PostgreSQL Source Code  git master
plpy_typeio.c
Go to the documentation of this file.
1 /*
2  * transforming Datums to Python objects and vice versa
3  *
4  * src/pl/plpython/plpy_typeio.c
5  */
6 
7 #include "postgres.h"
8 
9 #include "access/htup_details.h"
10 #include "catalog/pg_type.h"
11 #include "funcapi.h"
12 #include "mb/pg_wchar.h"
13 #include "miscadmin.h"
14 #include "plpy_elog.h"
15 #include "plpy_main.h"
16 #include "plpy_typeio.h"
17 #include "plpython.h"
18 #include "utils/array.h"
19 #include "utils/builtins.h"
20 #include "utils/fmgroids.h"
21 #include "utils/lsyscache.h"
22 #include "utils/memutils.h"
23 
24 /* conversion from Datums to Python objects */
25 static PyObject *PLyBool_FromBool(PLyDatumToOb *arg, Datum d);
26 static PyObject *PLyFloat_FromFloat4(PLyDatumToOb *arg, Datum d);
27 static PyObject *PLyFloat_FromFloat8(PLyDatumToOb *arg, Datum d);
28 static PyObject *PLyDecimal_FromNumeric(PLyDatumToOb *arg, Datum d);
29 static PyObject *PLyLong_FromInt16(PLyDatumToOb *arg, Datum d);
30 static PyObject *PLyLong_FromInt32(PLyDatumToOb *arg, Datum d);
31 static PyObject *PLyLong_FromInt64(PLyDatumToOb *arg, Datum d);
32 static PyObject *PLyLong_FromOid(PLyDatumToOb *arg, Datum d);
33 static PyObject *PLyBytes_FromBytea(PLyDatumToOb *arg, Datum d);
34 static PyObject *PLyUnicode_FromScalar(PLyDatumToOb *arg, Datum d);
35 static PyObject *PLyObject_FromTransform(PLyDatumToOb *arg, Datum d);
36 static PyObject *PLyList_FromArray(PLyDatumToOb *arg, Datum d);
37 static PyObject *PLyList_FromArray_recurse(PLyDatumToOb *elm, int *dims, int ndim, int dim,
38  char **dataptr_p, bits8 **bitmap_p, int *bitmask_p);
39 static PyObject *PLyDict_FromComposite(PLyDatumToOb *arg, Datum d);
40 static PyObject *PLyDict_FromTuple(PLyDatumToOb *arg, HeapTuple tuple, TupleDesc desc, bool include_generated);
41 
42 /* conversion from Python objects to Datums */
43 static Datum PLyObject_ToBool(PLyObToDatum *arg, PyObject *plrv,
44  bool *isnull, bool inarray);
45 static Datum PLyObject_ToBytea(PLyObToDatum *arg, PyObject *plrv,
46  bool *isnull, bool inarray);
47 static Datum PLyObject_ToComposite(PLyObToDatum *arg, PyObject *plrv,
48  bool *isnull, bool inarray);
49 static Datum PLyObject_ToScalar(PLyObToDatum *arg, PyObject *plrv,
50  bool *isnull, bool inarray);
51 static Datum PLyObject_ToDomain(PLyObToDatum *arg, PyObject *plrv,
52  bool *isnull, bool inarray);
53 static Datum PLyObject_ToTransform(PLyObToDatum *arg, PyObject *plrv,
54  bool *isnull, bool inarray);
55 static Datum PLySequence_ToArray(PLyObToDatum *arg, PyObject *plrv,
56  bool *isnull, bool inarray);
57 static void PLySequence_ToArray_recurse(PLyObToDatum *elm, PyObject *list,
58  int *dims, int ndim, int dim,
59  Datum *elems, bool *nulls, int *currelem);
60 
61 /* conversion from Python objects to composite Datums */
62 static Datum PLyUnicode_ToComposite(PLyObToDatum *arg, PyObject *string, bool inarray);
63 static Datum PLyMapping_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *mapping);
64 static Datum PLySequence_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *sequence);
65 static Datum PLyGenericObject_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *object, bool inarray);
66 
67 
68 /*
69  * Conversion functions. Remember output from Python is input to
70  * PostgreSQL, and vice versa.
71  */
72 
73 /*
74  * Perform input conversion, given correctly-set-up state information.
75  *
76  * This is the outer-level entry point for any input conversion. Internally,
77  * the conversion functions recurse directly to each other.
78  */
79 PyObject *
81 {
82  PyObject *result;
84  MemoryContext scratch_context = PLy_get_scratch_context(exec_ctx);
85  MemoryContext oldcontext;
86 
87  /*
88  * Do the work in the scratch context to avoid leaking memory from the
89  * datatype output function calls. (The individual PLyDatumToObFunc
90  * functions can't reset the scratch context, because they recurse and an
91  * inner one might clobber data an outer one still needs. So we do it
92  * once at the outermost recursion level.)
93  *
94  * We reset the scratch context before, not after, each conversion cycle.
95  * This way we aren't on the hook to release a Python refcount on the
96  * result object in case MemoryContextReset throws an error.
97  */
98  MemoryContextReset(scratch_context);
99 
100  oldcontext = MemoryContextSwitchTo(scratch_context);
101 
102  result = arg->func(arg, val);
103 
104  MemoryContextSwitchTo(oldcontext);
105 
106  return result;
107 }
108 
109 /*
110  * Perform output conversion, given correctly-set-up state information.
111  *
112  * This is the outer-level entry point for any output conversion. Internally,
113  * the conversion functions recurse directly to each other.
114  *
115  * The result, as well as any cruft generated along the way, are in the
116  * current memory context. Caller is responsible for cleanup.
117  */
118 Datum
119 PLy_output_convert(PLyObToDatum *arg, PyObject *val, bool *isnull)
120 {
121  /* at outer level, we are not considering an array element */
122  return arg->func(arg, val, isnull, false);
123 }
124 
125 /*
126  * Transform a tuple into a Python dict object.
127  *
128  * Note: the tupdesc must match the one used to set up *arg. We could
129  * insist that this function lookup the tupdesc from what is in *arg,
130  * but in practice all callers have the right tupdesc available.
131  */
132 PyObject *
133 PLy_input_from_tuple(PLyDatumToOb *arg, HeapTuple tuple, TupleDesc desc, bool include_generated)
134 {
135  PyObject *dict;
137  MemoryContext scratch_context = PLy_get_scratch_context(exec_ctx);
138  MemoryContext oldcontext;
139 
140  /*
141  * As in PLy_input_convert, do the work in the scratch context.
142  */
143  MemoryContextReset(scratch_context);
144 
145  oldcontext = MemoryContextSwitchTo(scratch_context);
146 
147  dict = PLyDict_FromTuple(arg, tuple, desc, include_generated);
148 
149  MemoryContextSwitchTo(oldcontext);
150 
151  return dict;
152 }
153 
154 /*
155  * Initialize, or re-initialize, per-column input info for a composite type.
156  *
157  * This is separate from PLy_input_setup_func() because in cases involving
158  * anonymous record types, we need to be passed the tupdesc explicitly.
159  * It's caller's responsibility that the tupdesc has adequate lifespan
160  * in such cases. If the tupdesc is for a named composite or registered
161  * record type, it does not need to be long-lived.
162  */
163 void
165 {
166  int i;
167 
168  /* We should be working on a previously-set-up struct */
169  Assert(arg->func == PLyDict_FromComposite);
170 
171  /* Save pointer to tupdesc, but only if this is an anonymous record type */
172  if (arg->typoid == RECORDOID && arg->typmod < 0)
173  arg->u.tuple.recdesc = desc;
174 
175  /* (Re)allocate atts array as needed */
176  if (arg->u.tuple.natts != desc->natts)
177  {
178  if (arg->u.tuple.atts)
179  pfree(arg->u.tuple.atts);
180  arg->u.tuple.natts = desc->natts;
181  arg->u.tuple.atts = (PLyDatumToOb *)
183  desc->natts * sizeof(PLyDatumToOb));
184  }
185 
186  /* Fill the atts entries, except for dropped columns */
187  for (i = 0; i < desc->natts; i++)
188  {
189  Form_pg_attribute attr = TupleDescAttr(desc, i);
190  PLyDatumToOb *att = &arg->u.tuple.atts[i];
191 
192  if (attr->attisdropped)
193  continue;
194 
195  if (att->typoid == attr->atttypid && att->typmod == attr->atttypmod)
196  continue; /* already set up this entry */
197 
198  PLy_input_setup_func(att, arg->mcxt,
199  attr->atttypid, attr->atttypmod,
200  proc);
201  }
202 }
203 
204 /*
205  * Initialize, or re-initialize, per-column output info for a composite type.
206  *
207  * This is separate from PLy_output_setup_func() because in cases involving
208  * anonymous record types, we need to be passed the tupdesc explicitly.
209  * It's caller's responsibility that the tupdesc has adequate lifespan
210  * in such cases. If the tupdesc is for a named composite or registered
211  * record type, it does not need to be long-lived.
212  */
213 void
215 {
216  int i;
217 
218  /* We should be working on a previously-set-up struct */
219  Assert(arg->func == PLyObject_ToComposite);
220 
221  /* Save pointer to tupdesc, but only if this is an anonymous record type */
222  if (arg->typoid == RECORDOID && arg->typmod < 0)
223  arg->u.tuple.recdesc = desc;
224 
225  /* (Re)allocate atts array as needed */
226  if (arg->u.tuple.natts != desc->natts)
227  {
228  if (arg->u.tuple.atts)
229  pfree(arg->u.tuple.atts);
230  arg->u.tuple.natts = desc->natts;
231  arg->u.tuple.atts = (PLyObToDatum *)
233  desc->natts * sizeof(PLyObToDatum));
234  }
235 
236  /* Fill the atts entries, except for dropped columns */
237  for (i = 0; i < desc->natts; i++)
238  {
239  Form_pg_attribute attr = TupleDescAttr(desc, i);
240  PLyObToDatum *att = &arg->u.tuple.atts[i];
241 
242  if (attr->attisdropped)
243  continue;
244 
245  if (att->typoid == attr->atttypid && att->typmod == attr->atttypmod)
246  continue; /* already set up this entry */
247 
248  PLy_output_setup_func(att, arg->mcxt,
249  attr->atttypid, attr->atttypmod,
250  proc);
251  }
252 }
253 
254 /*
255  * Set up output info for a PL/Python function returning record.
256  *
257  * Note: the given tupdesc is not necessarily long-lived.
258  */
259 void
261 {
262  /* Makes no sense unless RECORD */
263  Assert(arg->typoid == RECORDOID);
264  Assert(desc->tdtypeid == RECORDOID);
265 
266  /*
267  * Bless the record type if not already done. We'd have to do this anyway
268  * to return a tuple, so we might as well force the issue so we can use
269  * the known-record-type code path.
270  */
271  BlessTupleDesc(desc);
272 
273  /*
274  * Update arg->typmod, and clear the recdesc link if it's changed. The
275  * next call of PLyObject_ToComposite will look up a long-lived tupdesc
276  * for the record type.
277  */
278  arg->typmod = desc->tdtypmod;
279  if (arg->u.tuple.recdesc &&
280  arg->u.tuple.recdesc->tdtypmod != arg->typmod)
281  arg->u.tuple.recdesc = NULL;
282 
283  /* Update derived data if necessary */
284  PLy_output_setup_tuple(arg, desc, proc);
285 }
286 
287 /*
288  * Recursively initialize the PLyObToDatum structure(s) needed to construct
289  * a SQL value of the specified typeOid/typmod from a Python value.
290  * (But note that at this point we may have RECORDOID/-1, ie, an indeterminate
291  * record type.)
292  * proc is used to look up transform functions.
293  */
294 void
296  Oid typeOid, int32 typmod,
297  PLyProcedure *proc)
298 {
299  TypeCacheEntry *typentry;
300  char typtype;
301  Oid trfuncid;
302  Oid typinput;
303 
304  /* Since this is recursive, it could theoretically be driven to overflow */
306 
307  arg->typoid = typeOid;
308  arg->typmod = typmod;
309  arg->mcxt = arg_mcxt;
310 
311  /*
312  * Fetch typcache entry for the target type, asking for whatever info
313  * we'll need later. RECORD is a special case: just treat it as composite
314  * without bothering with the typcache entry.
315  */
316  if (typeOid != RECORDOID)
317  {
318  typentry = lookup_type_cache(typeOid, TYPECACHE_DOMAIN_BASE_INFO);
319  typtype = typentry->typtype;
320  arg->typbyval = typentry->typbyval;
321  arg->typlen = typentry->typlen;
322  arg->typalign = typentry->typalign;
323  }
324  else
325  {
326  typentry = NULL;
327  typtype = TYPTYPE_COMPOSITE;
328  /* hard-wired knowledge about type RECORD: */
329  arg->typbyval = false;
330  arg->typlen = -1;
331  arg->typalign = TYPALIGN_DOUBLE;
332  }
333 
334  /*
335  * Choose conversion method. Note that transform functions are checked
336  * for composite and scalar types, but not for arrays or domains. This is
337  * somewhat historical, but we'd have a problem allowing them on domains,
338  * since we drill down through all levels of a domain nest without looking
339  * at the intermediate levels at all.
340  */
341  if (typtype == TYPTYPE_DOMAIN)
342  {
343  /* Domain */
344  arg->func = PLyObject_ToDomain;
345  arg->u.domain.domain_info = NULL;
346  /* Recursively set up conversion info for the element type */
347  arg->u.domain.base = (PLyObToDatum *)
348  MemoryContextAllocZero(arg_mcxt, sizeof(PLyObToDatum));
349  PLy_output_setup_func(arg->u.domain.base, arg_mcxt,
350  typentry->domainBaseType,
351  typentry->domainBaseTypmod,
352  proc);
353  }
354  else if (typentry &&
355  IsTrueArrayType(typentry))
356  {
357  /* Standard array */
358  arg->func = PLySequence_ToArray;
359  /* Get base type OID to insert into constructed array */
360  /* (note this might not be the same as the immediate child type) */
361  arg->u.array.elmbasetype = getBaseType(typentry->typelem);
362  /* Recursively set up conversion info for the element type */
363  arg->u.array.elm = (PLyObToDatum *)
364  MemoryContextAllocZero(arg_mcxt, sizeof(PLyObToDatum));
365  PLy_output_setup_func(arg->u.array.elm, arg_mcxt,
366  typentry->typelem, typmod,
367  proc);
368  }
369  else if ((trfuncid = get_transform_tosql(typeOid,
370  proc->langid,
371  proc->trftypes)))
372  {
373  arg->func = PLyObject_ToTransform;
374  fmgr_info_cxt(trfuncid, &arg->u.transform.typtransform, arg_mcxt);
375  }
376  else if (typtype == TYPTYPE_COMPOSITE)
377  {
378  /* Named composite type, or RECORD */
379  arg->func = PLyObject_ToComposite;
380  /* We'll set up the per-field data later */
381  arg->u.tuple.recdesc = NULL;
382  arg->u.tuple.typentry = typentry;
383  arg->u.tuple.tupdescid = INVALID_TUPLEDESC_IDENTIFIER;
384  arg->u.tuple.atts = NULL;
385  arg->u.tuple.natts = 0;
386  /* Mark this invalid till needed, too */
387  arg->u.tuple.recinfunc.fn_oid = InvalidOid;
388  }
389  else
390  {
391  /* Scalar type, but we have a couple of special cases */
392  switch (typeOid)
393  {
394  case BOOLOID:
395  arg->func = PLyObject_ToBool;
396  break;
397  case BYTEAOID:
398  arg->func = PLyObject_ToBytea;
399  break;
400  default:
401  arg->func = PLyObject_ToScalar;
402  getTypeInputInfo(typeOid, &typinput, &arg->u.scalar.typioparam);
403  fmgr_info_cxt(typinput, &arg->u.scalar.typfunc, arg_mcxt);
404  break;
405  }
406  }
407 }
408 
409 /*
410  * Recursively initialize the PLyDatumToOb structure(s) needed to construct
411  * a Python value from a SQL value of the specified typeOid/typmod.
412  * (But note that at this point we may have RECORDOID/-1, ie, an indeterminate
413  * record type.)
414  * proc is used to look up transform functions.
415  */
416 void
418  Oid typeOid, int32 typmod,
419  PLyProcedure *proc)
420 {
421  TypeCacheEntry *typentry;
422  char typtype;
423  Oid trfuncid;
424  Oid typoutput;
425  bool typisvarlena;
426 
427  /* Since this is recursive, it could theoretically be driven to overflow */
429 
430  arg->typoid = typeOid;
431  arg->typmod = typmod;
432  arg->mcxt = arg_mcxt;
433 
434  /*
435  * Fetch typcache entry for the target type, asking for whatever info
436  * we'll need later. RECORD is a special case: just treat it as composite
437  * without bothering with the typcache entry.
438  */
439  if (typeOid != RECORDOID)
440  {
441  typentry = lookup_type_cache(typeOid, TYPECACHE_DOMAIN_BASE_INFO);
442  typtype = typentry->typtype;
443  arg->typbyval = typentry->typbyval;
444  arg->typlen = typentry->typlen;
445  arg->typalign = typentry->typalign;
446  }
447  else
448  {
449  typentry = NULL;
450  typtype = TYPTYPE_COMPOSITE;
451  /* hard-wired knowledge about type RECORD: */
452  arg->typbyval = false;
453  arg->typlen = -1;
454  arg->typalign = TYPALIGN_DOUBLE;
455  }
456 
457  /*
458  * Choose conversion method. Note that transform functions are checked
459  * for composite and scalar types, but not for arrays or domains. This is
460  * somewhat historical, but we'd have a problem allowing them on domains,
461  * since we drill down through all levels of a domain nest without looking
462  * at the intermediate levels at all.
463  */
464  if (typtype == TYPTYPE_DOMAIN)
465  {
466  /* Domain --- we don't care, just recurse down to the base type */
467  PLy_input_setup_func(arg, arg_mcxt,
468  typentry->domainBaseType,
469  typentry->domainBaseTypmod,
470  proc);
471  }
472  else if (typentry &&
473  IsTrueArrayType(typentry))
474  {
475  /* Standard array */
476  arg->func = PLyList_FromArray;
477  /* Recursively set up conversion info for the element type */
478  arg->u.array.elm = (PLyDatumToOb *)
479  MemoryContextAllocZero(arg_mcxt, sizeof(PLyDatumToOb));
480  PLy_input_setup_func(arg->u.array.elm, arg_mcxt,
481  typentry->typelem, typmod,
482  proc);
483  }
484  else if ((trfuncid = get_transform_fromsql(typeOid,
485  proc->langid,
486  proc->trftypes)))
487  {
489  fmgr_info_cxt(trfuncid, &arg->u.transform.typtransform, arg_mcxt);
490  }
491  else if (typtype == TYPTYPE_COMPOSITE)
492  {
493  /* Named composite type, or RECORD */
494  arg->func = PLyDict_FromComposite;
495  /* We'll set up the per-field data later */
496  arg->u.tuple.recdesc = NULL;
497  arg->u.tuple.typentry = typentry;
498  arg->u.tuple.tupdescid = INVALID_TUPLEDESC_IDENTIFIER;
499  arg->u.tuple.atts = NULL;
500  arg->u.tuple.natts = 0;
501  }
502  else
503  {
504  /* Scalar type, but we have a couple of special cases */
505  switch (typeOid)
506  {
507  case BOOLOID:
508  arg->func = PLyBool_FromBool;
509  break;
510  case FLOAT4OID:
511  arg->func = PLyFloat_FromFloat4;
512  break;
513  case FLOAT8OID:
514  arg->func = PLyFloat_FromFloat8;
515  break;
516  case NUMERICOID:
517  arg->func = PLyDecimal_FromNumeric;
518  break;
519  case INT2OID:
520  arg->func = PLyLong_FromInt16;
521  break;
522  case INT4OID:
523  arg->func = PLyLong_FromInt32;
524  break;
525  case INT8OID:
526  arg->func = PLyLong_FromInt64;
527  break;
528  case OIDOID:
529  arg->func = PLyLong_FromOid;
530  break;
531  case BYTEAOID:
532  arg->func = PLyBytes_FromBytea;
533  break;
534  default:
535  arg->func = PLyUnicode_FromScalar;
536  getTypeOutputInfo(typeOid, &typoutput, &typisvarlena);
537  fmgr_info_cxt(typoutput, &arg->u.scalar.typfunc, arg_mcxt);
538  break;
539  }
540  }
541 }
542 
543 
544 /*
545  * Special-purpose input converters.
546  */
547 
548 static PyObject *
550 {
551  if (DatumGetBool(d))
552  Py_RETURN_TRUE;
553  Py_RETURN_FALSE;
554 }
555 
556 static PyObject *
558 {
559  return PyFloat_FromDouble(DatumGetFloat4(d));
560 }
561 
562 static PyObject *
564 {
565  return PyFloat_FromDouble(DatumGetFloat8(d));
566 }
567 
568 static PyObject *
570 {
571  static PyObject *decimal_constructor;
572  char *str;
573  PyObject *pyvalue;
574 
575  /* Try to import cdecimal. If it doesn't exist, fall back to decimal. */
576  if (!decimal_constructor)
577  {
578  PyObject *decimal_module;
579 
580  decimal_module = PyImport_ImportModule("cdecimal");
581  if (!decimal_module)
582  {
583  PyErr_Clear();
584  decimal_module = PyImport_ImportModule("decimal");
585  }
586  if (!decimal_module)
587  PLy_elog(ERROR, "could not import a module for Decimal constructor");
588 
589  decimal_constructor = PyObject_GetAttrString(decimal_module, "Decimal");
590  if (!decimal_constructor)
591  PLy_elog(ERROR, "no Decimal attribute in module");
592  }
593 
595  pyvalue = PyObject_CallFunction(decimal_constructor, "s", str);
596  if (!pyvalue)
597  PLy_elog(ERROR, "conversion from numeric to Decimal failed");
598 
599  return pyvalue;
600 }
601 
602 static PyObject *
604 {
605  return PyLong_FromLong(DatumGetInt16(d));
606 }
607 
608 static PyObject *
610 {
611  return PyLong_FromLong(DatumGetInt32(d));
612 }
613 
614 static PyObject *
616 {
617  return PyLong_FromLongLong(DatumGetInt64(d));
618 }
619 
620 static PyObject *
622 {
623  return PyLong_FromUnsignedLong(DatumGetObjectId(d));
624 }
625 
626 static PyObject *
628 {
629  text *txt = DatumGetByteaPP(d);
630  char *str = VARDATA_ANY(txt);
631  size_t size = VARSIZE_ANY_EXHDR(txt);
632 
633  return PyBytes_FromStringAndSize(str, size);
634 }
635 
636 
637 /*
638  * Generic input conversion using a SQL type's output function.
639  */
640 static PyObject *
642 {
643  char *x = OutputFunctionCall(&arg->u.scalar.typfunc, d);
644  PyObject *r = PLyUnicode_FromString(x);
645 
646  pfree(x);
647  return r;
648 }
649 
650 /*
651  * Convert using a from-SQL transform function.
652  */
653 static PyObject *
655 {
656  Datum t;
657 
658  t = FunctionCall1(&arg->u.transform.typtransform, d);
659  return (PyObject *) DatumGetPointer(t);
660 }
661 
662 /*
663  * Convert a SQL array to a Python list.
664  */
665 static PyObject *
667 {
668  ArrayType *array = DatumGetArrayTypeP(d);
669  PLyDatumToOb *elm = arg->u.array.elm;
670  int ndim;
671  int *dims;
672  char *dataptr;
673  bits8 *bitmap;
674  int bitmask;
675 
676  if (ARR_NDIM(array) == 0)
677  return PyList_New(0);
678 
679  /* Array dimensions and left bounds */
680  ndim = ARR_NDIM(array);
681  dims = ARR_DIMS(array);
682  Assert(ndim <= MAXDIM);
683 
684  /*
685  * We iterate the SQL array in the physical order it's stored in the
686  * datum. For example, for a 3-dimensional array the order of iteration
687  * would be the following: [0,0,0] elements through [0,0,k], then [0,1,0]
688  * through [0,1,k] till [0,m,k], then [1,0,0] through [1,0,k] till
689  * [1,m,k], and so on.
690  *
691  * In Python, there are no multi-dimensional lists as such, but they are
692  * represented as a list of lists. So a 3-d array of [n,m,k] elements is a
693  * list of n m-element arrays, each element of which is k-element array.
694  * PLyList_FromArray_recurse() builds the Python list for a single
695  * dimension, and recurses for the next inner dimension.
696  */
697  dataptr = ARR_DATA_PTR(array);
698  bitmap = ARR_NULLBITMAP(array);
699  bitmask = 1;
700 
701  return PLyList_FromArray_recurse(elm, dims, ndim, 0,
702  &dataptr, &bitmap, &bitmask);
703 }
704 
705 static PyObject *
706 PLyList_FromArray_recurse(PLyDatumToOb *elm, int *dims, int ndim, int dim,
707  char **dataptr_p, bits8 **bitmap_p, int *bitmask_p)
708 {
709  int i;
710  PyObject *list;
711 
712  list = PyList_New(dims[dim]);
713  if (!list)
714  return NULL;
715 
716  if (dim < ndim - 1)
717  {
718  /* Outer dimension. Recurse for each inner slice. */
719  for (i = 0; i < dims[dim]; i++)
720  {
721  PyObject *sublist;
722 
723  sublist = PLyList_FromArray_recurse(elm, dims, ndim, dim + 1,
724  dataptr_p, bitmap_p, bitmask_p);
725  PyList_SET_ITEM(list, i, sublist);
726  }
727  }
728  else
729  {
730  /*
731  * Innermost dimension. Fill the list with the values from the array
732  * for this slice.
733  */
734  char *dataptr = *dataptr_p;
735  bits8 *bitmap = *bitmap_p;
736  int bitmask = *bitmask_p;
737 
738  for (i = 0; i < dims[dim]; i++)
739  {
740  /* checking for NULL */
741  if (bitmap && (*bitmap & bitmask) == 0)
742  {
743  Py_INCREF(Py_None);
744  PyList_SET_ITEM(list, i, Py_None);
745  }
746  else
747  {
748  Datum itemvalue;
749 
750  itemvalue = fetch_att(dataptr, elm->typbyval, elm->typlen);
751  PyList_SET_ITEM(list, i, elm->func(elm, itemvalue));
752  dataptr = att_addlength_pointer(dataptr, elm->typlen, dataptr);
753  dataptr = (char *) att_align_nominal(dataptr, elm->typalign);
754  }
755 
756  /* advance bitmap pointer if any */
757  if (bitmap)
758  {
759  bitmask <<= 1;
760  if (bitmask == 0x100 /* (1<<8) */ )
761  {
762  bitmap++;
763  bitmask = 1;
764  }
765  }
766  }
767 
768  *dataptr_p = dataptr;
769  *bitmap_p = bitmap;
770  *bitmask_p = bitmask;
771  }
772 
773  return list;
774 }
775 
776 /*
777  * Convert a composite SQL value to a Python dict.
778  */
779 static PyObject *
781 {
782  PyObject *dict;
783  HeapTupleHeader td;
784  Oid tupType;
785  int32 tupTypmod;
786  TupleDesc tupdesc;
787  HeapTupleData tmptup;
788 
789  td = DatumGetHeapTupleHeader(d);
790  /* Extract rowtype info and find a tupdesc */
791  tupType = HeapTupleHeaderGetTypeId(td);
792  tupTypmod = HeapTupleHeaderGetTypMod(td);
793  tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
794 
795  /* Set up I/O funcs if not done yet */
796  PLy_input_setup_tuple(arg, tupdesc,
797  PLy_current_execution_context()->curr_proc);
798 
799  /* Build a temporary HeapTuple control structure */
801  tmptup.t_data = td;
802 
803  dict = PLyDict_FromTuple(arg, &tmptup, tupdesc, true);
804 
805  ReleaseTupleDesc(tupdesc);
806 
807  return dict;
808 }
809 
810 /*
811  * Transform a tuple into a Python dict object.
812  */
813 static PyObject *
814 PLyDict_FromTuple(PLyDatumToOb *arg, HeapTuple tuple, TupleDesc desc, bool include_generated)
815 {
816  PyObject *volatile dict;
817 
818  /* Simple sanity check that desc matches */
819  Assert(desc->natts == arg->u.tuple.natts);
820 
821  dict = PyDict_New();
822  if (dict == NULL)
823  return NULL;
824 
825  PG_TRY();
826  {
827  int i;
828 
829  for (i = 0; i < arg->u.tuple.natts; i++)
830  {
831  PLyDatumToOb *att = &arg->u.tuple.atts[i];
832  Form_pg_attribute attr = TupleDescAttr(desc, i);
833  char *key;
834  Datum vattr;
835  bool is_null;
836  PyObject *value;
837 
838  if (attr->attisdropped)
839  continue;
840 
841  if (attr->attgenerated)
842  {
843  /* don't include unless requested */
844  if (!include_generated)
845  continue;
846  }
847 
848  key = NameStr(attr->attname);
849  vattr = heap_getattr(tuple, (i + 1), desc, &is_null);
850 
851  if (is_null)
852  PyDict_SetItemString(dict, key, Py_None);
853  else
854  {
855  value = att->func(att, vattr);
856  PyDict_SetItemString(dict, key, value);
857  Py_DECREF(value);
858  }
859  }
860  }
861  PG_CATCH();
862  {
863  Py_DECREF(dict);
864  PG_RE_THROW();
865  }
866  PG_END_TRY();
867 
868  return dict;
869 }
870 
871 /*
872  * Convert a Python object to a PostgreSQL bool datum. This can't go
873  * through the generic conversion function, because Python attaches a
874  * Boolean value to everything, more things than the PostgreSQL bool
875  * type can parse.
876  */
877 static Datum
879  bool *isnull, bool inarray)
880 {
881  if (plrv == Py_None)
882  {
883  *isnull = true;
884  return (Datum) 0;
885  }
886  *isnull = false;
887  return BoolGetDatum(PyObject_IsTrue(plrv));
888 }
889 
890 /*
891  * Convert a Python object to a PostgreSQL bytea datum. This doesn't
892  * go through the generic conversion function to circumvent problems
893  * with embedded nulls. And it's faster this way.
894  */
895 static Datum
897  bool *isnull, bool inarray)
898 {
899  PyObject *volatile plrv_so = NULL;
900  Datum rv = (Datum) 0;
901 
902  if (plrv == Py_None)
903  {
904  *isnull = true;
905  return (Datum) 0;
906  }
907  *isnull = false;
908 
909  plrv_so = PyObject_Bytes(plrv);
910  if (!plrv_so)
911  PLy_elog(ERROR, "could not create bytes representation of Python object");
912 
913  PG_TRY();
914  {
915  char *plrv_sc = PyBytes_AsString(plrv_so);
916  size_t len = PyBytes_Size(plrv_so);
917  size_t size = len + VARHDRSZ;
918  bytea *result = palloc(size);
919 
920  SET_VARSIZE(result, size);
921  memcpy(VARDATA(result), plrv_sc, len);
922  rv = PointerGetDatum(result);
923  }
924  PG_FINALLY();
925  {
926  Py_XDECREF(plrv_so);
927  }
928  PG_END_TRY();
929 
930  return rv;
931 }
932 
933 
934 /*
935  * Convert a Python object to a composite type. First look up the type's
936  * description, then route the Python object through the conversion function
937  * for obtaining PostgreSQL tuples.
938  */
939 static Datum
941  bool *isnull, bool inarray)
942 {
943  Datum rv;
944  TupleDesc desc;
945 
946  if (plrv == Py_None)
947  {
948  *isnull = true;
949  return (Datum) 0;
950  }
951  *isnull = false;
952 
953  /*
954  * The string conversion case doesn't require a tupdesc, nor per-field
955  * conversion data, so just go for it if that's the case to use.
956  */
957  if (PyUnicode_Check(plrv))
958  return PLyUnicode_ToComposite(arg, plrv, inarray);
959 
960  /*
961  * If we're dealing with a named composite type, we must look up the
962  * tupdesc every time, to protect against possible changes to the type.
963  * RECORD types can't change between calls; but we must still be willing
964  * to set up the info the first time, if nobody did yet.
965  */
966  if (arg->typoid != RECORDOID)
967  {
968  desc = lookup_rowtype_tupdesc(arg->typoid, arg->typmod);
969  /* We should have the descriptor of the type's typcache entry */
970  Assert(desc == arg->u.tuple.typentry->tupDesc);
971  /* Detect change of descriptor, update cache if needed */
972  if (arg->u.tuple.tupdescid != arg->u.tuple.typentry->tupDesc_identifier)
973  {
975  PLy_current_execution_context()->curr_proc);
976  arg->u.tuple.tupdescid = arg->u.tuple.typentry->tupDesc_identifier;
977  }
978  }
979  else
980  {
981  desc = arg->u.tuple.recdesc;
982  if (desc == NULL)
983  {
984  desc = lookup_rowtype_tupdesc(arg->typoid, arg->typmod);
985  arg->u.tuple.recdesc = desc;
986  }
987  else
988  {
989  /* Pin descriptor to match unpin below */
990  PinTupleDesc(desc);
991  }
992  }
993 
994  /* Simple sanity check on our caching */
995  Assert(desc->natts == arg->u.tuple.natts);
996 
997  /*
998  * Convert, using the appropriate method depending on the type of the
999  * supplied Python object.
1000  */
1001  if (PySequence_Check(plrv))
1002  /* composite type as sequence (tuple, list etc) */
1003  rv = PLySequence_ToComposite(arg, desc, plrv);
1004  else if (PyMapping_Check(plrv))
1005  /* composite type as mapping (currently only dict) */
1006  rv = PLyMapping_ToComposite(arg, desc, plrv);
1007  else
1008  /* returned as smth, must provide method __getattr__(name) */
1009  rv = PLyGenericObject_ToComposite(arg, desc, plrv, inarray);
1010 
1011  ReleaseTupleDesc(desc);
1012 
1013  return rv;
1014 }
1015 
1016 
1017 /*
1018  * Convert Python object to C string in server encoding.
1019  *
1020  * Note: this is exported for use by add-on transform modules.
1021  */
1022 char *
1023 PLyObject_AsString(PyObject *plrv)
1024 {
1025  PyObject *plrv_bo;
1026  char *plrv_sc;
1027  size_t plen;
1028  size_t slen;
1029 
1030  if (PyUnicode_Check(plrv))
1031  plrv_bo = PLyUnicode_Bytes(plrv);
1032  else if (PyFloat_Check(plrv))
1033  {
1034  /* use repr() for floats, str() is lossy */
1035  PyObject *s = PyObject_Repr(plrv);
1036 
1037  plrv_bo = PLyUnicode_Bytes(s);
1038  Py_XDECREF(s);
1039  }
1040  else
1041  {
1042  PyObject *s = PyObject_Str(plrv);
1043 
1044  plrv_bo = PLyUnicode_Bytes(s);
1045  Py_XDECREF(s);
1046  }
1047  if (!plrv_bo)
1048  PLy_elog(ERROR, "could not create string representation of Python object");
1049 
1050  plrv_sc = pstrdup(PyBytes_AsString(plrv_bo));
1051  plen = PyBytes_Size(plrv_bo);
1052  slen = strlen(plrv_sc);
1053 
1054  Py_XDECREF(plrv_bo);
1055 
1056  if (slen < plen)
1057  ereport(ERROR,
1058  (errcode(ERRCODE_DATATYPE_MISMATCH),
1059  errmsg("could not convert Python object into cstring: Python string representation appears to contain null bytes")));
1060  else if (slen > plen)
1061  elog(ERROR, "could not convert Python object into cstring: Python string longer than reported length");
1062  pg_verifymbstr(plrv_sc, slen, false);
1063 
1064  return plrv_sc;
1065 }
1066 
1067 
1068 /*
1069  * Generic output conversion function: convert PyObject to cstring and
1070  * cstring into PostgreSQL type.
1071  */
1072 static Datum
1074  bool *isnull, bool inarray)
1075 {
1076  char *str;
1077 
1078  if (plrv == Py_None)
1079  {
1080  *isnull = true;
1081  return (Datum) 0;
1082  }
1083  *isnull = false;
1084 
1085  str = PLyObject_AsString(plrv);
1086 
1087  return InputFunctionCall(&arg->u.scalar.typfunc,
1088  str,
1089  arg->u.scalar.typioparam,
1090  arg->typmod);
1091 }
1092 
1093 
1094 /*
1095  * Convert to a domain type.
1096  */
1097 static Datum
1099  bool *isnull, bool inarray)
1100 {
1101  Datum result;
1102  PLyObToDatum *base = arg->u.domain.base;
1103 
1104  result = base->func(base, plrv, isnull, inarray);
1105  domain_check(result, *isnull, arg->typoid,
1106  &arg->u.domain.domain_info, arg->mcxt);
1107  return result;
1108 }
1109 
1110 
1111 /*
1112  * Convert using a to-SQL transform function.
1113  */
1114 static Datum
1116  bool *isnull, bool inarray)
1117 {
1118  if (plrv == Py_None)
1119  {
1120  *isnull = true;
1121  return (Datum) 0;
1122  }
1123  *isnull = false;
1124  return FunctionCall1(&arg->u.transform.typtransform, PointerGetDatum(plrv));
1125 }
1126 
1127 
1128 /*
1129  * Convert Python sequence to SQL array.
1130  */
1131 static Datum
1133  bool *isnull, bool inarray)
1134 {
1135  ArrayType *array;
1136  int i;
1137  Datum *elems;
1138  bool *nulls;
1139  int64 len;
1140  int ndim;
1141  int dims[MAXDIM];
1142  int lbs[MAXDIM];
1143  int currelem;
1144  PyObject *pyptr = plrv;
1145  PyObject *next;
1146 
1147  if (plrv == Py_None)
1148  {
1149  *isnull = true;
1150  return (Datum) 0;
1151  }
1152  *isnull = false;
1153 
1154  /*
1155  * Determine the number of dimensions, and their sizes.
1156  */
1157  ndim = 0;
1158  len = 1;
1159 
1160  Py_INCREF(plrv);
1161 
1162  for (;;)
1163  {
1164  if (!PyList_Check(pyptr))
1165  break;
1166 
1167  if (ndim == MAXDIM)
1168  ereport(ERROR,
1169  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1170  errmsg("number of array dimensions exceeds the maximum allowed (%d)",
1171  MAXDIM)));
1172 
1173  dims[ndim] = PySequence_Length(pyptr);
1174  if (dims[ndim] < 0)
1175  PLy_elog(ERROR, "could not determine sequence length for function return value");
1176 
1177  if (dims[ndim] > MaxAllocSize)
1178  ereport(ERROR,
1179  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1180  errmsg("array size exceeds the maximum allowed")));
1181 
1182  len *= dims[ndim];
1183  if (len > MaxAllocSize)
1184  ereport(ERROR,
1185  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1186  errmsg("array size exceeds the maximum allowed")));
1187 
1188  if (dims[ndim] == 0)
1189  {
1190  /* empty sequence */
1191  break;
1192  }
1193 
1194  ndim++;
1195 
1196  next = PySequence_GetItem(pyptr, 0);
1197  Py_XDECREF(pyptr);
1198  pyptr = next;
1199  }
1200  Py_XDECREF(pyptr);
1201 
1202  /*
1203  * Check for zero dimensions. This happens if the object is a tuple or a
1204  * string, rather than a list, or is not a sequence at all. We don't map
1205  * tuples or strings to arrays in general, but in the first level, be
1206  * lenient, for historical reasons. So if the object is a sequence of any
1207  * kind, treat it as a one-dimensional array.
1208  */
1209  if (ndim == 0)
1210  {
1211  if (!PySequence_Check(plrv))
1212  ereport(ERROR,
1213  (errcode(ERRCODE_DATATYPE_MISMATCH),
1214  errmsg("return value of function with array return type is not a Python sequence")));
1215 
1216  ndim = 1;
1217  len = dims[0] = PySequence_Length(plrv);
1218  }
1219 
1220  /*
1221  * Traverse the Python lists, in depth-first order, and collect all the
1222  * elements at the bottom level into 'elems'/'nulls' arrays.
1223  */
1224  elems = palloc(sizeof(Datum) * len);
1225  nulls = palloc(sizeof(bool) * len);
1226  currelem = 0;
1227  PLySequence_ToArray_recurse(arg->u.array.elm, plrv,
1228  dims, ndim, 0,
1229  elems, nulls, &currelem);
1230 
1231  for (i = 0; i < ndim; i++)
1232  lbs[i] = 1;
1233 
1234  array = construct_md_array(elems,
1235  nulls,
1236  ndim,
1237  dims,
1238  lbs,
1239  arg->u.array.elmbasetype,
1240  arg->u.array.elm->typlen,
1241  arg->u.array.elm->typbyval,
1242  arg->u.array.elm->typalign);
1243 
1244  return PointerGetDatum(array);
1245 }
1246 
1247 /*
1248  * Helper function for PLySequence_ToArray. Traverse a Python list of lists in
1249  * depth-first order, storing the elements in 'elems'.
1250  */
1251 static void
1253  int *dims, int ndim, int dim,
1254  Datum *elems, bool *nulls, int *currelem)
1255 {
1256  int i;
1257 
1258  if (PySequence_Length(list) != dims[dim])
1259  ereport(ERROR,
1260  (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
1261  errmsg("wrong length of inner sequence: has length %d, but %d was expected",
1262  (int) PySequence_Length(list), dims[dim]),
1263  (errdetail("To construct a multidimensional array, the inner sequences must all have the same length."))));
1264 
1265  if (dim < ndim - 1)
1266  {
1267  for (i = 0; i < dims[dim]; i++)
1268  {
1269  PyObject *sublist = PySequence_GetItem(list, i);
1270 
1271  PLySequence_ToArray_recurse(elm, sublist, dims, ndim, dim + 1,
1272  elems, nulls, currelem);
1273  Py_XDECREF(sublist);
1274  }
1275  }
1276  else
1277  {
1278  for (i = 0; i < dims[dim]; i++)
1279  {
1280  PyObject *obj = PySequence_GetItem(list, i);
1281 
1282  elems[*currelem] = elm->func(elm, obj, &nulls[*currelem], true);
1283  Py_XDECREF(obj);
1284  (*currelem)++;
1285  }
1286  }
1287 }
1288 
1289 
1290 /*
1291  * Convert a Python string to composite, using record_in.
1292  */
1293 static Datum
1294 PLyUnicode_ToComposite(PLyObToDatum *arg, PyObject *string, bool inarray)
1295 {
1296  char *str;
1297 
1298  /*
1299  * Set up call data for record_in, if we didn't already. (We can't just
1300  * use DirectFunctionCall, because record_in needs a fn_extra field.)
1301  */
1302  if (!OidIsValid(arg->u.tuple.recinfunc.fn_oid))
1303  fmgr_info_cxt(F_RECORD_IN, &arg->u.tuple.recinfunc, arg->mcxt);
1304 
1305  str = PLyObject_AsString(string);
1306 
1307  /*
1308  * If we are parsing a composite type within an array, and the string
1309  * isn't a valid record literal, there's a high chance that the function
1310  * did something like:
1311  *
1312  * CREATE FUNCTION .. RETURNS comptype[] AS $$ return [['foo', 'bar']] $$
1313  * LANGUAGE plpython;
1314  *
1315  * Before PostgreSQL 10, that was interpreted as a single-dimensional
1316  * array, containing record ('foo', 'bar'). PostgreSQL 10 added support
1317  * for multi-dimensional arrays, and it is now interpreted as a
1318  * two-dimensional array, containing two records, 'foo', and 'bar'.
1319  * record_in() will throw an error, because "foo" is not a valid record
1320  * literal.
1321  *
1322  * To make that less confusing to users who are upgrading from older
1323  * versions, try to give a hint in the typical instances of that. If we
1324  * are parsing an array of composite types, and we see a string literal
1325  * that is not a valid record literal, give a hint. We only want to give
1326  * the hint in the narrow case of a malformed string literal, not any
1327  * error from record_in(), so check for that case here specifically.
1328  *
1329  * This check better match the one in record_in(), so that we don't forbid
1330  * literals that are actually valid!
1331  */
1332  if (inarray)
1333  {
1334  char *ptr = str;
1335 
1336  /* Allow leading whitespace */
1337  while (*ptr && isspace((unsigned char) *ptr))
1338  ptr++;
1339  if (*ptr++ != '(')
1340  ereport(ERROR,
1341  (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
1342  errmsg("malformed record literal: \"%s\"", str),
1343  errdetail("Missing left parenthesis."),
1344  errhint("To return a composite type in an array, return the composite type as a Python tuple, e.g., \"[('foo',)]\".")));
1345  }
1346 
1347  return InputFunctionCall(&arg->u.tuple.recinfunc,
1348  str,
1349  arg->typoid,
1350  arg->typmod);
1351 }
1352 
1353 
1354 static Datum
1356 {
1357  Datum result;
1358  HeapTuple tuple;
1359  Datum *values;
1360  bool *nulls;
1361  volatile int i;
1362 
1363  Assert(PyMapping_Check(mapping));
1364 
1365  /* Build tuple */
1366  values = palloc(sizeof(Datum) * desc->natts);
1367  nulls = palloc(sizeof(bool) * desc->natts);
1368  for (i = 0; i < desc->natts; ++i)
1369  {
1370  char *key;
1371  PyObject *volatile value;
1372  PLyObToDatum *att;
1373  Form_pg_attribute attr = TupleDescAttr(desc, i);
1374 
1375  if (attr->attisdropped)
1376  {
1377  values[i] = (Datum) 0;
1378  nulls[i] = true;
1379  continue;
1380  }
1381 
1382  key = NameStr(attr->attname);
1383  value = NULL;
1384  att = &arg->u.tuple.atts[i];
1385  PG_TRY();
1386  {
1387  value = PyMapping_GetItemString(mapping, key);
1388  if (!value)
1389  ereport(ERROR,
1390  (errcode(ERRCODE_UNDEFINED_COLUMN),
1391  errmsg("key \"%s\" not found in mapping", key),
1392  errhint("To return null in a column, "
1393  "add the value None to the mapping with the key named after the column.")));
1394 
1395  values[i] = att->func(att, value, &nulls[i], false);
1396 
1397  Py_XDECREF(value);
1398  value = NULL;
1399  }
1400  PG_CATCH();
1401  {
1402  Py_XDECREF(value);
1403  PG_RE_THROW();
1404  }
1405  PG_END_TRY();
1406  }
1407 
1408  tuple = heap_form_tuple(desc, values, nulls);
1409  result = heap_copy_tuple_as_datum(tuple, desc);
1410  heap_freetuple(tuple);
1411 
1412  pfree(values);
1413  pfree(nulls);
1414 
1415  return result;
1416 }
1417 
1418 
1419 static Datum
1421 {
1422  Datum result;
1423  HeapTuple tuple;
1424  Datum *values;
1425  bool *nulls;
1426  volatile int idx;
1427  volatile int i;
1428 
1429  Assert(PySequence_Check(sequence));
1430 
1431  /*
1432  * Check that sequence length is exactly same as PG tuple's. We actually
1433  * can ignore exceeding items or assume missing ones as null but to avoid
1434  * plpython developer's errors we are strict here
1435  */
1436  idx = 0;
1437  for (i = 0; i < desc->natts; i++)
1438  {
1439  if (!TupleDescAttr(desc, i)->attisdropped)
1440  idx++;
1441  }
1442  if (PySequence_Length(sequence) != idx)
1443  ereport(ERROR,
1444  (errcode(ERRCODE_DATATYPE_MISMATCH),
1445  errmsg("length of returned sequence did not match number of columns in row")));
1446 
1447  /* Build tuple */
1448  values = palloc(sizeof(Datum) * desc->natts);
1449  nulls = palloc(sizeof(bool) * desc->natts);
1450  idx = 0;
1451  for (i = 0; i < desc->natts; ++i)
1452  {
1453  PyObject *volatile value;
1454  PLyObToDatum *att;
1455 
1456  if (TupleDescAttr(desc, i)->attisdropped)
1457  {
1458  values[i] = (Datum) 0;
1459  nulls[i] = true;
1460  continue;
1461  }
1462 
1463  value = NULL;
1464  att = &arg->u.tuple.atts[i];
1465  PG_TRY();
1466  {
1467  value = PySequence_GetItem(sequence, idx);
1468  Assert(value);
1469 
1470  values[i] = att->func(att, value, &nulls[i], false);
1471 
1472  Py_XDECREF(value);
1473  value = NULL;
1474  }
1475  PG_CATCH();
1476  {
1477  Py_XDECREF(value);
1478  PG_RE_THROW();
1479  }
1480  PG_END_TRY();
1481 
1482  idx++;
1483  }
1484 
1485  tuple = heap_form_tuple(desc, values, nulls);
1486  result = heap_copy_tuple_as_datum(tuple, desc);
1487  heap_freetuple(tuple);
1488 
1489  pfree(values);
1490  pfree(nulls);
1491 
1492  return result;
1493 }
1494 
1495 
1496 static Datum
1497 PLyGenericObject_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *object, bool inarray)
1498 {
1499  Datum result;
1500  HeapTuple tuple;
1501  Datum *values;
1502  bool *nulls;
1503  volatile int i;
1504 
1505  /* Build tuple */
1506  values = palloc(sizeof(Datum) * desc->natts);
1507  nulls = palloc(sizeof(bool) * desc->natts);
1508  for (i = 0; i < desc->natts; ++i)
1509  {
1510  char *key;
1511  PyObject *volatile value;
1512  PLyObToDatum *att;
1513  Form_pg_attribute attr = TupleDescAttr(desc, i);
1514 
1515  if (attr->attisdropped)
1516  {
1517  values[i] = (Datum) 0;
1518  nulls[i] = true;
1519  continue;
1520  }
1521 
1522  key = NameStr(attr->attname);
1523  value = NULL;
1524  att = &arg->u.tuple.atts[i];
1525  PG_TRY();
1526  {
1527  value = PyObject_GetAttrString(object, key);
1528  if (!value)
1529  {
1530  /*
1531  * No attribute for this column in the object.
1532  *
1533  * If we are parsing a composite type in an array, a likely
1534  * cause is that the function contained something like "[[123,
1535  * 'foo']]". Before PostgreSQL 10, that was interpreted as an
1536  * array, with a composite type (123, 'foo') in it. But now
1537  * it's interpreted as a two-dimensional array, and we try to
1538  * interpret "123" as the composite type. See also similar
1539  * heuristic in PLyObject_ToScalar().
1540  */
1541  ereport(ERROR,
1542  (errcode(ERRCODE_UNDEFINED_COLUMN),
1543  errmsg("attribute \"%s\" does not exist in Python object", key),
1544  inarray ?
1545  errhint("To return a composite type in an array, return the composite type as a Python tuple, e.g., \"[('foo',)]\".") :
1546  errhint("To return null in a column, let the returned object have an attribute named after column with value None.")));
1547  }
1548 
1549  values[i] = att->func(att, value, &nulls[i], false);
1550 
1551  Py_XDECREF(value);
1552  value = NULL;
1553  }
1554  PG_CATCH();
1555  {
1556  Py_XDECREF(value);
1557  PG_RE_THROW();
1558  }
1559  PG_END_TRY();
1560  }
1561 
1562  tuple = heap_form_tuple(desc, values, nulls);
1563  result = heap_copy_tuple_as_datum(tuple, desc);
1564  heap_freetuple(tuple);
1565 
1566  pfree(values);
1567  pfree(nulls);
1568 
1569  return result;
1570 }
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:259
#define ARR_NDIM(a)
Definition: array.h:283
#define ARR_DATA_PTR(a)
Definition: array.h:315
#define MAXDIM
Definition: array.h:75
#define ARR_NULLBITMAP(a)
Definition: array.h:293
#define DatumGetArrayTypeP(X)
Definition: array.h:254
#define ARR_DIMS(a)
Definition: array.h:287
ArrayType * construct_md_array(Datum *elems, bool *nulls, int ndims, int *dims, int *lbs, Oid elmtype, int elmlen, bool elmbyval, char elmalign)
Definition: arrayfuncs.c:3463
Datum numeric_out(PG_FUNCTION_ARGS)
Definition: numeric.c:806
static int32 next
Definition: blutils.c:219
static Datum values[MAXATTR]
Definition: bootstrap.c:156
#define NameStr(name)
Definition: c.h:730
signed int int32
Definition: c.h:478
#define VARHDRSZ
Definition: c.h:676
uint8 bits8
Definition: c.h:497
#define OidIsValid(objectId)
Definition: c.h:759
void domain_check(Datum value, bool isnull, Oid domainType, void **extra, MemoryContext mcxt)
Definition: domains.c:343
int errdetail(const char *fmt,...)
Definition: elog.c:1202
int errhint(const char *fmt,...)
Definition: elog.c:1316
int errcode(int sqlerrcode)
Definition: elog.c:858
int errmsg(const char *fmt,...)
Definition: elog.c:1069
#define PG_RE_THROW()
Definition: elog.h:411
#define PG_TRY(...)
Definition: elog.h:370
#define PG_END_TRY(...)
Definition: elog.h:395
#define ERROR
Definition: elog.h:39
#define PG_CATCH(...)
Definition: elog.h:380
#define PG_FINALLY(...)
Definition: elog.h:387
#define ereport(elevel,...)
Definition: elog.h:149
TupleDesc BlessTupleDesc(TupleDesc tupdesc)
Definition: execTuples.c:2071
Datum InputFunctionCall(FmgrInfo *flinfo, char *str, Oid typioparam, int32 typmod)
Definition: fmgr.c:1502
void fmgr_info_cxt(Oid functionId, FmgrInfo *finfo, MemoryContext mcxt)
Definition: fmgr.c:137
char * OutputFunctionCall(FmgrInfo *flinfo, Datum val)
Definition: fmgr.c:1655
#define DatumGetHeapTupleHeader(X)
Definition: fmgr.h:295
#define DatumGetByteaPP(X)
Definition: fmgr.h:291
#define DirectFunctionCall1(func, arg1)
Definition: fmgr.h:642
#define FunctionCall1(flinfo, arg1)
Definition: fmgr.h:660
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc)
Definition: heaptuple.c:984
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1338
static Datum heap_getattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: htup_details.h:792
#define HeapTupleHeaderGetTypMod(tup)
Definition: htup_details.h:466
#define HeapTupleHeaderGetTypeId(tup)
Definition: htup_details.h:456
#define HeapTupleHeaderGetDatumLength(tup)
Definition: htup_details.h:450
long val
Definition: informix.c:664
static struct @145 value
int x
Definition: isn.c:71
int i
Definition: isn.c:73
#define PLy_elog
static PyObject * decimal_constructor
Assert(fmt[strlen(fmt) - 1] !='\n')
void getTypeOutputInfo(Oid type, Oid *typOutput, bool *typIsVarlena)
Definition: lsyscache.c:2865
void getTypeInputInfo(Oid type, Oid *typInput, Oid *typIOParam)
Definition: lsyscache.c:2832
Oid get_transform_tosql(Oid typid, Oid langid, List *trftypes)
Definition: lsyscache.c:2101
Oid get_transform_fromsql(Oid typid, Oid langid, List *trftypes)
Definition: lsyscache.c:2080
Oid getBaseType(Oid typid)
Definition: lsyscache.c:2479
bool pg_verifymbstr(const char *mbstr, int len, bool noError)
Definition: mbutils.c:1563
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:314
char * pstrdup(const char *in)
Definition: mcxt.c:1624
void pfree(void *pointer)
Definition: mcxt.c:1436
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1048
void * palloc(Size size)
Definition: mcxt.c:1210
#define MaxAllocSize
Definition: memutils.h:40
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:138
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:209
void * arg
const void size_t len
PLyExecutionContext * PLy_current_execution_context(void)
Definition: plpy_main.c:367
MemoryContext PLy_get_scratch_context(PLyExecutionContext *context)
Definition: plpy_main.c:376
static PyObject * PLyLong_FromInt16(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:603
PyObject * PLy_input_from_tuple(PLyDatumToOb *arg, HeapTuple tuple, TupleDesc desc, bool include_generated)
Definition: plpy_typeio.c:133
void PLy_output_setup_func(PLyObToDatum *arg, MemoryContext arg_mcxt, Oid typeOid, int32 typmod, PLyProcedure *proc)
Definition: plpy_typeio.c:295
void PLy_input_setup_func(PLyDatumToOb *arg, MemoryContext arg_mcxt, Oid typeOid, int32 typmod, PLyProcedure *proc)
Definition: plpy_typeio.c:417
char * PLyObject_AsString(PyObject *plrv)
Definition: plpy_typeio.c:1023
static PyObject * PLyLong_FromInt64(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:615
static PyObject * PLyDict_FromTuple(PLyDatumToOb *arg, HeapTuple tuple, TupleDesc desc, bool include_generated)
Definition: plpy_typeio.c:814
static Datum PLyMapping_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *mapping)
Definition: plpy_typeio.c:1355
static Datum PLyObject_ToBool(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:878
void PLy_input_setup_tuple(PLyDatumToOb *arg, TupleDesc desc, PLyProcedure *proc)
Definition: plpy_typeio.c:164
static Datum PLyObject_ToBytea(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:896
static PyObject * PLyDict_FromComposite(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:780
static Datum PLyObject_ToScalar(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:1073
PyObject * PLy_input_convert(PLyDatumToOb *arg, Datum val)
Definition: plpy_typeio.c:80
static Datum PLyObject_ToTransform(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:1115
static PyObject * PLyLong_FromInt32(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:609
static PyObject * PLyBool_FromBool(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:549
void PLy_output_setup_record(PLyObToDatum *arg, TupleDesc desc, PLyProcedure *proc)
Definition: plpy_typeio.c:260
static PyObject * PLyUnicode_FromScalar(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:641
static PyObject * PLyObject_FromTransform(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:654
static PyObject * PLyFloat_FromFloat8(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:563
static PyObject * PLyList_FromArray_recurse(PLyDatumToOb *elm, int *dims, int ndim, int dim, char **dataptr_p, bits8 **bitmap_p, int *bitmask_p)
Definition: plpy_typeio.c:706
static Datum PLyObject_ToComposite(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:940
static PyObject * PLyFloat_FromFloat4(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:557
static PyObject * PLyLong_FromOid(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:621
static Datum PLySequence_ToArray(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:1132
static PyObject * PLyList_FromArray(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:666
static Datum PLySequence_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *sequence)
Definition: plpy_typeio.c:1420
static PyObject * PLyBytes_FromBytea(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:627
static Datum PLyUnicode_ToComposite(PLyObToDatum *arg, PyObject *string, bool inarray)
Definition: plpy_typeio.c:1294
void PLy_output_setup_tuple(PLyObToDatum *arg, TupleDesc desc, PLyProcedure *proc)
Definition: plpy_typeio.c:214
Datum PLy_output_convert(PLyObToDatum *arg, PyObject *val, bool *isnull)
Definition: plpy_typeio.c:119
static Datum PLyObject_ToDomain(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:1098
static void PLySequence_ToArray_recurse(PLyObToDatum *elm, PyObject *list, int *dims, int ndim, int dim, Datum *elems, bool *nulls, int *currelem)
Definition: plpy_typeio.c:1252
static PyObject * PLyDecimal_FromNumeric(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:569
static Datum PLyGenericObject_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *object, bool inarray)
Definition: plpy_typeio.c:1497
PyObject * PLyUnicode_Bytes(PyObject *unicode)
Definition: plpy_util.c:21
PyObject * PLyUnicode_FromString(const char *s)
Definition: plpy_util.c:118
void check_stack_depth(void)
Definition: postgres.c:3461
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
static int64 DatumGetInt64(Datum X)
Definition: postgres.h:385
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
static char * DatumGetCString(Datum X)
Definition: postgres.h:335
uintptr_t Datum
Definition: postgres.h:64
static float4 DatumGetFloat4(Datum X)
Definition: postgres.h:458
static Oid DatumGetObjectId(Datum X)
Definition: postgres.h:242
static Datum BoolGetDatum(bool X)
Definition: postgres.h:102
static float8 DatumGetFloat8(Datum X)
Definition: postgres.h:494
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
static int16 DatumGetInt16(Datum X)
Definition: postgres.h:162
static int32 DatumGetInt32(Datum X)
Definition: postgres.h:202
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
uint32 t_len
Definition: htup.h:64
HeapTupleHeader t_data
Definition: htup.h:68
PLyDatumToObFunc func
Definition: plpy_typeio.h:59
int32 typmod
Definition: plpy_typeio.h:61
int16 typlen
Definition: plpy_typeio.h:63
PLyObToDatumFunc func
Definition: plpy_typeio.h:132
int32 tdtypmod
Definition: tupdesc.h:83
Oid tdtypeid
Definition: tupdesc.h:82
int32 domainBaseTypmod
Definition: typcache.h:114
char typalign
Definition: typcache.h:41
char typtype
Definition: typcache.h:43
bool typbyval
Definition: typcache.h:40
int16 typlen
Definition: typcache.h:39
Oid domainBaseType
Definition: typcache.h:113
Definition: c.h:671
#define ReleaseTupleDesc(tupdesc)
Definition: tupdesc.h:122
#define PinTupleDesc(tupdesc)
Definition: tupdesc.h:116
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
#define att_align_nominal(cur_offset, attalign)
Definition: tupmacs.h:129
#define att_addlength_pointer(cur_offset, attlen, attptr)
Definition: tupmacs.h:157
static Datum fetch_att(const void *T, bool attbyval, int attlen)
Definition: tupmacs.h:52
TupleDesc lookup_rowtype_tupdesc(Oid type_id, int32 typmod)
Definition: typcache.c:1824
TypeCacheEntry * lookup_type_cache(Oid type_id, int flags)
Definition: typcache.c:339
#define INVALID_TUPLEDESC_IDENTIFIER
Definition: typcache.h:155
#define TYPECACHE_DOMAIN_BASE_INFO
Definition: typcache.h:148
#define VARDATA(PTR)
Definition: varatt.h:278
#define VARDATA_ANY(PTR)
Definition: varatt.h:324
#define SET_VARSIZE(PTR, len)
Definition: varatt.h:305
#define VARSIZE_ANY_EXHDR(PTR)
Definition: varatt.h:317