PostgreSQL Source Code  git master
tablefunc.c
Go to the documentation of this file.
1 /*
2  * contrib/tablefunc/tablefunc.c
3  *
4  *
5  * tablefunc
6  *
7  * Sample to demonstrate C functions which return setof scalar
8  * and setof composite.
9  * Joe Conway <mail@joeconway.com>
10  * And contributors:
11  * Nabil Sayegh <postgresql@e-trolley.de>
12  *
13  * Copyright (c) 2002-2017, PostgreSQL Global Development Group
14  *
15  * Permission to use, copy, modify, and distribute this software and its
16  * documentation for any purpose, without fee, and without a written agreement
17  * is hereby granted, provided that the above copyright notice and this
18  * paragraph and the following two paragraphs appear in all copies.
19  *
20  * IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
21  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
22  * LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
23  * DOCUMENTATION, EVEN IF THE AUTHOR OR DISTRIBUTORS HAVE BEEN ADVISED OF THE
24  * POSSIBILITY OF SUCH DAMAGE.
25  *
26  * THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
27  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
28  * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
29  * ON AN "AS IS" BASIS, AND THE AUTHOR AND DISTRIBUTORS HAS NO OBLIGATIONS TO
30  * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
31  *
32  */
33 #include "postgres.h"
34 
35 #include <math.h>
36 
37 #include "access/htup_details.h"
38 #include "catalog/pg_type.h"
39 #include "executor/spi.h"
40 #include "funcapi.h"
41 #include "lib/stringinfo.h"
42 #include "miscadmin.h"
43 #include "utils/builtins.h"
44 
45 #include "tablefunc.h"
46 
48 
49 static HTAB *load_categories_hash(char *cats_sql, MemoryContext per_query_ctx);
52  TupleDesc tupdesc,
53  MemoryContext per_query_ctx,
54  bool randomAccess);
55 static void validateConnectbyTupleDesc(TupleDesc tupdesc, bool show_branch, bool show_serial);
56 static bool compatCrosstabTupleDescs(TupleDesc tupdesc1, TupleDesc tupdesc2);
57 static void compatConnectbyTupleDescs(TupleDesc tupdesc1, TupleDesc tupdesc2);
58 static void get_normal_pair(float8 *x1, float8 *x2);
59 static Tuplestorestate *connectby(char *relname,
60  char *key_fld,
61  char *parent_key_fld,
62  char *orderby_fld,
63  char *branch_delim,
64  char *start_with,
65  int max_depth,
66  bool show_branch,
67  bool show_serial,
68  MemoryContext per_query_ctx,
69  bool randomAccess,
70  AttInMetadata *attinmeta);
71 static void build_tuplestore_recursively(char *key_fld,
72  char *parent_key_fld,
73  char *relname,
74  char *orderby_fld,
75  char *branch_delim,
76  char *start_with,
77  char *branch,
78  int level,
79  int *serial,
80  int max_depth,
81  bool show_branch,
82  bool show_serial,
83  MemoryContext per_query_ctx,
84  AttInMetadata *attinmeta,
85  Tuplestorestate *tupstore);
86 
87 typedef struct
88 {
89  float8 mean; /* mean of the distribution */
90  float8 stddev; /* stddev of the distribution */
91  float8 carry_val; /* hold second generated value */
92  bool use_carry; /* use second generated value */
94 
95 #define xpfree(var_) \
96  do { \
97  if (var_ != NULL) \
98  { \
99  pfree(var_); \
100  var_ = NULL; \
101  } \
102  } while (0)
103 
104 #define xpstrdup(tgtvar_, srcvar_) \
105  do { \
106  if (srcvar_) \
107  tgtvar_ = pstrdup(srcvar_); \
108  else \
109  tgtvar_ = NULL; \
110  } while (0)
111 
112 #define xstreq(tgtvar_, srcvar_) \
113  (((tgtvar_ == NULL) && (srcvar_ == NULL)) || \
114  ((tgtvar_ != NULL) && (srcvar_ != NULL) && (strcmp(tgtvar_, srcvar_) == 0)))
115 
116 /* sign, 10 digits, '\0' */
117 #define INT32_STRLEN 12
118 
119 /* stored info for a crosstab category */
120 typedef struct crosstab_cat_desc
121 {
122  char *catname; /* full category name */
123  uint64 attidx; /* zero based */
125 
126 #define MAX_CATNAME_LEN NAMEDATALEN
127 #define INIT_CATS 64
128 
129 #define crosstab_HashTableLookup(HASHTAB, CATNAME, CATDESC) \
130 do { \
131  crosstab_HashEnt *hentry; char key[MAX_CATNAME_LEN]; \
132  \
133  MemSet(key, 0, MAX_CATNAME_LEN); \
134  snprintf(key, MAX_CATNAME_LEN - 1, "%s", CATNAME); \
135  hentry = (crosstab_HashEnt*) hash_search(HASHTAB, \
136  key, HASH_FIND, NULL); \
137  if (hentry) \
138  CATDESC = hentry->catdesc; \
139  else \
140  CATDESC = NULL; \
141 } while(0)
142 
143 #define crosstab_HashTableInsert(HASHTAB, CATDESC) \
144 do { \
145  crosstab_HashEnt *hentry; bool found; char key[MAX_CATNAME_LEN]; \
146  \
147  MemSet(key, 0, MAX_CATNAME_LEN); \
148  snprintf(key, MAX_CATNAME_LEN - 1, "%s", CATDESC->catname); \
149  hentry = (crosstab_HashEnt*) hash_search(HASHTAB, \
150  key, HASH_ENTER, &found); \
151  if (found) \
152  ereport(ERROR, \
153  (errcode(ERRCODE_DUPLICATE_OBJECT), \
154  errmsg("duplicate category name"))); \
155  hentry->catdesc = CATDESC; \
156 } while(0)
157 
158 /* hash table */
159 typedef struct crosstab_hashent
160 {
161  char internal_catname[MAX_CATNAME_LEN];
164 
165 /*
166  * normal_rand - return requested number of random values
167  * with a Gaussian (Normal) distribution.
168  *
169  * inputs are int numvals, float8 mean, and float8 stddev
170  * returns setof float8
171  */
173 Datum
175 {
176  FuncCallContext *funcctx;
177  uint64 call_cntr;
178  uint64 max_calls;
179  normal_rand_fctx *fctx;
180  float8 mean;
181  float8 stddev;
182  float8 carry_val;
183  bool use_carry;
184  MemoryContext oldcontext;
185 
186  /* stuff done only on the first call of the function */
187  if (SRF_IS_FIRSTCALL())
188  {
189  /* create a function context for cross-call persistence */
190  funcctx = SRF_FIRSTCALL_INIT();
191 
192  /*
193  * switch to memory context appropriate for multiple function calls
194  */
195  oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
196 
197  /* total number of tuples to be returned */
198  funcctx->max_calls = PG_GETARG_UINT32(0);
199 
200  /* allocate memory for user context */
201  fctx = (normal_rand_fctx *) palloc(sizeof(normal_rand_fctx));
202 
203  /*
204  * Use fctx to keep track of upper and lower bounds from call to call.
205  * It will also be used to carry over the spare value we get from the
206  * Box-Muller algorithm so that we only actually calculate a new value
207  * every other call.
208  */
209  fctx->mean = PG_GETARG_FLOAT8(1);
210  fctx->stddev = PG_GETARG_FLOAT8(2);
211  fctx->carry_val = 0;
212  fctx->use_carry = false;
213 
214  funcctx->user_fctx = fctx;
215 
216  MemoryContextSwitchTo(oldcontext);
217  }
218 
219  /* stuff done on every call of the function */
220  funcctx = SRF_PERCALL_SETUP();
221 
222  call_cntr = funcctx->call_cntr;
223  max_calls = funcctx->max_calls;
224  fctx = funcctx->user_fctx;
225  mean = fctx->mean;
226  stddev = fctx->stddev;
227  carry_val = fctx->carry_val;
228  use_carry = fctx->use_carry;
229 
230  if (call_cntr < max_calls) /* do when there is more left to send */
231  {
232  float8 result;
233 
234  if (use_carry)
235  {
236  /*
237  * reset use_carry and use second value obtained on last pass
238  */
239  fctx->use_carry = false;
240  result = carry_val;
241  }
242  else
243  {
244  float8 normval_1;
245  float8 normval_2;
246 
247  /* Get the next two normal values */
248  get_normal_pair(&normval_1, &normval_2);
249 
250  /* use the first */
251  result = mean + (stddev * normval_1);
252 
253  /* and save the second */
254  fctx->carry_val = mean + (stddev * normval_2);
255  fctx->use_carry = true;
256  }
257 
258  /* send the result */
259  SRF_RETURN_NEXT(funcctx, Float8GetDatum(result));
260  }
261  else
262  /* do when there is no more left */
263  SRF_RETURN_DONE(funcctx);
264 }
265 
266 /*
267  * get_normal_pair()
268  * Assigns normally distributed (Gaussian) values to a pair of provided
269  * parameters, with mean 0, standard deviation 1.
270  *
271  * This routine implements Algorithm P (Polar method for normal deviates)
272  * from Knuth's _The_Art_of_Computer_Programming_, Volume 2, 3rd ed., pages
273  * 122-126. Knuth cites his source as "The polar method", G. E. P. Box, M. E.
274  * Muller, and G. Marsaglia, _Annals_Math,_Stat._ 29 (1958), 610-611.
275  *
276  */
277 static void
279 {
280  float8 u1,
281  u2,
282  v1,
283  v2,
284  s;
285 
286  do
287  {
288  u1 = (float8) random() / (float8) MAX_RANDOM_VALUE;
289  u2 = (float8) random() / (float8) MAX_RANDOM_VALUE;
290 
291  v1 = (2.0 * u1) - 1.0;
292  v2 = (2.0 * u2) - 1.0;
293 
294  s = v1 * v1 + v2 * v2;
295  } while (s >= 1.0);
296 
297  if (s == 0)
298  {
299  *x1 = 0;
300  *x2 = 0;
301  }
302  else
303  {
304  s = sqrt((-2.0 * log(s)) / s);
305  *x1 = v1 * s;
306  *x2 = v2 * s;
307  }
308 }
309 
310 /*
311  * crosstab - create a crosstab of rowids and values columns from a
312  * SQL statement returning one rowid column, one category column,
313  * and one value column.
314  *
315  * e.g. given sql which produces:
316  *
317  * rowid cat value
318  * ------+-------+-------
319  * row1 cat1 val1
320  * row1 cat2 val2
321  * row1 cat3 val3
322  * row1 cat4 val4
323  * row2 cat1 val5
324  * row2 cat2 val6
325  * row2 cat3 val7
326  * row2 cat4 val8
327  *
328  * crosstab returns:
329  * <===== values columns =====>
330  * rowid cat1 cat2 cat3 cat4
331  * ------+-------+-------+-------+-------
332  * row1 val1 val2 val3 val4
333  * row2 val5 val6 val7 val8
334  *
335  * NOTES:
336  * 1. SQL result must be ordered by 1,2.
337  * 2. The number of values columns depends on the tuple description
338  * of the function's declared return type. The return type's columns
339  * must match the datatypes of the SQL query's result. The datatype
340  * of the category column can be anything, however.
341  * 3. Missing values (i.e. not enough adjacent rows of same rowid to
342  * fill the number of result values columns) are filled in with nulls.
343  * 4. Extra values (i.e. too many adjacent rows of same rowid to fill
344  * the number of result values columns) are skipped.
345  * 5. Rows with all nulls in the values columns are skipped.
346  */
348 Datum
350 {
351  char *sql = text_to_cstring(PG_GETARG_TEXT_PP(0));
352  ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
353  Tuplestorestate *tupstore;
354  TupleDesc tupdesc;
355  uint64 call_cntr;
356  uint64 max_calls;
357  AttInMetadata *attinmeta;
358  SPITupleTable *spi_tuptable;
359  TupleDesc spi_tupdesc;
360  bool firstpass;
361  char *lastrowid;
362  int i;
363  int num_categories;
364  MemoryContext per_query_ctx;
365  MemoryContext oldcontext;
366  int ret;
367  uint64 proc;
368 
369  /* check to see if caller supports us returning a tuplestore */
370  if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo))
371  ereport(ERROR,
372  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
373  errmsg("set-valued function called in context that cannot accept a set")));
374  if (!(rsinfo->allowedModes & SFRM_Materialize))
375  ereport(ERROR,
376  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
377  errmsg("materialize mode required, but it is not " \
378  "allowed in this context")));
379 
380  per_query_ctx = rsinfo->econtext->ecxt_per_query_memory;
381 
382  /* Connect to SPI manager */
383  if ((ret = SPI_connect()) < 0)
384  /* internal error */
385  elog(ERROR, "crosstab: SPI_connect returned %d", ret);
386 
387  /* Retrieve the desired rows */
388  ret = SPI_execute(sql, true, 0);
389  proc = SPI_processed;
390 
391  /* If no qualifying tuples, fall out early */
392  if (ret != SPI_OK_SELECT || proc == 0)
393  {
394  SPI_finish();
395  rsinfo->isDone = ExprEndResult;
396  PG_RETURN_NULL();
397  }
398 
399  spi_tuptable = SPI_tuptable;
400  spi_tupdesc = spi_tuptable->tupdesc;
401 
402  /*----------
403  * The provided SQL query must always return three columns.
404  *
405  * 1. rowname
406  * the label or identifier for each row in the final result
407  * 2. category
408  * the label or identifier for each column in the final result
409  * 3. values
410  * the value for each column in the final result
411  *----------
412  */
413  if (spi_tupdesc->natts != 3)
414  ereport(ERROR,
415  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
416  errmsg("invalid source data SQL statement"),
417  errdetail("The provided SQL must return 3 "
418  "columns: rowid, category, and values.")));
419 
420  /* get a tuple descriptor for our result type */
421  switch (get_call_result_type(fcinfo, NULL, &tupdesc))
422  {
423  case TYPEFUNC_COMPOSITE:
424  /* success */
425  break;
426  case TYPEFUNC_RECORD:
427  /* failed to determine actual type of RECORD */
428  ereport(ERROR,
429  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
430  errmsg("function returning record called in context "
431  "that cannot accept type record")));
432  break;
433  default:
434  /* result type isn't composite */
435  ereport(ERROR,
436  (errcode(ERRCODE_DATATYPE_MISMATCH),
437  errmsg("return type must be a row type")));
438  break;
439  }
440 
441  /*
442  * Check that return tupdesc is compatible with the data we got from SPI,
443  * at least based on number and type of attributes
444  */
445  if (!compatCrosstabTupleDescs(tupdesc, spi_tupdesc))
446  ereport(ERROR,
447  (errcode(ERRCODE_SYNTAX_ERROR),
448  errmsg("return and sql tuple descriptions are " \
449  "incompatible")));
450 
451  /*
452  * switch to long-lived memory context
453  */
454  oldcontext = MemoryContextSwitchTo(per_query_ctx);
455 
456  /* make sure we have a persistent copy of the result tupdesc */
457  tupdesc = CreateTupleDescCopy(tupdesc);
458 
459  /* initialize our tuplestore in long-lived context */
460  tupstore =
462  false, work_mem);
463 
464  MemoryContextSwitchTo(oldcontext);
465 
466  /*
467  * Generate attribute metadata needed later to produce tuples from raw C
468  * strings
469  */
470  attinmeta = TupleDescGetAttInMetadata(tupdesc);
471 
472  /* total number of tuples to be examined */
473  max_calls = proc;
474 
475  /* the return tuple always must have 1 rowid + num_categories columns */
476  num_categories = tupdesc->natts - 1;
477 
478  firstpass = true;
479  lastrowid = NULL;
480 
481  for (call_cntr = 0; call_cntr < max_calls; call_cntr++)
482  {
483  bool skip_tuple = false;
484  char **values;
485 
486  /* allocate and zero space */
487  values = (char **) palloc0((1 + num_categories) * sizeof(char *));
488 
489  /*
490  * now loop through the sql results and assign each value in sequence
491  * to the next category
492  */
493  for (i = 0; i < num_categories; i++)
494  {
495  HeapTuple spi_tuple;
496  char *rowid;
497 
498  /* see if we've gone too far already */
499  if (call_cntr >= max_calls)
500  break;
501 
502  /* get the next sql result tuple */
503  spi_tuple = spi_tuptable->vals[call_cntr];
504 
505  /* get the rowid from the current sql result tuple */
506  rowid = SPI_getvalue(spi_tuple, spi_tupdesc, 1);
507 
508  /*
509  * If this is the first pass through the values for this rowid,
510  * set the first column to rowid
511  */
512  if (i == 0)
513  {
514  xpstrdup(values[0], rowid);
515 
516  /*
517  * Check to see if the rowid is the same as that of the last
518  * tuple sent -- if so, skip this tuple entirely
519  */
520  if (!firstpass && xstreq(lastrowid, rowid))
521  {
522  xpfree(rowid);
523  skip_tuple = true;
524  break;
525  }
526  }
527 
528  /*
529  * If rowid hasn't changed on us, continue building the output
530  * tuple.
531  */
532  if (xstreq(rowid, values[0]))
533  {
534  /*
535  * Get the next category item value, which is always attribute
536  * number three.
537  *
538  * Be careful to assign the value to the array index based on
539  * which category we are presently processing.
540  */
541  values[1 + i] = SPI_getvalue(spi_tuple, spi_tupdesc, 3);
542 
543  /*
544  * increment the counter since we consume a row for each
545  * category, but not for last pass because the outer loop will
546  * do that for us
547  */
548  if (i < (num_categories - 1))
549  call_cntr++;
550  xpfree(rowid);
551  }
552  else
553  {
554  /*
555  * We'll fill in NULLs for the missing values, but we need to
556  * decrement the counter since this sql result row doesn't
557  * belong to the current output tuple.
558  */
559  call_cntr--;
560  xpfree(rowid);
561  break;
562  }
563  }
564 
565  if (!skip_tuple)
566  {
567  HeapTuple tuple;
568 
569  /* build the tuple and store it */
570  tuple = BuildTupleFromCStrings(attinmeta, values);
571  tuplestore_puttuple(tupstore, tuple);
572  heap_freetuple(tuple);
573  }
574 
575  /* Remember current rowid */
576  xpfree(lastrowid);
577  xpstrdup(lastrowid, values[0]);
578  firstpass = false;
579 
580  /* Clean up */
581  for (i = 0; i < num_categories + 1; i++)
582  if (values[i] != NULL)
583  pfree(values[i]);
584  pfree(values);
585  }
586 
587  /* let the caller know we're sending back a tuplestore */
588  rsinfo->returnMode = SFRM_Materialize;
589  rsinfo->setResult = tupstore;
590  rsinfo->setDesc = tupdesc;
591 
592  /* release SPI related resources (and return to caller's context) */
593  SPI_finish();
594 
595  return (Datum) 0;
596 }
597 
598 /*
599  * crosstab_hash - reimplement crosstab as materialized function and
600  * properly deal with missing values (i.e. don't pack remaining
601  * values to the left)
602  *
603  * crosstab - create a crosstab of rowids and values columns from a
604  * SQL statement returning one rowid column, one category column,
605  * and one value column.
606  *
607  * e.g. given sql which produces:
608  *
609  * rowid cat value
610  * ------+-------+-------
611  * row1 cat1 val1
612  * row1 cat2 val2
613  * row1 cat4 val4
614  * row2 cat1 val5
615  * row2 cat2 val6
616  * row2 cat3 val7
617  * row2 cat4 val8
618  *
619  * crosstab returns:
620  * <===== values columns =====>
621  * rowid cat1 cat2 cat3 cat4
622  * ------+-------+-------+-------+-------
623  * row1 val1 val2 null val4
624  * row2 val5 val6 val7 val8
625  *
626  * NOTES:
627  * 1. SQL result must be ordered by 1.
628  * 2. The number of values columns depends on the tuple description
629  * of the function's declared return type.
630  * 3. Missing values (i.e. missing category) are filled in with nulls.
631  * 4. Extra values (i.e. not in category results) are skipped.
632  */
634 Datum
636 {
637  char *sql = text_to_cstring(PG_GETARG_TEXT_PP(0));
638  char *cats_sql = text_to_cstring(PG_GETARG_TEXT_PP(1));
639  ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
640  TupleDesc tupdesc;
641  MemoryContext per_query_ctx;
642  MemoryContext oldcontext;
644 
645  /* check to see if caller supports us returning a tuplestore */
646  if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo))
647  ereport(ERROR,
648  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
649  errmsg("set-valued function called in context that cannot accept a set")));
650  if (!(rsinfo->allowedModes & SFRM_Materialize) ||
651  rsinfo->expectedDesc == NULL)
652  ereport(ERROR,
653  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
654  errmsg("materialize mode required, but it is not " \
655  "allowed in this context")));
656 
657  per_query_ctx = rsinfo->econtext->ecxt_per_query_memory;
658  oldcontext = MemoryContextSwitchTo(per_query_ctx);
659 
660  /* get the requested return tuple description */
661  tupdesc = CreateTupleDescCopy(rsinfo->expectedDesc);
662 
663  /*
664  * Check to make sure we have a reasonable tuple descriptor
665  *
666  * Note we will attempt to coerce the values into whatever the return
667  * attribute type is and depend on the "in" function to complain if
668  * needed.
669  */
670  if (tupdesc->natts < 2)
671  ereport(ERROR,
672  (errcode(ERRCODE_SYNTAX_ERROR),
673  errmsg("query-specified return tuple and " \
674  "crosstab function are not compatible")));
675 
676  /* load up the categories hash table */
677  crosstab_hash = load_categories_hash(cats_sql, per_query_ctx);
678 
679  /* let the caller know we're sending back a tuplestore */
680  rsinfo->returnMode = SFRM_Materialize;
681 
682  /* now go build it */
683  rsinfo->setResult = get_crosstab_tuplestore(sql,
685  tupdesc,
686  per_query_ctx,
688 
689  /*
690  * SFRM_Materialize mode expects us to return a NULL Datum. The actual
691  * tuples are in our tuplestore and passed back through rsinfo->setResult.
692  * rsinfo->setDesc is set to the tuple description that we actually used
693  * to build our tuples with, so the caller can verify we did what it was
694  * expecting.
695  */
696  rsinfo->setDesc = tupdesc;
697  MemoryContextSwitchTo(oldcontext);
698 
699  return (Datum) 0;
700 }
701 
702 /*
703  * load up the categories hash table
704  */
705 static HTAB *
706 load_categories_hash(char *cats_sql, MemoryContext per_query_ctx)
707 {
709  HASHCTL ctl;
710  int ret;
711  uint64 proc;
712  MemoryContext SPIcontext;
713 
714  /* initialize the category hash table */
715  MemSet(&ctl, 0, sizeof(ctl));
716  ctl.keysize = MAX_CATNAME_LEN;
717  ctl.entrysize = sizeof(crosstab_HashEnt);
718  ctl.hcxt = per_query_ctx;
719 
720  /*
721  * use INIT_CATS, defined above as a guess of how many hash table entries
722  * to create, initially
723  */
724  crosstab_hash = hash_create("crosstab hash",
725  INIT_CATS,
726  &ctl,
728 
729  /* Connect to SPI manager */
730  if ((ret = SPI_connect()) < 0)
731  /* internal error */
732  elog(ERROR, "load_categories_hash: SPI_connect returned %d", ret);
733 
734  /* Retrieve the category name rows */
735  ret = SPI_execute(cats_sql, true, 0);
736  proc = SPI_processed;
737 
738  /* Check for qualifying tuples */
739  if ((ret == SPI_OK_SELECT) && (proc > 0))
740  {
741  SPITupleTable *spi_tuptable = SPI_tuptable;
742  TupleDesc spi_tupdesc = spi_tuptable->tupdesc;
743  uint64 i;
744 
745  /*
746  * The provided categories SQL query must always return one column:
747  * category - the label or identifier for each column
748  */
749  if (spi_tupdesc->natts != 1)
750  ereport(ERROR,
751  (errcode(ERRCODE_SYNTAX_ERROR),
752  errmsg("provided \"categories\" SQL must " \
753  "return 1 column of at least one row")));
754 
755  for (i = 0; i < proc; i++)
756  {
757  crosstab_cat_desc *catdesc;
758  char *catname;
759  HeapTuple spi_tuple;
760 
761  /* get the next sql result tuple */
762  spi_tuple = spi_tuptable->vals[i];
763 
764  /* get the category from the current sql result tuple */
765  catname = SPI_getvalue(spi_tuple, spi_tupdesc, 1);
766 
767  SPIcontext = MemoryContextSwitchTo(per_query_ctx);
768 
769  catdesc = (crosstab_cat_desc *) palloc(sizeof(crosstab_cat_desc));
770  catdesc->catname = catname;
771  catdesc->attidx = i;
772 
773  /* Add the proc description block to the hashtable */
774  crosstab_HashTableInsert(crosstab_hash, catdesc);
775 
776  MemoryContextSwitchTo(SPIcontext);
777  }
778  }
779 
780  if (SPI_finish() != SPI_OK_FINISH)
781  /* internal error */
782  elog(ERROR, "load_categories_hash: SPI_finish() failed");
783 
784  return crosstab_hash;
785 }
786 
787 /*
788  * create and populate the crosstab tuplestore using the provided source query
789  */
790 static Tuplestorestate *
793  TupleDesc tupdesc,
794  MemoryContext per_query_ctx,
795  bool randomAccess)
796 {
797  Tuplestorestate *tupstore;
798  int num_categories = hash_get_num_entries(crosstab_hash);
799  AttInMetadata *attinmeta = TupleDescGetAttInMetadata(tupdesc);
800  char **values;
801  HeapTuple tuple;
802  int ret;
803  uint64 proc;
804 
805  /* initialize our tuplestore (while still in query context!) */
806  tupstore = tuplestore_begin_heap(randomAccess, false, work_mem);
807 
808  /* Connect to SPI manager */
809  if ((ret = SPI_connect()) < 0)
810  /* internal error */
811  elog(ERROR, "get_crosstab_tuplestore: SPI_connect returned %d", ret);
812 
813  /* Now retrieve the crosstab source rows */
814  ret = SPI_execute(sql, true, 0);
815  proc = SPI_processed;
816 
817  /* Check for qualifying tuples */
818  if ((ret == SPI_OK_SELECT) && (proc > 0))
819  {
820  SPITupleTable *spi_tuptable = SPI_tuptable;
821  TupleDesc spi_tupdesc = spi_tuptable->tupdesc;
822  int ncols = spi_tupdesc->natts;
823  char *rowid;
824  char *lastrowid = NULL;
825  bool firstpass = true;
826  uint64 i;
827  int j;
828  int result_ncols;
829 
830  if (num_categories == 0)
831  {
832  /* no qualifying category tuples */
833  ereport(ERROR,
834  (errcode(ERRCODE_SYNTAX_ERROR),
835  errmsg("provided \"categories\" SQL must " \
836  "return 1 column of at least one row")));
837  }
838 
839  /*
840  * The provided SQL query must always return at least three columns:
841  *
842  * 1. rowname the label for each row - column 1 in the final result
843  * 2. category the label for each value-column in the final result 3.
844  * value the values used to populate the value-columns
845  *
846  * If there are more than three columns, the last two are taken as
847  * "category" and "values". The first column is taken as "rowname".
848  * Additional columns (2 thru N-2) are assumed the same for the same
849  * "rowname", and are copied into the result tuple from the first time
850  * we encounter a particular rowname.
851  */
852  if (ncols < 3)
853  ereport(ERROR,
854  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
855  errmsg("invalid source data SQL statement"),
856  errdetail("The provided SQL must return 3 " \
857  " columns; rowid, category, and values.")));
858 
859  result_ncols = (ncols - 2) + num_categories;
860 
861  /* Recheck to make sure we tuple descriptor still looks reasonable */
862  if (tupdesc->natts != result_ncols)
863  ereport(ERROR,
864  (errcode(ERRCODE_SYNTAX_ERROR),
865  errmsg("invalid return type"),
866  errdetail("Query-specified return " \
867  "tuple has %d columns but crosstab " \
868  "returns %d.", tupdesc->natts, result_ncols)));
869 
870  /* allocate space */
871  values = (char **) palloc(result_ncols * sizeof(char *));
872 
873  /* and make sure it's clear */
874  memset(values, '\0', result_ncols * sizeof(char *));
875 
876  for (i = 0; i < proc; i++)
877  {
878  HeapTuple spi_tuple;
879  crosstab_cat_desc *catdesc;
880  char *catname;
881 
882  /* get the next sql result tuple */
883  spi_tuple = spi_tuptable->vals[i];
884 
885  /* get the rowid from the current sql result tuple */
886  rowid = SPI_getvalue(spi_tuple, spi_tupdesc, 1);
887 
888  /*
889  * if we're on a new output row, grab the column values up to
890  * column N-2 now
891  */
892  if (firstpass || !xstreq(lastrowid, rowid))
893  {
894  /*
895  * a new row means we need to flush the old one first, unless
896  * we're on the very first row
897  */
898  if (!firstpass)
899  {
900  /* rowid changed, flush the previous output row */
901  tuple = BuildTupleFromCStrings(attinmeta, values);
902 
903  tuplestore_puttuple(tupstore, tuple);
904 
905  for (j = 0; j < result_ncols; j++)
906  xpfree(values[j]);
907  }
908 
909  values[0] = rowid;
910  for (j = 1; j < ncols - 2; j++)
911  values[j] = SPI_getvalue(spi_tuple, spi_tupdesc, j + 1);
912 
913  /* we're no longer on the first pass */
914  firstpass = false;
915  }
916 
917  /* look up the category and fill in the appropriate column */
918  catname = SPI_getvalue(spi_tuple, spi_tupdesc, ncols - 1);
919 
920  if (catname != NULL)
921  {
922  crosstab_HashTableLookup(crosstab_hash, catname, catdesc);
923 
924  if (catdesc)
925  values[catdesc->attidx + ncols - 2] =
926  SPI_getvalue(spi_tuple, spi_tupdesc, ncols);
927  }
928 
929  xpfree(lastrowid);
930  xpstrdup(lastrowid, rowid);
931  }
932 
933  /* flush the last output row */
934  tuple = BuildTupleFromCStrings(attinmeta, values);
935 
936  tuplestore_puttuple(tupstore, tuple);
937  }
938 
939  if (SPI_finish() != SPI_OK_FINISH)
940  /* internal error */
941  elog(ERROR, "get_crosstab_tuplestore: SPI_finish() failed");
942 
943  tuplestore_donestoring(tupstore);
944 
945  return tupstore;
946 }
947 
948 /*
949  * connectby_text - produce a result set from a hierarchical (parent/child)
950  * table.
951  *
952  * e.g. given table foo:
953  *
954  * keyid parent_keyid pos
955  * ------+------------+--
956  * row1 NULL 0
957  * row2 row1 0
958  * row3 row1 0
959  * row4 row2 1
960  * row5 row2 0
961  * row6 row4 0
962  * row7 row3 0
963  * row8 row6 0
964  * row9 row5 0
965  *
966  *
967  * connectby(text relname, text keyid_fld, text parent_keyid_fld
968  * [, text orderby_fld], text start_with, int max_depth
969  * [, text branch_delim])
970  * connectby('foo', 'keyid', 'parent_keyid', 'pos', 'row2', 0, '~') returns:
971  *
972  * keyid parent_id level branch serial
973  * ------+-----------+--------+-----------------------
974  * row2 NULL 0 row2 1
975  * row5 row2 1 row2~row5 2
976  * row9 row5 2 row2~row5~row9 3
977  * row4 row2 1 row2~row4 4
978  * row6 row4 2 row2~row4~row6 5
979  * row8 row6 3 row2~row4~row6~row8 6
980  *
981  */
983 
984 #define CONNECTBY_NCOLS 4
985 #define CONNECTBY_NCOLS_NOBRANCH 3
986 
987 Datum
989 {
990  char *relname = text_to_cstring(PG_GETARG_TEXT_PP(0));
991  char *key_fld = text_to_cstring(PG_GETARG_TEXT_PP(1));
992  char *parent_key_fld = text_to_cstring(PG_GETARG_TEXT_PP(2));
993  char *start_with = text_to_cstring(PG_GETARG_TEXT_PP(3));
994  int max_depth = PG_GETARG_INT32(4);
995  char *branch_delim = NULL;
996  bool show_branch = false;
997  bool show_serial = false;
998  ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
999  TupleDesc tupdesc;
1000  AttInMetadata *attinmeta;
1001  MemoryContext per_query_ctx;
1002  MemoryContext oldcontext;
1003 
1004  /* check to see if caller supports us returning a tuplestore */
1005  if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo))
1006  ereport(ERROR,
1007  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1008  errmsg("set-valued function called in context that cannot accept a set")));
1009  if (!(rsinfo->allowedModes & SFRM_Materialize) ||
1010  rsinfo->expectedDesc == NULL)
1011  ereport(ERROR,
1012  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1013  errmsg("materialize mode required, but it is not " \
1014  "allowed in this context")));
1015 
1016  if (fcinfo->nargs == 6)
1017  {
1018  branch_delim = text_to_cstring(PG_GETARG_TEXT_PP(5));
1019  show_branch = true;
1020  }
1021  else
1022  /* default is no show, tilde for the delimiter */
1023  branch_delim = pstrdup("~");
1024 
1025  per_query_ctx = rsinfo->econtext->ecxt_per_query_memory;
1026  oldcontext = MemoryContextSwitchTo(per_query_ctx);
1027 
1028  /* get the requested return tuple description */
1029  tupdesc = CreateTupleDescCopy(rsinfo->expectedDesc);
1030 
1031  /* does it meet our needs */
1032  validateConnectbyTupleDesc(tupdesc, show_branch, show_serial);
1033 
1034  /* OK, use it then */
1035  attinmeta = TupleDescGetAttInMetadata(tupdesc);
1036 
1037  /* OK, go to work */
1038  rsinfo->returnMode = SFRM_Materialize;
1039  rsinfo->setResult = connectby(relname,
1040  key_fld,
1041  parent_key_fld,
1042  NULL,
1043  branch_delim,
1044  start_with,
1045  max_depth,
1046  show_branch,
1047  show_serial,
1048  per_query_ctx,
1050  attinmeta);
1051  rsinfo->setDesc = tupdesc;
1052 
1053  MemoryContextSwitchTo(oldcontext);
1054 
1055  /*
1056  * SFRM_Materialize mode expects us to return a NULL Datum. The actual
1057  * tuples are in our tuplestore and passed back through rsinfo->setResult.
1058  * rsinfo->setDesc is set to the tuple description that we actually used
1059  * to build our tuples with, so the caller can verify we did what it was
1060  * expecting.
1061  */
1062  return (Datum) 0;
1063 }
1064 
1066 Datum
1068 {
1069  char *relname = text_to_cstring(PG_GETARG_TEXT_PP(0));
1070  char *key_fld = text_to_cstring(PG_GETARG_TEXT_PP(1));
1071  char *parent_key_fld = text_to_cstring(PG_GETARG_TEXT_PP(2));
1072  char *orderby_fld = text_to_cstring(PG_GETARG_TEXT_PP(3));
1073  char *start_with = text_to_cstring(PG_GETARG_TEXT_PP(4));
1074  int max_depth = PG_GETARG_INT32(5);
1075  char *branch_delim = NULL;
1076  bool show_branch = false;
1077  bool show_serial = true;
1078  ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
1079  TupleDesc tupdesc;
1080  AttInMetadata *attinmeta;
1081  MemoryContext per_query_ctx;
1082  MemoryContext oldcontext;
1083 
1084  /* check to see if caller supports us returning a tuplestore */
1085  if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo))
1086  ereport(ERROR,
1087  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1088  errmsg("set-valued function called in context that cannot accept a set")));
1089  if (!(rsinfo->allowedModes & SFRM_Materialize) ||
1090  rsinfo->expectedDesc == NULL)
1091  ereport(ERROR,
1092  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1093  errmsg("materialize mode required, but it is not " \
1094  "allowed in this context")));
1095 
1096  if (fcinfo->nargs == 7)
1097  {
1098  branch_delim = text_to_cstring(PG_GETARG_TEXT_PP(6));
1099  show_branch = true;
1100  }
1101  else
1102  /* default is no show, tilde for the delimiter */
1103  branch_delim = pstrdup("~");
1104 
1105  per_query_ctx = rsinfo->econtext->ecxt_per_query_memory;
1106  oldcontext = MemoryContextSwitchTo(per_query_ctx);
1107 
1108  /* get the requested return tuple description */
1109  tupdesc = CreateTupleDescCopy(rsinfo->expectedDesc);
1110 
1111  /* does it meet our needs */
1112  validateConnectbyTupleDesc(tupdesc, show_branch, show_serial);
1113 
1114  /* OK, use it then */
1115  attinmeta = TupleDescGetAttInMetadata(tupdesc);
1116 
1117  /* OK, go to work */
1118  rsinfo->returnMode = SFRM_Materialize;
1119  rsinfo->setResult = connectby(relname,
1120  key_fld,
1121  parent_key_fld,
1122  orderby_fld,
1123  branch_delim,
1124  start_with,
1125  max_depth,
1126  show_branch,
1127  show_serial,
1128  per_query_ctx,
1130  attinmeta);
1131  rsinfo->setDesc = tupdesc;
1132 
1133  MemoryContextSwitchTo(oldcontext);
1134 
1135  /*
1136  * SFRM_Materialize mode expects us to return a NULL Datum. The actual
1137  * tuples are in our tuplestore and passed back through rsinfo->setResult.
1138  * rsinfo->setDesc is set to the tuple description that we actually used
1139  * to build our tuples with, so the caller can verify we did what it was
1140  * expecting.
1141  */
1142  return (Datum) 0;
1143 }
1144 
1145 
1146 /*
1147  * connectby - does the real work for connectby_text()
1148  */
1149 static Tuplestorestate *
1150 connectby(char *relname,
1151  char *key_fld,
1152  char *parent_key_fld,
1153  char *orderby_fld,
1154  char *branch_delim,
1155  char *start_with,
1156  int max_depth,
1157  bool show_branch,
1158  bool show_serial,
1159  MemoryContext per_query_ctx,
1160  bool randomAccess,
1161  AttInMetadata *attinmeta)
1162 {
1163  Tuplestorestate *tupstore = NULL;
1164  int ret;
1165  MemoryContext oldcontext;
1166 
1167  int serial = 1;
1168 
1169  /* Connect to SPI manager */
1170  if ((ret = SPI_connect()) < 0)
1171  /* internal error */
1172  elog(ERROR, "connectby: SPI_connect returned %d", ret);
1173 
1174  /* switch to longer term context to create the tuple store */
1175  oldcontext = MemoryContextSwitchTo(per_query_ctx);
1176 
1177  /* initialize our tuplestore */
1178  tupstore = tuplestore_begin_heap(randomAccess, false, work_mem);
1179 
1180  MemoryContextSwitchTo(oldcontext);
1181 
1182  /* now go get the whole tree */
1184  parent_key_fld,
1185  relname,
1186  orderby_fld,
1187  branch_delim,
1188  start_with,
1189  start_with, /* current_branch */
1190  0, /* initial level is 0 */
1191  &serial, /* initial serial is 1 */
1192  max_depth,
1193  show_branch,
1194  show_serial,
1195  per_query_ctx,
1196  attinmeta,
1197  tupstore);
1198 
1199  SPI_finish();
1200 
1201  return tupstore;
1202 }
1203 
1204 static void
1206  char *parent_key_fld,
1207  char *relname,
1208  char *orderby_fld,
1209  char *branch_delim,
1210  char *start_with,
1211  char *branch,
1212  int level,
1213  int *serial,
1214  int max_depth,
1215  bool show_branch,
1216  bool show_serial,
1217  MemoryContext per_query_ctx,
1218  AttInMetadata *attinmeta,
1219  Tuplestorestate *tupstore)
1220 {
1221  TupleDesc tupdesc = attinmeta->tupdesc;
1222  int ret;
1223  uint64 proc;
1224  int serial_column;
1225  StringInfoData sql;
1226  char **values;
1227  char *current_key;
1228  char *current_key_parent;
1229  char current_level[INT32_STRLEN];
1230  char serial_str[INT32_STRLEN];
1231  char *current_branch;
1232  HeapTuple tuple;
1233 
1234  if (max_depth > 0 && level > max_depth)
1235  return;
1236 
1237  initStringInfo(&sql);
1238 
1239  /* Build initial sql statement */
1240  if (!show_serial)
1241  {
1242  appendStringInfo(&sql, "SELECT %s, %s FROM %s WHERE %s = %s AND %s IS NOT NULL AND %s <> %s",
1243  key_fld,
1244  parent_key_fld,
1245  relname,
1246  parent_key_fld,
1247  quote_literal_cstr(start_with),
1248  key_fld, key_fld, parent_key_fld);
1249  serial_column = 0;
1250  }
1251  else
1252  {
1253  appendStringInfo(&sql, "SELECT %s, %s FROM %s WHERE %s = %s AND %s IS NOT NULL AND %s <> %s ORDER BY %s",
1254  key_fld,
1255  parent_key_fld,
1256  relname,
1257  parent_key_fld,
1258  quote_literal_cstr(start_with),
1259  key_fld, key_fld, parent_key_fld,
1260  orderby_fld);
1261  serial_column = 1;
1262  }
1263 
1264  if (show_branch)
1265  values = (char **) palloc((CONNECTBY_NCOLS + serial_column) * sizeof(char *));
1266  else
1267  values = (char **) palloc((CONNECTBY_NCOLS_NOBRANCH + serial_column) * sizeof(char *));
1268 
1269  /* First time through, do a little setup */
1270  if (level == 0)
1271  {
1272  /* root value is the one we initially start with */
1273  values[0] = start_with;
1274 
1275  /* root value has no parent */
1276  values[1] = NULL;
1277 
1278  /* root level is 0 */
1279  sprintf(current_level, "%d", level);
1280  values[2] = current_level;
1281 
1282  /* root branch is just starting root value */
1283  if (show_branch)
1284  values[3] = start_with;
1285 
1286  /* root starts the serial with 1 */
1287  if (show_serial)
1288  {
1289  sprintf(serial_str, "%d", (*serial)++);
1290  if (show_branch)
1291  values[4] = serial_str;
1292  else
1293  values[3] = serial_str;
1294  }
1295 
1296  /* construct the tuple */
1297  tuple = BuildTupleFromCStrings(attinmeta, values);
1298 
1299  /* now store it */
1300  tuplestore_puttuple(tupstore, tuple);
1301 
1302  /* increment level */
1303  level++;
1304  }
1305 
1306  /* Retrieve the desired rows */
1307  ret = SPI_execute(sql.data, true, 0);
1308  proc = SPI_processed;
1309 
1310  /* Check for qualifying tuples */
1311  if ((ret == SPI_OK_SELECT) && (proc > 0))
1312  {
1313  HeapTuple spi_tuple;
1314  SPITupleTable *tuptable = SPI_tuptable;
1315  TupleDesc spi_tupdesc = tuptable->tupdesc;
1316  uint64 i;
1317  StringInfoData branchstr;
1318  StringInfoData chk_branchstr;
1319  StringInfoData chk_current_key;
1320 
1321  /*
1322  * Check that return tupdesc is compatible with the one we got from
1323  * the query.
1324  */
1325  compatConnectbyTupleDescs(tupdesc, spi_tupdesc);
1326 
1327  initStringInfo(&branchstr);
1328  initStringInfo(&chk_branchstr);
1329  initStringInfo(&chk_current_key);
1330 
1331  for (i = 0; i < proc; i++)
1332  {
1333  /* initialize branch for this pass */
1334  appendStringInfoString(&branchstr, branch);
1335  appendStringInfo(&chk_branchstr, "%s%s%s", branch_delim, branch, branch_delim);
1336 
1337  /* get the next sql result tuple */
1338  spi_tuple = tuptable->vals[i];
1339 
1340  /* get the current key (might be NULL) */
1341  current_key = SPI_getvalue(spi_tuple, spi_tupdesc, 1);
1342 
1343  /* get the parent key (might be NULL) */
1344  current_key_parent = SPI_getvalue(spi_tuple, spi_tupdesc, 2);
1345 
1346  /* get the current level */
1347  sprintf(current_level, "%d", level);
1348 
1349  /* check to see if this key is also an ancestor */
1350  if (current_key)
1351  {
1352  appendStringInfo(&chk_current_key, "%s%s%s",
1353  branch_delim, current_key, branch_delim);
1354  if (strstr(chk_branchstr.data, chk_current_key.data))
1355  ereport(ERROR,
1356  (errcode(ERRCODE_INVALID_RECURSION),
1357  errmsg("infinite recursion detected")));
1358  }
1359 
1360  /* OK, extend the branch */
1361  if (current_key)
1362  appendStringInfo(&branchstr, "%s%s", branch_delim, current_key);
1363  current_branch = branchstr.data;
1364 
1365  /* build a tuple */
1366  values[0] = current_key;
1367  values[1] = current_key_parent;
1368  values[2] = current_level;
1369  if (show_branch)
1370  values[3] = current_branch;
1371  if (show_serial)
1372  {
1373  sprintf(serial_str, "%d", (*serial)++);
1374  if (show_branch)
1375  values[4] = serial_str;
1376  else
1377  values[3] = serial_str;
1378  }
1379 
1380  tuple = BuildTupleFromCStrings(attinmeta, values);
1381 
1382  /* store the tuple for later use */
1383  tuplestore_puttuple(tupstore, tuple);
1384 
1385  heap_freetuple(tuple);
1386 
1387  /* recurse using current_key as the new start_with */
1388  if (current_key)
1390  parent_key_fld,
1391  relname,
1392  orderby_fld,
1393  branch_delim,
1394  current_key,
1395  current_branch,
1396  level + 1,
1397  serial,
1398  max_depth,
1399  show_branch,
1400  show_serial,
1401  per_query_ctx,
1402  attinmeta,
1403  tupstore);
1404 
1405  xpfree(current_key);
1406  xpfree(current_key_parent);
1407 
1408  /* reset branch for next pass */
1409  resetStringInfo(&branchstr);
1410  resetStringInfo(&chk_branchstr);
1411  resetStringInfo(&chk_current_key);
1412  }
1413 
1414  xpfree(branchstr.data);
1415  xpfree(chk_branchstr.data);
1416  xpfree(chk_current_key.data);
1417  }
1418 }
1419 
1420 /*
1421  * Check expected (query runtime) tupdesc suitable for Connectby
1422  */
1423 static void
1424 validateConnectbyTupleDesc(TupleDesc td, bool show_branch, bool show_serial)
1425 {
1426  int serial_column = 0;
1427 
1428  if (show_serial)
1429  serial_column = 1;
1430 
1431  /* are there the correct number of columns */
1432  if (show_branch)
1433  {
1434  if (td->natts != (CONNECTBY_NCOLS + serial_column))
1435  ereport(ERROR,
1436  (errcode(ERRCODE_DATATYPE_MISMATCH),
1437  errmsg("invalid return type"),
1438  errdetail("Query-specified return tuple has " \
1439  "wrong number of columns.")));
1440  }
1441  else
1442  {
1443  if (td->natts != CONNECTBY_NCOLS_NOBRANCH + serial_column)
1444  ereport(ERROR,
1445  (errcode(ERRCODE_DATATYPE_MISMATCH),
1446  errmsg("invalid return type"),
1447  errdetail("Query-specified return tuple has " \
1448  "wrong number of columns.")));
1449  }
1450 
1451  /* check that the types of the first two columns match */
1452  if (TupleDescAttr(td, 0)->atttypid != TupleDescAttr(td, 1)->atttypid)
1453  ereport(ERROR,
1454  (errcode(ERRCODE_DATATYPE_MISMATCH),
1455  errmsg("invalid return type"),
1456  errdetail("First two columns must be the same type.")));
1457 
1458  /* check that the type of the third column is INT4 */
1459  if (TupleDescAttr(td, 2)->atttypid != INT4OID)
1460  ereport(ERROR,
1461  (errcode(ERRCODE_DATATYPE_MISMATCH),
1462  errmsg("invalid return type"),
1463  errdetail("Third column must be type %s.",
1464  format_type_be(INT4OID))));
1465 
1466  /* check that the type of the fourth column is TEXT if applicable */
1467  if (show_branch && TupleDescAttr(td, 3)->atttypid != TEXTOID)
1468  ereport(ERROR,
1469  (errcode(ERRCODE_DATATYPE_MISMATCH),
1470  errmsg("invalid return type"),
1471  errdetail("Fourth column must be type %s.",
1472  format_type_be(TEXTOID))));
1473 
1474  /* check that the type of the fifth column is INT4 */
1475  if (show_branch && show_serial &&
1476  TupleDescAttr(td, 4)->atttypid != INT4OID)
1477  ereport(ERROR,
1478  (errcode(ERRCODE_DATATYPE_MISMATCH),
1479  errmsg("query-specified return tuple not valid for Connectby: "
1480  "fifth column must be type %s",
1481  format_type_be(INT4OID))));
1482 
1483  /* check that the type of the fifth column is INT4 */
1484  if (!show_branch && show_serial &&
1485  TupleDescAttr(td, 3)->atttypid != INT4OID)
1486  ereport(ERROR,
1487  (errcode(ERRCODE_DATATYPE_MISMATCH),
1488  errmsg("query-specified return tuple not valid for Connectby: "
1489  "fourth column must be type %s",
1490  format_type_be(INT4OID))));
1491 
1492  /* OK, the tupdesc is valid for our purposes */
1493 }
1494 
1495 /*
1496  * Check if spi sql tupdesc and return tupdesc are compatible
1497  */
1498 static void
1500 {
1501  Oid ret_atttypid;
1502  Oid sql_atttypid;
1503  int32 ret_atttypmod;
1504  int32 sql_atttypmod;
1505 
1506  /*
1507  * Result must have at least 2 columns.
1508  */
1509  if (sql_tupdesc->natts < 2)
1510  ereport(ERROR,
1511  (errcode(ERRCODE_DATATYPE_MISMATCH),
1512  errmsg("invalid return type"),
1513  errdetail("Query must return at least two columns.")));
1514 
1515  /*
1516  * These columns must match the result type indicated by the calling
1517  * query.
1518  */
1519  ret_atttypid = TupleDescAttr(ret_tupdesc, 0)->atttypid;
1520  sql_atttypid = TupleDescAttr(sql_tupdesc, 0)->atttypid;
1521  ret_atttypmod = TupleDescAttr(ret_tupdesc, 0)->atttypmod;
1522  sql_atttypmod = TupleDescAttr(sql_tupdesc, 0)->atttypmod;
1523  if (ret_atttypid != sql_atttypid ||
1524  (ret_atttypmod >= 0 && ret_atttypmod != sql_atttypmod))
1525  ereport(ERROR,
1526  (errcode(ERRCODE_DATATYPE_MISMATCH),
1527  errmsg("invalid return type"),
1528  errdetail("SQL key field type %s does " \
1529  "not match return key field type %s.",
1530  format_type_with_typemod(ret_atttypid, ret_atttypmod),
1531  format_type_with_typemod(sql_atttypid, sql_atttypmod))));
1532 
1533  ret_atttypid = TupleDescAttr(ret_tupdesc, 1)->atttypid;
1534  sql_atttypid = TupleDescAttr(sql_tupdesc, 1)->atttypid;
1535  ret_atttypmod = TupleDescAttr(ret_tupdesc, 1)->atttypmod;
1536  sql_atttypmod = TupleDescAttr(sql_tupdesc, 1)->atttypmod;
1537  if (ret_atttypid != sql_atttypid ||
1538  (ret_atttypmod >= 0 && ret_atttypmod != sql_atttypmod))
1539  ereport(ERROR,
1540  (errcode(ERRCODE_DATATYPE_MISMATCH),
1541  errmsg("invalid return type"),
1542  errdetail("SQL parent key field type %s does " \
1543  "not match return parent key field type %s.",
1544  format_type_with_typemod(ret_atttypid, ret_atttypmod),
1545  format_type_with_typemod(sql_atttypid, sql_atttypmod))));
1546 
1547  /* OK, the two tupdescs are compatible for our purposes */
1548 }
1549 
1550 /*
1551  * Check if two tupdescs match in type of attributes
1552  */
1553 static bool
1555 {
1556  int i;
1557  Form_pg_attribute ret_attr;
1558  Oid ret_atttypid;
1559  Form_pg_attribute sql_attr;
1560  Oid sql_atttypid;
1561 
1562  if (ret_tupdesc->natts < 2 ||
1563  sql_tupdesc->natts < 3)
1564  return false;
1565 
1566  /* check the rowid types match */
1567  ret_atttypid = TupleDescAttr(ret_tupdesc, 0)->atttypid;
1568  sql_atttypid = TupleDescAttr(sql_tupdesc, 0)->atttypid;
1569  if (ret_atttypid != sql_atttypid)
1570  ereport(ERROR,
1571  (errcode(ERRCODE_DATATYPE_MISMATCH),
1572  errmsg("invalid return type"),
1573  errdetail("SQL rowid datatype does not match " \
1574  "return rowid datatype.")));
1575 
1576  /*
1577  * - attribute [1] of the sql tuple is the category; no need to check it -
1578  * attribute [2] of the sql tuple should match attributes [1] to [natts]
1579  * of the return tuple
1580  */
1581  sql_attr = TupleDescAttr(sql_tupdesc, 2);
1582  for (i = 1; i < ret_tupdesc->natts; i++)
1583  {
1584  ret_attr = TupleDescAttr(ret_tupdesc, i);
1585 
1586  if (ret_attr->atttypid != sql_attr->atttypid)
1587  return false;
1588  }
1589 
1590  /* OK, the two tupdescs are compatible for our purposes */
1591  return true;
1592 }
#define PG_GETARG_FLOAT8(n)
Definition: fmgr.h:246
uint64 call_cntr
Definition: funcapi.h:66
#define PG_GETARG_UINT32(n)
Definition: fmgr.h:235
Datum crosstab(PG_FUNCTION_ARGS)
Definition: tablefunc.c:349
PG_FUNCTION_INFO_V1(normal_rand)
#define PG_GETARG_INT32(n)
Definition: fmgr.h:234
#define MAX_CATNAME_LEN
Definition: tablefunc.c:126
TupleDesc CreateTupleDescCopy(TupleDesc tupdesc)
Definition: tupdesc.c:102
#define IsA(nodeptr, _type_)
Definition: nodes.h:561
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:211
static void build_tuplestore_recursively(char *key_fld, char *parent_key_fld, char *relname, char *orderby_fld, char *branch_delim, char *start_with, char *branch, int level, int *serial, int max_depth, bool show_branch, bool show_serial, MemoryContext per_query_ctx, AttInMetadata *attinmeta, Tuplestorestate *tupstore)
Definition: tablefunc.c:1205
char * quote_literal_cstr(const char *rawstr)
Definition: quote.c:102
#define HASH_CONTEXT
Definition: hsearch.h:93
#define HASH_ELEM
Definition: hsearch.h:87
#define CONNECTBY_NCOLS_NOBRANCH
Definition: tablefunc.c:985
MemoryContext hcxt
Definition: hsearch.h:78
#define CONNECTBY_NCOLS
Definition: tablefunc.c:984
int SPI_connect(void)
Definition: spi.c:84
static void validateConnectbyTupleDesc(TupleDesc tupdesc, bool show_branch, bool show_serial)
Definition: tablefunc.c:1424
#define TEXTOID
Definition: pg_type.h:324
#define SRF_IS_FIRSTCALL()
Definition: funcapi.h:293
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:90
long random(void)
Definition: random.c:22
char * pstrdup(const char *in)
Definition: mcxt.c:1076
static HTAB * load_categories_hash(char *cats_sql, MemoryContext per_query_ctx)
Definition: tablefunc.c:706
Datum connectby_text_serial(PG_FUNCTION_ARGS)
Definition: tablefunc.c:1067
int SPI_finish(void)
Definition: spi.c:149
#define tuplestore_donestoring(state)
Definition: tuplestore.h:60
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
#define INT4OID
Definition: pg_type.h:316
Size entrysize
Definition: hsearch.h:73
SPITupleTable * SPI_tuptable
Definition: spi.c:41
int errcode(int sqlerrcode)
Definition: elog.c:575
#define MemSet(start, val, len)
Definition: c.h:853
char * format_type_be(Oid type_oid)
Definition: format_type.c:94
long hash_get_num_entries(HTAB *hashp)
Definition: dynahash.c:1331
#define xpfree(var_)
Definition: tablefunc.c:95
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1373
unsigned int Oid
Definition: postgres_ext.h:31
HeapTuple * vals
Definition: spi.h:28
Datum normal_rand(PG_FUNCTION_ARGS)
Definition: tablefunc.c:174
#define SRF_PERCALL_SETUP()
Definition: funcapi.h:297
int natts
Definition: tupdesc.h:79
uint64 SPI_processed
Definition: spi.c:39
signed int int32
Definition: c.h:284
Datum Float8GetDatum(float8 X)
Definition: fmgr.c:1810
HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
Definition: execTuples.c:1118
#define PG_GETARG_TEXT_PP(n)
Definition: fmgr.h:273
struct crosstab_cat_desc crosstab_cat_desc
static void compatConnectbyTupleDescs(TupleDesc tupdesc1, TupleDesc tupdesc2)
Definition: tablefunc.c:1499
char * SPI_getvalue(HeapTuple tuple, TupleDesc tupdesc, int fnumber)
Definition: spi.c:812
#define SRF_RETURN_NEXT(_funcctx, _result)
Definition: funcapi.h:299
static void get_normal_pair(float8 *x1, float8 *x2)
Definition: tablefunc.c:278
Definition: dynahash.c:208
TupleDesc expectedDesc
Definition: execnodes.h:267
void pfree(void *pointer)
Definition: mcxt.c:949
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:78
#define ERROR
Definition: elog.h:43
double float8
Definition: c.h:429
static Tuplestorestate * connectby(char *relname, char *key_fld, char *parent_key_fld, char *orderby_fld, char *branch_delim, char *start_with, int max_depth, bool show_branch, bool show_serial, MemoryContext per_query_ctx, bool randomAccess, AttInMetadata *attinmeta)
Definition: tablefunc.c:1150
void tuplestore_puttuple(Tuplestorestate *state, HeapTuple tuple)
Definition: tuplestore.c:730
#define INIT_CATS
Definition: tablefunc.c:127
void appendStringInfoString(StringInfo str, const char *s)
Definition: stringinfo.c:157
#define xstreq(tgtvar_, srcvar_)
Definition: tablefunc.c:112
static Tuplestorestate * get_crosstab_tuplestore(char *sql, HTAB *crosstab_hash, TupleDesc tupdesc, MemoryContext per_query_ctx, bool randomAccess)
Definition: tablefunc.c:791
int errdetail(const char *fmt,...)
Definition: elog.c:873
#define MAX_RANDOM_VALUE
TupleDesc tupdesc
Definition: funcapi.h:39
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:187
void resetStringInfo(StringInfo str)
Definition: stringinfo.c:62
struct crosstab_hashent crosstab_HashEnt
#define ereport(elevel, rest)
Definition: elog.h:122
#define crosstab_HashTableLookup(HASHTAB, CATNAME, CATDESC)
Definition: tablefunc.c:129
void initStringInfo(StringInfo str)
Definition: stringinfo.c:46
Tuplestorestate * tuplestore_begin_heap(bool randomAccess, bool interXact, int maxKBytes)
Definition: tuplestore.c:318
char * format_type_with_typemod(Oid type_oid, int32 typemod)
Definition: format_type.c:113
#define INT32_STRLEN
Definition: tablefunc.c:117
void * palloc0(Size size)
Definition: mcxt.c:877
HTAB * hash_create(const char *tabname, long nelem, HASHCTL *info, int flags)
Definition: dynahash.c:316
uintptr_t Datum
Definition: postgres.h:372
AttInMetadata * TupleDescGetAttInMetadata(TupleDesc tupdesc)
Definition: execTuples.c:1069
Size keysize
Definition: hsearch.h:72
int work_mem
Definition: globals.c:113
TupleDesc tupdesc
Definition: spi.h:27
#define SPI_OK_SELECT
Definition: spi.h:54
int allowedModes
Definition: execnodes.h:268
Datum crosstab_hash(PG_FUNCTION_ARGS)
Definition: tablefunc.c:635
SetFunctionReturnMode returnMode
Definition: execnodes.h:270
static bool compatCrosstabTupleDescs(TupleDesc tupdesc1, TupleDesc tupdesc2)
Definition: tablefunc.c:1554
MemoryContext multi_call_memory_ctx
Definition: funcapi.h:110
PG_MODULE_MAGIC
Definition: tablefunc.c:47
#define SPI_OK_FINISH
Definition: spi.h:51
crosstab_cat_desc * catdesc
Definition: tablefunc.c:162
MemoryContext ecxt_per_query_memory
Definition: execnodes.h:202
Tuplestorestate * setResult
Definition: execnodes.h:273
static Datum values[MAXATTR]
Definition: bootstrap.c:164
char * text_to_cstring(const text *t)
Definition: varlena.c:182
ExprContext * econtext
Definition: execnodes.h:266
void * user_fctx
Definition: funcapi.h:91
TupleDesc setDesc
Definition: execnodes.h:274
void * palloc(Size size)
Definition: mcxt.c:848
int errmsg(const char *fmt,...)
Definition: elog.c:797
int i
Datum connectby_text(PG_FUNCTION_ARGS)
Definition: tablefunc.c:988
#define crosstab_HashTableInsert(HASHTAB, CATDESC)
Definition: tablefunc.c:143
#define PG_FUNCTION_ARGS
Definition: fmgr.h:158
#define elog
Definition: elog.h:219
ExprDoneCond isDone
Definition: execnodes.h:271
#define xpstrdup(tgtvar_, srcvar_)
Definition: tablefunc.c:104
#define PG_RETURN_NULL()
Definition: fmgr.h:305
uint64 max_calls
Definition: funcapi.h:75
float8 carry_val
Definition: tablefunc.c:91
int SPI_execute(const char *src, bool read_only, long tcount)
Definition: spi.c:310
#define SRF_RETURN_DONE(_funcctx)
Definition: funcapi.h:317
#define SRF_FIRSTCALL_INIT()
Definition: funcapi.h:295