PostgreSQL Source Code git master
parse_cte.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * parse_cte.c
4 * handle CTEs (common table expressions) in parser
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/parser/parse_cte.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
18#include "catalog/pg_type.h"
19#include "nodes/nodeFuncs.h"
20#include "parser/analyze.h"
21#include "parser/parse_coerce.h"
23#include "parser/parse_cte.h"
24#include "parser/parse_expr.h"
25#include "utils/builtins.h"
26#include "utils/lsyscache.h"
27#include "utils/typcache.h"
28
29
30/* Enumeration of contexts in which a self-reference is disallowed */
31typedef enum
32{
34 RECURSION_NONRECURSIVETERM, /* inside the left-hand term */
35 RECURSION_SUBLINK, /* inside a sublink */
36 RECURSION_OUTERJOIN, /* inside nullable side of an outer join */
37 RECURSION_INTERSECT, /* underneath INTERSECT (ALL) */
38 RECURSION_EXCEPT, /* underneath EXCEPT (ALL) */
40
41/* Associated error messages --- each must have one %s for CTE name */
42static const char *const recursion_errormsgs[] = {
43 /* RECURSION_OK */
44 NULL,
45 /* RECURSION_NONRECURSIVETERM */
46 gettext_noop("recursive reference to query \"%s\" must not appear within its non-recursive term"),
47 /* RECURSION_SUBLINK */
48 gettext_noop("recursive reference to query \"%s\" must not appear within a subquery"),
49 /* RECURSION_OUTERJOIN */
50 gettext_noop("recursive reference to query \"%s\" must not appear within an outer join"),
51 /* RECURSION_INTERSECT */
52 gettext_noop("recursive reference to query \"%s\" must not appear within INTERSECT"),
53 /* RECURSION_EXCEPT */
54 gettext_noop("recursive reference to query \"%s\" must not appear within EXCEPT")
55};
56
57/*
58 * For WITH RECURSIVE, we have to find an ordering of the clause members
59 * with no forward references, and determine which members are recursive
60 * (i.e., self-referential). It is convenient to do this with an array
61 * of CteItems instead of a list of CommonTableExprs.
62 */
63typedef struct CteItem
64{
65 CommonTableExpr *cte; /* One CTE to examine */
66 int id; /* Its ID number for dependencies */
67 Bitmapset *depends_on; /* CTEs depended on (not including self) */
69
70/* CteState is what we need to pass around in the tree walkers */
71typedef struct CteState
72{
73 /* global state: */
74 ParseState *pstate; /* global parse state */
75 CteItem *items; /* array of CTEs and extra data */
76 int numitems; /* number of CTEs */
77 /* working state during a tree walk: */
78 int curitem; /* index of item currently being examined */
79 List *innerwiths; /* list of lists of CommonTableExpr */
80 /* working state for checkWellFormedRecursion walk only: */
81 int selfrefcount; /* number of self-references detected */
82 RecursionContext context; /* context to allow or disallow self-ref */
84
85
86static void analyzeCTE(ParseState *pstate, CommonTableExpr *cte);
87
88/* Dependency processing functions */
89static void makeDependencyGraph(CteState *cstate);
90static bool makeDependencyGraphWalker(Node *node, CteState *cstate);
91static void TopologicalSort(ParseState *pstate, CteItem *items, int numitems);
92
93/* Recursion validity checker functions */
94static void checkWellFormedRecursion(CteState *cstate);
95static bool checkWellFormedRecursionWalker(Node *node, CteState *cstate);
97
98
99/*
100 * transformWithClause -
101 * Transform the list of WITH clause "common table expressions" into
102 * Query nodes.
103 *
104 * The result is the list of transformed CTEs to be put into the output
105 * Query. (This is in fact the same as the ending value of p_ctenamespace,
106 * but it seems cleaner to not expose that in the function's API.)
107 */
108List *
110{
111 ListCell *lc;
112
113 /* Only one WITH clause per query level */
114 Assert(pstate->p_ctenamespace == NIL);
115 Assert(pstate->p_future_ctes == NIL);
116
117 /*
118 * For either type of WITH, there must not be duplicate CTE names in the
119 * list. Check this right away so we needn't worry later.
120 *
121 * Also, tentatively mark each CTE as non-recursive, and initialize its
122 * reference count to zero, and set pstate->p_hasModifyingCTE if needed.
123 */
124 foreach(lc, withClause->ctes)
125 {
127 ListCell *rest;
128
129 for_each_cell(rest, withClause->ctes, lnext(withClause->ctes, lc))
130 {
131 CommonTableExpr *cte2 = (CommonTableExpr *) lfirst(rest);
132
133 if (strcmp(cte->ctename, cte2->ctename) == 0)
135 (errcode(ERRCODE_DUPLICATE_ALIAS),
136 errmsg("WITH query name \"%s\" specified more than once",
137 cte2->ctename),
138 parser_errposition(pstate, cte2->location)));
139 }
140
141 cte->cterecursive = false;
142 cte->cterefcount = 0;
143
144 if (!IsA(cte->ctequery, SelectStmt))
145 {
146 /* must be a data-modifying statement */
147 Assert(IsA(cte->ctequery, InsertStmt) ||
148 IsA(cte->ctequery, UpdateStmt) ||
149 IsA(cte->ctequery, DeleteStmt) ||
150 IsA(cte->ctequery, MergeStmt));
151
152 pstate->p_hasModifyingCTE = true;
153 }
154 }
155
156 if (withClause->recursive)
157 {
158 /*
159 * For WITH RECURSIVE, we rearrange the list elements if needed to
160 * eliminate forward references. First, build a work array and set up
161 * the data structure needed by the tree walkers.
162 */
163 CteState cstate;
164 int i;
165
166 cstate.pstate = pstate;
167 cstate.numitems = list_length(withClause->ctes);
168 cstate.items = (CteItem *) palloc0(cstate.numitems * sizeof(CteItem));
169 i = 0;
170 foreach(lc, withClause->ctes)
171 {
172 cstate.items[i].cte = (CommonTableExpr *) lfirst(lc);
173 cstate.items[i].id = i;
174 i++;
175 }
176
177 /*
178 * Find all the dependencies and sort the CteItems into a safe
179 * processing order. Also, mark CTEs that contain self-references.
180 */
181 makeDependencyGraph(&cstate);
182
183 /*
184 * Check that recursive queries are well-formed.
185 */
187
188 /*
189 * Set up the ctenamespace for parse analysis. Per spec, all the WITH
190 * items are visible to all others, so stuff them all in before parse
191 * analysis. We build the list in safe processing order so that the
192 * planner can process the queries in sequence.
193 */
194 for (i = 0; i < cstate.numitems; i++)
195 {
196 CommonTableExpr *cte = cstate.items[i].cte;
197
198 pstate->p_ctenamespace = lappend(pstate->p_ctenamespace, cte);
199 }
200
201 /*
202 * Do parse analysis in the order determined by the topological sort.
203 */
204 for (i = 0; i < cstate.numitems; i++)
205 {
206 CommonTableExpr *cte = cstate.items[i].cte;
207
208 analyzeCTE(pstate, cte);
209 }
210 }
211 else
212 {
213 /*
214 * For non-recursive WITH, just analyze each CTE in sequence and then
215 * add it to the ctenamespace. This corresponds to the spec's
216 * definition of the scope of each WITH name. However, to allow error
217 * reports to be aware of the possibility of an erroneous reference,
218 * we maintain a list in p_future_ctes of the not-yet-visible CTEs.
219 */
220 pstate->p_future_ctes = list_copy(withClause->ctes);
221
222 foreach(lc, withClause->ctes)
223 {
225
226 analyzeCTE(pstate, cte);
227 pstate->p_ctenamespace = lappend(pstate->p_ctenamespace, cte);
229 }
230 }
231
232 return pstate->p_ctenamespace;
233}
234
235
236/*
237 * Perform the actual parse analysis transformation of one CTE. All
238 * CTEs it depends on have already been loaded into pstate->p_ctenamespace,
239 * and have been marked with the correct output column names/types.
240 */
241static void
243{
244 Query *query;
245 CTESearchClause *search_clause = cte->search_clause;
246 CTECycleClause *cycle_clause = cte->cycle_clause;
247
248 /* Analysis not done already */
249 Assert(!IsA(cte->ctequery, Query));
250
251 /*
252 * Before analyzing the CTE's query, we'd better identify the data type of
253 * the cycle mark column if any, since the query could refer to that.
254 * Other validity checks on the cycle clause will be done afterwards.
255 */
256 if (cycle_clause)
257 {
258 TypeCacheEntry *typentry;
259 Oid op;
260
261 cycle_clause->cycle_mark_value =
262 transformExpr(pstate, cycle_clause->cycle_mark_value,
264 cycle_clause->cycle_mark_default =
265 transformExpr(pstate, cycle_clause->cycle_mark_default,
267
268 cycle_clause->cycle_mark_type =
269 select_common_type(pstate,
270 list_make2(cycle_clause->cycle_mark_value,
271 cycle_clause->cycle_mark_default),
272 "CYCLE", NULL);
273 cycle_clause->cycle_mark_value =
275 cycle_clause->cycle_mark_value,
276 cycle_clause->cycle_mark_type,
277 "CYCLE/SET/TO");
278 cycle_clause->cycle_mark_default =
280 cycle_clause->cycle_mark_default,
281 cycle_clause->cycle_mark_type,
282 "CYCLE/SET/DEFAULT");
283
284 cycle_clause->cycle_mark_typmod =
286 list_make2(cycle_clause->cycle_mark_value,
287 cycle_clause->cycle_mark_default),
288 cycle_clause->cycle_mark_type);
289
290 cycle_clause->cycle_mark_collation =
292 list_make2(cycle_clause->cycle_mark_value,
293 cycle_clause->cycle_mark_default),
294 true);
295
296 /* Might as well look up the relevant <> operator while we are at it */
297 typentry = lookup_type_cache(cycle_clause->cycle_mark_type,
299 if (!OidIsValid(typentry->eq_opr))
301 errcode(ERRCODE_UNDEFINED_FUNCTION),
302 errmsg("could not identify an equality operator for type %s",
303 format_type_be(cycle_clause->cycle_mark_type)));
304 op = get_negator(typentry->eq_opr);
305 if (!OidIsValid(op))
307 errcode(ERRCODE_UNDEFINED_FUNCTION),
308 errmsg("could not identify an inequality operator for type %s",
309 format_type_be(cycle_clause->cycle_mark_type)));
310
311 cycle_clause->cycle_mark_neop = op;
312 }
313
314 /* Now we can get on with analyzing the CTE's query */
315 query = parse_sub_analyze(cte->ctequery, pstate, cte, false, true);
316 cte->ctequery = (Node *) query;
317
318 /*
319 * Check that we got something reasonable. These first two cases should
320 * be prevented by the grammar.
321 */
322 if (!IsA(query, Query))
323 elog(ERROR, "unexpected non-Query statement in WITH");
324 if (query->utilityStmt != NULL)
325 elog(ERROR, "unexpected utility statement in WITH");
326
327 /*
328 * We disallow data-modifying WITH except at the top level of a query,
329 * because it's not clear when such a modification should be executed.
330 */
331 if (query->commandType != CMD_SELECT &&
332 pstate->parentParseState != NULL)
334 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
335 errmsg("WITH clause containing a data-modifying statement must be at the top level"),
336 parser_errposition(pstate, cte->location)));
337
338 /*
339 * CTE queries are always marked not canSetTag. (Currently this only
340 * matters for data-modifying statements, for which the flag will be
341 * propagated to the ModifyTable plan node.)
342 */
343 query->canSetTag = false;
344
345 if (!cte->cterecursive)
346 {
347 /* Compute the output column names/types if not done yet */
348 analyzeCTETargetList(pstate, cte, GetCTETargetList(cte));
349 }
350 else
351 {
352 /*
353 * Verify that the previously determined output column types and
354 * collations match what the query really produced. We have to check
355 * this because the recursive term could have overridden the
356 * non-recursive term, and we don't have any easy way to fix that.
357 */
358 ListCell *lctlist,
359 *lctyp,
360 *lctypmod,
361 *lccoll;
362 int varattno;
363
364 lctyp = list_head(cte->ctecoltypes);
365 lctypmod = list_head(cte->ctecoltypmods);
366 lccoll = list_head(cte->ctecolcollations);
367 varattno = 0;
368 foreach(lctlist, GetCTETargetList(cte))
369 {
370 TargetEntry *te = (TargetEntry *) lfirst(lctlist);
371 Node *texpr;
372
373 if (te->resjunk)
374 continue;
375 varattno++;
376 Assert(varattno == te->resno);
377 if (lctyp == NULL || lctypmod == NULL || lccoll == NULL) /* shouldn't happen */
378 elog(ERROR, "wrong number of output columns in WITH");
379 texpr = (Node *) te->expr;
380 if (exprType(texpr) != lfirst_oid(lctyp) ||
381 exprTypmod(texpr) != lfirst_int(lctypmod))
383 (errcode(ERRCODE_DATATYPE_MISMATCH),
384 errmsg("recursive query \"%s\" column %d has type %s in non-recursive term but type %s overall",
385 cte->ctename, varattno,
387 lfirst_int(lctypmod)),
389 exprTypmod(texpr))),
390 errhint("Cast the output of the non-recursive term to the correct type."),
391 parser_errposition(pstate, exprLocation(texpr))));
392 if (exprCollation(texpr) != lfirst_oid(lccoll))
394 (errcode(ERRCODE_COLLATION_MISMATCH),
395 errmsg("recursive query \"%s\" column %d has collation \"%s\" in non-recursive term but collation \"%s\" overall",
396 cte->ctename, varattno,
399 errhint("Use the COLLATE clause to set the collation of the non-recursive term."),
400 parser_errposition(pstate, exprLocation(texpr))));
401 lctyp = lnext(cte->ctecoltypes, lctyp);
402 lctypmod = lnext(cte->ctecoltypmods, lctypmod);
403 lccoll = lnext(cte->ctecolcollations, lccoll);
404 }
405 if (lctyp != NULL || lctypmod != NULL || lccoll != NULL) /* shouldn't happen */
406 elog(ERROR, "wrong number of output columns in WITH");
407 }
408
409 /*
410 * Now make validity checks on the SEARCH and CYCLE clauses, if present.
411 */
412 if (search_clause || cycle_clause)
413 {
414 Query *ctequery;
415 SetOperationStmt *sos;
416
417 if (!cte->cterecursive)
419 (errcode(ERRCODE_SYNTAX_ERROR),
420 errmsg("WITH query is not recursive"),
421 parser_errposition(pstate, cte->location)));
422
423 /*
424 * SQL requires a WITH list element (CTE) to be "expandable" in order
425 * to allow a search or cycle clause. That is a stronger requirement
426 * than just being recursive. It basically means the query expression
427 * looks like
428 *
429 * non-recursive query UNION [ALL] recursive query
430 *
431 * and that the recursive query is not itself a set operation.
432 *
433 * As of this writing, most of these criteria are already satisfied by
434 * all recursive CTEs allowed by PostgreSQL. In the future, if
435 * further variants recursive CTEs are accepted, there might be
436 * further checks required here to determine what is "expandable".
437 */
438
439 ctequery = castNode(Query, cte->ctequery);
440 Assert(ctequery->setOperations);
441 sos = castNode(SetOperationStmt, ctequery->setOperations);
442
443 /*
444 * This left side check is not required for expandability, but
445 * rewriteSearchAndCycle() doesn't currently have support for it, so
446 * we catch it here.
447 */
448 if (!IsA(sos->larg, RangeTblRef))
450 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
451 errmsg("with a SEARCH or CYCLE clause, the left side of the UNION must be a SELECT")));
452
453 if (!IsA(sos->rarg, RangeTblRef))
455 (errcode(ERRCODE_SYNTAX_ERROR),
456 errmsg("with a SEARCH or CYCLE clause, the right side of the UNION must be a SELECT")));
457 }
458
459 if (search_clause)
460 {
461 ListCell *lc;
462 List *seen = NIL;
463
464 foreach(lc, search_clause->search_col_list)
465 {
466 String *colname = lfirst_node(String, lc);
467
468 if (!list_member(cte->ctecolnames, colname))
470 (errcode(ERRCODE_SYNTAX_ERROR),
471 errmsg("search column \"%s\" not in WITH query column list",
472 strVal(colname)),
473 parser_errposition(pstate, search_clause->location)));
474
475 if (list_member(seen, colname))
477 (errcode(ERRCODE_DUPLICATE_COLUMN),
478 errmsg("search column \"%s\" specified more than once",
479 strVal(colname)),
480 parser_errposition(pstate, search_clause->location)));
481 seen = lappend(seen, colname);
482 }
483
484 if (list_member(cte->ctecolnames, makeString(search_clause->search_seq_column)))
486 errcode(ERRCODE_SYNTAX_ERROR),
487 errmsg("search sequence column name \"%s\" already used in WITH query column list",
488 search_clause->search_seq_column),
489 parser_errposition(pstate, search_clause->location));
490 }
491
492 if (cycle_clause)
493 {
494 ListCell *lc;
495 List *seen = NIL;
496
497 foreach(lc, cycle_clause->cycle_col_list)
498 {
499 String *colname = lfirst_node(String, lc);
500
501 if (!list_member(cte->ctecolnames, colname))
503 (errcode(ERRCODE_SYNTAX_ERROR),
504 errmsg("cycle column \"%s\" not in WITH query column list",
505 strVal(colname)),
506 parser_errposition(pstate, cycle_clause->location)));
507
508 if (list_member(seen, colname))
510 (errcode(ERRCODE_DUPLICATE_COLUMN),
511 errmsg("cycle column \"%s\" specified more than once",
512 strVal(colname)),
513 parser_errposition(pstate, cycle_clause->location)));
514 seen = lappend(seen, colname);
515 }
516
517 if (list_member(cte->ctecolnames, makeString(cycle_clause->cycle_mark_column)))
519 errcode(ERRCODE_SYNTAX_ERROR),
520 errmsg("cycle mark column name \"%s\" already used in WITH query column list",
521 cycle_clause->cycle_mark_column),
522 parser_errposition(pstate, cycle_clause->location));
523
524 if (list_member(cte->ctecolnames, makeString(cycle_clause->cycle_path_column)))
526 errcode(ERRCODE_SYNTAX_ERROR),
527 errmsg("cycle path column name \"%s\" already used in WITH query column list",
528 cycle_clause->cycle_path_column),
529 parser_errposition(pstate, cycle_clause->location));
530
531 if (strcmp(cycle_clause->cycle_mark_column,
532 cycle_clause->cycle_path_column) == 0)
534 errcode(ERRCODE_SYNTAX_ERROR),
535 errmsg("cycle mark column name and cycle path column name are the same"),
536 parser_errposition(pstate, cycle_clause->location));
537 }
538
539 if (search_clause && cycle_clause)
540 {
541 if (strcmp(search_clause->search_seq_column,
542 cycle_clause->cycle_mark_column) == 0)
544 errcode(ERRCODE_SYNTAX_ERROR),
545 errmsg("search sequence column name and cycle mark column name are the same"),
546 parser_errposition(pstate, search_clause->location));
547
548 if (strcmp(search_clause->search_seq_column,
549 cycle_clause->cycle_path_column) == 0)
551 errcode(ERRCODE_SYNTAX_ERROR),
552 errmsg("search sequence column name and cycle path column name are the same"),
553 parser_errposition(pstate, search_clause->location));
554 }
555}
556
557/*
558 * Compute derived fields of a CTE, given the transformed output targetlist
559 *
560 * For a nonrecursive CTE, this is called after transforming the CTE's query.
561 * For a recursive CTE, we call it after transforming the non-recursive term,
562 * and pass the targetlist emitted by the non-recursive term only.
563 *
564 * Note: in the recursive case, the passed pstate is actually the one being
565 * used to analyze the CTE's query, so it is one level lower down than in
566 * the nonrecursive case. This doesn't matter since we only use it for
567 * error message context anyway.
568 */
569void
571{
572 int numaliases;
573 int varattno;
574 ListCell *tlistitem;
575
576 /* Not done already ... */
577 Assert(cte->ctecolnames == NIL);
578
579 /*
580 * We need to determine column names, types, and collations. The alias
581 * column names override anything coming from the query itself. (Note:
582 * the SQL spec says that the alias list must be empty or exactly as long
583 * as the output column set; but we allow it to be shorter for consistency
584 * with Alias handling.)
585 */
586 cte->ctecolnames = copyObject(cte->aliascolnames);
587 cte->ctecoltypes = cte->ctecoltypmods = cte->ctecolcollations = NIL;
588 numaliases = list_length(cte->aliascolnames);
589 varattno = 0;
590 foreach(tlistitem, tlist)
591 {
592 TargetEntry *te = (TargetEntry *) lfirst(tlistitem);
593 Oid coltype;
594 int32 coltypmod;
595 Oid colcoll;
596
597 if (te->resjunk)
598 continue;
599 varattno++;
600 Assert(varattno == te->resno);
601 if (varattno > numaliases)
602 {
603 char *attrname;
604
605 attrname = pstrdup(te->resname);
606 cte->ctecolnames = lappend(cte->ctecolnames, makeString(attrname));
607 }
608 coltype = exprType((Node *) te->expr);
609 coltypmod = exprTypmod((Node *) te->expr);
610 colcoll = exprCollation((Node *) te->expr);
611
612 /*
613 * If the CTE is recursive, force the exposed column type of any
614 * "unknown" column to "text". We must deal with this here because
615 * we're called on the non-recursive term before there's been any
616 * attempt to force unknown output columns to some other type. We
617 * have to resolve unknowns before looking at the recursive term.
618 *
619 * The column might contain 'foo' COLLATE "bar", so don't override
620 * collation if it's already set.
621 */
622 if (cte->cterecursive && coltype == UNKNOWNOID)
623 {
624 coltype = TEXTOID;
625 coltypmod = -1; /* should be -1 already, but be sure */
626 if (!OidIsValid(colcoll))
627 colcoll = DEFAULT_COLLATION_OID;
628 }
629 cte->ctecoltypes = lappend_oid(cte->ctecoltypes, coltype);
630 cte->ctecoltypmods = lappend_int(cte->ctecoltypmods, coltypmod);
631 cte->ctecolcollations = lappend_oid(cte->ctecolcollations, colcoll);
632 }
633 if (varattno < numaliases)
635 (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
636 errmsg("WITH query \"%s\" has %d columns available but %d columns specified",
637 cte->ctename, varattno, numaliases),
638 parser_errposition(pstate, cte->location)));
639}
640
641
642/*
643 * Identify the cross-references of a list of WITH RECURSIVE items,
644 * and sort into an order that has no forward references.
645 */
646static void
648{
649 int i;
650
651 for (i = 0; i < cstate->numitems; i++)
652 {
653 CommonTableExpr *cte = cstate->items[i].cte;
654
655 cstate->curitem = i;
656 cstate->innerwiths = NIL;
657 makeDependencyGraphWalker((Node *) cte->ctequery, cstate);
658 Assert(cstate->innerwiths == NIL);
659 }
660
661 TopologicalSort(cstate->pstate, cstate->items, cstate->numitems);
662}
663
664/*
665 * Tree walker function to detect cross-references and self-references of the
666 * CTEs in a WITH RECURSIVE list.
667 */
668static bool
670{
671 if (node == NULL)
672 return false;
673 if (IsA(node, RangeVar))
674 {
675 RangeVar *rv = (RangeVar *) node;
676
677 /* If unqualified name, might be a CTE reference */
678 if (!rv->schemaname)
679 {
680 ListCell *lc;
681 int i;
682
683 /* ... but first see if it's captured by an inner WITH */
684 foreach(lc, cstate->innerwiths)
685 {
686 List *withlist = (List *) lfirst(lc);
687 ListCell *lc2;
688
689 foreach(lc2, withlist)
690 {
691 CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc2);
692
693 if (strcmp(rv->relname, cte->ctename) == 0)
694 return false; /* yes, so bail out */
695 }
696 }
697
698 /* No, could be a reference to the query level we are working on */
699 for (i = 0; i < cstate->numitems; i++)
700 {
701 CommonTableExpr *cte = cstate->items[i].cte;
702
703 if (strcmp(rv->relname, cte->ctename) == 0)
704 {
705 int myindex = cstate->curitem;
706
707 if (i != myindex)
708 {
709 /* Add cross-item dependency */
710 cstate->items[myindex].depends_on =
711 bms_add_member(cstate->items[myindex].depends_on,
712 cstate->items[i].id);
713 }
714 else
715 {
716 /* Found out this one is self-referential */
717 cte->cterecursive = true;
718 }
719 break;
720 }
721 }
722 }
723 return false;
724 }
725 if (IsA(node, SelectStmt))
726 {
727 SelectStmt *stmt = (SelectStmt *) node;
728 ListCell *lc;
729
730 if (stmt->withClause)
731 {
732 if (stmt->withClause->recursive)
733 {
734 /*
735 * In the RECURSIVE case, all query names of the WITH are
736 * visible to all WITH items as well as the main query. So
737 * push them all on, process, pop them all off.
738 */
739 cstate->innerwiths = lcons(stmt->withClause->ctes,
740 cstate->innerwiths);
741 foreach(lc, stmt->withClause->ctes)
742 {
744
745 (void) makeDependencyGraphWalker(cte->ctequery, cstate);
746 }
747 (void) raw_expression_tree_walker(node,
749 cstate);
750 cstate->innerwiths = list_delete_first(cstate->innerwiths);
751 }
752 else
753 {
754 /*
755 * In the non-RECURSIVE case, query names are visible to the
756 * WITH items after them and to the main query.
757 */
758 cstate->innerwiths = lcons(NIL, cstate->innerwiths);
759 foreach(lc, stmt->withClause->ctes)
760 {
762 ListCell *cell1;
763
764 (void) makeDependencyGraphWalker(cte->ctequery, cstate);
765 /* note that recursion could mutate innerwiths list */
766 cell1 = list_head(cstate->innerwiths);
767 lfirst(cell1) = lappend((List *) lfirst(cell1), cte);
768 }
769 (void) raw_expression_tree_walker(node,
771 cstate);
772 cstate->innerwiths = list_delete_first(cstate->innerwiths);
773 }
774 /* We're done examining the SelectStmt */
775 return false;
776 }
777 /* if no WITH clause, just fall through for normal processing */
778 }
779 if (IsA(node, WithClause))
780 {
781 /*
782 * Prevent raw_expression_tree_walker from recursing directly into a
783 * WITH clause. We need that to happen only under the control of the
784 * code above.
785 */
786 return false;
787 }
788 return raw_expression_tree_walker(node,
790 cstate);
791}
792
793/*
794 * Sort by dependencies, using a standard topological sort operation
795 */
796static void
797TopologicalSort(ParseState *pstate, CteItem *items, int numitems)
798{
799 int i,
800 j;
801
802 /* for each position in sequence ... */
803 for (i = 0; i < numitems; i++)
804 {
805 /* ... scan the remaining items to find one that has no dependencies */
806 for (j = i; j < numitems; j++)
807 {
808 if (bms_is_empty(items[j].depends_on))
809 break;
810 }
811
812 /* if we didn't find one, the dependency graph has a cycle */
813 if (j >= numitems)
815 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
816 errmsg("mutual recursion between WITH items is not implemented"),
817 parser_errposition(pstate, items[i].cte->location)));
818
819 /*
820 * Found one. Move it to front and remove it from every other item's
821 * dependencies.
822 */
823 if (i != j)
824 {
825 CteItem tmp;
826
827 tmp = items[i];
828 items[i] = items[j];
829 items[j] = tmp;
830 }
831
832 /*
833 * Items up through i are known to have no dependencies left, so we
834 * can skip them in this loop.
835 */
836 for (j = i + 1; j < numitems; j++)
837 {
838 items[j].depends_on = bms_del_member(items[j].depends_on,
839 items[i].id);
840 }
841 }
842}
843
844
845/*
846 * Check that recursive queries are well-formed.
847 */
848static void
850{
851 int i;
852
853 for (i = 0; i < cstate->numitems; i++)
854 {
855 CommonTableExpr *cte = cstate->items[i].cte;
857
858 Assert(!IsA(stmt, Query)); /* not analyzed yet */
859
860 /* Ignore items that weren't found to be recursive */
861 if (!cte->cterecursive)
862 continue;
863
864 /* Must be a SELECT statement */
865 if (!IsA(stmt, SelectStmt))
867 (errcode(ERRCODE_INVALID_RECURSION),
868 errmsg("recursive query \"%s\" must not contain data-modifying statements",
869 cte->ctename),
870 parser_errposition(cstate->pstate, cte->location)));
871
872 /* Must have top-level UNION */
873 if (stmt->op != SETOP_UNION)
875 (errcode(ERRCODE_INVALID_RECURSION),
876 errmsg("recursive query \"%s\" does not have the form non-recursive-term UNION [ALL] recursive-term",
877 cte->ctename),
878 parser_errposition(cstate->pstate, cte->location)));
879
880 /*
881 * Really, we should insist that there not be a top-level WITH, since
882 * syntactically that would enclose the UNION. However, we've not
883 * done so in the past and it's probably too late to change. Settle
884 * for insisting that WITH not contain a self-reference. Test this
885 * before examining the UNION arms, to avoid issuing confusing errors
886 * in such cases.
887 */
888 if (stmt->withClause)
889 {
890 cstate->curitem = i;
891 cstate->innerwiths = NIL;
892 cstate->selfrefcount = 0;
893 cstate->context = RECURSION_SUBLINK;
894 checkWellFormedRecursionWalker((Node *) stmt->withClause->ctes,
895 cstate);
896 Assert(cstate->innerwiths == NIL);
897 }
898
899 /*
900 * Disallow ORDER BY and similar decoration atop the UNION. These
901 * don't make sense because it's impossible to figure out what they
902 * mean when we have only part of the recursive query's results. (If
903 * we did allow them, we'd have to check for recursive references
904 * inside these subtrees. As for WITH, we have to do this before
905 * examining the UNION arms, to avoid issuing confusing errors if
906 * there is a recursive reference here.)
907 */
908 if (stmt->sortClause)
910 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
911 errmsg("ORDER BY in a recursive query is not implemented"),
913 exprLocation((Node *) stmt->sortClause))));
914 if (stmt->limitOffset)
916 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
917 errmsg("OFFSET in a recursive query is not implemented"),
919 exprLocation(stmt->limitOffset))));
920 if (stmt->limitCount)
922 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
923 errmsg("LIMIT in a recursive query is not implemented"),
925 exprLocation(stmt->limitCount))));
926 if (stmt->lockingClause)
928 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
929 errmsg("FOR UPDATE/SHARE in a recursive query is not implemented"),
931 exprLocation((Node *) stmt->lockingClause))));
932
933 /*
934 * Now we can get on with checking the UNION operands themselves.
935 *
936 * The left-hand operand mustn't contain a self-reference at all.
937 */
938 cstate->curitem = i;
939 cstate->innerwiths = NIL;
940 cstate->selfrefcount = 0;
942 checkWellFormedRecursionWalker((Node *) stmt->larg, cstate);
943 Assert(cstate->innerwiths == NIL);
944
945 /* Right-hand operand should contain one reference in a valid place */
946 cstate->curitem = i;
947 cstate->innerwiths = NIL;
948 cstate->selfrefcount = 0;
949 cstate->context = RECURSION_OK;
950 checkWellFormedRecursionWalker((Node *) stmt->rarg, cstate);
951 Assert(cstate->innerwiths == NIL);
952 if (cstate->selfrefcount != 1) /* shouldn't happen */
953 elog(ERROR, "missing recursive reference");
954 }
955}
956
957/*
958 * Tree walker function to detect invalid self-references in a recursive query.
959 */
960static bool
962{
963 RecursionContext save_context = cstate->context;
964
965 if (node == NULL)
966 return false;
967 if (IsA(node, RangeVar))
968 {
969 RangeVar *rv = (RangeVar *) node;
970
971 /* If unqualified name, might be a CTE reference */
972 if (!rv->schemaname)
973 {
974 ListCell *lc;
975 CommonTableExpr *mycte;
976
977 /* ... but first see if it's captured by an inner WITH */
978 foreach(lc, cstate->innerwiths)
979 {
980 List *withlist = (List *) lfirst(lc);
981 ListCell *lc2;
982
983 foreach(lc2, withlist)
984 {
985 CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc2);
986
987 if (strcmp(rv->relname, cte->ctename) == 0)
988 return false; /* yes, so bail out */
989 }
990 }
991
992 /* No, could be a reference to the query level we are working on */
993 mycte = cstate->items[cstate->curitem].cte;
994 if (strcmp(rv->relname, mycte->ctename) == 0)
995 {
996 /* Found a recursive reference to the active query */
997 if (cstate->context != RECURSION_OK)
999 (errcode(ERRCODE_INVALID_RECURSION),
1001 mycte->ctename),
1002 parser_errposition(cstate->pstate,
1003 rv->location)));
1004 /* Count references */
1005 if (++(cstate->selfrefcount) > 1)
1006 ereport(ERROR,
1007 (errcode(ERRCODE_INVALID_RECURSION),
1008 errmsg("recursive reference to query \"%s\" must not appear more than once",
1009 mycte->ctename),
1010 parser_errposition(cstate->pstate,
1011 rv->location)));
1012 }
1013 }
1014 return false;
1015 }
1016 if (IsA(node, SelectStmt))
1017 {
1018 SelectStmt *stmt = (SelectStmt *) node;
1019 ListCell *lc;
1020
1021 if (stmt->withClause)
1022 {
1023 if (stmt->withClause->recursive)
1024 {
1025 /*
1026 * In the RECURSIVE case, all query names of the WITH are
1027 * visible to all WITH items as well as the main query. So
1028 * push them all on, process, pop them all off.
1029 */
1030 cstate->innerwiths = lcons(stmt->withClause->ctes,
1031 cstate->innerwiths);
1032 foreach(lc, stmt->withClause->ctes)
1033 {
1034 CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
1035
1036 (void) checkWellFormedRecursionWalker(cte->ctequery, cstate);
1037 }
1039 cstate->innerwiths = list_delete_first(cstate->innerwiths);
1040 }
1041 else
1042 {
1043 /*
1044 * In the non-RECURSIVE case, query names are visible to the
1045 * WITH items after them and to the main query.
1046 */
1047 cstate->innerwiths = lcons(NIL, cstate->innerwiths);
1048 foreach(lc, stmt->withClause->ctes)
1049 {
1050 CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
1051 ListCell *cell1;
1052
1053 (void) checkWellFormedRecursionWalker(cte->ctequery, cstate);
1054 /* note that recursion could mutate innerwiths list */
1055 cell1 = list_head(cstate->innerwiths);
1056 lfirst(cell1) = lappend((List *) lfirst(cell1), cte);
1057 }
1059 cstate->innerwiths = list_delete_first(cstate->innerwiths);
1060 }
1061 }
1062 else
1064 /* We're done examining the SelectStmt */
1065 return false;
1066 }
1067 if (IsA(node, WithClause))
1068 {
1069 /*
1070 * Prevent raw_expression_tree_walker from recursing directly into a
1071 * WITH clause. We need that to happen only under the control of the
1072 * code above.
1073 */
1074 return false;
1075 }
1076 if (IsA(node, JoinExpr))
1077 {
1078 JoinExpr *j = (JoinExpr *) node;
1079
1080 switch (j->jointype)
1081 {
1082 case JOIN_INNER:
1083 checkWellFormedRecursionWalker(j->larg, cstate);
1084 checkWellFormedRecursionWalker(j->rarg, cstate);
1085 checkWellFormedRecursionWalker(j->quals, cstate);
1086 break;
1087 case JOIN_LEFT:
1088 checkWellFormedRecursionWalker(j->larg, cstate);
1089 if (save_context == RECURSION_OK)
1090 cstate->context = RECURSION_OUTERJOIN;
1091 checkWellFormedRecursionWalker(j->rarg, cstate);
1092 cstate->context = save_context;
1093 checkWellFormedRecursionWalker(j->quals, cstate);
1094 break;
1095 case JOIN_FULL:
1096 if (save_context == RECURSION_OK)
1097 cstate->context = RECURSION_OUTERJOIN;
1098 checkWellFormedRecursionWalker(j->larg, cstate);
1099 checkWellFormedRecursionWalker(j->rarg, cstate);
1100 cstate->context = save_context;
1101 checkWellFormedRecursionWalker(j->quals, cstate);
1102 break;
1103 case JOIN_RIGHT:
1104 if (save_context == RECURSION_OK)
1105 cstate->context = RECURSION_OUTERJOIN;
1106 checkWellFormedRecursionWalker(j->larg, cstate);
1107 cstate->context = save_context;
1108 checkWellFormedRecursionWalker(j->rarg, cstate);
1109 checkWellFormedRecursionWalker(j->quals, cstate);
1110 break;
1111 default:
1112 elog(ERROR, "unrecognized join type: %d",
1113 (int) j->jointype);
1114 }
1115 return false;
1116 }
1117 if (IsA(node, SubLink))
1118 {
1119 SubLink *sl = (SubLink *) node;
1120
1121 /*
1122 * we intentionally override outer context, since subquery is
1123 * independent
1124 */
1125 cstate->context = RECURSION_SUBLINK;
1127 cstate->context = save_context;
1129 return false;
1130 }
1131 return raw_expression_tree_walker(node,
1133 cstate);
1134}
1135
1136/*
1137 * subroutine for checkWellFormedRecursionWalker: process a SelectStmt
1138 * without worrying about its WITH clause
1139 */
1140static void
1142{
1143 RecursionContext save_context = cstate->context;
1144
1145 if (save_context != RECURSION_OK)
1146 {
1147 /* just recurse without changing state */
1150 cstate);
1151 }
1152 else
1153 {
1154 switch (stmt->op)
1155 {
1156 case SETOP_NONE:
1157 case SETOP_UNION:
1160 cstate);
1161 break;
1162 case SETOP_INTERSECT:
1163 if (stmt->all)
1164 cstate->context = RECURSION_INTERSECT;
1166 cstate);
1168 cstate);
1169 cstate->context = save_context;
1171 cstate);
1172 checkWellFormedRecursionWalker((Node *) stmt->limitOffset,
1173 cstate);
1175 cstate);
1176 checkWellFormedRecursionWalker((Node *) stmt->lockingClause,
1177 cstate);
1178 /* stmt->withClause is intentionally ignored here */
1179 break;
1180 case SETOP_EXCEPT:
1181 if (stmt->all)
1182 cstate->context = RECURSION_EXCEPT;
1184 cstate);
1185 cstate->context = RECURSION_EXCEPT;
1187 cstate);
1188 cstate->context = save_context;
1190 cstate);
1191 checkWellFormedRecursionWalker((Node *) stmt->limitOffset,
1192 cstate);
1194 cstate);
1195 checkWellFormedRecursionWalker((Node *) stmt->lockingClause,
1196 cstate);
1197 /* stmt->withClause is intentionally ignored here */
1198 break;
1199 default:
1200 elog(ERROR, "unrecognized set op: %d",
1201 (int) stmt->op);
1202 }
1203 }
1204}
Bitmapset * bms_del_member(Bitmapset *a, int x)
Definition: bitmapset.c:868
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
#define bms_is_empty(a)
Definition: bitmapset.h:118
#define gettext_noop(x)
Definition: c.h:1150
#define Assert(condition)
Definition: c.h:812
int32_t int32
Definition: c.h:481
#define OidIsValid(objectId)
Definition: c.h:729
int errhint(const char *fmt,...)
Definition: elog.c:1317
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
char * format_type_with_typemod(Oid type_oid, int32 typemod)
Definition: format_type.c:362
char * format_type_be(Oid type_oid)
Definition: format_type.c:343
#define stmt
Definition: indent_codes.h:59
int j
Definition: isn.c:73
int i
Definition: isn.c:72
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:76
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_delete_first(List *list)
Definition: list.c:943
List * list_copy(const List *oldlist)
Definition: list.c:1573
List * lappend_int(List *list, int datum)
Definition: list.c:357
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
List * lcons(void *datum, List *list)
Definition: list.c:495
bool list_member(const List *list, const void *datum)
Definition: list.c:661
char * get_collation_name(Oid colloid)
Definition: lsyscache.c:1035
Oid get_negator(Oid opno)
Definition: lsyscache.c:1533
char * pstrdup(const char *in)
Definition: mcxt.c:1696
void * palloc0(Size size)
Definition: mcxt.c:1347
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:298
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:816
int exprLocation(const Node *expr)
Definition: nodeFuncs.c:1380
#define raw_expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:176
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define copyObject(obj)
Definition: nodes.h:224
@ CMD_SELECT
Definition: nodes.h:265
#define castNode(_type_, nodeptr)
Definition: nodes.h:176
@ JOIN_FULL
Definition: nodes.h:295
@ JOIN_INNER
Definition: nodes.h:293
@ JOIN_RIGHT
Definition: nodes.h:296
@ JOIN_LEFT
Definition: nodes.h:294
Node * coerce_to_common_type(ParseState *pstate, Node *node, Oid targetTypeId, const char *context)
int32 select_common_typmod(ParseState *pstate, List *exprs, Oid common_type)
Oid select_common_type(ParseState *pstate, List *exprs, const char *context, Node **which_expr)
Oid select_common_collation(ParseState *pstate, List *exprs, bool none_ok)
static void checkWellFormedSelectStmt(SelectStmt *stmt, CteState *cstate)
Definition: parse_cte.c:1141
RecursionContext
Definition: parse_cte.c:32
@ RECURSION_INTERSECT
Definition: parse_cte.c:37
@ RECURSION_SUBLINK
Definition: parse_cte.c:35
@ RECURSION_EXCEPT
Definition: parse_cte.c:38
@ RECURSION_OUTERJOIN
Definition: parse_cte.c:36
@ RECURSION_NONRECURSIVETERM
Definition: parse_cte.c:34
@ RECURSION_OK
Definition: parse_cte.c:33
static void makeDependencyGraph(CteState *cstate)
Definition: parse_cte.c:647
void analyzeCTETargetList(ParseState *pstate, CommonTableExpr *cte, List *tlist)
Definition: parse_cte.c:570
static void checkWellFormedRecursion(CteState *cstate)
Definition: parse_cte.c:849
List * transformWithClause(ParseState *pstate, WithClause *withClause)
Definition: parse_cte.c:109
static void TopologicalSort(ParseState *pstate, CteItem *items, int numitems)
Definition: parse_cte.c:797
static bool makeDependencyGraphWalker(Node *node, CteState *cstate)
Definition: parse_cte.c:669
struct CteItem CteItem
static bool checkWellFormedRecursionWalker(Node *node, CteState *cstate)
Definition: parse_cte.c:961
static const char *const recursion_errormsgs[]
Definition: parse_cte.c:42
static void analyzeCTE(ParseState *pstate, CommonTableExpr *cte)
Definition: parse_cte.c:242
struct CteState CteState
Node * transformExpr(ParseState *pstate, Node *expr, ParseExprKind exprKind)
Definition: parse_expr.c:118
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:106
@ EXPR_KIND_CYCLE_MARK
Definition: parse_node.h:84
@ SETOP_INTERSECT
Definition: parsenodes.h:2120
@ SETOP_UNION
Definition: parsenodes.h:2119
@ SETOP_EXCEPT
Definition: parsenodes.h:2121
@ SETOP_NONE
Definition: parsenodes.h:2118
#define GetCTETargetList(cte)
Definition: parsenodes.h:1705
Query * parse_sub_analyze(Node *parseTree, ParseState *parentParseState, CommonTableExpr *parentCTE, bool locked_from_parent, bool resolve_unknowns)
Definition: analyze.c:222
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define lfirst_int(lc)
Definition: pg_list.h:173
#define for_each_cell(cell, lst, initcell)
Definition: pg_list.h:438
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define lfirst_oid(lc)
Definition: pg_list.h:174
#define list_make2(x1, x2)
Definition: pg_list.h:214
unsigned int Oid
Definition: postgres_ext.h:31
char * cycle_path_column
Definition: parsenodes.h:1659
ParseLoc location
Definition: parsenodes.h:1660
Node * cycle_mark_default
Definition: parsenodes.h:1658
Oid cycle_mark_collation
Definition: parsenodes.h:1664
List * cycle_col_list
Definition: parsenodes.h:1655
char * cycle_mark_column
Definition: parsenodes.h:1656
Node * cycle_mark_value
Definition: parsenodes.h:1657
ParseLoc location
Definition: parsenodes.h:1649
char * search_seq_column
Definition: parsenodes.h:1648
List * search_col_list
Definition: parsenodes.h:1646
ParseLoc location
Definition: parsenodes.h:1684
int id
Definition: parse_cte.c:66
Bitmapset * depends_on
Definition: parse_cte.c:67
CommonTableExpr * cte
Definition: parse_cte.c:65
int selfrefcount
Definition: parse_cte.c:81
RecursionContext context
Definition: parse_cte.c:82
ParseState * pstate
Definition: parse_cte.c:74
int curitem
Definition: parse_cte.c:78
int numitems
Definition: parse_cte.c:76
List * innerwiths
Definition: parse_cte.c:79
CteItem * items
Definition: parse_cte.c:75
Definition: pg_list.h:54
Definition: nodes.h:129
ParseState * parentParseState
Definition: parse_node.h:208
List * p_ctenamespace
Definition: parse_node.h:222
bool p_hasModifyingCTE
Definition: parse_node.h:246
List * p_future_ctes
Definition: parse_node.h:223
Node * setOperations
Definition: parsenodes.h:221
CmdType commandType
Definition: parsenodes.h:121
Node * utilityStmt
Definition: parsenodes.h:136
char * relname
Definition: primnodes.h:82
ParseLoc location
Definition: primnodes.h:94
char * schemaname
Definition: primnodes.h:79
Definition: value.h:64
Expr * expr
Definition: primnodes.h:2205
AttrNumber resno
Definition: primnodes.h:2207
List * ctes
Definition: parsenodes.h:1595
bool recursive
Definition: parsenodes.h:1596
static ItemArray items
Definition: test_tidstore.c:48
TypeCacheEntry * lookup_type_cache(Oid type_id, int flags)
Definition: typcache.c:386
#define TYPECACHE_EQ_OPR
Definition: typcache.h:137
String * makeString(char *str)
Definition: value.c:63
#define strVal(v)
Definition: value.h:82