PostgreSQL Source Code  git master
auth-scram.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * auth-scram.c
4  * Server-side implementation of the SASL SCRAM-SHA-256 mechanism.
5  *
6  * See the following RFCs for more details:
7  * - RFC 5802: https://tools.ietf.org/html/rfc5802
8  * - RFC 5803: https://tools.ietf.org/html/rfc5803
9  * - RFC 7677: https://tools.ietf.org/html/rfc7677
10  *
11  * Here are some differences:
12  *
13  * - Username from the authentication exchange is not used. The client
14  * should send an empty string as the username.
15  *
16  * - If the password isn't valid UTF-8, or contains characters prohibited
17  * by the SASLprep profile, we skip the SASLprep pre-processing and use
18  * the raw bytes in calculating the hash.
19  *
20  * - If channel binding is used, the channel binding type is always
21  * "tls-server-end-point". The spec says the default is "tls-unique"
22  * (RFC 5802, section 6.1. Default Channel Binding), but there are some
23  * problems with that. Firstly, not all SSL libraries provide an API to
24  * get the TLS Finished message, required to use "tls-unique". Secondly,
25  * "tls-unique" is not specified for TLS v1.3, and as of this writing,
26  * it's not clear if there will be a replacement. We could support both
27  * "tls-server-end-point" and "tls-unique", but for our use case,
28  * "tls-unique" doesn't really have any advantages. The main advantage
29  * of "tls-unique" would be that it works even if the server doesn't
30  * have a certificate, but PostgreSQL requires a server certificate
31  * whenever SSL is used, anyway.
32  *
33  *
34  * The password stored in pg_authid consists of the iteration count, salt,
35  * StoredKey and ServerKey.
36  *
37  * SASLprep usage
38  * --------------
39  *
40  * One notable difference to the SCRAM specification is that while the
41  * specification dictates that the password is in UTF-8, and prohibits
42  * certain characters, we are more lenient. If the password isn't a valid
43  * UTF-8 string, or contains prohibited characters, the raw bytes are used
44  * to calculate the hash instead, without SASLprep processing. This is
45  * because PostgreSQL supports other encodings too, and the encoding being
46  * used during authentication is undefined (client_encoding isn't set until
47  * after authentication). In effect, we try to interpret the password as
48  * UTF-8 and apply SASLprep processing, but if it looks invalid, we assume
49  * that it's in some other encoding.
50  *
51  * In the worst case, we misinterpret a password that's in a different
52  * encoding as being Unicode, because it happens to consists entirely of
53  * valid UTF-8 bytes, and we apply Unicode normalization to it. As long
54  * as we do that consistently, that will not lead to failed logins.
55  * Fortunately, the UTF-8 byte sequences that are ignored by SASLprep
56  * don't correspond to any commonly used characters in any of the other
57  * supported encodings, so it should not lead to any significant loss in
58  * entropy, even if the normalization is incorrectly applied to a
59  * non-UTF-8 password.
60  *
61  * Error handling
62  * --------------
63  *
64  * Don't reveal user information to an unauthenticated client. We don't
65  * want an attacker to be able to probe whether a particular username is
66  * valid. In SCRAM, the server has to read the salt and iteration count
67  * from the user's stored secret, and send it to the client. To avoid
68  * revealing whether a user exists, when the client tries to authenticate
69  * with a username that doesn't exist, or doesn't have a valid SCRAM
70  * secret in pg_authid, we create a fake salt and iteration count
71  * on-the-fly, and proceed with the authentication with that. In the end,
72  * we'll reject the attempt, as if an incorrect password was given. When
73  * we are performing a "mock" authentication, the 'doomed' flag in
74  * scram_state is set.
75  *
76  * In the error messages, avoid printing strings from the client, unless
77  * you check that they are pure ASCII. We don't want an unauthenticated
78  * attacker to be able to spam the logs with characters that are not valid
79  * to the encoding being used, whatever that is. We cannot avoid that in
80  * general, after logging in, but let's do what we can here.
81  *
82  *
83  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
84  * Portions Copyright (c) 1994, Regents of the University of California
85  *
86  * src/backend/libpq/auth-scram.c
87  *
88  *-------------------------------------------------------------------------
89  */
90 #include "postgres.h"
91 
92 #include <unistd.h>
93 
94 #include "access/xlog.h"
95 #include "catalog/pg_authid.h"
96 #include "catalog/pg_control.h"
97 #include "common/base64.h"
98 #include "common/hmac.h"
99 #include "common/saslprep.h"
100 #include "common/scram-common.h"
101 #include "common/sha2.h"
102 #include "libpq/auth.h"
103 #include "libpq/crypt.h"
104 #include "libpq/sasl.h"
105 #include "libpq/scram.h"
106 #include "miscadmin.h"
107 #include "utils/builtins.h"
108 #include "utils/timestamp.h"
109 
111 static void *scram_init(Port *port, const char *selected_mech,
112  const char *shadow_pass);
113 static int scram_exchange(void *opaq, const char *input, int inputlen,
114  char **output, int *outputlen,
115  const char **logdetail);
116 
117 /* Mechanism declaration */
120  scram_init,
122 };
123 
124 /*
125  * Status data for a SCRAM authentication exchange. This should be kept
126  * internal to this file.
127  */
128 typedef enum
129 {
134 
135 typedef struct
136 {
138 
139  const char *username; /* username from startup packet */
140 
143 
144  /* State data depending on the hash type */
147 
149  char *salt; /* base64-encoded */
152 
153  /* Fields of the first message from client */
158 
159  /* Fields from the last message from client */
162  char ClientProof[SCRAM_MAX_KEY_LEN];
163 
164  /* Fields generated in the server */
167 
168  /*
169  * If something goes wrong during the authentication, or we are performing
170  * a "mock" authentication (see comments at top of file), the 'doomed'
171  * flag is set. A reason for the failure, for the server log, is put in
172  * 'logdetail'.
173  */
174  bool doomed;
175  char *logdetail;
176 } scram_state;
177 
178 static void read_client_first_message(scram_state *state, const char *input);
179 static void read_client_final_message(scram_state *state, const char *input);
183 static bool verify_final_nonce(scram_state *state);
184 static void mock_scram_secret(const char *username, pg_cryptohash_type *hash_type,
185  int *iterations, int *key_length, char **salt,
186  uint8 *stored_key, uint8 *server_key);
187 static bool is_scram_printable(char *p);
188 static char *sanitize_char(char c);
189 static char *sanitize_str(const char *s);
190 static char *scram_mock_salt(const char *username,
191  pg_cryptohash_type hash_type,
192  int key_length);
193 
194 /*
195  * The number of iterations to use when generating new secrets.
196  */
198 
199 /*
200  * Get a list of SASL mechanisms that this module supports.
201  *
202  * For the convenience of building the FE/BE packet that lists the
203  * mechanisms, the names are appended to the given StringInfo buffer,
204  * separated by '\0' bytes.
205  */
206 static void
208 {
209  /*
210  * Advertise the mechanisms in decreasing order of importance. So the
211  * channel-binding variants go first, if they are supported. Channel
212  * binding is only supported with SSL.
213  */
214 #ifdef USE_SSL
215  if (port->ssl_in_use)
216  {
218  appendStringInfoChar(buf, '\0');
219  }
220 #endif
222  appendStringInfoChar(buf, '\0');
223 }
224 
225 /*
226  * Initialize a new SCRAM authentication exchange status tracker. This
227  * needs to be called before doing any exchange. It will be filled later
228  * after the beginning of the exchange with authentication information.
229  *
230  * 'selected_mech' identifies the SASL mechanism that the client selected.
231  * It should be one of the mechanisms that we support, as returned by
232  * scram_get_mechanisms().
233  *
234  * 'shadow_pass' is the role's stored secret, from pg_authid.rolpassword.
235  * The username was provided by the client in the startup message, and is
236  * available in port->user_name. If 'shadow_pass' is NULL, we still perform
237  * an authentication exchange, but it will fail, as if an incorrect password
238  * was given.
239  */
240 static void *
241 scram_init(Port *port, const char *selected_mech, const char *shadow_pass)
242 {
244  bool got_secret;
245 
246  state = (scram_state *) palloc0(sizeof(scram_state));
247  state->port = port;
248  state->state = SCRAM_AUTH_INIT;
249 
250  /*
251  * Parse the selected mechanism.
252  *
253  * Note that if we don't support channel binding, or if we're not using
254  * SSL at all, we would not have advertised the PLUS variant in the first
255  * place. If the client nevertheless tries to select it, it's a protocol
256  * violation like selecting any other SASL mechanism we don't support.
257  */
258 #ifdef USE_SSL
259  if (strcmp(selected_mech, SCRAM_SHA_256_PLUS_NAME) == 0 && port->ssl_in_use)
260  state->channel_binding_in_use = true;
261  else
262 #endif
263  if (strcmp(selected_mech, SCRAM_SHA_256_NAME) == 0)
264  state->channel_binding_in_use = false;
265  else
266  ereport(ERROR,
267  (errcode(ERRCODE_PROTOCOL_VIOLATION),
268  errmsg("client selected an invalid SASL authentication mechanism")));
269 
270  /*
271  * Parse the stored secret.
272  */
273  if (shadow_pass)
274  {
275  int password_type = get_password_type(shadow_pass);
276 
277  if (password_type == PASSWORD_TYPE_SCRAM_SHA_256)
278  {
279  if (parse_scram_secret(shadow_pass, &state->iterations,
280  &state->hash_type, &state->key_length,
281  &state->salt,
282  state->StoredKey,
283  state->ServerKey))
284  got_secret = true;
285  else
286  {
287  /*
288  * The password looked like a SCRAM secret, but could not be
289  * parsed.
290  */
291  ereport(LOG,
292  (errmsg("invalid SCRAM secret for user \"%s\"",
293  state->port->user_name)));
294  got_secret = false;
295  }
296  }
297  else
298  {
299  /*
300  * The user doesn't have SCRAM secret. (You cannot do SCRAM
301  * authentication with an MD5 hash.)
302  */
303  state->logdetail = psprintf(_("User \"%s\" does not have a valid SCRAM secret."),
304  state->port->user_name);
305  got_secret = false;
306  }
307  }
308  else
309  {
310  /*
311  * The caller requested us to perform a dummy authentication. This is
312  * considered normal, since the caller requested it, so don't set log
313  * detail.
314  */
315  got_secret = false;
316  }
317 
318  /*
319  * If the user did not have a valid SCRAM secret, we still go through the
320  * motions with a mock one, and fail as if the client supplied an
321  * incorrect password. This is to avoid revealing information to an
322  * attacker.
323  */
324  if (!got_secret)
325  {
326  mock_scram_secret(state->port->user_name, &state->hash_type,
327  &state->iterations, &state->key_length,
328  &state->salt,
329  state->StoredKey, state->ServerKey);
330  state->doomed = true;
331  }
332 
333  return state;
334 }
335 
336 /*
337  * Continue a SCRAM authentication exchange.
338  *
339  * 'input' is the SCRAM payload sent by the client. On the first call,
340  * 'input' contains the "Initial Client Response" that the client sent as
341  * part of the SASLInitialResponse message, or NULL if no Initial Client
342  * Response was given. (The SASL specification distinguishes between an
343  * empty response and non-existing one.) On subsequent calls, 'input'
344  * cannot be NULL. For convenience in this function, the caller must
345  * ensure that there is a null terminator at input[inputlen].
346  *
347  * The next message to send to client is saved in 'output', for a length
348  * of 'outputlen'. In the case of an error, optionally store a palloc'd
349  * string at *logdetail that will be sent to the postmaster log (but not
350  * the client).
351  */
352 static int
353 scram_exchange(void *opaq, const char *input, int inputlen,
354  char **output, int *outputlen, const char **logdetail)
355 {
356  scram_state *state = (scram_state *) opaq;
357  int result;
358 
359  *output = NULL;
360 
361  /*
362  * If the client didn't include an "Initial Client Response" in the
363  * SASLInitialResponse message, send an empty challenge, to which the
364  * client will respond with the same data that usually comes in the
365  * Initial Client Response.
366  */
367  if (input == NULL)
368  {
369  Assert(state->state == SCRAM_AUTH_INIT);
370 
371  *output = pstrdup("");
372  *outputlen = 0;
374  }
375 
376  /*
377  * Check that the input length agrees with the string length of the input.
378  * We can ignore inputlen after this.
379  */
380  if (inputlen == 0)
381  ereport(ERROR,
382  (errcode(ERRCODE_PROTOCOL_VIOLATION),
383  errmsg("malformed SCRAM message"),
384  errdetail("The message is empty.")));
385  if (inputlen != strlen(input))
386  ereport(ERROR,
387  (errcode(ERRCODE_PROTOCOL_VIOLATION),
388  errmsg("malformed SCRAM message"),
389  errdetail("Message length does not match input length.")));
390 
391  switch (state->state)
392  {
393  case SCRAM_AUTH_INIT:
394 
395  /*
396  * Initialization phase. Receive the first message from client
397  * and be sure that it parsed correctly. Then send the challenge
398  * to the client.
399  */
401 
402  /* prepare message to send challenge */
404 
405  state->state = SCRAM_AUTH_SALT_SENT;
406  result = PG_SASL_EXCHANGE_CONTINUE;
407  break;
408 
410 
411  /*
412  * Final phase for the server. Receive the response to the
413  * challenge previously sent, verify, and let the client know that
414  * everything went well (or not).
415  */
417 
419  ereport(ERROR,
420  (errcode(ERRCODE_PROTOCOL_VIOLATION),
421  errmsg("invalid SCRAM response"),
422  errdetail("Nonce does not match.")));
423 
424  /*
425  * Now check the final nonce and the client proof.
426  *
427  * If we performed a "mock" authentication that we knew would fail
428  * from the get go, this is where we fail.
429  *
430  * The SCRAM specification includes an error code,
431  * "invalid-proof", for authentication failure, but it also allows
432  * erroring out in an application-specific way. We choose to do
433  * the latter, so that the error message for invalid password is
434  * the same for all authentication methods. The caller will call
435  * ereport(), when we return PG_SASL_EXCHANGE_FAILURE with no
436  * output.
437  *
438  * NB: the order of these checks is intentional. We calculate the
439  * client proof even in a mock authentication, even though it's
440  * bound to fail, to thwart timing attacks to determine if a role
441  * with the given name exists or not.
442  */
443  if (!verify_client_proof(state) || state->doomed)
444  {
445  result = PG_SASL_EXCHANGE_FAILURE;
446  break;
447  }
448 
449  /* Build final message for client */
451 
452  /* Success! */
453  result = PG_SASL_EXCHANGE_SUCCESS;
454  state->state = SCRAM_AUTH_FINISHED;
455  break;
456 
457  default:
458  elog(ERROR, "invalid SCRAM exchange state");
459  result = PG_SASL_EXCHANGE_FAILURE;
460  }
461 
462  if (result == PG_SASL_EXCHANGE_FAILURE && state->logdetail && logdetail)
463  *logdetail = state->logdetail;
464 
465  if (*output)
466  *outputlen = strlen(*output);
467 
468  return result;
469 }
470 
471 /*
472  * Construct a SCRAM secret, for storing in pg_authid.rolpassword.
473  *
474  * The result is palloc'd, so caller is responsible for freeing it.
475  */
476 char *
478 {
479  char *prep_password;
480  pg_saslprep_rc rc;
481  char saltbuf[SCRAM_DEFAULT_SALT_LEN];
482  char *result;
483  const char *errstr = NULL;
484 
485  /*
486  * Normalize the password with SASLprep. If that doesn't work, because
487  * the password isn't valid UTF-8 or contains prohibited characters, just
488  * proceed with the original password. (See comments at top of file.)
489  */
490  rc = pg_saslprep(password, &prep_password);
491  if (rc == SASLPREP_SUCCESS)
492  password = (const char *) prep_password;
493 
494  /* Generate random salt */
496  ereport(ERROR,
497  (errcode(ERRCODE_INTERNAL_ERROR),
498  errmsg("could not generate random salt")));
499 
501  saltbuf, SCRAM_DEFAULT_SALT_LEN,
503  &errstr);
504 
505  if (prep_password)
506  pfree(prep_password);
507 
508  return result;
509 }
510 
511 /*
512  * Verify a plaintext password against a SCRAM secret. This is used when
513  * performing plaintext password authentication for a user that has a SCRAM
514  * secret stored in pg_authid.
515  */
516 bool
518  const char *secret)
519 {
520  char *encoded_salt;
521  char *salt;
522  int saltlen;
523  int iterations;
524  int key_length = 0;
525  pg_cryptohash_type hash_type;
526  uint8 salted_password[SCRAM_MAX_KEY_LEN];
527  uint8 stored_key[SCRAM_MAX_KEY_LEN];
528  uint8 server_key[SCRAM_MAX_KEY_LEN];
529  uint8 computed_key[SCRAM_MAX_KEY_LEN];
530  char *prep_password;
531  pg_saslprep_rc rc;
532  const char *errstr = NULL;
533 
534  if (!parse_scram_secret(secret, &iterations, &hash_type, &key_length,
535  &encoded_salt, stored_key, server_key))
536  {
537  /*
538  * The password looked like a SCRAM secret, but could not be parsed.
539  */
540  ereport(LOG,
541  (errmsg("invalid SCRAM secret for user \"%s\"", username)));
542  return false;
543  }
544 
545  saltlen = pg_b64_dec_len(strlen(encoded_salt));
546  salt = palloc(saltlen);
547  saltlen = pg_b64_decode(encoded_salt, strlen(encoded_salt), salt,
548  saltlen);
549  if (saltlen < 0)
550  {
551  ereport(LOG,
552  (errmsg("invalid SCRAM secret for user \"%s\"", username)));
553  return false;
554  }
555 
556  /* Normalize the password */
557  rc = pg_saslprep(password, &prep_password);
558  if (rc == SASLPREP_SUCCESS)
559  password = prep_password;
560 
561  /* Compute Server Key based on the user-supplied plaintext password */
562  if (scram_SaltedPassword(password, hash_type, key_length,
563  salt, saltlen, iterations,
564  salted_password, &errstr) < 0 ||
565  scram_ServerKey(salted_password, hash_type, key_length,
566  computed_key, &errstr) < 0)
567  {
568  elog(ERROR, "could not compute server key: %s", errstr);
569  }
570 
571  if (prep_password)
572  pfree(prep_password);
573 
574  /*
575  * Compare the secret's Server Key with the one computed from the
576  * user-supplied password.
577  */
578  return memcmp(computed_key, server_key, key_length) == 0;
579 }
580 
581 
582 /*
583  * Parse and validate format of given SCRAM secret.
584  *
585  * On success, the iteration count, salt, stored key, and server key are
586  * extracted from the secret, and returned to the caller. For 'stored_key'
587  * and 'server_key', the caller must pass pre-allocated buffers of size
588  * SCRAM_MAX_KEY_LEN. Salt is returned as a base64-encoded, null-terminated
589  * string. The buffer for the salt is palloc'd by this function.
590  *
591  * Returns true if the SCRAM secret has been parsed, and false otherwise.
592  */
593 bool
594 parse_scram_secret(const char *secret, int *iterations,
595  pg_cryptohash_type *hash_type, int *key_length,
596  char **salt, uint8 *stored_key, uint8 *server_key)
597 {
598  char *v;
599  char *p;
600  char *scheme_str;
601  char *salt_str;
602  char *iterations_str;
603  char *storedkey_str;
604  char *serverkey_str;
605  int decoded_len;
606  char *decoded_salt_buf;
607  char *decoded_stored_buf;
608  char *decoded_server_buf;
609 
610  /*
611  * The secret is of form:
612  *
613  * SCRAM-SHA-256$<iterations>:<salt>$<storedkey>:<serverkey>
614  */
615  v = pstrdup(secret);
616  if ((scheme_str = strtok(v, "$")) == NULL)
617  goto invalid_secret;
618  if ((iterations_str = strtok(NULL, ":")) == NULL)
619  goto invalid_secret;
620  if ((salt_str = strtok(NULL, "$")) == NULL)
621  goto invalid_secret;
622  if ((storedkey_str = strtok(NULL, ":")) == NULL)
623  goto invalid_secret;
624  if ((serverkey_str = strtok(NULL, "")) == NULL)
625  goto invalid_secret;
626 
627  /* Parse the fields */
628  if (strcmp(scheme_str, "SCRAM-SHA-256") != 0)
629  goto invalid_secret;
630  *hash_type = PG_SHA256;
631  *key_length = SCRAM_SHA_256_KEY_LEN;
632 
633  errno = 0;
634  *iterations = strtol(iterations_str, &p, 10);
635  if (*p || errno != 0)
636  goto invalid_secret;
637 
638  /*
639  * Verify that the salt is in Base64-encoded format, by decoding it,
640  * although we return the encoded version to the caller.
641  */
642  decoded_len = pg_b64_dec_len(strlen(salt_str));
643  decoded_salt_buf = palloc(decoded_len);
644  decoded_len = pg_b64_decode(salt_str, strlen(salt_str),
645  decoded_salt_buf, decoded_len);
646  if (decoded_len < 0)
647  goto invalid_secret;
648  *salt = pstrdup(salt_str);
649 
650  /*
651  * Decode StoredKey and ServerKey.
652  */
653  decoded_len = pg_b64_dec_len(strlen(storedkey_str));
654  decoded_stored_buf = palloc(decoded_len);
655  decoded_len = pg_b64_decode(storedkey_str, strlen(storedkey_str),
656  decoded_stored_buf, decoded_len);
657  if (decoded_len != *key_length)
658  goto invalid_secret;
659  memcpy(stored_key, decoded_stored_buf, *key_length);
660 
661  decoded_len = pg_b64_dec_len(strlen(serverkey_str));
662  decoded_server_buf = palloc(decoded_len);
663  decoded_len = pg_b64_decode(serverkey_str, strlen(serverkey_str),
664  decoded_server_buf, decoded_len);
665  if (decoded_len != *key_length)
666  goto invalid_secret;
667  memcpy(server_key, decoded_server_buf, *key_length);
668 
669  return true;
670 
671 invalid_secret:
672  *salt = NULL;
673  return false;
674 }
675 
676 /*
677  * Generate plausible SCRAM secret parameters for mock authentication.
678  *
679  * In a normal authentication, these are extracted from the secret
680  * stored in the server. This function generates values that look
681  * realistic, for when there is no stored secret, using SCRAM-SHA-256.
682  *
683  * Like in parse_scram_secret(), for 'stored_key' and 'server_key', the
684  * caller must pass pre-allocated buffers of size SCRAM_MAX_KEY_LEN, and
685  * the buffer for the salt is palloc'd by this function.
686  */
687 static void
689  int *iterations, int *key_length, char **salt,
690  uint8 *stored_key, uint8 *server_key)
691 {
692  char *raw_salt;
693  char *encoded_salt;
694  int encoded_len;
695 
696  /* Enforce the use of SHA-256, which would be realistic enough */
697  *hash_type = PG_SHA256;
698  *key_length = SCRAM_SHA_256_KEY_LEN;
699 
700  /*
701  * Generate deterministic salt.
702  *
703  * Note that we cannot reveal any information to an attacker here so the
704  * error messages need to remain generic. This should never fail anyway
705  * as the salt generated for mock authentication uses the cluster's nonce
706  * value.
707  */
708  raw_salt = scram_mock_salt(username, *hash_type, *key_length);
709  if (raw_salt == NULL)
710  elog(ERROR, "could not encode salt");
711 
712  encoded_len = pg_b64_enc_len(SCRAM_DEFAULT_SALT_LEN);
713  /* don't forget the zero-terminator */
714  encoded_salt = (char *) palloc(encoded_len + 1);
715  encoded_len = pg_b64_encode(raw_salt, SCRAM_DEFAULT_SALT_LEN, encoded_salt,
716  encoded_len);
717 
718  if (encoded_len < 0)
719  elog(ERROR, "could not encode salt");
720  encoded_salt[encoded_len] = '\0';
721 
722  *salt = encoded_salt;
724 
725  /* StoredKey and ServerKey are not used in a doomed authentication */
726  memset(stored_key, 0, SCRAM_MAX_KEY_LEN);
727  memset(server_key, 0, SCRAM_MAX_KEY_LEN);
728 }
729 
730 /*
731  * Read the value in a given SCRAM exchange message for given attribute.
732  */
733 static char *
734 read_attr_value(char **input, char attr)
735 {
736  char *begin = *input;
737  char *end;
738 
739  if (*begin != attr)
740  ereport(ERROR,
741  (errcode(ERRCODE_PROTOCOL_VIOLATION),
742  errmsg("malformed SCRAM message"),
743  errdetail("Expected attribute \"%c\" but found \"%s\".",
744  attr, sanitize_char(*begin))));
745  begin++;
746 
747  if (*begin != '=')
748  ereport(ERROR,
749  (errcode(ERRCODE_PROTOCOL_VIOLATION),
750  errmsg("malformed SCRAM message"),
751  errdetail("Expected character \"=\" for attribute \"%c\".", attr)));
752  begin++;
753 
754  end = begin;
755  while (*end && *end != ',')
756  end++;
757 
758  if (*end)
759  {
760  *end = '\0';
761  *input = end + 1;
762  }
763  else
764  *input = end;
765 
766  return begin;
767 }
768 
769 static bool
771 {
772  /*------
773  * Printable characters, as defined by SCRAM spec: (RFC 5802)
774  *
775  * printable = %x21-2B / %x2D-7E
776  * ;; Printable ASCII except ",".
777  * ;; Note that any "printable" is also
778  * ;; a valid "value".
779  *------
780  */
781  for (; *p; p++)
782  {
783  if (*p < 0x21 || *p > 0x7E || *p == 0x2C /* comma */ )
784  return false;
785  }
786  return true;
787 }
788 
789 /*
790  * Convert an arbitrary byte to printable form. For error messages.
791  *
792  * If it's a printable ASCII character, print it as a single character.
793  * otherwise, print it in hex.
794  *
795  * The returned pointer points to a static buffer.
796  */
797 static char *
799 {
800  static char buf[5];
801 
802  if (c >= 0x21 && c <= 0x7E)
803  snprintf(buf, sizeof(buf), "'%c'", c);
804  else
805  snprintf(buf, sizeof(buf), "0x%02x", (unsigned char) c);
806  return buf;
807 }
808 
809 /*
810  * Convert an arbitrary string to printable form, for error messages.
811  *
812  * Anything that's not a printable ASCII character is replaced with
813  * '?', and the string is truncated at 30 characters.
814  *
815  * The returned pointer points to a static buffer.
816  */
817 static char *
818 sanitize_str(const char *s)
819 {
820  static char buf[30 + 1];
821  int i;
822 
823  for (i = 0; i < sizeof(buf) - 1; i++)
824  {
825  char c = s[i];
826 
827  if (c == '\0')
828  break;
829 
830  if (c >= 0x21 && c <= 0x7E)
831  buf[i] = c;
832  else
833  buf[i] = '?';
834  }
835  buf[i] = '\0';
836  return buf;
837 }
838 
839 /*
840  * Read the next attribute and value in a SCRAM exchange message.
841  *
842  * The attribute character is set in *attr_p, the attribute value is the
843  * return value.
844  */
845 static char *
846 read_any_attr(char **input, char *attr_p)
847 {
848  char *begin = *input;
849  char *end;
850  char attr = *begin;
851 
852  if (attr == '\0')
853  ereport(ERROR,
854  (errcode(ERRCODE_PROTOCOL_VIOLATION),
855  errmsg("malformed SCRAM message"),
856  errdetail("Attribute expected, but found end of string.")));
857 
858  /*------
859  * attr-val = ALPHA "=" value
860  * ;; Generic syntax of any attribute sent
861  * ;; by server or client
862  *------
863  */
864  if (!((attr >= 'A' && attr <= 'Z') ||
865  (attr >= 'a' && attr <= 'z')))
866  ereport(ERROR,
867  (errcode(ERRCODE_PROTOCOL_VIOLATION),
868  errmsg("malformed SCRAM message"),
869  errdetail("Attribute expected, but found invalid character \"%s\".",
870  sanitize_char(attr))));
871  if (attr_p)
872  *attr_p = attr;
873  begin++;
874 
875  if (*begin != '=')
876  ereport(ERROR,
877  (errcode(ERRCODE_PROTOCOL_VIOLATION),
878  errmsg("malformed SCRAM message"),
879  errdetail("Expected character \"=\" for attribute \"%c\".", attr)));
880  begin++;
881 
882  end = begin;
883  while (*end && *end != ',')
884  end++;
885 
886  if (*end)
887  {
888  *end = '\0';
889  *input = end + 1;
890  }
891  else
892  *input = end;
893 
894  return begin;
895 }
896 
897 /*
898  * Read and parse the first message from client in the context of a SCRAM
899  * authentication exchange message.
900  *
901  * At this stage, any errors will be reported directly with ereport(ERROR).
902  */
903 static void
905 {
906  char *p = pstrdup(input);
907  char *channel_binding_type;
908 
909 
910  /*------
911  * The syntax for the client-first-message is: (RFC 5802)
912  *
913  * saslname = 1*(value-safe-char / "=2C" / "=3D")
914  * ;; Conforms to <value>.
915  *
916  * authzid = "a=" saslname
917  * ;; Protocol specific.
918  *
919  * cb-name = 1*(ALPHA / DIGIT / "." / "-")
920  * ;; See RFC 5056, Section 7.
921  * ;; E.g., "tls-server-end-point" or
922  * ;; "tls-unique".
923  *
924  * gs2-cbind-flag = ("p=" cb-name) / "n" / "y"
925  * ;; "n" -> client doesn't support channel binding.
926  * ;; "y" -> client does support channel binding
927  * ;; but thinks the server does not.
928  * ;; "p" -> client requires channel binding.
929  * ;; The selected channel binding follows "p=".
930  *
931  * gs2-header = gs2-cbind-flag "," [ authzid ] ","
932  * ;; GS2 header for SCRAM
933  * ;; (the actual GS2 header includes an optional
934  * ;; flag to indicate that the GSS mechanism is not
935  * ;; "standard", but since SCRAM is "standard", we
936  * ;; don't include that flag).
937  *
938  * username = "n=" saslname
939  * ;; Usernames are prepared using SASLprep.
940  *
941  * reserved-mext = "m=" 1*(value-char)
942  * ;; Reserved for signaling mandatory extensions.
943  * ;; The exact syntax will be defined in
944  * ;; the future.
945  *
946  * nonce = "r=" c-nonce [s-nonce]
947  * ;; Second part provided by server.
948  *
949  * c-nonce = printable
950  *
951  * client-first-message-bare =
952  * [reserved-mext ","]
953  * username "," nonce ["," extensions]
954  *
955  * client-first-message =
956  * gs2-header client-first-message-bare
957  *
958  * For example:
959  * n,,n=user,r=fyko+d2lbbFgONRv9qkxdawL
960  *
961  * The "n,," in the beginning means that the client doesn't support
962  * channel binding, and no authzid is given. "n=user" is the username.
963  * However, in PostgreSQL the username is sent in the startup packet, and
964  * the username in the SCRAM exchange is ignored. libpq always sends it
965  * as an empty string. The last part, "r=fyko+d2lbbFgONRv9qkxdawL" is
966  * the client nonce.
967  *------
968  */
969 
970  /*
971  * Read gs2-cbind-flag. (For details see also RFC 5802 Section 6 "Channel
972  * Binding".)
973  */
974  state->cbind_flag = *p;
975  switch (*p)
976  {
977  case 'n':
978 
979  /*
980  * The client does not support channel binding or has simply
981  * decided to not use it. In that case just let it go.
982  */
983  if (state->channel_binding_in_use)
984  ereport(ERROR,
985  (errcode(ERRCODE_PROTOCOL_VIOLATION),
986  errmsg("malformed SCRAM message"),
987  errdetail("The client selected SCRAM-SHA-256-PLUS, but the SCRAM message does not include channel binding data.")));
988 
989  p++;
990  if (*p != ',')
991  ereport(ERROR,
992  (errcode(ERRCODE_PROTOCOL_VIOLATION),
993  errmsg("malformed SCRAM message"),
994  errdetail("Comma expected, but found character \"%s\".",
995  sanitize_char(*p))));
996  p++;
997  break;
998  case 'y':
999 
1000  /*
1001  * The client supports channel binding and thinks that the server
1002  * does not. In this case, the server must fail authentication if
1003  * it supports channel binding.
1004  */
1005  if (state->channel_binding_in_use)
1006  ereport(ERROR,
1007  (errcode(ERRCODE_PROTOCOL_VIOLATION),
1008  errmsg("malformed SCRAM message"),
1009  errdetail("The client selected SCRAM-SHA-256-PLUS, but the SCRAM message does not include channel binding data.")));
1010 
1011 #ifdef USE_SSL
1012  if (state->port->ssl_in_use)
1013  ereport(ERROR,
1014  (errcode(ERRCODE_INVALID_AUTHORIZATION_SPECIFICATION),
1015  errmsg("SCRAM channel binding negotiation error"),
1016  errdetail("The client supports SCRAM channel binding but thinks the server does not. "
1017  "However, this server does support channel binding.")));
1018 #endif
1019  p++;
1020  if (*p != ',')
1021  ereport(ERROR,
1022  (errcode(ERRCODE_PROTOCOL_VIOLATION),
1023  errmsg("malformed SCRAM message"),
1024  errdetail("Comma expected, but found character \"%s\".",
1025  sanitize_char(*p))));
1026  p++;
1027  break;
1028  case 'p':
1029 
1030  /*
1031  * The client requires channel binding. Channel binding type
1032  * follows, e.g., "p=tls-server-end-point".
1033  */
1034  if (!state->channel_binding_in_use)
1035  ereport(ERROR,
1036  (errcode(ERRCODE_PROTOCOL_VIOLATION),
1037  errmsg("malformed SCRAM message"),
1038  errdetail("The client selected SCRAM-SHA-256 without channel binding, but the SCRAM message includes channel binding data.")));
1039 
1040  channel_binding_type = read_attr_value(&p, 'p');
1041 
1042  /*
1043  * The only channel binding type we support is
1044  * tls-server-end-point.
1045  */
1046  if (strcmp(channel_binding_type, "tls-server-end-point") != 0)
1047  ereport(ERROR,
1048  (errcode(ERRCODE_PROTOCOL_VIOLATION),
1049  errmsg("unsupported SCRAM channel-binding type \"%s\"",
1050  sanitize_str(channel_binding_type))));
1051  break;
1052  default:
1053  ereport(ERROR,
1054  (errcode(ERRCODE_PROTOCOL_VIOLATION),
1055  errmsg("malformed SCRAM message"),
1056  errdetail("Unexpected channel-binding flag \"%s\".",
1057  sanitize_char(*p))));
1058  }
1059 
1060  /*
1061  * Forbid optional authzid (authorization identity). We don't support it.
1062  */
1063  if (*p == 'a')
1064  ereport(ERROR,
1065  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1066  errmsg("client uses authorization identity, but it is not supported")));
1067  if (*p != ',')
1068  ereport(ERROR,
1069  (errcode(ERRCODE_PROTOCOL_VIOLATION),
1070  errmsg("malformed SCRAM message"),
1071  errdetail("Unexpected attribute \"%s\" in client-first-message.",
1072  sanitize_char(*p))));
1073  p++;
1074 
1075  state->client_first_message_bare = pstrdup(p);
1076 
1077  /*
1078  * Any mandatory extensions would go here. We don't support any.
1079  *
1080  * RFC 5802 specifies error code "e=extensions-not-supported" for this,
1081  * but it can only be sent in the server-final message. We prefer to fail
1082  * immediately (which the RFC also allows).
1083  */
1084  if (*p == 'm')
1085  ereport(ERROR,
1086  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1087  errmsg("client requires an unsupported SCRAM extension")));
1088 
1089  /*
1090  * Read username. Note: this is ignored. We use the username from the
1091  * startup message instead, still it is kept around if provided as it
1092  * proves to be useful for debugging purposes.
1093  */
1094  state->client_username = read_attr_value(&p, 'n');
1095 
1096  /* read nonce and check that it is made of only printable characters */
1097  state->client_nonce = read_attr_value(&p, 'r');
1098  if (!is_scram_printable(state->client_nonce))
1099  ereport(ERROR,
1100  (errcode(ERRCODE_PROTOCOL_VIOLATION),
1101  errmsg("non-printable characters in SCRAM nonce")));
1102 
1103  /*
1104  * There can be any number of optional extensions after this. We don't
1105  * support any extensions, so ignore them.
1106  */
1107  while (*p != '\0')
1108  read_any_attr(&p, NULL);
1109 
1110  /* success! */
1111 }
1112 
1113 /*
1114  * Verify the final nonce contained in the last message received from
1115  * client in an exchange.
1116  */
1117 static bool
1119 {
1120  int client_nonce_len = strlen(state->client_nonce);
1121  int server_nonce_len = strlen(state->server_nonce);
1122  int final_nonce_len = strlen(state->client_final_nonce);
1123 
1124  if (final_nonce_len != client_nonce_len + server_nonce_len)
1125  return false;
1126  if (memcmp(state->client_final_nonce, state->client_nonce, client_nonce_len) != 0)
1127  return false;
1128  if (memcmp(state->client_final_nonce + client_nonce_len, state->server_nonce, server_nonce_len) != 0)
1129  return false;
1130 
1131  return true;
1132 }
1133 
1134 /*
1135  * Verify the client proof contained in the last message received from
1136  * client in an exchange. Returns true if the verification is a success,
1137  * or false for a failure.
1138  */
1139 static bool
1141 {
1142  uint8 ClientSignature[SCRAM_MAX_KEY_LEN];
1143  uint8 ClientKey[SCRAM_MAX_KEY_LEN];
1144  uint8 client_StoredKey[SCRAM_MAX_KEY_LEN];
1145  pg_hmac_ctx *ctx = pg_hmac_create(state->hash_type);
1146  int i;
1147  const char *errstr = NULL;
1148 
1149  /*
1150  * Calculate ClientSignature. Note that we don't log directly a failure
1151  * here even when processing the calculations as this could involve a mock
1152  * authentication.
1153  */
1154  if (pg_hmac_init(ctx, state->StoredKey, state->key_length) < 0 ||
1155  pg_hmac_update(ctx,
1156  (uint8 *) state->client_first_message_bare,
1157  strlen(state->client_first_message_bare)) < 0 ||
1158  pg_hmac_update(ctx, (uint8 *) ",", 1) < 0 ||
1159  pg_hmac_update(ctx,
1160  (uint8 *) state->server_first_message,
1161  strlen(state->server_first_message)) < 0 ||
1162  pg_hmac_update(ctx, (uint8 *) ",", 1) < 0 ||
1163  pg_hmac_update(ctx,
1164  (uint8 *) state->client_final_message_without_proof,
1165  strlen(state->client_final_message_without_proof)) < 0 ||
1166  pg_hmac_final(ctx, ClientSignature, state->key_length) < 0)
1167  {
1168  elog(ERROR, "could not calculate client signature: %s",
1169  pg_hmac_error(ctx));
1170  }
1171 
1172  pg_hmac_free(ctx);
1173 
1174  /* Extract the ClientKey that the client calculated from the proof */
1175  for (i = 0; i < state->key_length; i++)
1176  ClientKey[i] = state->ClientProof[i] ^ ClientSignature[i];
1177 
1178  /* Hash it one more time, and compare with StoredKey */
1179  if (scram_H(ClientKey, state->hash_type, state->key_length,
1180  client_StoredKey, &errstr) < 0)
1181  elog(ERROR, "could not hash stored key: %s", errstr);
1182 
1183  if (memcmp(client_StoredKey, state->StoredKey, state->key_length) != 0)
1184  return false;
1185 
1186  return true;
1187 }
1188 
1189 /*
1190  * Build the first server-side message sent to the client in a SCRAM
1191  * communication exchange.
1192  */
1193 static char *
1195 {
1196  /*------
1197  * The syntax for the server-first-message is: (RFC 5802)
1198  *
1199  * server-first-message =
1200  * [reserved-mext ","] nonce "," salt ","
1201  * iteration-count ["," extensions]
1202  *
1203  * nonce = "r=" c-nonce [s-nonce]
1204  * ;; Second part provided by server.
1205  *
1206  * c-nonce = printable
1207  *
1208  * s-nonce = printable
1209  *
1210  * salt = "s=" base64
1211  *
1212  * iteration-count = "i=" posit-number
1213  * ;; A positive number.
1214  *
1215  * Example:
1216  *
1217  * r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,s=QSXCR+Q6sek8bf92,i=4096
1218  *------
1219  */
1220 
1221  /*
1222  * Per the spec, the nonce may consist of any printable ASCII characters.
1223  * For convenience, however, we don't use the whole range available,
1224  * rather, we generate some random bytes, and base64 encode them.
1225  */
1226  char raw_nonce[SCRAM_RAW_NONCE_LEN];
1227  int encoded_len;
1228 
1229  if (!pg_strong_random(raw_nonce, SCRAM_RAW_NONCE_LEN))
1230  ereport(ERROR,
1231  (errcode(ERRCODE_INTERNAL_ERROR),
1232  errmsg("could not generate random nonce")));
1233 
1234  encoded_len = pg_b64_enc_len(SCRAM_RAW_NONCE_LEN);
1235  /* don't forget the zero-terminator */
1236  state->server_nonce = palloc(encoded_len + 1);
1237  encoded_len = pg_b64_encode(raw_nonce, SCRAM_RAW_NONCE_LEN,
1238  state->server_nonce, encoded_len);
1239  if (encoded_len < 0)
1240  ereport(ERROR,
1241  (errcode(ERRCODE_INTERNAL_ERROR),
1242  errmsg("could not encode random nonce")));
1243  state->server_nonce[encoded_len] = '\0';
1244 
1245  state->server_first_message =
1246  psprintf("r=%s%s,s=%s,i=%d",
1247  state->client_nonce, state->server_nonce,
1248  state->salt, state->iterations);
1249 
1250  return pstrdup(state->server_first_message);
1251 }
1252 
1253 
1254 /*
1255  * Read and parse the final message received from client.
1256  */
1257 static void
1259 {
1260  char attr;
1261  char *channel_binding;
1262  char *value;
1263  char *begin,
1264  *proof;
1265  char *p;
1266  char *client_proof;
1267  int client_proof_len;
1268 
1269  begin = p = pstrdup(input);
1270 
1271  /*------
1272  * The syntax for the server-first-message is: (RFC 5802)
1273  *
1274  * gs2-header = gs2-cbind-flag "," [ authzid ] ","
1275  * ;; GS2 header for SCRAM
1276  * ;; (the actual GS2 header includes an optional
1277  * ;; flag to indicate that the GSS mechanism is not
1278  * ;; "standard", but since SCRAM is "standard", we
1279  * ;; don't include that flag).
1280  *
1281  * cbind-input = gs2-header [ cbind-data ]
1282  * ;; cbind-data MUST be present for
1283  * ;; gs2-cbind-flag of "p" and MUST be absent
1284  * ;; for "y" or "n".
1285  *
1286  * channel-binding = "c=" base64
1287  * ;; base64 encoding of cbind-input.
1288  *
1289  * proof = "p=" base64
1290  *
1291  * client-final-message-without-proof =
1292  * channel-binding "," nonce [","
1293  * extensions]
1294  *
1295  * client-final-message =
1296  * client-final-message-without-proof "," proof
1297  *------
1298  */
1299 
1300  /*
1301  * Read channel binding. This repeats the channel-binding flags and is
1302  * then followed by the actual binding data depending on the type.
1303  */
1304  channel_binding = read_attr_value(&p, 'c');
1305  if (state->channel_binding_in_use)
1306  {
1307 #ifdef USE_SSL
1308  const char *cbind_data = NULL;
1309  size_t cbind_data_len = 0;
1310  size_t cbind_header_len;
1311  char *cbind_input;
1312  size_t cbind_input_len;
1313  char *b64_message;
1314  int b64_message_len;
1315 
1316  Assert(state->cbind_flag == 'p');
1317 
1318  /* Fetch hash data of server's SSL certificate */
1319  cbind_data = be_tls_get_certificate_hash(state->port,
1320  &cbind_data_len);
1321 
1322  /* should not happen */
1323  if (cbind_data == NULL || cbind_data_len == 0)
1324  elog(ERROR, "could not get server certificate hash");
1325 
1326  cbind_header_len = strlen("p=tls-server-end-point,,"); /* p=type,, */
1327  cbind_input_len = cbind_header_len + cbind_data_len;
1328  cbind_input = palloc(cbind_input_len);
1329  snprintf(cbind_input, cbind_input_len, "p=tls-server-end-point,,");
1330  memcpy(cbind_input + cbind_header_len, cbind_data, cbind_data_len);
1331 
1332  b64_message_len = pg_b64_enc_len(cbind_input_len);
1333  /* don't forget the zero-terminator */
1334  b64_message = palloc(b64_message_len + 1);
1335  b64_message_len = pg_b64_encode(cbind_input, cbind_input_len,
1336  b64_message, b64_message_len);
1337  if (b64_message_len < 0)
1338  elog(ERROR, "could not encode channel binding data");
1339  b64_message[b64_message_len] = '\0';
1340 
1341  /*
1342  * Compare the value sent by the client with the value expected by the
1343  * server.
1344  */
1345  if (strcmp(channel_binding, b64_message) != 0)
1346  ereport(ERROR,
1347  (errcode(ERRCODE_INVALID_AUTHORIZATION_SPECIFICATION),
1348  errmsg("SCRAM channel binding check failed")));
1349 #else
1350  /* shouldn't happen, because we checked this earlier already */
1351  elog(ERROR, "channel binding not supported by this build");
1352 #endif
1353  }
1354  else
1355  {
1356  /*
1357  * If we are not using channel binding, the binding data is expected
1358  * to always be "biws", which is "n,," base64-encoded, or "eSws",
1359  * which is "y,,". We also have to check whether the flag is the same
1360  * one that the client originally sent.
1361  */
1362  if (!(strcmp(channel_binding, "biws") == 0 && state->cbind_flag == 'n') &&
1363  !(strcmp(channel_binding, "eSws") == 0 && state->cbind_flag == 'y'))
1364  ereport(ERROR,
1365  (errcode(ERRCODE_PROTOCOL_VIOLATION),
1366  errmsg("unexpected SCRAM channel-binding attribute in client-final-message")));
1367  }
1368 
1369  state->client_final_nonce = read_attr_value(&p, 'r');
1370 
1371  /* ignore optional extensions, read until we find "p" attribute */
1372  do
1373  {
1374  proof = p - 1;
1375  value = read_any_attr(&p, &attr);
1376  } while (attr != 'p');
1377 
1378  client_proof_len = pg_b64_dec_len(strlen(value));
1379  client_proof = palloc(client_proof_len);
1380  if (pg_b64_decode(value, strlen(value), client_proof,
1381  client_proof_len) != state->key_length)
1382  ereport(ERROR,
1383  (errcode(ERRCODE_PROTOCOL_VIOLATION),
1384  errmsg("malformed SCRAM message"),
1385  errdetail("Malformed proof in client-final-message.")));
1386  memcpy(state->ClientProof, client_proof, state->key_length);
1387  pfree(client_proof);
1388 
1389  if (*p != '\0')
1390  ereport(ERROR,
1391  (errcode(ERRCODE_PROTOCOL_VIOLATION),
1392  errmsg("malformed SCRAM message"),
1393  errdetail("Garbage found at the end of client-final-message.")));
1394 
1395  state->client_final_message_without_proof = palloc(proof - begin + 1);
1396  memcpy(state->client_final_message_without_proof, input, proof - begin);
1397  state->client_final_message_without_proof[proof - begin] = '\0';
1398 }
1399 
1400 /*
1401  * Build the final server-side message of an exchange.
1402  */
1403 static char *
1405 {
1406  uint8 ServerSignature[SCRAM_MAX_KEY_LEN];
1407  char *server_signature_base64;
1408  int siglen;
1409  pg_hmac_ctx *ctx = pg_hmac_create(state->hash_type);
1410 
1411  /* calculate ServerSignature */
1412  if (pg_hmac_init(ctx, state->ServerKey, state->key_length) < 0 ||
1413  pg_hmac_update(ctx,
1414  (uint8 *) state->client_first_message_bare,
1415  strlen(state->client_first_message_bare)) < 0 ||
1416  pg_hmac_update(ctx, (uint8 *) ",", 1) < 0 ||
1417  pg_hmac_update(ctx,
1418  (uint8 *) state->server_first_message,
1419  strlen(state->server_first_message)) < 0 ||
1420  pg_hmac_update(ctx, (uint8 *) ",", 1) < 0 ||
1421  pg_hmac_update(ctx,
1422  (uint8 *) state->client_final_message_without_proof,
1423  strlen(state->client_final_message_without_proof)) < 0 ||
1424  pg_hmac_final(ctx, ServerSignature, state->key_length) < 0)
1425  {
1426  elog(ERROR, "could not calculate server signature: %s",
1427  pg_hmac_error(ctx));
1428  }
1429 
1430  pg_hmac_free(ctx);
1431 
1432  siglen = pg_b64_enc_len(state->key_length);
1433  /* don't forget the zero-terminator */
1434  server_signature_base64 = palloc(siglen + 1);
1435  siglen = pg_b64_encode((const char *) ServerSignature,
1436  state->key_length, server_signature_base64,
1437  siglen);
1438  if (siglen < 0)
1439  elog(ERROR, "could not encode server signature");
1440  server_signature_base64[siglen] = '\0';
1441 
1442  /*------
1443  * The syntax for the server-final-message is: (RFC 5802)
1444  *
1445  * verifier = "v=" base64
1446  * ;; base-64 encoded ServerSignature.
1447  *
1448  * server-final-message = (server-error / verifier)
1449  * ["," extensions]
1450  *
1451  *------
1452  */
1453  return psprintf("v=%s", server_signature_base64);
1454 }
1455 
1456 
1457 /*
1458  * Deterministically generate salt for mock authentication, using a SHA256
1459  * hash based on the username and a cluster-level secret key. Returns a
1460  * pointer to a static buffer of size SCRAM_DEFAULT_SALT_LEN, or NULL.
1461  */
1462 static char *
1464  int key_length)
1465 {
1466  pg_cryptohash_ctx *ctx;
1467  static uint8 sha_digest[SCRAM_MAX_KEY_LEN];
1468  char *mock_auth_nonce = GetMockAuthenticationNonce();
1469 
1470  /*
1471  * Generate salt using a SHA256 hash of the username and the cluster's
1472  * mock authentication nonce. (This works as long as the salt length is
1473  * not larger than the SHA256 digest length. If the salt is smaller, the
1474  * caller will just ignore the extra data.)
1475  */
1477  "salt length greater than SHA256 digest length");
1478 
1479  /*
1480  * This may be worth refreshing if support for more hash methods is\
1481  * added.
1482  */
1483  Assert(hash_type == PG_SHA256);
1484 
1485  ctx = pg_cryptohash_create(hash_type);
1486  if (pg_cryptohash_init(ctx) < 0 ||
1487  pg_cryptohash_update(ctx, (uint8 *) username, strlen(username)) < 0 ||
1488  pg_cryptohash_update(ctx, (uint8 *) mock_auth_nonce, MOCK_AUTH_NONCE_LEN) < 0 ||
1489  pg_cryptohash_final(ctx, sha_digest, key_length) < 0)
1490  {
1491  pg_cryptohash_free(ctx);
1492  return NULL;
1493  }
1494  pg_cryptohash_free(ctx);
1495 
1496  return (char *) sha_digest;
1497 }
static void * scram_init(Port *port, const char *selected_mech, const char *shadow_pass)
Definition: auth-scram.c:241
static char * build_server_first_message(scram_state *state)
Definition: auth-scram.c:1194
const pg_be_sasl_mech pg_be_scram_mech
Definition: auth-scram.c:118
static void read_client_first_message(scram_state *state, const char *input)
Definition: auth-scram.c:904
static char * read_attr_value(char **input, char attr)
Definition: auth-scram.c:734
bool parse_scram_secret(const char *secret, int *iterations, pg_cryptohash_type *hash_type, int *key_length, char **salt, uint8 *stored_key, uint8 *server_key)
Definition: auth-scram.c:594
static char * read_any_attr(char **input, char *attr_p)
Definition: auth-scram.c:846
static bool verify_client_proof(scram_state *state)
Definition: auth-scram.c:1140
static bool verify_final_nonce(scram_state *state)
Definition: auth-scram.c:1118
static char * sanitize_str(const char *s)
Definition: auth-scram.c:818
static char * scram_mock_salt(const char *username, pg_cryptohash_type hash_type, int key_length)
Definition: auth-scram.c:1463
static int scram_exchange(void *opaq, const char *input, int inputlen, char **output, int *outputlen, const char **logdetail)
Definition: auth-scram.c:353
static bool is_scram_printable(char *p)
Definition: auth-scram.c:770
static char * sanitize_char(char c)
Definition: auth-scram.c:798
char * pg_be_scram_build_secret(const char *password)
Definition: auth-scram.c:477
bool scram_verify_plain_password(const char *username, const char *password, const char *secret)
Definition: auth-scram.c:517
static void read_client_final_message(scram_state *state, const char *input)
Definition: auth-scram.c:1258
static void mock_scram_secret(const char *username, pg_cryptohash_type *hash_type, int *iterations, int *key_length, char **salt, uint8 *stored_key, uint8 *server_key)
Definition: auth-scram.c:688
static char * build_server_final_message(scram_state *state)
Definition: auth-scram.c:1404
static void scram_get_mechanisms(Port *port, StringInfo buf)
Definition: auth-scram.c:207
scram_state_enum
Definition: auth-scram.c:129
@ SCRAM_AUTH_SALT_SENT
Definition: auth-scram.c:131
@ SCRAM_AUTH_FINISHED
Definition: auth-scram.c:132
@ SCRAM_AUTH_INIT
Definition: auth-scram.c:130
int scram_sha_256_iterations
Definition: auth-scram.c:197
int pg_b64_decode(const char *src, int len, char *dst, int dstlen)
Definition: base64.c:116
int pg_b64_enc_len(int srclen)
Definition: base64.c:224
int pg_b64_encode(const char *src, int len, char *dst, int dstlen)
Definition: base64.c:49
int pg_b64_dec_len(int srclen)
Definition: base64.c:239
char * be_tls_get_certificate_hash(Port *port, size_t *len)
unsigned char uint8
Definition: c.h:493
#define StaticAssertDecl(condition, errmessage)
Definition: c.h:925
PasswordType get_password_type(const char *shadow_pass)
Definition: crypt.c:89
@ PASSWORD_TYPE_SCRAM_SHA_256
Definition: crypt.h:31
int pg_cryptohash_update(pg_cryptohash_ctx *ctx, const uint8 *data, size_t len)
Definition: cryptohash.c:136
int pg_cryptohash_init(pg_cryptohash_ctx *ctx)
Definition: cryptohash.c:100
void pg_cryptohash_free(pg_cryptohash_ctx *ctx)
Definition: cryptohash.c:238
pg_cryptohash_ctx * pg_cryptohash_create(pg_cryptohash_type type)
Definition: cryptohash.c:74
int pg_cryptohash_final(pg_cryptohash_ctx *ctx, uint8 *dest, size_t len)
Definition: cryptohash.c:172
pg_cryptohash_type
Definition: cryptohash.h:20
@ PG_SHA256
Definition: cryptohash.h:24
int errdetail(const char *fmt,...)
Definition: elog.c:1202
int errcode(int sqlerrcode)
Definition: elog.c:858
int errmsg(const char *fmt,...)
Definition: elog.c:1069
#define _(x)
Definition: elog.c:91
#define LOG
Definition: elog.h:31
#define ERROR
Definition: elog.h:39
#define ereport(elevel,...)
Definition: elog.h:149
pg_hmac_ctx * pg_hmac_create(pg_cryptohash_type type)
Definition: hmac.c:77
const char * pg_hmac_error(pg_hmac_ctx *ctx)
Definition: hmac.c:306
void pg_hmac_free(pg_hmac_ctx *ctx)
Definition: hmac.c:289
int pg_hmac_update(pg_hmac_ctx *ctx, const uint8 *data, size_t len)
Definition: hmac.c:223
int pg_hmac_init(pg_hmac_ctx *ctx, const uint8 *key, size_t len)
Definition: hmac.c:138
int pg_hmac_final(pg_hmac_ctx *ctx, uint8 *dest, size_t len)
Definition: hmac.c:244
FILE * input
FILE * output
static struct @148 value
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
Assert(fmt[strlen(fmt) - 1] !='\n')
char * pstrdup(const char *in)
Definition: mcxt.c:1644
void pfree(void *pointer)
Definition: mcxt.c:1456
void * palloc0(Size size)
Definition: mcxt.c:1257
void * palloc(Size size)
Definition: mcxt.c:1226
#define MOCK_AUTH_NONCE_LEN
Definition: pg_control.h:28
static int port
Definition: pg_regress.c:116
static char * buf
Definition: pg_test_fsync.c:73
const char * username
Definition: pgbench.c:296
bool pg_strong_random(void *buf, size_t len)
#define snprintf
Definition: port.h:238
char * c
char * psprintf(const char *fmt,...)
Definition: psprintf.c:46
#define PG_SASL_EXCHANGE_FAILURE
Definition: sasl.h:27
#define PG_SASL_EXCHANGE_CONTINUE
Definition: sasl.h:25
#define PG_SASL_EXCHANGE_SUCCESS
Definition: sasl.h:26
pg_saslprep_rc pg_saslprep(const char *input, char **output)
Definition: saslprep.c:1044
pg_saslprep_rc
Definition: saslprep.h:21
@ SASLPREP_SUCCESS
Definition: saslprep.h:22
int scram_ServerKey(const uint8 *salted_password, pg_cryptohash_type hash_type, int key_length, uint8 *result, const char **errstr)
Definition: scram-common.c:172
int scram_SaltedPassword(const char *password, pg_cryptohash_type hash_type, int key_length, const char *salt, int saltlen, int iterations, uint8 *result, const char **errstr)
Definition: scram-common.c:38
char * scram_build_secret(pg_cryptohash_type hash_type, int key_length, const char *salt, int saltlen, int iterations, const char *password, const char **errstr)
Definition: scram-common.c:210
int scram_H(const uint8 *input, pg_cryptohash_type hash_type, int key_length, uint8 *result, const char **errstr)
Definition: scram-common.c:112
#define SCRAM_SHA_256_PLUS_NAME
Definition: scram-common.h:21
#define SCRAM_SHA_256_NAME
Definition: scram-common.h:20
#define SCRAM_RAW_NONCE_LEN
Definition: scram-common.h:37
#define SCRAM_DEFAULT_SALT_LEN
Definition: scram-common.h:44
#define SCRAM_MAX_KEY_LEN
Definition: scram-common.h:30
#define SCRAM_SHA_256_KEY_LEN
Definition: scram-common.h:24
#define SCRAM_SHA_256_DEFAULT_ITERATIONS
Definition: scram-common.h:50
#define PG_SHA256_DIGEST_LENGTH
Definition: sha2.h:23
static char * password
Definition: streamutil.c:53
void appendStringInfoString(StringInfo str, const char *s)
Definition: stringinfo.c:182
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:194
Definition: libpq-be.h:147
char * client_final_nonce
Definition: auth-scram.c:161
char * client_nonce
Definition: auth-scram.c:157
Port * port
Definition: auth-scram.c:141
char * salt
Definition: auth-scram.c:149
char * client_first_message_bare
Definition: auth-scram.c:155
char * logdetail
Definition: auth-scram.c:175
char * client_username
Definition: auth-scram.c:156
char * client_final_message_without_proof
Definition: auth-scram.c:160
scram_state_enum state
Definition: auth-scram.c:137
int key_length
Definition: auth-scram.c:146
char * server_first_message
Definition: auth-scram.c:165
char * server_nonce
Definition: auth-scram.c:166
bool channel_binding_in_use
Definition: auth-scram.c:142
char cbind_flag
Definition: auth-scram.c:154
int iterations
Definition: auth-scram.c:148
const char * username
Definition: auth-scram.c:139
pg_cryptohash_type hash_type
Definition: auth-scram.c:145
Definition: regguts.h:323
int iterations
Definition: thread-thread.c:39
char * GetMockAuthenticationNonce(void)
Definition: xlog.c:4302