PostgreSQL Source Code  git master
hio.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * hio.c
4  * POSTGRES heap access method input/output code.
5  *
6  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/access/heap/hio.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 
16 #include "postgres.h"
17 
18 #include "access/heapam.h"
19 #include "access/hio.h"
20 #include "access/htup_details.h"
21 #include "access/visibilitymap.h"
22 #include "storage/bufmgr.h"
23 #include "storage/freespace.h"
24 #include "storage/lmgr.h"
25 #include "storage/smgr.h"
26 
27 
28 /*
29  * RelationPutHeapTuple - place tuple at specified page
30  *
31  * !!! EREPORT(ERROR) IS DISALLOWED HERE !!! Must PANIC on failure!!!
32  *
33  * Note - caller must hold BUFFER_LOCK_EXCLUSIVE on the buffer.
34  */
35 void
37  Buffer buffer,
38  HeapTuple tuple,
39  bool token)
40 {
41  Page pageHeader;
42  OffsetNumber offnum;
43 
44  /*
45  * A tuple that's being inserted speculatively should already have its
46  * token set.
47  */
48  Assert(!token || HeapTupleHeaderIsSpeculative(tuple->t_data));
49 
50  /* Add the tuple to the page */
51  pageHeader = BufferGetPage(buffer);
52 
53  offnum = PageAddItem(pageHeader, (Item) tuple->t_data,
54  tuple->t_len, InvalidOffsetNumber, false, true);
55 
56  if (offnum == InvalidOffsetNumber)
57  elog(PANIC, "failed to add tuple to page");
58 
59  /* Update tuple->t_self to the actual position where it was stored */
60  ItemPointerSet(&(tuple->t_self), BufferGetBlockNumber(buffer), offnum);
61 
62  /*
63  * Insert the correct position into CTID of the stored tuple, too (unless
64  * this is a speculative insertion, in which case the token is held in
65  * CTID field instead)
66  */
67  if (!token)
68  {
69  ItemId itemId = PageGetItemId(pageHeader, offnum);
70  HeapTupleHeader item = (HeapTupleHeader) PageGetItem(pageHeader, itemId);
71 
72  item->t_ctid = tuple->t_self;
73  }
74 }
75 
76 /*
77  * Read in a buffer in mode, using bulk-insert strategy if bistate isn't NULL.
78  */
79 static Buffer
80 ReadBufferBI(Relation relation, BlockNumber targetBlock,
82 {
83  Buffer buffer;
84 
85  /* If not bulk-insert, exactly like ReadBuffer */
86  if (!bistate)
87  return ReadBufferExtended(relation, MAIN_FORKNUM, targetBlock,
88  mode, NULL);
89 
90  /* If we have the desired block already pinned, re-pin and return it */
91  if (bistate->current_buf != InvalidBuffer)
92  {
93  if (BufferGetBlockNumber(bistate->current_buf) == targetBlock)
94  {
95  /*
96  * Currently the LOCK variants are only used for extending
97  * relation, which should never reach this branch.
98  */
99  Assert(mode != RBM_ZERO_AND_LOCK &&
100  mode != RBM_ZERO_AND_CLEANUP_LOCK);
101 
103  return bistate->current_buf;
104  }
105  /* ... else drop the old buffer */
106  ReleaseBuffer(bistate->current_buf);
107  bistate->current_buf = InvalidBuffer;
108  }
109 
110  /* Perform a read using the buffer strategy */
111  buffer = ReadBufferExtended(relation, MAIN_FORKNUM, targetBlock,
112  mode, bistate->strategy);
113 
114  /* Save the selected block as target for future inserts */
115  IncrBufferRefCount(buffer);
116  bistate->current_buf = buffer;
117 
118  return buffer;
119 }
120 
121 /*
122  * For each heap page which is all-visible, acquire a pin on the appropriate
123  * visibility map page, if we haven't already got one.
124  *
125  * buffer2 may be InvalidBuffer, if only one buffer is involved. buffer1
126  * must not be InvalidBuffer. If both buffers are specified, block1 must
127  * be less than block2.
128  */
129 static void
130 GetVisibilityMapPins(Relation relation, Buffer buffer1, Buffer buffer2,
131  BlockNumber block1, BlockNumber block2,
132  Buffer *vmbuffer1, Buffer *vmbuffer2)
133 {
134  bool need_to_pin_buffer1;
135  bool need_to_pin_buffer2;
136 
137  Assert(BufferIsValid(buffer1));
138  Assert(buffer2 == InvalidBuffer || block1 <= block2);
139 
140  while (1)
141  {
142  /* Figure out which pins we need but don't have. */
143  need_to_pin_buffer1 = PageIsAllVisible(BufferGetPage(buffer1))
144  && !visibilitymap_pin_ok(block1, *vmbuffer1);
145  need_to_pin_buffer2 = buffer2 != InvalidBuffer
146  && PageIsAllVisible(BufferGetPage(buffer2))
147  && !visibilitymap_pin_ok(block2, *vmbuffer2);
148  if (!need_to_pin_buffer1 && !need_to_pin_buffer2)
149  return;
150 
151  /* We must unlock both buffers before doing any I/O. */
152  LockBuffer(buffer1, BUFFER_LOCK_UNLOCK);
153  if (buffer2 != InvalidBuffer && buffer2 != buffer1)
154  LockBuffer(buffer2, BUFFER_LOCK_UNLOCK);
155 
156  /* Get pins. */
157  if (need_to_pin_buffer1)
158  visibilitymap_pin(relation, block1, vmbuffer1);
159  if (need_to_pin_buffer2)
160  visibilitymap_pin(relation, block2, vmbuffer2);
161 
162  /* Relock buffers. */
164  if (buffer2 != InvalidBuffer && buffer2 != buffer1)
166 
167  /*
168  * If there are two buffers involved and we pinned just one of them,
169  * it's possible that the second one became all-visible while we were
170  * busy pinning the first one. If it looks like that's a possible
171  * scenario, we'll need to make a second pass through this loop.
172  */
173  if (buffer2 == InvalidBuffer || buffer1 == buffer2
174  || (need_to_pin_buffer1 && need_to_pin_buffer2))
175  break;
176  }
177 }
178 
179 /*
180  * Extend a relation by multiple blocks to avoid future contention on the
181  * relation extension lock. Our goal is to pre-extend the relation by an
182  * amount which ramps up as the degree of contention ramps up, but limiting
183  * the result to some sane overall value.
184  */
185 static void
187 {
188  BlockNumber blockNum,
189  firstBlock = InvalidBlockNumber;
190  int extraBlocks;
191  int lockWaiters;
192 
193  /* Use the length of the lock wait queue to judge how much to extend. */
194  lockWaiters = RelationExtensionLockWaiterCount(relation);
195  if (lockWaiters <= 0)
196  return;
197 
198  /*
199  * It might seem like multiplying the number of lock waiters by as much as
200  * 20 is too aggressive, but benchmarking revealed that smaller numbers
201  * were insufficient. 512 is just an arbitrary cap to prevent
202  * pathological results.
203  */
204  extraBlocks = Min(512, lockWaiters * 20);
205 
206  do
207  {
208  Buffer buffer;
209  Page page;
210  Size freespace;
211 
212  /*
213  * Extend by one page. This should generally match the main-line
214  * extension code in RelationGetBufferForTuple, except that we hold
215  * the relation extension lock throughout, and we don't immediately
216  * initialize the page (see below).
217  */
218  buffer = ReadBufferBI(relation, P_NEW, RBM_ZERO_AND_LOCK, bistate);
219  page = BufferGetPage(buffer);
220 
221  if (!PageIsNew(page))
222  elog(ERROR, "page %u of relation \"%s\" should be empty but is not",
223  BufferGetBlockNumber(buffer),
224  RelationGetRelationName(relation));
225 
226  /*
227  * Add the page to the FSM without initializing. If we were to
228  * initialize here, the page would potentially get flushed out to disk
229  * before we add any useful content. There's no guarantee that that'd
230  * happen before a potential crash, so we need to deal with
231  * uninitialized pages anyway, thus avoid the potential for
232  * unnecessary writes.
233  */
234 
235  /* we'll need this info below */
236  blockNum = BufferGetBlockNumber(buffer);
237  freespace = BufferGetPageSize(buffer) - SizeOfPageHeaderData;
238 
239  UnlockReleaseBuffer(buffer);
240 
241  /* Remember first block number thus added. */
242  if (firstBlock == InvalidBlockNumber)
243  firstBlock = blockNum;
244 
245  /*
246  * Immediately update the bottom level of the FSM. This has a good
247  * chance of making this page visible to other concurrently inserting
248  * backends, and we want that to happen without delay.
249  */
250  RecordPageWithFreeSpace(relation, blockNum, freespace);
251  }
252  while (--extraBlocks > 0);
253 
254  /*
255  * Updating the upper levels of the free space map is too expensive to do
256  * for every block, but it's worth doing once at the end to make sure that
257  * subsequent insertion activity sees all of those nifty free pages we
258  * just inserted.
259  */
260  FreeSpaceMapVacuumRange(relation, firstBlock, blockNum + 1);
261 }
262 
263 /*
264  * RelationGetBufferForTuple
265  *
266  * Returns pinned and exclusive-locked buffer of a page in given relation
267  * with free space >= given len.
268  *
269  * If otherBuffer is not InvalidBuffer, then it references a previously
270  * pinned buffer of another page in the same relation; on return, this
271  * buffer will also be exclusive-locked. (This case is used by heap_update;
272  * the otherBuffer contains the tuple being updated.)
273  *
274  * The reason for passing otherBuffer is that if two backends are doing
275  * concurrent heap_update operations, a deadlock could occur if they try
276  * to lock the same two buffers in opposite orders. To ensure that this
277  * can't happen, we impose the rule that buffers of a relation must be
278  * locked in increasing page number order. This is most conveniently done
279  * by having RelationGetBufferForTuple lock them both, with suitable care
280  * for ordering.
281  *
282  * NOTE: it is unlikely, but not quite impossible, for otherBuffer to be the
283  * same buffer we select for insertion of the new tuple (this could only
284  * happen if space is freed in that page after heap_update finds there's not
285  * enough there). In that case, the page will be pinned and locked only once.
286  *
287  * For the vmbuffer and vmbuffer_other arguments, we avoid deadlock by
288  * locking them only after locking the corresponding heap page, and taking
289  * no further lwlocks while they are locked.
290  *
291  * We normally use FSM to help us find free space. However,
292  * if HEAP_INSERT_SKIP_FSM is specified, we just append a new empty page to
293  * the end of the relation if the tuple won't fit on the current target page.
294  * This can save some cycles when we know the relation is new and doesn't
295  * contain useful amounts of free space.
296  *
297  * HEAP_INSERT_SKIP_FSM is also useful for non-WAL-logged additions to a
298  * relation, if the caller holds exclusive lock and is careful to invalidate
299  * relation's smgr_targblock before the first insertion --- that ensures that
300  * all insertions will occur into newly added pages and not be intermixed
301  * with tuples from other transactions. That way, a crash can't risk losing
302  * any committed data of other transactions. (See heap_insert's comments
303  * for additional constraints needed for safe usage of this behavior.)
304  *
305  * The caller can also provide a BulkInsertState object to optimize many
306  * insertions into the same relation. This keeps a pin on the current
307  * insertion target page (to save pin/unpin cycles) and also passes a
308  * BULKWRITE buffer selection strategy object to the buffer manager.
309  * Passing NULL for bistate selects the default behavior.
310  *
311  * We always try to avoid filling existing pages further than the fillfactor.
312  * This is OK since this routine is not consulted when updating a tuple and
313  * keeping it on the same page, which is the scenario fillfactor is meant
314  * to reserve space for.
315  *
316  * ereport(ERROR) is allowed here, so this routine *must* be called
317  * before any (unlogged) changes are made in buffer pool.
318  */
319 Buffer
321  Buffer otherBuffer, int options,
322  BulkInsertState bistate,
323  Buffer *vmbuffer, Buffer *vmbuffer_other)
324 {
325  bool use_fsm = !(options & HEAP_INSERT_SKIP_FSM);
326  Buffer buffer = InvalidBuffer;
327  Page page;
328  Size pageFreeSpace = 0,
329  saveFreeSpace = 0;
330  BlockNumber targetBlock,
331  otherBlock;
332  bool needLock;
333 
334  len = MAXALIGN(len); /* be conservative */
335 
336  /* Bulk insert is not supported for updates, only inserts. */
337  Assert(otherBuffer == InvalidBuffer || !bistate);
338 
339  /*
340  * If we're gonna fail for oversize tuple, do it right away
341  */
342  if (len > MaxHeapTupleSize)
343  ereport(ERROR,
344  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
345  errmsg("row is too big: size %zu, maximum size %zu",
346  len, MaxHeapTupleSize)));
347 
348  /* Compute desired extra freespace due to fillfactor option */
349  saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
351 
352  if (otherBuffer != InvalidBuffer)
353  otherBlock = BufferGetBlockNumber(otherBuffer);
354  else
355  otherBlock = InvalidBlockNumber; /* just to keep compiler quiet */
356 
357  /*
358  * We first try to put the tuple on the same page we last inserted a tuple
359  * on, as cached in the BulkInsertState or relcache entry. If that
360  * doesn't work, we ask the Free Space Map to locate a suitable page.
361  * Since the FSM's info might be out of date, we have to be prepared to
362  * loop around and retry multiple times. (To insure this isn't an infinite
363  * loop, we must update the FSM with the correct amount of free space on
364  * each page that proves not to be suitable.) If the FSM has no record of
365  * a page with enough free space, we give up and extend the relation.
366  *
367  * When use_fsm is false, we either put the tuple onto the existing target
368  * page or extend the relation.
369  */
370  if (len + saveFreeSpace > MaxHeapTupleSize)
371  {
372  /* can't fit, don't bother asking FSM */
373  targetBlock = InvalidBlockNumber;
374  use_fsm = false;
375  }
376  else if (bistate && bistate->current_buf != InvalidBuffer)
377  targetBlock = BufferGetBlockNumber(bistate->current_buf);
378  else
379  targetBlock = RelationGetTargetBlock(relation);
380 
381  if (targetBlock == InvalidBlockNumber && use_fsm)
382  {
383  /*
384  * We have no cached target page, so ask the FSM for an initial
385  * target.
386  */
387  targetBlock = GetPageWithFreeSpace(relation, len + saveFreeSpace);
388 
389  /*
390  * If the FSM knows nothing of the rel, try the last page before we
391  * give up and extend. This avoids one-tuple-per-page syndrome during
392  * bootstrapping or in a recently-started system.
393  */
394  if (targetBlock == InvalidBlockNumber)
395  {
396  BlockNumber nblocks = RelationGetNumberOfBlocks(relation);
397 
398  if (nblocks > 0)
399  targetBlock = nblocks - 1;
400  }
401  }
402 
403 loop:
404  while (targetBlock != InvalidBlockNumber)
405  {
406  /*
407  * Read and exclusive-lock the target block, as well as the other
408  * block if one was given, taking suitable care with lock ordering and
409  * the possibility they are the same block.
410  *
411  * If the page-level all-visible flag is set, caller will need to
412  * clear both that and the corresponding visibility map bit. However,
413  * by the time we return, we'll have x-locked the buffer, and we don't
414  * want to do any I/O while in that state. So we check the bit here
415  * before taking the lock, and pin the page if it appears necessary.
416  * Checking without the lock creates a risk of getting the wrong
417  * answer, so we'll have to recheck after acquiring the lock.
418  */
419  if (otherBuffer == InvalidBuffer)
420  {
421  /* easy case */
422  buffer = ReadBufferBI(relation, targetBlock, RBM_NORMAL, bistate);
423  if (PageIsAllVisible(BufferGetPage(buffer)))
424  visibilitymap_pin(relation, targetBlock, vmbuffer);
426  }
427  else if (otherBlock == targetBlock)
428  {
429  /* also easy case */
430  buffer = otherBuffer;
431  if (PageIsAllVisible(BufferGetPage(buffer)))
432  visibilitymap_pin(relation, targetBlock, vmbuffer);
434  }
435  else if (otherBlock < targetBlock)
436  {
437  /* lock other buffer first */
438  buffer = ReadBuffer(relation, targetBlock);
439  if (PageIsAllVisible(BufferGetPage(buffer)))
440  visibilitymap_pin(relation, targetBlock, vmbuffer);
441  LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
443  }
444  else
445  {
446  /* lock target buffer first */
447  buffer = ReadBuffer(relation, targetBlock);
448  if (PageIsAllVisible(BufferGetPage(buffer)))
449  visibilitymap_pin(relation, targetBlock, vmbuffer);
451  LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
452  }
453 
454  /*
455  * We now have the target page (and the other buffer, if any) pinned
456  * and locked. However, since our initial PageIsAllVisible checks
457  * were performed before acquiring the lock, the results might now be
458  * out of date, either for the selected victim buffer, or for the
459  * other buffer passed by the caller. In that case, we'll need to
460  * give up our locks, go get the pin(s) we failed to get earlier, and
461  * re-lock. That's pretty painful, but hopefully shouldn't happen
462  * often.
463  *
464  * Note that there's a small possibility that we didn't pin the page
465  * above but still have the correct page pinned anyway, either because
466  * we've already made a previous pass through this loop, or because
467  * caller passed us the right page anyway.
468  *
469  * Note also that it's possible that by the time we get the pin and
470  * retake the buffer locks, the visibility map bit will have been
471  * cleared by some other backend anyway. In that case, we'll have
472  * done a bit of extra work for no gain, but there's no real harm
473  * done.
474  */
475  if (otherBuffer == InvalidBuffer || targetBlock <= otherBlock)
476  GetVisibilityMapPins(relation, buffer, otherBuffer,
477  targetBlock, otherBlock, vmbuffer,
478  vmbuffer_other);
479  else
480  GetVisibilityMapPins(relation, otherBuffer, buffer,
481  otherBlock, targetBlock, vmbuffer_other,
482  vmbuffer);
483 
484  /*
485  * Now we can check to see if there's enough free space here. If so,
486  * we're done.
487  */
488  page = BufferGetPage(buffer);
489 
490  /*
491  * If necessary initialize page, it'll be used soon. We could avoid
492  * dirtying the buffer here, and rely on the caller to do so whenever
493  * it puts a tuple onto the page, but there seems not much benefit in
494  * doing so.
495  */
496  if (PageIsNew(page))
497  {
498  PageInit(page, BufferGetPageSize(buffer), 0);
499  MarkBufferDirty(buffer);
500  }
501 
502  pageFreeSpace = PageGetHeapFreeSpace(page);
503  if (len + saveFreeSpace <= pageFreeSpace)
504  {
505  /* use this page as future insert target, too */
506  RelationSetTargetBlock(relation, targetBlock);
507  return buffer;
508  }
509 
510  /*
511  * Not enough space, so we must give up our page locks and pin (if
512  * any) and prepare to look elsewhere. We don't care which order we
513  * unlock the two buffers in, so this can be slightly simpler than the
514  * code above.
515  */
517  if (otherBuffer == InvalidBuffer)
518  ReleaseBuffer(buffer);
519  else if (otherBlock != targetBlock)
520  {
521  LockBuffer(otherBuffer, BUFFER_LOCK_UNLOCK);
522  ReleaseBuffer(buffer);
523  }
524 
525  /* Without FSM, always fall out of the loop and extend */
526  if (!use_fsm)
527  break;
528 
529  /*
530  * Update FSM as to condition of this page, and ask for another page
531  * to try.
532  */
533  targetBlock = RecordAndGetPageWithFreeSpace(relation,
534  targetBlock,
535  pageFreeSpace,
536  len + saveFreeSpace);
537  }
538 
539  /*
540  * Have to extend the relation.
541  *
542  * We have to use a lock to ensure no one else is extending the rel at the
543  * same time, else we will both try to initialize the same new page. We
544  * can skip locking for new or temp relations, however, since no one else
545  * could be accessing them.
546  */
547  needLock = !RELATION_IS_LOCAL(relation);
548 
549  /*
550  * If we need the lock but are not able to acquire it immediately, we'll
551  * consider extending the relation by multiple blocks at a time to manage
552  * contention on the relation extension lock. However, this only makes
553  * sense if we're using the FSM; otherwise, there's no point.
554  */
555  if (needLock)
556  {
557  if (!use_fsm)
560  {
561  /* Couldn't get the lock immediately; wait for it. */
563 
564  /*
565  * Check if some other backend has extended a block for us while
566  * we were waiting on the lock.
567  */
568  targetBlock = GetPageWithFreeSpace(relation, len + saveFreeSpace);
569 
570  /*
571  * If some other waiter has already extended the relation, we
572  * don't need to do so; just use the existing freespace.
573  */
574  if (targetBlock != InvalidBlockNumber)
575  {
577  goto loop;
578  }
579 
580  /* Time to bulk-extend. */
581  RelationAddExtraBlocks(relation, bistate);
582  }
583  }
584 
585  /*
586  * In addition to whatever extension we performed above, we always add at
587  * least one block to satisfy our own request.
588  *
589  * XXX This does an lseek - rather expensive - but at the moment it is the
590  * only way to accurately determine how many blocks are in a relation. Is
591  * it worth keeping an accurate file length in shared memory someplace,
592  * rather than relying on the kernel to do it for us?
593  */
594  buffer = ReadBufferBI(relation, P_NEW, RBM_ZERO_AND_LOCK, bistate);
595 
596  /*
597  * We need to initialize the empty new page. Double-check that it really
598  * is empty (this should never happen, but if it does we don't want to
599  * risk wiping out valid data).
600  */
601  page = BufferGetPage(buffer);
602 
603  if (!PageIsNew(page))
604  elog(ERROR, "page %u of relation \"%s\" should be empty but is not",
605  BufferGetBlockNumber(buffer),
606  RelationGetRelationName(relation));
607 
608  PageInit(page, BufferGetPageSize(buffer), 0);
609  MarkBufferDirty(buffer);
610 
611  /*
612  * Release the file-extension lock; it's now OK for someone else to extend
613  * the relation some more.
614  */
615  if (needLock)
617 
618  /*
619  * Lock the other buffer. It's guaranteed to be of a lower page number
620  * than the new page. To conform with the deadlock prevent rules, we ought
621  * to lock otherBuffer first, but that would give other backends a chance
622  * to put tuples on our page. To reduce the likelihood of that, attempt to
623  * lock the other buffer conditionally, that's very likely to work.
624  * Otherwise we need to lock buffers in the correct order, and retry if
625  * the space has been used in the mean time.
626  *
627  * Alternatively, we could acquire the lock on otherBuffer before
628  * extending the relation, but that'd require holding the lock while
629  * performing IO, which seems worse than an unlikely retry.
630  */
631  if (otherBuffer != InvalidBuffer)
632  {
633  Assert(otherBuffer != buffer);
634 
635  if (unlikely(!ConditionalLockBuffer(otherBuffer)))
636  {
638  LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
640 
641  /*
642  * Because the buffer was unlocked for a while, it's possible,
643  * although unlikely, that the page was filled. If so, just retry
644  * from start.
645  */
646  if (len > PageGetHeapFreeSpace(page))
647  {
648  LockBuffer(otherBuffer, BUFFER_LOCK_UNLOCK);
649  UnlockReleaseBuffer(buffer);
650 
651  goto loop;
652  }
653  }
654  }
655 
656  if (len > PageGetHeapFreeSpace(page))
657  {
658  /* We should not get here given the test at the top */
659  elog(PANIC, "tuple is too big: size %zu", len);
660  }
661 
662  /*
663  * Remember the new page as our target for future insertions.
664  *
665  * XXX should we enter the new page into the free space map immediately,
666  * or just keep it for this backend's exclusive use in the short run
667  * (until VACUUM sees it)? Seems to depend on whether you expect the
668  * current backend to make more insertions or not, which is probably a
669  * good bet most of the time. So for now, don't add it to FSM yet.
670  */
671  RelationSetTargetBlock(relation, BufferGetBlockNumber(buffer));
672 
673  return buffer;
674 }
bool ConditionalLockRelationForExtension(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:420
static PgChecksumMode mode
Definition: pg_checksums.c:61
#define BUFFER_LOCK_UNLOCK
Definition: bufmgr.h:86
#define PageIsAllVisible(page)
Definition: bufpage.h:385
int RelationExtensionLockWaiterCount(Relation relation)
Definition: lmgr.c:437
void RecordPageWithFreeSpace(Relation rel, BlockNumber heapBlk, Size spaceAvail)
Definition: freespace.c:181
void visibilitymap_pin(Relation rel, BlockNumber heapBlk, Buffer *buf)
void MarkBufferDirty(Buffer buffer)
Definition: bufmgr.c:1458
#define ExclusiveLock
Definition: lockdefs.h:44
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
#define RELATION_IS_LOCAL(relation)
Definition: rel.h:542
Buffer ReadBufferExtended(Relation reln, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy)
Definition: bufmgr.c:642
#define Min(x, y)
Definition: c.h:911
Pointer Item
Definition: item.h:17
#define HeapTupleHeaderIsSpeculative(tup)
Definition: htup_details.h:429
#define InvalidBuffer
Definition: buf.h:25
int errcode(int sqlerrcode)
Definition: elog.c:608
#define PageAddItem(page, item, size, offsetNumber, overwrite, is_heap)
Definition: bufpage.h:416
uint32 BlockNumber
Definition: block.h:31
void ReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:3365
#define P_NEW
Definition: bufmgr.h:81
#define BUFFER_LOCK_EXCLUSIVE
Definition: bufmgr.h:88
#define SizeOfPageHeaderData
Definition: bufpage.h:216
#define PANIC
Definition: elog.h:53
#define RelationGetTargetBlock(relation)
Definition: rel.h:507
void RelationPutHeapTuple(Relation relation, Buffer buffer, HeapTuple tuple, bool token)
Definition: hio.c:36
static Buffer ReadBufferBI(Relation relation, BlockNumber targetBlock, ReadBufferMode mode, BulkInsertState bistate)
Definition: hio.c:80
uint16 OffsetNumber
Definition: off.h:24
HeapTupleHeader t_data
Definition: htup.h:68
static void GetVisibilityMapPins(Relation relation, Buffer buffer1, Buffer buffer2, BlockNumber block1, BlockNumber block2, Buffer *vmbuffer1, Buffer *vmbuffer2)
Definition: hio.c:130
void UnlockReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:3388
#define ERROR
Definition: elog.h:43
Size PageGetHeapFreeSpace(Page page)
Definition: bufpage.c:665
ItemPointerData t_ctid
Definition: htup_details.h:160
ItemPointerData t_self
Definition: htup.h:65
uint32 t_len
Definition: htup.h:64
#define MaxHeapTupleSize
Definition: htup_details.h:560
Buffer RelationGetBufferForTuple(Relation relation, Size len, Buffer otherBuffer, int options, BulkInsertState bistate, Buffer *vmbuffer, Buffer *vmbuffer_other)
Definition: hio.c:320
#define RelationGetRelationName(relation)
Definition: rel.h:456
#define BufferGetPage(buffer)
Definition: bufmgr.h:159
#define ereport(elevel, rest)
Definition: elog.h:141
bool ConditionalLockBuffer(Buffer buffer)
Definition: bufmgr.c:3628
#define RelationGetTargetPageFreeSpace(relation, defaultff)
Definition: rel.h:306
ReadBufferMode
Definition: bufmgr.h:37
#define PageGetItemId(page, offsetNumber)
Definition: bufpage.h:235
void LockRelationForExtension(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:402
void UnlockRelationForExtension(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:452
#define BufferGetPageSize(buffer)
Definition: bufmgr.h:146
void LockBuffer(Buffer buffer, int mode)
Definition: bufmgr.c:3602
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:198
#define InvalidOffsetNumber
Definition: off.h:26
#define Assert(condition)
Definition: c.h:739
Buffer ReadBuffer(Relation reln, BlockNumber blockNum)
Definition: bufmgr.c:596
#define RelationSetTargetBlock(relation, targblock)
Definition: rel.h:514
size_t Size
Definition: c.h:467
#define InvalidBlockNumber
Definition: block.h:33
#define MAXALIGN(LEN)
Definition: c.h:692
#define BufferIsValid(bufnum)
Definition: bufmgr.h:113
#define HEAP_INSERT_SKIP_FSM
Definition: heapam.h:33
BufferAccessStrategy strategy
Definition: hio.h:31
BlockNumber BufferGetBlockNumber(Buffer buffer)
Definition: bufmgr.c:2613
static void RelationAddExtraBlocks(Relation relation, BulkInsertState bistate)
Definition: hio.c:186
#define PageIsNew(page)
Definition: bufpage.h:229
int errmsg(const char *fmt,...)
Definition: elog.c:822
#define elog(elevel,...)
Definition: elog.h:228
BlockNumber GetPageWithFreeSpace(Relation rel, Size spaceNeeded)
Definition: freespace.c:132
#define unlikely(x)
Definition: c.h:208
bool visibilitymap_pin_ok(BlockNumber heapBlk, Buffer buf)
BlockNumber RecordAndGetPageWithFreeSpace(Relation rel, BlockNumber oldPage, Size oldSpaceAvail, Size spaceNeeded)
Definition: freespace.c:149
#define HEAP_DEFAULT_FILLFACTOR
Definition: rel.h:277
int Buffer
Definition: buf.h:23
void FreeSpaceMapVacuumRange(Relation rel, BlockNumber start, BlockNumber end)
Definition: freespace.c:352
void IncrBufferRefCount(Buffer buffer)
Definition: bufmgr.c:3403
Buffer current_buf
Definition: hio.h:32
#define PageGetItem(page, itemId)
Definition: bufpage.h:340
Pointer Page
Definition: bufpage.h:78
#define ItemPointerSet(pointer, blockNumber, offNum)
Definition: itemptr.h:127
void PageInit(Page page, Size pageSize, Size specialSize)
Definition: bufpage.c:42