnd's heuristic to send only
119  * full 8K blocks interacts badly with such a hack. We won't save much,
120  * typically, by letting callers discard data early, so don't risk it.
121  */
122  if (len < PqGSSSendConsumed)
123  {
124  elog(COMMERROR, "GSSAPI caller failed to retransmit all data needing to be retried");
125  errno = ECONNRESET;
126  return -1;
127  }
128 
129  /* Discount whatever source data we already encrypted. */
130  bytes_to_encrypt = len - PqGSSSendConsumed;
131  bytes_encrypted = PqGSSSendConsumed;
132 
133  /*
134  * Loop through encrypting data and sending it out until it's all done or
135  * secure_raw_write() complains (which would likely mean that the socket
136  * is non-blocking and the requested send() would block, or there was some
137  * kind of actual error).
138  */
139  while (bytes_to_encrypt || PqGSSSendLength)
140  {
141  int conf_state = 0;
142  uint32 netlen;
143 
144  /*
145  * Check if we have data in the encrypted output buffer that needs to
146  * be sent (possibly left over from a previous call), and if so, try
147  * to send it. If we aren't able to, return that fact back up to the
148  * caller.
149  */
150  if (PqGSSSendLength)
151  {
152  ssize_t ret;
153  ssize_t amount = PqGSSSendLength - PqGSSSendNext;
154 
156  if (ret <= 0)
157  return ret;
158 
159  /*
160  * Check if this was a partial write, and if so, move forward that
161  * far in our buffer and try again.
162  */
163  if (ret < amount)
164  {
165  PqGSSSendNext += ret;
166  continue;
167  }
168 
169  /* We've successfully sent whatever data was in the buffer. */
171  }
172 
173  /*
174  * Check if there are any bytes left to encrypt. If not, we're done.
175  */
176  if (!bytes_to_encrypt)
177  break;
178 
179  /*
180  * Check how much we are being asked to send, if it's too much, then
181  * we will have to loop and possibly be called multiple times to get
182  * through all the data.
183  */
184  if (bytes_to_encrypt > PqGSSMaxPktSize)
185  input.length = PqGSSMaxPktSize;
186  else
187  input.length = bytes_to_encrypt;
188 
189  input.value = (char *) ptr + bytes_encrypted;
190 
191  output.value = NULL;
192  output.length = 0;
193 
194  /*
195  * Create the next encrypted packet. Any failure here is considered a
196  * hard failure, so we return -1 even if some data has been sent.
197  */
198  major = gss_wrap(&minor, gctx, 1, GSS_C_QOP_DEFAULT,
199  &input, &conf_state, &output);
200  if (major != GSS_S_COMPLETE)
201  {
202  pg_GSS_error(_("GSSAPI wrap error"), major, minor);
203  errno = ECONNRESET;
204  return -1;
205  }
206  if (conf_state == 0)
207  {
209  (errmsg("outgoing GSSAPI message would not use confidentiality")));
210  errno = ECONNRESET;
211  return -1;
212  }
213  if (output.length > PQ_GSS_SEND_BUFFER_SIZE - sizeof(uint32))
214  {
216  (errmsg("server tried to send oversize GSSAPI packet (%zu > %zu)",
217  (size_t) output.length,
218  PQ_GSS_SEND_BUFFER_SIZE - sizeof(uint32))));
219  errno = ECONNRESET;
220  return -1;
221  }
222 
223  bytes_encrypted += input.length;
224  bytes_to_encrypt -= input.length;
225  PqGSSSendConsumed += input.length;
226 
227  /* 4 network-order bytes of length, then payload */
228  netlen = pg_hton32(output.length);
229  memcpy(PqGSSSendBuffer + PqGSSSendLength, &netlen, sizeof(uint32));
230  PqGSSSendLength += sizeof(uint32);
231 
232  memcpy(PqGSSSendBuffer + PqGSSSendLength, output.value, output.length);
233  PqGSSSendLength += output.length;
234 
235  /* Release buffer storage allocated by GSSAPI */
236  gss_release_buffer(&minor, &output);
237  }
238 
239  /* If we get here, our counters should all match up. */
241  Assert(len == bytes_encrypted);
242 
243  /* We're reporting all the data as sent, so reset PqGSSSendConsumed. */
244  PqGSSSendConsumed = 0;
245 
246  return bytes_encrypted;
247 }
248 
249 /*
250  * Read up to len bytes of data into ptr from a GSSAPI-encrypted connection.
251  *
252  * The connection must be already set up for GSSAPI encryption (i.e., GSSAPI
253  * transport negotiation is complete).
254  *
255  * Returns the number of data bytes read, or on failure, returns -1
256  * with errno set appropriately. For retryable errors, caller should call
257  * again once the socket is ready.
258  *
259  * We treat fatal errors the same as in be_gssapi_write(), even though the
260  * argument about infinite recursion doesn't apply here.
261  */
262 ssize_t
263 be_gssapi_read(Port *port, void *ptr, size_t len)
264 {
265  OM_uint32 major,
266  minor;
267  gss_buffer_desc input,
268  output;
269  ssize_t ret;
270  size_t bytes_returned = 0;
271  gss_ctx_id_t gctx = port->gss->ctx;
272 
273  /*
274  * The plan here is to read one incoming encrypted packet into
275  * PqGSSRecvBuffer, decrypt it into PqGSSResultBuffer, and then dole out
276  * data from there to the caller. When we exhaust the current input
277  * packet, read another.
278  */
279  while (bytes_returned < len)
280  {
281  int conf_state = 0;
282 
283  /* Check if we have data in our buffer that we can return immediately */
285  {
286  size_t bytes_in_buffer = PqGSSResultLength - PqGSSResultNext;
287  size_t bytes_to_copy = Min(bytes_in_buffer, len - bytes_returned);
288 
289  /*
290  * Copy the data from our result buffer into the caller's buffer,
291  * at the point where we last left off filling their buffer.
292  */
293  memcpy((char *) ptr + bytes_returned, PqGSSResultBuffer + PqGSSResultNext, bytes_to_copy);
294  PqGSSResultNext += bytes_to_copy;
295  bytes_returned += bytes_to_copy;
296 
297  /*
298  * At this point, we've either filled the caller's buffer or
299  * emptied our result buffer. Either way, return to caller. In
300  * the second case, we could try to read another encrypted packet,
301  * but the odds are good that there isn't one available. (If this
302  * isn't true, we chose too small a max packet size.) In any
303  * case, there's no harm letting the caller process the data we've
304  * already returned.
305  */
306  break;
307  }
308 
309  /* Result buffer is empty, so reset buffer pointers */
311 
312  /*
313  * Because we chose above to return immediately as soon as we emit
314  * some data, bytes_returned must be zero at this point. Therefore
315  * the failure exits below can just return -1 without worrying about
316  * whether we already emitted some data.
317  */
318  Assert(bytes_returned == 0);
319 
320  /*
321  * At this point, our result buffer is empty with more bytes being
322  * requested to be read. We are now ready to load the next packet and
323  * decrypt it (entirely) into our result buffer.
324  */
325 
326  /* Collect the length if we haven't already */
327  if (PqGSSRecvLength < sizeof(uint32))
328  {
330  sizeof(uint32) - PqGSSRecvLength);
331 
332  /* If ret <= 0, secure_raw_read already set the correct errno */
333  if (ret <= 0)
334  return ret;
335 
336  PqGSSRecvLength += ret;
337 
338  /* If we still haven't got the length, return to the caller */
339  if (PqGSSRecvLength < sizeof(uint32))
340  {
341  errno = EWOULDBLOCK;
342  return -1;
343  }
344  }
345 
346  /* Decode the packet length and check for overlength packet */
347  input.length = pg_ntoh32(*(uint32 *) PqGSSRecvBuffer);
348 
349  if (input.length > PQ_GSS_RECV_BUFFER_SIZE - sizeof(uint32))
350  {
352  (errmsg("oversize GSSAPI packet sent by the client (%zu > %zu)",
353  (size_t) input.length,
354  PQ_GSS_RECV_BUFFER_SIZE - sizeof(uint32))));
355  errno = ECONNRESET;
356  return -1;
357  }
358 
359  /*
360  * Read as much of the packet as we are able to on this call into
361  * wherever we left off from the last time we were called.
362  */
364  input.length - (PqGSSRecvLength - sizeof(uint32)));
365  /* If ret <= 0, secure_raw_read already set the correct errno */
366  if (ret <= 0)
367  return ret;
368 
369  PqGSSRecvLength += ret;
370 
371  /* If we don't yet have the whole packet, return to the caller */
372  if (PqGSSRecvLength - sizeof(uint32) < input.length)
373  {
374  errno = EWOULDBLOCK;
375  return -1;
376  }
377 
378  /*
379  * We now have the full packet and we can perform the decryption and
380  * refill our result buffer, then loop back up to pass data back to
381  * the caller.
382  */
383  output.value = NULL;
384  output.length = 0;
385  input.value = PqGSSRecvBuffer + sizeof(uint32);
386 
387  major = gss_unwrap(&minor, gctx, &input, &output, &conf_state, NULL);
388  if (major != GSS_S_COMPLETE)
389  {
390  pg_GSS_error(_("GSSAPI unwrap error"), major, minor);
391  errno = ECONNRESET;
392  return -1;
393  }
394  if (conf_state == 0)
395  {
397  (errmsg("incoming GSSAPI message did not use confidentiality")));
398  errno = ECONNRESET;
399  return -1;
400  }
401 
402  memcpy(PqGSSResultBuffer, output.value, output.length);
403  PqGSSResultLength = output.length;
404 
405  /* Our receive buffer is now empty, reset it */
406  PqGSSRecvLength = 0;
407 
408  /* Release buffer storage allocated by GSSAPI */
409  gss_release_buffer(&minor, &output);
410  }
411 
412  return bytes_returned;
413 }
414 
415 /*
416  * Read the specified number of bytes off the wire, waiting using
417  * WaitLatchOrSocket if we would block.
418  *
419  * Results are read into PqGSSRecvBuffer.
420  *
421  * Will always return either -1, to indicate a permanent error, or len.
422  */
423 static ssize_t
425 {
426  ssize_t ret;
427 
428  /*
429  * Keep going until we either read in everything we were asked to, or we
430  * error out.
431  */
432  while (PqGSSRecvLength < len)
433  {
435 
436  /*
437  * If we got back an error and it wasn't just
438  * EWOULDBLOCK/EAGAIN/EINTR, then give up.
439  */
440  if (ret < 0 &&
441  !(errno == EWOULDBLOCK || errno == EAGAIN || errno == EINTR))
442  return -1;
443 
444  /*
445  * Ok, we got back either a positive value, zero, or a negative result
446  * indicating we should retry.
447  *
448  * If it was zero or negative, then we wait on the socket to be
449  * readable again.
450  */
451  if (ret <= 0)
452  {
453  WaitLatchOrSocket(NULL,
455  port->sock, 0, WAIT_EVENT_GSS_OPEN_SERVER);
456 
457  /*
458  * If we got back zero bytes, and then waited on the socket to be
459  * readable and got back zero bytes on a second read, then this is
460  * EOF and the client hung up on us.
461  *
462  * If we did get data here, then we can just fall through and
463  * handle it just as if we got data the first time.
464  *
465  * Otherwise loop back to the top and try again.
466  */
467  if (ret == 0)
468  {
470  if (ret == 0)
471  return -1;
472  }
473  if (ret < 0)
474  continue;
475  }
476 
477  PqGSSRecvLength += ret;
478  }
479 
480  return len;
481 }
482 
483 /*
484  * Start up a GSSAPI-encrypted connection. This performs GSSAPI
485  * authentication; after this function completes, it is safe to call
486  * be_gssapi_read and be_gssapi_write. Returns -1 and logs on failure;
487  * otherwise, returns 0 and marks the connection as ready for GSSAPI
488  * encryption.
489  *
490  * Note that unlike the be_gssapi_read/be_gssapi_write functions, this
491  * function WILL block on the socket to be ready for read/write (using
492  * WaitLatchOrSocket) as appropriate while establishing the GSSAPI
493  * session.
494  */
495 ssize_t
497 {
498  bool complete_next = false;
499  OM_uint32 major,
500  minor;
501  gss_cred_id_t delegated_creds;
502 
503  INJECTION_POINT("backend-gssapi-startup");
504 
505  /*
506  * Allocate subsidiary Port data for GSSAPI operations.
507  */
508  port->gss = (pg_gssinfo *)
509  MemoryContextAllocZero(TopMemoryContext, sizeof(pg_gssinfo));
510 
511  delegated_creds = GSS_C_NO_CREDENTIAL;
512  port->gss->delegated_creds = false;
513 
514  /*
515  * Allocate buffers and initialize state variables. By malloc'ing the
516  * buffers at this point, we avoid wasting static data space in processes
517  * that will never use them, and we ensure that the buffers are
518  * sufficiently aligned for the length-word accesses that we do in some
519  * places in this file.
520  */
525  ereport(FATAL,
526  (errcode(ERRCODE_OUT_OF_MEMORY),
527  errmsg("out of memory")));
530 
531  /*
532  * Use the configured keytab, if there is one. As we now require MIT
533  * Kerberos, we might consider using the credential store extensions in
534  * the future instead of the environment variable.
535  */
536  if (pg_krb_server_keyfile != NULL && pg_krb_server_keyfile[0] != '\0')
537  {
538  if (setenv("KRB5_KTNAME", pg_krb_server_keyfile, 1) != 0)
539  {
540  /* The only likely failure cause is OOM, so use that errcode */
541  ereport(FATAL,
542  (errcode(ERRCODE_OUT_OF_MEMORY),
543  errmsg("could not set environment: %m")));
544  }
545  }
546 
547  while (true)
548  {
549  ssize_t ret;
550  gss_buffer_desc input,
551  output = GSS_C_EMPTY_BUFFER;
552 
553  /*
554  * The client always sends first, so try to go ahead and read the
555  * length and wait on the socket to be readable again if that fails.
556  */
557  ret = read_or_wait(port, sizeof(uint32));
558  if (ret < 0)
559  return ret;
560 
561  /*
562  * Get the length for this packet from the length header.
563  */
564  input.length = pg_ntoh32(*(uint32 *) PqGSSRecvBuffer);
565 
566  /* Done with the length, reset our buffer */
567  PqGSSRecvLength = 0;
568 
569  /*
570  * During initialization, packets are always fully consumed and
571  * shouldn't ever be over PQ_GSS_RECV_BUFFER_SIZE in length.
572  *
573  * Verify on our side that the client doesn't do something funny.
574  */
575  if (input.length > PQ_GSS_RECV_BUFFER_SIZE)
576  {
578  (errmsg("oversize GSSAPI packet sent by the client (%zu > %d)",
579  (size_t) input.length,
581  return -1;
582  }
583 
584  /*
585  * Get the rest of the packet so we can pass it to GSSAPI to accept
586  * the context.
587  */
588  ret = read_or_wait(port, input.length);
589  if (ret < 0)
590  return ret;
591 
592  input.value = PqGSSRecvBuffer;
593 
594  /* Process incoming data. (The client sends first.) */
595  major = gss_accept_sec_context(&minor, &port->gss->ctx,
596  GSS_C_NO_CREDENTIAL, &input,
597  GSS_C_NO_CHANNEL_BINDINGS,
598  &port->gss->name, NULL, &output, NULL,
599  NULL, pg_gss_accept_delegation ? &delegated_creds : NULL);
600 
601  if (GSS_ERROR(major))
602  {
603  pg_GSS_error(_("could not accept GSSAPI security context"),
604  major, minor);
605  gss_release_buffer(&minor, &output);
606  return -1;
607  }
608  else if (!(major & GSS_S_CONTINUE_NEEDED))
609  {
610  /*
611  * rfc2744 technically permits context negotiation to be complete
612  * both with and without a packet to be sent.
613  */
614  complete_next = true;
615  }
616 
617  if (delegated_creds != GSS_C_NO_CREDENTIAL)
618  {
619  pg_store_delegated_credential(delegated_creds);
620  port->gss->delegated_creds = true;
621  }
622 
623  /* Done handling the incoming packet, reset our buffer */
624  PqGSSRecvLength = 0;
625 
626  /*
627  * Check if we have data to send and, if we do, make sure to send it
628  * all
629  */
630  if (output.length > 0)
631  {
632  uint32 netlen = pg_hton32(output.length);
633 
634  if (output.length > PQ_GSS_SEND_BUFFER_SIZE - sizeof(uint32))
635  {
637  (errmsg("server tried to send oversize GSSAPI packet (%zu > %zu)",
638  (size_t) output.length,
639  PQ_GSS_SEND_BUFFER_SIZE - sizeof(uint32))));
640  gss_release_buffer(&minor, &output);
641  return -1;
642  }
643 
644  memcpy(PqGSSSendBuffer, (char *) &netlen, sizeof(uint32));
645  PqGSSSendLength += sizeof(uint32);
646 
647  memcpy(PqGSSSendBuffer + PqGSSSendLength, output.value, output.length);
648  PqGSSSendLength += output.length;
649 
650  /* we don't bother with PqGSSSendConsumed here */
651 
653  {
656 
657  /*
658  * If we got back an error and it wasn't just
659  * EWOULDBLOCK/EAGAIN/EINTR, then give up.
660  */
661  if (ret < 0 &&
662  !(errno == EWOULDBLOCK || errno == EAGAIN || errno == EINTR))
663  {
664  gss_release_buffer(&minor, &output);
665  return -1;
666  }
667 
668  /* Wait and retry if we couldn't write yet */
669  if (ret <= 0)
670  {
671  WaitLatchOrSocket(NULL,
673  port->sock, 0, WAIT_EVENT_GSS_OPEN_SERVER);
674  continue;
675  }
676 
677  PqGSSSendNext += ret;
678  }
679 
680  /* Done sending the packet, reset our buffer */
682 
683  gss_release_buffer(&minor, &output);
684  }
685 
686  /*
687  * If we got back that the connection is finished being set up, now
688  * that we've sent the last packet, exit our loop.
689  */
690  if (complete_next)
691  break;
692  }
693 
694  /*
695  * Determine the max packet size which will fit in our buffer, after
696  * accounting for the length. be_gssapi_write will need this.
697  */
698  major = gss_wrap_size_limit(&minor, port->gss->ctx, 1, GSS_C_QOP_DEFAULT,
700  &PqGSSMaxPktSize);
701 
702  if (GSS_ERROR(major))
703  {
704  pg_GSS_error(_("GSSAPI size check error"), major, minor);
705  return -1;
706  }
707 
708  port->gss->enc = true;
709 
710  return 0;
711 }
712 
713 /*
714  * Return if GSSAPI authentication was used on this connection.
715  */
716 bool
718 {
719  if (!port || !port->gss)
720  return false;
721 
722  return port->gss->auth;
723 }
724 
725 /*
726  * Return if GSSAPI encryption is enabled and being used on this connection.
727  */
728 bool
730 {
731  if (!port || !port->gss)
732  return false;
733 
734  return port->gss->enc;
735 }
736 
737 /*
738  * Return the GSSAPI principal used for authentication on this connection
739  * (NULL if we did not perform GSSAPI authentication).
740  */
741 const char *
743 {
744  if (!port || !port->gss)
745  return NULL;
746 
747  return port->gss->princ;
748 }
749 
750 /*
751  * Return if GSSAPI delegated credentials were included on this
752  * connection.
753  */
754 bool
756 {
757  if (!port || !port->gss)
758  return false;
759 
760  return port->gss->delegated_creds;
761 }
char * pg_krb_server_keyfile
Definition: auth.c:164
bool pg_gss_accept_delegation
Definition: auth.c:166
void pg_store_delegated_credential(gss_cred_id_t cred)
void pg_GSS_error(const char *errmsg, OM_uint32 maj_stat, OM_uint32 min_stat)
static int PqGSSRecvLength
static int PqGSSResultLength
static char * PqGSSSendBuffer
bool be_gssapi_get_auth(Port *port)
static int PqGSSSendConsumed
#define PQ_GSS_RECV_BUFFER_SIZE
ssize_t be_gssapi_read(Port *port, void *ptr, size_t len)
ssize_t be_gssapi_write(Port *port, void *ptr, size_t len)
static ssize_t read_or_wait(Port *port, ssize_t len)
ssize_t secure_open_gssapi(Port *port)
static char * PqGSSRecvBuffer
static int PqGSSResultNext
static uint32 PqGSSMaxPktSize
bool be_gssapi_get_enc(Port *port)
#define PQ_GSS_SEND_BUFFER_SIZE
const char * be_gssapi_get_princ(Port *port)
static int PqGSSSendLength
static int PqGSSSendNext
static char * PqGSSResultBuffer
bool be_gssapi_get_delegation(Port *port)
ssize_t secure_raw_read(Port *port, void *ptr, size_t len)
Definition: be-secure.c:267
ssize_t secure_raw_write(Port *port, const void *ptr, size_t len)
Definition: be-secure.c:376
unsigned int uint32
Definition: c.h:509
#define Min(x, y)
Definition: c.h:1007
#define Assert(condition)
Definition: c.h:861
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define _(x)
Definition: elog.c:90
#define COMMERROR
Definition: elog.h:33
#define FATAL
Definition: elog.h:41
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
#define malloc(a)
Definition: header.h:50
FILE * input
FILE * output
#define INJECTION_POINT(name)
int WaitLatchOrSocket(Latch *latch, int wakeEvents, pgsocket sock, long timeout, uint32 wait_event_info)
Definition: latch.c:565
#define WL_SOCKET_READABLE
Definition: latch.h:128
#define WL_EXIT_ON_PM_DEATH
Definition: latch.h:132
#define WL_SOCKET_WRITEABLE
Definition: latch.h:129
MemoryContext TopMemoryContext
Definition: mcxt.c:149
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1215
#define pg_ntoh32(x)
Definition: pg_bswap.h:125
#define pg_hton32(x)
Definition: pg_bswap.h:121
const void size_t len
static int port
Definition: pg_regress.c:116
Definition: libpq-be.h:133
#define EINTR
Definition: win32_port.h:374
#define EWOULDBLOCK
Definition: win32_port.h:380
#define setenv(x, y, z)
Definition: win32_port.h:555
#define ECONNRESET
Definition: win32_port.h:384
#define EAGAIN
Definition: win32_port.h:372