PostgreSQL Source Code  git master
brin_minmax_multi.c
Go to the documentation of this file.
1 /*
2  * brin_minmax_multi.c
3  * Implementation of Multi Min/Max opclass for BRIN
4  *
5  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
6  * Portions Copyright (c) 1994, Regents of the University of California
7  *
8  *
9  * Implements a variant of minmax opclass, where the summary is composed of
10  * multiple smaller intervals. This allows us to handle outliers, which
11  * usually make the simple minmax opclass inefficient.
12  *
13  * Consider for example page range with simple minmax interval [1000,2000],
14  * and assume a new row gets inserted into the range with value 1000000.
15  * Due to that the interval gets [1000,1000000]. I.e. the minmax interval
16  * got 1000x wider and won't be useful to eliminate scan keys between 2001
17  * and 1000000.
18  *
19  * With minmax-multi opclass, we may have [1000,2000] interval initially,
20  * but after adding the new row we start tracking it as two interval:
21  *
22  * [1000,2000] and [1000000,1000000]
23  *
24  * This allows us to still eliminate the page range when the scan keys hit
25  * the gap between 2000 and 1000000, making it useful in cases when the
26  * simple minmax opclass gets inefficient.
27  *
28  * The number of intervals tracked per page range is somewhat flexible.
29  * What is restricted is the number of values per page range, and the limit
30  * is currently 32 (see values_per_range reloption). Collapsed intervals
31  * (with equal minimum and maximum value) are stored as a single value,
32  * while regular intervals require two values.
33  *
34  * When the number of values gets too high (by adding new values to the
35  * summary), we merge some of the intervals to free space for more values.
36  * This is done in a greedy way - we simply pick the two closest intervals,
37  * merge them, and repeat this until the number of values to store gets
38  * sufficiently low (below 50% of maximum values), but that is mostly
39  * arbitrary threshold and may be changed easily).
40  *
41  * To pick the closest intervals we use the "distance" support procedure,
42  * which measures space between two ranges (i.e. the length of an interval).
43  * The computed value may be an approximation - in the worst case we will
44  * merge two ranges that are slightly less optimal at that step, but the
45  * index should still produce correct results.
46  *
47  * The compactions (reducing the number of values) is fairly expensive, as
48  * it requires calling the distance functions, sorting etc. So when building
49  * the summary, we use a significantly larger buffer, and only enforce the
50  * exact limit at the very end. This improves performance, and it also helps
51  * with building better ranges (due to the greedy approach).
52  *
53  *
54  * IDENTIFICATION
55  * src/backend/access/brin/brin_minmax_multi.c
56  */
57 #include "postgres.h"
58 
59 /* needed for PGSQL_AF_INET */
60 #include <sys/socket.h>
61 
62 #include "access/brin.h"
63 #include "access/brin_internal.h"
64 #include "access/brin_tuple.h"
65 #include "access/genam.h"
66 #include "access/htup_details.h"
67 #include "access/reloptions.h"
68 #include "access/stratnum.h"
69 #include "catalog/pg_am.h"
70 #include "catalog/pg_amop.h"
71 #include "catalog/pg_type.h"
72 #include "utils/array.h"
73 #include "utils/builtins.h"
74 #include "utils/date.h"
75 #include "utils/datum.h"
76 #include "utils/float.h"
77 #include "utils/inet.h"
78 #include "utils/lsyscache.h"
79 #include "utils/memutils.h"
80 #include "utils/pg_lsn.h"
81 #include "utils/rel.h"
82 #include "utils/syscache.h"
83 #include "utils/timestamp.h"
84 #include "utils/uuid.h"
85 
86 /*
87  * Additional SQL level support functions
88  *
89  * Procedure numbers must not use values reserved for BRIN itself; see
90  * brin_internal.h.
91  */
92 #define MINMAX_MAX_PROCNUMS 1 /* maximum support procs we need */
93 #define PROCNUM_DISTANCE 11 /* required, distance between values */
94 
95 /*
96  * Subtract this from procnum to obtain index in MinmaxMultiOpaque arrays
97  * (Must be equal to minimum of private procnums).
98  */
99 #define PROCNUM_BASE 11
100 
101 /*
102  * Sizing the insert buffer - we use 10x the number of values specified
103  * in the reloption, but we cap it to 8192 not to get too large. When
104  * the buffer gets full, we reduce the number of values by half.
105  */
106 #define MINMAX_BUFFER_FACTOR 10
107 #define MINMAX_BUFFER_MIN 256
108 #define MINMAX_BUFFER_MAX 8192
109 #define MINMAX_BUFFER_LOAD_FACTOR 0.5
110 
111 typedef struct MinmaxMultiOpaque
112 {
118 
119 /*
120  * Storage type for BRIN's minmax reloptions
121  */
122 typedef struct MinMaxMultiOptions
123 {
124  int32 vl_len_; /* varlena header (do not touch directly!) */
125  int valuesPerRange; /* number of values per range */
127 
128 #define MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE 32
129 
130 #define MinMaxMultiGetValuesPerRange(opts) \
131  ((opts) && (((MinMaxMultiOptions *) (opts))->valuesPerRange != 0) ? \
132  ((MinMaxMultiOptions *) (opts))->valuesPerRange : \
133  MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE)
134 
135 #define SAMESIGN(a,b) (((a) < 0) == ((b) < 0))
136 
137 /*
138  * The summary of minmax-multi indexes has two representations - Ranges for
139  * convenient processing, and SerializedRanges for storage in bytea value.
140  *
141  * The Ranges struct stores the boundary values in a single array, but we
142  * treat regular and single-point ranges differently to save space. For
143  * regular ranges (with different boundary values) we have to store both
144  * the lower and upper bound of the range, while for "single-point ranges"
145  * we only need to store a single value.
146  *
147  * The 'values' array stores boundary values for regular ranges first (there
148  * are 2*nranges values to store), and then the nvalues boundary values for
149  * single-point ranges. That is, we have (2*nranges + nvalues) boundary
150  * values in the array.
151  *
152  * +-------------------------+----------------------------------+
153  * | ranges (2 * nranges of) | single point values (nvalues of) |
154  * +-------------------------+----------------------------------+
155  *
156  * This allows us to quickly add new values, and store outliers without
157  * having to widen any of the existing range values.
158  *
159  * 'nsorted' denotes how many of 'nvalues' in the values[] array are sorted.
160  * When nsorted == nvalues, all single point values are sorted.
161  *
162  * We never store more than maxvalues values (as set by values_per_range
163  * reloption). If needed we merge some of the ranges.
164  *
165  * To minimize palloc overhead, we always allocate the full array with
166  * space for maxvalues elements. This should be fine as long as the
167  * maxvalues is reasonably small (64 seems fine), which is the case
168  * thanks to values_per_range reloption being limited to 256.
169  */
170 typedef struct Ranges
171 {
172  /* Cache information that we need quite often. */
177 
178  /* (2*nranges + nvalues) <= maxvalues */
179  int nranges; /* number of ranges in the values[] array */
180  int nsorted; /* number of nvalues which are sorted */
181  int nvalues; /* number of point values in values[] array */
182  int maxvalues; /* number of elements in the values[] array */
183 
184  /*
185  * We simply add the values into a large buffer, without any expensive
186  * steps (sorting, deduplication, ...). The buffer is a multiple of the
187  * target number of values, so the compaction happens less often,
188  * amortizing the costs. We keep the actual target and compact to the
189  * requested number of values at the very end, before serializing to
190  * on-disk representation.
191  */
192  /* requested number of values */
194 
195  /* values stored for this range - either raw values, or ranges */
198 
199 /*
200  * On-disk the summary is stored as a bytea value, with a simple header
201  * with basic metadata, followed by the boundary values. It has a varlena
202  * header, so can be treated as varlena directly.
203  *
204  * See brin_range_serialize/brin_range_deserialize for serialization details.
205  */
206 typedef struct SerializedRanges
207 {
208  /* varlena header (do not touch directly!) */
210 
211  /* type of values stored in the data array */
213 
214  /* (2*nranges + nvalues) <= maxvalues */
215  int nranges; /* number of ranges in the array (stored) */
216  int nvalues; /* number of values in the data array (all) */
217  int maxvalues; /* maximum number of values (reloption) */
218 
219  /* contains the actual data */
222 
224 
225 static Ranges *brin_range_deserialize(int maxvalues,
226  SerializedRanges *serialized);
227 
228 
229 /*
230  * Used to represent ranges expanded to make merging and combining easier.
231  *
232  * Each expanded range is essentially an interval, represented by min/max
233  * values, along with a flag whether it's a collapsed range (in which case
234  * the min and max values are equal). We have the flag to handle by-ref
235  * data types - we can't simply compare the datums, and this saves some
236  * calls to the type-specific comparator function.
237  */
238 typedef struct ExpandedRange
239 {
240  Datum minval; /* lower boundary */
241  Datum maxval; /* upper boundary */
242  bool collapsed; /* true if minval==maxval */
244 
245 /*
246  * Represents a distance between two ranges (identified by index into
247  * an array of extended ranges).
248  */
249 typedef struct DistanceValue
250 {
251  int index;
252  double value;
254 
255 
256 /* Cache for support and strategy procedures. */
257 
258 static FmgrInfo *minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno,
259  uint16 procnum);
260 
262  uint16 attno, Oid subtype,
263  uint16 strategynum);
264 
265 typedef struct compare_context
266 {
270 
271 static int compare_values(const void *a, const void *b, void *arg);
272 
273 
274 #ifdef USE_ASSERT_CHECKING
275 /*
276  * Check that the order of the array values is correct, using the cmp
277  * function (which should be BTLessStrategyNumber).
278  */
279 static void
280 AssertArrayOrder(FmgrInfo *cmp, Oid colloid, Datum *values, int nvalues)
281 {
282  int i;
283  Datum lt;
284 
285  for (i = 0; i < (nvalues - 1); i++)
286  {
287  lt = FunctionCall2Coll(cmp, colloid, values[i], values[i + 1]);
288  Assert(DatumGetBool(lt));
289  }
290 }
291 #endif
292 
293 /*
294  * Comprehensive check of the Ranges structure.
295  */
296 static void
297 AssertCheckRanges(Ranges *ranges, FmgrInfo *cmpFn, Oid colloid)
298 {
299 #ifdef USE_ASSERT_CHECKING
300  int i;
301 
302  /* some basic sanity checks */
303  Assert(ranges->nranges >= 0);
304  Assert(ranges->nsorted >= 0);
305  Assert(ranges->nvalues >= ranges->nsorted);
306  Assert(ranges->maxvalues >= 2 * ranges->nranges + ranges->nvalues);
307  Assert(ranges->typid != InvalidOid);
308 
309  /*
310  * First the ranges - there are 2*nranges boundary values, and the values
311  * have to be strictly ordered (equal values would mean the range is
312  * collapsed, and should be stored as a point). This also guarantees that
313  * the ranges do not overlap.
314  */
315  AssertArrayOrder(cmpFn, colloid, ranges->values, 2 * ranges->nranges);
316 
317  /* then the single-point ranges (with nvalues boundary values ) */
318  AssertArrayOrder(cmpFn, colloid, &ranges->values[2 * ranges->nranges],
319  ranges->nsorted);
320 
321  /*
322  * Check that none of the values are not covered by ranges (both sorted
323  * and unsorted)
324  */
325  if (ranges->nranges > 0)
326  {
327  for (i = 0; i < ranges->nvalues; i++)
328  {
329  Datum compar;
330  int start,
331  end;
332  Datum minvalue = ranges->values[0];
333  Datum maxvalue = ranges->values[2 * ranges->nranges - 1];
334  Datum value = ranges->values[2 * ranges->nranges + i];
335 
336  compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);
337 
338  /*
339  * If the value is smaller than the lower bound in the first range
340  * then it cannot possibly be in any of the ranges.
341  */
342  if (DatumGetBool(compar))
343  continue;
344 
345  compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);
346 
347  /*
348  * Likewise, if the value is larger than the upper bound of the
349  * final range, then it cannot possibly be inside any of the
350  * ranges.
351  */
352  if (DatumGetBool(compar))
353  continue;
354 
355  /* bsearch the ranges to see if 'value' fits within any of them */
356  start = 0; /* first range */
357  end = ranges->nranges - 1; /* last range */
358  while (true)
359  {
360  int midpoint = (start + end) / 2;
361 
362  /* this means we ran out of ranges in the last step */
363  if (start > end)
364  break;
365 
366  /* copy the min/max values from the ranges */
367  minvalue = ranges->values[2 * midpoint];
368  maxvalue = ranges->values[2 * midpoint + 1];
369 
370  /*
371  * Is the value smaller than the minval? If yes, we'll recurse
372  * to the left side of range array.
373  */
374  compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);
375 
376  /* smaller than the smallest value in this range */
377  if (DatumGetBool(compar))
378  {
379  end = (midpoint - 1);
380  continue;
381  }
382 
383  /*
384  * Is the value greater than the minval? If yes, we'll recurse
385  * to the right side of range array.
386  */
387  compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);
388 
389  /* larger than the largest value in this range */
390  if (DatumGetBool(compar))
391  {
392  start = (midpoint + 1);
393  continue;
394  }
395 
396  /* hey, we found a matching range */
397  Assert(false);
398  }
399  }
400  }
401 
402  /* and values in the unsorted part must not be in the sorted part */
403  if (ranges->nsorted > 0)
404  {
405  compare_context cxt;
406 
407  cxt.colloid = ranges->colloid;
408  cxt.cmpFn = ranges->cmp;
409 
410  for (i = ranges->nsorted; i < ranges->nvalues; i++)
411  {
412  Datum value = ranges->values[2 * ranges->nranges + i];
413 
414  Assert(bsearch_arg(&value, &ranges->values[2 * ranges->nranges],
415  ranges->nsorted, sizeof(Datum),
416  compare_values, (void *) &cxt) == NULL);
417  }
418  }
419 #endif
420 }
421 
422 /*
423  * Check that the expanded ranges (built when reducing the number of ranges
424  * by combining some of them) are correctly sorted and do not overlap.
425  */
426 static void
428  Form_pg_attribute attr, ExpandedRange *ranges,
429  int nranges)
430 {
431 #ifdef USE_ASSERT_CHECKING
432  int i;
433  FmgrInfo *eq;
434  FmgrInfo *lt;
435 
436  eq = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
438 
439  lt = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
441 
442  /*
443  * Each range independently should be valid, i.e. that for the boundary
444  * values (lower <= upper).
445  */
446  for (i = 0; i < nranges; i++)
447  {
448  Datum r;
449  Datum minval = ranges[i].minval;
450  Datum maxval = ranges[i].maxval;
451 
452  if (ranges[i].collapsed) /* collapsed: minval == maxval */
453  r = FunctionCall2Coll(eq, colloid, minval, maxval);
454  else /* non-collapsed: minval < maxval */
455  r = FunctionCall2Coll(lt, colloid, minval, maxval);
456 
457  Assert(DatumGetBool(r));
458  }
459 
460  /*
461  * And the ranges should be ordered and must not overlap, i.e. upper <
462  * lower for boundaries of consecutive ranges.
463  */
464  for (i = 0; i < nranges - 1; i++)
465  {
466  Datum r;
467  Datum maxval = ranges[i].maxval;
468  Datum minval = ranges[i + 1].minval;
469 
470  r = FunctionCall2Coll(lt, colloid, maxval, minval);
471 
472  Assert(DatumGetBool(r));
473  }
474 #endif
475 }
476 
477 
478 /*
479  * minmax_multi_init
480  * Initialize the deserialized range list, allocate all the memory.
481  *
482  * This is only in-memory representation of the ranges, so we allocate
483  * enough space for the maximum number of values (so as not to have to do
484  * repallocs as the ranges grow).
485  */
486 static Ranges *
487 minmax_multi_init(int maxvalues)
488 {
489  Size len;
490  Ranges *ranges;
491 
492  Assert(maxvalues > 0);
493 
494  len = offsetof(Ranges, values); /* fixed header */
495  len += maxvalues * sizeof(Datum); /* Datum values */
496 
497  ranges = (Ranges *) palloc0(len);
498 
499  ranges->maxvalues = maxvalues;
500 
501  return ranges;
502 }
503 
504 
505 /*
506  * range_deduplicate_values
507  * Deduplicate the part with values in the simple points.
508  *
509  * This is meant to be a cheaper way of reducing the size of the ranges. It
510  * does not touch the ranges, and only sorts the other values - it does not
511  * call the distance functions, which may be quite expensive, etc.
512  *
513  * We do know the values are not duplicate with the ranges, because we check
514  * that before adding a new value. Same for the sorted part of values.
515  */
516 static void
518 {
519  int i,
520  n;
521  int start;
522  compare_context cxt;
523 
524  /*
525  * If there are no unsorted values, we're done (this probably can't
526  * happen, as we're adding values to unsorted part).
527  */
528  if (range->nsorted == range->nvalues)
529  return;
530 
531  /* sort the values */
532  cxt.colloid = range->colloid;
533  cxt.cmpFn = range->cmp;
534 
535  /* the values start right after the ranges (which are always sorted) */
536  start = 2 * range->nranges;
537 
538  /*
539  * XXX This might do a merge sort, to leverage that the first part of the
540  * array is already sorted. If the sorted part is large, it might be quite
541  * a bit faster.
542  */
543  qsort_arg(&range->values[start],
544  range->nvalues, sizeof(Datum),
545  compare_values, &cxt);
546 
547  n = 1;
548  for (i = 1; i < range->nvalues; i++)
549  {
550  /* same as preceding value, so store it */
551  if (compare_values(&range->values[start + i - 1],
552  &range->values[start + i],
553  (void *) &cxt) == 0)
554  continue;
555 
556  range->values[start + n] = range->values[start + i];
557 
558  n++;
559  }
560 
561  /* now all the values are sorted */
562  range->nvalues = n;
563  range->nsorted = n;
564 
565  AssertCheckRanges(range, range->cmp, range->colloid);
566 }
567 
568 
569 /*
570  * brin_range_serialize
571  * Serialize the in-memory representation into a compact varlena value.
572  *
573  * Simply copy the header and then also the individual values, as stored
574  * in the in-memory value array.
575  */
576 static SerializedRanges *
578 {
579  Size len;
580  int nvalues;
581  SerializedRanges *serialized;
582  Oid typid;
583  int typlen;
584  bool typbyval;
585 
586  char *ptr;
587 
588  /* simple sanity checks */
589  Assert(range->nranges >= 0);
590  Assert(range->nsorted >= 0);
591  Assert(range->nvalues >= 0);
592  Assert(range->maxvalues > 0);
593  Assert(range->target_maxvalues > 0);
594 
595  /* at this point the range should be compacted to the target size */
596  Assert(2 * range->nranges + range->nvalues <= range->target_maxvalues);
597 
598  Assert(range->target_maxvalues <= range->maxvalues);
599 
600  /* range boundaries are always sorted */
601  Assert(range->nvalues >= range->nsorted);
602 
603  /* deduplicate values, if there's unsorted part */
605 
606  /* see how many Datum values we actually have */
607  nvalues = 2 * range->nranges + range->nvalues;
608 
609  typid = range->typid;
610  typbyval = get_typbyval(typid);
611  typlen = get_typlen(typid);
612 
613  /* header is always needed */
614  len = offsetof(SerializedRanges, data);
615 
616  /*
617  * The space needed depends on data type - for fixed-length data types
618  * (by-value and some by-reference) it's pretty simple, just multiply
619  * (attlen * nvalues) and we're done. For variable-length by-reference
620  * types we need to actually walk all the values and sum the lengths.
621  */
622  if (typlen == -1) /* varlena */
623  {
624  int i;
625 
626  for (i = 0; i < nvalues; i++)
627  {
628  len += VARSIZE_ANY(range->values[i]);
629  }
630  }
631  else if (typlen == -2) /* cstring */
632  {
633  int i;
634 
635  for (i = 0; i < nvalues; i++)
636  {
637  /* don't forget to include the null terminator ;-) */
638  len += strlen(DatumGetCString(range->values[i])) + 1;
639  }
640  }
641  else /* fixed-length types (even by-reference) */
642  {
643  Assert(typlen > 0);
644  len += nvalues * typlen;
645  }
646 
647  /*
648  * Allocate the serialized object, copy the basic information. The
649  * serialized object is a varlena, so update the header.
650  */
651  serialized = (SerializedRanges *) palloc0(len);
652  SET_VARSIZE(serialized, len);
653 
654  serialized->typid = typid;
655  serialized->nranges = range->nranges;
656  serialized->nvalues = range->nvalues;
657  serialized->maxvalues = range->target_maxvalues;
658 
659  /*
660  * And now copy also the boundary values (like the length calculation this
661  * depends on the particular data type).
662  */
663  ptr = serialized->data; /* start of the serialized data */
664 
665  for (int i = 0; i < nvalues; i++)
666  {
667  if (typbyval) /* simple by-value data types */
668  {
669  Datum tmp;
670 
671  /*
672  * For byval types, we need to copy just the significant bytes -
673  * we can't use memcpy directly, as that assumes little-endian
674  * behavior. store_att_byval does almost what we need, but it
675  * requires a properly aligned buffer - the output buffer does not
676  * guarantee that. So we simply use a local Datum variable (which
677  * guarantees proper alignment), and then copy the value from it.
678  */
679  store_att_byval(&tmp, range->values[i], typlen);
680 
681  memcpy(ptr, &tmp, typlen);
682  ptr += typlen;
683  }
684  else if (typlen > 0) /* fixed-length by-ref types */
685  {
686  memcpy(ptr, DatumGetPointer(range->values[i]), typlen);
687  ptr += typlen;
688  }
689  else if (typlen == -1) /* varlena */
690  {
691  int tmp = VARSIZE_ANY(DatumGetPointer(range->values[i]));
692 
693  memcpy(ptr, DatumGetPointer(range->values[i]), tmp);
694  ptr += tmp;
695  }
696  else if (typlen == -2) /* cstring */
697  {
698  int tmp = strlen(DatumGetCString(range->values[i])) + 1;
699 
700  memcpy(ptr, DatumGetCString(range->values[i]), tmp);
701  ptr += tmp;
702  }
703 
704  /* make sure we haven't overflown the buffer end */
705  Assert(ptr <= ((char *) serialized + len));
706  }
707 
708  /* exact size */
709  Assert(ptr == ((char *) serialized + len));
710 
711  return serialized;
712 }
713 
714 /*
715  * brin_range_deserialize
716  * Serialize the in-memory representation into a compact varlena value.
717  *
718  * Simply copy the header and then also the individual values, as stored
719  * in the in-memory value array.
720  */
721 static Ranges *
722 brin_range_deserialize(int maxvalues, SerializedRanges *serialized)
723 {
724  int i,
725  nvalues;
726  char *ptr,
727  *dataptr;
728  bool typbyval;
729  int typlen;
730  Size datalen;
731 
732  Ranges *range;
733 
734  Assert(serialized->nranges >= 0);
735  Assert(serialized->nvalues >= 0);
736  Assert(serialized->maxvalues > 0);
737 
738  nvalues = 2 * serialized->nranges + serialized->nvalues;
739 
740  Assert(nvalues <= serialized->maxvalues);
741  Assert(serialized->maxvalues <= maxvalues);
742 
743  range = minmax_multi_init(maxvalues);
744 
745  /* copy the header info */
746  range->nranges = serialized->nranges;
747  range->nvalues = serialized->nvalues;
748  range->nsorted = serialized->nvalues;
749  range->maxvalues = maxvalues;
750  range->target_maxvalues = serialized->maxvalues;
751 
752  range->typid = serialized->typid;
753 
754  typbyval = get_typbyval(serialized->typid);
755  typlen = get_typlen(serialized->typid);
756 
757  /*
758  * And now deconstruct the values into Datum array. We have to copy the
759  * data because the serialized representation ignores alignment, and we
760  * don't want to rely on it being kept around anyway.
761  */
762  ptr = serialized->data;
763 
764  /*
765  * We don't want to allocate many pieces, so we just allocate everything
766  * in one chunk. How much space will we need?
767  *
768  * XXX We don't need to copy simple by-value data types.
769  */
770  datalen = 0;
771  dataptr = NULL;
772  for (i = 0; (i < nvalues) && (!typbyval); i++)
773  {
774  if (typlen > 0) /* fixed-length by-ref types */
775  datalen += MAXALIGN(typlen);
776  else if (typlen == -1) /* varlena */
777  {
778  datalen += MAXALIGN(VARSIZE_ANY(ptr));
779  ptr += VARSIZE_ANY(ptr);
780  }
781  else if (typlen == -2) /* cstring */
782  {
783  Size slen = strlen(ptr) + 1;
784 
785  datalen += MAXALIGN(slen);
786  ptr += slen;
787  }
788  }
789 
790  if (datalen > 0)
791  dataptr = palloc(datalen);
792 
793  /*
794  * Restore the source pointer (might have been modified when calculating
795  * the space we need to allocate).
796  */
797  ptr = serialized->data;
798 
799  for (i = 0; i < nvalues; i++)
800  {
801  if (typbyval) /* simple by-value data types */
802  {
803  Datum v = 0;
804 
805  memcpy(&v, ptr, typlen);
806 
807  range->values[i] = fetch_att(&v, true, typlen);
808  ptr += typlen;
809  }
810  else if (typlen > 0) /* fixed-length by-ref types */
811  {
812  range->values[i] = PointerGetDatum(dataptr);
813 
814  memcpy(dataptr, ptr, typlen);
815  dataptr += MAXALIGN(typlen);
816 
817  ptr += typlen;
818  }
819  else if (typlen == -1) /* varlena */
820  {
821  range->values[i] = PointerGetDatum(dataptr);
822 
823  memcpy(dataptr, ptr, VARSIZE_ANY(ptr));
824  dataptr += MAXALIGN(VARSIZE_ANY(ptr));
825  ptr += VARSIZE_ANY(ptr);
826  }
827  else if (typlen == -2) /* cstring */
828  {
829  Size slen = strlen(ptr) + 1;
830 
831  range->values[i] = PointerGetDatum(dataptr);
832 
833  memcpy(dataptr, ptr, slen);
834  dataptr += MAXALIGN(slen);
835  ptr += slen;
836  }
837 
838  /* make sure we haven't overflown the buffer end */
839  Assert(ptr <= ((char *) serialized + VARSIZE_ANY(serialized)));
840  }
841 
842  /* should have consumed the whole input value exactly */
843  Assert(ptr == ((char *) serialized + VARSIZE_ANY(serialized)));
844 
845  /* return the deserialized value */
846  return range;
847 }
848 
849 /*
850  * compare_expanded_ranges
851  * Compare the expanded ranges - first by minimum, then by maximum.
852  *
853  * We do guarantee that ranges in a single Ranges object do not overlap, so it
854  * may seem strange that we don't order just by minimum. But when merging two
855  * Ranges (which happens in the union function), the ranges may in fact
856  * overlap. So we do compare both.
857  */
858 static int
859 compare_expanded_ranges(const void *a, const void *b, void *arg)
860 {
861  ExpandedRange *ra = (ExpandedRange *) a;
862  ExpandedRange *rb = (ExpandedRange *) b;
863  Datum r;
864 
866 
867  /* first compare minvals */
868  r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->minval, rb->minval);
869 
870  if (DatumGetBool(r))
871  return -1;
872 
873  r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->minval, ra->minval);
874 
875  if (DatumGetBool(r))
876  return 1;
877 
878  /* then compare maxvals */
879  r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->maxval, rb->maxval);
880 
881  if (DatumGetBool(r))
882  return -1;
883 
884  r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->maxval, ra->maxval);
885 
886  if (DatumGetBool(r))
887  return 1;
888 
889  return 0;
890 }
891 
892 /*
893  * compare_values
894  * Compare the values.
895  */
896 static int
897 compare_values(const void *a, const void *b, void *arg)
898 {
899  Datum *da = (Datum *) a;
900  Datum *db = (Datum *) b;
901  Datum r;
902 
904 
905  r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *da, *db);
906 
907  if (DatumGetBool(r))
908  return -1;
909 
910  r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *db, *da);
911 
912  if (DatumGetBool(r))
913  return 1;
914 
915  return 0;
916 }
917 
918 /*
919  * Check if the new value matches one of the existing ranges.
920  */
921 static bool
922 has_matching_range(BrinDesc *bdesc, Oid colloid, Ranges *ranges,
923  Datum newval, AttrNumber attno, Oid typid)
924 {
925  Datum compar;
926 
927  Datum minvalue;
928  Datum maxvalue;
929 
930  FmgrInfo *cmpLessFn;
931  FmgrInfo *cmpGreaterFn;
932 
933  /* binary search on ranges */
934  int start,
935  end;
936 
937  if (ranges->nranges == 0)
938  return false;
939 
940  minvalue = ranges->values[0];
941  maxvalue = ranges->values[2 * ranges->nranges - 1];
942 
943  /*
944  * Otherwise, need to compare the new value with boundaries of all the
945  * ranges. First check if it's less than the absolute minimum, which is
946  * the first value in the array.
947  */
948  cmpLessFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
950  compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);
951 
952  /* smaller than the smallest value in the range list */
953  if (DatumGetBool(compar))
954  return false;
955 
956  /*
957  * And now compare it to the existing maximum (last value in the data
958  * array). But only if we haven't already ruled out a possible match in
959  * the minvalue check.
960  */
961  cmpGreaterFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
963  compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);
964 
965  if (DatumGetBool(compar))
966  return false;
967 
968  /*
969  * So we know it's in the general min/max, the question is whether it
970  * falls in one of the ranges or gaps. We'll do a binary search on
971  * individual ranges - for each range we check equality (value falls into
972  * the range), and then check ranges either above or below the current
973  * range.
974  */
975  start = 0; /* first range */
976  end = (ranges->nranges - 1); /* last range */
977  while (true)
978  {
979  int midpoint = (start + end) / 2;
980 
981  /* this means we ran out of ranges in the last step */
982  if (start > end)
983  return false;
984 
985  /* copy the min/max values from the ranges */
986  minvalue = ranges->values[2 * midpoint];
987  maxvalue = ranges->values[2 * midpoint + 1];
988 
989  /*
990  * Is the value smaller than the minval? If yes, we'll recurse to the
991  * left side of range array.
992  */
993  compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);
994 
995  /* smaller than the smallest value in this range */
996  if (DatumGetBool(compar))
997  {
998  end = (midpoint - 1);
999  continue;
1000  }
1001 
1002  /*
1003  * Is the value greater than the minval? If yes, we'll recurse to the
1004  * right side of range array.
1005  */
1006  compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);
1007 
1008  /* larger than the largest value in this range */
1009  if (DatumGetBool(compar))
1010  {
1011  start = (midpoint + 1);
1012  continue;
1013  }
1014 
1015  /* hey, we found a matching range */
1016  return true;
1017  }
1018 
1019  return false;
1020 }
1021 
1022 
1023 /*
1024  * range_contains_value
1025  * See if the new value is already contained in the range list.
1026  *
1027  * We first inspect the list of intervals. We use a small trick - we check
1028  * the value against min/max of the whole range (min of the first interval,
1029  * max of the last one) first, and only inspect the individual intervals if
1030  * this passes.
1031  *
1032  * If the value matches none of the intervals, we check the exact values.
1033  * We simply loop through them and invoke equality operator on them.
1034  *
1035  * The last parameter (full) determines whether we need to search all the
1036  * values, including the unsorted part. With full=false, the unsorted part
1037  * is not searched, which may produce false negatives and duplicate values
1038  * (in the unsorted part only), but when we're building the range that's
1039  * fine - we'll deduplicate before serialization, and it can only happen
1040  * if there already are unsorted values (so it was already modified).
1041  *
1042  * Serialized ranges don't have any unsorted values, so this can't cause
1043  * false negatives during querying.
1044  */
1045 static bool
1047  AttrNumber attno, Form_pg_attribute attr,
1048  Ranges *ranges, Datum newval, bool full)
1049 {
1050  int i;
1051  FmgrInfo *cmpEqualFn;
1052  Oid typid = attr->atttypid;
1053 
1054  /*
1055  * First inspect the ranges, if there are any. We first check the whole
1056  * range, and only when there's still a chance of getting a match we
1057  * inspect the individual ranges.
1058  */
1059  if (has_matching_range(bdesc, colloid, ranges, newval, attno, typid))
1060  return true;
1061 
1062  cmpEqualFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
1064 
1065  /*
1066  * There is no matching range, so let's inspect the sorted values.
1067  *
1068  * We do a sequential search for small numbers of values, and binary
1069  * search once we have more than 16 values. This threshold is somewhat
1070  * arbitrary, as it depends on how expensive the comparison function is.
1071  *
1072  * XXX If we use the threshold here, maybe we should do the same thing in
1073  * has_matching_range? Or maybe we should do the bin search all the time?
1074  *
1075  * XXX We could use the same optimization as for ranges, to check if the
1076  * value is between min/max, to maybe rule out all sorted values without
1077  * having to inspect all of them.
1078  */
1079  if (ranges->nsorted >= 16)
1080  {
1081  compare_context cxt;
1082 
1083  cxt.colloid = ranges->colloid;
1084  cxt.cmpFn = ranges->cmp;
1085 
1086  if (bsearch_arg(&newval, &ranges->values[2 * ranges->nranges],
1087  ranges->nsorted, sizeof(Datum),
1088  compare_values, (void *) &cxt) != NULL)
1089  return true;
1090  }
1091  else
1092  {
1093  for (i = 2 * ranges->nranges; i < 2 * ranges->nranges + ranges->nsorted; i++)
1094  {
1095  Datum compar;
1096 
1097  compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);
1098 
1099  /* found an exact match */
1100  if (DatumGetBool(compar))
1101  return true;
1102  }
1103  }
1104 
1105  /* If not asked to inspect the unsorted part, we're done. */
1106  if (!full)
1107  return false;
1108 
1109  /* Inspect the unsorted part. */
1110  for (i = 2 * ranges->nranges + ranges->nsorted; i < 2 * ranges->nranges + ranges->nvalues; i++)
1111  {
1112  Datum compar;
1113 
1114  compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);
1115 
1116  /* found an exact match */
1117  if (DatumGetBool(compar))
1118  return true;
1119  }
1120 
1121  /* the value is not covered by this BRIN tuple */
1122  return false;
1123 }
1124 
1125 /*
1126  * Expand ranges from Ranges into ExpandedRange array. This expects the
1127  * eranges to be pre-allocated and with the correct size - there needs to be
1128  * (nranges + nvalues) elements.
1129  *
1130  * The order of expanded ranges is arbitrary. We do expand the ranges first,
1131  * and this part is sorted. But then we expand the values, and this part may
1132  * be unsorted.
1133  */
1134 static void
1135 fill_expanded_ranges(ExpandedRange *eranges, int neranges, Ranges *ranges)
1136 {
1137  int idx;
1138  int i;
1139 
1140  /* Check that the output array has the right size. */
1141  Assert(neranges == (ranges->nranges + ranges->nvalues));
1142 
1143  idx = 0;
1144  for (i = 0; i < ranges->nranges; i++)
1145  {
1146  eranges[idx].minval = ranges->values[2 * i];
1147  eranges[idx].maxval = ranges->values[2 * i + 1];
1148  eranges[idx].collapsed = false;
1149  idx++;
1150 
1151  Assert(idx <= neranges);
1152  }
1153 
1154  for (i = 0; i < ranges->nvalues; i++)
1155  {
1156  eranges[idx].minval = ranges->values[2 * ranges->nranges + i];
1157  eranges[idx].maxval = ranges->values[2 * ranges->nranges + i];
1158  eranges[idx].collapsed = true;
1159  idx++;
1160 
1161  Assert(idx <= neranges);
1162  }
1163 
1164  /* Did we produce the expected number of elements? */
1165  Assert(idx == neranges);
1166 
1167  return;
1168 }
1169 
1170 /*
1171  * Sort and deduplicate expanded ranges.
1172  *
1173  * The ranges may be deduplicated - we're simply appending values, without
1174  * checking for duplicates etc. So maybe the deduplication will reduce the
1175  * number of ranges enough, and we won't have to compute the distances etc.
1176  *
1177  * Returns the number of expanded ranges.
1178  */
1179 static int
1181  ExpandedRange *eranges, int neranges)
1182 {
1183  int n;
1184  int i;
1185  compare_context cxt;
1186 
1187  Assert(neranges > 0);
1188 
1189  /* sort the values */
1190  cxt.colloid = colloid;
1191  cxt.cmpFn = cmp;
1192 
1193  /*
1194  * XXX We do qsort on all the values, but we could also leverage the fact
1195  * that some of the input data is already sorted (all the ranges and maybe
1196  * some of the points) and do merge sort.
1197  */
1198  qsort_arg(eranges, neranges, sizeof(ExpandedRange),
1199  compare_expanded_ranges, &cxt);
1200 
1201  /*
1202  * Deduplicate the ranges - simply compare each range to the preceding
1203  * one, and skip the duplicate ones.
1204  */
1205  n = 1;
1206  for (i = 1; i < neranges; i++)
1207  {
1208  /* if the current range is equal to the preceding one, do nothing */
1209  if (!compare_expanded_ranges(&eranges[i - 1], &eranges[i], (void *) &cxt))
1210  continue;
1211 
1212  /* otherwise, copy it to n-th place (if not already there) */
1213  if (i != n)
1214  memcpy(&eranges[n], &eranges[i], sizeof(ExpandedRange));
1215 
1216  n++;
1217  }
1218 
1219  Assert((n > 0) && (n <= neranges));
1220 
1221  return n;
1222 }
1223 
1224 /*
1225  * When combining multiple Range values (in union function), some of the
1226  * ranges may overlap. We simply merge the overlapping ranges to fix that.
1227  *
1228  * XXX This assumes the expanded ranges were previously sorted (by minval
1229  * and then maxval). We leverage this when detecting overlap.
1230  */
1231 static int
1233  ExpandedRange *eranges, int neranges)
1234 {
1235  int idx;
1236 
1237  /* Merge ranges (idx) and (idx+1) if they overlap. */
1238  idx = 0;
1239  while (idx < (neranges - 1))
1240  {
1241  Datum r;
1242 
1243  /*
1244  * comparing [?,maxval] vs. [minval,?] - the ranges overlap if (minval
1245  * < maxval)
1246  */
1247  r = FunctionCall2Coll(cmp, colloid,
1248  eranges[idx].maxval,
1249  eranges[idx + 1].minval);
1250 
1251  /*
1252  * Nope, maxval < minval, so no overlap. And we know the ranges are
1253  * ordered, so there are no more overlaps, because all the remaining
1254  * ranges have greater or equal minval.
1255  */
1256  if (DatumGetBool(r))
1257  {
1258  /* proceed to the next range */
1259  idx += 1;
1260  continue;
1261  }
1262 
1263  /*
1264  * So ranges 'idx' and 'idx+1' do overlap, but we don't know if
1265  * 'idx+1' is contained in 'idx', or if they overlap only partially.
1266  * So compare the upper bounds and keep the larger one.
1267  */
1268  r = FunctionCall2Coll(cmp, colloid,
1269  eranges[idx].maxval,
1270  eranges[idx + 1].maxval);
1271 
1272  if (DatumGetBool(r))
1273  eranges[idx].maxval = eranges[idx + 1].maxval;
1274 
1275  /*
1276  * The range certainly is no longer collapsed (irrespectively of the
1277  * previous state).
1278  */
1279  eranges[idx].collapsed = false;
1280 
1281  /*
1282  * Now get rid of the (idx+1) range entirely by shifting the remaining
1283  * ranges by 1. There are neranges elements, and we need to move
1284  * elements from (idx+2). That means the number of elements to move is
1285  * [ncranges - (idx+2)].
1286  */
1287  memmove(&eranges[idx + 1], &eranges[idx + 2],
1288  (neranges - (idx + 2)) * sizeof(ExpandedRange));
1289 
1290  /*
1291  * Decrease the number of ranges, and repeat (with the same range, as
1292  * it might overlap with additional ranges thanks to the merge).
1293  */
1294  neranges--;
1295  }
1296 
1297  return neranges;
1298 }
1299 
1300 /*
1301  * Simple comparator for distance values, comparing the double value.
1302  * This is intentionally sorting the distances in descending order, i.e.
1303  * the longer gaps will be at the front.
1304  */
1305 static int
1306 compare_distances(const void *a, const void *b)
1307 {
1308  DistanceValue *da = (DistanceValue *) a;
1309  DistanceValue *db = (DistanceValue *) b;
1310 
1311  if (da->value < db->value)
1312  return 1;
1313  else if (da->value > db->value)
1314  return -1;
1315 
1316  return 0;
1317 }
1318 
1319 /*
1320  * Given an array of expanded ranges, compute size of the gaps between each
1321  * range. For neranges there are (neranges-1) gaps.
1322  *
1323  * We simply call the "distance" function to compute the (max-min) for pairs
1324  * of consecutive ranges. The function may be fairly expensive, so we do that
1325  * just once (and then use it to pick as many ranges to merge as possible).
1326  *
1327  * See reduce_expanded_ranges for details.
1328  */
1329 static DistanceValue *
1330 build_distances(FmgrInfo *distanceFn, Oid colloid,
1331  ExpandedRange *eranges, int neranges)
1332 {
1333  int i;
1334  int ndistances;
1335  DistanceValue *distances;
1336 
1337  Assert(neranges > 0);
1338 
1339  /* If there's only a single range, there's no distance to calculate. */
1340  if (neranges == 1)
1341  return NULL;
1342 
1343  ndistances = (neranges - 1);
1344  distances = (DistanceValue *) palloc0(sizeof(DistanceValue) * ndistances);
1345 
1346  /*
1347  * Walk through the ranges once and compute the distance between the
1348  * ranges so that we can sort them once.
1349  */
1350  for (i = 0; i < ndistances; i++)
1351  {
1352  Datum a1,
1353  a2,
1354  r;
1355 
1356  a1 = eranges[i].maxval;
1357  a2 = eranges[i + 1].minval;
1358 
1359  /* compute length of the gap (between max/min) */
1360  r = FunctionCall2Coll(distanceFn, colloid, a1, a2);
1361 
1362  /* remember the index of the gap the distance is for */
1363  distances[i].index = i;
1364  distances[i].value = DatumGetFloat8(r);
1365  }
1366 
1367  /*
1368  * Sort the distances in descending order, so that the longest gaps are at
1369  * the front.
1370  */
1371  qsort(distances, ndistances, sizeof(DistanceValue), compare_distances);
1372 
1373  return distances;
1374 }
1375 
1376 /*
1377  * Builds expanded ranges for the existing ranges (and single-point ranges),
1378  * and also the new value (which did not fit into the array). This expanded
1379  * representation makes the processing a bit easier, as it allows handling
1380  * ranges and points the same way.
1381  *
1382  * We sort and deduplicate the expanded ranges - this is necessary, because
1383  * the points may be unsorted. And moreover the two parts (ranges and
1384  * points) are sorted on their own.
1385  */
1386 static ExpandedRange *
1388  int *nranges)
1389 {
1390  int neranges;
1391  ExpandedRange *eranges;
1392 
1393  /* both ranges and points are expanded into a separate element */
1394  neranges = ranges->nranges + ranges->nvalues;
1395 
1396  eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));
1397 
1398  /* fill the expanded ranges */
1399  fill_expanded_ranges(eranges, neranges, ranges);
1400 
1401  /* sort and deduplicate the expanded ranges */
1402  neranges = sort_expanded_ranges(cmp, colloid, eranges, neranges);
1403 
1404  /* remember how many ranges we built */
1405  *nranges = neranges;
1406 
1407  return eranges;
1408 }
1409 
1410 #ifdef USE_ASSERT_CHECKING
1411 /*
1412  * Counts boundary values needed to store the ranges. Each single-point
1413  * range is stored using a single value, each regular range needs two.
1414  */
1415 static int
1416 count_values(ExpandedRange *cranges, int ncranges)
1417 {
1418  int i;
1419  int count;
1420 
1421  count = 0;
1422  for (i = 0; i < ncranges; i++)
1423  {
1424  if (cranges[i].collapsed)
1425  count += 1;
1426  else
1427  count += 2;
1428  }
1429 
1430  return count;
1431 }
1432 #endif
1433 
1434 /*
1435  * reduce_expanded_ranges
1436  * reduce the ranges until the number of values is low enough
1437  *
1438  * Combines ranges until the number of boundary values drops below the
1439  * threshold specified by max_values. This happens by merging enough
1440  * ranges by the distance between them.
1441  *
1442  * Returns the number of result ranges.
1443  *
1444  * We simply use the global min/max and then add boundaries for enough
1445  * largest gaps. Each gap adds 2 values, so we simply use (target/2-1)
1446  * distances. Then we simply sort all the values - each two values are
1447  * a boundary of a range (possibly collapsed).
1448  *
1449  * XXX Some of the ranges may be collapsed (i.e. the min/max values are
1450  * equal), but we ignore that for now. We could repeat the process,
1451  * adding a couple more gaps recursively.
1452  *
1453  * XXX The ranges to merge are selected solely using the distance. But
1454  * that may not be the best strategy, for example when multiple gaps
1455  * are of equal (or very similar) length.
1456  *
1457  * Consider for example points 1, 2, 3, .., 64, which have gaps of the
1458  * same length 1 of course. In that case, we tend to pick the first
1459  * gap of that length, which leads to this:
1460  *
1461  * step 1: [1, 2], 3, 4, 5, .., 64
1462  * step 2: [1, 3], 4, 5, .., 64
1463  * step 3: [1, 4], 5, .., 64
1464  * ...
1465  *
1466  * So in the end we'll have one "large" range and multiple small points.
1467  * That may be fine, but it seems a bit strange and non-optimal. Maybe
1468  * we should consider other things when picking ranges to merge - e.g.
1469  * length of the ranges? Or perhaps randomize the choice of ranges, with
1470  * probability inversely proportional to the distance (the gap lengths
1471  * may be very close, but not exactly the same).
1472  *
1473  * XXX Or maybe we could just handle this by using random value as a
1474  * tie-break, or by adding random noise to the actual distance.
1475  */
1476 static int
1477 reduce_expanded_ranges(ExpandedRange *eranges, int neranges,
1478  DistanceValue *distances, int max_values,
1479  FmgrInfo *cmp, Oid colloid)
1480 {
1481  int i;
1482  int nvalues;
1483  Datum *values;
1484 
1485  compare_context cxt;
1486 
1487  /* total number of gaps between ranges */
1488  int ndistances = (neranges - 1);
1489 
1490  /* number of gaps to keep */
1491  int keep = (max_values / 2 - 1);
1492 
1493  /*
1494  * Maybe we have a sufficiently low number of ranges already?
1495  *
1496  * XXX This should happen before we actually do the expensive stuff like
1497  * sorting, so maybe this should be just an assert.
1498  */
1499  if (keep >= ndistances)
1500  return neranges;
1501 
1502  /* sort the values */
1503  cxt.colloid = colloid;
1504  cxt.cmpFn = cmp;
1505 
1506  /* allocate space for the boundary values */
1507  nvalues = 0;
1508  values = (Datum *) palloc(sizeof(Datum) * max_values);
1509 
1510  /* add the global min/max values, from the first/last range */
1511  values[nvalues++] = eranges[0].minval;
1512  values[nvalues++] = eranges[neranges - 1].maxval;
1513 
1514  /* add boundary values for enough gaps */
1515  for (i = 0; i < keep; i++)
1516  {
1517  /* index of the gap between (index) and (index+1) ranges */
1518  int index = distances[i].index;
1519 
1520  Assert((index >= 0) && ((index + 1) < neranges));
1521 
1522  /* add max from the preceding range, minval from the next one */
1523  values[nvalues++] = eranges[index].maxval;
1524  values[nvalues++] = eranges[index + 1].minval;
1525 
1526  Assert(nvalues <= max_values);
1527  }
1528 
1529  /* We should have an even number of range values. */
1530  Assert(nvalues % 2 == 0);
1531 
1532  /*
1533  * Sort the values using the comparator function, and form ranges from the
1534  * sorted result.
1535  */
1536  qsort_arg(values, nvalues, sizeof(Datum),
1537  compare_values, &cxt);
1538 
1539  /* We have nvalues boundary values, which means nvalues/2 ranges. */
1540  for (i = 0; i < (nvalues / 2); i++)
1541  {
1542  eranges[i].minval = values[2 * i];
1543  eranges[i].maxval = values[2 * i + 1];
1544 
1545  /* if the boundary values are the same, it's a collapsed range */
1546  eranges[i].collapsed = (compare_values(&values[2 * i],
1547  &values[2 * i + 1],
1548  &cxt) == 0);
1549  }
1550 
1551  return (nvalues / 2);
1552 }
1553 
1554 /*
1555  * Store the boundary values from ExpandedRanges back into 'ranges' (using
1556  * only the minimal number of values needed).
1557  */
1558 static void
1559 store_expanded_ranges(Ranges *ranges, ExpandedRange *eranges, int neranges)
1560 {
1561  int i;
1562  int idx = 0;
1563 
1564  /* first copy in the regular ranges */
1565  ranges->nranges = 0;
1566  for (i = 0; i < neranges; i++)
1567  {
1568  if (!eranges[i].collapsed)
1569  {
1570  ranges->values[idx++] = eranges[i].minval;
1571  ranges->values[idx++] = eranges[i].maxval;
1572  ranges->nranges++;
1573  }
1574  }
1575 
1576  /* now copy in the collapsed ones */
1577  ranges->nvalues = 0;
1578  for (i = 0; i < neranges; i++)
1579  {
1580  if (eranges[i].collapsed)
1581  {
1582  ranges->values[idx++] = eranges[i].minval;
1583  ranges->nvalues++;
1584  }
1585  }
1586 
1587  /* all the values are sorted */
1588  ranges->nsorted = ranges->nvalues;
1589 
1590  Assert(count_values(eranges, neranges) == 2 * ranges->nranges + ranges->nvalues);
1591  Assert(2 * ranges->nranges + ranges->nvalues <= ranges->maxvalues);
1592 }
1593 
1594 
1595 /*
1596  * Consider freeing space in the ranges. Checks if there's space for at least
1597  * one new value, and performs compaction if needed.
1598  *
1599  * Returns true if the value was actually modified.
1600  */
1601 static bool
1603  AttrNumber attno, Form_pg_attribute attr,
1604  Ranges *range)
1605 {
1606  MemoryContext ctx;
1607  MemoryContext oldctx;
1608 
1609  FmgrInfo *cmpFn,
1610  *distanceFn;
1611 
1612  /* expanded ranges */
1613  ExpandedRange *eranges;
1614  int neranges;
1615  DistanceValue *distances;
1616 
1617  /*
1618  * If there is free space in the buffer, we're done without having to
1619  * modify anything.
1620  */
1621  if (2 * range->nranges + range->nvalues < range->maxvalues)
1622  return false;
1623 
1624  /* we'll certainly need the comparator, so just look it up now */
1625  cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
1627 
1628  /* deduplicate values, if there's an unsorted part */
1630 
1631  /*
1632  * Did we reduce enough free space by just the deduplication?
1633  *
1634  * We don't simply check against range->maxvalues again. The deduplication
1635  * might have freed very little space (e.g. just one value), forcing us to
1636  * do deduplication very often. In that case, it's better to do the
1637  * compaction and reduce more space.
1638  */
1639  if (2 * range->nranges + range->nvalues <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR)
1640  return true;
1641 
1642  /*
1643  * We need to combine some of the existing ranges, to reduce the number of
1644  * values we have to store.
1645  *
1646  * The distanceFn calls (which may internally call e.g. numeric_le) may
1647  * allocate quite a bit of memory, and we must not leak it (we might have
1648  * to do this repeatedly, even for a single BRIN page range). Otherwise
1649  * we'd have problems e.g. when building new indexes. So we use a memory
1650  * context and make sure we free the memory at the end (so if we call the
1651  * distance function many times, it might be an issue, but meh).
1652  */
1654  "minmax-multi context",
1656 
1657  oldctx = MemoryContextSwitchTo(ctx);
1658 
1659  /* build the expanded ranges */
1660  eranges = build_expanded_ranges(cmpFn, colloid, range, &neranges);
1661 
1662  /* Is the expanded representation of ranges correct? */
1663  AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
1664 
1665  /* and we'll also need the 'distance' procedure */
1666  distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);
1667 
1668  /* build array of gap distances and sort them in ascending order */
1669  distances = build_distances(distanceFn, colloid, eranges, neranges);
1670 
1671  /*
1672  * Combine ranges until we release at least 50% of the space. This
1673  * threshold is somewhat arbitrary, perhaps needs tuning. We must not use
1674  * too low or high value.
1675  */
1676  neranges = reduce_expanded_ranges(eranges, neranges, distances,
1677  range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR,
1678  cmpFn, colloid);
1679 
1680  /* Is the result of reducing expanded ranges correct? */
1681  AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
1682 
1683  /* Make sure we've sufficiently reduced the number of ranges. */
1684  Assert(count_values(eranges, neranges) <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR);
1685 
1686  /* decompose the expanded ranges into regular ranges and single values */
1687  store_expanded_ranges(range, eranges, neranges);
1688 
1689  MemoryContextSwitchTo(oldctx);
1690  MemoryContextDelete(ctx);
1691 
1692  /* Did we break the ranges somehow? */
1693  AssertCheckRanges(range, cmpFn, colloid);
1694 
1695  return true;
1696 }
1697 
1698 /*
1699  * range_add_value
1700  * Add the new value to the minmax-multi range.
1701  */
1702 static bool
1703 range_add_value(BrinDesc *bdesc, Oid colloid,
1704  AttrNumber attno, Form_pg_attribute attr,
1705  Ranges *ranges, Datum newval)
1706 {
1707  FmgrInfo *cmpFn;
1708  bool modified = false;
1709 
1710  /* we'll certainly need the comparator, so just look it up now */
1711  cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
1713 
1714  /* comprehensive checks of the input ranges */
1715  AssertCheckRanges(ranges, cmpFn, colloid);
1716 
1717  /*
1718  * Make sure there's enough free space in the buffer. We only trigger this
1719  * when the buffer is full, which means it had to be modified as we size
1720  * it to be larger than what is stored on disk.
1721  *
1722  * This needs to happen before we check if the value is contained in the
1723  * range, because the value might be in the unsorted part, and we don't
1724  * check that in range_contains_value. The deduplication would then move
1725  * it to the sorted part, and we'd add the value too, which violates the
1726  * rule that we never have duplicates with the ranges or sorted values.
1727  *
1728  * We might also deduplicate and recheck if the value is contained, but
1729  * that seems like overkill. We'd need to deduplicate anyway, so why not
1730  * do it now.
1731  */
1732  modified = ensure_free_space_in_buffer(bdesc, colloid,
1733  attno, attr, ranges);
1734 
1735  /*
1736  * Bail out if the value already is covered by the range.
1737  *
1738  * We could also add values until we hit values_per_range, and then do the
1739  * deduplication in a batch, hoping for better efficiency. But that would
1740  * mean we actually modify the range every time, which means having to
1741  * serialize the value, which does palloc, walks the values, copies them,
1742  * etc. Not exactly cheap.
1743  *
1744  * So instead we do the check, which should be fairly cheap - assuming the
1745  * comparator function is not very expensive.
1746  *
1747  * This also implies the values array can't contain duplicate values.
1748  */
1749  if (range_contains_value(bdesc, colloid, attno, attr, ranges, newval, false))
1750  return modified;
1751 
1752  /* Make a copy of the value, if needed. */
1753  newval = datumCopy(newval, attr->attbyval, attr->attlen);
1754 
1755  /*
1756  * If there's space in the values array, copy it in and we're done.
1757  *
1758  * We do want to keep the values sorted (to speed up searches), so we do a
1759  * simple insertion sort. We could do something more elaborate, e.g. by
1760  * sorting the values only now and then, but for small counts (e.g. when
1761  * maxvalues is 64) this should be fine.
1762  */
1763  ranges->values[2 * ranges->nranges + ranges->nvalues] = newval;
1764  ranges->nvalues++;
1765 
1766  /* If we added the first value, we can consider it as sorted. */
1767  if (ranges->nvalues == 1)
1768  ranges->nsorted = 1;
1769 
1770  /*
1771  * Check we haven't broken the ordering of boundary values (checks both
1772  * parts, but that doesn't hurt).
1773  */
1774  AssertCheckRanges(ranges, cmpFn, colloid);
1775 
1776  /* Check the range contains the value we just added. */
1777  Assert(range_contains_value(bdesc, colloid, attno, attr, ranges, newval, true));
1778 
1779  /* yep, we've modified the range */
1780  return true;
1781 }
1782 
1783 /*
1784  * Generate range representation of data collected during "batch mode".
1785  * This is similar to reduce_expanded_ranges, except that we can't assume
1786  * the values are sorted and there may be duplicate values.
1787  */
1788 static void
1789 compactify_ranges(BrinDesc *bdesc, Ranges *ranges, int max_values)
1790 {
1791  FmgrInfo *cmpFn,
1792  *distanceFn;
1793 
1794  /* expanded ranges */
1795  ExpandedRange *eranges;
1796  int neranges;
1797  DistanceValue *distances;
1798 
1799  MemoryContext ctx;
1800  MemoryContext oldctx;
1801 
1802  /*
1803  * Do we need to actually compactify anything?
1804  *
1805  * There are two reasons why compaction may be needed - firstly, there may
1806  * be too many values, or some of the values may be unsorted.
1807  */
1808  if ((ranges->nranges * 2 + ranges->nvalues <= max_values) &&
1809  (ranges->nsorted == ranges->nvalues))
1810  return;
1811 
1812  /* we'll certainly need the comparator, so just look it up now */
1813  cmpFn = minmax_multi_get_strategy_procinfo(bdesc, ranges->attno, ranges->typid,
1815 
1816  /* and we'll also need the 'distance' procedure */
1817  distanceFn = minmax_multi_get_procinfo(bdesc, ranges->attno, PROCNUM_DISTANCE);
1818 
1819  /*
1820  * The distanceFn calls (which may internally call e.g. numeric_le) may
1821  * allocate quite a bit of memory, and we must not leak it. Otherwise,
1822  * we'd have problems e.g. when building indexes. So we create a local
1823  * memory context and make sure we free the memory before leaving this
1824  * function (not after every call).
1825  */
1827  "minmax-multi context",
1829 
1830  oldctx = MemoryContextSwitchTo(ctx);
1831 
1832  /* build the expanded ranges */
1833  eranges = build_expanded_ranges(cmpFn, ranges->colloid, ranges, &neranges);
1834 
1835  /* build array of gap distances and sort them in ascending order */
1836  distances = build_distances(distanceFn, ranges->colloid,
1837  eranges, neranges);
1838 
1839  /*
1840  * Combine ranges until we get below max_values. We don't use any scale
1841  * factor, because this is used during serialization, and we don't expect
1842  * more tuples to be inserted anytime soon.
1843  */
1844  neranges = reduce_expanded_ranges(eranges, neranges, distances,
1845  max_values, cmpFn, ranges->colloid);
1846 
1847  Assert(count_values(eranges, neranges) <= max_values);
1848 
1849  /* transform back into regular ranges and single values */
1850  store_expanded_ranges(ranges, eranges, neranges);
1851 
1852  /* check all the range invariants */
1853  AssertCheckRanges(ranges, cmpFn, ranges->colloid);
1854 
1855  MemoryContextSwitchTo(oldctx);
1856  MemoryContextDelete(ctx);
1857 }
1858 
1859 Datum
1861 {
1862  BrinOpcInfo *result;
1863 
1864  /*
1865  * opaque->strategy_procinfos is initialized lazily; here it is set to
1866  * all-uninitialized by palloc0 which sets fn_oid to InvalidOid.
1867  */
1868 
1869  result = palloc0(MAXALIGN(SizeofBrinOpcInfo(1)) +
1870  sizeof(MinmaxMultiOpaque));
1871  result->oi_nstored = 1;
1872  result->oi_regular_nulls = true;
1873  result->oi_opaque = (MinmaxMultiOpaque *)
1874  MAXALIGN((char *) result + SizeofBrinOpcInfo(1));
1875  result->oi_typcache[0] = lookup_type_cache(PG_BRIN_MINMAX_MULTI_SUMMARYOID, 0);
1876 
1877  PG_RETURN_POINTER(result);
1878 }
1879 
1880 /*
1881  * Compute the distance between two float4 values (plain subtraction).
1882  */
1883 Datum
1885 {
1886  float a1 = PG_GETARG_FLOAT4(0);
1887  float a2 = PG_GETARG_FLOAT4(1);
1888 
1889  /* if both values are NaN, then we consider them the same */
1890  if (isnan(a1) && isnan(a2))
1891  PG_RETURN_FLOAT8(0.0);
1892 
1893  /* if one value is NaN, use infinite distance */
1894  if (isnan(a1) || isnan(a2))
1896 
1897  /*
1898  * We know the values are range boundaries, but the range may be collapsed
1899  * (i.e. single points), with equal values.
1900  */
1901  Assert(a1 <= a2);
1902 
1903  PG_RETURN_FLOAT8((double) a2 - (double) a1);
1904 }
1905 
1906 /*
1907  * Compute the distance between two float8 values (plain subtraction).
1908  */
1909 Datum
1911 {
1912  double a1 = PG_GETARG_FLOAT8(0);
1913  double a2 = PG_GETARG_FLOAT8(1);
1914 
1915  /* if both values are NaN, then we consider them the same */
1916  if (isnan(a1) && isnan(a2))
1917  PG_RETURN_FLOAT8(0.0);
1918 
1919  /* if one value is NaN, use infinite distance */
1920  if (isnan(a1) || isnan(a2))
1922 
1923  /*
1924  * We know the values are range boundaries, but the range may be collapsed
1925  * (i.e. single points), with equal values.
1926  */
1927  Assert(a1 <= a2);
1928 
1929  PG_RETURN_FLOAT8(a2 - a1);
1930 }
1931 
1932 /*
1933  * Compute the distance between two int2 values (plain subtraction).
1934  */
1935 Datum
1937 {
1938  int16 a1 = PG_GETARG_INT16(0);
1939  int16 a2 = PG_GETARG_INT16(1);
1940 
1941  /*
1942  * We know the values are range boundaries, but the range may be collapsed
1943  * (i.e. single points), with equal values.
1944  */
1945  Assert(a1 <= a2);
1946 
1947  PG_RETURN_FLOAT8((double) a2 - (double) a1);
1948 }
1949 
1950 /*
1951  * Compute the distance between two int4 values (plain subtraction).
1952  */
1953 Datum
1955 {
1956  int32 a1 = PG_GETARG_INT32(0);
1957  int32 a2 = PG_GETARG_INT32(1);
1958 
1959  /*
1960  * We know the values are range boundaries, but the range may be collapsed
1961  * (i.e. single points), with equal values.
1962  */
1963  Assert(a1 <= a2);
1964 
1965  PG_RETURN_FLOAT8((double) a2 - (double) a1);
1966 }
1967 
1968 /*
1969  * Compute the distance between two int8 values (plain subtraction).
1970  */
1971 Datum
1973 {
1974  int64 a1 = PG_GETARG_INT64(0);
1975  int64 a2 = PG_GETARG_INT64(1);
1976 
1977  /*
1978  * We know the values are range boundaries, but the range may be collapsed
1979  * (i.e. single points), with equal values.
1980  */
1981  Assert(a1 <= a2);
1982 
1983  PG_RETURN_FLOAT8((double) a2 - (double) a1);
1984 }
1985 
1986 /*
1987  * Compute the distance between two tid values (by mapping them to float8 and
1988  * then subtracting them).
1989  */
1990 Datum
1992 {
1993  double da1,
1994  da2;
1995 
1998 
1999  /*
2000  * We know the values are range boundaries, but the range may be collapsed
2001  * (i.e. single points), with equal values.
2002  */
2003  Assert(ItemPointerCompare(pa1, pa2) <= 0);
2004 
2005  /*
2006  * We use the no-check variants here, because user-supplied values may
2007  * have (ip_posid == 0). See ItemPointerCompare.
2008  */
2011 
2014 
2015  PG_RETURN_FLOAT8(da2 - da1);
2016 }
2017 
2018 /*
2019  * Compute the distance between two numeric values (plain subtraction).
2020  */
2021 Datum
2023 {
2024  Datum d;
2025  Datum a1 = PG_GETARG_DATUM(0);
2026  Datum a2 = PG_GETARG_DATUM(1);
2027 
2028  /*
2029  * We know the values are range boundaries, but the range may be collapsed
2030  * (i.e. single points), with equal values.
2031  */
2033 
2034  d = DirectFunctionCall2(numeric_sub, a2, a1); /* a2 - a1 */
2035 
2037 }
2038 
2039 /*
2040  * Compute the approximate distance between two UUID values.
2041  *
2042  * XXX We do not need a perfectly accurate value, so we approximate the
2043  * deltas (which would have to be 128-bit integers) with a 64-bit float.
2044  * The small inaccuracies do not matter in practice, in the worst case
2045  * we'll decide to merge ranges that are not the closest ones.
2046  */
2047 Datum
2049 {
2050  int i;
2051  float8 delta = 0;
2052 
2053  Datum a1 = PG_GETARG_DATUM(0);
2054  Datum a2 = PG_GETARG_DATUM(1);
2055 
2056  pg_uuid_t *u1 = DatumGetUUIDP(a1);
2057  pg_uuid_t *u2 = DatumGetUUIDP(a2);
2058 
2059  /*
2060  * We know the values are range boundaries, but the range may be collapsed
2061  * (i.e. single points), with equal values.
2062  */
2064 
2065  /* compute approximate delta as a double precision value */
2066  for (i = UUID_LEN - 1; i >= 0; i--)
2067  {
2068  delta += (int) u2->data[i] - (int) u1->data[i];
2069  delta /= 256;
2070  }
2071 
2072  Assert(delta >= 0);
2073 
2074  PG_RETURN_FLOAT8(delta);
2075 }
2076 
2077 /*
2078  * Compute the approximate distance between two dates.
2079  */
2080 Datum
2082 {
2083  float8 delta = 0;
2084  DateADT dateVal1 = PG_GETARG_DATEADT(0);
2085  DateADT dateVal2 = PG_GETARG_DATEADT(1);
2086 
2087  delta = (float8) dateVal2 - (float8) dateVal1;
2088 
2089  Assert(delta >= 0);
2090 
2091  PG_RETURN_FLOAT8(delta);
2092 }
2093 
2094 /*
2095  * Compute the approximate distance between two time (without tz) values.
2096  *
2097  * TimeADT is just an int64, so we simply subtract the values directly.
2098  */
2099 Datum
2101 {
2102  float8 delta = 0;
2103 
2104  TimeADT ta = PG_GETARG_TIMEADT(0);
2105  TimeADT tb = PG_GETARG_TIMEADT(1);
2106 
2107  delta = (tb - ta);
2108 
2109  Assert(delta >= 0);
2110 
2111  PG_RETURN_FLOAT8(delta);
2112 }
2113 
2114 /*
2115  * Compute the approximate distance between two timetz values.
2116  *
2117  * Simply subtracts the TimeADT (int64) values embedded in TimeTzADT.
2118  */
2119 Datum
2121 {
2122  float8 delta = 0;
2123 
2126 
2127  delta = (tb->time - ta->time) + (tb->zone - ta->zone) * USECS_PER_SEC;
2128 
2129  Assert(delta >= 0);
2130 
2131  PG_RETURN_FLOAT8(delta);
2132 }
2133 
2134 /*
2135  * Compute the distance between two timestamp values.
2136  */
2137 Datum
2139 {
2140  float8 delta = 0;
2141 
2142  Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
2143  Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
2144 
2145  delta = (float8) dt2 - (float8) dt1;
2146 
2147  Assert(delta >= 0);
2148 
2149  PG_RETURN_FLOAT8(delta);
2150 }
2151 
2152 /*
2153  * Compute the distance between two interval values.
2154  */
2155 Datum
2157 {
2158  float8 delta = 0;
2159 
2160  Interval *ia = PG_GETARG_INTERVAL_P(0);
2161  Interval *ib = PG_GETARG_INTERVAL_P(1);
2162 
2163  int64 dayfraction;
2164  int64 days;
2165 
2166  /*
2167  * Delta is (fractional) number of days between the intervals. Assume
2168  * months have 30 days for consistency with interval_cmp_internal. We
2169  * don't need to be exact, in the worst case we'll build a bit less
2170  * efficient ranges. But we should not contradict interval_cmp.
2171  */
2172  dayfraction = (ib->time % USECS_PER_DAY) - (ia->time % USECS_PER_DAY);
2173  days = (ib->time / USECS_PER_DAY) - (ia->time / USECS_PER_DAY);
2174  days += (int64) ib->day - (int64) ia->day;
2175  days += ((int64) ib->month - (int64) ia->month) * INT64CONST(30);
2176 
2177  /* convert to double precision */
2178  delta = (double) days + dayfraction / (double) USECS_PER_DAY;
2179 
2180  Assert(delta >= 0);
2181 
2182  PG_RETURN_FLOAT8(delta);
2183 }
2184 
2185 /*
2186  * Compute the distance between two pg_lsn values.
2187  *
2188  * LSN is just an int64 encoding position in the stream, so just subtract
2189  * those int64 values directly.
2190  */
2191 Datum
2193 {
2194  float8 delta = 0;
2195 
2196  XLogRecPtr lsna = PG_GETARG_LSN(0);
2197  XLogRecPtr lsnb = PG_GETARG_LSN(1);
2198 
2199  delta = (lsnb - lsna);
2200 
2201  Assert(delta >= 0);
2202 
2203  PG_RETURN_FLOAT8(delta);
2204 }
2205 
2206 /*
2207  * Compute the distance between two macaddr values.
2208  *
2209  * mac addresses are treated as 6 unsigned chars, so do the same thing we
2210  * already do for UUID values.
2211  */
2212 Datum
2214 {
2215  float8 delta;
2216 
2219 
2220  delta = ((float8) b->f - (float8) a->f);
2221  delta /= 256;
2222 
2223  delta += ((float8) b->e - (float8) a->e);
2224  delta /= 256;
2225 
2226  delta += ((float8) b->d - (float8) a->d);
2227  delta /= 256;
2228 
2229  delta += ((float8) b->c - (float8) a->c);
2230  delta /= 256;
2231 
2232  delta += ((float8) b->b - (float8) a->b);
2233  delta /= 256;
2234 
2235  delta += ((float8) b->a - (float8) a->a);
2236  delta /= 256;
2237 
2238  Assert(delta >= 0);
2239 
2240  PG_RETURN_FLOAT8(delta);
2241 }
2242 
2243 /*
2244  * Compute the distance between two macaddr8 values.
2245  *
2246  * macaddr8 addresses are 8 unsigned chars, so do the same thing we
2247  * already do for UUID values.
2248  */
2249 Datum
2251 {
2252  float8 delta;
2253 
2256 
2257  delta = ((float8) b->h - (float8) a->h);
2258  delta /= 256;
2259 
2260  delta += ((float8) b->g - (float8) a->g);
2261  delta /= 256;
2262 
2263  delta += ((float8) b->f - (float8) a->f);
2264  delta /= 256;
2265 
2266  delta += ((float8) b->e - (float8) a->e);
2267  delta /= 256;
2268 
2269  delta += ((float8) b->d - (float8) a->d);
2270  delta /= 256;
2271 
2272  delta += ((float8) b->c - (float8) a->c);
2273  delta /= 256;
2274 
2275  delta += ((float8) b->b - (float8) a->b);
2276  delta /= 256;
2277 
2278  delta += ((float8) b->a - (float8) a->a);
2279  delta /= 256;
2280 
2281  Assert(delta >= 0);
2282 
2283  PG_RETURN_FLOAT8(delta);
2284 }
2285 
2286 /*
2287  * Compute the distance between two inet values.
2288  *
2289  * The distance is defined as the difference between 32-bit/128-bit values,
2290  * depending on the IP version. The distance is computed by subtracting
2291  * the bytes and normalizing it to [0,1] range for each IP family.
2292  * Addresses from different families are considered to be in maximum
2293  * distance, which is 1.0.
2294  *
2295  * XXX Does this need to consider the mask (bits)? For now, it's ignored.
2296  */
2297 Datum
2299 {
2300  float8 delta;
2301  int i;
2302  int len;
2303  unsigned char *addra,
2304  *addrb;
2305 
2306  inet *ipa = PG_GETARG_INET_PP(0);
2307  inet *ipb = PG_GETARG_INET_PP(1);
2308 
2309  int lena,
2310  lenb;
2311 
2312  /*
2313  * If the addresses are from different families, consider them to be in
2314  * maximal possible distance (which is 1.0).
2315  */
2316  if (ip_family(ipa) != ip_family(ipb))
2317  PG_RETURN_FLOAT8(1.0);
2318 
2319  addra = (unsigned char *) palloc(ip_addrsize(ipa));
2320  memcpy(addra, ip_addr(ipa), ip_addrsize(ipa));
2321 
2322  addrb = (unsigned char *) palloc(ip_addrsize(ipb));
2323  memcpy(addrb, ip_addr(ipb), ip_addrsize(ipb));
2324 
2325  /*
2326  * The length is calculated from the mask length, because we sort the
2327  * addresses by first address in the range, so A.B.C.D/24 < A.B.C.1 (the
2328  * first range starts at A.B.C.0, which is before A.B.C.1). We don't want
2329  * to produce a negative delta in this case, so we just cut the extra
2330  * bytes.
2331  *
2332  * XXX Maybe this should be a bit more careful and cut the bits, not just
2333  * whole bytes.
2334  */
2335  lena = ip_bits(ipa);
2336  lenb = ip_bits(ipb);
2337 
2338  len = ip_addrsize(ipa);
2339 
2340  /* apply the network mask to both addresses */
2341  for (i = 0; i < len; i++)
2342  {
2343  unsigned char mask;
2344  int nbits;
2345 
2346  nbits = Max(0, lena - (i * 8));
2347  if (nbits < 8)
2348  {
2349  mask = (0xFF << (8 - nbits));
2350  addra[i] = (addra[i] & mask);
2351  }
2352 
2353  nbits = Max(0, lenb - (i * 8));
2354  if (nbits < 8)
2355  {
2356  mask = (0xFF << (8 - nbits));
2357  addrb[i] = (addrb[i] & mask);
2358  }
2359  }
2360 
2361  /* Calculate the difference between the addresses. */
2362  delta = 0;
2363  for (i = len - 1; i >= 0; i--)
2364  {
2365  unsigned char a = addra[i];
2366  unsigned char b = addrb[i];
2367 
2368  delta += (float8) b - (float8) a;
2369  delta /= 256;
2370  }
2371 
2372  Assert((delta >= 0) && (delta <= 1));
2373 
2374  pfree(addra);
2375  pfree(addrb);
2376 
2377  PG_RETURN_FLOAT8(delta);
2378 }
2379 
2380 static void
2382 {
2383  Ranges *ranges = (Ranges *) DatumGetPointer(src);
2384  SerializedRanges *s;
2385 
2386  /*
2387  * In batch mode, we need to compress the accumulated values to the
2388  * actually requested number of values/ranges.
2389  */
2390  compactify_ranges(bdesc, ranges, ranges->target_maxvalues);
2391 
2392  /* At this point everything has to be fully sorted. */
2393  Assert(ranges->nsorted == ranges->nvalues);
2394 
2395  s = brin_range_serialize(ranges);
2396  dst[0] = PointerGetDatum(s);
2397 }
2398 
2399 static int
2401 {
2403 }
2404 
2405 /*
2406  * Examine the given index tuple (which contains the partial status of a
2407  * certain page range) by comparing it to the given value that comes from
2408  * another heap tuple. If the new value is outside the min/max range
2409  * specified by the existing tuple values, update the index tuple and return
2410  * true. Otherwise, return false and do not modify in this case.
2411  */
2412 Datum
2414 {
2415  BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
2416  BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
2418  bool isnull PG_USED_FOR_ASSERTS_ONLY = PG_GETARG_DATUM(3);
2420  Oid colloid = PG_GET_COLLATION();
2421  bool modified = false;
2422  Form_pg_attribute attr;
2423  AttrNumber attno;
2424  Ranges *ranges;
2425  SerializedRanges *serialized = NULL;
2426 
2427  Assert(!isnull);
2428 
2429  attno = column->bv_attno;
2430  attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
2431 
2432  /* use the already deserialized value, if possible */
2433  ranges = (Ranges *) DatumGetPointer(column->bv_mem_value);
2434 
2435  /*
2436  * If this is the first non-null value, we need to initialize the range
2437  * list. Otherwise, just extract the existing range list from BrinValues.
2438  *
2439  * When starting with an empty range, we assume this is a batch mode and
2440  * we use a larger buffer. The buffer size is derived from the BRIN range
2441  * size, number of rows per page, with some sensible min/max values. A
2442  * small buffer would be bad for performance, but a large buffer might
2443  * require a lot of memory (because of keeping all the values).
2444  */
2445  if (column->bv_allnulls)
2446  {
2447  MemoryContext oldctx;
2448 
2449  int target_maxvalues;
2450  int maxvalues;
2451  BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
2452 
2453  /* what was specified as a reloption? */
2454  target_maxvalues = brin_minmax_multi_get_values(bdesc, opts);
2455 
2456  /*
2457  * Determine the insert buffer size - we use 10x the target, capped to
2458  * the maximum number of values in the heap range. This is more than
2459  * enough, considering the actual number of rows per page is likely
2460  * much lower, but meh.
2461  */
2462  maxvalues = Min(target_maxvalues * MINMAX_BUFFER_FACTOR,
2463  MaxHeapTuplesPerPage * pagesPerRange);
2464 
2465  /* but always at least the original value */
2466  maxvalues = Max(maxvalues, target_maxvalues);
2467 
2468  /* always cap by MIN/MAX */
2469  maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
2470  maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);
2471 
2472  oldctx = MemoryContextSwitchTo(column->bv_context);
2473  ranges = minmax_multi_init(maxvalues);
2474  ranges->attno = attno;
2475  ranges->colloid = colloid;
2476  ranges->typid = attr->atttypid;
2477  ranges->target_maxvalues = target_maxvalues;
2478 
2479  /* we'll certainly need the comparator, so just look it up now */
2480  ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
2482 
2483  MemoryContextSwitchTo(oldctx);
2484 
2485  column->bv_allnulls = false;
2486  modified = true;
2487 
2488  column->bv_mem_value = PointerGetDatum(ranges);
2490  }
2491  else if (!ranges)
2492  {
2493  MemoryContext oldctx;
2494 
2495  int maxvalues;
2496  BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
2497 
2498  oldctx = MemoryContextSwitchTo(column->bv_context);
2499 
2500  serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);
2501 
2502  /*
2503  * Determine the insert buffer size - we use 10x the target, capped to
2504  * the maximum number of values in the heap range. This is more than
2505  * enough, considering the actual number of rows per page is likely
2506  * much lower, but meh.
2507  */
2508  maxvalues = Min(serialized->maxvalues * MINMAX_BUFFER_FACTOR,
2509  MaxHeapTuplesPerPage * pagesPerRange);
2510 
2511  /* but always at least the original value */
2512  maxvalues = Max(maxvalues, serialized->maxvalues);
2513 
2514  /* always cap by MIN/MAX */
2515  maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
2516  maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);
2517 
2518  ranges = brin_range_deserialize(maxvalues, serialized);
2519 
2520  ranges->attno = attno;
2521  ranges->colloid = colloid;
2522  ranges->typid = attr->atttypid;
2523 
2524  /* we'll certainly need the comparator, so just look it up now */
2525  ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
2527 
2528  column->bv_mem_value = PointerGetDatum(ranges);
2530 
2531  MemoryContextSwitchTo(oldctx);
2532  }
2533 
2534  /*
2535  * Try to add the new value to the range. We need to update the modified
2536  * flag, so that we serialize the updated summary later.
2537  */
2538  modified |= range_add_value(bdesc, colloid, attno, attr, ranges, newval);
2539 
2540 
2541  PG_RETURN_BOOL(modified);
2542 }
2543 
2544 /*
2545  * Given an index tuple corresponding to a certain page range and a scan key,
2546  * return whether the scan key is consistent with the index tuple's min/max
2547  * values. Return true if so, false otherwise.
2548  */
2549 Datum
2551 {
2552  BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
2553  BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
2554  ScanKey *keys = (ScanKey *) PG_GETARG_POINTER(2);
2555  int nkeys = PG_GETARG_INT32(3);
2556 
2557  Oid colloid = PG_GET_COLLATION(),
2558  subtype;
2559  AttrNumber attno;
2560  Datum value;
2561  FmgrInfo *finfo;
2562  SerializedRanges *serialized;
2563  Ranges *ranges;
2564  int keyno;
2565  int rangeno;
2566  int i;
2567 
2568  attno = column->bv_attno;
2569 
2570  serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);
2571  ranges = brin_range_deserialize(serialized->maxvalues, serialized);
2572 
2573  /* inspect the ranges, and for each one evaluate the scan keys */
2574  for (rangeno = 0; rangeno < ranges->nranges; rangeno++)
2575  {
2576  Datum minval = ranges->values[2 * rangeno];
2577  Datum maxval = ranges->values[2 * rangeno + 1];
2578 
2579  /* assume the range is matching, and we'll try to prove otherwise */
2580  bool matching = true;
2581 
2582  for (keyno = 0; keyno < nkeys; keyno++)
2583  {
2584  bool matches;
2585  ScanKey key = keys[keyno];
2586 
2587  /* NULL keys are handled and filtered-out in bringetbitmap */
2588  Assert(!(key->sk_flags & SK_ISNULL));
2589 
2590  attno = key->sk_attno;
2591  subtype = key->sk_subtype;
2592  value = key->sk_argument;
2593  switch (key->sk_strategy)
2594  {
2595  case BTLessStrategyNumber:
2597  finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2598  key->sk_strategy);
2599  /* first value from the array */
2600  matches = DatumGetBool(FunctionCall2Coll(finfo, colloid, minval, value));
2601  break;
2602 
2603  case BTEqualStrategyNumber:
2604  {
2605  Datum compar;
2606  FmgrInfo *cmpFn;
2607 
2608  /* by default this range does not match */
2609  matches = false;
2610 
2611  /*
2612  * Otherwise, need to compare the new value with
2613  * boundaries of all the ranges. First check if it's
2614  * less than the absolute minimum, which is the first
2615  * value in the array.
2616  */
2617  cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2619  compar = FunctionCall2Coll(cmpFn, colloid, minval, value);
2620 
2621  /* smaller than the smallest value in this range */
2622  if (DatumGetBool(compar))
2623  break;
2624 
2625  cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2627  compar = FunctionCall2Coll(cmpFn, colloid, maxval, value);
2628 
2629  /* larger than the largest value in this range */
2630  if (DatumGetBool(compar))
2631  break;
2632 
2633  /*
2634  * We haven't managed to eliminate this range, so
2635  * consider it matching.
2636  */
2637  matches = true;
2638 
2639  break;
2640  }
2643  finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2644  key->sk_strategy);
2645  /* last value from the array */
2646  matches = DatumGetBool(FunctionCall2Coll(finfo, colloid, maxval, value));
2647  break;
2648 
2649  default:
2650  /* shouldn't happen */
2651  elog(ERROR, "invalid strategy number %d", key->sk_strategy);
2652  matches = false;
2653  break;
2654  }
2655 
2656  /* the range has to match all the scan keys */
2657  matching &= matches;
2658 
2659  /* once we find a non-matching key, we're done */
2660  if (!matching)
2661  break;
2662  }
2663 
2664  /*
2665  * have we found a range matching all scan keys? if yes, we're done
2666  */
2667  if (matching)
2668  PG_RETURN_BOOL(true);
2669  }
2670 
2671  /*
2672  * And now inspect the values. We don't bother with doing a binary search
2673  * here, because we're dealing with serialized / fully compacted ranges,
2674  * so there should be only very few values.
2675  */
2676  for (i = 0; i < ranges->nvalues; i++)
2677  {
2678  Datum val = ranges->values[2 * ranges->nranges + i];
2679 
2680  /* assume the range is matching, and we'll try to prove otherwise */
2681  bool matching = true;
2682 
2683  for (keyno = 0; keyno < nkeys; keyno++)
2684  {
2685  bool matches;
2686  ScanKey key = keys[keyno];
2687 
2688  /* we've already dealt with NULL keys at the beginning */
2689  if (key->sk_flags & SK_ISNULL)
2690  continue;
2691 
2692  attno = key->sk_attno;
2693  subtype = key->sk_subtype;
2694  value = key->sk_argument;
2695  switch (key->sk_strategy)
2696  {
2697  case BTLessStrategyNumber:
2699  case BTEqualStrategyNumber:
2702 
2703  finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2704  key->sk_strategy);
2705  matches = DatumGetBool(FunctionCall2Coll(finfo, colloid, val, value));
2706  break;
2707 
2708  default:
2709  /* shouldn't happen */
2710  elog(ERROR, "invalid strategy number %d", key->sk_strategy);
2711  matches = false;
2712  break;
2713  }
2714 
2715  /* the range has to match all the scan keys */
2716  matching &= matches;
2717 
2718  /* once we find a non-matching key, we're done */
2719  if (!matching)
2720  break;
2721  }
2722 
2723  /* have we found a range matching all scan keys? if yes, we're done */
2724  if (matching)
2725  PG_RETURN_BOOL(true);
2726  }
2727 
2728  PG_RETURN_BOOL(false);
2729 }
2730 
2731 /*
2732  * Given two BrinValues, update the first of them as a union of the summary
2733  * values contained in both. The second one is untouched.
2734  */
2735 Datum
2737 {
2738  BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
2739  BrinValues *col_a = (BrinValues *) PG_GETARG_POINTER(1);
2740  BrinValues *col_b = (BrinValues *) PG_GETARG_POINTER(2);
2741 
2742  Oid colloid = PG_GET_COLLATION();
2743  SerializedRanges *serialized_a;
2744  SerializedRanges *serialized_b;
2745  Ranges *ranges_a;
2746  Ranges *ranges_b;
2747  AttrNumber attno;
2748  Form_pg_attribute attr;
2749  ExpandedRange *eranges;
2750  int neranges;
2751  FmgrInfo *cmpFn,
2752  *distanceFn;
2753  DistanceValue *distances;
2754  MemoryContext ctx;
2755  MemoryContext oldctx;
2756 
2757  Assert(col_a->bv_attno == col_b->bv_attno);
2758  Assert(!col_a->bv_allnulls && !col_b->bv_allnulls);
2759 
2760  attno = col_a->bv_attno;
2761  attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
2762 
2763  serialized_a = (SerializedRanges *) PG_DETOAST_DATUM(col_a->bv_values[0]);
2764  serialized_b = (SerializedRanges *) PG_DETOAST_DATUM(col_b->bv_values[0]);
2765 
2766  ranges_a = brin_range_deserialize(serialized_a->maxvalues, serialized_a);
2767  ranges_b = brin_range_deserialize(serialized_b->maxvalues, serialized_b);
2768 
2769  /* make sure neither of the ranges is NULL */
2770  Assert(ranges_a && ranges_b);
2771 
2772  neranges = (ranges_a->nranges + ranges_a->nvalues) +
2773  (ranges_b->nranges + ranges_b->nvalues);
2774 
2775  /*
2776  * The distanceFn calls (which may internally call e.g. numeric_le) may
2777  * allocate quite a bit of memory, and we must not leak it. Otherwise,
2778  * we'd have problems e.g. when building indexes. So we create a local
2779  * memory context and make sure we free the memory before leaving this
2780  * function (not after every call).
2781  */
2783  "minmax-multi context",
2785 
2786  oldctx = MemoryContextSwitchTo(ctx);
2787 
2788  /* allocate and fill */
2789  eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));
2790 
2791  /* fill the expanded ranges with entries for the first range */
2792  fill_expanded_ranges(eranges, ranges_a->nranges + ranges_a->nvalues,
2793  ranges_a);
2794 
2795  /* and now add combine ranges for the second range */
2796  fill_expanded_ranges(&eranges[ranges_a->nranges + ranges_a->nvalues],
2797  ranges_b->nranges + ranges_b->nvalues,
2798  ranges_b);
2799 
2800  cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
2802 
2803  /* sort the expanded ranges */
2804  neranges = sort_expanded_ranges(cmpFn, colloid, eranges, neranges);
2805 
2806  /*
2807  * We've loaded two different lists of expanded ranges, so some of them
2808  * may be overlapping. So walk through them and merge them.
2809  */
2810  neranges = merge_overlapping_ranges(cmpFn, colloid, eranges, neranges);
2811 
2812  /* check that the combine ranges are correct (no overlaps, ordering) */
2813  AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
2814 
2815  /*
2816  * If needed, reduce some of the ranges.
2817  *
2818  * XXX This may be fairly expensive, so maybe we should do it only when
2819  * it's actually needed (when we have too many ranges).
2820  */
2821 
2822  /* build array of gap distances and sort them in ascending order */
2823  distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);
2824  distances = build_distances(distanceFn, colloid, eranges, neranges);
2825 
2826  /*
2827  * See how many values would be needed to store the current ranges, and if
2828  * needed combine as many of them to get below the threshold. The
2829  * collapsed ranges will be stored as a single value.
2830  *
2831  * XXX This does not apply the load factor, as we don't expect to add more
2832  * values to the range, so we prefer to keep as many ranges as possible.
2833  *
2834  * XXX Can the maxvalues be different in the two ranges? Perhaps we should
2835  * use maximum of those?
2836  */
2837  neranges = reduce_expanded_ranges(eranges, neranges, distances,
2838  ranges_a->maxvalues,
2839  cmpFn, colloid);
2840 
2841  /* Is the result of reducing expanded ranges correct? */
2842  AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
2843 
2844  /* update the first range summary */
2845  store_expanded_ranges(ranges_a, eranges, neranges);
2846 
2847  MemoryContextSwitchTo(oldctx);
2848  MemoryContextDelete(ctx);
2849 
2850  /* cleanup and update the serialized value */
2851  pfree(serialized_a);
2852  col_a->bv_values[0] = PointerGetDatum(brin_range_serialize(ranges_a));
2853 
2854  PG_RETURN_VOID();
2855 }
2856 
2857 /*
2858  * Cache and return minmax multi opclass support procedure
2859  *
2860  * Return the procedure corresponding to the given function support number
2861  * or null if it does not exist.
2862  */
2863 static FmgrInfo *
2865 {
2866  MinmaxMultiOpaque *opaque;
2867  uint16 basenum = procnum - PROCNUM_BASE;
2868 
2869  /*
2870  * We cache these in the opaque struct, to avoid repetitive syscache
2871  * lookups.
2872  */
2873  opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
2874 
2875  /*
2876  * If we already searched for this proc and didn't find it, don't bother
2877  * searching again.
2878  */
2879  if (opaque->extra_proc_missing[basenum])
2880  return NULL;
2881 
2882  if (opaque->extra_procinfos[basenum].fn_oid == InvalidOid)
2883  {
2884  if (RegProcedureIsValid(index_getprocid(bdesc->bd_index, attno,
2885  procnum)))
2886  {
2887  fmgr_info_copy(&opaque->extra_procinfos[basenum],
2888  index_getprocinfo(bdesc->bd_index, attno, procnum),
2889  bdesc->bd_context);
2890  }
2891  else
2892  {
2893  opaque->extra_proc_missing[basenum] = true;
2894  return NULL;
2895  }
2896  }
2897 
2898  return &opaque->extra_procinfos[basenum];
2899 }
2900 
2901 /*
2902  * Cache and return the procedure for the given strategy.
2903  *
2904  * Note: this function mirrors minmax_multi_get_strategy_procinfo; see notes
2905  * there. If changes are made here, see that function too.
2906  */
2907 static FmgrInfo *
2909  uint16 strategynum)
2910 {
2911  MinmaxMultiOpaque *opaque;
2912 
2913  Assert(strategynum >= 1 &&
2914  strategynum <= BTMaxStrategyNumber);
2915 
2916  opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
2917 
2918  /*
2919  * We cache the procedures for the previous subtype in the opaque struct,
2920  * to avoid repetitive syscache lookups. If the subtype changed,
2921  * invalidate all the cached entries.
2922  */
2923  if (opaque->cached_subtype != subtype)
2924  {
2925  uint16 i;
2926 
2927  for (i = 1; i <= BTMaxStrategyNumber; i++)
2928  opaque->strategy_procinfos[i - 1].fn_oid = InvalidOid;
2929  opaque->cached_subtype = subtype;
2930  }
2931 
2932  if (opaque->strategy_procinfos[strategynum - 1].fn_oid == InvalidOid)
2933  {
2934  Form_pg_attribute attr;
2935  HeapTuple tuple;
2936  Oid opfamily,
2937  oprid;
2938 
2939  opfamily = bdesc->bd_index->rd_opfamily[attno - 1];
2940  attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
2941  tuple = SearchSysCache4(AMOPSTRATEGY, ObjectIdGetDatum(opfamily),
2942  ObjectIdGetDatum(attr->atttypid),
2943  ObjectIdGetDatum(subtype),
2944  Int16GetDatum(strategynum));
2945  if (!HeapTupleIsValid(tuple))
2946  elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2947  strategynum, attr->atttypid, subtype, opfamily);
2948 
2949  oprid = DatumGetObjectId(SysCacheGetAttrNotNull(AMOPSTRATEGY, tuple,
2950  Anum_pg_amop_amopopr));
2951  ReleaseSysCache(tuple);
2953 
2955  &opaque->strategy_procinfos[strategynum - 1],
2956  bdesc->bd_context);
2957  }
2958 
2959  return &opaque->strategy_procinfos[strategynum - 1];
2960 }
2961 
2962 Datum
2964 {
2965  local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);
2966 
2967  init_local_reloptions(relopts, sizeof(MinMaxMultiOptions));
2968 
2969  add_local_int_reloption(relopts, "values_per_range", "desc",
2971  offsetof(MinMaxMultiOptions, valuesPerRange));
2972 
2973  PG_RETURN_VOID();
2974 }
2975 
2976 /*
2977  * brin_minmax_multi_summary_in
2978  * - input routine for type brin_minmax_multi_summary.
2979  *
2980  * brin_minmax_multi_summary is only used internally to represent summaries
2981  * in BRIN minmax-multi indexes, so it has no operations of its own, and we
2982  * disallow input too.
2983  */
2984 Datum
2986 {
2987  /*
2988  * brin_minmax_multi_summary stores the data in binary form and parsing
2989  * text input is not needed, so disallow this.
2990  */
2991  ereport(ERROR,
2992  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2993  errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));
2994 
2995  PG_RETURN_VOID(); /* keep compiler quiet */
2996 }
2997 
2998 
2999 /*
3000  * brin_minmax_multi_summary_out
3001  * - output routine for type brin_minmax_multi_summary.
3002  *
3003  * BRIN minmax-multi summaries are serialized into a bytea value, but we
3004  * want to output something nicer humans can understand.
3005  */
3006 Datum
3008 {
3009  int i;
3010  int idx;
3011  SerializedRanges *ranges;
3012  Ranges *ranges_deserialized;
3014  bool isvarlena;
3015  Oid outfunc;
3016  FmgrInfo fmgrinfo;
3017  ArrayBuildState *astate_values = NULL;
3018 
3019  initStringInfo(&str);
3020  appendStringInfoChar(&str, '{');
3021 
3022  /*
3023  * Detoast to get value with full 4B header (can't be stored in a toast
3024  * table, but can use 1B header).
3025  */
3027 
3028  /* lookup output func for the type */
3029  getTypeOutputInfo(ranges->typid, &outfunc, &isvarlena);
3030  fmgr_info(outfunc, &fmgrinfo);
3031 
3032  /* deserialize the range info easy-to-process pieces */
3033  ranges_deserialized = brin_range_deserialize(ranges->maxvalues, ranges);
3034 
3035  appendStringInfo(&str, "nranges: %d nvalues: %d maxvalues: %d",
3036  ranges_deserialized->nranges,
3037  ranges_deserialized->nvalues,
3038  ranges_deserialized->maxvalues);
3039 
3040  /* serialize ranges */
3041  idx = 0;
3042  for (i = 0; i < ranges_deserialized->nranges; i++)
3043  {
3044  char *a,
3045  *b;
3046  text *c;
3048 
3049  initStringInfo(&buf);
3050 
3051  a = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);
3052  b = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);
3053 
3054  appendStringInfo(&buf, "%s ... %s", a, b);
3055 
3056  c = cstring_to_text_with_len(buf.data, buf.len);
3057 
3058  astate_values = accumArrayResult(astate_values,
3059  PointerGetDatum(c),
3060  false,
3061  TEXTOID,
3063  }
3064 
3065  if (ranges_deserialized->nranges > 0)
3066  {
3067  Oid typoutput;
3068  bool typIsVarlena;
3069  Datum val;
3070  char *extval;
3071 
3072  getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);
3073 
3074  val = makeArrayResult(astate_values, CurrentMemoryContext);
3075 
3076  extval = OidOutputFunctionCall(typoutput, val);
3077 
3078  appendStringInfo(&str, " ranges: %s", extval);
3079  }
3080 
3081  /* serialize individual values */
3082  astate_values = NULL;
3083 
3084  for (i = 0; i < ranges_deserialized->nvalues; i++)
3085  {
3086  Datum a;
3087  text *b;
3088 
3089  a = FunctionCall1(&fmgrinfo, ranges_deserialized->values[idx++]);
3091 
3092  astate_values = accumArrayResult(astate_values,
3093  PointerGetDatum(b),
3094  false,
3095  TEXTOID,
3097  }
3098 
3099  if (ranges_deserialized->nvalues > 0)
3100  {
3101  Oid typoutput;
3102  bool typIsVarlena;
3103  Datum val;
3104  char *extval;
3105 
3106  getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);
3107 
3108  val = makeArrayResult(astate_values, CurrentMemoryContext);
3109 
3110  extval = OidOutputFunctionCall(typoutput, val);
3111 
3112  appendStringInfo(&str, " values: %s", extval);
3113  }
3114 
3115 
3116  appendStringInfoChar(&str, '}');
3117 
3118  PG_RETURN_CSTRING(str.data);
3119 }
3120 
3121 /*
3122  * brin_minmax_multi_summary_recv
3123  * - binary input routine for type brin_minmax_multi_summary.
3124  */
3125 Datum
3127 {
3128  ereport(ERROR,
3129  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3130  errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));
3131 
3132  PG_RETURN_VOID(); /* keep compiler quiet */
3133 }
3134 
3135 /*
3136  * brin_minmax_multi_summary_send
3137  * - binary output routine for type brin_minmax_multi_summary.
3138  *
3139  * BRIN minmax-multi summaries are serialized in a bytea value (although
3140  * the type is named differently), so let's just send that.
3141  */
3142 Datum
3144 {
3145  return byteasend(fcinfo);
3146 }
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:259
ArrayBuildState * accumArrayResult(ArrayBuildState *astate, Datum dvalue, bool disnull, Oid element_type, MemoryContext rcontext)
Definition: arrayfuncs.c:5331
Datum makeArrayResult(ArrayBuildState *astate, MemoryContext rcontext)
Definition: arrayfuncs.c:5401
int16 AttrNumber
Definition: attnum.h:21
const char *const days[]
Definition: datetime.c:84
Datum numeric_sub(PG_FUNCTION_ARGS)
Definition: numeric.c:2925
Datum numeric_le(PG_FUNCTION_ARGS)
Definition: numeric.c:2490
Datum numeric_float8(PG_FUNCTION_ARGS)
Definition: numeric.c:4628
uint32 BlockNumber
Definition: block.h:31
static Datum values[MAXATTR]
Definition: bootstrap.c:152
#define BrinGetPagesPerRange(relation)
Definition: brin.h:40
#define SizeofBrinOpcInfo(ncols)
Definition: brin_internal.h:41
Datum brin_minmax_multi_distance_float8(PG_FUNCTION_ARGS)
Datum brin_minmax_multi_options(PG_FUNCTION_ARGS)
Datum brin_minmax_multi_union(PG_FUNCTION_ARGS)
Datum brin_minmax_multi_distance_float4(PG_FUNCTION_ARGS)
#define MinMaxMultiGetValuesPerRange(opts)
static void AssertCheckExpandedRanges(BrinDesc *bdesc, Oid colloid, AttrNumber attno, Form_pg_attribute attr, ExpandedRange *ranges, int nranges)
struct DistanceValue DistanceValue
Datum brin_minmax_multi_distance_int8(PG_FUNCTION_ARGS)
Datum brin_minmax_multi_summary_recv(PG_FUNCTION_ARGS)
Datum brin_minmax_multi_summary_out(PG_FUNCTION_ARGS)
Datum brin_minmax_multi_add_value(PG_FUNCTION_ARGS)
struct SerializedRanges SerializedRanges
Datum brin_minmax_multi_distance_uuid(PG_FUNCTION_ARGS)
Datum brin_minmax_multi_distance_inet(PG_FUNCTION_ARGS)
Datum brin_minmax_multi_consistent(PG_FUNCTION_ARGS)
static void AssertCheckRanges(Ranges *ranges, FmgrInfo *cmpFn, Oid colloid)
static int compare_expanded_ranges(const void *a, const void *b, void *arg)
Datum brin_minmax_multi_distance_time(PG_FUNCTION_ARGS)
Datum brin_minmax_multi_distance_timestamp(PG_FUNCTION_ARGS)
static bool range_add_value(BrinDesc *bdesc, Oid colloid, AttrNumber attno, Form_pg_attribute attr, Ranges *ranges, Datum newval)
static Ranges * minmax_multi_init(int maxvalues)
static bool ensure_free_space_in_buffer(BrinDesc *bdesc, Oid colloid, AttrNumber attno, Form_pg_attribute attr, Ranges *range)
static int reduce_expanded_ranges(ExpandedRange *eranges, int neranges, DistanceValue *distances, int max_values, FmgrInfo *cmp, Oid colloid)
struct MinMaxMultiOptions MinMaxMultiOptions
struct MinmaxMultiOpaque MinmaxMultiOpaque
static int compare_values(const void *a, const void *b, void *arg)
static void compactify_ranges(BrinDesc *bdesc, Ranges *ranges, int max_values)
#define MINMAX_BUFFER_MAX
Datum brin_minmax_multi_distance_numeric(PG_FUNCTION_ARGS)
#define MINMAX_BUFFER_LOAD_FACTOR
Datum brin_minmax_multi_summary_send(PG_FUNCTION_ARGS)
static ExpandedRange * build_expanded_ranges(FmgrInfo *cmp, Oid colloid, Ranges *ranges, int *nranges)
Datum brin_minmax_multi_distance_pg_lsn(PG_FUNCTION_ARGS)
static int brin_minmax_multi_get_values(BrinDesc *bdesc, MinMaxMultiOptions *opts)
struct compare_context compare_context
static FmgrInfo * minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno, uint16 procnum)
struct ExpandedRange ExpandedRange
Datum brin_minmax_multi_distance_macaddr8(PG_FUNCTION_ARGS)
#define MINMAX_MAX_PROCNUMS
static int sort_expanded_ranges(FmgrInfo *cmp, Oid colloid, ExpandedRange *eranges, int neranges)
#define MINMAX_BUFFER_FACTOR
Datum brin_minmax_multi_distance_date(PG_FUNCTION_ARGS)
struct Ranges Ranges
static void range_deduplicate_values(Ranges *range)
static void fill_expanded_ranges(ExpandedRange *eranges, int neranges, Ranges *ranges)
static int merge_overlapping_ranges(FmgrInfo *cmp, Oid colloid, ExpandedRange *eranges, int neranges)
Datum brin_minmax_multi_summary_in(PG_FUNCTION_ARGS)
static void store_expanded_ranges(Ranges *ranges, ExpandedRange *eranges, int neranges)
#define PROCNUM_BASE
static bool has_matching_range(BrinDesc *bdesc, Oid colloid, Ranges *ranges, Datum newval, AttrNumber attno, Oid typid)
Datum brin_minmax_multi_distance_int2(PG_FUNCTION_ARGS)
static bool range_contains_value(BrinDesc *bdesc, Oid colloid, AttrNumber attno, Form_pg_attribute attr, Ranges *ranges, Datum newval, bool full)
Datum brin_minmax_multi_opcinfo(PG_FUNCTION_ARGS)
static int compare_distances(const void *a, const void *b)
Datum brin_minmax_multi_distance_interval(PG_FUNCTION_ARGS)
Datum brin_minmax_multi_distance_timetz(PG_FUNCTION_ARGS)
static void brin_minmax_multi_serialize(BrinDesc *bdesc, Datum src, Datum *dst)
static SerializedRanges * brin_range_serialize(Ranges *range)
Datum brin_minmax_multi_distance_tid(PG_FUNCTION_ARGS)
static Ranges * brin_range_deserialize(int maxvalues, SerializedRanges *serialized)
#define PROCNUM_DISTANCE
static DistanceValue * build_distances(FmgrInfo *distanceFn, Oid colloid, ExpandedRange *eranges, int neranges)
Datum brin_minmax_multi_distance_macaddr(PG_FUNCTION_ARGS)
static FmgrInfo * minmax_multi_get_strategy_procinfo(BrinDesc *bdesc, uint16 attno, Oid subtype, uint16 strategynum)
#define MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE
Datum brin_minmax_multi_distance_int4(PG_FUNCTION_ARGS)
#define MINMAX_BUFFER_MIN
unsigned short uint16
Definition: c.h:505
#define RegProcedureIsValid(p)
Definition: c.h:777
#define Min(x, y)
Definition: c.h:1004
signed short int16
Definition: c.h:493
#define MAXALIGN(LEN)
Definition: c.h:811
signed int int32
Definition: c.h:494
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:182
#define Max(x, y)
Definition: c.h:998
#define Assert(condition)
Definition: c.h:858
double float8
Definition: c.h:630
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:398
size_t Size
Definition: c.h:605
int64 Timestamp
Definition: timestamp.h:38
#define USECS_PER_DAY
Definition: timestamp.h:131
#define USECS_PER_SEC
Definition: timestamp.h:134
#define PG_GETARG_TIMEADT(n)
Definition: date.h:90
int32 DateADT
Definition: date.h:23
int64 TimeADT
Definition: date.h:25
#define PG_GETARG_TIMETZADT_P(n)
Definition: date.h:91
#define PG_GETARG_DATEADT(n)
Definition: date.h:89
Datum datumCopy(Datum value, bool typByVal, int typLen)
Definition: datum.c:132
int errcode(int sqlerrcode)
Definition: elog.c:857
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define ereport(elevel,...)
Definition: elog.h:149
static float8 get_float8_infinity(void)
Definition: float.h:94
Datum FunctionCall2Coll(FmgrInfo *flinfo, Oid collation, Datum arg1, Datum arg2)
Definition: fmgr.c:1149
void fmgr_info(Oid functionId, FmgrInfo *finfo)
Definition: fmgr.c:127
void fmgr_info_cxt(Oid functionId, FmgrInfo *finfo, MemoryContext mcxt)
Definition: fmgr.c:137
char * OidOutputFunctionCall(Oid functionId, Datum val)
Definition: fmgr.c:1763
char * OutputFunctionCall(FmgrInfo *flinfo, Datum val)
Definition: fmgr.c:1683
void fmgr_info_copy(FmgrInfo *dstinfo, FmgrInfo *srcinfo, MemoryContext destcxt)
Definition: fmgr.c:580
#define PG_RETURN_VOID()
Definition: fmgr.h:349
#define DirectFunctionCall2(func, arg1, arg2)
Definition: fmgr.h:644
#define PG_GETARG_FLOAT8(n)
Definition: fmgr.h:282
#define PG_RETURN_FLOAT8(x)
Definition: fmgr.h:367
#define PG_GETARG_POINTER(n)
Definition: fmgr.h:276
#define PG_RETURN_CSTRING(x)
Definition: fmgr.h:362
#define DirectFunctionCall1(func, arg1)
Definition: fmgr.h:642
#define PG_GETARG_DATUM(n)
Definition: fmgr.h:268
#define PG_GETARG_INT64(n)
Definition: fmgr.h:283
#define PG_GET_OPCLASS_OPTIONS()
Definition: fmgr.h:342
#define PG_DETOAST_DATUM(datum)
Definition: fmgr.h:240
#define FunctionCall1(flinfo, arg1)
Definition: fmgr.h:660
#define PG_GETARG_INT32(n)
Definition: fmgr.h:269
#define PG_GETARG_FLOAT4(n)
Definition: fmgr.h:281
#define PG_RETURN_POINTER(x)
Definition: fmgr.h:361
#define PG_GET_COLLATION()
Definition: fmgr.h:198
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
#define PG_RETURN_BOOL(x)
Definition: fmgr.h:359
#define PG_GETARG_INT16(n)
Definition: fmgr.h:271
#define newval
return str start
const char * str
static const FormData_pg_attribute a1
Definition: heap.c:142
static const FormData_pg_attribute a2
Definition: heap.c:156
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define MaxHeapTuplesPerPage
Definition: htup_details.h:572
FmgrInfo * index_getprocinfo(Relation irel, AttrNumber attnum, uint16 procnum)
Definition: indexam.c:860
RegProcedure index_getprocid(Relation irel, AttrNumber attnum, uint16 procnum)
Definition: indexam.c:826
long val
Definition: informix.c:670
static struct @155 value
int b
Definition: isn.c:70
int a
Definition: isn.c:69
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
int32 ItemPointerCompare(ItemPointer arg1, ItemPointer arg2)
Definition: itemptr.c:51
static OffsetNumber ItemPointerGetOffsetNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:114
static BlockNumber ItemPointerGetBlockNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:93
ItemPointerData * ItemPointer
Definition: itemptr.h:49
void getTypeOutputInfo(Oid type, Oid *typOutput, bool *typIsVarlena)
Definition: lsyscache.c:2907
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1285
int16 get_typlen(Oid typid)
Definition: lsyscache.c:2197
bool get_typbyval(Oid typid)
Definition: lsyscache.c:2222
void pfree(void *pointer)
Definition: mcxt.c:1520
void * palloc0(Size size)
Definition: mcxt.c:1346
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
void * palloc(Size size)
Definition: mcxt.c:1316
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
Oid oprid(Operator op)
Definition: parse_oper.c:238
static AmcheckOptions opts
Definition: pg_amcheck.c:111
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:209
void * arg
const void size_t len
const void * data
#define PG_GETARG_LSN(n)
Definition: pg_lsn.h:33
static char * buf
Definition: pg_test_fsync.c:73
void * bsearch_arg(const void *key, const void *base0, size_t nmemb, size_t size, int(*compar)(const void *, const void *, void *), void *arg)
Definition: bsearch_arg.c:55
void qsort_arg(void *base, size_t nel, size_t elsize, qsort_arg_comparator cmp, void *arg)
#define qsort(a, b, c, d)
Definition: port.h:449
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
static char * DatumGetCString(Datum X)
Definition: postgres.h:335
uintptr_t Datum
Definition: postgres.h:64
static Oid DatumGetObjectId(Datum X)
Definition: postgres.h:242
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:172
static float8 DatumGetFloat8(Datum X)
Definition: postgres.h:494
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
char * c
MemoryContextSwitchTo(old_ctx)
static struct cvec * range(struct vars *v, chr a, chr b, int cases)
Definition: regc_locale.c:412
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:743
void init_local_reloptions(local_relopts *relopts, Size relopt_struct_size)
Definition: reloptions.c:734
void add_local_int_reloption(local_relopts *relopts, const char *name, const char *desc, int default_val, int min_val, int max_val, int offset)
Definition: reloptions.c:918
#define SK_ISNULL
Definition: skey.h:115
#define BTGreaterStrategyNumber
Definition: stratnum.h:33
#define BTMaxStrategyNumber
Definition: stratnum.h:35
#define BTLessStrategyNumber
Definition: stratnum.h:29
#define BTEqualStrategyNumber
Definition: stratnum.h:31
#define BTLessEqualStrategyNumber
Definition: stratnum.h:30
#define BTGreaterEqualStrategyNumber
Definition: stratnum.h:32
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:97
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:194
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
TupleDesc bd_tupdesc
Definition: brin_internal.h:53
BrinOpcInfo * bd_info[FLEXIBLE_ARRAY_MEMBER]
Definition: brin_internal.h:62
Relation bd_index
Definition: brin_internal.h:50
MemoryContext bd_context
Definition: brin_internal.h:47
TypeCacheEntry * oi_typcache[FLEXIBLE_ARRAY_MEMBER]
Definition: brin_internal.h:37
uint16 oi_nstored
Definition: brin_internal.h:28
bool oi_regular_nulls
Definition: brin_internal.h:31
void * oi_opaque
Definition: brin_internal.h:34
MemoryContext bv_context
Definition: brin_tuple.h:36
Datum bv_mem_value
Definition: brin_tuple.h:35
brin_serialize_callback_type bv_serialize
Definition: brin_tuple.h:37
Datum * bv_values
Definition: brin_tuple.h:34
AttrNumber bv_attno
Definition: brin_tuple.h:31
bool bv_allnulls
Definition: brin_tuple.h:33
Definition: fmgr.h:57
Oid fn_oid
Definition: fmgr.h:59
int32 day
Definition: timestamp.h:51
int32 month
Definition: timestamp.h:52
TimeOffset time
Definition: timestamp.h:49
bool extra_proc_missing[MINMAX_MAX_PROCNUMS]
FmgrInfo extra_procinfos[MINMAX_MAX_PROCNUMS]
FmgrInfo strategy_procinfos[BTMaxStrategyNumber]
int target_maxvalues
AttrNumber attno
FmgrInfo * cmp
Datum values[FLEXIBLE_ARRAY_MEMBER]
Oid * rd_opfamily
Definition: rel.h:207
char data[FLEXIBLE_ARRAY_MEMBER]
Definition: date.h:28
TimeADT time
Definition: date.h:29
int32 zone
Definition: date.h:30
int nranges
Definition: regguts.h:283
Definition: type.h:95
Definition: inet.h:53
Definition: inet.h:108
Definition: inet.h:95
Definition: uuid.h:21
unsigned char data[UUID_LEN]
Definition: uuid.h:22
Definition: c.h:687
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:266
HeapTuple SearchSysCache4(int cacheId, Datum key1, Datum key2, Datum key3, Datum key4)
Definition: syscache.c:251
Datum SysCacheGetAttrNotNull(int cacheId, HeapTuple tup, AttrNumber attributeNumber)
Definition: syscache.c:510
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
static Datum fetch_att(const void *T, bool attbyval, int attlen)
Definition: tupmacs.h:52
static void store_att_byval(void *T, Datum newdatum, int attlen)
Definition: tupmacs.h:183
TypeCacheEntry * lookup_type_cache(Oid type_id, int flags)
Definition: typcache.c:346
#define PG_GETARG_MACADDR_P(n)
Definition: inet.h:158
#define PG_GETARG_MACADDR8_P(n)
Definition: inet.h:174
#define ip_addr(inetptr)
Definition: inet.h:77
#define PG_GETARG_INET_PP(n)
Definition: inet.h:134
#define ip_family(inetptr)
Definition: inet.h:71
#define ip_addrsize(inetptr)
Definition: inet.h:80
#define ip_bits(inetptr)
Definition: inet.h:74
#define PG_GETARG_TIMESTAMP(n)
Definition: timestamp.h:63
#define PG_GETARG_INTERVAL_P(n)
Definition: timestamp.h:65
Datum uuid_le(PG_FUNCTION_ARGS)
Definition: uuid.c:183
#define UUID_LEN
Definition: uuid.h:18
static pg_uuid_t * DatumGetUUIDP(Datum X)
Definition: uuid.h:35
#define VARSIZE_ANY(PTR)
Definition: varatt.h:311
#define SET_VARSIZE(PTR, len)
Definition: varatt.h:305
text * cstring_to_text_with_len(const char *s, int len)
Definition: varlena.c:196
text * cstring_to_text(const char *s)
Definition: varlena.c:184
Datum byteasend(PG_FUNCTION_ARGS)
Definition: varlena.c:490
uint64 XLogRecPtr
Definition: xlogdefs.h:21