PostgreSQL Source Code git master
plpy_typeio.c
Go to the documentation of this file.
1/*
2 * transforming Datums to Python objects and vice versa
3 *
4 * src/pl/plpython/plpy_typeio.c
5 */
6
7#include "postgres.h"
8
10#include "catalog/pg_type.h"
11#include "funcapi.h"
12#include "mb/pg_wchar.h"
13#include "miscadmin.h"
14#include "plpy_elog.h"
15#include "plpy_main.h"
16#include "plpy_typeio.h"
17#include "plpython.h"
18#include "utils/array.h"
19#include "utils/builtins.h"
20#include "utils/fmgroids.h"
21#include "utils/lsyscache.h"
22#include "utils/memutils.h"
23
24/* conversion from Datums to Python objects */
25static PyObject *PLyBool_FromBool(PLyDatumToOb *arg, Datum d);
26static PyObject *PLyFloat_FromFloat4(PLyDatumToOb *arg, Datum d);
27static PyObject *PLyFloat_FromFloat8(PLyDatumToOb *arg, Datum d);
28static PyObject *PLyDecimal_FromNumeric(PLyDatumToOb *arg, Datum d);
29static PyObject *PLyLong_FromInt16(PLyDatumToOb *arg, Datum d);
30static PyObject *PLyLong_FromInt32(PLyDatumToOb *arg, Datum d);
31static PyObject *PLyLong_FromInt64(PLyDatumToOb *arg, Datum d);
32static PyObject *PLyLong_FromOid(PLyDatumToOb *arg, Datum d);
33static PyObject *PLyBytes_FromBytea(PLyDatumToOb *arg, Datum d);
34static PyObject *PLyUnicode_FromScalar(PLyDatumToOb *arg, Datum d);
35static PyObject *PLyObject_FromTransform(PLyDatumToOb *arg, Datum d);
36static PyObject *PLyList_FromArray(PLyDatumToOb *arg, Datum d);
37static PyObject *PLyList_FromArray_recurse(PLyDatumToOb *elm, int *dims, int ndim, int dim,
38 char **dataptr_p, bits8 **bitmap_p, int *bitmask_p);
39static PyObject *PLyDict_FromComposite(PLyDatumToOb *arg, Datum d);
40static PyObject *PLyDict_FromTuple(PLyDatumToOb *arg, HeapTuple tuple, TupleDesc desc, bool include_generated);
41
42/* conversion from Python objects to Datums */
43static Datum PLyObject_ToBool(PLyObToDatum *arg, PyObject *plrv,
44 bool *isnull, bool inarray);
45static Datum PLyObject_ToBytea(PLyObToDatum *arg, PyObject *plrv,
46 bool *isnull, bool inarray);
47static Datum PLyObject_ToComposite(PLyObToDatum *arg, PyObject *plrv,
48 bool *isnull, bool inarray);
49static Datum PLyObject_ToScalar(PLyObToDatum *arg, PyObject *plrv,
50 bool *isnull, bool inarray);
51static Datum PLyObject_ToDomain(PLyObToDatum *arg, PyObject *plrv,
52 bool *isnull, bool inarray);
53static Datum PLyObject_ToTransform(PLyObToDatum *arg, PyObject *plrv,
54 bool *isnull, bool inarray);
55static Datum PLySequence_ToArray(PLyObToDatum *arg, PyObject *plrv,
56 bool *isnull, bool inarray);
57static void PLySequence_ToArray_recurse(PyObject *obj,
58 ArrayBuildState **astatep,
59 int *ndims, int *dims, int cur_depth,
60 PLyObToDatum *elm, Oid elmbasetype);
61
62/* conversion from Python objects to composite Datums */
63static Datum PLyUnicode_ToComposite(PLyObToDatum *arg, PyObject *string, bool inarray);
64static Datum PLyMapping_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *mapping);
65static Datum PLySequence_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *sequence);
66static Datum PLyGenericObject_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *object, bool inarray);
67
68
69/*
70 * Conversion functions. Remember output from Python is input to
71 * PostgreSQL, and vice versa.
72 */
73
74/*
75 * Perform input conversion, given correctly-set-up state information.
76 *
77 * This is the outer-level entry point for any input conversion. Internally,
78 * the conversion functions recurse directly to each other.
79 */
80PyObject *
82{
83 PyObject *result;
85 MemoryContext scratch_context = PLy_get_scratch_context(exec_ctx);
86 MemoryContext oldcontext;
87
88 /*
89 * Do the work in the scratch context to avoid leaking memory from the
90 * datatype output function calls. (The individual PLyDatumToObFunc
91 * functions can't reset the scratch context, because they recurse and an
92 * inner one might clobber data an outer one still needs. So we do it
93 * once at the outermost recursion level.)
94 *
95 * We reset the scratch context before, not after, each conversion cycle.
96 * This way we aren't on the hook to release a Python refcount on the
97 * result object in case MemoryContextReset throws an error.
98 */
99 MemoryContextReset(scratch_context);
100
101 oldcontext = MemoryContextSwitchTo(scratch_context);
102
103 result = arg->func(arg, val);
104
105 MemoryContextSwitchTo(oldcontext);
106
107 return result;
108}
109
110/*
111 * Perform output conversion, given correctly-set-up state information.
112 *
113 * This is the outer-level entry point for any output conversion. Internally,
114 * the conversion functions recurse directly to each other.
115 *
116 * The result, as well as any cruft generated along the way, are in the
117 * current memory context. Caller is responsible for cleanup.
118 */
119Datum
120PLy_output_convert(PLyObToDatum *arg, PyObject *val, bool *isnull)
121{
122 /* at outer level, we are not considering an array element */
123 return arg->func(arg, val, isnull, false);
124}
125
126/*
127 * Transform a tuple into a Python dict object.
128 *
129 * Note: the tupdesc must match the one used to set up *arg. We could
130 * insist that this function lookup the tupdesc from what is in *arg,
131 * but in practice all callers have the right tupdesc available.
132 */
133PyObject *
134PLy_input_from_tuple(PLyDatumToOb *arg, HeapTuple tuple, TupleDesc desc, bool include_generated)
135{
136 PyObject *dict;
138 MemoryContext scratch_context = PLy_get_scratch_context(exec_ctx);
139 MemoryContext oldcontext;
140
141 /*
142 * As in PLy_input_convert, do the work in the scratch context.
143 */
144 MemoryContextReset(scratch_context);
145
146 oldcontext = MemoryContextSwitchTo(scratch_context);
147
148 dict = PLyDict_FromTuple(arg, tuple, desc, include_generated);
149
150 MemoryContextSwitchTo(oldcontext);
151
152 return dict;
153}
154
155/*
156 * Initialize, or re-initialize, per-column input info for a composite type.
157 *
158 * This is separate from PLy_input_setup_func() because in cases involving
159 * anonymous record types, we need to be passed the tupdesc explicitly.
160 * It's caller's responsibility that the tupdesc has adequate lifespan
161 * in such cases. If the tupdesc is for a named composite or registered
162 * record type, it does not need to be long-lived.
163 */
164void
166{
167 int i;
168
169 /* We should be working on a previously-set-up struct */
171
172 /* Save pointer to tupdesc, but only if this is an anonymous record type */
173 if (arg->typoid == RECORDOID && arg->typmod < 0)
174 arg->u.tuple.recdesc = desc;
175
176 /* (Re)allocate atts array as needed */
177 if (arg->u.tuple.natts != desc->natts)
178 {
179 if (arg->u.tuple.atts)
180 pfree(arg->u.tuple.atts);
181 arg->u.tuple.natts = desc->natts;
182 arg->u.tuple.atts = (PLyDatumToOb *)
184 desc->natts * sizeof(PLyDatumToOb));
185 }
186
187 /* Fill the atts entries, except for dropped columns */
188 for (i = 0; i < desc->natts; i++)
189 {
190 Form_pg_attribute attr = TupleDescAttr(desc, i);
191 PLyDatumToOb *att = &arg->u.tuple.atts[i];
192
193 if (attr->attisdropped)
194 continue;
195
196 if (att->typoid == attr->atttypid && att->typmod == attr->atttypmod)
197 continue; /* already set up this entry */
198
199 PLy_input_setup_func(att, arg->mcxt,
200 attr->atttypid, attr->atttypmod,
201 proc);
202 }
203}
204
205/*
206 * Initialize, or re-initialize, per-column output info for a composite type.
207 *
208 * This is separate from PLy_output_setup_func() because in cases involving
209 * anonymous record types, we need to be passed the tupdesc explicitly.
210 * It's caller's responsibility that the tupdesc has adequate lifespan
211 * in such cases. If the tupdesc is for a named composite or registered
212 * record type, it does not need to be long-lived.
213 */
214void
216{
217 int i;
218
219 /* We should be working on a previously-set-up struct */
221
222 /* Save pointer to tupdesc, but only if this is an anonymous record type */
223 if (arg->typoid == RECORDOID && arg->typmod < 0)
224 arg->u.tuple.recdesc = desc;
225
226 /* (Re)allocate atts array as needed */
227 if (arg->u.tuple.natts != desc->natts)
228 {
229 if (arg->u.tuple.atts)
230 pfree(arg->u.tuple.atts);
231 arg->u.tuple.natts = desc->natts;
232 arg->u.tuple.atts = (PLyObToDatum *)
234 desc->natts * sizeof(PLyObToDatum));
235 }
236
237 /* Fill the atts entries, except for dropped columns */
238 for (i = 0; i < desc->natts; i++)
239 {
240 Form_pg_attribute attr = TupleDescAttr(desc, i);
241 PLyObToDatum *att = &arg->u.tuple.atts[i];
242
243 if (attr->attisdropped)
244 continue;
245
246 if (att->typoid == attr->atttypid && att->typmod == attr->atttypmod)
247 continue; /* already set up this entry */
248
249 PLy_output_setup_func(att, arg->mcxt,
250 attr->atttypid, attr->atttypmod,
251 proc);
252 }
253}
254
255/*
256 * Set up output info for a PL/Python function returning record.
257 *
258 * Note: the given tupdesc is not necessarily long-lived.
259 */
260void
262{
263 /* Makes no sense unless RECORD */
264 Assert(arg->typoid == RECORDOID);
265 Assert(desc->tdtypeid == RECORDOID);
266
267 /*
268 * Bless the record type if not already done. We'd have to do this anyway
269 * to return a tuple, so we might as well force the issue so we can use
270 * the known-record-type code path.
271 */
272 BlessTupleDesc(desc);
273
274 /*
275 * Update arg->typmod, and clear the recdesc link if it's changed. The
276 * next call of PLyObject_ToComposite will look up a long-lived tupdesc
277 * for the record type.
278 */
279 arg->typmod = desc->tdtypmod;
280 if (arg->u.tuple.recdesc &&
281 arg->u.tuple.recdesc->tdtypmod != arg->typmod)
282 arg->u.tuple.recdesc = NULL;
283
284 /* Update derived data if necessary */
285 PLy_output_setup_tuple(arg, desc, proc);
286}
287
288/*
289 * Recursively initialize the PLyObToDatum structure(s) needed to construct
290 * a SQL value of the specified typeOid/typmod from a Python value.
291 * (But note that at this point we may have RECORDOID/-1, ie, an indeterminate
292 * record type.)
293 * proc is used to look up transform functions.
294 */
295void
297 Oid typeOid, int32 typmod,
298 PLyProcedure *proc)
299{
300 TypeCacheEntry *typentry;
301 char typtype;
302 Oid trfuncid;
303 Oid typinput;
304
305 /* Since this is recursive, it could theoretically be driven to overflow */
307
308 arg->typoid = typeOid;
309 arg->typmod = typmod;
310 arg->mcxt = arg_mcxt;
311
312 /*
313 * Fetch typcache entry for the target type, asking for whatever info
314 * we'll need later. RECORD is a special case: just treat it as composite
315 * without bothering with the typcache entry.
316 */
317 if (typeOid != RECORDOID)
318 {
320 typtype = typentry->typtype;
321 arg->typbyval = typentry->typbyval;
322 arg->typlen = typentry->typlen;
323 arg->typalign = typentry->typalign;
324 }
325 else
326 {
327 typentry = NULL;
328 typtype = TYPTYPE_COMPOSITE;
329 /* hard-wired knowledge about type RECORD: */
330 arg->typbyval = false;
331 arg->typlen = -1;
332 arg->typalign = TYPALIGN_DOUBLE;
333 }
334
335 /*
336 * Choose conversion method. Note that transform functions are checked
337 * for composite and scalar types, but not for arrays or domains. This is
338 * somewhat historical, but we'd have a problem allowing them on domains,
339 * since we drill down through all levels of a domain nest without looking
340 * at the intermediate levels at all.
341 */
342 if (typtype == TYPTYPE_DOMAIN)
343 {
344 /* Domain */
345 arg->func = PLyObject_ToDomain;
346 arg->u.domain.domain_info = NULL;
347 /* Recursively set up conversion info for the element type */
348 arg->u.domain.base = (PLyObToDatum *)
349 MemoryContextAllocZero(arg_mcxt, sizeof(PLyObToDatum));
350 PLy_output_setup_func(arg->u.domain.base, arg_mcxt,
351 typentry->domainBaseType,
352 typentry->domainBaseTypmod,
353 proc);
354 }
355 else if (typentry &&
356 IsTrueArrayType(typentry))
357 {
358 /* Standard array */
359 arg->func = PLySequence_ToArray;
360 /* Get base type OID to insert into constructed array */
361 /* (note this might not be the same as the immediate child type) */
362 arg->u.array.elmbasetype = getBaseType(typentry->typelem);
363 /* Recursively set up conversion info for the element type */
364 arg->u.array.elm = (PLyObToDatum *)
365 MemoryContextAllocZero(arg_mcxt, sizeof(PLyObToDatum));
366 PLy_output_setup_func(arg->u.array.elm, arg_mcxt,
367 typentry->typelem, typmod,
368 proc);
369 }
370 else if ((trfuncid = get_transform_tosql(typeOid,
371 proc->langid,
372 proc->trftypes)))
373 {
375 fmgr_info_cxt(trfuncid, &arg->u.transform.typtransform, arg_mcxt);
376 }
377 else if (typtype == TYPTYPE_COMPOSITE)
378 {
379 /* Named composite type, or RECORD */
381 /* We'll set up the per-field data later */
382 arg->u.tuple.recdesc = NULL;
383 arg->u.tuple.typentry = typentry;
384 arg->u.tuple.tupdescid = INVALID_TUPLEDESC_IDENTIFIER;
385 arg->u.tuple.atts = NULL;
386 arg->u.tuple.natts = 0;
387 /* Mark this invalid till needed, too */
388 arg->u.tuple.recinfunc.fn_oid = InvalidOid;
389 }
390 else
391 {
392 /* Scalar type, but we have a couple of special cases */
393 switch (typeOid)
394 {
395 case BOOLOID:
396 arg->func = PLyObject_ToBool;
397 break;
398 case BYTEAOID:
399 arg->func = PLyObject_ToBytea;
400 break;
401 default:
402 arg->func = PLyObject_ToScalar;
403 getTypeInputInfo(typeOid, &typinput, &arg->u.scalar.typioparam);
404 fmgr_info_cxt(typinput, &arg->u.scalar.typfunc, arg_mcxt);
405 break;
406 }
407 }
408}
409
410/*
411 * Recursively initialize the PLyDatumToOb structure(s) needed to construct
412 * a Python value from a SQL value of the specified typeOid/typmod.
413 * (But note that at this point we may have RECORDOID/-1, ie, an indeterminate
414 * record type.)
415 * proc is used to look up transform functions.
416 */
417void
419 Oid typeOid, int32 typmod,
420 PLyProcedure *proc)
421{
422 TypeCacheEntry *typentry;
423 char typtype;
424 Oid trfuncid;
425 Oid typoutput;
426 bool typisvarlena;
427
428 /* Since this is recursive, it could theoretically be driven to overflow */
430
431 arg->typoid = typeOid;
432 arg->typmod = typmod;
433 arg->mcxt = arg_mcxt;
434
435 /*
436 * Fetch typcache entry for the target type, asking for whatever info
437 * we'll need later. RECORD is a special case: just treat it as composite
438 * without bothering with the typcache entry.
439 */
440 if (typeOid != RECORDOID)
441 {
443 typtype = typentry->typtype;
444 arg->typbyval = typentry->typbyval;
445 arg->typlen = typentry->typlen;
446 arg->typalign = typentry->typalign;
447 }
448 else
449 {
450 typentry = NULL;
451 typtype = TYPTYPE_COMPOSITE;
452 /* hard-wired knowledge about type RECORD: */
453 arg->typbyval = false;
454 arg->typlen = -1;
455 arg->typalign = TYPALIGN_DOUBLE;
456 }
457
458 /*
459 * Choose conversion method. Note that transform functions are checked
460 * for composite and scalar types, but not for arrays or domains. This is
461 * somewhat historical, but we'd have a problem allowing them on domains,
462 * since we drill down through all levels of a domain nest without looking
463 * at the intermediate levels at all.
464 */
465 if (typtype == TYPTYPE_DOMAIN)
466 {
467 /* Domain --- we don't care, just recurse down to the base type */
468 PLy_input_setup_func(arg, arg_mcxt,
469 typentry->domainBaseType,
470 typentry->domainBaseTypmod,
471 proc);
472 }
473 else if (typentry &&
474 IsTrueArrayType(typentry))
475 {
476 /* Standard array */
477 arg->func = PLyList_FromArray;
478 /* Recursively set up conversion info for the element type */
479 arg->u.array.elm = (PLyDatumToOb *)
480 MemoryContextAllocZero(arg_mcxt, sizeof(PLyDatumToOb));
481 PLy_input_setup_func(arg->u.array.elm, arg_mcxt,
482 typentry->typelem, typmod,
483 proc);
484 }
485 else if ((trfuncid = get_transform_fromsql(typeOid,
486 proc->langid,
487 proc->trftypes)))
488 {
490 fmgr_info_cxt(trfuncid, &arg->u.transform.typtransform, arg_mcxt);
491 }
492 else if (typtype == TYPTYPE_COMPOSITE)
493 {
494 /* Named composite type, or RECORD */
496 /* We'll set up the per-field data later */
497 arg->u.tuple.recdesc = NULL;
498 arg->u.tuple.typentry = typentry;
499 arg->u.tuple.tupdescid = INVALID_TUPLEDESC_IDENTIFIER;
500 arg->u.tuple.atts = NULL;
501 arg->u.tuple.natts = 0;
502 }
503 else
504 {
505 /* Scalar type, but we have a couple of special cases */
506 switch (typeOid)
507 {
508 case BOOLOID:
509 arg->func = PLyBool_FromBool;
510 break;
511 case FLOAT4OID:
512 arg->func = PLyFloat_FromFloat4;
513 break;
514 case FLOAT8OID:
515 arg->func = PLyFloat_FromFloat8;
516 break;
517 case NUMERICOID:
519 break;
520 case INT2OID:
521 arg->func = PLyLong_FromInt16;
522 break;
523 case INT4OID:
524 arg->func = PLyLong_FromInt32;
525 break;
526 case INT8OID:
527 arg->func = PLyLong_FromInt64;
528 break;
529 case OIDOID:
530 arg->func = PLyLong_FromOid;
531 break;
532 case BYTEAOID:
533 arg->func = PLyBytes_FromBytea;
534 break;
535 default:
537 getTypeOutputInfo(typeOid, &typoutput, &typisvarlena);
538 fmgr_info_cxt(typoutput, &arg->u.scalar.typfunc, arg_mcxt);
539 break;
540 }
541 }
542}
543
544
545/*
546 * Special-purpose input converters.
547 */
548
549static PyObject *
551{
552 if (DatumGetBool(d))
553 Py_RETURN_TRUE;
554 Py_RETURN_FALSE;
555}
556
557static PyObject *
559{
560 return PyFloat_FromDouble(DatumGetFloat4(d));
561}
562
563static PyObject *
565{
566 return PyFloat_FromDouble(DatumGetFloat8(d));
567}
568
569static PyObject *
571{
572 static PyObject *decimal_constructor;
573 char *str;
574 PyObject *pyvalue;
575
576 /* Try to import cdecimal. If it doesn't exist, fall back to decimal. */
578 {
579 PyObject *decimal_module;
580
581 decimal_module = PyImport_ImportModule("cdecimal");
582 if (!decimal_module)
583 {
584 PyErr_Clear();
585 decimal_module = PyImport_ImportModule("decimal");
586 }
587 if (!decimal_module)
588 PLy_elog(ERROR, "could not import a module for Decimal constructor");
589
590 decimal_constructor = PyObject_GetAttrString(decimal_module, "Decimal");
592 PLy_elog(ERROR, "no Decimal attribute in module");
593 }
594
596 pyvalue = PyObject_CallFunction(decimal_constructor, "s", str);
597 if (!pyvalue)
598 PLy_elog(ERROR, "conversion from numeric to Decimal failed");
599
600 return pyvalue;
601}
602
603static PyObject *
605{
606 return PyLong_FromLong(DatumGetInt16(d));
607}
608
609static PyObject *
611{
612 return PyLong_FromLong(DatumGetInt32(d));
613}
614
615static PyObject *
617{
618 return PyLong_FromLongLong(DatumGetInt64(d));
619}
620
621static PyObject *
623{
624 return PyLong_FromUnsignedLong(DatumGetObjectId(d));
625}
626
627static PyObject *
629{
630 text *txt = DatumGetByteaPP(d);
631 char *str = VARDATA_ANY(txt);
632 size_t size = VARSIZE_ANY_EXHDR(txt);
633
634 return PyBytes_FromStringAndSize(str, size);
635}
636
637
638/*
639 * Generic input conversion using a SQL type's output function.
640 */
641static PyObject *
643{
644 char *x = OutputFunctionCall(&arg->u.scalar.typfunc, d);
645 PyObject *r = PLyUnicode_FromString(x);
646
647 pfree(x);
648 return r;
649}
650
651/*
652 * Convert using a from-SQL transform function.
653 */
654static PyObject *
656{
657 Datum t;
658
659 t = FunctionCall1(&arg->u.transform.typtransform, d);
660 return (PyObject *) DatumGetPointer(t);
661}
662
663/*
664 * Convert a SQL array to a Python list.
665 */
666static PyObject *
668{
669 ArrayType *array = DatumGetArrayTypeP(d);
670 PLyDatumToOb *elm = arg->u.array.elm;
671 int ndim;
672 int *dims;
673 char *dataptr;
674 bits8 *bitmap;
675 int bitmask;
676
677 if (ARR_NDIM(array) == 0)
678 return PyList_New(0);
679
680 /* Array dimensions and left bounds */
681 ndim = ARR_NDIM(array);
682 dims = ARR_DIMS(array);
683 Assert(ndim <= MAXDIM);
684
685 /*
686 * We iterate the SQL array in the physical order it's stored in the
687 * datum. For example, for a 3-dimensional array the order of iteration
688 * would be the following: [0,0,0] elements through [0,0,k], then [0,1,0]
689 * through [0,1,k] till [0,m,k], then [1,0,0] through [1,0,k] till
690 * [1,m,k], and so on.
691 *
692 * In Python, there are no multi-dimensional lists as such, but they are
693 * represented as a list of lists. So a 3-d array of [n,m,k] elements is a
694 * list of n m-element arrays, each element of which is k-element array.
695 * PLyList_FromArray_recurse() builds the Python list for a single
696 * dimension, and recurses for the next inner dimension.
697 */
698 dataptr = ARR_DATA_PTR(array);
699 bitmap = ARR_NULLBITMAP(array);
700 bitmask = 1;
701
702 return PLyList_FromArray_recurse(elm, dims, ndim, 0,
703 &dataptr, &bitmap, &bitmask);
704}
705
706static PyObject *
707PLyList_FromArray_recurse(PLyDatumToOb *elm, int *dims, int ndim, int dim,
708 char **dataptr_p, bits8 **bitmap_p, int *bitmask_p)
709{
710 int i;
711 PyObject *list;
712
713 list = PyList_New(dims[dim]);
714 if (!list)
715 return NULL;
716
717 if (dim < ndim - 1)
718 {
719 /* Outer dimension. Recurse for each inner slice. */
720 for (i = 0; i < dims[dim]; i++)
721 {
722 PyObject *sublist;
723
724 sublist = PLyList_FromArray_recurse(elm, dims, ndim, dim + 1,
725 dataptr_p, bitmap_p, bitmask_p);
726 PyList_SET_ITEM(list, i, sublist);
727 }
728 }
729 else
730 {
731 /*
732 * Innermost dimension. Fill the list with the values from the array
733 * for this slice.
734 */
735 char *dataptr = *dataptr_p;
736 bits8 *bitmap = *bitmap_p;
737 int bitmask = *bitmask_p;
738
739 for (i = 0; i < dims[dim]; i++)
740 {
741 /* checking for NULL */
742 if (bitmap && (*bitmap & bitmask) == 0)
743 {
744 Py_INCREF(Py_None);
745 PyList_SET_ITEM(list, i, Py_None);
746 }
747 else
748 {
749 Datum itemvalue;
750
751 itemvalue = fetch_att(dataptr, elm->typbyval, elm->typlen);
752 PyList_SET_ITEM(list, i, elm->func(elm, itemvalue));
753 dataptr = att_addlength_pointer(dataptr, elm->typlen, dataptr);
754 dataptr = (char *) att_align_nominal(dataptr, elm->typalign);
755 }
756
757 /* advance bitmap pointer if any */
758 if (bitmap)
759 {
760 bitmask <<= 1;
761 if (bitmask == 0x100 /* (1<<8) */ )
762 {
763 bitmap++;
764 bitmask = 1;
765 }
766 }
767 }
768
769 *dataptr_p = dataptr;
770 *bitmap_p = bitmap;
771 *bitmask_p = bitmask;
772 }
773
774 return list;
775}
776
777/*
778 * Convert a composite SQL value to a Python dict.
779 */
780static PyObject *
782{
783 PyObject *dict;
785 Oid tupType;
786 int32 tupTypmod;
787 TupleDesc tupdesc;
788 HeapTupleData tmptup;
789
791 /* Extract rowtype info and find a tupdesc */
792 tupType = HeapTupleHeaderGetTypeId(td);
793 tupTypmod = HeapTupleHeaderGetTypMod(td);
794 tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
795
796 /* Set up I/O funcs if not done yet */
797 PLy_input_setup_tuple(arg, tupdesc,
798 PLy_current_execution_context()->curr_proc);
799
800 /* Build a temporary HeapTuple control structure */
802 tmptup.t_data = td;
803
804 dict = PLyDict_FromTuple(arg, &tmptup, tupdesc, true);
805
806 ReleaseTupleDesc(tupdesc);
807
808 return dict;
809}
810
811/*
812 * Transform a tuple into a Python dict object.
813 */
814static PyObject *
815PLyDict_FromTuple(PLyDatumToOb *arg, HeapTuple tuple, TupleDesc desc, bool include_generated)
816{
817 PyObject *volatile dict;
818
819 /* Simple sanity check that desc matches */
820 Assert(desc->natts == arg->u.tuple.natts);
821
822 dict = PyDict_New();
823 if (dict == NULL)
824 return NULL;
825
826 PG_TRY();
827 {
828 int i;
829
830 for (i = 0; i < arg->u.tuple.natts; i++)
831 {
832 PLyDatumToOb *att = &arg->u.tuple.atts[i];
833 Form_pg_attribute attr = TupleDescAttr(desc, i);
834 char *key;
835 Datum vattr;
836 bool is_null;
837 PyObject *value;
838
839 if (attr->attisdropped)
840 continue;
841
842 if (attr->attgenerated)
843 {
844 /* don't include unless requested */
845 if (!include_generated)
846 continue;
847 }
848
849 key = NameStr(attr->attname);
850 vattr = heap_getattr(tuple, (i + 1), desc, &is_null);
851
852 if (is_null)
853 PyDict_SetItemString(dict, key, Py_None);
854 else
855 {
856 value = att->func(att, vattr);
857 PyDict_SetItemString(dict, key, value);
858 Py_DECREF(value);
859 }
860 }
861 }
862 PG_CATCH();
863 {
864 Py_DECREF(dict);
865 PG_RE_THROW();
866 }
867 PG_END_TRY();
868
869 return dict;
870}
871
872/*
873 * Convert a Python object to a PostgreSQL bool datum. This can't go
874 * through the generic conversion function, because Python attaches a
875 * Boolean value to everything, more things than the PostgreSQL bool
876 * type can parse.
877 */
878static Datum
880 bool *isnull, bool inarray)
881{
882 if (plrv == Py_None)
883 {
884 *isnull = true;
885 return (Datum) 0;
886 }
887 *isnull = false;
888 return BoolGetDatum(PyObject_IsTrue(plrv));
889}
890
891/*
892 * Convert a Python object to a PostgreSQL bytea datum. This doesn't
893 * go through the generic conversion function to circumvent problems
894 * with embedded nulls. And it's faster this way.
895 */
896static Datum
898 bool *isnull, bool inarray)
899{
900 PyObject *volatile plrv_so = NULL;
901 Datum rv = (Datum) 0;
902
903 if (plrv == Py_None)
904 {
905 *isnull = true;
906 return (Datum) 0;
907 }
908 *isnull = false;
909
910 plrv_so = PyObject_Bytes(plrv);
911 if (!plrv_so)
912 PLy_elog(ERROR, "could not create bytes representation of Python object");
913
914 PG_TRY();
915 {
916 char *plrv_sc = PyBytes_AsString(plrv_so);
917 size_t len = PyBytes_Size(plrv_so);
918 size_t size = len + VARHDRSZ;
919 bytea *result = palloc(size);
920
921 SET_VARSIZE(result, size);
922 memcpy(VARDATA(result), plrv_sc, len);
923 rv = PointerGetDatum(result);
924 }
925 PG_FINALLY();
926 {
927 Py_XDECREF(plrv_so);
928 }
929 PG_END_TRY();
930
931 return rv;
932}
933
934
935/*
936 * Convert a Python object to a composite type. First look up the type's
937 * description, then route the Python object through the conversion function
938 * for obtaining PostgreSQL tuples.
939 */
940static Datum
942 bool *isnull, bool inarray)
943{
944 Datum rv;
945 TupleDesc desc;
946
947 if (plrv == Py_None)
948 {
949 *isnull = true;
950 return (Datum) 0;
951 }
952 *isnull = false;
953
954 /*
955 * The string conversion case doesn't require a tupdesc, nor per-field
956 * conversion data, so just go for it if that's the case to use.
957 */
958 if (PyUnicode_Check(plrv))
959 return PLyUnicode_ToComposite(arg, plrv, inarray);
960
961 /*
962 * If we're dealing with a named composite type, we must look up the
963 * tupdesc every time, to protect against possible changes to the type.
964 * RECORD types can't change between calls; but we must still be willing
965 * to set up the info the first time, if nobody did yet.
966 */
967 if (arg->typoid != RECORDOID)
968 {
969 desc = lookup_rowtype_tupdesc(arg->typoid, arg->typmod);
970 /* We should have the descriptor of the type's typcache entry */
971 Assert(desc == arg->u.tuple.typentry->tupDesc);
972 /* Detect change of descriptor, update cache if needed */
973 if (arg->u.tuple.tupdescid != arg->u.tuple.typentry->tupDesc_identifier)
974 {
976 PLy_current_execution_context()->curr_proc);
977 arg->u.tuple.tupdescid = arg->u.tuple.typentry->tupDesc_identifier;
978 }
979 }
980 else
981 {
982 desc = arg->u.tuple.recdesc;
983 if (desc == NULL)
984 {
985 desc = lookup_rowtype_tupdesc(arg->typoid, arg->typmod);
986 arg->u.tuple.recdesc = desc;
987 }
988 else
989 {
990 /* Pin descriptor to match unpin below */
991 PinTupleDesc(desc);
992 }
993 }
994
995 /* Simple sanity check on our caching */
996 Assert(desc->natts == arg->u.tuple.natts);
997
998 /*
999 * Convert, using the appropriate method depending on the type of the
1000 * supplied Python object.
1001 */
1002 if (PySequence_Check(plrv))
1003 /* composite type as sequence (tuple, list etc) */
1004 rv = PLySequence_ToComposite(arg, desc, plrv);
1005 else if (PyMapping_Check(plrv))
1006 /* composite type as mapping (currently only dict) */
1007 rv = PLyMapping_ToComposite(arg, desc, plrv);
1008 else
1009 /* returned as smth, must provide method __getattr__(name) */
1010 rv = PLyGenericObject_ToComposite(arg, desc, plrv, inarray);
1011
1012 ReleaseTupleDesc(desc);
1013
1014 return rv;
1015}
1016
1017
1018/*
1019 * Convert Python object to C string in server encoding.
1020 *
1021 * Note: this is exported for use by add-on transform modules.
1022 */
1023char *
1024PLyObject_AsString(PyObject *plrv)
1025{
1026 PyObject *plrv_bo;
1027 char *plrv_sc;
1028 size_t plen;
1029 size_t slen;
1030
1031 if (PyUnicode_Check(plrv))
1032 plrv_bo = PLyUnicode_Bytes(plrv);
1033 else if (PyFloat_Check(plrv))
1034 {
1035 /* use repr() for floats, str() is lossy */
1036 PyObject *s = PyObject_Repr(plrv);
1037
1038 plrv_bo = PLyUnicode_Bytes(s);
1039 Py_XDECREF(s);
1040 }
1041 else
1042 {
1043 PyObject *s = PyObject_Str(plrv);
1044
1045 plrv_bo = PLyUnicode_Bytes(s);
1046 Py_XDECREF(s);
1047 }
1048 if (!plrv_bo)
1049 PLy_elog(ERROR, "could not create string representation of Python object");
1050
1051 plrv_sc = pstrdup(PyBytes_AsString(plrv_bo));
1052 plen = PyBytes_Size(plrv_bo);
1053 slen = strlen(plrv_sc);
1054
1055 Py_XDECREF(plrv_bo);
1056
1057 if (slen < plen)
1058 ereport(ERROR,
1059 (errcode(ERRCODE_DATATYPE_MISMATCH),
1060 errmsg("could not convert Python object into cstring: Python string representation appears to contain null bytes")));
1061 else if (slen > plen)
1062 elog(ERROR, "could not convert Python object into cstring: Python string longer than reported length");
1063 pg_verifymbstr(plrv_sc, slen, false);
1064
1065 return plrv_sc;
1066}
1067
1068
1069/*
1070 * Generic output conversion function: convert PyObject to cstring and
1071 * cstring into PostgreSQL type.
1072 */
1073static Datum
1075 bool *isnull, bool inarray)
1076{
1077 char *str;
1078
1079 if (plrv == Py_None)
1080 {
1081 *isnull = true;
1082 return (Datum) 0;
1083 }
1084 *isnull = false;
1085
1086 str = PLyObject_AsString(plrv);
1087
1088 return InputFunctionCall(&arg->u.scalar.typfunc,
1089 str,
1090 arg->u.scalar.typioparam,
1091 arg->typmod);
1092}
1093
1094
1095/*
1096 * Convert to a domain type.
1097 */
1098static Datum
1100 bool *isnull, bool inarray)
1101{
1102 Datum result;
1103 PLyObToDatum *base = arg->u.domain.base;
1104
1105 result = base->func(base, plrv, isnull, inarray);
1106 domain_check(result, *isnull, arg->typoid,
1107 &arg->u.domain.domain_info, arg->mcxt);
1108 return result;
1109}
1110
1111
1112/*
1113 * Convert using a to-SQL transform function.
1114 */
1115static Datum
1117 bool *isnull, bool inarray)
1118{
1119 if (plrv == Py_None)
1120 {
1121 *isnull = true;
1122 return (Datum) 0;
1123 }
1124 *isnull = false;
1125 return FunctionCall1(&arg->u.transform.typtransform, PointerGetDatum(plrv));
1126}
1127
1128
1129/*
1130 * Convert Python sequence (or list of lists) to SQL array.
1131 */
1132static Datum
1134 bool *isnull, bool inarray)
1135{
1136 ArrayBuildState *astate = NULL;
1137 int ndims = 1;
1138 int dims[MAXDIM];
1139 int lbs[MAXDIM];
1140
1141 if (plrv == Py_None)
1142 {
1143 *isnull = true;
1144 return (Datum) 0;
1145 }
1146 *isnull = false;
1147
1148 /*
1149 * For historical reasons, we allow any sequence (not only a list) at the
1150 * top level when converting a Python object to a SQL array. However, a
1151 * multi-dimensional array is recognized only when the object contains
1152 * true lists.
1153 */
1154 if (!PySequence_Check(plrv))
1155 ereport(ERROR,
1156 (errcode(ERRCODE_DATATYPE_MISMATCH),
1157 errmsg("return value of function with array return type is not a Python sequence")));
1158
1159 /* Initialize dimensionality info with first-level dimension */
1160 memset(dims, 0, sizeof(dims));
1161 dims[0] = PySequence_Length(plrv);
1162
1163 /*
1164 * Traverse the Python lists, in depth-first order, and collect all the
1165 * elements at the bottom level into an ArrayBuildState.
1166 */
1167 PLySequence_ToArray_recurse(plrv, &astate,
1168 &ndims, dims, 1,
1169 arg->u.array.elm,
1170 arg->u.array.elmbasetype);
1171
1172 /* ensure we get zero-D array for no inputs, as per PG convention */
1173 if (astate == NULL)
1174 return PointerGetDatum(construct_empty_array(arg->u.array.elmbasetype));
1175
1176 for (int i = 0; i < ndims; i++)
1177 lbs[i] = 1;
1178
1179 return makeMdArrayResult(astate, ndims, dims, lbs,
1180 CurrentMemoryContext, true);
1181}
1182
1183/*
1184 * Helper function for PLySequence_ToArray. Traverse a Python list of lists in
1185 * depth-first order, storing the elements in *astatep.
1186 *
1187 * The ArrayBuildState is created only when we first find a scalar element;
1188 * if we didn't do it like that, we'd need some other convention for knowing
1189 * whether we'd already found any scalars (and thus the number of dimensions
1190 * is frozen).
1191 */
1192static void
1194 int *ndims, int *dims, int cur_depth,
1195 PLyObToDatum *elm, Oid elmbasetype)
1196{
1197 int i;
1198 int len = PySequence_Length(obj);
1199
1200 /* We should not get here with a non-sequence object */
1201 if (len < 0)
1202 PLy_elog(ERROR, "could not determine sequence length for function return value");
1203
1204 for (i = 0; i < len; i++)
1205 {
1206 /* fetch the array element */
1207 PyObject *subobj = PySequence_GetItem(obj, i);
1208
1209 /* need PG_TRY to ensure we release the subobj's refcount */
1210 PG_TRY();
1211 {
1212 /* multi-dimensional array? */
1213 if (PyList_Check(subobj))
1214 {
1215 /* set size when at first element in this level, else compare */
1216 if (i == 0 && *ndims == cur_depth)
1217 {
1218 /* array after some scalars at same level? */
1219 if (*astatep != NULL)
1220 ereport(ERROR,
1221 (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
1222 errmsg("multidimensional arrays must have array expressions with matching dimensions")));
1223 /* too many dimensions? */
1224 if (cur_depth >= MAXDIM)
1225 ereport(ERROR,
1226 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1227 errmsg("number of array dimensions exceeds the maximum allowed (%d)",
1228 MAXDIM)));
1229 /* OK, add a dimension */
1230 dims[*ndims] = PySequence_Length(subobj);
1231 (*ndims)++;
1232 }
1233 else if (cur_depth >= *ndims ||
1234 PySequence_Length(subobj) != dims[cur_depth])
1235 ereport(ERROR,
1236 (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
1237 errmsg("multidimensional arrays must have array expressions with matching dimensions")));
1238
1239 /* recurse to fetch elements of this sub-array */
1240 PLySequence_ToArray_recurse(subobj, astatep,
1241 ndims, dims, cur_depth + 1,
1242 elm, elmbasetype);
1243 }
1244 else
1245 {
1246 Datum dat;
1247 bool isnull;
1248
1249 /* scalar after some sub-arrays at same level? */
1250 if (*ndims != cur_depth)
1251 ereport(ERROR,
1252 (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
1253 errmsg("multidimensional arrays must have array expressions with matching dimensions")));
1254
1255 /* convert non-list object to Datum */
1256 dat = elm->func(elm, subobj, &isnull, true);
1257
1258 /* create ArrayBuildState if we didn't already */
1259 if (*astatep == NULL)
1260 *astatep = initArrayResult(elmbasetype,
1261 CurrentMemoryContext, true);
1262
1263 /* ... and save the element value in it */
1264 (void) accumArrayResult(*astatep, dat, isnull,
1265 elmbasetype, CurrentMemoryContext);
1266 }
1267 }
1268 PG_FINALLY();
1269 {
1270 Py_XDECREF(subobj);
1271 }
1272 PG_END_TRY();
1273 }
1274}
1275
1276
1277/*
1278 * Convert a Python string to composite, using record_in.
1279 */
1280static Datum
1281PLyUnicode_ToComposite(PLyObToDatum *arg, PyObject *string, bool inarray)
1282{
1283 char *str;
1284
1285 /*
1286 * Set up call data for record_in, if we didn't already. (We can't just
1287 * use DirectFunctionCall, because record_in needs a fn_extra field.)
1288 */
1289 if (!OidIsValid(arg->u.tuple.recinfunc.fn_oid))
1290 fmgr_info_cxt(F_RECORD_IN, &arg->u.tuple.recinfunc, arg->mcxt);
1291
1292 str = PLyObject_AsString(string);
1293
1294 /*
1295 * If we are parsing a composite type within an array, and the string
1296 * isn't a valid record literal, there's a high chance that the function
1297 * did something like:
1298 *
1299 * CREATE FUNCTION .. RETURNS comptype[] AS $$ return [['foo', 'bar']] $$
1300 * LANGUAGE plpython;
1301 *
1302 * Before PostgreSQL 10, that was interpreted as a single-dimensional
1303 * array, containing record ('foo', 'bar'). PostgreSQL 10 added support
1304 * for multi-dimensional arrays, and it is now interpreted as a
1305 * two-dimensional array, containing two records, 'foo', and 'bar'.
1306 * record_in() will throw an error, because "foo" is not a valid record
1307 * literal.
1308 *
1309 * To make that less confusing to users who are upgrading from older
1310 * versions, try to give a hint in the typical instances of that. If we
1311 * are parsing an array of composite types, and we see a string literal
1312 * that is not a valid record literal, give a hint. We only want to give
1313 * the hint in the narrow case of a malformed string literal, not any
1314 * error from record_in(), so check for that case here specifically.
1315 *
1316 * This check better match the one in record_in(), so that we don't forbid
1317 * literals that are actually valid!
1318 */
1319 if (inarray)
1320 {
1321 char *ptr = str;
1322
1323 /* Allow leading whitespace */
1324 while (*ptr && isspace((unsigned char) *ptr))
1325 ptr++;
1326 if (*ptr++ != '(')
1327 ereport(ERROR,
1328 (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
1329 errmsg("malformed record literal: \"%s\"", str),
1330 errdetail("Missing left parenthesis."),
1331 errhint("To return a composite type in an array, return the composite type as a Python tuple, e.g., \"[('foo',)]\".")));
1332 }
1333
1334 return InputFunctionCall(&arg->u.tuple.recinfunc,
1335 str,
1336 arg->typoid,
1337 arg->typmod);
1338}
1339
1340
1341static Datum
1343{
1344 Datum result;
1345 HeapTuple tuple;
1346 Datum *values;
1347 bool *nulls;
1348 volatile int i;
1349
1350 Assert(PyMapping_Check(mapping));
1351
1352 /* Build tuple */
1353 values = palloc(sizeof(Datum) * desc->natts);
1354 nulls = palloc(sizeof(bool) * desc->natts);
1355 for (i = 0; i < desc->natts; ++i)
1356 {
1357 char *key;
1358 PyObject *volatile value;
1359 PLyObToDatum *att;
1360 Form_pg_attribute attr = TupleDescAttr(desc, i);
1361
1362 if (attr->attisdropped)
1363 {
1364 values[i] = (Datum) 0;
1365 nulls[i] = true;
1366 continue;
1367 }
1368
1369 key = NameStr(attr->attname);
1370 value = NULL;
1371 att = &arg->u.tuple.atts[i];
1372 PG_TRY();
1373 {
1374 value = PyMapping_GetItemString(mapping, key);
1375 if (!value)
1376 ereport(ERROR,
1377 (errcode(ERRCODE_UNDEFINED_COLUMN),
1378 errmsg("key \"%s\" not found in mapping", key),
1379 errhint("To return null in a column, "
1380 "add the value None to the mapping with the key named after the column.")));
1381
1382 values[i] = att->func(att, value, &nulls[i], false);
1383
1384 Py_XDECREF(value);
1385 value = NULL;
1386 }
1387 PG_CATCH();
1388 {
1389 Py_XDECREF(value);
1390 PG_RE_THROW();
1391 }
1392 PG_END_TRY();
1393 }
1394
1395 tuple = heap_form_tuple(desc, values, nulls);
1396 result = heap_copy_tuple_as_datum(tuple, desc);
1397 heap_freetuple(tuple);
1398
1399 pfree(values);
1400 pfree(nulls);
1401
1402 return result;
1403}
1404
1405
1406static Datum
1408{
1409 Datum result;
1410 HeapTuple tuple;
1411 Datum *values;
1412 bool *nulls;
1413 volatile int idx;
1414 volatile int i;
1415
1416 Assert(PySequence_Check(sequence));
1417
1418 /*
1419 * Check that sequence length is exactly same as PG tuple's. We actually
1420 * can ignore exceeding items or assume missing ones as null but to avoid
1421 * plpython developer's errors we are strict here
1422 */
1423 idx = 0;
1424 for (i = 0; i < desc->natts; i++)
1425 {
1426 if (!TupleDescAttr(desc, i)->attisdropped)
1427 idx++;
1428 }
1429 if (PySequence_Length(sequence) != idx)
1430 ereport(ERROR,
1431 (errcode(ERRCODE_DATATYPE_MISMATCH),
1432 errmsg("length of returned sequence did not match number of columns in row")));
1433
1434 /* Build tuple */
1435 values = palloc(sizeof(Datum) * desc->natts);
1436 nulls = palloc(sizeof(bool) * desc->natts);
1437 idx = 0;
1438 for (i = 0; i < desc->natts; ++i)
1439 {
1440 PyObject *volatile value;
1441 PLyObToDatum *att;
1442
1443 if (TupleDescAttr(desc, i)->attisdropped)
1444 {
1445 values[i] = (Datum) 0;
1446 nulls[i] = true;
1447 continue;
1448 }
1449
1450 value = NULL;
1451 att = &arg->u.tuple.atts[i];
1452 PG_TRY();
1453 {
1454 value = PySequence_GetItem(sequence, idx);
1455 Assert(value);
1456
1457 values[i] = att->func(att, value, &nulls[i], false);
1458
1459 Py_XDECREF(value);
1460 value = NULL;
1461 }
1462 PG_CATCH();
1463 {
1464 Py_XDECREF(value);
1465 PG_RE_THROW();
1466 }
1467 PG_END_TRY();
1468
1469 idx++;
1470 }
1471
1472 tuple = heap_form_tuple(desc, values, nulls);
1473 result = heap_copy_tuple_as_datum(tuple, desc);
1474 heap_freetuple(tuple);
1475
1476 pfree(values);
1477 pfree(nulls);
1478
1479 return result;
1480}
1481
1482
1483static Datum
1484PLyGenericObject_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *object, bool inarray)
1485{
1486 Datum result;
1487 HeapTuple tuple;
1488 Datum *values;
1489 bool *nulls;
1490 volatile int i;
1491
1492 /* Build tuple */
1493 values = palloc(sizeof(Datum) * desc->natts);
1494 nulls = palloc(sizeof(bool) * desc->natts);
1495 for (i = 0; i < desc->natts; ++i)
1496 {
1497 char *key;
1498 PyObject *volatile value;
1499 PLyObToDatum *att;
1500 Form_pg_attribute attr = TupleDescAttr(desc, i);
1501
1502 if (attr->attisdropped)
1503 {
1504 values[i] = (Datum) 0;
1505 nulls[i] = true;
1506 continue;
1507 }
1508
1509 key = NameStr(attr->attname);
1510 value = NULL;
1511 att = &arg->u.tuple.atts[i];
1512 PG_TRY();
1513 {
1514 value = PyObject_GetAttrString(object, key);
1515 if (!value)
1516 {
1517 /*
1518 * No attribute for this column in the object.
1519 *
1520 * If we are parsing a composite type in an array, a likely
1521 * cause is that the function contained something like "[[123,
1522 * 'foo']]". Before PostgreSQL 10, that was interpreted as an
1523 * array, with a composite type (123, 'foo') in it. But now
1524 * it's interpreted as a two-dimensional array, and we try to
1525 * interpret "123" as the composite type. See also similar
1526 * heuristic in PLyObject_ToScalar().
1527 */
1528 ereport(ERROR,
1529 (errcode(ERRCODE_UNDEFINED_COLUMN),
1530 errmsg("attribute \"%s\" does not exist in Python object", key),
1531 inarray ?
1532 errhint("To return a composite type in an array, return the composite type as a Python tuple, e.g., \"[('foo',)]\".") :
1533 errhint("To return null in a column, let the returned object have an attribute named after column with value None.")));
1534 }
1535
1536 values[i] = att->func(att, value, &nulls[i], false);
1537
1538 Py_XDECREF(value);
1539 value = NULL;
1540 }
1541 PG_CATCH();
1542 {
1543 Py_XDECREF(value);
1544 PG_RE_THROW();
1545 }
1546 PG_END_TRY();
1547 }
1548
1549 tuple = heap_form_tuple(desc, values, nulls);
1550 result = heap_copy_tuple_as_datum(tuple, desc);
1551 heap_freetuple(tuple);
1552
1553 pfree(values);
1554 pfree(nulls);
1555
1556 return result;
1557}
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:259
#define ARR_NDIM(a)
Definition: array.h:290
#define ARR_DATA_PTR(a)
Definition: array.h:322
#define MAXDIM
Definition: array.h:75
#define ARR_NULLBITMAP(a)
Definition: array.h:300
#define DatumGetArrayTypeP(X)
Definition: array.h:261
#define ARR_DIMS(a)
Definition: array.h:294
ArrayBuildState * accumArrayResult(ArrayBuildState *astate, Datum dvalue, bool disnull, Oid element_type, MemoryContext rcontext)
Definition: arrayfuncs.c:5350
ArrayType * construct_empty_array(Oid elmtype)
Definition: arrayfuncs.c:3580
Datum makeMdArrayResult(ArrayBuildState *astate, int ndims, int *dims, int *lbs, MemoryContext rcontext, bool release)
Definition: arrayfuncs.c:5452
ArrayBuildState * initArrayResult(Oid element_type, MemoryContext rcontext, bool subcontext)
Definition: arrayfuncs.c:5293
Datum numeric_out(PG_FUNCTION_ARGS)
Definition: numeric.c:816
static Datum values[MAXATTR]
Definition: bootstrap.c:151
#define NameStr(name)
Definition: c.h:703
#define VARHDRSZ
Definition: c.h:649
#define Assert(condition)
Definition: c.h:815
uint8 bits8
Definition: c.h:495
int32_t int32
Definition: c.h:484
#define OidIsValid(objectId)
Definition: c.h:732
void domain_check(Datum value, bool isnull, Oid domainType, void **extra, MemoryContext mcxt)
Definition: domains.c:346
int errdetail(const char *fmt,...)
Definition: elog.c:1203
int errhint(const char *fmt,...)
Definition: elog.c:1317
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define PG_RE_THROW()
Definition: elog.h:412
#define PG_TRY(...)
Definition: elog.h:371
#define PG_END_TRY(...)
Definition: elog.h:396
#define ERROR
Definition: elog.h:39
#define PG_CATCH(...)
Definition: elog.h:381
#define elog(elevel,...)
Definition: elog.h:225
#define PG_FINALLY(...)
Definition: elog.h:388
#define ereport(elevel,...)
Definition: elog.h:149
TupleDesc BlessTupleDesc(TupleDesc tupdesc)
Definition: execTuples.c:2258
Datum InputFunctionCall(FmgrInfo *flinfo, char *str, Oid typioparam, int32 typmod)
Definition: fmgr.c:1530
void fmgr_info_cxt(Oid functionId, FmgrInfo *finfo, MemoryContext mcxt)
Definition: fmgr.c:137
char * OutputFunctionCall(FmgrInfo *flinfo, Datum val)
Definition: fmgr.c:1683
#define DatumGetHeapTupleHeader(X)
Definition: fmgr.h:295
#define DatumGetByteaPP(X)
Definition: fmgr.h:291
#define DirectFunctionCall1(func, arg1)
Definition: fmgr.h:641
#define FunctionCall1(flinfo, arg1)
Definition: fmgr.h:659
const char * str
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: heaptuple.c:1117
Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc)
Definition: heaptuple.c:1081
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1435
static Datum heap_getattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: htup_details.h:792
#define HeapTupleHeaderGetTypMod(tup)
Definition: htup_details.h:466
#define HeapTupleHeaderGetTypeId(tup)
Definition: htup_details.h:456
#define HeapTupleHeaderGetDatumLength(tup)
Definition: htup_details.h:450
static struct @162 value
long val
Definition: informix.c:689
int x
Definition: isn.c:70
int i
Definition: isn.c:72
#define PLy_elog
static PyObject * decimal_constructor
void getTypeOutputInfo(Oid type, Oid *typOutput, bool *typIsVarlena)
Definition: lsyscache.c:2907
void getTypeInputInfo(Oid type, Oid *typInput, Oid *typIOParam)
Definition: lsyscache.c:2874
Oid get_transform_tosql(Oid typid, Oid langid, List *trftypes)
Definition: lsyscache.c:2142
Oid get_transform_fromsql(Oid typid, Oid langid, List *trftypes)
Definition: lsyscache.c:2120
Oid getBaseType(Oid typid)
Definition: lsyscache.c:2521
bool pg_verifymbstr(const char *mbstr, int len, bool noError)
Definition: mbutils.c:1556
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:383
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1215
char * pstrdup(const char *in)
Definition: mcxt.c:1696
void pfree(void *pointer)
Definition: mcxt.c:1521
void * palloc(Size size)
Definition: mcxt.c:1317
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:200
void * arg
const void size_t len
PLyExecutionContext * PLy_current_execution_context(void)
Definition: plpy_main.c:365
MemoryContext PLy_get_scratch_context(PLyExecutionContext *context)
Definition: plpy_main.c:374
static PyObject * PLyLong_FromInt16(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:604
void PLy_output_setup_func(PLyObToDatum *arg, MemoryContext arg_mcxt, Oid typeOid, int32 typmod, PLyProcedure *proc)
Definition: plpy_typeio.c:296
void PLy_input_setup_func(PLyDatumToOb *arg, MemoryContext arg_mcxt, Oid typeOid, int32 typmod, PLyProcedure *proc)
Definition: plpy_typeio.c:418
static PyObject * PLyLong_FromInt64(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:616
PyObject * PLy_input_from_tuple(PLyDatumToOb *arg, HeapTuple tuple, TupleDesc desc, bool include_generated)
Definition: plpy_typeio.c:134
static PyObject * PLyDict_FromTuple(PLyDatumToOb *arg, HeapTuple tuple, TupleDesc desc, bool include_generated)
Definition: plpy_typeio.c:815
static Datum PLyMapping_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *mapping)
Definition: plpy_typeio.c:1342
static Datum PLyObject_ToBool(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:879
void PLy_input_setup_tuple(PLyDatumToOb *arg, TupleDesc desc, PLyProcedure *proc)
Definition: plpy_typeio.c:165
PyObject * PLy_input_convert(PLyDatumToOb *arg, Datum val)
Definition: plpy_typeio.c:81
static Datum PLyObject_ToBytea(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:897
char * PLyObject_AsString(PyObject *plrv)
Definition: plpy_typeio.c:1024
static PyObject * PLyDict_FromComposite(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:781
static Datum PLyObject_ToScalar(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:1074
static Datum PLyObject_ToTransform(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:1116
static PyObject * PLyLong_FromInt32(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:610
static PyObject * PLyBool_FromBool(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:550
void PLy_output_setup_record(PLyObToDatum *arg, TupleDesc desc, PLyProcedure *proc)
Definition: plpy_typeio.c:261
static PyObject * PLyUnicode_FromScalar(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:642
static PyObject * PLyObject_FromTransform(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:655
static PyObject * PLyFloat_FromFloat8(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:564
static PyObject * PLyList_FromArray_recurse(PLyDatumToOb *elm, int *dims, int ndim, int dim, char **dataptr_p, bits8 **bitmap_p, int *bitmask_p)
Definition: plpy_typeio.c:707
static void PLySequence_ToArray_recurse(PyObject *obj, ArrayBuildState **astatep, int *ndims, int *dims, int cur_depth, PLyObToDatum *elm, Oid elmbasetype)
Definition: plpy_typeio.c:1193
static Datum PLyObject_ToComposite(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:941
static PyObject * PLyFloat_FromFloat4(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:558
static PyObject * PLyLong_FromOid(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:622
static Datum PLySequence_ToArray(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:1133
static PyObject * PLyList_FromArray(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:667
static Datum PLySequence_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *sequence)
Definition: plpy_typeio.c:1407
static PyObject * PLyBytes_FromBytea(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:628
static Datum PLyUnicode_ToComposite(PLyObToDatum *arg, PyObject *string, bool inarray)
Definition: plpy_typeio.c:1281
void PLy_output_setup_tuple(PLyObToDatum *arg, TupleDesc desc, PLyProcedure *proc)
Definition: plpy_typeio.c:215
Datum PLy_output_convert(PLyObToDatum *arg, PyObject *val, bool *isnull)
Definition: plpy_typeio.c:120
static Datum PLyObject_ToDomain(PLyObToDatum *arg, PyObject *plrv, bool *isnull, bool inarray)
Definition: plpy_typeio.c:1099
static PyObject * PLyDecimal_FromNumeric(PLyDatumToOb *arg, Datum d)
Definition: plpy_typeio.c:570
static Datum PLyGenericObject_ToComposite(PLyObToDatum *arg, TupleDesc desc, PyObject *object, bool inarray)
Definition: plpy_typeio.c:1484
PyObject * PLyUnicode_Bytes(PyObject *unicode)
Definition: plpy_util.c:20
PyObject * PLyUnicode_FromString(const char *s)
Definition: plpy_util.c:117
static bool DatumGetBool(Datum X)
Definition: postgres.h:95
static int64 DatumGetInt64(Datum X)
Definition: postgres.h:390
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:327
uintptr_t Datum
Definition: postgres.h:69
static float4 DatumGetFloat4(Datum X)
Definition: postgres.h:463
static Oid DatumGetObjectId(Datum X)
Definition: postgres.h:247
static Datum BoolGetDatum(bool X)
Definition: postgres.h:107
static float8 DatumGetFloat8(Datum X)
Definition: postgres.h:499
static char * DatumGetCString(Datum X)
Definition: postgres.h:340
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:317
static int16 DatumGetInt16(Datum X)
Definition: postgres.h:167
static int32 DatumGetInt32(Datum X)
Definition: postgres.h:207
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
static pg_noinline void Size size
Definition: slab.c:607
void check_stack_depth(void)
Definition: stack_depth.c:95
uint32 t_len
Definition: htup.h:64
HeapTupleHeader t_data
Definition: htup.h:68
PLyDatumToObFunc func
Definition: plpy_typeio.h:59
int32 typmod
Definition: plpy_typeio.h:61
int16 typlen
Definition: plpy_typeio.h:63
PLyObToDatumFunc func
Definition: plpy_typeio.h:132
int32 tdtypmod
Definition: tupdesc.h:132
Oid tdtypeid
Definition: tupdesc.h:131
int32 domainBaseTypmod
Definition: typcache.h:115
char typalign
Definition: typcache.h:41
char typtype
Definition: typcache.h:43
bool typbyval
Definition: typcache.h:40
int16 typlen
Definition: typcache.h:39
Oid domainBaseType
Definition: typcache.h:114
Definition: c.h:644
#define ReleaseTupleDesc(tupdesc)
Definition: tupdesc.h:212
#define PinTupleDesc(tupdesc)
Definition: tupdesc.h:206
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:153
#define att_align_nominal(cur_offset, attalign)
Definition: tupmacs.h:150
#define att_addlength_pointer(cur_offset, attlen, attptr)
Definition: tupmacs.h:185
static Datum fetch_att(const void *T, bool attbyval, int attlen)
Definition: tupmacs.h:53
TupleDesc lookup_rowtype_tupdesc(Oid type_id, int32 typmod)
Definition: typcache.c:1920
TypeCacheEntry * lookup_type_cache(Oid type_id, int flags)
Definition: typcache.c:386
#define INVALID_TUPLEDESC_IDENTIFIER
Definition: typcache.h:156
#define TYPECACHE_DOMAIN_BASE_INFO
Definition: typcache.h:149
#define VARDATA(PTR)
Definition: varatt.h:278
#define VARDATA_ANY(PTR)
Definition: varatt.h:324
#define SET_VARSIZE(PTR, len)
Definition: varatt.h:305
#define VARSIZE_ANY_EXHDR(PTR)
Definition: varatt.h:317