PostgreSQL Source Code  git master
applyparallelworker.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  * applyparallelworker.c
3  * Support routines for applying xact by parallel apply worker
4  *
5  * Copyright (c) 2023-2024, PostgreSQL Global Development Group
6  *
7  * IDENTIFICATION
8  * src/backend/replication/logical/applyparallelworker.c
9  *
10  * This file contains the code to launch, set up, and teardown a parallel apply
11  * worker which receives the changes from the leader worker and invokes routines
12  * to apply those on the subscriber database. Additionally, this file contains
13  * routines that are intended to support setting up, using, and tearing down a
14  * ParallelApplyWorkerInfo which is required so the leader worker and parallel
15  * apply workers can communicate with each other.
16  *
17  * The parallel apply workers are assigned (if available) as soon as xact's
18  * first stream is received for subscriptions that have set their 'streaming'
19  * option as parallel. The leader apply worker will send changes to this new
20  * worker via shared memory. We keep this worker assigned till the transaction
21  * commit is received and also wait for the worker to finish at commit. This
22  * preserves commit ordering and avoid file I/O in most cases, although we
23  * still need to spill to a file if there is no worker available. See comments
24  * atop logical/worker to know more about streamed xacts whose changes are
25  * spilled to disk. It is important to maintain commit order to avoid failures
26  * due to: (a) transaction dependencies - say if we insert a row in the first
27  * transaction and update it in the second transaction on publisher then
28  * allowing the subscriber to apply both in parallel can lead to failure in the
29  * update; (b) deadlocks - allowing transactions that update the same set of
30  * rows/tables in the opposite order to be applied in parallel can lead to
31  * deadlocks.
32  *
33  * A worker pool is used to avoid restarting workers for each streaming
34  * transaction. We maintain each worker's information (ParallelApplyWorkerInfo)
35  * in the ParallelApplyWorkerPool. After successfully launching a new worker,
36  * its information is added to the ParallelApplyWorkerPool. Once the worker
37  * finishes applying the transaction, it is marked as available for re-use.
38  * Now, before starting a new worker to apply the streaming transaction, we
39  * check the list for any available worker. Note that we retain a maximum of
40  * half the max_parallel_apply_workers_per_subscription workers in the pool and
41  * after that, we simply exit the worker after applying the transaction.
42  *
43  * XXX This worker pool threshold is arbitrary and we can provide a GUC
44  * variable for this in the future if required.
45  *
46  * The leader apply worker will create a separate dynamic shared memory segment
47  * when each parallel apply worker starts. The reason for this design is that
48  * we cannot predict how many workers will be needed. It may be possible to
49  * allocate enough shared memory in one segment based on the maximum number of
50  * parallel apply workers (max_parallel_apply_workers_per_subscription), but
51  * this would waste memory if no process is actually started.
52  *
53  * The dynamic shared memory segment contains: (a) a shm_mq that is used to
54  * send changes in the transaction from leader apply worker to parallel apply
55  * worker; (b) another shm_mq that is used to send errors (and other messages
56  * reported via elog/ereport) from the parallel apply worker to leader apply
57  * worker; (c) necessary information to be shared among parallel apply workers
58  * and the leader apply worker (i.e. members of ParallelApplyWorkerShared).
59  *
60  * Locking Considerations
61  * ----------------------
62  * We have a risk of deadlock due to concurrently applying the transactions in
63  * parallel mode that were independent on the publisher side but became
64  * dependent on the subscriber side due to the different database structures
65  * (like schema of subscription tables, constraints, etc.) on each side. This
66  * can happen even without parallel mode when there are concurrent operations
67  * on the subscriber. In order to detect the deadlocks among leader (LA) and
68  * parallel apply (PA) workers, we used lmgr locks when the PA waits for the
69  * next stream (set of changes) and LA waits for PA to finish the transaction.
70  * An alternative approach could be to not allow parallelism when the schema of
71  * tables is different between the publisher and subscriber but that would be
72  * too restrictive and would require the publisher to send much more
73  * information than it is currently sending.
74  *
75  * Consider a case where the subscribed table does not have a unique key on the
76  * publisher and has a unique key on the subscriber. The deadlock can happen in
77  * the following ways:
78  *
79  * 1) Deadlock between the leader apply worker and a parallel apply worker
80  *
81  * Consider that the parallel apply worker (PA) is executing TX-1 and the
82  * leader apply worker (LA) is executing TX-2 concurrently on the subscriber.
83  * Now, LA is waiting for PA because of the unique key constraint of the
84  * subscribed table while PA is waiting for LA to send the next stream of
85  * changes or transaction finish command message.
86  *
87  * In order for lmgr to detect this, we have LA acquire a session lock on the
88  * remote transaction (by pa_lock_stream()) and have PA wait on the lock before
89  * trying to receive the next stream of changes. Specifically, LA will acquire
90  * the lock in AccessExclusive mode before sending the STREAM_STOP and will
91  * release it if already acquired after sending the STREAM_START, STREAM_ABORT
92  * (for toplevel transaction), STREAM_PREPARE, and STREAM_COMMIT. The PA will
93  * acquire the lock in AccessShare mode after processing STREAM_STOP and
94  * STREAM_ABORT (for subtransaction) and then release the lock immediately
95  * after acquiring it.
96  *
97  * The lock graph for the above example will look as follows:
98  * LA (waiting to acquire the lock on the unique index) -> PA (waiting to
99  * acquire the stream lock) -> LA
100  *
101  * This way, when PA is waiting for LA for the next stream of changes, we can
102  * have a wait-edge from PA to LA in lmgr, which will make us detect the
103  * deadlock between LA and PA.
104  *
105  * 2) Deadlock between the leader apply worker and parallel apply workers
106  *
107  * This scenario is similar to the first case but TX-1 and TX-2 are executed by
108  * two parallel apply workers (PA-1 and PA-2 respectively). In this scenario,
109  * PA-2 is waiting for PA-1 to complete its transaction while PA-1 is waiting
110  * for subsequent input from LA. Also, LA is waiting for PA-2 to complete its
111  * transaction in order to preserve the commit order. There is a deadlock among
112  * the three processes.
113  *
114  * In order for lmgr to detect this, we have PA acquire a session lock (this is
115  * a different lock than referred in the previous case, see
116  * pa_lock_transaction()) on the transaction being applied and have LA wait on
117  * the lock before proceeding in the transaction finish commands. Specifically,
118  * PA will acquire this lock in AccessExclusive mode before executing the first
119  * message of the transaction and release it at the xact end. LA will acquire
120  * this lock in AccessShare mode at transaction finish commands and release it
121  * immediately.
122  *
123  * The lock graph for the above example will look as follows:
124  * LA (waiting to acquire the transaction lock) -> PA-2 (waiting to acquire the
125  * lock due to unique index constraint) -> PA-1 (waiting to acquire the stream
126  * lock) -> LA
127  *
128  * This way when LA is waiting to finish the transaction end command to preserve
129  * the commit order, we will be able to detect deadlock, if any.
130  *
131  * One might think we can use XactLockTableWait(), but XactLockTableWait()
132  * considers PREPARED TRANSACTION as still in progress which means the lock
133  * won't be released even after the parallel apply worker has prepared the
134  * transaction.
135  *
136  * 3) Deadlock when the shm_mq buffer is full
137  *
138  * In the previous scenario (ie. PA-1 and PA-2 are executing transactions
139  * concurrently), if the shm_mq buffer between LA and PA-2 is full, LA has to
140  * wait to send messages, and this wait doesn't appear in lmgr.
141  *
142  * To avoid this wait, we use a non-blocking write and wait with a timeout. If
143  * the timeout is exceeded, the LA will serialize all the pending messages to
144  * a file and indicate PA-2 that it needs to read that file for the remaining
145  * messages. Then LA will start waiting for commit as in the previous case
146  * which will detect deadlock if any. See pa_send_data() and
147  * enum TransApplyAction.
148  *
149  * Lock types
150  * ----------
151  * Both the stream lock and the transaction lock mentioned above are
152  * session-level locks because both locks could be acquired outside the
153  * transaction, and the stream lock in the leader needs to persist across
154  * transaction boundaries i.e. until the end of the streaming transaction.
155  *-------------------------------------------------------------------------
156  */
157 
158 #include "postgres.h"
159 
160 #include "libpq/pqformat.h"
161 #include "libpq/pqmq.h"
162 #include "pgstat.h"
163 #include "postmaster/interrupt.h"
166 #include "replication/origin.h"
168 #include "storage/ipc.h"
169 #include "storage/lmgr.h"
170 #include "tcop/tcopprot.h"
171 #include "utils/inval.h"
172 #include "utils/memutils.h"
173 #include "utils/syscache.h"
174 
175 #define PG_LOGICAL_APPLY_SHM_MAGIC 0x787ca067
176 
177 /*
178  * DSM keys for parallel apply worker. Unlike other parallel execution code,
179  * since we don't need to worry about DSM keys conflicting with plan_node_id we
180  * can use small integers.
181  */
182 #define PARALLEL_APPLY_KEY_SHARED 1
183 #define PARALLEL_APPLY_KEY_MQ 2
184 #define PARALLEL_APPLY_KEY_ERROR_QUEUE 3
185 
186 /* Queue size of DSM, 16 MB for now. */
187 #define DSM_QUEUE_SIZE (16 * 1024 * 1024)
188 
189 /*
190  * Error queue size of DSM. It is desirable to make it large enough that a
191  * typical ErrorResponse can be sent without blocking. That way, a worker that
192  * errors out can write the whole message into the queue and terminate without
193  * waiting for the user backend.
194  */
195 #define DSM_ERROR_QUEUE_SIZE (16 * 1024)
196 
197 /*
198  * There are three fields in each message received by the parallel apply
199  * worker: start_lsn, end_lsn and send_time. Because we have updated these
200  * statistics in the leader apply worker, we can ignore these fields in the
201  * parallel apply worker (see function LogicalRepApplyLoop).
202  */
203 #define SIZE_STATS_MESSAGE (2 * sizeof(XLogRecPtr) + sizeof(TimestampTz))
204 
205 /*
206  * The type of session-level lock on a transaction being applied on a logical
207  * replication subscriber.
208  */
209 #define PARALLEL_APPLY_LOCK_STREAM 0
210 #define PARALLEL_APPLY_LOCK_XACT 1
211 
212 /*
213  * Hash table entry to map xid to the parallel apply worker state.
214  */
216 {
217  TransactionId xid; /* Hash key -- must be first */
220 
221 /*
222  * A hash table used to cache the state of streaming transactions being applied
223  * by the parallel apply workers.
224  */
225 static HTAB *ParallelApplyTxnHash = NULL;
226 
227 /*
228 * A list (pool) of active parallel apply workers. The information for
229 * the new worker is added to the list after successfully launching it. The
230 * list entry is removed if there are already enough workers in the worker
231 * pool at the end of the transaction. For more information about the worker
232 * pool, see comments atop this file.
233  */
235 
236 /*
237  * Information shared between leader apply worker and parallel apply worker.
238  */
240 
241 /*
242  * Is there a message sent by a parallel apply worker that the leader apply
243  * worker needs to receive?
244  */
245 volatile sig_atomic_t ParallelApplyMessagePending = false;
246 
247 /*
248  * Cache the parallel apply worker information required for applying the
249  * current streaming transaction. It is used to save the cost of searching the
250  * hash table when applying the changes between STREAM_START and STREAM_STOP.
251  */
253 
254 /* A list to maintain subtransactions, if any. */
255 static List *subxactlist = NIL;
256 
257 static void pa_free_worker_info(ParallelApplyWorkerInfo *winfo);
260 
261 /*
262  * Returns true if it is OK to start a parallel apply worker, false otherwise.
263  */
264 static bool
266 {
267  /* Only leader apply workers can start parallel apply workers. */
268  if (!am_leader_apply_worker())
269  return false;
270 
271  /*
272  * It is good to check for any change in the subscription parameter to
273  * avoid the case where for a very long time the change doesn't get
274  * reflected. This can happen when there is a constant flow of streaming
275  * transactions that are handled by parallel apply workers.
276  *
277  * It is better to do it before the below checks so that the latest values
278  * of subscription can be used for the checks.
279  */
281 
282  /*
283  * Don't start a new parallel apply worker if the subscription is not
284  * using parallel streaming mode, or if the publisher does not support
285  * parallel apply.
286  */
288  return false;
289 
290  /*
291  * Don't start a new parallel worker if user has set skiplsn as it's
292  * possible that they want to skip the streaming transaction. For
293  * streaming transactions, we need to serialize the transaction to a file
294  * so that we can get the last LSN of the transaction to judge whether to
295  * skip before starting to apply the change.
296  *
297  * One might think that we could allow parallelism if the first lsn of the
298  * transaction is greater than skiplsn, but we don't send it with the
299  * STREAM START message, and it doesn't seem worth sending the extra eight
300  * bytes with the STREAM START to enable parallelism for this case.
301  */
303  return false;
304 
305  /*
306  * For streaming transactions that are being applied using a parallel
307  * apply worker, we cannot decide whether to apply the change for a
308  * relation that is not in the READY state (see
309  * should_apply_changes_for_rel) as we won't know remote_final_lsn by that
310  * time. So, we don't start the new parallel apply worker in this case.
311  */
312  if (!AllTablesyncsReady())
313  return false;
314 
315  return true;
316 }
317 
318 /*
319  * Set up a dynamic shared memory segment.
320  *
321  * We set up a control region that contains a fixed-size worker info
322  * (ParallelApplyWorkerShared), a message queue, and an error queue.
323  *
324  * Returns true on success, false on failure.
325  */
326 static bool
328 {
330  Size segsize;
331  dsm_segment *seg;
332  shm_toc *toc;
334  shm_mq *mq;
335  Size queue_size = DSM_QUEUE_SIZE;
336  Size error_queue_size = DSM_ERROR_QUEUE_SIZE;
337 
338  /*
339  * Estimate how much shared memory we need.
340  *
341  * Because the TOC machinery may choose to insert padding of oddly-sized
342  * requests, we must estimate each chunk separately.
343  *
344  * We need one key to register the location of the header, and two other
345  * keys to track the locations of the message queue and the error message
346  * queue.
347  */
350  shm_toc_estimate_chunk(&e, queue_size);
351  shm_toc_estimate_chunk(&e, error_queue_size);
352 
354  segsize = shm_toc_estimate(&e);
355 
356  /* Create the shared memory segment and establish a table of contents. */
357  seg = dsm_create(shm_toc_estimate(&e), 0);
358  if (!seg)
359  return false;
360 
362  segsize);
363 
364  /* Set up the header region. */
365  shared = shm_toc_allocate(toc, sizeof(ParallelApplyWorkerShared));
366  SpinLockInit(&shared->mutex);
367 
371  shared->fileset_state = FS_EMPTY;
372 
374 
375  /* Set up message queue for the worker. */
376  mq = shm_mq_create(shm_toc_allocate(toc, queue_size), queue_size);
379 
380  /* Attach the queue. */
381  winfo->mq_handle = shm_mq_attach(mq, seg, NULL);
382 
383  /* Set up error queue for the worker. */
384  mq = shm_mq_create(shm_toc_allocate(toc, error_queue_size),
385  error_queue_size);
388 
389  /* Attach the queue. */
390  winfo->error_mq_handle = shm_mq_attach(mq, seg, NULL);
391 
392  /* Return results to caller. */
393  winfo->dsm_seg = seg;
394  winfo->shared = shared;
395 
396  return true;
397 }
398 
399 /*
400  * Try to get a parallel apply worker from the pool. If none is available then
401  * start a new one.
402  */
405 {
406  MemoryContext oldcontext;
407  bool launched;
409  ListCell *lc;
410 
411  /* Try to get an available parallel apply worker from the worker pool. */
412  foreach(lc, ParallelApplyWorkerPool)
413  {
414  winfo = (ParallelApplyWorkerInfo *) lfirst(lc);
415 
416  if (!winfo->in_use)
417  return winfo;
418  }
419 
420  /*
421  * Start a new parallel apply worker.
422  *
423  * The worker info can be used for the lifetime of the worker process, so
424  * create it in a permanent context.
425  */
426  oldcontext = MemoryContextSwitchTo(ApplyContext);
427 
429 
430  /* Setup shared memory. */
431  if (!pa_setup_dsm(winfo))
432  {
433  MemoryContextSwitchTo(oldcontext);
434  pfree(winfo);
435  return NULL;
436  }
437 
443  InvalidOid,
444  dsm_segment_handle(winfo->dsm_seg));
445 
446  if (launched)
447  {
449  }
450  else
451  {
452  pa_free_worker_info(winfo);
453  winfo = NULL;
454  }
455 
456  MemoryContextSwitchTo(oldcontext);
457 
458  return winfo;
459 }
460 
461 /*
462  * Allocate a parallel apply worker that will be used for the specified xid.
463  *
464  * We first try to get an available worker from the pool, if any and then try
465  * to launch a new worker. On successful allocation, remember the worker
466  * information in the hash table so that we can get it later for processing the
467  * streaming changes.
468  */
469 void
471 {
472  bool found;
473  ParallelApplyWorkerInfo *winfo = NULL;
475 
476  if (!pa_can_start())
477  return;
478 
479  winfo = pa_launch_parallel_worker();
480  if (!winfo)
481  return;
482 
483  /* First time through, initialize parallel apply worker state hashtable. */
485  {
486  HASHCTL ctl;
487 
488  MemSet(&ctl, 0, sizeof(ctl));
489  ctl.keysize = sizeof(TransactionId);
490  ctl.entrysize = sizeof(ParallelApplyWorkerEntry);
491  ctl.hcxt = ApplyContext;
492 
493  ParallelApplyTxnHash = hash_create("logical replication parallel apply workers hash",
494  16, &ctl,
496  }
497 
498  /* Create an entry for the requested transaction. */
499  entry = hash_search(ParallelApplyTxnHash, &xid, HASH_ENTER, &found);
500  if (found)
501  elog(ERROR, "hash table corrupted");
502 
503  /* Update the transaction information in shared memory. */
504  SpinLockAcquire(&winfo->shared->mutex);
506  winfo->shared->xid = xid;
507  SpinLockRelease(&winfo->shared->mutex);
508 
509  winfo->in_use = true;
510  winfo->serialize_changes = false;
511  entry->winfo = winfo;
512 }
513 
514 /*
515  * Find the assigned worker for the given transaction, if any.
516  */
519 {
520  bool found;
522 
523  if (!TransactionIdIsValid(xid))
524  return NULL;
525 
527  return NULL;
528 
529  /* Return the cached parallel apply worker if valid. */
531  return stream_apply_worker;
532 
533  /* Find an entry for the requested transaction. */
534  entry = hash_search(ParallelApplyTxnHash, &xid, HASH_FIND, &found);
535  if (found)
536  {
537  /* The worker must not have exited. */
538  Assert(entry->winfo->in_use);
539  return entry->winfo;
540  }
541 
542  return NULL;
543 }
544 
545 /*
546  * Makes the worker available for reuse.
547  *
548  * This removes the parallel apply worker entry from the hash table so that it
549  * can't be used. If there are enough workers in the pool, it stops the worker
550  * and frees the corresponding info. Otherwise it just marks the worker as
551  * available for reuse.
552  *
553  * For more information about the worker pool, see comments atop this file.
554  */
555 static void
557 {
559  Assert(winfo->in_use);
561 
562  if (!hash_search(ParallelApplyTxnHash, &winfo->shared->xid, HASH_REMOVE, NULL))
563  elog(ERROR, "hash table corrupted");
564 
565  /*
566  * Stop the worker if there are enough workers in the pool.
567  *
568  * XXX Additionally, we also stop the worker if the leader apply worker
569  * serialize part of the transaction data due to a send timeout. This is
570  * because the message could be partially written to the queue and there
571  * is no way to clean the queue other than resending the message until it
572  * succeeds. Instead of trying to send the data which anyway would have
573  * been serialized and then letting the parallel apply worker deal with
574  * the spurious message, we stop the worker.
575  */
576  if (winfo->serialize_changes ||
579  {
581  pa_free_worker_info(winfo);
582 
583  return;
584  }
585 
586  winfo->in_use = false;
587  winfo->serialize_changes = false;
588 }
589 
590 /*
591  * Free the parallel apply worker information and unlink the files with
592  * serialized changes if any.
593  */
594 static void
596 {
597  Assert(winfo);
598 
599  if (winfo->mq_handle)
600  shm_mq_detach(winfo->mq_handle);
601 
602  if (winfo->error_mq_handle)
604 
605  /* Unlink the files with serialized changes. */
606  if (winfo->serialize_changes)
608 
609  if (winfo->dsm_seg)
610  dsm_detach(winfo->dsm_seg);
611 
612  /* Remove from the worker pool. */
614 
615  pfree(winfo);
616 }
617 
618 /*
619  * Detach the error queue for all parallel apply workers.
620  */
621 void
623 {
624  ListCell *lc;
625 
626  foreach(lc, ParallelApplyWorkerPool)
627  {
629 
630  if (winfo->error_mq_handle)
631  {
633  winfo->error_mq_handle = NULL;
634  }
635  }
636 }
637 
638 /*
639  * Check if there are any pending spooled messages.
640  */
641 static bool
643 {
644  PartialFileSetState fileset_state;
645 
646  fileset_state = pa_get_fileset_state();
647 
648  return (fileset_state != FS_EMPTY);
649 }
650 
651 /*
652  * Replay the spooled messages once the leader apply worker has finished
653  * serializing changes to the file.
654  *
655  * Returns false if there aren't any pending spooled messages, true otherwise.
656  */
657 static bool
659 {
660  PartialFileSetState fileset_state;
661 
662  fileset_state = pa_get_fileset_state();
663 
664  if (fileset_state == FS_EMPTY)
665  return false;
666 
667  /*
668  * If the leader apply worker is busy serializing the partial changes then
669  * acquire the stream lock now and wait for the leader worker to finish
670  * serializing the changes. Otherwise, the parallel apply worker won't get
671  * a chance to receive a STREAM_STOP (and acquire the stream lock) until
672  * the leader had serialized all changes which can lead to undetected
673  * deadlock.
674  *
675  * Note that the fileset state can be FS_SERIALIZE_DONE once the leader
676  * worker has finished serializing the changes.
677  */
678  if (fileset_state == FS_SERIALIZE_IN_PROGRESS)
679  {
682 
683  fileset_state = pa_get_fileset_state();
684  }
685 
686  /*
687  * We cannot read the file immediately after the leader has serialized all
688  * changes to the file because there may still be messages in the memory
689  * queue. We will apply all spooled messages the next time we call this
690  * function and that will ensure there are no messages left in the memory
691  * queue.
692  */
693  if (fileset_state == FS_SERIALIZE_DONE)
694  {
696  }
697  else if (fileset_state == FS_READY)
698  {
703  }
704 
705  return true;
706 }
707 
708 /*
709  * Interrupt handler for main loop of parallel apply worker.
710  */
711 static void
713 {
715 
717  {
718  ereport(LOG,
719  (errmsg("logical replication parallel apply worker for subscription \"%s\" has finished",
720  MySubscription->name)));
721 
722  proc_exit(0);
723  }
724 
726  {
727  ConfigReloadPending = false;
729  }
730 }
731 
732 /* Parallel apply worker main loop. */
733 static void
735 {
736  shm_mq_result shmq_res;
737  ErrorContextCallback errcallback;
739 
740  /*
741  * Init the ApplyMessageContext which we clean up after each replication
742  * protocol message.
743  */
745  "ApplyMessageContext",
747 
748  /*
749  * Push apply error context callback. Fields will be filled while applying
750  * a change.
751  */
752  errcallback.callback = apply_error_callback;
753  errcallback.previous = error_context_stack;
754  error_context_stack = &errcallback;
755 
756  for (;;)
757  {
758  void *data;
759  Size len;
760 
762 
763  /* Ensure we are reading the data into our memory context. */
765 
766  shmq_res = shm_mq_receive(mqh, &len, &data, true);
767 
768  if (shmq_res == SHM_MQ_SUCCESS)
769  {
770  StringInfoData s;
771  int c;
772 
773  if (len == 0)
774  elog(ERROR, "invalid message length");
775 
777 
778  /*
779  * The first byte of messages sent from leader apply worker to
780  * parallel apply workers can only be 'w'.
781  */
782  c = pq_getmsgbyte(&s);
783  if (c != 'w')
784  elog(ERROR, "unexpected message \"%c\"", c);
785 
786  /*
787  * Ignore statistics fields that have been updated by the leader
788  * apply worker.
789  *
790  * XXX We can avoid sending the statistics fields from the leader
791  * apply worker but for that, it needs to rebuild the entire
792  * message by removing these fields which could be more work than
793  * simply ignoring these fields in the parallel apply worker.
794  */
796 
797  apply_dispatch(&s);
798  }
799  else if (shmq_res == SHM_MQ_WOULD_BLOCK)
800  {
801  /* Replay the changes from the file, if any. */
803  {
804  int rc;
805 
806  /* Wait for more work. */
807  rc = WaitLatch(MyLatch,
809  1000L,
810  WAIT_EVENT_LOGICAL_PARALLEL_APPLY_MAIN);
811 
812  if (rc & WL_LATCH_SET)
814  }
815  }
816  else
817  {
818  Assert(shmq_res == SHM_MQ_DETACHED);
819 
820  ereport(ERROR,
821  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
822  errmsg("lost connection to the logical replication apply worker")));
823  }
824 
826  MemoryContextSwitchTo(oldcxt);
827  }
828 
829  /* Pop the error context stack. */
830  error_context_stack = errcallback.previous;
831 
832  MemoryContextSwitchTo(oldcxt);
833 }
834 
835 /*
836  * Make sure the leader apply worker tries to read from our error queue one more
837  * time. This guards against the case where we exit uncleanly without sending
838  * an ErrorResponse, for example because some code calls proc_exit directly.
839  *
840  * Also explicitly detach from dsm segment to invoke on_dsm_detach callbacks,
841  * if any. See ParallelWorkerShutdown for details.
842  */
843 static void
845 {
849 
851 }
852 
853 /*
854  * Parallel apply worker entry point.
855  */
856 void
858 {
860  dsm_handle handle;
861  dsm_segment *seg;
862  shm_toc *toc;
863  shm_mq *mq;
864  shm_mq_handle *mqh;
865  shm_mq_handle *error_mqh;
866  RepOriginId originid;
867  int worker_slot = DatumGetInt32(main_arg);
868  char originname[NAMEDATALEN];
869 
871 
872  /* Setup signal handling. */
875  pqsignal(SIGTERM, die);
877 
878  /*
879  * Attach to the dynamic shared memory segment for the parallel apply, and
880  * find its table of contents.
881  *
882  * Like parallel query, we don't need resource owner by this time. See
883  * ParallelWorkerMain.
884  */
885  memcpy(&handle, MyBgworkerEntry->bgw_extra, sizeof(dsm_handle));
886  seg = dsm_attach(handle);
887  if (!seg)
888  ereport(ERROR,
889  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
890  errmsg("could not map dynamic shared memory segment")));
891 
893  if (!toc)
894  ereport(ERROR,
895  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
896  errmsg("invalid magic number in dynamic shared memory segment")));
897 
898  /* Look up the shared information. */
899  shared = shm_toc_lookup(toc, PARALLEL_APPLY_KEY_SHARED, false);
900  MyParallelShared = shared;
901 
902  /*
903  * Attach to the message queue.
904  */
905  mq = shm_toc_lookup(toc, PARALLEL_APPLY_KEY_MQ, false);
907  mqh = shm_mq_attach(mq, seg, NULL);
908 
909  /*
910  * Primary initialization is complete. Now, we can attach to our slot.
911  * This is to ensure that the leader apply worker does not write data to
912  * the uninitialized memory queue.
913  */
914  logicalrep_worker_attach(worker_slot);
915 
916  /*
917  * Register the shutdown callback after we are attached to the worker
918  * slot. This is to ensure that MyLogicalRepWorker remains valid when this
919  * callback is invoked.
920  */
922 
927 
928  /*
929  * Attach to the error queue.
930  */
933  error_mqh = shm_mq_attach(mq, seg, NULL);
934 
935  pq_redirect_to_shm_mq(seg, error_mqh);
938 
941 
943 
944  InitializingApplyWorker = false;
945 
946  /* Setup replication origin tracking. */
949  originname, sizeof(originname));
950  originid = replorigin_by_name(originname, false);
951 
952  /*
953  * The parallel apply worker doesn't need to monopolize this replication
954  * origin which was already acquired by its leader process.
955  */
957  replorigin_session_origin = originid;
959 
960  /*
961  * Setup callback for syscache so that we know when something changes in
962  * the subscription relation state.
963  */
964  CacheRegisterSyscacheCallback(SUBSCRIPTIONRELMAP,
966  (Datum) 0);
967 
968  set_apply_error_context_origin(originname);
969 
971 
972  /*
973  * The parallel apply worker must not get here because the parallel apply
974  * worker will only stop when it receives a SIGTERM or SIGINT from the
975  * leader, or when there is an error. None of these cases will allow the
976  * code to reach here.
977  */
978  Assert(false);
979 }
980 
981 /*
982  * Handle receipt of an interrupt indicating a parallel apply worker message.
983  *
984  * Note: this is called within a signal handler! All we can do is set a flag
985  * that will cause the next CHECK_FOR_INTERRUPTS() to invoke
986  * HandleParallelApplyMessages().
987  */
988 void
990 {
991  InterruptPending = true;
993  SetLatch(MyLatch);
994 }
995 
996 /*
997  * Handle a single protocol message received from a single parallel apply
998  * worker.
999  */
1000 static void
1002 {
1003  char msgtype;
1004 
1005  msgtype = pq_getmsgbyte(msg);
1006 
1007  switch (msgtype)
1008  {
1009  case 'E': /* ErrorResponse */
1010  {
1011  ErrorData edata;
1012 
1013  /* Parse ErrorResponse. */
1014  pq_parse_errornotice(msg, &edata);
1015 
1016  /*
1017  * If desired, add a context line to show that this is a
1018  * message propagated from a parallel apply worker. Otherwise,
1019  * it can sometimes be confusing to understand what actually
1020  * happened.
1021  */
1022  if (edata.context)
1023  edata.context = psprintf("%s\n%s", edata.context,
1024  _("logical replication parallel apply worker"));
1025  else
1026  edata.context = pstrdup(_("logical replication parallel apply worker"));
1027 
1028  /*
1029  * Context beyond that should use the error context callbacks
1030  * that were in effect in LogicalRepApplyLoop().
1031  */
1033 
1034  /*
1035  * The actual error must have been reported by the parallel
1036  * apply worker.
1037  */
1038  ereport(ERROR,
1039  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1040  errmsg("logical replication parallel apply worker exited due to error"),
1041  errcontext("%s", edata.context)));
1042  }
1043 
1044  /*
1045  * Don't need to do anything about NoticeResponse and
1046  * NotifyResponse as the logical replication worker doesn't need
1047  * to send messages to the client.
1048  */
1049  case 'N':
1050  case 'A':
1051  break;
1052 
1053  default:
1054  elog(ERROR, "unrecognized message type received from logical replication parallel apply worker: %c (message length %d bytes)",
1055  msgtype, msg->len);
1056  }
1057 }
1058 
1059 /*
1060  * Handle any queued protocol messages received from parallel apply workers.
1061  */
1062 void
1064 {
1065  ListCell *lc;
1066  MemoryContext oldcontext;
1067 
1068  static MemoryContext hpam_context = NULL;
1069 
1070  /*
1071  * This is invoked from ProcessInterrupts(), and since some of the
1072  * functions it calls contain CHECK_FOR_INTERRUPTS(), there is a potential
1073  * for recursive calls if more signals are received while this runs. It's
1074  * unclear that recursive entry would be safe, and it doesn't seem useful
1075  * even if it is safe, so let's block interrupts until done.
1076  */
1077  HOLD_INTERRUPTS();
1078 
1079  /*
1080  * Moreover, CurrentMemoryContext might be pointing almost anywhere. We
1081  * don't want to risk leaking data into long-lived contexts, so let's do
1082  * our work here in a private context that we can reset on each use.
1083  */
1084  if (!hpam_context) /* first time through? */
1085  hpam_context = AllocSetContextCreate(TopMemoryContext,
1086  "HandleParallelApplyMessages",
1088  else
1089  MemoryContextReset(hpam_context);
1090 
1091  oldcontext = MemoryContextSwitchTo(hpam_context);
1092 
1094 
1095  foreach(lc, ParallelApplyWorkerPool)
1096  {
1098  Size nbytes;
1099  void *data;
1101 
1102  /*
1103  * The leader will detach from the error queue and set it to NULL
1104  * before preparing to stop all parallel apply workers, so we don't
1105  * need to handle error messages anymore. See
1106  * logicalrep_worker_detach.
1107  */
1108  if (!winfo->error_mq_handle)
1109  continue;
1110 
1111  res = shm_mq_receive(winfo->error_mq_handle, &nbytes, &data, true);
1112 
1113  if (res == SHM_MQ_WOULD_BLOCK)
1114  continue;
1115  else if (res == SHM_MQ_SUCCESS)
1116  {
1117  StringInfoData msg;
1118 
1119  initStringInfo(&msg);
1120  appendBinaryStringInfo(&msg, data, nbytes);
1122  pfree(msg.data);
1123  }
1124  else
1125  ereport(ERROR,
1126  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1127  errmsg("lost connection to the logical replication parallel apply worker")));
1128  }
1129 
1130  MemoryContextSwitchTo(oldcontext);
1131 
1132  /* Might as well clear the context on our way out */
1133  MemoryContextReset(hpam_context);
1134 
1136 }
1137 
1138 /*
1139  * Send the data to the specified parallel apply worker via shared-memory
1140  * queue.
1141  *
1142  * Returns false if the attempt to send data via shared memory times out, true
1143  * otherwise.
1144  */
1145 bool
1146 pa_send_data(ParallelApplyWorkerInfo *winfo, Size nbytes, const void *data)
1147 {
1148  int rc;
1149  shm_mq_result result;
1150  TimestampTz startTime = 0;
1151 
1153  Assert(!winfo->serialize_changes);
1154 
1155  /*
1156  * We don't try to send data to parallel worker for 'immediate' mode. This
1157  * is primarily used for testing purposes.
1158  */
1160  return false;
1161 
1162 /*
1163  * This timeout is a bit arbitrary but testing revealed that it is sufficient
1164  * to send the message unless the parallel apply worker is waiting on some
1165  * lock or there is a serious resource crunch. See the comments atop this file
1166  * to know why we are using a non-blocking way to send the message.
1167  */
1168 #define SHM_SEND_RETRY_INTERVAL_MS 1000
1169 #define SHM_SEND_TIMEOUT_MS (10000 - SHM_SEND_RETRY_INTERVAL_MS)
1170 
1171  for (;;)
1172  {
1173  result = shm_mq_send(winfo->mq_handle, nbytes, data, true, true);
1174 
1175  if (result == SHM_MQ_SUCCESS)
1176  return true;
1177  else if (result == SHM_MQ_DETACHED)
1178  ereport(ERROR,
1179  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1180  errmsg("could not send data to shared-memory queue")));
1181 
1182  Assert(result == SHM_MQ_WOULD_BLOCK);
1183 
1184  /* Wait before retrying. */
1185  rc = WaitLatch(MyLatch,
1188  WAIT_EVENT_LOGICAL_APPLY_SEND_DATA);
1189 
1190  if (rc & WL_LATCH_SET)
1191  {
1194  }
1195 
1196  if (startTime == 0)
1197  startTime = GetCurrentTimestamp();
1198  else if (TimestampDifferenceExceeds(startTime, GetCurrentTimestamp(),
1200  return false;
1201  }
1202 }
1203 
1204 /*
1205  * Switch to PARTIAL_SERIALIZE mode for the current transaction -- this means
1206  * that the current data and any subsequent data for this transaction will be
1207  * serialized to a file. This is done to prevent possible deadlocks with
1208  * another parallel apply worker (refer to the comments atop this file).
1209  */
1210 void
1212  bool stream_locked)
1213 {
1214  ereport(LOG,
1215  (errmsg("logical replication apply worker will serialize the remaining changes of remote transaction %u to a file",
1216  winfo->shared->xid)));
1217 
1218  /*
1219  * The parallel apply worker could be stuck for some reason (say waiting
1220  * on some lock by other backend), so stop trying to send data directly to
1221  * it and start serializing data to the file instead.
1222  */
1223  winfo->serialize_changes = true;
1224 
1225  /* Initialize the stream fileset. */
1226  stream_start_internal(winfo->shared->xid, true);
1227 
1228  /*
1229  * Acquires the stream lock if not already to make sure that the parallel
1230  * apply worker will wait for the leader to release the stream lock until
1231  * the end of the transaction.
1232  */
1233  if (!stream_locked)
1235 
1237 }
1238 
1239 /*
1240  * Wait until the parallel apply worker's transaction state has reached or
1241  * exceeded the given xact_state.
1242  */
1243 static void
1245  ParallelTransState xact_state)
1246 {
1247  for (;;)
1248  {
1249  /*
1250  * Stop if the transaction state has reached or exceeded the given
1251  * xact_state.
1252  */
1253  if (pa_get_xact_state(winfo->shared) >= xact_state)
1254  break;
1255 
1256  /* Wait to be signalled. */
1257  (void) WaitLatch(MyLatch,
1259  10L,
1260  WAIT_EVENT_LOGICAL_PARALLEL_APPLY_STATE_CHANGE);
1261 
1262  /* Reset the latch so we don't spin. */
1264 
1265  /* An interrupt may have occurred while we were waiting. */
1267  }
1268 }
1269 
1270 /*
1271  * Wait until the parallel apply worker's transaction finishes.
1272  */
1273 static void
1275 {
1276  /*
1277  * Wait until the parallel apply worker set the state to
1278  * PARALLEL_TRANS_STARTED which means it has acquired the transaction
1279  * lock. This is to prevent leader apply worker from acquiring the
1280  * transaction lock earlier than the parallel apply worker.
1281  */
1283 
1284  /*
1285  * Wait for the transaction lock to be released. This is required to
1286  * detect deadlock among leader and parallel apply workers. Refer to the
1287  * comments atop this file.
1288  */
1291 
1292  /*
1293  * Check if the state becomes PARALLEL_TRANS_FINISHED in case the parallel
1294  * apply worker failed while applying changes causing the lock to be
1295  * released.
1296  */
1298  ereport(ERROR,
1299  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1300  errmsg("lost connection to the logical replication parallel apply worker")));
1301 }
1302 
1303 /*
1304  * Set the transaction state for a given parallel apply worker.
1305  */
1306 void
1308  ParallelTransState xact_state)
1309 {
1310  SpinLockAcquire(&wshared->mutex);
1311  wshared->xact_state = xact_state;
1312  SpinLockRelease(&wshared->mutex);
1313 }
1314 
1315 /*
1316  * Get the transaction state for a given parallel apply worker.
1317  */
1318 static ParallelTransState
1320 {
1321  ParallelTransState xact_state;
1322 
1323  SpinLockAcquire(&wshared->mutex);
1324  xact_state = wshared->xact_state;
1325  SpinLockRelease(&wshared->mutex);
1326 
1327  return xact_state;
1328 }
1329 
1330 /*
1331  * Cache the parallel apply worker information.
1332  */
1333 void
1335 {
1336  stream_apply_worker = winfo;
1337 }
1338 
1339 /*
1340  * Form a unique savepoint name for the streaming transaction.
1341  *
1342  * Note that different subscriptions for publications on different nodes can
1343  * receive same remote xid, so we need to use subscription id along with it.
1344  *
1345  * Returns the name in the supplied buffer.
1346  */
1347 static void
1348 pa_savepoint_name(Oid suboid, TransactionId xid, char *spname, Size szsp)
1349 {
1350  snprintf(spname, szsp, "pg_sp_%u_%u", suboid, xid);
1351 }
1352 
1353 /*
1354  * Define a savepoint for a subxact in parallel apply worker if needed.
1355  *
1356  * The parallel apply worker can figure out if a new subtransaction was
1357  * started by checking if the new change arrived with a different xid. In that
1358  * case define a named savepoint, so that we are able to rollback to it
1359  * if required.
1360  */
1361 void
1363 {
1364  if (current_xid != top_xid &&
1365  !list_member_xid(subxactlist, current_xid))
1366  {
1367  MemoryContext oldctx;
1368  char spname[NAMEDATALEN];
1369 
1370  pa_savepoint_name(MySubscription->oid, current_xid,
1371  spname, sizeof(spname));
1372 
1373  elog(DEBUG1, "defining savepoint %s in logical replication parallel apply worker", spname);
1374 
1375  /* We must be in transaction block to define the SAVEPOINT. */
1376  if (!IsTransactionBlock())
1377  {
1378  if (!IsTransactionState())
1380 
1383  }
1384 
1385  DefineSavepoint(spname);
1386 
1387  /*
1388  * CommitTransactionCommand is needed to start a subtransaction after
1389  * issuing a SAVEPOINT inside a transaction block (see
1390  * StartSubTransaction()).
1391  */
1393 
1395  subxactlist = lappend_xid(subxactlist, current_xid);
1396  MemoryContextSwitchTo(oldctx);
1397  }
1398 }
1399 
1400 /* Reset the list that maintains subtransactions. */
1401 void
1403 {
1404  /*
1405  * We don't need to free this explicitly as the allocated memory will be
1406  * freed at the transaction end.
1407  */
1408  subxactlist = NIL;
1409 }
1410 
1411 /*
1412  * Handle STREAM ABORT message when the transaction was applied in a parallel
1413  * apply worker.
1414  */
1415 void
1417 {
1418  TransactionId xid = abort_data->xid;
1419  TransactionId subxid = abort_data->subxid;
1420 
1421  /*
1422  * Update origin state so we can restart streaming from correct position
1423  * in case of crash.
1424  */
1427 
1428  /*
1429  * If the two XIDs are the same, it's in fact abort of toplevel xact, so
1430  * just free the subxactlist.
1431  */
1432  if (subxid == xid)
1433  {
1435 
1436  /*
1437  * Release the lock as we might be processing an empty streaming
1438  * transaction in which case the lock won't be released during
1439  * transaction rollback.
1440  *
1441  * Note that it's ok to release the transaction lock before aborting
1442  * the transaction because even if the parallel apply worker dies due
1443  * to crash or some other reason, such a transaction would still be
1444  * considered aborted.
1445  */
1447 
1449 
1450  if (IsTransactionBlock())
1451  {
1452  EndTransactionBlock(false);
1454  }
1455 
1457 
1459  }
1460  else
1461  {
1462  /* OK, so it's a subxact. Rollback to the savepoint. */
1463  int i;
1464  char spname[NAMEDATALEN];
1465 
1466  pa_savepoint_name(MySubscription->oid, subxid, spname, sizeof(spname));
1467 
1468  elog(DEBUG1, "rolling back to savepoint %s in logical replication parallel apply worker", spname);
1469 
1470  /*
1471  * Search the subxactlist, determine the offset tracked for the
1472  * subxact, and truncate the list.
1473  *
1474  * Note that for an empty sub-transaction we won't find the subxid
1475  * here.
1476  */
1477  for (i = list_length(subxactlist) - 1; i >= 0; i--)
1478  {
1480 
1481  if (xid_tmp == subxid)
1482  {
1483  RollbackToSavepoint(spname);
1486  break;
1487  }
1488  }
1489  }
1490 }
1491 
1492 /*
1493  * Set the fileset state for a particular parallel apply worker. The fileset
1494  * will be set once the leader worker serialized all changes to the file
1495  * so that it can be used by parallel apply worker.
1496  */
1497 void
1499  PartialFileSetState fileset_state)
1500 {
1501  SpinLockAcquire(&wshared->mutex);
1502  wshared->fileset_state = fileset_state;
1503 
1504  if (fileset_state == FS_SERIALIZE_DONE)
1505  {
1509  }
1510 
1511  SpinLockRelease(&wshared->mutex);
1512 }
1513 
1514 /*
1515  * Get the fileset state for the current parallel apply worker.
1516  */
1517 static PartialFileSetState
1519 {
1520  PartialFileSetState fileset_state;
1521 
1523 
1525  fileset_state = MyParallelShared->fileset_state;
1527 
1528  return fileset_state;
1529 }
1530 
1531 /*
1532  * Helper functions to acquire and release a lock for each stream block.
1533  *
1534  * Set locktag_field4 to PARALLEL_APPLY_LOCK_STREAM to indicate that it's a
1535  * stream lock.
1536  *
1537  * Refer to the comments atop this file to see how the stream lock is used.
1538  */
1539 void
1541 {
1543  PARALLEL_APPLY_LOCK_STREAM, lockmode);
1544 }
1545 
1546 void
1548 {
1550  PARALLEL_APPLY_LOCK_STREAM, lockmode);
1551 }
1552 
1553 /*
1554  * Helper functions to acquire and release a lock for each local transaction
1555  * apply.
1556  *
1557  * Set locktag_field4 to PARALLEL_APPLY_LOCK_XACT to indicate that it's a
1558  * transaction lock.
1559  *
1560  * Note that all the callers must pass a remote transaction ID instead of a
1561  * local transaction ID as xid. This is because the local transaction ID will
1562  * only be assigned while applying the first change in the parallel apply but
1563  * it's possible that the first change in the parallel apply worker is blocked
1564  * by a concurrently executing transaction in another parallel apply worker. We
1565  * can only communicate the local transaction id to the leader after applying
1566  * the first change so it won't be able to wait after sending the xact finish
1567  * command using this lock.
1568  *
1569  * Refer to the comments atop this file to see how the transaction lock is
1570  * used.
1571  */
1572 void
1574 {
1576  PARALLEL_APPLY_LOCK_XACT, lockmode);
1577 }
1578 
1579 void
1581 {
1583  PARALLEL_APPLY_LOCK_XACT, lockmode);
1584 }
1585 
1586 /*
1587  * Decrement the number of pending streaming blocks and wait on the stream lock
1588  * if there is no pending block available.
1589  */
1590 void
1592 {
1594 
1595  /*
1596  * It is only possible to not have any pending stream chunks when we are
1597  * applying spooled messages.
1598  */
1600  {
1602  return;
1603 
1604  elog(ERROR, "invalid pending streaming chunk 0");
1605  }
1606 
1608  {
1611  }
1612 }
1613 
1614 /*
1615  * Finish processing the streaming transaction in the leader apply worker.
1616  */
1617 void
1619 {
1621 
1622  /*
1623  * Unlock the shared object lock so that parallel apply worker can
1624  * continue to receive and apply changes.
1625  */
1627 
1628  /*
1629  * Wait for that worker to finish. This is necessary to maintain commit
1630  * order which avoids failures due to transaction dependencies and
1631  * deadlocks.
1632  */
1633  pa_wait_for_xact_finish(winfo);
1634 
1635  if (!XLogRecPtrIsInvalid(remote_lsn))
1636  store_flush_position(remote_lsn, winfo->shared->last_commit_end);
1637 
1638  pa_free_worker(winfo);
1639 }
struct ParallelApplyWorkerEntry ParallelApplyWorkerEntry
static ParallelApplyWorkerInfo * stream_apply_worker
static List * ParallelApplyWorkerPool
void pa_set_xact_state(ParallelApplyWorkerShared *wshared, ParallelTransState xact_state)
void pa_unlock_stream(TransactionId xid, LOCKMODE lockmode)
static bool pa_setup_dsm(ParallelApplyWorkerInfo *winfo)
#define DSM_ERROR_QUEUE_SIZE
volatile sig_atomic_t ParallelApplyMessagePending
static bool pa_can_start(void)
void HandleParallelApplyMessageInterrupt(void)
ParallelApplyWorkerInfo * pa_find_worker(TransactionId xid)
static ParallelApplyWorkerInfo * pa_launch_parallel_worker(void)
#define SHM_SEND_TIMEOUT_MS
#define DSM_QUEUE_SIZE
static void pa_savepoint_name(Oid suboid, TransactionId xid, char *spname, Size szsp)
void pa_stream_abort(LogicalRepStreamAbortData *abort_data)
static void ProcessParallelApplyInterrupts(void)
static PartialFileSetState pa_get_fileset_state(void)
static void pa_free_worker_info(ParallelApplyWorkerInfo *winfo)
#define PARALLEL_APPLY_LOCK_XACT
void pa_lock_stream(TransactionId xid, LOCKMODE lockmode)
static List * subxactlist
static bool pa_has_spooled_message_pending()
static void pa_shutdown(int code, Datum arg)
void pa_set_fileset_state(ParallelApplyWorkerShared *wshared, PartialFileSetState fileset_state)
void pa_reset_subtrans(void)
static ParallelTransState pa_get_xact_state(ParallelApplyWorkerShared *wshared)
#define PARALLEL_APPLY_KEY_SHARED
void pa_lock_transaction(TransactionId xid, LOCKMODE lockmode)
ParallelApplyWorkerShared * MyParallelShared
void pa_detach_all_error_mq(void)
static void LogicalParallelApplyLoop(shm_mq_handle *mqh)
static void pa_wait_for_xact_state(ParallelApplyWorkerInfo *winfo, ParallelTransState xact_state)
void pa_start_subtrans(TransactionId current_xid, TransactionId top_xid)
#define PARALLEL_APPLY_KEY_ERROR_QUEUE
void pa_switch_to_partial_serialize(ParallelApplyWorkerInfo *winfo, bool stream_locked)
static void pa_free_worker(ParallelApplyWorkerInfo *winfo)
void pa_xact_finish(ParallelApplyWorkerInfo *winfo, XLogRecPtr remote_lsn)
#define PARALLEL_APPLY_KEY_MQ
static void pa_wait_for_xact_finish(ParallelApplyWorkerInfo *winfo)
#define SIZE_STATS_MESSAGE
#define SHM_SEND_RETRY_INTERVAL_MS
bool pa_send_data(ParallelApplyWorkerInfo *winfo, Size nbytes, const void *data)
void pa_allocate_worker(TransactionId xid)
static bool pa_process_spooled_messages_if_required(void)
void pa_set_stream_apply_worker(ParallelApplyWorkerInfo *winfo)
static HTAB * ParallelApplyTxnHash
#define PARALLEL_APPLY_LOCK_STREAM
static void HandleParallelApplyMessage(StringInfo msg)
void pa_unlock_transaction(TransactionId xid, LOCKMODE lockmode)
void ParallelApplyWorkerMain(Datum main_arg)
#define PG_LOGICAL_APPLY_SHM_MAGIC
void pa_decr_and_wait_stream_block(void)
void HandleParallelApplyMessages(void)
static uint32 pg_atomic_sub_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
Definition: atomics.h:434
static void pg_atomic_init_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
Definition: atomics.h:216
static uint32 pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
Definition: atomics.h:234
void stream_cleanup_files(Oid subid, TransactionId xid)
Definition: worker.c:4205
MemoryContext ApplyMessageContext
Definition: worker.c:290
bool InitializingApplyWorker
Definition: worker.c:318
void apply_dispatch(StringInfo s)
Definition: worker.c:3272
void ReplicationOriginNameForLogicalRep(Oid suboid, Oid relid, char *originname, Size szoriginname)
Definition: worker.c:428
ErrorContextCallback * apply_error_context_stack
Definition: worker.c:288
void stream_start_internal(TransactionId xid, bool first_segment)
Definition: worker.c:1429
void set_apply_error_context_origin(char *originname)
Definition: worker.c:5035
MemoryContext ApplyContext
Definition: worker.c:291
void apply_error_callback(void *arg)
Definition: worker.c:4893
void store_flush_position(XLogRecPtr remote_lsn, XLogRecPtr local_lsn)
Definition: worker.c:3436
void maybe_reread_subscription(void)
Definition: worker.c:3862
void InitializeLogRepWorker(void)
Definition: worker.c:4561
void apply_spooled_messages(FileSet *stream_fileset, TransactionId xid, XLogRecPtr lsn)
Definition: worker.c:2001
Subscription * MySubscription
Definition: worker.c:298
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1790
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1654
void pgstat_report_activity(BackendState state, const char *cmd_str)
@ STATE_IDLE
#define Assert(condition)
Definition: c.h:858
#define unlikely(x)
Definition: c.h:311
#define MemSet(start, val, len)
Definition: c.h:1020
uint32 TransactionId
Definition: c.h:652
size_t Size
Definition: c.h:605
int64 TimestampTz
Definition: timestamp.h:39
dsm_handle dsm_segment_handle(dsm_segment *seg)
Definition: dsm.c:1123
void * dsm_segment_address(dsm_segment *seg)
Definition: dsm.c:1095
void dsm_detach(dsm_segment *seg)
Definition: dsm.c:803
dsm_segment * dsm_attach(dsm_handle h)
Definition: dsm.c:665
dsm_segment * dsm_create(Size size, int flags)
Definition: dsm.c:516
uint32 dsm_handle
Definition: dsm_impl.h:55
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
ErrorContextCallback * error_context_stack
Definition: elog.c:94
int errcode(int sqlerrcode)
Definition: elog.c:859
int errmsg(const char *fmt,...)
Definition: elog.c:1072
#define _(x)
Definition: elog.c:90
#define LOG
Definition: elog.h:31
#define errcontext
Definition: elog.h:196
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define ereport(elevel,...)
Definition: elog.h:149
volatile sig_atomic_t InterruptPending
Definition: globals.c:30
struct Latch * MyLatch
Definition: globals.c:60
@ PGC_SIGHUP
Definition: guc.h:71
void ProcessConfigFile(GucContext context)
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_REMOVE
Definition: hsearch.h:115
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
void SignalHandlerForShutdownRequest(SIGNAL_ARGS)
Definition: interrupt.c:105
volatile sig_atomic_t ShutdownRequestPending
Definition: interrupt.c:28
volatile sig_atomic_t ConfigReloadPending
Definition: interrupt.c:27
void SignalHandlerForConfigReload(SIGNAL_ARGS)
Definition: interrupt.c:61
void CacheRegisterSyscacheCallback(int cacheid, SyscacheCallbackFunction func, Datum arg)
Definition: inval.c:1516
void before_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:337
void proc_exit(int code)
Definition: ipc.c:104
int i
Definition: isn.c:73
void SetLatch(Latch *latch)
Definition: latch.c:632
void ResetLatch(Latch *latch)
Definition: latch.c:724
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:517
#define WL_TIMEOUT
Definition: latch.h:130
#define WL_EXIT_ON_PM_DEATH
Definition: latch.h:132
#define WL_LATCH_SET
Definition: latch.h:127
bool logicalrep_worker_launch(LogicalRepWorkerType wtype, Oid dbid, Oid subid, const char *subname, Oid userid, Oid relid, dsm_handle subworker_dsm)
Definition: launcher.c:300
void logicalrep_worker_attach(int slot)
Definition: launcher.c:707
void logicalrep_pa_worker_stop(ParallelApplyWorkerInfo *winfo)
Definition: launcher.c:633
LogicalRepWorker * MyLogicalRepWorker
Definition: launcher.c:54
int max_parallel_apply_workers_per_subscription
Definition: launcher.c:52
List * list_delete_ptr(List *list, void *datum)
Definition: list.c:872
List * list_truncate(List *list, int new_size)
Definition: list.c:631
List * lappend_xid(List *list, TransactionId datum)
Definition: list.c:393
bool list_member_xid(const List *list, TransactionId datum)
Definition: list.c:742
List * lappend(List *list, void *datum)
Definition: list.c:339
void UnlockApplyTransactionForSession(Oid suboid, TransactionId xid, uint16 objid, LOCKMODE lockmode)
Definition: lmgr.c:1221
void LockApplyTransactionForSession(Oid suboid, TransactionId xid, uint16 objid, LOCKMODE lockmode)
Definition: lmgr.c:1203
int LOCKMODE
Definition: lockdefs.h:26
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define AccessShareLock
Definition: lockdefs.h:36
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:383
MemoryContext TopTransactionContext
Definition: mcxt.c:154
char * pstrdup(const char *in)
Definition: mcxt.c:1695
void pfree(void *pointer)
Definition: mcxt.c:1520
MemoryContext TopMemoryContext
Definition: mcxt.c:149
void * palloc0(Size size)
Definition: mcxt.c:1346
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define RESUME_INTERRUPTS()
Definition: miscadmin.h:135
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
#define HOLD_INTERRUPTS()
Definition: miscadmin.h:133
TimestampTz replorigin_session_origin_timestamp
Definition: origin.c:157
RepOriginId replorigin_by_name(const char *roname, bool missing_ok)
Definition: origin.c:221
RepOriginId replorigin_session_origin
Definition: origin.c:155
void replorigin_session_setup(RepOriginId node, int acquired_by)
Definition: origin.c:1097
XLogRecPtr replorigin_session_origin_lsn
Definition: origin.c:156
void * arg
#define NAMEDATALEN
const void size_t len
const void * data
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
static ListCell * list_nth_cell(const List *list, int n)
Definition: pg_list.h:277
#define lfirst_xid(lc)
Definition: pg_list.h:175
#define die(msg)
pqsigfunc pqsignal(int signo, pqsigfunc func)
#define snprintf
Definition: port.h:238
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
static int32 DatumGetInt32(Datum X)
Definition: postgres.h:202
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
void BackgroundWorkerUnblockSignals(void)
Definition: postmaster.c:4229
BackgroundWorker * MyBgworkerEntry
Definition: postmaster.c:185
int pq_getmsgbyte(StringInfo msg)
Definition: pqformat.c:399
void pq_set_parallel_leader(pid_t pid, ProcNumber procNumber)
Definition: pqmq.c:78
void pq_parse_errornotice(StringInfo msg, ErrorData *edata)
Definition: pqmq.c:216
void pq_redirect_to_shm_mq(dsm_segment *seg, shm_mq_handle *mqh)
Definition: pqmq.c:53
char * c
e
Definition: preproc-init.c:82
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
int SendProcSignal(pid_t pid, ProcSignalReason reason, ProcNumber procNumber)
Definition: procsignal.c:257
@ PROCSIG_PARALLEL_APPLY_MESSAGE
Definition: procsignal.h:38
char * psprintf(const char *fmt,...)
Definition: psprintf.c:46
MemoryContextSwitchTo(old_ctx)
tree ctl
Definition: radixtree.h:1847
int debug_logical_replication_streaming
@ DEBUG_LOGICAL_REP_STREAMING_IMMEDIATE
Definition: reorderbuffer.h:29
shm_mq_handle * shm_mq_attach(shm_mq *mq, dsm_segment *seg, BackgroundWorkerHandle *handle)
Definition: shm_mq.c:290
void shm_mq_set_sender(shm_mq *mq, PGPROC *proc)
Definition: shm_mq.c:224
shm_mq * shm_mq_create(void *address, Size size)
Definition: shm_mq.c:177
void shm_mq_detach(shm_mq_handle *mqh)
Definition: shm_mq.c:843
void shm_mq_set_receiver(shm_mq *mq, PGPROC *proc)
Definition: shm_mq.c:206
shm_mq_result shm_mq_receive(shm_mq_handle *mqh, Size *nbytesp, void **datap, bool nowait)
Definition: shm_mq.c:572
shm_mq_result shm_mq_send(shm_mq_handle *mqh, Size nbytes, const void *data, bool nowait, bool force_flush)
Definition: shm_mq.c:329
shm_mq_result
Definition: shm_mq.h:37
@ SHM_MQ_SUCCESS
Definition: shm_mq.h:38
@ SHM_MQ_WOULD_BLOCK
Definition: shm_mq.h:39
@ SHM_MQ_DETACHED
Definition: shm_mq.h:40
shm_toc * shm_toc_attach(uint64 magic, void *address)
Definition: shm_toc.c:64
shm_toc * shm_toc_create(uint64 magic, void *address, Size nbytes)
Definition: shm_toc.c:40
Size shm_toc_estimate(shm_toc_estimator *e)
Definition: shm_toc.c:263
void shm_toc_insert(shm_toc *toc, uint64 key, void *address)
Definition: shm_toc.c:171
void * shm_toc_allocate(shm_toc *toc, Size nbytes)
Definition: shm_toc.c:88
void * shm_toc_lookup(shm_toc *toc, uint64 key, bool noError)
Definition: shm_toc.c:232
#define shm_toc_estimate_chunk(e, sz)
Definition: shm_toc.h:51
#define shm_toc_initialize_estimator(e)
Definition: shm_toc.h:49
#define shm_toc_estimate_keys(e, cnt)
Definition: shm_toc.h:53
#define SpinLockInit(lock)
Definition: spin.h:60
#define SpinLockRelease(lock)
Definition: spin.h:64
#define SpinLockAcquire(lock)
Definition: spin.h:62
PGPROC * MyProc
Definition: proc.c:66
void appendBinaryStringInfo(StringInfo str, const void *data, int datalen)
Definition: stringinfo.c:233
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
static void initReadOnlyStringInfo(StringInfo str, char *data, int len)
Definition: stringinfo.h:130
char bgw_extra[BGW_EXTRALEN]
Definition: bgworker.h:99
struct ErrorContextCallback * previous
Definition: elog.h:295
void(* callback)(void *arg)
Definition: elog.h:296
char * context
Definition: elog.h:443
Definition: dynahash.c:220
Definition: pg_list.h:54
TimestampTz last_recv_time
TimestampTz reply_time
FileSet * stream_fileset
TimestampTz last_send_time
ParallelApplyWorkerInfo * winfo
shm_mq_handle * error_mq_handle
shm_mq_handle * mq_handle
ParallelApplyWorkerShared * shared
pg_atomic_uint32 pending_stream_count
PartialFileSetState fileset_state
ParallelTransState xact_state
XLogRecPtr skiplsn
Definition: shm_mq.c:72
bool AllTablesyncsReady(void)
Definition: tablesync.c:1714
void invalidate_syncing_table_states(Datum arg, int cacheid, uint32 hashvalue)
Definition: tablesync.c:274
#define TransactionIdIsValid(xid)
Definition: transam.h:41
#define SIGHUP
Definition: win32_port.h:168
ParallelTransState
@ PARALLEL_TRANS_UNKNOWN
@ PARALLEL_TRANS_STARTED
@ PARALLEL_TRANS_FINISHED
static bool am_parallel_apply_worker(void)
@ WORKERTYPE_PARALLEL_APPLY
PartialFileSetState
@ FS_EMPTY
@ FS_SERIALIZE_DONE
@ FS_READY
@ FS_SERIALIZE_IN_PROGRESS
static bool am_leader_apply_worker(void)
void DefineSavepoint(const char *name)
Definition: xact.c:4322
bool IsTransactionState(void)
Definition: xact.c:384
void StartTransactionCommand(void)
Definition: xact.c:2995
bool IsTransactionBlock(void)
Definition: xact.c:4915
void BeginTransactionBlock(void)
Definition: xact.c:3873
void CommitTransactionCommand(void)
Definition: xact.c:3093
void RollbackToSavepoint(const char *name)
Definition: xact.c:4516
bool EndTransactionBlock(bool chain)
Definition: xact.c:3993
void AbortCurrentTransaction(void)
Definition: xact.c:3387
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
uint16 RepOriginId
Definition: xlogdefs.h:65
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28