PostgreSQL Source Code git master
nbtree.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * nbtree.c
4 * Implementation of Lehman and Yao's btree management algorithm for
5 * Postgres.
6 *
7 * NOTES
8 * This file contains only the public interface routines.
9 *
10 *
11 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
12 * Portions Copyright (c) 1994, Regents of the University of California
13 *
14 * IDENTIFICATION
15 * src/backend/access/nbtree/nbtree.c
16 *
17 *-------------------------------------------------------------------------
18 */
19#include "postgres.h"
20
21#include "access/nbtree.h"
22#include "access/relscan.h"
23#include "access/stratnum.h"
24#include "commands/progress.h"
25#include "commands/vacuum.h"
26#include "nodes/execnodes.h"
27#include "pgstat.h"
28#include "storage/bulk_write.h"
30#include "storage/indexfsm.h"
31#include "storage/ipc.h"
32#include "storage/lmgr.h"
33#include "storage/read_stream.h"
34#include "utils/datum.h"
35#include "utils/fmgrprotos.h"
37#include "utils/memutils.h"
38
39
40/*
41 * BTPARALLEL_NOT_INITIALIZED indicates that the scan has not started.
42 *
43 * BTPARALLEL_NEED_PRIMSCAN indicates that some process must now seize the
44 * scan to advance it via another call to _bt_first.
45 *
46 * BTPARALLEL_ADVANCING indicates that some process is advancing the scan to
47 * a new page; others must wait.
48 *
49 * BTPARALLEL_IDLE indicates that no backend is currently advancing the scan
50 * to a new page; some process can start doing that.
51 *
52 * BTPARALLEL_DONE indicates that the scan is complete (including error exit).
53 */
54typedef enum
55{
62
63/*
64 * BTParallelScanDescData contains btree specific shared information required
65 * for parallel scan.
66 */
68{
69 BlockNumber btps_nextScanPage; /* next page to be scanned */
70 BlockNumber btps_lastCurrPage; /* page whose sibling link was copied into
71 * btps_nextScanPage */
72 BTPS_State btps_pageStatus; /* indicates whether next page is
73 * available for scan. see above for
74 * possible states of parallel scan. */
75 LWLock btps_lock; /* protects shared parallel state */
76 ConditionVariable btps_cv; /* used to synchronize parallel scan */
77
78 /*
79 * btps_arrElems is used when scans need to schedule another primitive
80 * index scan with one or more SAOP arrays. Holds BTArrayKeyInfo.cur_elem
81 * offsets for each = scan key associated with a ScalarArrayOp array.
82 */
84
85 /*
86 * Additional space (at the end of the struct) is used when scans need to
87 * schedule another primitive index scan with one or more skip arrays.
88 * Holds a flattened datum representation for each = scan key associated
89 * with a skip array.
90 */
92
94
95
96static bool _bt_start_prim_scan(IndexScanDesc scan);
98 BTScanOpaque so);
100 BTScanOpaque so);
101static void btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
102 IndexBulkDeleteCallback callback, void *callback_state,
103 BTCycleId cycleid);
106 IndexTuple posting,
107 OffsetNumber updatedoffset,
108 int *nremaining);
109
110
111/*
112 * Btree handler function: return IndexAmRoutine with access method parameters
113 * and callbacks.
114 */
115Datum
117{
119
121 amroutine->amsupport = BTNProcs;
122 amroutine->amoptsprocnum = BTOPTIONS_PROC;
123 amroutine->amcanorder = true;
124 amroutine->amcanorderbyop = false;
125 amroutine->amcanhash = false;
126 amroutine->amconsistentequality = true;
127 amroutine->amconsistentordering = true;
128 amroutine->amcanbackward = true;
129 amroutine->amcanunique = true;
130 amroutine->amcanmulticol = true;
131 amroutine->amoptionalkey = true;
132 amroutine->amsearcharray = true;
133 amroutine->amsearchnulls = true;
134 amroutine->amstorage = false;
135 amroutine->amclusterable = true;
136 amroutine->ampredlocks = true;
137 amroutine->amcanparallel = true;
138 amroutine->amcanbuildparallel = true;
139 amroutine->amcaninclude = true;
140 amroutine->amusemaintenanceworkmem = false;
141 amroutine->amsummarizing = false;
142 amroutine->amparallelvacuumoptions =
144 amroutine->amkeytype = InvalidOid;
145
146 amroutine->ambuild = btbuild;
147 amroutine->ambuildempty = btbuildempty;
148 amroutine->aminsert = btinsert;
149 amroutine->aminsertcleanup = NULL;
150 amroutine->ambulkdelete = btbulkdelete;
151 amroutine->amvacuumcleanup = btvacuumcleanup;
152 amroutine->amcanreturn = btcanreturn;
153 amroutine->amcostestimate = btcostestimate;
154 amroutine->amgettreeheight = btgettreeheight;
155 amroutine->amoptions = btoptions;
156 amroutine->amproperty = btproperty;
158 amroutine->amvalidate = btvalidate;
159 amroutine->amadjustmembers = btadjustmembers;
160 amroutine->ambeginscan = btbeginscan;
161 amroutine->amrescan = btrescan;
162 amroutine->amgettuple = btgettuple;
163 amroutine->amgetbitmap = btgetbitmap;
164 amroutine->amendscan = btendscan;
165 amroutine->ammarkpos = btmarkpos;
166 amroutine->amrestrpos = btrestrpos;
172
173 PG_RETURN_POINTER(amroutine);
174}
175
176/*
177 * btbuildempty() -- build an empty btree index in the initialization fork
178 */
179void
181{
182 bool allequalimage = _bt_allequalimage(index, false);
183 BulkWriteState *bulkstate;
184 BulkWriteBuffer metabuf;
185
187
188 /* Construct metapage. */
189 metabuf = smgr_bulk_get_buf(bulkstate);
190 _bt_initmetapage((Page) metabuf, P_NONE, 0, allequalimage);
191 smgr_bulk_write(bulkstate, BTREE_METAPAGE, metabuf, true);
192
193 smgr_bulk_finish(bulkstate);
194}
195
196/*
197 * btinsert() -- insert an index tuple into a btree.
198 *
199 * Descend the tree recursively, find the appropriate location for our
200 * new tuple, and put it there.
201 */
202bool
203btinsert(Relation rel, Datum *values, bool *isnull,
204 ItemPointer ht_ctid, Relation heapRel,
205 IndexUniqueCheck checkUnique,
206 bool indexUnchanged,
207 IndexInfo *indexInfo)
208{
209 bool result;
210 IndexTuple itup;
211
212 /* generate an index tuple */
213 itup = index_form_tuple(RelationGetDescr(rel), values, isnull);
214 itup->t_tid = *ht_ctid;
215
216 result = _bt_doinsert(rel, itup, checkUnique, indexUnchanged, heapRel);
217
218 pfree(itup);
219
220 return result;
221}
222
223/*
224 * btgettuple() -- Get the next tuple in the scan.
225 */
226bool
228{
229 BTScanOpaque so = (BTScanOpaque) scan->opaque;
230 bool res;
231
232 Assert(scan->heapRelation != NULL);
233
234 /* btree indexes are never lossy */
235 scan->xs_recheck = false;
236
237 /* Each loop iteration performs another primitive index scan */
238 do
239 {
240 /*
241 * If we've already initialized this scan, we can just advance it in
242 * the appropriate direction. If we haven't done so yet, we call
243 * _bt_first() to get the first item in the scan.
244 */
245 if (!BTScanPosIsValid(so->currPos))
246 res = _bt_first(scan, dir);
247 else
248 {
249 /*
250 * Check to see if we should kill the previously-fetched tuple.
251 */
252 if (scan->kill_prior_tuple)
253 {
254 /*
255 * Yes, remember it for later. (We'll deal with all such
256 * tuples at once right before leaving the index page.) The
257 * test for numKilled overrun is not just paranoia: if the
258 * caller reverses direction in the indexscan then the same
259 * item might get entered multiple times. It's not worth
260 * trying to optimize that, so we don't detect it, but instead
261 * just forget any excess entries.
262 */
263 if (so->killedItems == NULL)
266 so->killedItems[so->numKilled++] = so->currPos.itemIndex;
267 }
268
269 /*
270 * Now continue the scan.
271 */
272 res = _bt_next(scan, dir);
273 }
274
275 /* If we have a tuple, return it ... */
276 if (res)
277 break;
278 /* ... otherwise see if we need another primitive index scan */
279 } while (so->numArrayKeys && _bt_start_prim_scan(scan));
280
281 return res;
282}
283
284/*
285 * btgetbitmap() -- gets all matching tuples, and adds them to a bitmap
286 */
287int64
289{
290 BTScanOpaque so = (BTScanOpaque) scan->opaque;
291 int64 ntids = 0;
292 ItemPointer heapTid;
293
294 Assert(scan->heapRelation == NULL);
295
296 /* Each loop iteration performs another primitive index scan */
297 do
298 {
299 /* Fetch the first page & tuple */
301 {
302 /* Save tuple ID, and continue scanning */
303 heapTid = &scan->xs_heaptid;
304 tbm_add_tuples(tbm, heapTid, 1, false);
305 ntids++;
306
307 for (;;)
308 {
309 /*
310 * Advance to next tuple within page. This is the same as the
311 * easy case in _bt_next().
312 */
313 if (++so->currPos.itemIndex > so->currPos.lastItem)
314 {
315 /* let _bt_next do the heavy lifting */
316 if (!_bt_next(scan, ForwardScanDirection))
317 break;
318 }
319
320 /* Save tuple ID, and continue scanning */
321 heapTid = &so->currPos.items[so->currPos.itemIndex].heapTid;
322 tbm_add_tuples(tbm, heapTid, 1, false);
323 ntids++;
324 }
325 }
326 /* Now see if we need another primitive index scan */
327 } while (so->numArrayKeys && _bt_start_prim_scan(scan));
328
329 return ntids;
330}
331
332/*
333 * btbeginscan() -- start a scan on a btree index
334 */
336btbeginscan(Relation rel, int nkeys, int norderbys)
337{
338 IndexScanDesc scan;
339 BTScanOpaque so;
340
341 /* no order by operators allowed */
342 Assert(norderbys == 0);
343
344 /* get the scan */
345 scan = RelationGetIndexScan(rel, nkeys, norderbys);
346
347 /* allocate private workspace */
351 if (scan->numberOfKeys > 0)
352 so->keyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData));
353 else
354 so->keyData = NULL;
355
356 so->skipScan = false;
357 so->needPrimScan = false;
358 so->scanBehind = false;
359 so->oppositeDirCheck = false;
360 so->arrayKeys = NULL;
361 so->orderProcs = NULL;
362 so->arrayContext = NULL;
363
364 so->killedItems = NULL; /* until needed */
365 so->numKilled = 0;
366
367 /*
368 * We don't know yet whether the scan will be index-only, so we do not
369 * allocate the tuple workspace arrays until btrescan. However, we set up
370 * scan->xs_itupdesc whether we'll need it or not, since that's so cheap.
371 */
372 so->currTuples = so->markTuples = NULL;
373
374 scan->xs_itupdesc = RelationGetDescr(rel);
375
376 scan->opaque = so;
377
378 return scan;
379}
380
381/*
382 * btrescan() -- rescan an index relation
383 */
384void
385btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys,
386 ScanKey orderbys, int norderbys)
387{
388 BTScanOpaque so = (BTScanOpaque) scan->opaque;
389
390 /* we aren't holding any read locks, but gotta drop the pins */
392 {
393 /* Before leaving current page, deal with any killed items */
394 if (so->numKilled > 0)
395 _bt_killitems(scan);
398 }
399
400 /*
401 * We prefer to eagerly drop leaf page pins before btgettuple returns.
402 * This avoids making VACUUM wait to acquire a cleanup lock on the page.
403 *
404 * We cannot safely drop leaf page pins during index-only scans due to a
405 * race condition involving VACUUM setting pages all-visible in the VM.
406 * It's also unsafe for plain index scans that use a non-MVCC snapshot.
407 *
408 * When we drop pins eagerly, the mechanism that marks so->killedItems[]
409 * index tuples LP_DEAD has to deal with concurrent TID recycling races.
410 * The scheme used to detect unsafe TID recycling won't work when scanning
411 * unlogged relations (since it involves saving an affected page's LSN).
412 * Opt out of eager pin dropping during unlogged relation scans for now
413 * (this is preferable to opting out of kill_prior_tuple LP_DEAD setting).
414 *
415 * Also opt out of dropping leaf page pins eagerly during bitmap scans.
416 * Pins cannot be held for more than an instant during bitmap scans either
417 * way, so we might as well avoid wasting cycles on acquiring page LSNs.
418 *
419 * See nbtree/README section on making concurrent TID recycling safe.
420 *
421 * Note: so->dropPin should never change across rescans.
422 */
423 so->dropPin = (!scan->xs_want_itup &&
426 scan->heapRelation != NULL);
427
428 so->markItemIndex = -1;
429 so->needPrimScan = false;
430 so->scanBehind = false;
431 so->oppositeDirCheck = false;
434
435 /*
436 * Allocate tuple workspace arrays, if needed for an index-only scan and
437 * not already done in a previous rescan call. To save on palloc
438 * overhead, both workspaces are allocated as one palloc block; only this
439 * function and btendscan know that.
440 *
441 * NOTE: this data structure also makes it safe to return data from a
442 * "name" column, even though btree name_ops uses an underlying storage
443 * datatype of cstring. The risk there is that "name" is supposed to be
444 * padded to NAMEDATALEN, but the actual index tuple is probably shorter.
445 * However, since we only return data out of tuples sitting in the
446 * currTuples array, a fetch of NAMEDATALEN bytes can at worst pull some
447 * data out of the markTuples array --- running off the end of memory for
448 * a SIGSEGV is not possible. Yeah, this is ugly as sin, but it beats
449 * adding special-case treatment for name_ops elsewhere.
450 */
451 if (scan->xs_want_itup && so->currTuples == NULL)
452 {
453 so->currTuples = (char *) palloc(BLCKSZ * 2);
454 so->markTuples = so->currTuples + BLCKSZ;
455 }
456
457 /*
458 * Reset the scan keys
459 */
460 if (scankey && scan->numberOfKeys > 0)
461 memcpy(scan->keyData, scankey, scan->numberOfKeys * sizeof(ScanKeyData));
462 so->numberOfKeys = 0; /* until _bt_preprocess_keys sets it */
463 so->numArrayKeys = 0; /* ditto */
464}
465
466/*
467 * btendscan() -- close down a scan
468 */
469void
471{
472 BTScanOpaque so = (BTScanOpaque) scan->opaque;
473
474 /* we aren't holding any read locks, but gotta drop the pins */
476 {
477 /* Before leaving current page, deal with any killed items */
478 if (so->numKilled > 0)
479 _bt_killitems(scan);
481 }
482
483 so->markItemIndex = -1;
485
486 /* No need to invalidate positions, the RAM is about to be freed. */
487
488 /* Release storage */
489 if (so->keyData != NULL)
490 pfree(so->keyData);
491 /* so->arrayKeys and so->orderProcs are in arrayContext */
492 if (so->arrayContext != NULL)
494 if (so->killedItems != NULL)
495 pfree(so->killedItems);
496 if (so->currTuples != NULL)
497 pfree(so->currTuples);
498 /* so->markTuples should not be pfree'd, see btrescan */
499 pfree(so);
500}
501
502/*
503 * btmarkpos() -- save current scan position
504 */
505void
507{
508 BTScanOpaque so = (BTScanOpaque) scan->opaque;
509
510 /* There may be an old mark with a pin (but no lock). */
512
513 /*
514 * Just record the current itemIndex. If we later step to next page
515 * before releasing the marked position, _bt_steppage makes a full copy of
516 * the currPos struct in markPos. If (as often happens) the mark is moved
517 * before we leave the page, we don't have to do that work.
518 */
519 if (BTScanPosIsValid(so->currPos))
521 else
522 {
524 so->markItemIndex = -1;
525 }
526}
527
528/*
529 * btrestrpos() -- restore scan to last saved position
530 */
531void
533{
534 BTScanOpaque so = (BTScanOpaque) scan->opaque;
535
536 if (so->markItemIndex >= 0)
537 {
538 /*
539 * The scan has never moved to a new page since the last mark. Just
540 * restore the itemIndex.
541 *
542 * NB: In this case we can't count on anything in so->markPos to be
543 * accurate.
544 */
546 }
547 else
548 {
549 /*
550 * The scan moved to a new page after last mark or restore, and we are
551 * now restoring to the marked page. We aren't holding any read
552 * locks, but if we're still holding the pin for the current position,
553 * we must drop it.
554 */
555 if (BTScanPosIsValid(so->currPos))
556 {
557 /* Before leaving current page, deal with any killed items */
558 if (so->numKilled > 0)
559 _bt_killitems(scan);
561 }
562
563 if (BTScanPosIsValid(so->markPos))
564 {
565 /* bump pin on mark buffer for assignment to current buffer */
566 if (BTScanPosIsPinned(so->markPos))
568 memcpy(&so->currPos, &so->markPos,
569 offsetof(BTScanPosData, items[1]) +
570 so->markPos.lastItem * sizeof(BTScanPosItem));
571 if (so->currTuples)
572 memcpy(so->currTuples, so->markTuples,
574 /* Reset the scan's array keys (see _bt_steppage for why) */
575 if (so->numArrayKeys)
576 {
578 so->needPrimScan = false;
579 }
580 }
581 else
583 }
584}
585
586/*
587 * btestimateparallelscan -- estimate storage for BTParallelScanDescData
588 */
589Size
590btestimateparallelscan(Relation rel, int nkeys, int norderbys)
591{
593 Size estnbtreeshared,
594 genericattrspace;
595
596 /*
597 * Pessimistically assume that every input scan key will be output with
598 * its own SAOP array
599 */
600 estnbtreeshared = offsetof(BTParallelScanDescData, btps_arrElems) +
601 sizeof(int) * nkeys;
602
603 /* Single column indexes cannot possibly use a skip array */
604 if (nkeyatts == 1)
605 return estnbtreeshared;
606
607 /*
608 * Pessimistically assume that all attributes prior to the least
609 * significant attribute require a skip array (and an associated key)
610 */
611 genericattrspace = datumEstimateSpace((Datum) 0, false, true,
612 sizeof(Datum));
613 for (int attnum = 1; attnum < nkeyatts; attnum++)
614 {
615 CompactAttribute *attr;
616
617 /*
618 * We make the conservative assumption that every index column will
619 * also require a skip array.
620 *
621 * Every skip array must have space to store its scan key's sk_flags.
622 */
623 estnbtreeshared = add_size(estnbtreeshared, sizeof(int));
624
625 /* Consider space required to store a datum of opclass input type */
626 attr = TupleDescCompactAttr(rel->rd_att, attnum - 1);
627 if (attr->attbyval)
628 {
629 /* This index attribute stores pass-by-value datums */
630 Size estfixed = datumEstimateSpace((Datum) 0, false,
631 true, attr->attlen);
632
633 estnbtreeshared = add_size(estnbtreeshared, estfixed);
634 continue;
635 }
636
637 /*
638 * This index attribute stores pass-by-reference datums.
639 *
640 * Assume that serializing this array will use just as much space as a
641 * pass-by-value datum, in addition to space for the largest possible
642 * whole index tuple (this is not just a per-datum portion of the
643 * largest possible tuple because that'd be almost as large anyway).
644 *
645 * This is quite conservative, but it's not clear how we could do much
646 * better. The executor requires an up-front storage request size
647 * that reliably covers the scan's high watermark memory usage. We
648 * can't be sure of the real high watermark until the scan is over.
649 */
650 estnbtreeshared = add_size(estnbtreeshared, genericattrspace);
651 estnbtreeshared = add_size(estnbtreeshared, BTMaxItemSize);
652 }
653
654 return estnbtreeshared;
655}
656
657/*
658 * _bt_start_prim_scan() -- start scheduled primitive index scan?
659 *
660 * Returns true if _bt_checkkeys scheduled another primitive index scan, just
661 * as the last one ended. Otherwise returns false, indicating that the array
662 * keys are now fully exhausted.
663 *
664 * Only call here during scans with one or more equality type array scan keys,
665 * after _bt_first or _bt_next return false.
666 */
667static bool
669{
670 BTScanOpaque so = (BTScanOpaque) scan->opaque;
671
672 Assert(so->numArrayKeys);
673
674 so->scanBehind = so->oppositeDirCheck = false; /* reset */
675
676 /*
677 * Array keys are advanced within _bt_checkkeys when the scan reaches the
678 * leaf level (more precisely, they're advanced when the scan reaches the
679 * end of each distinct set of array elements). This process avoids
680 * repeat access to leaf pages (across multiple primitive index scans) by
681 * advancing the scan's array keys when it allows the primitive index scan
682 * to find nearby matching tuples (or when it eliminates ranges of array
683 * key space that can't possibly be satisfied by any index tuple).
684 *
685 * _bt_checkkeys sets a simple flag variable to schedule another primitive
686 * index scan. The flag tells us what to do.
687 *
688 * We cannot rely on _bt_first always reaching _bt_checkkeys. There are
689 * various cases where that won't happen. For example, if the index is
690 * completely empty, then _bt_first won't call _bt_readpage/_bt_checkkeys.
691 * We also don't expect a call to _bt_checkkeys during searches for a
692 * non-existent value that happens to be lower/higher than any existing
693 * value in the index.
694 *
695 * We don't require special handling for these cases -- we don't need to
696 * be explicitly instructed to _not_ perform another primitive index scan.
697 * It's up to code under the control of _bt_first to always set the flag
698 * when another primitive index scan will be required.
699 *
700 * This works correctly, even with the tricky cases listed above, which
701 * all involve access to leaf pages "near the boundaries of the key space"
702 * (whether it's from a leftmost/rightmost page, or an imaginary empty
703 * leaf root page). If _bt_checkkeys cannot be reached by a primitive
704 * index scan for one set of array keys, then it also won't be reached for
705 * any later set ("later" in terms of the direction that we scan the index
706 * and advance the arrays). The array keys won't have advanced in these
707 * cases, but that's the correct behavior (even _bt_advance_array_keys
708 * won't always advance the arrays at the point they become "exhausted").
709 */
710 if (so->needPrimScan)
711 {
712 /*
713 * Flag was set -- must call _bt_first again, which will reset the
714 * scan's needPrimScan flag
715 */
716 return true;
717 }
718
719 /* The top-level index scan ran out of tuples in this scan direction */
720 if (scan->parallel_scan != NULL)
721 _bt_parallel_done(scan);
722
723 return false;
724}
725
726/*
727 * _bt_parallel_serialize_arrays() -- Serialize parallel array state.
728 *
729 * Caller must have exclusively locked btscan->btps_lock when called.
730 */
731static void
733 BTScanOpaque so)
734{
735 char *datumshared;
736
737 /* Space for serialized datums begins immediately after btps_arrElems[] */
738 datumshared = ((char *) &btscan->btps_arrElems[so->numArrayKeys]);
739 for (int i = 0; i < so->numArrayKeys; i++)
740 {
741 BTArrayKeyInfo *array = &so->arrayKeys[i];
742 ScanKey skey = &so->keyData[array->scan_key];
743
744 if (array->num_elems != -1)
745 {
746 /* Save SAOP array's cur_elem (no need to copy key/datum) */
747 Assert(!(skey->sk_flags & SK_BT_SKIP));
748 btscan->btps_arrElems[i] = array->cur_elem;
749 continue;
750 }
751
752 /* Save all mutable state associated with skip array's key */
753 Assert(skey->sk_flags & SK_BT_SKIP);
754 memcpy(datumshared, &skey->sk_flags, sizeof(int));
755 datumshared += sizeof(int);
756
757 if (skey->sk_flags & (SK_BT_MINVAL | SK_BT_MAXVAL))
758 {
759 /* No sk_argument datum to serialize */
760 Assert(skey->sk_argument == 0);
761 continue;
762 }
763
764 datumSerialize(skey->sk_argument, (skey->sk_flags & SK_ISNULL) != 0,
765 array->attbyval, array->attlen, &datumshared);
766 }
767}
768
769/*
770 * _bt_parallel_restore_arrays() -- Restore serialized parallel array state.
771 *
772 * Caller must have exclusively locked btscan->btps_lock when called.
773 */
774static void
776 BTScanOpaque so)
777{
778 char *datumshared;
779
780 /* Space for serialized datums begins immediately after btps_arrElems[] */
781 datumshared = ((char *) &btscan->btps_arrElems[so->numArrayKeys]);
782 for (int i = 0; i < so->numArrayKeys; i++)
783 {
784 BTArrayKeyInfo *array = &so->arrayKeys[i];
785 ScanKey skey = &so->keyData[array->scan_key];
786 bool isnull;
787
788 if (array->num_elems != -1)
789 {
790 /* Restore SAOP array using its saved cur_elem */
791 Assert(!(skey->sk_flags & SK_BT_SKIP));
792 array->cur_elem = btscan->btps_arrElems[i];
793 skey->sk_argument = array->elem_values[array->cur_elem];
794 continue;
795 }
796
797 /* Restore skip array by restoring its key directly */
798 if (!array->attbyval && skey->sk_argument)
800 skey->sk_argument = (Datum) 0;
801 memcpy(&skey->sk_flags, datumshared, sizeof(int));
802 datumshared += sizeof(int);
803
804 Assert(skey->sk_flags & SK_BT_SKIP);
805
806 if (skey->sk_flags & (SK_BT_MINVAL | SK_BT_MAXVAL))
807 {
808 /* No sk_argument datum to restore */
809 continue;
810 }
811
812 skey->sk_argument = datumRestore(&datumshared, &isnull);
813 if (isnull)
814 {
815 Assert(skey->sk_argument == 0);
817 Assert(skey->sk_flags & SK_ISNULL);
818 }
819 }
820}
821
822/*
823 * btinitparallelscan -- initialize BTParallelScanDesc for parallel btree scan
824 */
825void
827{
828 BTParallelScanDesc bt_target = (BTParallelScanDesc) target;
829
830 LWLockInitialize(&bt_target->btps_lock,
831 LWTRANCHE_PARALLEL_BTREE_SCAN);
835 ConditionVariableInit(&bt_target->btps_cv);
836}
837
838/*
839 * btparallelrescan() -- reset parallel scan
840 */
841void
843{
844 BTParallelScanDesc btscan;
845 ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
846
847 Assert(parallel_scan);
848
849 btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
850 parallel_scan->ps_offset_am);
851
852 /*
853 * In theory, we don't need to acquire the LWLock here, because there
854 * shouldn't be any other workers running at this point, but we do so for
855 * consistency.
856 */
861 LWLockRelease(&btscan->btps_lock);
862}
863
864/*
865 * _bt_parallel_seize() -- Begin the process of advancing the scan to a new
866 * page. Other scans must wait until we call _bt_parallel_release()
867 * or _bt_parallel_done().
868 *
869 * The return value is true if we successfully seized the scan and false
870 * if we did not. The latter case occurs when no pages remain, or when
871 * another primitive index scan is scheduled that caller's backend cannot
872 * start just yet (only backends that call from _bt_first are capable of
873 * starting primitive index scans, which they indicate by passing first=true).
874 *
875 * If the return value is true, *next_scan_page returns the next page of the
876 * scan, and *last_curr_page returns the page that *next_scan_page came from.
877 * An invalid *next_scan_page means the scan hasn't yet started, or that
878 * caller needs to start the next primitive index scan (if it's the latter
879 * case we'll set so.needPrimScan).
880 *
881 * Callers should ignore the value of *next_scan_page and *last_curr_page if
882 * the return value is false.
883 */
884bool
886 BlockNumber *last_curr_page, bool first)
887{
888 Relation rel = scan->indexRelation;
889 BTScanOpaque so = (BTScanOpaque) scan->opaque;
890 bool exit_loop = false,
891 status = true,
892 endscan = false;
893 ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
894 BTParallelScanDesc btscan;
895
896 *next_scan_page = InvalidBlockNumber;
897 *last_curr_page = InvalidBlockNumber;
898
899 /*
900 * Reset so->currPos, and initialize moreLeft/moreRight such that the next
901 * call to _bt_readnextpage treats this backend similarly to a serial
902 * backend that steps from *last_curr_page to *next_scan_page (unless this
903 * backend's so->currPos is initialized by _bt_readfirstpage before then).
904 */
906 so->currPos.moreLeft = so->currPos.moreRight = true;
907
908 if (first)
909 {
910 /*
911 * Initialize array related state when called from _bt_first, assuming
912 * that this will be the first primitive index scan for the scan
913 */
914 so->needPrimScan = false;
915 so->scanBehind = false;
916 so->oppositeDirCheck = false;
917 }
918 else
919 {
920 /*
921 * Don't attempt to seize the scan when it requires another primitive
922 * index scan, since caller's backend cannot start it right now
923 */
924 if (so->needPrimScan)
925 return false;
926 }
927
928 btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
929 parallel_scan->ps_offset_am);
930
931 while (1)
932 {
933 LWLockAcquire(&btscan->btps_lock, LW_EXCLUSIVE);
934
935 if (btscan->btps_pageStatus == BTPARALLEL_DONE)
936 {
937 /* We're done with this parallel index scan */
938 status = false;
939 }
940 else if (btscan->btps_pageStatus == BTPARALLEL_IDLE &&
941 btscan->btps_nextScanPage == P_NONE)
942 {
943 /* End this parallel index scan */
944 status = false;
945 endscan = true;
946 }
947 else if (btscan->btps_pageStatus == BTPARALLEL_NEED_PRIMSCAN)
948 {
949 Assert(so->numArrayKeys);
950
951 if (first)
952 {
953 /* Can start scheduled primitive scan right away, so do so */
954 btscan->btps_pageStatus = BTPARALLEL_ADVANCING;
955
956 /* Restore scan's array keys from serialized values */
957 _bt_parallel_restore_arrays(rel, btscan, so);
958 exit_loop = true;
959 }
960 else
961 {
962 /*
963 * Don't attempt to seize the scan when it requires another
964 * primitive index scan, since caller's backend cannot start
965 * it right now
966 */
967 status = false;
968 }
969
970 /*
971 * Either way, update backend local state to indicate that a
972 * pending primitive scan is required
973 */
974 so->needPrimScan = true;
975 so->scanBehind = false;
976 so->oppositeDirCheck = false;
977 }
978 else if (btscan->btps_pageStatus != BTPARALLEL_ADVANCING)
979 {
980 /*
981 * We have successfully seized control of the scan for the purpose
982 * of advancing it to a new page!
983 */
984 btscan->btps_pageStatus = BTPARALLEL_ADVANCING;
985 Assert(btscan->btps_nextScanPage != P_NONE);
986 *next_scan_page = btscan->btps_nextScanPage;
987 *last_curr_page = btscan->btps_lastCurrPage;
988 exit_loop = true;
989 }
990 LWLockRelease(&btscan->btps_lock);
991 if (exit_loop || !status)
992 break;
993 ConditionVariableSleep(&btscan->btps_cv, WAIT_EVENT_BTREE_PAGE);
994 }
996
997 /* When the scan has reached the rightmost (or leftmost) page, end it */
998 if (endscan)
999 _bt_parallel_done(scan);
1000
1001 return status;
1002}
1003
1004/*
1005 * _bt_parallel_release() -- Complete the process of advancing the scan to a
1006 * new page. We now have the new value btps_nextScanPage; another backend
1007 * can now begin advancing the scan.
1008 *
1009 * Callers whose scan uses array keys must save their curr_page argument so
1010 * that it can be passed to _bt_parallel_primscan_schedule, should caller
1011 * determine that another primitive index scan is required.
1012 *
1013 * If caller's next_scan_page is P_NONE, the scan has reached the index's
1014 * rightmost/leftmost page. This is treated as reaching the end of the scan
1015 * within _bt_parallel_seize.
1016 *
1017 * Note: unlike the serial case, parallel scans don't need to remember both
1018 * sibling links. next_scan_page is whichever link is next given the scan's
1019 * direction. That's all we'll ever need, since the direction of a parallel
1020 * scan can never change.
1021 */
1022void
1024 BlockNumber curr_page)
1025{
1026 ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
1027 BTParallelScanDesc btscan;
1028
1029 Assert(BlockNumberIsValid(next_scan_page));
1030
1031 btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
1032 parallel_scan->ps_offset_am);
1033
1035 btscan->btps_nextScanPage = next_scan_page;
1036 btscan->btps_lastCurrPage = curr_page;
1038 LWLockRelease(&btscan->btps_lock);
1040}
1041
1042/*
1043 * _bt_parallel_done() -- Mark the parallel scan as complete.
1044 *
1045 * When there are no pages left to scan, this function should be called to
1046 * notify other workers. Otherwise, they might wait forever for the scan to
1047 * advance to the next page.
1048 */
1049void
1051{
1052 BTScanOpaque so = (BTScanOpaque) scan->opaque;
1053 ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
1054 BTParallelScanDesc btscan;
1055 bool status_changed = false;
1056
1058
1059 /* Do nothing, for non-parallel scans */
1060 if (parallel_scan == NULL)
1061 return;
1062
1063 /*
1064 * Should not mark parallel scan done when there's still a pending
1065 * primitive index scan
1066 */
1067 if (so->needPrimScan)
1068 return;
1069
1070 btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
1071 parallel_scan->ps_offset_am);
1072
1073 /*
1074 * Mark the parallel scan as done, unless some other process did so
1075 * already
1076 */
1077 LWLockAcquire(&btscan->btps_lock, LW_EXCLUSIVE);
1078 Assert(btscan->btps_pageStatus != BTPARALLEL_NEED_PRIMSCAN);
1079 if (btscan->btps_pageStatus != BTPARALLEL_DONE)
1080 {
1081 btscan->btps_pageStatus = BTPARALLEL_DONE;
1082 status_changed = true;
1083 }
1084 LWLockRelease(&btscan->btps_lock);
1085
1086 /* wake up all the workers associated with this parallel scan */
1087 if (status_changed)
1088 ConditionVariableBroadcast(&btscan->btps_cv);
1089}
1090
1091/*
1092 * _bt_parallel_primscan_schedule() -- Schedule another primitive index scan.
1093 *
1094 * Caller passes the curr_page most recently passed to _bt_parallel_release
1095 * by its backend. Caller successfully schedules the next primitive index scan
1096 * if the shared parallel state hasn't been seized since caller's backend last
1097 * advanced the scan.
1098 */
1099void
1101{
1102 Relation rel = scan->indexRelation;
1103 BTScanOpaque so = (BTScanOpaque) scan->opaque;
1104 ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
1105 BTParallelScanDesc btscan;
1106
1107 Assert(so->numArrayKeys);
1108
1109 btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
1110 parallel_scan->ps_offset_am);
1111
1112 LWLockAcquire(&btscan->btps_lock, LW_EXCLUSIVE);
1113 if (btscan->btps_lastCurrPage == curr_page &&
1114 btscan->btps_pageStatus == BTPARALLEL_IDLE)
1115 {
1116 btscan->btps_nextScanPage = InvalidBlockNumber;
1117 btscan->btps_lastCurrPage = InvalidBlockNumber;
1118 btscan->btps_pageStatus = BTPARALLEL_NEED_PRIMSCAN;
1119
1120 /* Serialize scan's current array keys */
1121 _bt_parallel_serialize_arrays(rel, btscan, so);
1122 }
1123 LWLockRelease(&btscan->btps_lock);
1124}
1125
1126/*
1127 * Bulk deletion of all index entries pointing to a set of heap tuples.
1128 * The set of target tuples is specified via a callback routine that tells
1129 * whether any given heap tuple (identified by ItemPointer) is being deleted.
1130 *
1131 * Result: a palloc'd struct containing statistical info for VACUUM displays.
1132 */
1135 IndexBulkDeleteCallback callback, void *callback_state)
1136{
1137 Relation rel = info->index;
1138 BTCycleId cycleid;
1139
1140 /* allocate stats if first time through, else re-use existing struct */
1141 if (stats == NULL)
1143
1144 /* Establish the vacuum cycle ID to use for this scan */
1145 /* The ENSURE stuff ensures we clean up shared memory on failure */
1147 {
1148 cycleid = _bt_start_vacuum(rel);
1149
1150 btvacuumscan(info, stats, callback, callback_state, cycleid);
1151 }
1153 _bt_end_vacuum(rel);
1154
1155 return stats;
1156}
1157
1158/*
1159 * Post-VACUUM cleanup.
1160 *
1161 * Result: a palloc'd struct containing statistical info for VACUUM displays.
1162 */
1165{
1166 BlockNumber num_delpages;
1167
1168 /* No-op in ANALYZE ONLY mode */
1169 if (info->analyze_only)
1170 return stats;
1171
1172 /*
1173 * If btbulkdelete was called, we need not do anything (we just maintain
1174 * the information used within _bt_vacuum_needs_cleanup() by calling
1175 * _bt_set_cleanup_info() below).
1176 *
1177 * If btbulkdelete was _not_ called, then we have a choice to make: we
1178 * must decide whether or not a btvacuumscan() call is needed now (i.e.
1179 * whether the ongoing VACUUM operation can entirely avoid a physical scan
1180 * of the index). A call to _bt_vacuum_needs_cleanup() decides it for us
1181 * now.
1182 */
1183 if (stats == NULL)
1184 {
1185 /* Check if VACUUM operation can entirely avoid btvacuumscan() call */
1186 if (!_bt_vacuum_needs_cleanup(info->index))
1187 return NULL;
1188
1189 /*
1190 * Since we aren't going to actually delete any leaf items, there's no
1191 * need to go through all the vacuum-cycle-ID pushups here.
1192 *
1193 * Posting list tuples are a source of inaccuracy for cleanup-only
1194 * scans. btvacuumscan() will assume that the number of index tuples
1195 * from each page can be used as num_index_tuples, even though
1196 * num_index_tuples is supposed to represent the number of TIDs in the
1197 * index. This naive approach can underestimate the number of tuples
1198 * in the index significantly.
1199 *
1200 * We handle the problem by making num_index_tuples an estimate in
1201 * cleanup-only case.
1202 */
1204 btvacuumscan(info, stats, NULL, NULL, 0);
1205 stats->estimated_count = true;
1206 }
1207
1208 /*
1209 * Maintain num_delpages value in metapage for _bt_vacuum_needs_cleanup().
1210 *
1211 * num_delpages is the number of deleted pages now in the index that were
1212 * not safe to place in the FSM to be recycled just yet. num_delpages is
1213 * greater than 0 only when _bt_pagedel() actually deleted pages during
1214 * our call to btvacuumscan(). Even then, _bt_pendingfsm_finalize() must
1215 * have failed to place any newly deleted pages in the FSM just moments
1216 * ago. (Actually, there are edge cases where recycling of the current
1217 * VACUUM's newly deleted pages does not even become safe by the time the
1218 * next VACUUM comes around. See nbtree/README.)
1219 */
1220 Assert(stats->pages_deleted >= stats->pages_free);
1221 num_delpages = stats->pages_deleted - stats->pages_free;
1222 _bt_set_cleanup_info(info->index, num_delpages);
1223
1224 /*
1225 * It's quite possible for us to be fooled by concurrent page splits into
1226 * double-counting some index tuples, so disbelieve any total that exceeds
1227 * the underlying heap's count ... if we know that accurately. Otherwise
1228 * this might just make matters worse.
1229 */
1230 if (!info->estimated_count)
1231 {
1232 if (stats->num_index_tuples > info->num_heap_tuples)
1233 stats->num_index_tuples = info->num_heap_tuples;
1234 }
1235
1236 return stats;
1237}
1238
1239/*
1240 * btvacuumscan --- scan the index for VACUUMing purposes
1241 *
1242 * This combines the functions of looking for leaf tuples that are deletable
1243 * according to the vacuum callback, looking for empty pages that can be
1244 * deleted, and looking for old deleted pages that can be recycled. Both
1245 * btbulkdelete and btvacuumcleanup invoke this (the latter only if no
1246 * btbulkdelete call occurred and _bt_vacuum_needs_cleanup returned true).
1247 *
1248 * The caller is responsible for initially allocating/zeroing a stats struct
1249 * and for obtaining a vacuum cycle ID if necessary.
1250 */
1251static void
1253 IndexBulkDeleteCallback callback, void *callback_state,
1254 BTCycleId cycleid)
1255{
1256 Relation rel = info->index;
1257 BTVacState vstate;
1258 BlockNumber num_pages;
1259 bool needLock;
1261 ReadStream *stream = NULL;
1262
1263 /*
1264 * Reset fields that track information about the entire index now. This
1265 * avoids double-counting in the case where a single VACUUM command
1266 * requires multiple scans of the index.
1267 *
1268 * Avoid resetting the tuples_removed and pages_newly_deleted fields here,
1269 * since they track information about the VACUUM command, and so must last
1270 * across each call to btvacuumscan().
1271 *
1272 * (Note that pages_free is treated as state about the whole index, not
1273 * the current VACUUM. This is appropriate because RecordFreeIndexPage()
1274 * calls are idempotent, and get repeated for the same deleted pages in
1275 * some scenarios. The point for us is to track the number of recyclable
1276 * pages in the index at the end of the VACUUM command.)
1277 */
1278 stats->num_pages = 0;
1279 stats->num_index_tuples = 0;
1280 stats->pages_deleted = 0;
1281 stats->pages_free = 0;
1282
1283 /* Set up info to pass down to btvacuumpage */
1284 vstate.info = info;
1285 vstate.stats = stats;
1286 vstate.callback = callback;
1287 vstate.callback_state = callback_state;
1288 vstate.cycleid = cycleid;
1289
1290 /* Create a temporary memory context to run _bt_pagedel in */
1292 "_bt_pagedel",
1294
1295 /* Initialize vstate fields used by _bt_pendingfsm_finalize */
1296 vstate.bufsize = 0;
1297 vstate.maxbufsize = 0;
1298 vstate.pendingpages = NULL;
1299 vstate.npendingpages = 0;
1300 /* Consider applying _bt_pendingfsm_finalize optimization */
1301 _bt_pendingfsm_init(rel, &vstate, (callback == NULL));
1302
1303 /*
1304 * The outer loop iterates over all index pages except the metapage, in
1305 * physical order (we hope the kernel will cooperate in providing
1306 * read-ahead for speed). It is critical that we visit all leaf pages,
1307 * including ones added after we start the scan, else we might fail to
1308 * delete some deletable tuples. Hence, we must repeatedly check the
1309 * relation length. We must acquire the relation-extension lock while
1310 * doing so to avoid a race condition: if someone else is extending the
1311 * relation, there is a window where bufmgr/smgr have created a new
1312 * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If
1313 * we manage to scan such a page here, we'll improperly assume it can be
1314 * recycled. Taking the lock synchronizes things enough to prevent a
1315 * problem: either num_pages won't include the new page, or _bt_getbuf
1316 * already has write lock on the buffer and it will be fully initialized
1317 * before we can examine it. Also, we need not worry if a page is added
1318 * immediately after we look; the page splitting code already has
1319 * write-lock on the left page before it adds a right page, so we must
1320 * already have processed any tuples due to be moved into such a page.
1321 *
1322 * XXX: Now that new pages are locked with RBM_ZERO_AND_LOCK, I don't
1323 * think the use of the extension lock is still required.
1324 *
1325 * We can skip locking for new or temp relations, however, since no one
1326 * else could be accessing them.
1327 */
1328 needLock = !RELATION_IS_LOCAL(rel);
1329
1331
1332 /*
1333 * It is safe to use batchmode as block_range_read_stream_cb takes no
1334 * locks.
1335 */
1339 info->strategy,
1340 rel,
1343 &p,
1344 0);
1345 for (;;)
1346 {
1347 /* Get the current relation length */
1348 if (needLock)
1350 num_pages = RelationGetNumberOfBlocks(rel);
1351 if (needLock)
1353
1354 if (info->report_progress)
1356 num_pages);
1357
1358 /* Quit if we've scanned the whole relation */
1359 if (p.current_blocknum >= num_pages)
1360 break;
1361
1362 p.last_exclusive = num_pages;
1363
1364 /* Iterate over pages, then loop back to recheck relation length */
1365 while (true)
1366 {
1367 BlockNumber current_block;
1368 Buffer buf;
1369
1370 /* call vacuum_delay_point while not holding any buffer lock */
1371 vacuum_delay_point(false);
1372
1373 buf = read_stream_next_buffer(stream, NULL);
1374
1375 if (!BufferIsValid(buf))
1376 break;
1377
1378 current_block = btvacuumpage(&vstate, buf);
1379
1380 if (info->report_progress)
1382 current_block);
1383 }
1384
1385 /*
1386 * We have to reset the read stream to use it again. After returning
1387 * InvalidBuffer, the read stream API won't invoke our callback again
1388 * until the stream has been reset.
1389 */
1390 read_stream_reset(stream);
1391 }
1392
1393 read_stream_end(stream);
1394
1395 /* Set statistics num_pages field to final size of index */
1396 stats->num_pages = num_pages;
1397
1399
1400 /*
1401 * If there were any calls to _bt_pagedel() during scan of the index then
1402 * see if any of the resulting pages can be placed in the FSM now. When
1403 * it's not safe we'll have to leave it up to a future VACUUM operation.
1404 *
1405 * Finally, if we placed any pages in the FSM (either just now or during
1406 * the scan), forcibly update the upper-level FSM pages to ensure that
1407 * searchers can find them.
1408 */
1409 _bt_pendingfsm_finalize(rel, &vstate);
1410 if (stats->pages_free > 0)
1412}
1413
1414/*
1415 * btvacuumpage --- VACUUM one page
1416 *
1417 * This processes a single page for btvacuumscan(). In some cases we must
1418 * backtrack to re-examine and VACUUM pages that were on buf's page during
1419 * a previous call here. This is how we handle page splits (that happened
1420 * after our cycleid was acquired) whose right half page happened to reuse
1421 * a block that we might have processed at some point before it was
1422 * recycled (i.e. before the page split).
1423 *
1424 * Returns BlockNumber of a scanned page (not backtracked).
1425 */
1426static BlockNumber
1428{
1429 IndexVacuumInfo *info = vstate->info;
1430 IndexBulkDeleteResult *stats = vstate->stats;
1432 void *callback_state = vstate->callback_state;
1433 Relation rel = info->index;
1434 Relation heaprel = info->heaprel;
1435 bool attempt_pagedel;
1436 BlockNumber blkno,
1437 backtrack_to;
1439 Page page;
1440 BTPageOpaque opaque;
1441
1442 blkno = scanblkno;
1443
1444backtrack:
1445
1446 attempt_pagedel = false;
1447 backtrack_to = P_NONE;
1448
1449 _bt_lockbuf(rel, buf, BT_READ);
1450 page = BufferGetPage(buf);
1451 opaque = NULL;
1452 if (!PageIsNew(page))
1453 {
1454 _bt_checkpage(rel, buf);
1455 opaque = BTPageGetOpaque(page);
1456 }
1457
1458 Assert(blkno <= scanblkno);
1459 if (blkno != scanblkno)
1460 {
1461 /*
1462 * We're backtracking.
1463 *
1464 * We followed a right link to a sibling leaf page (a page that
1465 * happens to be from a block located before scanblkno). The only
1466 * case we want to do anything with is a live leaf page having the
1467 * current vacuum cycle ID.
1468 *
1469 * The page had better be in a state that's consistent with what we
1470 * expect. Check for conditions that imply corruption in passing. It
1471 * can't be half-dead because only an interrupted VACUUM process can
1472 * leave pages in that state, so we'd definitely have dealt with it
1473 * back when the page was the scanblkno page (half-dead pages are
1474 * always marked fully deleted by _bt_pagedel(), barring corruption).
1475 */
1476 if (!opaque || !P_ISLEAF(opaque) || P_ISHALFDEAD(opaque))
1477 {
1478 Assert(false);
1479 ereport(LOG,
1480 (errcode(ERRCODE_INDEX_CORRUPTED),
1481 errmsg_internal("right sibling %u of scanblkno %u unexpectedly in an inconsistent state in index \"%s\"",
1482 blkno, scanblkno, RelationGetRelationName(rel))));
1483 _bt_relbuf(rel, buf);
1484 return scanblkno;
1485 }
1486
1487 /*
1488 * We may have already processed the page in an earlier call, when the
1489 * page was scanblkno. This happens when the leaf page split occurred
1490 * after the scan began, but before the right sibling page became the
1491 * scanblkno.
1492 *
1493 * Page may also have been deleted by current btvacuumpage() call,
1494 * since _bt_pagedel() sometimes deletes the right sibling page of
1495 * scanblkno in passing (it does so after we decided where to
1496 * backtrack to). We don't need to process this page as a deleted
1497 * page a second time now (in fact, it would be wrong to count it as a
1498 * deleted page in the bulk delete statistics a second time).
1499 */
1500 if (opaque->btpo_cycleid != vstate->cycleid || P_ISDELETED(opaque))
1501 {
1502 /* Done with current scanblkno (and all lower split pages) */
1503 _bt_relbuf(rel, buf);
1504 return scanblkno;
1505 }
1506 }
1507
1508 if (!opaque || BTPageIsRecyclable(page, heaprel))
1509 {
1510 /* Okay to recycle this page (which could be leaf or internal) */
1511 RecordFreeIndexPage(rel, blkno);
1512 stats->pages_deleted++;
1513 stats->pages_free++;
1514 }
1515 else if (P_ISDELETED(opaque))
1516 {
1517 /*
1518 * Already deleted page (which could be leaf or internal). Can't
1519 * recycle yet.
1520 */
1521 stats->pages_deleted++;
1522 }
1523 else if (P_ISHALFDEAD(opaque))
1524 {
1525 /* Half-dead leaf page (from interrupted VACUUM) -- finish deleting */
1526 attempt_pagedel = true;
1527
1528 /*
1529 * _bt_pagedel() will increment both pages_newly_deleted and
1530 * pages_deleted stats in all cases (barring corruption)
1531 */
1532 }
1533 else if (P_ISLEAF(opaque))
1534 {
1536 int ndeletable;
1538 int nupdatable;
1539 OffsetNumber offnum,
1540 minoff,
1541 maxoff;
1542 int nhtidsdead,
1543 nhtidslive;
1544
1545 /*
1546 * Trade in the initial read lock for a full cleanup lock on this
1547 * page. We must get such a lock on every leaf page over the course
1548 * of the vacuum scan, whether or not it actually contains any
1549 * deletable tuples --- see nbtree/README.
1550 */
1552
1553 /*
1554 * Check whether we need to backtrack to earlier pages. What we are
1555 * concerned about is a page split that happened since we started the
1556 * vacuum scan. If the split moved tuples on the right half of the
1557 * split (i.e. the tuples that sort high) to a block that we already
1558 * passed over, then we might have missed the tuples. We need to
1559 * backtrack now. (Must do this before possibly clearing btpo_cycleid
1560 * or deleting scanblkno page below!)
1561 */
1562 if (vstate->cycleid != 0 &&
1563 opaque->btpo_cycleid == vstate->cycleid &&
1564 !(opaque->btpo_flags & BTP_SPLIT_END) &&
1565 !P_RIGHTMOST(opaque) &&
1566 opaque->btpo_next < scanblkno)
1567 backtrack_to = opaque->btpo_next;
1568
1569 ndeletable = 0;
1570 nupdatable = 0;
1571 minoff = P_FIRSTDATAKEY(opaque);
1572 maxoff = PageGetMaxOffsetNumber(page);
1573 nhtidsdead = 0;
1574 nhtidslive = 0;
1575 if (callback)
1576 {
1577 /* btbulkdelete callback tells us what to delete (or update) */
1578 for (offnum = minoff;
1579 offnum <= maxoff;
1580 offnum = OffsetNumberNext(offnum))
1581 {
1582 IndexTuple itup;
1583
1584 itup = (IndexTuple) PageGetItem(page,
1585 PageGetItemId(page, offnum));
1586
1587 Assert(!BTreeTupleIsPivot(itup));
1588 if (!BTreeTupleIsPosting(itup))
1589 {
1590 /* Regular tuple, standard table TID representation */
1591 if (callback(&itup->t_tid, callback_state))
1592 {
1593 deletable[ndeletable++] = offnum;
1594 nhtidsdead++;
1595 }
1596 else
1597 nhtidslive++;
1598 }
1599 else
1600 {
1601 BTVacuumPosting vacposting;
1602 int nremaining;
1603
1604 /* Posting list tuple */
1605 vacposting = btreevacuumposting(vstate, itup, offnum,
1606 &nremaining);
1607 if (vacposting == NULL)
1608 {
1609 /*
1610 * All table TIDs from the posting tuple remain, so no
1611 * delete or update required
1612 */
1613 Assert(nremaining == BTreeTupleGetNPosting(itup));
1614 }
1615 else if (nremaining > 0)
1616 {
1617
1618 /*
1619 * Store metadata about posting list tuple in
1620 * updatable array for entire page. Existing tuple
1621 * will be updated during the later call to
1622 * _bt_delitems_vacuum().
1623 */
1624 Assert(nremaining < BTreeTupleGetNPosting(itup));
1625 updatable[nupdatable++] = vacposting;
1626 nhtidsdead += BTreeTupleGetNPosting(itup) - nremaining;
1627 }
1628 else
1629 {
1630 /*
1631 * All table TIDs from the posting list must be
1632 * deleted. We'll delete the index tuple completely
1633 * (no update required).
1634 */
1635 Assert(nremaining == 0);
1636 deletable[ndeletable++] = offnum;
1637 nhtidsdead += BTreeTupleGetNPosting(itup);
1638 pfree(vacposting);
1639 }
1640
1641 nhtidslive += nremaining;
1642 }
1643 }
1644 }
1645
1646 /*
1647 * Apply any needed deletes or updates. We issue just one
1648 * _bt_delitems_vacuum() call per page, so as to minimize WAL traffic.
1649 */
1650 if (ndeletable > 0 || nupdatable > 0)
1651 {
1652 Assert(nhtidsdead >= ndeletable + nupdatable);
1653 _bt_delitems_vacuum(rel, buf, deletable, ndeletable, updatable,
1654 nupdatable);
1655
1656 stats->tuples_removed += nhtidsdead;
1657 /* must recompute maxoff */
1658 maxoff = PageGetMaxOffsetNumber(page);
1659
1660 /* can't leak memory here */
1661 for (int i = 0; i < nupdatable; i++)
1662 pfree(updatable[i]);
1663 }
1664 else
1665 {
1666 /*
1667 * If the leaf page has been split during this vacuum cycle, it
1668 * seems worth expending a write to clear btpo_cycleid even if we
1669 * don't have any deletions to do. (If we do, _bt_delitems_vacuum
1670 * takes care of this.) This ensures we won't process the page
1671 * again.
1672 *
1673 * We treat this like a hint-bit update because there's no need to
1674 * WAL-log it.
1675 */
1676 Assert(nhtidsdead == 0);
1677 if (vstate->cycleid != 0 &&
1678 opaque->btpo_cycleid == vstate->cycleid)
1679 {
1680 opaque->btpo_cycleid = 0;
1681 MarkBufferDirtyHint(buf, true);
1682 }
1683 }
1684
1685 /*
1686 * If the leaf page is now empty, try to delete it; else count the
1687 * live tuples (live table TIDs in posting lists are counted as
1688 * separate live tuples). We don't delete when backtracking, though,
1689 * since that would require teaching _bt_pagedel() about backtracking
1690 * (doesn't seem worth adding more complexity to deal with that).
1691 *
1692 * We don't count the number of live TIDs during cleanup-only calls to
1693 * btvacuumscan (i.e. when callback is not set). We count the number
1694 * of index tuples directly instead. This avoids the expense of
1695 * directly examining all of the tuples on each page. VACUUM will
1696 * treat num_index_tuples as an estimate in cleanup-only case, so it
1697 * doesn't matter that this underestimates num_index_tuples
1698 * significantly in some cases.
1699 */
1700 if (minoff > maxoff)
1701 attempt_pagedel = (blkno == scanblkno);
1702 else if (callback)
1703 stats->num_index_tuples += nhtidslive;
1704 else
1705 stats->num_index_tuples += maxoff - minoff + 1;
1706
1707 Assert(!attempt_pagedel || nhtidslive == 0);
1708 }
1709
1710 if (attempt_pagedel)
1711 {
1712 MemoryContext oldcontext;
1713
1714 /* Run pagedel in a temp context to avoid memory leakage */
1716 oldcontext = MemoryContextSwitchTo(vstate->pagedelcontext);
1717
1718 /*
1719 * _bt_pagedel maintains the bulk delete stats on our behalf;
1720 * pages_newly_deleted and pages_deleted are likely to be incremented
1721 * during call
1722 */
1723 Assert(blkno == scanblkno);
1724 _bt_pagedel(rel, buf, vstate);
1725
1726 MemoryContextSwitchTo(oldcontext);
1727 /* pagedel released buffer, so we shouldn't */
1728 }
1729 else
1730 _bt_relbuf(rel, buf);
1731
1732 if (backtrack_to != P_NONE)
1733 {
1734 blkno = backtrack_to;
1735
1736 /* check for vacuum delay while not holding any buffer lock */
1737 vacuum_delay_point(false);
1738
1739 /*
1740 * We can't use _bt_getbuf() here because it always applies
1741 * _bt_checkpage(), which will barf on an all-zero page. We want to
1742 * recycle all-zero pages, not fail. Also, we want to use a
1743 * nondefault buffer access strategy.
1744 */
1746 info->strategy);
1747 goto backtrack;
1748 }
1749
1750 return scanblkno;
1751}
1752
1753/*
1754 * btreevacuumposting --- determine TIDs still needed in posting list
1755 *
1756 * Returns metadata describing how to build replacement tuple without the TIDs
1757 * that VACUUM needs to delete. Returned value is NULL in the common case
1758 * where no changes are needed to caller's posting list tuple (we avoid
1759 * allocating memory here as an optimization).
1760 *
1761 * The number of TIDs that should remain in the posting list tuple is set for
1762 * caller in *nremaining.
1763 */
1764static BTVacuumPosting
1766 OffsetNumber updatedoffset, int *nremaining)
1767{
1768 int live = 0;
1769 int nitem = BTreeTupleGetNPosting(posting);
1771 BTVacuumPosting vacposting = NULL;
1772
1773 for (int i = 0; i < nitem; i++)
1774 {
1775 if (!vstate->callback(items + i, vstate->callback_state))
1776 {
1777 /* Live table TID */
1778 live++;
1779 }
1780 else if (vacposting == NULL)
1781 {
1782 /*
1783 * First dead table TID encountered.
1784 *
1785 * It's now clear that we need to delete one or more dead table
1786 * TIDs, so start maintaining metadata describing how to update
1787 * existing posting list tuple.
1788 */
1789 vacposting = palloc(offsetof(BTVacuumPostingData, deletetids) +
1790 nitem * sizeof(uint16));
1791
1792 vacposting->itup = posting;
1793 vacposting->updatedoffset = updatedoffset;
1794 vacposting->ndeletedtids = 0;
1795 vacposting->deletetids[vacposting->ndeletedtids++] = i;
1796 }
1797 else
1798 {
1799 /* Second or subsequent dead table TID */
1800 vacposting->deletetids[vacposting->ndeletedtids++] = i;
1801 }
1802 }
1803
1804 *nremaining = live;
1805 return vacposting;
1806}
1807
1808/*
1809 * btcanreturn() -- Check whether btree indexes support index-only scans.
1810 *
1811 * btrees always do, so this is trivial.
1812 */
1813bool
1815{
1816 return true;
1817}
1818
1819/*
1820 * btgettreeheight() -- Compute tree height for use by btcostestimate().
1821 */
1822int
1824{
1825 return _bt_getrootheight(rel);
1826}
1827
1830{
1831 switch (strategy)
1832 {
1834 return COMPARE_LT;
1836 return COMPARE_LE;
1838 return COMPARE_EQ;
1840 return COMPARE_GE;
1842 return COMPARE_GT;
1843 default:
1844 return COMPARE_INVALID;
1845 }
1846}
1847
1850{
1851 switch (cmptype)
1852 {
1853 case COMPARE_LT:
1854 return BTLessStrategyNumber;
1855 case COMPARE_LE:
1857 case COMPARE_EQ:
1858 return BTEqualStrategyNumber;
1859 case COMPARE_GE:
1861 case COMPARE_GT:
1863 default:
1864 return InvalidStrategy;
1865 }
1866}
void pgstat_progress_update_param(int index, int64 val)
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
static bool BlockNumberIsValid(BlockNumber blockNumber)
Definition: block.h:71
static Datum values[MAXATTR]
Definition: bootstrap.c:153
int Buffer
Definition: buf.h:23
void IncrBufferRefCount(Buffer buffer)
Definition: bufmgr.c:5398
BlockNumber BufferGetBlockNumber(Buffer buffer)
Definition: bufmgr.c:4223
void MarkBufferDirtyHint(Buffer buffer, bool buffer_std)
Definition: bufmgr.c:5430
Buffer ReadBufferExtended(Relation reln, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy)
Definition: bufmgr.c:792
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:294
static Page BufferGetPage(Buffer buffer)
Definition: bufmgr.h:436
@ RBM_NORMAL
Definition: bufmgr.h:46
static bool BufferIsValid(Buffer bufnum)
Definition: bufmgr.h:387
static void * PageGetItem(const PageData *page, const ItemIdData *itemId)
Definition: bufpage.h:353
static bool PageIsNew(const PageData *page)
Definition: bufpage.h:233
static ItemId PageGetItemId(Page page, OffsetNumber offsetNumber)
Definition: bufpage.h:243
PageData * Page
Definition: bufpage.h:81
static OffsetNumber PageGetMaxOffsetNumber(const PageData *page)
Definition: bufpage.h:371
BulkWriteState * smgr_bulk_start_rel(Relation rel, ForkNumber forknum)
Definition: bulk_write.c:87
void smgr_bulk_write(BulkWriteState *bulkstate, BlockNumber blocknum, BulkWriteBuffer buf, bool page_std)
Definition: bulk_write.c:323
BulkWriteBuffer smgr_bulk_get_buf(BulkWriteState *bulkstate)
Definition: bulk_write.c:347
void smgr_bulk_finish(BulkWriteState *bulkstate)
Definition: bulk_write.c:130
#define OffsetToPointer(base, offset)
Definition: c.h:785
int64_t int64
Definition: c.h:549
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:486
int16_t int16
Definition: c.h:547
uint16_t uint16
Definition: c.h:551
size_t Size
Definition: c.h:624
CompareType
Definition: cmptype.h:32
@ COMPARE_LE
Definition: cmptype.h:35
@ COMPARE_INVALID
Definition: cmptype.h:33
@ COMPARE_GT
Definition: cmptype.h:38
@ COMPARE_EQ
Definition: cmptype.h:36
@ COMPARE_GE
Definition: cmptype.h:37
@ COMPARE_LT
Definition: cmptype.h:34
bool ConditionVariableCancelSleep(void)
void ConditionVariableBroadcast(ConditionVariable *cv)
void ConditionVariableInit(ConditionVariable *cv)
void ConditionVariableSleep(ConditionVariable *cv, uint32 wait_event_info)
void ConditionVariableSignal(ConditionVariable *cv)
Datum datumRestore(char **start_address, bool *isnull)
Definition: datum.c:521
void datumSerialize(Datum value, bool isnull, bool typByVal, int typLen, char **start_address)
Definition: datum.c:459
Size datumEstimateSpace(Datum value, bool isnull, bool typByVal, int typLen)
Definition: datum.c:412
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errcode(int sqlerrcode)
Definition: elog.c:863
#define LOG
Definition: elog.h:31
#define ereport(elevel,...)
Definition: elog.h:150
#define palloc_object(type)
Definition: fe_memutils.h:74
#define palloc_array(type, count)
Definition: fe_memutils.h:76
#define palloc0_object(type)
Definition: fe_memutils.h:75
#define PG_RETURN_POINTER(x)
Definition: fmgr.h:361
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
IndexScanDesc RelationGetIndexScan(Relation indexRelation, int nkeys, int norderbys)
Definition: genam.c:80
bool(* IndexBulkDeleteCallback)(ItemPointer itemptr, void *state)
Definition: genam.h:114
IndexUniqueCheck
Definition: genam.h:143
Assert(PointerIsAligned(start, uint64))
void IndexFreeSpaceMapVacuum(Relation rel)
Definition: indexfsm.c:71
void RecordFreeIndexPage(Relation rel, BlockNumber freeBlock)
Definition: indexfsm.c:52
IndexTuple index_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: indextuple.c:44
#define PG_ENSURE_ERROR_CLEANUP(cleanup_function, arg)
Definition: ipc.h:47
#define PG_END_ENSURE_ERROR_CLEANUP(cleanup_function, arg)
Definition: ipc.h:52
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
IndexTupleData * IndexTuple
Definition: itup.h:53
#define MaxIndexTuplesPerPage
Definition: itup.h:181
void LockRelationForExtension(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:424
void UnlockRelationForExtension(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:474
#define ExclusiveLock
Definition: lockdefs.h:42
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1174
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1894
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:698
@ LW_EXCLUSIVE
Definition: lwlock.h:112
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:400
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc(Size size)
Definition: mcxt.c:1365
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:469
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
bool _bt_doinsert(Relation rel, IndexTuple itup, IndexUniqueCheck checkUnique, bool indexUnchanged, Relation heapRel)
Definition: nbtinsert.c:104
void _bt_relbuf(Relation rel, Buffer buf)
Definition: nbtpage.c:1024
int _bt_getrootheight(Relation rel)
Definition: nbtpage.c:676
void _bt_pagedel(Relation rel, Buffer leafbuf, BTVacState *vstate)
Definition: nbtpage.c:1801
void _bt_delitems_vacuum(Relation rel, Buffer buf, OffsetNumber *deletable, int ndeletable, BTVacuumPosting *updatable, int nupdatable)
Definition: nbtpage.c:1155
void _bt_checkpage(Relation rel, Buffer buf)
Definition: nbtpage.c:798
void _bt_set_cleanup_info(Relation rel, BlockNumber num_delpages)
Definition: nbtpage.c:233
void _bt_upgradelockbufcleanup(Relation rel, Buffer buf)
Definition: nbtpage.c:1110
void _bt_initmetapage(Page page, BlockNumber rootbknum, uint32 level, bool allequalimage)
Definition: nbtpage.c:68
bool _bt_vacuum_needs_cleanup(Relation rel)
Definition: nbtpage.c:180
void _bt_pendingfsm_finalize(Relation rel, BTVacState *vstate)
Definition: nbtpage.c:3000
void _bt_lockbuf(Relation rel, Buffer buf, int access)
Definition: nbtpage.c:1040
void _bt_pendingfsm_init(Relation rel, BTVacState *vstate, bool cleanuponly)
Definition: nbtpage.c:2958
void _bt_start_array_keys(IndexScanDesc scan, ScanDirection dir)
Definition: nbtreadpage.c:537
void _bt_parallel_primscan_schedule(IndexScanDesc scan, BlockNumber curr_page)
Definition: nbtree.c:1100
bool btcanreturn(Relation index, int attno)
Definition: nbtree.c:1814
BTPS_State
Definition: nbtree.c:55
@ BTPARALLEL_ADVANCING
Definition: nbtree.c:58
@ BTPARALLEL_NEED_PRIMSCAN
Definition: nbtree.c:57
@ BTPARALLEL_NOT_INITIALIZED
Definition: nbtree.c:56
@ BTPARALLEL_IDLE
Definition: nbtree.c:59
@ BTPARALLEL_DONE
Definition: nbtree.c:60
bool _bt_parallel_seize(IndexScanDesc scan, BlockNumber *next_scan_page, BlockNumber *last_curr_page, bool first)
Definition: nbtree.c:885
StrategyNumber bttranslatecmptype(CompareType cmptype, Oid opfamily)
Definition: nbtree.c:1849
IndexScanDesc btbeginscan(Relation rel, int nkeys, int norderbys)
Definition: nbtree.c:336
static bool _bt_start_prim_scan(IndexScanDesc scan)
Definition: nbtree.c:668
static BlockNumber btvacuumpage(BTVacState *vstate, Buffer buf)
Definition: nbtree.c:1427
Size btestimateparallelscan(Relation rel, int nkeys, int norderbys)
Definition: nbtree.c:590
void _bt_parallel_done(IndexScanDesc scan)
Definition: nbtree.c:1050
IndexBulkDeleteResult * btvacuumcleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *stats)
Definition: nbtree.c:1164
static BTVacuumPosting btreevacuumposting(BTVacState *vstate, IndexTuple posting, OffsetNumber updatedoffset, int *nremaining)
Definition: nbtree.c:1765
CompareType bttranslatestrategy(StrategyNumber strategy, Oid opfamily)
Definition: nbtree.c:1829
bool btgettuple(IndexScanDesc scan, ScanDirection dir)
Definition: nbtree.c:227
void btparallelrescan(IndexScanDesc scan)
Definition: nbtree.c:842
struct BTParallelScanDescData BTParallelScanDescData
bool btinsert(Relation rel, Datum *values, bool *isnull, ItemPointer ht_ctid, Relation heapRel, IndexUniqueCheck checkUnique, bool indexUnchanged, IndexInfo *indexInfo)
Definition: nbtree.c:203
void btbuildempty(Relation index)
Definition: nbtree.c:180
int btgettreeheight(Relation rel)
Definition: nbtree.c:1823
void btinitparallelscan(void *target)
Definition: nbtree.c:826
IndexBulkDeleteResult * btbulkdelete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback, void *callback_state)
Definition: nbtree.c:1134
static void btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback, void *callback_state, BTCycleId cycleid)
Definition: nbtree.c:1252
static void _bt_parallel_serialize_arrays(Relation rel, BTParallelScanDesc btscan, BTScanOpaque so)
Definition: nbtree.c:732
int64 btgetbitmap(IndexScanDesc scan, TIDBitmap *tbm)
Definition: nbtree.c:288
void btmarkpos(IndexScanDesc scan)
Definition: nbtree.c:506
void btendscan(IndexScanDesc scan)
Definition: nbtree.c:470
void btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys, ScanKey orderbys, int norderbys)
Definition: nbtree.c:385
struct BTParallelScanDescData * BTParallelScanDesc
Definition: nbtree.c:93
void _bt_parallel_release(IndexScanDesc scan, BlockNumber next_scan_page, BlockNumber curr_page)
Definition: nbtree.c:1023
Datum bthandler(PG_FUNCTION_ARGS)
Definition: nbtree.c:116
void btrestrpos(IndexScanDesc scan)
Definition: nbtree.c:532
static void _bt_parallel_restore_arrays(Relation rel, BTParallelScanDesc btscan, BTScanOpaque so)
Definition: nbtree.c:775
#define P_ISHALFDEAD(opaque)
Definition: nbtree.h:225
#define BTScanPosIsPinned(scanpos)
Definition: nbtree.h:1004
static uint16 BTreeTupleGetNPosting(IndexTuple posting)
Definition: nbtree.h:519
static bool BTreeTupleIsPivot(IndexTuple itup)
Definition: nbtree.h:481
#define P_ISLEAF(opaque)
Definition: nbtree.h:221
#define SK_BT_SKIP
Definition: nbtree.h:1106
#define BTPageGetOpaque(page)
Definition: nbtree.h:74
#define P_ISDELETED(opaque)
Definition: nbtree.h:223
static ItemPointer BTreeTupleGetPosting(IndexTuple posting)
Definition: nbtree.h:538
#define BTNProcs
Definition: nbtree.h:723
#define MaxTIDsPerBTreePage
Definition: nbtree.h:186
#define BTScanPosIsValid(scanpos)
Definition: nbtree.h:1021
#define P_FIRSTDATAKEY(opaque)
Definition: nbtree.h:370
uint16 BTCycleId
Definition: nbtree.h:30
#define P_NONE
Definition: nbtree.h:213
#define P_RIGHTMOST(opaque)
Definition: nbtree.h:220
#define BTREE_METAPAGE
Definition: nbtree.h:149
#define SK_BT_MAXVAL
Definition: nbtree.h:1110
#define BT_READ
Definition: nbtree.h:730
static bool BTPageIsRecyclable(Page page, Relation heaprel)
Definition: nbtree.h:292
static bool BTreeTupleIsPosting(IndexTuple itup)
Definition: nbtree.h:493
#define BTScanPosInvalidate(scanpos)
Definition: nbtree.h:1027
#define BTScanPosUnpinIfPinned(scanpos)
Definition: nbtree.h:1015
#define BTMaxItemSize
Definition: nbtree.h:165
#define BTP_SPLIT_END
Definition: nbtree.h:82
#define BTOPTIONS_PROC
Definition: nbtree.h:721
#define SK_BT_MINVAL
Definition: nbtree.h:1109
BTScanOpaqueData * BTScanOpaque
Definition: nbtree.h:1097
bool _bt_first(IndexScanDesc scan, ScanDirection dir)
Definition: nbtsearch.c:877
bool _bt_next(IndexScanDesc scan, ScanDirection dir)
Definition: nbtsearch.c:1585
IndexBuildResult * btbuild(Relation heap, Relation index, IndexInfo *indexInfo)
Definition: nbtsort.c:296
void _bt_end_vacuum(Relation rel)
Definition: nbtutils.c:526
void _bt_end_vacuum_callback(int code, Datum arg)
Definition: nbtutils.c:554
void _bt_killitems(IndexScanDesc scan)
Definition: nbtutils.c:205
char * btbuildphasename(int64 phasenum)
Definition: nbtutils.c:650
bytea * btoptions(Datum reloptions, bool validate)
Definition: nbtutils.c:604
bool btproperty(Oid index_oid, int attno, IndexAMProperty prop, const char *propname, bool *res, bool *isnull)
Definition: nbtutils.c:627
bool _bt_allequalimage(Relation rel, bool debugmessage)
Definition: nbtutils.c:1181
BTCycleId _bt_start_vacuum(Relation rel)
Definition: nbtutils.c:469
bool btvalidate(Oid opclassoid)
Definition: nbtvalidate.c:40
void btadjustmembers(Oid opfamilyoid, Oid opclassoid, List *operators, List *functions)
Definition: nbtvalidate.c:288
#define makeNode(_type_)
Definition: nodes.h:161
#define OffsetNumberNext(offsetNumber)
Definition: off.h:52
uint16 OffsetNumber
Definition: off.h:24
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
int16 attnum
Definition: pg_attribute.h:74
static char buf[DEFAULT_XLOG_SEG_SIZE]
Definition: pg_test_fsync.c:71
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:332
uint64_t Datum
Definition: postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:322
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
#define PROGRESS_SCAN_BLOCKS_DONE
Definition: progress.h:142
#define PROGRESS_SCAN_BLOCKS_TOTAL
Definition: progress.h:141
void read_stream_reset(ReadStream *stream)
Definition: read_stream.c:1044
Buffer read_stream_next_buffer(ReadStream *stream, void **per_buffer_data)
Definition: read_stream.c:791
ReadStream * read_stream_begin_relation(int flags, BufferAccessStrategy strategy, Relation rel, ForkNumber forknum, ReadStreamBlockNumberCB callback, void *callback_private_data, size_t per_buffer_data_size)
Definition: read_stream.c:737
void read_stream_end(ReadStream *stream)
Definition: read_stream.c:1089
BlockNumber block_range_read_stream_cb(ReadStream *stream, void *callback_private_data, void *per_buffer_data)
Definition: read_stream.c:162
#define READ_STREAM_MAINTENANCE
Definition: read_stream.h:28
#define READ_STREAM_USE_BATCHING
Definition: read_stream.h:64
#define READ_STREAM_FULL
Definition: read_stream.h:43
#define RELATION_IS_LOCAL(relation)
Definition: rel.h:658
#define RelationGetDescr(relation)
Definition: rel.h:541
#define RelationGetRelationName(relation)
Definition: rel.h:549
#define RelationNeedsWAL(relation)
Definition: rel.h:638
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:534
@ MAIN_FORKNUM
Definition: relpath.h:58
@ INIT_FORKNUM
Definition: relpath.h:61
ScanDirection
Definition: sdir.h:25
@ ForwardScanDirection
Definition: sdir.h:28
void btcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, Cost *indexStartupCost, Cost *indexTotalCost, Selectivity *indexSelectivity, double *indexCorrelation, double *indexPages)
Definition: selfuncs.c:7605
Size add_size(Size s1, Size s2)
Definition: shmem.c:495
#define SK_SEARCHNULL
Definition: skey.h:121
ScanKeyData * ScanKey
Definition: skey.h:75
#define SK_ISNULL
Definition: skey.h:115
#define IsMVCCSnapshot(snapshot)
Definition: snapmgr.h:55
uint16 StrategyNumber
Definition: stratnum.h:22
#define BTGreaterStrategyNumber
Definition: stratnum.h:33
#define InvalidStrategy
Definition: stratnum.h:24
#define BTMaxStrategyNumber
Definition: stratnum.h:35
#define BTLessStrategyNumber
Definition: stratnum.h:29
#define BTEqualStrategyNumber
Definition: stratnum.h:31
#define BTLessEqualStrategyNumber
Definition: stratnum.h:30
#define BTGreaterEqualStrategyNumber
Definition: stratnum.h:32
bool attbyval
Definition: nbtree.h:1046
Datum * elem_values
Definition: nbtree.h:1041
int16 attlen
Definition: nbtree.h:1045
BlockNumber btpo_next
Definition: nbtree.h:66
uint16 btpo_flags
Definition: nbtree.h:68
BTCycleId btpo_cycleid
Definition: nbtree.h:69
BTPS_State btps_pageStatus
Definition: nbtree.c:72
BlockNumber btps_lastCurrPage
Definition: nbtree.c:70
ConditionVariable btps_cv
Definition: nbtree.c:76
BlockNumber btps_nextScanPage
Definition: nbtree.c:69
int btps_arrElems[FLEXIBLE_ARRAY_MEMBER]
Definition: nbtree.c:83
bool needPrimScan
Definition: nbtree.h:1063
BTArrayKeyInfo * arrayKeys
Definition: nbtree.h:1066
char * markTuples
Definition: nbtree.h:1081
FmgrInfo * orderProcs
Definition: nbtree.h:1067
BTScanPosData currPos
Definition: nbtree.h:1093
int * killedItems
Definition: nbtree.h:1071
char * currTuples
Definition: nbtree.h:1080
bool oppositeDirCheck
Definition: nbtree.h:1065
BTScanPosData markPos
Definition: nbtree.h:1094
ScanKey keyData
Definition: nbtree.h:1058
MemoryContext arrayContext
Definition: nbtree.h:1068
bool moreRight
Definition: nbtree.h:986
Buffer buf
Definition: nbtree.h:964
int nextTupleOffset
Definition: nbtree.h:979
bool moreLeft
Definition: nbtree.h:985
int lastItem
Definition: nbtree.h:996
BTScanPosItem items[MaxTIDsPerBTreePage]
Definition: nbtree.h:999
int itemIndex
Definition: nbtree.h:997
ScanDirection dir
Definition: nbtree.h:973
ItemPointerData heapTid
Definition: nbtree.h:957
IndexBulkDeleteResult * stats
Definition: nbtree.h:334
BTCycleId cycleid
Definition: nbtree.h:337
BTPendingFSM * pendingpages
Definition: nbtree.h:345
int npendingpages
Definition: nbtree.h:346
IndexBulkDeleteCallback callback
Definition: nbtree.h:335
MemoryContext pagedelcontext
Definition: nbtree.h:338
IndexVacuumInfo * info
Definition: nbtree.h:333
int bufsize
Definition: nbtree.h:343
int maxbufsize
Definition: nbtree.h:344
void * callback_state
Definition: nbtree.h:336
uint16 deletetids[FLEXIBLE_ARRAY_MEMBER]
Definition: nbtree.h:922
uint16 ndeletedtids
Definition: nbtree.h:921
IndexTuple itup
Definition: nbtree.h:917
OffsetNumber updatedoffset
Definition: nbtree.h:918
int16 attlen
Definition: tupdesc.h:71
ambuildphasename_function ambuildphasename
Definition: amapi.h:306
ambuildempty_function ambuildempty
Definition: amapi.h:296
amvacuumcleanup_function amvacuumcleanup
Definition: amapi.h:300
bool amclusterable
Definition: amapi.h:270
amoptions_function amoptions
Definition: amapi.h:304
amestimateparallelscan_function amestimateparallelscan
Definition: amapi.h:318
amrestrpos_function amrestrpos
Definition: amapi.h:315
aminsert_function aminsert
Definition: amapi.h:297
amendscan_function amendscan
Definition: amapi.h:313
amtranslate_strategy_function amtranslatestrategy
Definition: amapi.h:323
uint16 amoptsprocnum
Definition: amapi.h:244
amparallelrescan_function amparallelrescan
Definition: amapi.h:320
Oid amkeytype
Definition: amapi.h:286
bool amconsistentordering
Definition: amapi.h:254
bool ampredlocks
Definition: amapi.h:272
uint16 amsupport
Definition: amapi.h:242
amtranslate_cmptype_function amtranslatecmptype
Definition: amapi.h:324
amcostestimate_function amcostestimate
Definition: amapi.h:302
bool amcanorderbyop
Definition: amapi.h:248
amadjustmembers_function amadjustmembers
Definition: amapi.h:308
ambuild_function ambuild
Definition: amapi.h:295
bool amstorage
Definition: amapi.h:268
uint16 amstrategies
Definition: amapi.h:240
bool amoptionalkey
Definition: amapi.h:262
amgettuple_function amgettuple
Definition: amapi.h:311
amcanreturn_function amcanreturn
Definition: amapi.h:301
bool amcanunique
Definition: amapi.h:258
amgetbitmap_function amgetbitmap
Definition: amapi.h:312
amproperty_function amproperty
Definition: amapi.h:305
ambulkdelete_function ambulkdelete
Definition: amapi.h:299
bool amsearcharray
Definition: amapi.h:264
bool amsummarizing
Definition: amapi.h:282
amvalidate_function amvalidate
Definition: amapi.h:307
ammarkpos_function ammarkpos
Definition: amapi.h:314
bool amcanmulticol
Definition: amapi.h:260
bool amusemaintenanceworkmem
Definition: amapi.h:280
ambeginscan_function ambeginscan
Definition: amapi.h:309
bool amcanparallel
Definition: amapi.h:274
amrescan_function amrescan
Definition: amapi.h:310
bool amcanorder
Definition: amapi.h:246
bool amcanbuildparallel
Definition: amapi.h:276
aminitparallelscan_function aminitparallelscan
Definition: amapi.h:319
uint8 amparallelvacuumoptions
Definition: amapi.h:284
aminsertcleanup_function aminsertcleanup
Definition: amapi.h:298
bool amcanbackward
Definition: amapi.h:256
amgettreeheight_function amgettreeheight
Definition: amapi.h:303
bool amcaninclude
Definition: amapi.h:278
bool amsearchnulls
Definition: amapi.h:266
bool amconsistentequality
Definition: amapi.h:252
bool amcanhash
Definition: amapi.h:250
BlockNumber pages_deleted
Definition: genam.h:109
BlockNumber pages_free
Definition: genam.h:110
BlockNumber num_pages
Definition: genam.h:104
double tuples_removed
Definition: genam.h:107
double num_index_tuples
Definition: genam.h:106
struct ScanKeyData * keyData
Definition: relscan.h:143
struct ParallelIndexScanDescData * parallel_scan
Definition: relscan.h:193
bool kill_prior_tuple
Definition: relscan.h:149
struct TupleDescData * xs_itupdesc
Definition: relscan.h:170
Relation indexRelation
Definition: relscan.h:139
ItemPointerData xs_heaptid
Definition: relscan.h:174
struct SnapshotData * xs_snapshot
Definition: relscan.h:140
Relation heapRelation
Definition: relscan.h:138
ItemPointerData t_tid
Definition: itup.h:37
Relation index
Definition: genam.h:73
double num_heap_tuples
Definition: genam.h:79
bool analyze_only
Definition: genam.h:75
BufferAccessStrategy strategy
Definition: genam.h:80
Relation heaprel
Definition: genam.h:74
bool report_progress
Definition: genam.h:76
bool estimated_count
Definition: genam.h:77
Definition: lwlock.h:42
TupleDesc rd_att
Definition: rel.h:112
int sk_flags
Definition: skey.h:66
Datum sk_argument
Definition: skey.h:72
Definition: type.h:96
static void callback(struct sockaddr *addr, struct sockaddr *mask, void *unused)
Definition: test_ifaddrs.c:46
static ItemArray items
Definition: test_tidstore.c:48
void tbm_add_tuples(TIDBitmap *tbm, const ItemPointerData *tids, int ntids, bool recheck)
Definition: tidbitmap.c:367
static CompactAttribute * TupleDescCompactAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:175
void vacuum_delay_point(bool is_analyze)
Definition: vacuum.c:2426
#define VACUUM_OPTION_PARALLEL_BULKDEL
Definition: vacuum.h:48
#define VACUUM_OPTION_PARALLEL_COND_CLEANUP
Definition: vacuum.h:55