PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
vacuum.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * vacuum.c
4 * The postgres vacuum cleaner.
5 *
6 * This file includes (a) control and dispatch code for VACUUM and ANALYZE
7 * commands, (b) code to compute various vacuum thresholds, and (c) index
8 * vacuum code.
9 *
10 * VACUUM for heap AM is implemented in vacuumlazy.c, parallel vacuum in
11 * vacuumparallel.c, ANALYZE in analyze.c, and VACUUM FULL is a variant of
12 * CLUSTER, handled in cluster.c.
13 *
14 *
15 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
16 * Portions Copyright (c) 1994, Regents of the University of California
17 *
18 *
19 * IDENTIFICATION
20 * src/backend/commands/vacuum.c
21 *
22 *-------------------------------------------------------------------------
23 */
24#include "postgres.h"
25
26#include <math.h>
27
28#include "access/clog.h"
29#include "access/commit_ts.h"
30#include "access/genam.h"
31#include "access/heapam.h"
32#include "access/htup_details.h"
33#include "access/multixact.h"
34#include "access/tableam.h"
35#include "access/transam.h"
36#include "access/xact.h"
37#include "catalog/namespace.h"
38#include "catalog/pg_database.h"
39#include "catalog/pg_inherits.h"
40#include "commands/cluster.h"
41#include "commands/defrem.h"
42#include "commands/progress.h"
43#include "commands/vacuum.h"
44#include "miscadmin.h"
45#include "nodes/makefuncs.h"
46#include "pgstat.h"
50#include "storage/bufmgr.h"
51#include "storage/lmgr.h"
52#include "storage/pmsignal.h"
53#include "storage/proc.h"
54#include "storage/procarray.h"
55#include "utils/acl.h"
56#include "utils/fmgroids.h"
57#include "utils/guc.h"
58#include "utils/guc_hooks.h"
59#include "utils/memutils.h"
60#include "utils/snapmgr.h"
61#include "utils/syscache.h"
62
63/*
64 * Minimum interval for cost-based vacuum delay reports from a parallel worker.
65 * This aims to avoid sending too many messages and waking up the leader too
66 * frequently.
67 */
68#define PARALLEL_VACUUM_DELAY_REPORT_INTERVAL_NS (NS_PER_S)
69
70/*
71 * GUC parameters
72 */
82
83/*
84 * Variables for cost-based vacuum delay. The defaults differ between
85 * autovacuum and vacuum. They should be set with the appropriate GUC value in
86 * vacuum code. They are initialized here to the defaults for client backends
87 * executing VACUUM or ANALYZE.
88 */
91
92/* Variable for reporting cost-based vacuum delay from parallel workers. */
94
95/*
96 * VacuumFailsafeActive is a defined as a global so that we can determine
97 * whether or not to re-enable cost-based vacuum delay when vacuuming a table.
98 * If failsafe mode has been engaged, we will not re-enable cost-based delay
99 * for the table until after vacuuming has completed, regardless of other
100 * settings.
101 *
102 * Only VACUUM code should inspect this variable and only table access methods
103 * should set it to true. In Table AM-agnostic VACUUM code, this variable is
104 * inspected to determine whether or not to allow cost-based delays. Table AMs
105 * are free to set it if they desire this behavior, but it is false by default
106 * and reset to false in between vacuuming each relation.
107 */
109
110/*
111 * Variables for cost-based parallel vacuum. See comments atop
112 * compute_parallel_delay to understand how it works.
113 */
117
118/* non-export function prototypes */
120 MemoryContext vac_context, int options);
121static List *get_all_vacuum_rels(MemoryContext vac_context, int options);
122static void vac_truncate_clog(TransactionId frozenXID,
123 MultiXactId minMulti,
124 TransactionId lastSaneFrozenXid,
125 MultiXactId lastSaneMinMulti);
126static bool vacuum_rel(Oid relid, RangeVar *relation, VacuumParams *params,
127 BufferAccessStrategy bstrategy);
128static double compute_parallel_delay(void);
130static bool vac_tid_reaped(ItemPointer itemptr, void *state);
131
132/*
133 * GUC check function to ensure GUC value specified is within the allowable
134 * range.
135 */
136bool
139{
140 /* Value upper and lower hard limits are inclusive */
141 if (*newval == 0 || (*newval >= MIN_BAS_VAC_RING_SIZE_KB &&
143 return true;
144
145 /* Value does not fall within any allowable range */
146 GUC_check_errdetail("\"%s\" must be 0 or between %d kB and %d kB.",
147 "vacuum_buffer_usage_limit",
149
150 return false;
151}
152
153/*
154 * Primary entry point for manual VACUUM and ANALYZE commands
155 *
156 * This is mainly a preparation wrapper for the real operations that will
157 * happen in vacuum().
158 */
159void
160ExecVacuum(ParseState *pstate, VacuumStmt *vacstmt, bool isTopLevel)
161{
162 VacuumParams params;
163 BufferAccessStrategy bstrategy = NULL;
164 bool verbose = false;
165 bool skip_locked = false;
166 bool analyze = false;
167 bool freeze = false;
168 bool full = false;
169 bool disable_page_skipping = false;
170 bool process_main = true;
171 bool process_toast = true;
172 int ring_size;
173 bool skip_database_stats = false;
174 bool only_database_stats = false;
175 MemoryContext vac_context;
176 ListCell *lc;
177
178 /* index_cleanup and truncate values unspecified for now */
181
182 /* By default parallel vacuum is enabled */
183 params.nworkers = 0;
184
185 /* Will be set later if we recurse to a TOAST table. */
186 params.toast_parent = InvalidOid;
187
188 /*
189 * Set this to an invalid value so it is clear whether or not a
190 * BUFFER_USAGE_LIMIT was specified when making the access strategy.
191 */
192 ring_size = -1;
193
194 /* Parse options list */
195 foreach(lc, vacstmt->options)
196 {
197 DefElem *opt = (DefElem *) lfirst(lc);
198
199 /* Parse common options for VACUUM and ANALYZE */
200 if (strcmp(opt->defname, "verbose") == 0)
201 verbose = defGetBoolean(opt);
202 else if (strcmp(opt->defname, "skip_locked") == 0)
203 skip_locked = defGetBoolean(opt);
204 else if (strcmp(opt->defname, "buffer_usage_limit") == 0)
205 {
206 const char *hintmsg;
207 int result;
208 char *vac_buffer_size;
209
210 vac_buffer_size = defGetString(opt);
211
212 /*
213 * Check that the specified value is valid and the size falls
214 * within the hard upper and lower limits if it is not 0.
215 */
216 if (!parse_int(vac_buffer_size, &result, GUC_UNIT_KB, &hintmsg) ||
217 (result != 0 &&
218 (result < MIN_BAS_VAC_RING_SIZE_KB || result > MAX_BAS_VAC_RING_SIZE_KB)))
219 {
221 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
222 errmsg("BUFFER_USAGE_LIMIT option must be 0 or between %d kB and %d kB",
224 hintmsg ? errhint("%s", _(hintmsg)) : 0));
225 }
226
227 ring_size = result;
228 }
229 else if (!vacstmt->is_vacuumcmd)
231 (errcode(ERRCODE_SYNTAX_ERROR),
232 errmsg("unrecognized ANALYZE option \"%s\"", opt->defname),
233 parser_errposition(pstate, opt->location)));
234
235 /* Parse options available on VACUUM */
236 else if (strcmp(opt->defname, "analyze") == 0)
237 analyze = defGetBoolean(opt);
238 else if (strcmp(opt->defname, "freeze") == 0)
239 freeze = defGetBoolean(opt);
240 else if (strcmp(opt->defname, "full") == 0)
241 full = defGetBoolean(opt);
242 else if (strcmp(opt->defname, "disable_page_skipping") == 0)
243 disable_page_skipping = defGetBoolean(opt);
244 else if (strcmp(opt->defname, "index_cleanup") == 0)
245 {
246 /* Interpret no string as the default, which is 'auto' */
247 if (!opt->arg)
249 else
250 {
251 char *sval = defGetString(opt);
252
253 /* Try matching on 'auto' string, or fall back on boolean */
254 if (pg_strcasecmp(sval, "auto") == 0)
256 else
258 }
259 }
260 else if (strcmp(opt->defname, "process_main") == 0)
261 process_main = defGetBoolean(opt);
262 else if (strcmp(opt->defname, "process_toast") == 0)
263 process_toast = defGetBoolean(opt);
264 else if (strcmp(opt->defname, "truncate") == 0)
266 else if (strcmp(opt->defname, "parallel") == 0)
267 {
268 if (opt->arg == NULL)
269 {
271 (errcode(ERRCODE_SYNTAX_ERROR),
272 errmsg("parallel option requires a value between 0 and %d",
274 parser_errposition(pstate, opt->location)));
275 }
276 else
277 {
278 int nworkers;
279
280 nworkers = defGetInt32(opt);
281 if (nworkers < 0 || nworkers > MAX_PARALLEL_WORKER_LIMIT)
283 (errcode(ERRCODE_SYNTAX_ERROR),
284 errmsg("parallel workers for vacuum must be between 0 and %d",
286 parser_errposition(pstate, opt->location)));
287
288 /*
289 * Disable parallel vacuum, if user has specified parallel
290 * degree as zero.
291 */
292 if (nworkers == 0)
293 params.nworkers = -1;
294 else
295 params.nworkers = nworkers;
296 }
297 }
298 else if (strcmp(opt->defname, "skip_database_stats") == 0)
299 skip_database_stats = defGetBoolean(opt);
300 else if (strcmp(opt->defname, "only_database_stats") == 0)
301 only_database_stats = defGetBoolean(opt);
302 else
304 (errcode(ERRCODE_SYNTAX_ERROR),
305 errmsg("unrecognized VACUUM option \"%s\"", opt->defname),
306 parser_errposition(pstate, opt->location)));
307 }
308
309 /* Set vacuum options */
310 params.options =
312 (verbose ? VACOPT_VERBOSE : 0) |
313 (skip_locked ? VACOPT_SKIP_LOCKED : 0) |
314 (analyze ? VACOPT_ANALYZE : 0) |
315 (freeze ? VACOPT_FREEZE : 0) |
316 (full ? VACOPT_FULL : 0) |
317 (disable_page_skipping ? VACOPT_DISABLE_PAGE_SKIPPING : 0) |
318 (process_main ? VACOPT_PROCESS_MAIN : 0) |
319 (process_toast ? VACOPT_PROCESS_TOAST : 0) |
320 (skip_database_stats ? VACOPT_SKIP_DATABASE_STATS : 0) |
321 (only_database_stats ? VACOPT_ONLY_DATABASE_STATS : 0);
322
323 /* sanity checks on options */
325 Assert((params.options & VACOPT_VACUUM) ||
326 !(params.options & (VACOPT_FULL | VACOPT_FREEZE)));
327
328 if ((params.options & VACOPT_FULL) && params.nworkers > 0)
330 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
331 errmsg("VACUUM FULL cannot be performed in parallel")));
332
333 /*
334 * BUFFER_USAGE_LIMIT does nothing for VACUUM (FULL) so just raise an
335 * ERROR for that case. VACUUM (FULL, ANALYZE) does make use of it, so
336 * we'll permit that.
337 */
338 if (ring_size != -1 && (params.options & VACOPT_FULL) &&
339 !(params.options & VACOPT_ANALYZE))
341 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
342 errmsg("BUFFER_USAGE_LIMIT cannot be specified for VACUUM FULL")));
343
344 /*
345 * Make sure VACOPT_ANALYZE is specified if any column lists are present.
346 */
347 if (!(params.options & VACOPT_ANALYZE))
348 {
349 foreach(lc, vacstmt->rels)
350 {
352
353 if (vrel->va_cols != NIL)
355 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
356 errmsg("ANALYZE option must be specified when a column list is provided")));
357 }
358 }
359
360
361 /*
362 * Sanity check DISABLE_PAGE_SKIPPING option.
363 */
364 if ((params.options & VACOPT_FULL) != 0 &&
367 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
368 errmsg("VACUUM option DISABLE_PAGE_SKIPPING cannot be used with FULL")));
369
370 /* sanity check for PROCESS_TOAST */
371 if ((params.options & VACOPT_FULL) != 0 &&
372 (params.options & VACOPT_PROCESS_TOAST) == 0)
374 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
375 errmsg("PROCESS_TOAST required with VACUUM FULL")));
376
377 /* sanity check for ONLY_DATABASE_STATS */
379 {
380 Assert(params.options & VACOPT_VACUUM);
381 if (vacstmt->rels != NIL)
383 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
384 errmsg("ONLY_DATABASE_STATS cannot be specified with a list of tables")));
385 /* don't require people to turn off PROCESS_TOAST/MAIN explicitly */
386 if (params.options & ~(VACOPT_VACUUM |
392 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
393 errmsg("ONLY_DATABASE_STATS cannot be specified with other VACUUM options")));
394 }
395
396 /*
397 * All freeze ages are zero if the FREEZE option is given; otherwise pass
398 * them as -1 which means to use the default values.
399 */
400 if (params.options & VACOPT_FREEZE)
401 {
402 params.freeze_min_age = 0;
403 params.freeze_table_age = 0;
404 params.multixact_freeze_min_age = 0;
406 }
407 else
408 {
409 params.freeze_min_age = -1;
410 params.freeze_table_age = -1;
411 params.multixact_freeze_min_age = -1;
412 params.multixact_freeze_table_age = -1;
413 }
414
415 /* user-invoked vacuum is never "for wraparound" */
416 params.is_wraparound = false;
417
418 /* user-invoked vacuum uses VACOPT_VERBOSE instead of log_min_duration */
419 params.log_min_duration = -1;
420
421 /*
422 * Later, in vacuum_rel(), we check if a reloption override was specified.
423 */
425
426 /*
427 * Create special memory context for cross-transaction storage.
428 *
429 * Since it is a child of PortalContext, it will go away eventually even
430 * if we suffer an error; there's no need for special abort cleanup logic.
431 */
433 "Vacuum",
435
436 /*
437 * Make a buffer strategy object in the cross-transaction memory context.
438 * We needn't bother making this for VACUUM (FULL) or VACUUM
439 * (ONLY_DATABASE_STATS) as they'll not make use of it. VACUUM (FULL,
440 * ANALYZE) is possible, so we'd better ensure that we make a strategy
441 * when we see ANALYZE.
442 */
443 if ((params.options & (VACOPT_ONLY_DATABASE_STATS |
444 VACOPT_FULL)) == 0 ||
445 (params.options & VACOPT_ANALYZE) != 0)
446 {
447
448 MemoryContext old_context = MemoryContextSwitchTo(vac_context);
449
450 Assert(ring_size >= -1);
451
452 /*
453 * If BUFFER_USAGE_LIMIT was specified by the VACUUM or ANALYZE
454 * command, it overrides the value of VacuumBufferUsageLimit. Either
455 * value may be 0, in which case GetAccessStrategyWithSize() will
456 * return NULL, effectively allowing full use of shared buffers.
457 */
458 if (ring_size == -1)
459 ring_size = VacuumBufferUsageLimit;
460
461 bstrategy = GetAccessStrategyWithSize(BAS_VACUUM, ring_size);
462
463 MemoryContextSwitchTo(old_context);
464 }
465
466 /* Now go through the common routine */
467 vacuum(vacstmt->rels, &params, bstrategy, vac_context, isTopLevel);
468
469 /* Finally, clean up the vacuum memory context */
470 MemoryContextDelete(vac_context);
471}
472
473/*
474 * Internal entry point for autovacuum and the VACUUM / ANALYZE commands.
475 *
476 * relations, if not NIL, is a list of VacuumRelation to process; otherwise,
477 * we process all relevant tables in the database. For each VacuumRelation,
478 * if a valid OID is supplied, the table with that OID is what to process;
479 * otherwise, the VacuumRelation's RangeVar indicates what to process.
480 *
481 * params contains a set of parameters that can be used to customize the
482 * behavior.
483 *
484 * bstrategy may be passed in as NULL when the caller does not want to
485 * restrict the number of shared_buffers that VACUUM / ANALYZE can use,
486 * otherwise, the caller must build a BufferAccessStrategy with the number of
487 * shared_buffers that VACUUM / ANALYZE should try to limit themselves to
488 * using.
489 *
490 * isTopLevel should be passed down from ProcessUtility.
491 *
492 * It is the caller's responsibility that all parameters are allocated in a
493 * memory context that will not disappear at transaction commit.
494 */
495void
496vacuum(List *relations, VacuumParams *params, BufferAccessStrategy bstrategy,
497 MemoryContext vac_context, bool isTopLevel)
498{
499 static bool in_vacuum = false;
500
501 const char *stmttype;
502 volatile bool in_outer_xact,
503 use_own_xacts;
504
505 Assert(params != NULL);
506
507 stmttype = (params->options & VACOPT_VACUUM) ? "VACUUM" : "ANALYZE";
508
509 /*
510 * We cannot run VACUUM inside a user transaction block; if we were inside
511 * a transaction, then our commit- and start-transaction-command calls
512 * would not have the intended effect! There are numerous other subtle
513 * dependencies on this, too.
514 *
515 * ANALYZE (without VACUUM) can run either way.
516 */
517 if (params->options & VACOPT_VACUUM)
518 {
519 PreventInTransactionBlock(isTopLevel, stmttype);
520 in_outer_xact = false;
521 }
522 else
523 in_outer_xact = IsInTransactionBlock(isTopLevel);
524
525 /*
526 * Check for and disallow recursive calls. This could happen when VACUUM
527 * FULL or ANALYZE calls a hostile index expression that itself calls
528 * ANALYZE.
529 */
530 if (in_vacuum)
532 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
533 errmsg("%s cannot be executed from VACUUM or ANALYZE",
534 stmttype)));
535
536 /*
537 * Build list of relation(s) to process, putting any new data in
538 * vac_context for safekeeping.
539 */
541 {
542 /* We don't process any tables in this case */
543 Assert(relations == NIL);
544 }
545 else if (relations != NIL)
546 {
547 List *newrels = NIL;
548 ListCell *lc;
549
550 foreach(lc, relations)
551 {
553 List *sublist;
554 MemoryContext old_context;
555
556 sublist = expand_vacuum_rel(vrel, vac_context, params->options);
557 old_context = MemoryContextSwitchTo(vac_context);
558 newrels = list_concat(newrels, sublist);
559 MemoryContextSwitchTo(old_context);
560 }
561 relations = newrels;
562 }
563 else
564 relations = get_all_vacuum_rels(vac_context, params->options);
565
566 /*
567 * Decide whether we need to start/commit our own transactions.
568 *
569 * For VACUUM (with or without ANALYZE): always do so, so that we can
570 * release locks as soon as possible. (We could possibly use the outer
571 * transaction for a one-table VACUUM, but handling TOAST tables would be
572 * problematic.)
573 *
574 * For ANALYZE (no VACUUM): if inside a transaction block, we cannot
575 * start/commit our own transactions. Also, there's no need to do so if
576 * only processing one relation. For multiple relations when not within a
577 * transaction block, and also in an autovacuum worker, use own
578 * transactions so we can release locks sooner.
579 */
580 if (params->options & VACOPT_VACUUM)
581 use_own_xacts = true;
582 else
583 {
584 Assert(params->options & VACOPT_ANALYZE);
586 use_own_xacts = true;
587 else if (in_outer_xact)
588 use_own_xacts = false;
589 else if (list_length(relations) > 1)
590 use_own_xacts = true;
591 else
592 use_own_xacts = false;
593 }
594
595 /*
596 * vacuum_rel expects to be entered with no transaction active; it will
597 * start and commit its own transaction. But we are called by an SQL
598 * command, and so we are executing inside a transaction already. We
599 * commit the transaction started in PostgresMain() here, and start
600 * another one before exiting to match the commit waiting for us back in
601 * PostgresMain().
602 */
603 if (use_own_xacts)
604 {
605 Assert(!in_outer_xact);
606
607 /* ActiveSnapshot is not set by autovacuum */
608 if (ActiveSnapshotSet())
610
611 /* matches the StartTransaction in PostgresMain() */
613 }
614
615 /* Turn vacuum cost accounting on or off, and set/clear in_vacuum */
616 PG_TRY();
617 {
618 ListCell *cur;
619
620 in_vacuum = true;
621 VacuumFailsafeActive = false;
627
628 /*
629 * Loop to process each selected relation.
630 */
631 foreach(cur, relations)
632 {
634
635 if (params->options & VACOPT_VACUUM)
636 {
637 if (!vacuum_rel(vrel->oid, vrel->relation, params, bstrategy))
638 continue;
639 }
640
641 if (params->options & VACOPT_ANALYZE)
642 {
643 /*
644 * If using separate xacts, start one for analyze. Otherwise,
645 * we can use the outer transaction.
646 */
647 if (use_own_xacts)
648 {
650 /* functions in indexes may want a snapshot set */
652 }
653
654 analyze_rel(vrel->oid, vrel->relation, params,
655 vrel->va_cols, in_outer_xact, bstrategy);
656
657 if (use_own_xacts)
658 {
661 }
662 else
663 {
664 /*
665 * If we're not using separate xacts, better separate the
666 * ANALYZE actions with CCIs. This avoids trouble if user
667 * says "ANALYZE t, t".
668 */
670 }
671 }
672
673 /*
674 * Ensure VacuumFailsafeActive has been reset before vacuuming the
675 * next relation.
676 */
677 VacuumFailsafeActive = false;
678 }
679 }
680 PG_FINALLY();
681 {
682 in_vacuum = false;
683 VacuumCostActive = false;
684 VacuumFailsafeActive = false;
686 }
687 PG_END_TRY();
688
689 /*
690 * Finish up processing.
691 */
692 if (use_own_xacts)
693 {
694 /* here, we are not in a transaction */
695
696 /*
697 * This matches the CommitTransaction waiting for us in
698 * PostgresMain().
699 */
701 }
702
703 if ((params->options & VACOPT_VACUUM) &&
705 {
706 /*
707 * Update pg_database.datfrozenxid, and truncate pg_xact if possible.
708 */
710 }
711
712}
713
714/*
715 * Check if the current user has privileges to vacuum or analyze the relation.
716 * If not, issue a WARNING log message and return false to let the caller
717 * decide what to do with this relation. This routine is used to decide if a
718 * relation can be processed for VACUUM or ANALYZE.
719 */
720bool
723{
724 char *relname;
725
727
728 /*----------
729 * A role has privileges to vacuum or analyze the relation if any of the
730 * following are true:
731 * - the role owns the current database and the relation is not shared
732 * - the role has the MAINTAIN privilege on the relation
733 *----------
734 */
735 if ((object_ownercheck(DatabaseRelationId, MyDatabaseId, GetUserId()) &&
736 !reltuple->relisshared) ||
738 return true;
739
740 relname = NameStr(reltuple->relname);
741
742 if ((options & VACOPT_VACUUM) != 0)
743 {
745 (errmsg("permission denied to vacuum \"%s\", skipping it",
746 relname)));
747
748 /*
749 * For VACUUM ANALYZE, both logs could show up, but just generate
750 * information for VACUUM as that would be the first one to be
751 * processed.
752 */
753 return false;
754 }
755
756 if ((options & VACOPT_ANALYZE) != 0)
758 (errmsg("permission denied to analyze \"%s\", skipping it",
759 relname)));
760
761 return false;
762}
763
764
765/*
766 * vacuum_open_relation
767 *
768 * This routine is used for attempting to open and lock a relation which
769 * is going to be vacuumed or analyzed. If the relation cannot be opened
770 * or locked, a log is emitted if possible.
771 */
774 bool verbose, LOCKMODE lmode)
775{
776 Relation rel;
777 bool rel_lock = true;
778 int elevel;
779
781
782 /*
783 * Open the relation and get the appropriate lock on it.
784 *
785 * There's a race condition here: the relation may have gone away since
786 * the last time we saw it. If so, we don't need to vacuum or analyze it.
787 *
788 * If we've been asked not to wait for the relation lock, acquire it first
789 * in non-blocking mode, before calling try_relation_open().
790 */
792 rel = try_relation_open(relid, lmode);
793 else if (ConditionalLockRelationOid(relid, lmode))
794 rel = try_relation_open(relid, NoLock);
795 else
796 {
797 rel = NULL;
798 rel_lock = false;
799 }
800
801 /* if relation is opened, leave */
802 if (rel)
803 return rel;
804
805 /*
806 * Relation could not be opened, hence generate if possible a log
807 * informing on the situation.
808 *
809 * If the RangeVar is not defined, we do not have enough information to
810 * provide a meaningful log statement. Chances are that the caller has
811 * intentionally not provided this information so that this logging is
812 * skipped, anyway.
813 */
814 if (relation == NULL)
815 return NULL;
816
817 /*
818 * Determine the log level.
819 *
820 * For manual VACUUM or ANALYZE, we emit a WARNING to match the log
821 * statements in the permission checks; otherwise, only log if the caller
822 * so requested.
823 */
825 elevel = WARNING;
826 else if (verbose)
827 elevel = LOG;
828 else
829 return NULL;
830
831 if ((options & VACOPT_VACUUM) != 0)
832 {
833 if (!rel_lock)
834 ereport(elevel,
835 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
836 errmsg("skipping vacuum of \"%s\" --- lock not available",
837 relation->relname)));
838 else
839 ereport(elevel,
841 errmsg("skipping vacuum of \"%s\" --- relation no longer exists",
842 relation->relname)));
843
844 /*
845 * For VACUUM ANALYZE, both logs could show up, but just generate
846 * information for VACUUM as that would be the first one to be
847 * processed.
848 */
849 return NULL;
850 }
851
852 if ((options & VACOPT_ANALYZE) != 0)
853 {
854 if (!rel_lock)
855 ereport(elevel,
856 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
857 errmsg("skipping analyze of \"%s\" --- lock not available",
858 relation->relname)));
859 else
860 ereport(elevel,
862 errmsg("skipping analyze of \"%s\" --- relation no longer exists",
863 relation->relname)));
864 }
865
866 return NULL;
867}
868
869
870/*
871 * Given a VacuumRelation, fill in the table OID if it wasn't specified,
872 * and optionally add VacuumRelations for partitions or inheritance children.
873 *
874 * If a VacuumRelation does not have an OID supplied and is a partitioned
875 * table, an extra entry will be added to the output for each partition.
876 * Presently, only autovacuum supplies OIDs when calling vacuum(), and
877 * it does not want us to expand partitioned tables.
878 *
879 * We take care not to modify the input data structure, but instead build
880 * new VacuumRelation(s) to return. (But note that they will reference
881 * unmodified parts of the input, eg column lists.) New data structures
882 * are made in vac_context.
883 */
884static List *
886 int options)
887{
888 List *vacrels = NIL;
889 MemoryContext oldcontext;
890
891 /* If caller supplied OID, there's nothing we need do here. */
892 if (OidIsValid(vrel->oid))
893 {
894 oldcontext = MemoryContextSwitchTo(vac_context);
895 vacrels = lappend(vacrels, vrel);
896 MemoryContextSwitchTo(oldcontext);
897 }
898 else
899 {
900 /*
901 * Process a specific relation, and possibly partitions or child
902 * tables thereof.
903 */
904 Oid relid;
905 HeapTuple tuple;
906 Form_pg_class classForm;
907 bool include_children;
908 bool is_partitioned_table;
909 int rvr_opts;
910
911 /*
912 * Since autovacuum workers supply OIDs when calling vacuum(), no
913 * autovacuum worker should reach this code.
914 */
916
917 /*
918 * We transiently take AccessShareLock to protect the syscache lookup
919 * below, as well as find_all_inheritors's expectation that the caller
920 * holds some lock on the starting relation.
921 */
922 rvr_opts = (options & VACOPT_SKIP_LOCKED) ? RVR_SKIP_LOCKED : 0;
925 rvr_opts,
926 NULL, NULL);
927
928 /*
929 * If the lock is unavailable, emit the same log statement that
930 * vacuum_rel() and analyze_rel() would.
931 */
932 if (!OidIsValid(relid))
933 {
936 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
937 errmsg("skipping vacuum of \"%s\" --- lock not available",
938 vrel->relation->relname)));
939 else
941 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
942 errmsg("skipping analyze of \"%s\" --- lock not available",
943 vrel->relation->relname)));
944 return vacrels;
945 }
946
947 /*
948 * To check whether the relation is a partitioned table and its
949 * ownership, fetch its syscache entry.
950 */
951 tuple = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
952 if (!HeapTupleIsValid(tuple))
953 elog(ERROR, "cache lookup failed for relation %u", relid);
954 classForm = (Form_pg_class) GETSTRUCT(tuple);
955
956 /*
957 * Make a returnable VacuumRelation for this rel if the user has the
958 * required privileges.
959 */
960 if (vacuum_is_permitted_for_relation(relid, classForm, options))
961 {
962 oldcontext = MemoryContextSwitchTo(vac_context);
963 vacrels = lappend(vacrels, makeVacuumRelation(vrel->relation,
964 relid,
965 vrel->va_cols));
966 MemoryContextSwitchTo(oldcontext);
967 }
968
969 /*
970 * Vacuuming a partitioned table with ONLY will not do anything since
971 * the partitioned table itself is empty. Issue a warning if the user
972 * requests this.
973 */
974 include_children = vrel->relation->inh;
975 is_partitioned_table = (classForm->relkind == RELKIND_PARTITIONED_TABLE);
976 if ((options & VACOPT_VACUUM) && is_partitioned_table && !include_children)
978 (errmsg("VACUUM ONLY of partitioned table \"%s\" has no effect",
979 vrel->relation->relname)));
980
981 ReleaseSysCache(tuple);
982
983 /*
984 * Unless the user has specified ONLY, make relation list entries for
985 * its partitions or inheritance child tables. Note that the list
986 * returned by find_all_inheritors() includes the passed-in OID, so we
987 * have to skip that. There's no point in taking locks on the
988 * individual partitions or child tables yet, and doing so would just
989 * add unnecessary deadlock risk. For this last reason, we do not yet
990 * check the ownership of the partitions/tables, which get added to
991 * the list to process. Ownership will be checked later on anyway.
992 */
993 if (include_children)
994 {
995 List *part_oids = find_all_inheritors(relid, NoLock, NULL);
996 ListCell *part_lc;
997
998 foreach(part_lc, part_oids)
999 {
1000 Oid part_oid = lfirst_oid(part_lc);
1001
1002 if (part_oid == relid)
1003 continue; /* ignore original table */
1004
1005 /*
1006 * We omit a RangeVar since it wouldn't be appropriate to
1007 * complain about failure to open one of these relations
1008 * later.
1009 */
1010 oldcontext = MemoryContextSwitchTo(vac_context);
1011 vacrels = lappend(vacrels, makeVacuumRelation(NULL,
1012 part_oid,
1013 vrel->va_cols));
1014 MemoryContextSwitchTo(oldcontext);
1015 }
1016 }
1017
1018 /*
1019 * Release lock again. This means that by the time we actually try to
1020 * process the table, it might be gone or renamed. In the former case
1021 * we'll silently ignore it; in the latter case we'll process it
1022 * anyway, but we must beware that the RangeVar doesn't necessarily
1023 * identify it anymore. This isn't ideal, perhaps, but there's little
1024 * practical alternative, since we're typically going to commit this
1025 * transaction and begin a new one between now and then. Moreover,
1026 * holding locks on multiple relations would create significant risk
1027 * of deadlock.
1028 */
1030 }
1031
1032 return vacrels;
1033}
1034
1035/*
1036 * Construct a list of VacuumRelations for all vacuumable rels in
1037 * the current database. The list is built in vac_context.
1038 */
1039static List *
1041{
1042 List *vacrels = NIL;
1043 Relation pgclass;
1044 TableScanDesc scan;
1045 HeapTuple tuple;
1046
1047 pgclass = table_open(RelationRelationId, AccessShareLock);
1048
1049 scan = table_beginscan_catalog(pgclass, 0, NULL);
1050
1051 while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
1052 {
1053 Form_pg_class classForm = (Form_pg_class) GETSTRUCT(tuple);
1054 MemoryContext oldcontext;
1055 Oid relid = classForm->oid;
1056
1057 /*
1058 * We include partitioned tables here; depending on which operation is
1059 * to be performed, caller will decide whether to process or ignore
1060 * them.
1061 */
1062 if (classForm->relkind != RELKIND_RELATION &&
1063 classForm->relkind != RELKIND_MATVIEW &&
1064 classForm->relkind != RELKIND_PARTITIONED_TABLE)
1065 continue;
1066
1067 /* check permissions of relation */
1068 if (!vacuum_is_permitted_for_relation(relid, classForm, options))
1069 continue;
1070
1071 /*
1072 * Build VacuumRelation(s) specifying the table OIDs to be processed.
1073 * We omit a RangeVar since it wouldn't be appropriate to complain
1074 * about failure to open one of these relations later.
1075 */
1076 oldcontext = MemoryContextSwitchTo(vac_context);
1077 vacrels = lappend(vacrels, makeVacuumRelation(NULL,
1078 relid,
1079 NIL));
1080 MemoryContextSwitchTo(oldcontext);
1081 }
1082
1083 table_endscan(scan);
1084 table_close(pgclass, AccessShareLock);
1085
1086 return vacrels;
1087}
1088
1089/*
1090 * vacuum_get_cutoffs() -- compute OldestXmin and freeze cutoff points
1091 *
1092 * The target relation and VACUUM parameters are our inputs.
1093 *
1094 * Output parameters are the cutoffs that VACUUM caller should use.
1095 *
1096 * Return value indicates if vacuumlazy.c caller should make its VACUUM
1097 * operation aggressive. An aggressive VACUUM must advance relfrozenxid up to
1098 * FreezeLimit (at a minimum), and relminmxid up to MultiXactCutoff (at a
1099 * minimum).
1100 */
1101bool
1103 struct VacuumCutoffs *cutoffs)
1104{
1105 int freeze_min_age,
1106 multixact_freeze_min_age,
1107 freeze_table_age,
1108 multixact_freeze_table_age,
1109 effective_multixact_freeze_max_age;
1110 TransactionId nextXID,
1111 safeOldestXmin,
1112 aggressiveXIDCutoff;
1113 MultiXactId nextMXID,
1114 safeOldestMxact,
1115 aggressiveMXIDCutoff;
1116
1117 /* Use mutable copies of freeze age parameters */
1118 freeze_min_age = params->freeze_min_age;
1119 multixact_freeze_min_age = params->multixact_freeze_min_age;
1120 freeze_table_age = params->freeze_table_age;
1121 multixact_freeze_table_age = params->multixact_freeze_table_age;
1122
1123 /* Set pg_class fields in cutoffs */
1124 cutoffs->relfrozenxid = rel->rd_rel->relfrozenxid;
1125 cutoffs->relminmxid = rel->rd_rel->relminmxid;
1126
1127 /*
1128 * Acquire OldestXmin.
1129 *
1130 * We can always ignore processes running lazy vacuum. This is because we
1131 * use these values only for deciding which tuples we must keep in the
1132 * tables. Since lazy vacuum doesn't write its XID anywhere (usually no
1133 * XID assigned), it's safe to ignore it. In theory it could be
1134 * problematic to ignore lazy vacuums in a full vacuum, but keep in mind
1135 * that only one vacuum process can be working on a particular table at
1136 * any time, and that each vacuum is always an independent transaction.
1137 */
1139
1141
1142 /* Acquire OldestMxact */
1143 cutoffs->OldestMxact = GetOldestMultiXactId();
1145
1146 /* Acquire next XID/next MXID values used to apply age-based settings */
1147 nextXID = ReadNextTransactionId();
1148 nextMXID = ReadNextMultiXactId();
1149
1150 /*
1151 * Also compute the multixact age for which freezing is urgent. This is
1152 * normally autovacuum_multixact_freeze_max_age, but may be less if we are
1153 * short of multixact member space.
1154 */
1155 effective_multixact_freeze_max_age = MultiXactMemberFreezeThreshold();
1156
1157 /*
1158 * Almost ready to set freeze output parameters; check if OldestXmin or
1159 * OldestMxact are held back to an unsafe degree before we start on that
1160 */
1161 safeOldestXmin = nextXID - autovacuum_freeze_max_age;
1162 if (!TransactionIdIsNormal(safeOldestXmin))
1163 safeOldestXmin = FirstNormalTransactionId;
1164 safeOldestMxact = nextMXID - effective_multixact_freeze_max_age;
1165 if (safeOldestMxact < FirstMultiXactId)
1166 safeOldestMxact = FirstMultiXactId;
1167 if (TransactionIdPrecedes(cutoffs->OldestXmin, safeOldestXmin))
1169 (errmsg("cutoff for removing and freezing tuples is far in the past"),
1170 errhint("Close open transactions soon to avoid wraparound problems.\n"
1171 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1172 if (MultiXactIdPrecedes(cutoffs->OldestMxact, safeOldestMxact))
1174 (errmsg("cutoff for freezing multixacts is far in the past"),
1175 errhint("Close open transactions soon to avoid wraparound problems.\n"
1176 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1177
1178 /*
1179 * Determine the minimum freeze age to use: as specified by the caller, or
1180 * vacuum_freeze_min_age, but in any case not more than half
1181 * autovacuum_freeze_max_age, so that autovacuums to prevent XID
1182 * wraparound won't occur too frequently.
1183 */
1184 if (freeze_min_age < 0)
1185 freeze_min_age = vacuum_freeze_min_age;
1186 freeze_min_age = Min(freeze_min_age, autovacuum_freeze_max_age / 2);
1187 Assert(freeze_min_age >= 0);
1188
1189 /* Compute FreezeLimit, being careful to generate a normal XID */
1190 cutoffs->FreezeLimit = nextXID - freeze_min_age;
1191 if (!TransactionIdIsNormal(cutoffs->FreezeLimit))
1193 /* FreezeLimit must always be <= OldestXmin */
1194 if (TransactionIdPrecedes(cutoffs->OldestXmin, cutoffs->FreezeLimit))
1195 cutoffs->FreezeLimit = cutoffs->OldestXmin;
1196
1197 /*
1198 * Determine the minimum multixact freeze age to use: as specified by
1199 * caller, or vacuum_multixact_freeze_min_age, but in any case not more
1200 * than half effective_multixact_freeze_max_age, so that autovacuums to
1201 * prevent MultiXact wraparound won't occur too frequently.
1202 */
1203 if (multixact_freeze_min_age < 0)
1204 multixact_freeze_min_age = vacuum_multixact_freeze_min_age;
1205 multixact_freeze_min_age = Min(multixact_freeze_min_age,
1206 effective_multixact_freeze_max_age / 2);
1207 Assert(multixact_freeze_min_age >= 0);
1208
1209 /* Compute MultiXactCutoff, being careful to generate a valid value */
1210 cutoffs->MultiXactCutoff = nextMXID - multixact_freeze_min_age;
1211 if (cutoffs->MultiXactCutoff < FirstMultiXactId)
1213 /* MultiXactCutoff must always be <= OldestMxact */
1214 if (MultiXactIdPrecedes(cutoffs->OldestMxact, cutoffs->MultiXactCutoff))
1215 cutoffs->MultiXactCutoff = cutoffs->OldestMxact;
1216
1217 /*
1218 * Finally, figure out if caller needs to do an aggressive VACUUM or not.
1219 *
1220 * Determine the table freeze age to use: as specified by the caller, or
1221 * the value of the vacuum_freeze_table_age GUC, but in any case not more
1222 * than autovacuum_freeze_max_age * 0.95, so that if you have e.g nightly
1223 * VACUUM schedule, the nightly VACUUM gets a chance to freeze XIDs before
1224 * anti-wraparound autovacuum is launched.
1225 */
1226 if (freeze_table_age < 0)
1227 freeze_table_age = vacuum_freeze_table_age;
1228 freeze_table_age = Min(freeze_table_age, autovacuum_freeze_max_age * 0.95);
1229 Assert(freeze_table_age >= 0);
1230 aggressiveXIDCutoff = nextXID - freeze_table_age;
1231 if (!TransactionIdIsNormal(aggressiveXIDCutoff))
1232 aggressiveXIDCutoff = FirstNormalTransactionId;
1234 aggressiveXIDCutoff))
1235 return true;
1236
1237 /*
1238 * Similar to the above, determine the table freeze age to use for
1239 * multixacts: as specified by the caller, or the value of the
1240 * vacuum_multixact_freeze_table_age GUC, but in any case not more than
1241 * effective_multixact_freeze_max_age * 0.95, so that if you have e.g.
1242 * nightly VACUUM schedule, the nightly VACUUM gets a chance to freeze
1243 * multixacts before anti-wraparound autovacuum is launched.
1244 */
1245 if (multixact_freeze_table_age < 0)
1246 multixact_freeze_table_age = vacuum_multixact_freeze_table_age;
1247 multixact_freeze_table_age =
1248 Min(multixact_freeze_table_age,
1249 effective_multixact_freeze_max_age * 0.95);
1250 Assert(multixact_freeze_table_age >= 0);
1251 aggressiveMXIDCutoff = nextMXID - multixact_freeze_table_age;
1252 if (aggressiveMXIDCutoff < FirstMultiXactId)
1253 aggressiveMXIDCutoff = FirstMultiXactId;
1255 aggressiveMXIDCutoff))
1256 return true;
1257
1258 /* Non-aggressive VACUUM */
1259 return false;
1260}
1261
1262/*
1263 * vacuum_xid_failsafe_check() -- Used by VACUUM's wraparound failsafe
1264 * mechanism to determine if its table's relfrozenxid and relminmxid are now
1265 * dangerously far in the past.
1266 *
1267 * When we return true, VACUUM caller triggers the failsafe.
1268 */
1269bool
1271{
1272 TransactionId relfrozenxid = cutoffs->relfrozenxid;
1273 MultiXactId relminmxid = cutoffs->relminmxid;
1274 TransactionId xid_skip_limit;
1275 MultiXactId multi_skip_limit;
1276 int skip_index_vacuum;
1277
1278 Assert(TransactionIdIsNormal(relfrozenxid));
1279 Assert(MultiXactIdIsValid(relminmxid));
1280
1281 /*
1282 * Determine the index skipping age to use. In any case no less than
1283 * autovacuum_freeze_max_age * 1.05.
1284 */
1285 skip_index_vacuum = Max(vacuum_failsafe_age, autovacuum_freeze_max_age * 1.05);
1286
1287 xid_skip_limit = ReadNextTransactionId() - skip_index_vacuum;
1288 if (!TransactionIdIsNormal(xid_skip_limit))
1289 xid_skip_limit = FirstNormalTransactionId;
1290
1291 if (TransactionIdPrecedes(relfrozenxid, xid_skip_limit))
1292 {
1293 /* The table's relfrozenxid is too old */
1294 return true;
1295 }
1296
1297 /*
1298 * Similar to above, determine the index skipping age to use for
1299 * multixact. In any case no less than autovacuum_multixact_freeze_max_age *
1300 * 1.05.
1301 */
1302 skip_index_vacuum = Max(vacuum_multixact_failsafe_age,
1304
1305 multi_skip_limit = ReadNextMultiXactId() - skip_index_vacuum;
1306 if (multi_skip_limit < FirstMultiXactId)
1307 multi_skip_limit = FirstMultiXactId;
1308
1309 if (MultiXactIdPrecedes(relminmxid, multi_skip_limit))
1310 {
1311 /* The table's relminmxid is too old */
1312 return true;
1313 }
1314
1315 return false;
1316}
1317
1318/*
1319 * vac_estimate_reltuples() -- estimate the new value for pg_class.reltuples
1320 *
1321 * If we scanned the whole relation then we should just use the count of
1322 * live tuples seen; but if we did not, we should not blindly extrapolate
1323 * from that number, since VACUUM may have scanned a quite nonrandom
1324 * subset of the table. When we have only partial information, we take
1325 * the old value of pg_class.reltuples/pg_class.relpages as a measurement
1326 * of the tuple density in the unscanned pages.
1327 *
1328 * Note: scanned_tuples should count only *live* tuples, since
1329 * pg_class.reltuples is defined that way.
1330 */
1331double
1333 BlockNumber total_pages,
1334 BlockNumber scanned_pages,
1335 double scanned_tuples)
1336{
1337 BlockNumber old_rel_pages = relation->rd_rel->relpages;
1338 double old_rel_tuples = relation->rd_rel->reltuples;
1339 double old_density;
1340 double unscanned_pages;
1341 double total_tuples;
1342
1343 /* If we did scan the whole table, just use the count as-is */
1344 if (scanned_pages >= total_pages)
1345 return scanned_tuples;
1346
1347 /*
1348 * When successive VACUUM commands scan the same few pages again and
1349 * again, without anything from the table really changing, there is a risk
1350 * that our beliefs about tuple density will gradually become distorted.
1351 * This might be caused by vacuumlazy.c implementation details, such as
1352 * its tendency to always scan the last heap page. Handle that here.
1353 *
1354 * If the relation is _exactly_ the same size according to the existing
1355 * pg_class entry, and only a few of its pages (less than 2%) were
1356 * scanned, keep the existing value of reltuples. Also keep the existing
1357 * value when only a subset of rel's pages <= a single page were scanned.
1358 *
1359 * (Note: we might be returning -1 here.)
1360 */
1361 if (old_rel_pages == total_pages &&
1362 scanned_pages < (double) total_pages * 0.02)
1363 return old_rel_tuples;
1364 if (scanned_pages <= 1)
1365 return old_rel_tuples;
1366
1367 /*
1368 * If old density is unknown, we can't do much except scale up
1369 * scanned_tuples to match total_pages.
1370 */
1371 if (old_rel_tuples < 0 || old_rel_pages == 0)
1372 return floor((scanned_tuples / scanned_pages) * total_pages + 0.5);
1373
1374 /*
1375 * Okay, we've covered the corner cases. The normal calculation is to
1376 * convert the old measurement to a density (tuples per page), then
1377 * estimate the number of tuples in the unscanned pages using that figure,
1378 * and finally add on the number of tuples in the scanned pages.
1379 */
1380 old_density = old_rel_tuples / old_rel_pages;
1381 unscanned_pages = (double) total_pages - (double) scanned_pages;
1382 total_tuples = old_density * unscanned_pages + scanned_tuples;
1383 return floor(total_tuples + 0.5);
1384}
1385
1386
1387/*
1388 * vac_update_relstats() -- update statistics for one relation
1389 *
1390 * Update the whole-relation statistics that are kept in its pg_class
1391 * row. There are additional stats that will be updated if we are
1392 * doing ANALYZE, but we always update these stats. This routine works
1393 * for both index and heap relation entries in pg_class.
1394 *
1395 * We violate transaction semantics here by overwriting the rel's
1396 * existing pg_class tuple with the new values. This is reasonably
1397 * safe as long as we're sure that the new values are correct whether or
1398 * not this transaction commits. The reason for doing this is that if
1399 * we updated these tuples in the usual way, vacuuming pg_class itself
1400 * wouldn't work very well --- by the time we got done with a vacuum
1401 * cycle, most of the tuples in pg_class would've been obsoleted. Of
1402 * course, this only works for fixed-size not-null columns, but these are.
1403 *
1404 * Another reason for doing it this way is that when we are in a lazy
1405 * VACUUM and have PROC_IN_VACUUM set, we mustn't do any regular updates.
1406 * Somebody vacuuming pg_class might think they could delete a tuple
1407 * marked with xmin = our xid.
1408 *
1409 * In addition to fundamentally nontransactional statistics such as
1410 * relpages and relallvisible, we try to maintain certain lazily-updated
1411 * DDL flags such as relhasindex, by clearing them if no longer correct.
1412 * It's safe to do this in VACUUM, which can't run in parallel with
1413 * CREATE INDEX/RULE/TRIGGER and can't be part of a transaction block.
1414 * However, it's *not* safe to do it in an ANALYZE that's within an
1415 * outer transaction, because for example the current transaction might
1416 * have dropped the last index; then we'd think relhasindex should be
1417 * cleared, but if the transaction later rolls back this would be wrong.
1418 * So we refrain from updating the DDL flags if we're inside an outer
1419 * transaction. This is OK since postponing the flag maintenance is
1420 * always allowable.
1421 *
1422 * Note: num_tuples should count only *live* tuples, since
1423 * pg_class.reltuples is defined that way.
1424 *
1425 * This routine is shared by VACUUM and ANALYZE.
1426 */
1427void
1429 BlockNumber num_pages, double num_tuples,
1430 BlockNumber num_all_visible_pages,
1431 BlockNumber num_all_frozen_pages,
1432 bool hasindex, TransactionId frozenxid,
1433 MultiXactId minmulti,
1434 bool *frozenxid_updated, bool *minmulti_updated,
1435 bool in_outer_xact)
1436{
1437 Oid relid = RelationGetRelid(relation);
1438 Relation rd;
1439 ScanKeyData key[1];
1440 HeapTuple ctup;
1441 void *inplace_state;
1442 Form_pg_class pgcform;
1443 bool dirty,
1444 futurexid,
1445 futuremxid;
1446 TransactionId oldfrozenxid;
1447 MultiXactId oldminmulti;
1448
1449 rd = table_open(RelationRelationId, RowExclusiveLock);
1450
1451 /* Fetch a copy of the tuple to scribble on */
1452 ScanKeyInit(&key[0],
1453 Anum_pg_class_oid,
1454 BTEqualStrategyNumber, F_OIDEQ,
1455 ObjectIdGetDatum(relid));
1456 systable_inplace_update_begin(rd, ClassOidIndexId, true,
1457 NULL, 1, key, &ctup, &inplace_state);
1458 if (!HeapTupleIsValid(ctup))
1459 elog(ERROR, "pg_class entry for relid %u vanished during vacuuming",
1460 relid);
1461 pgcform = (Form_pg_class) GETSTRUCT(ctup);
1462
1463 /* Apply statistical updates, if any, to copied tuple */
1464
1465 dirty = false;
1466 if (pgcform->relpages != (int32) num_pages)
1467 {
1468 pgcform->relpages = (int32) num_pages;
1469 dirty = true;
1470 }
1471 if (pgcform->reltuples != (float4) num_tuples)
1472 {
1473 pgcform->reltuples = (float4) num_tuples;
1474 dirty = true;
1475 }
1476 if (pgcform->relallvisible != (int32) num_all_visible_pages)
1477 {
1478 pgcform->relallvisible = (int32) num_all_visible_pages;
1479 dirty = true;
1480 }
1481 if (pgcform->relallfrozen != (int32) num_all_frozen_pages)
1482 {
1483 pgcform->relallfrozen = (int32) num_all_frozen_pages;
1484 dirty = true;
1485 }
1486
1487 /* Apply DDL updates, but not inside an outer transaction (see above) */
1488
1489 if (!in_outer_xact)
1490 {
1491 /*
1492 * If we didn't find any indexes, reset relhasindex.
1493 */
1494 if (pgcform->relhasindex && !hasindex)
1495 {
1496 pgcform->relhasindex = false;
1497 dirty = true;
1498 }
1499
1500 /* We also clear relhasrules and relhastriggers if needed */
1501 if (pgcform->relhasrules && relation->rd_rules == NULL)
1502 {
1503 pgcform->relhasrules = false;
1504 dirty = true;
1505 }
1506 if (pgcform->relhastriggers && relation->trigdesc == NULL)
1507 {
1508 pgcform->relhastriggers = false;
1509 dirty = true;
1510 }
1511 }
1512
1513 /*
1514 * Update relfrozenxid, unless caller passed InvalidTransactionId
1515 * indicating it has no new data.
1516 *
1517 * Ordinarily, we don't let relfrozenxid go backwards. However, if the
1518 * stored relfrozenxid is "in the future" then it seems best to assume
1519 * it's corrupt, and overwrite with the oldest remaining XID in the table.
1520 * This should match vac_update_datfrozenxid() concerning what we consider
1521 * to be "in the future".
1522 */
1523 oldfrozenxid = pgcform->relfrozenxid;
1524 futurexid = false;
1525 if (frozenxid_updated)
1526 *frozenxid_updated = false;
1527 if (TransactionIdIsNormal(frozenxid) && oldfrozenxid != frozenxid)
1528 {
1529 bool update = false;
1530
1531 if (TransactionIdPrecedes(oldfrozenxid, frozenxid))
1532 update = true;
1533 else if (TransactionIdPrecedes(ReadNextTransactionId(), oldfrozenxid))
1534 futurexid = update = true;
1535
1536 if (update)
1537 {
1538 pgcform->relfrozenxid = frozenxid;
1539 dirty = true;
1540 if (frozenxid_updated)
1541 *frozenxid_updated = true;
1542 }
1543 }
1544
1545 /* Similarly for relminmxid */
1546 oldminmulti = pgcform->relminmxid;
1547 futuremxid = false;
1548 if (minmulti_updated)
1549 *minmulti_updated = false;
1550 if (MultiXactIdIsValid(minmulti) && oldminmulti != minmulti)
1551 {
1552 bool update = false;
1553
1554 if (MultiXactIdPrecedes(oldminmulti, minmulti))
1555 update = true;
1556 else if (MultiXactIdPrecedes(ReadNextMultiXactId(), oldminmulti))
1557 futuremxid = update = true;
1558
1559 if (update)
1560 {
1561 pgcform->relminmxid = minmulti;
1562 dirty = true;
1563 if (minmulti_updated)
1564 *minmulti_updated = true;
1565 }
1566 }
1567
1568 /* If anything changed, write out the tuple. */
1569 if (dirty)
1570 systable_inplace_update_finish(inplace_state, ctup);
1571 else
1572 systable_inplace_update_cancel(inplace_state);
1573
1575
1576 if (futurexid)
1579 errmsg_internal("overwrote invalid relfrozenxid value %u with new value %u for table \"%s\"",
1580 oldfrozenxid, frozenxid,
1581 RelationGetRelationName(relation))));
1582 if (futuremxid)
1585 errmsg_internal("overwrote invalid relminmxid value %u with new value %u for table \"%s\"",
1586 oldminmulti, minmulti,
1587 RelationGetRelationName(relation))));
1588}
1589
1590
1591/*
1592 * vac_update_datfrozenxid() -- update pg_database.datfrozenxid for our DB
1593 *
1594 * Update pg_database's datfrozenxid entry for our database to be the
1595 * minimum of the pg_class.relfrozenxid values.
1596 *
1597 * Similarly, update our datminmxid to be the minimum of the
1598 * pg_class.relminmxid values.
1599 *
1600 * If we are able to advance either pg_database value, also try to
1601 * truncate pg_xact and pg_multixact.
1602 *
1603 * We violate transaction semantics here by overwriting the database's
1604 * existing pg_database tuple with the new values. This is reasonably
1605 * safe since the new values are correct whether or not this transaction
1606 * commits. As with vac_update_relstats, this avoids leaving dead tuples
1607 * behind after a VACUUM.
1608 */
1609void
1611{
1612 HeapTuple tuple;
1613 Form_pg_database dbform;
1614 Relation relation;
1615 SysScanDesc scan;
1616 HeapTuple classTup;
1617 TransactionId newFrozenXid;
1618 MultiXactId newMinMulti;
1619 TransactionId lastSaneFrozenXid;
1620 MultiXactId lastSaneMinMulti;
1621 bool bogus = false;
1622 bool dirty = false;
1623 ScanKeyData key[1];
1624 void *inplace_state;
1625
1626 /*
1627 * Restrict this task to one backend per database. This avoids race
1628 * conditions that would move datfrozenxid or datminmxid backward. It
1629 * avoids calling vac_truncate_clog() with a datfrozenxid preceding a
1630 * datfrozenxid passed to an earlier vac_truncate_clog() call.
1631 */
1633
1634 /*
1635 * Initialize the "min" calculation with
1636 * GetOldestNonRemovableTransactionId(), which is a reasonable
1637 * approximation to the minimum relfrozenxid for not-yet-committed
1638 * pg_class entries for new tables; see AddNewRelationTuple(). So we
1639 * cannot produce a wrong minimum by starting with this.
1640 */
1641 newFrozenXid = GetOldestNonRemovableTransactionId(NULL);
1642
1643 /*
1644 * Similarly, initialize the MultiXact "min" with the value that would be
1645 * used on pg_class for new tables. See AddNewRelationTuple().
1646 */
1647 newMinMulti = GetOldestMultiXactId();
1648
1649 /*
1650 * Identify the latest relfrozenxid and relminmxid values that we could
1651 * validly see during the scan. These are conservative values, but it's
1652 * not really worth trying to be more exact.
1653 */
1654 lastSaneFrozenXid = ReadNextTransactionId();
1655 lastSaneMinMulti = ReadNextMultiXactId();
1656
1657 /*
1658 * We must seqscan pg_class to find the minimum Xid, because there is no
1659 * index that can help us here.
1660 *
1661 * See vac_truncate_clog() for the race condition to prevent.
1662 */
1663 relation = table_open(RelationRelationId, AccessShareLock);
1664
1665 scan = systable_beginscan(relation, InvalidOid, false,
1666 NULL, 0, NULL);
1667
1668 while ((classTup = systable_getnext(scan)) != NULL)
1669 {
1670 volatile FormData_pg_class *classForm = (Form_pg_class) GETSTRUCT(classTup);
1671 TransactionId relfrozenxid = classForm->relfrozenxid;
1672 TransactionId relminmxid = classForm->relminmxid;
1673
1674 /*
1675 * Only consider relations able to hold unfrozen XIDs (anything else
1676 * should have InvalidTransactionId in relfrozenxid anyway).
1677 */
1678 if (classForm->relkind != RELKIND_RELATION &&
1679 classForm->relkind != RELKIND_MATVIEW &&
1680 classForm->relkind != RELKIND_TOASTVALUE)
1681 {
1682 Assert(!TransactionIdIsValid(relfrozenxid));
1683 Assert(!MultiXactIdIsValid(relminmxid));
1684 continue;
1685 }
1686
1687 /*
1688 * Some table AMs might not need per-relation xid / multixid horizons.
1689 * It therefore seems reasonable to allow relfrozenxid and relminmxid
1690 * to not be set (i.e. set to their respective Invalid*Id)
1691 * independently. Thus validate and compute horizon for each only if
1692 * set.
1693 *
1694 * If things are working properly, no relation should have a
1695 * relfrozenxid or relminmxid that is "in the future". However, such
1696 * cases have been known to arise due to bugs in pg_upgrade. If we
1697 * see any entries that are "in the future", chicken out and don't do
1698 * anything. This ensures we won't truncate clog & multixact SLRUs
1699 * before those relations have been scanned and cleaned up.
1700 */
1701
1702 if (TransactionIdIsValid(relfrozenxid))
1703 {
1704 Assert(TransactionIdIsNormal(relfrozenxid));
1705
1706 /* check for values in the future */
1707 if (TransactionIdPrecedes(lastSaneFrozenXid, relfrozenxid))
1708 {
1709 bogus = true;
1710 break;
1711 }
1712
1713 /* determine new horizon */
1714 if (TransactionIdPrecedes(relfrozenxid, newFrozenXid))
1715 newFrozenXid = relfrozenxid;
1716 }
1717
1718 if (MultiXactIdIsValid(relminmxid))
1719 {
1720 /* check for values in the future */
1721 if (MultiXactIdPrecedes(lastSaneMinMulti, relminmxid))
1722 {
1723 bogus = true;
1724 break;
1725 }
1726
1727 /* determine new horizon */
1728 if (MultiXactIdPrecedes(relminmxid, newMinMulti))
1729 newMinMulti = relminmxid;
1730 }
1731 }
1732
1733 /* we're done with pg_class */
1734 systable_endscan(scan);
1735 table_close(relation, AccessShareLock);
1736
1737 /* chicken out if bogus data found */
1738 if (bogus)
1739 return;
1740
1741 Assert(TransactionIdIsNormal(newFrozenXid));
1742 Assert(MultiXactIdIsValid(newMinMulti));
1743
1744 /* Now fetch the pg_database tuple we need to update. */
1745 relation = table_open(DatabaseRelationId, RowExclusiveLock);
1746
1747 /*
1748 * Fetch a copy of the tuple to scribble on. We could check the syscache
1749 * tuple first. If that concluded !dirty, we'd avoid waiting on
1750 * concurrent heap_update() and would avoid exclusive-locking the buffer.
1751 * For now, don't optimize that.
1752 */
1753 ScanKeyInit(&key[0],
1754 Anum_pg_database_oid,
1755 BTEqualStrategyNumber, F_OIDEQ,
1757
1758 systable_inplace_update_begin(relation, DatabaseOidIndexId, true,
1759 NULL, 1, key, &tuple, &inplace_state);
1760
1761 if (!HeapTupleIsValid(tuple))
1762 elog(ERROR, "could not find tuple for database %u", MyDatabaseId);
1763
1764 dbform = (Form_pg_database) GETSTRUCT(tuple);
1765
1766 /*
1767 * As in vac_update_relstats(), we ordinarily don't want to let
1768 * datfrozenxid go backward; but if it's "in the future" then it must be
1769 * corrupt and it seems best to overwrite it.
1770 */
1771 if (dbform->datfrozenxid != newFrozenXid &&
1772 (TransactionIdPrecedes(dbform->datfrozenxid, newFrozenXid) ||
1773 TransactionIdPrecedes(lastSaneFrozenXid, dbform->datfrozenxid)))
1774 {
1775 dbform->datfrozenxid = newFrozenXid;
1776 dirty = true;
1777 }
1778 else
1779 newFrozenXid = dbform->datfrozenxid;
1780
1781 /* Ditto for datminmxid */
1782 if (dbform->datminmxid != newMinMulti &&
1783 (MultiXactIdPrecedes(dbform->datminmxid, newMinMulti) ||
1784 MultiXactIdPrecedes(lastSaneMinMulti, dbform->datminmxid)))
1785 {
1786 dbform->datminmxid = newMinMulti;
1787 dirty = true;
1788 }
1789 else
1790 newMinMulti = dbform->datminmxid;
1791
1792 if (dirty)
1793 systable_inplace_update_finish(inplace_state, tuple);
1794 else
1795 systable_inplace_update_cancel(inplace_state);
1796
1797 heap_freetuple(tuple);
1798 table_close(relation, RowExclusiveLock);
1799
1800 /*
1801 * If we were able to advance datfrozenxid or datminmxid, see if we can
1802 * truncate pg_xact and/or pg_multixact. Also do it if the shared
1803 * XID-wrap-limit info is stale, since this action will update that too.
1804 */
1805 if (dirty || ForceTransactionIdLimitUpdate())
1806 vac_truncate_clog(newFrozenXid, newMinMulti,
1807 lastSaneFrozenXid, lastSaneMinMulti);
1808}
1809
1810
1811/*
1812 * vac_truncate_clog() -- attempt to truncate the commit log
1813 *
1814 * Scan pg_database to determine the system-wide oldest datfrozenxid,
1815 * and use it to truncate the transaction commit log (pg_xact).
1816 * Also update the XID wrap limit info maintained by varsup.c.
1817 * Likewise for datminmxid.
1818 *
1819 * The passed frozenXID and minMulti are the updated values for my own
1820 * pg_database entry. They're used to initialize the "min" calculations.
1821 * The caller also passes the "last sane" XID and MXID, since it has
1822 * those at hand already.
1823 *
1824 * This routine is only invoked when we've managed to change our
1825 * DB's datfrozenxid/datminmxid values, or we found that the shared
1826 * XID-wrap-limit info is stale.
1827 */
1828static void
1830 MultiXactId minMulti,
1831 TransactionId lastSaneFrozenXid,
1832 MultiXactId lastSaneMinMulti)
1833{
1835 Relation relation;
1836 TableScanDesc scan;
1837 HeapTuple tuple;
1838 Oid oldestxid_datoid;
1839 Oid minmulti_datoid;
1840 bool bogus = false;
1841 bool frozenAlreadyWrapped = false;
1842
1843 /* Restrict task to one backend per cluster; see SimpleLruTruncate(). */
1844 LWLockAcquire(WrapLimitsVacuumLock, LW_EXCLUSIVE);
1845
1846 /* init oldest datoids to sync with my frozenXID/minMulti values */
1847 oldestxid_datoid = MyDatabaseId;
1848 minmulti_datoid = MyDatabaseId;
1849
1850 /*
1851 * Scan pg_database to compute the minimum datfrozenxid/datminmxid
1852 *
1853 * Since vac_update_datfrozenxid updates datfrozenxid/datminmxid in-place,
1854 * the values could change while we look at them. Fetch each one just
1855 * once to ensure sane behavior of the comparison logic. (Here, as in
1856 * many other places, we assume that fetching or updating an XID in shared
1857 * storage is atomic.)
1858 *
1859 * Note: we need not worry about a race condition with new entries being
1860 * inserted by CREATE DATABASE. Any such entry will have a copy of some
1861 * existing DB's datfrozenxid, and that source DB cannot be ours because
1862 * of the interlock against copying a DB containing an active backend.
1863 * Hence the new entry will not reduce the minimum. Also, if two VACUUMs
1864 * concurrently modify the datfrozenxid's of different databases, the
1865 * worst possible outcome is that pg_xact is not truncated as aggressively
1866 * as it could be.
1867 */
1868 relation = table_open(DatabaseRelationId, AccessShareLock);
1869
1870 scan = table_beginscan_catalog(relation, 0, NULL);
1871
1872 while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
1873 {
1874 volatile FormData_pg_database *dbform = (Form_pg_database) GETSTRUCT(tuple);
1875 TransactionId datfrozenxid = dbform->datfrozenxid;
1876 TransactionId datminmxid = dbform->datminmxid;
1877
1880
1881 /*
1882 * If database is in the process of getting dropped, or has been
1883 * interrupted while doing so, no connections to it are possible
1884 * anymore. Therefore we don't need to take it into account here.
1885 * Which is good, because it can't be processed by autovacuum either.
1886 */
1888 {
1889 elog(DEBUG2,
1890 "skipping invalid database \"%s\" while computing relfrozenxid",
1891 NameStr(dbform->datname));
1892 continue;
1893 }
1894
1895 /*
1896 * If things are working properly, no database should have a
1897 * datfrozenxid or datminmxid that is "in the future". However, such
1898 * cases have been known to arise due to bugs in pg_upgrade. If we
1899 * see any entries that are "in the future", chicken out and don't do
1900 * anything. This ensures we won't truncate clog before those
1901 * databases have been scanned and cleaned up. (We will issue the
1902 * "already wrapped" warning if appropriate, though.)
1903 */
1904 if (TransactionIdPrecedes(lastSaneFrozenXid, datfrozenxid) ||
1905 MultiXactIdPrecedes(lastSaneMinMulti, datminmxid))
1906 bogus = true;
1907
1908 if (TransactionIdPrecedes(nextXID, datfrozenxid))
1909 frozenAlreadyWrapped = true;
1910 else if (TransactionIdPrecedes(datfrozenxid, frozenXID))
1911 {
1912 frozenXID = datfrozenxid;
1913 oldestxid_datoid = dbform->oid;
1914 }
1915
1916 if (MultiXactIdPrecedes(datminmxid, minMulti))
1917 {
1918 minMulti = datminmxid;
1919 minmulti_datoid = dbform->oid;
1920 }
1921 }
1922
1923 table_endscan(scan);
1924
1925 table_close(relation, AccessShareLock);
1926
1927 /*
1928 * Do not truncate CLOG if we seem to have suffered wraparound already;
1929 * the computed minimum XID might be bogus. This case should now be
1930 * impossible due to the defenses in GetNewTransactionId, but we keep the
1931 * test anyway.
1932 */
1933 if (frozenAlreadyWrapped)
1934 {
1936 (errmsg("some databases have not been vacuumed in over 2 billion transactions"),
1937 errdetail("You might have already suffered transaction-wraparound data loss.")));
1938 LWLockRelease(WrapLimitsVacuumLock);
1939 return;
1940 }
1941
1942 /* chicken out if data is bogus in any other way */
1943 if (bogus)
1944 {
1945 LWLockRelease(WrapLimitsVacuumLock);
1946 return;
1947 }
1948
1949 /*
1950 * Advance the oldest value for commit timestamps before truncating, so
1951 * that if a user requests a timestamp for a transaction we're truncating
1952 * away right after this point, they get NULL instead of an ugly "file not
1953 * found" error from slru.c. This doesn't matter for xact/multixact
1954 * because they are not subject to arbitrary lookups from users.
1955 */
1956 AdvanceOldestCommitTsXid(frozenXID);
1957
1958 /*
1959 * Truncate CLOG, multixact and CommitTs to the oldest computed value.
1960 */
1961 TruncateCLOG(frozenXID, oldestxid_datoid);
1962 TruncateCommitTs(frozenXID);
1963 TruncateMultiXact(minMulti, minmulti_datoid);
1964
1965 /*
1966 * Update the wrap limit for GetNewTransactionId and creation of new
1967 * MultiXactIds. Note: these functions will also signal the postmaster
1968 * for an(other) autovac cycle if needed. XXX should we avoid possibly
1969 * signaling twice?
1970 */
1971 SetTransactionIdLimit(frozenXID, oldestxid_datoid);
1972 SetMultiXactIdLimit(minMulti, minmulti_datoid, false);
1973
1974 LWLockRelease(WrapLimitsVacuumLock);
1975}
1976
1977
1978/*
1979 * vacuum_rel() -- vacuum one heap relation
1980 *
1981 * relid identifies the relation to vacuum. If relation is supplied,
1982 * use the name therein for reporting any failure to open/lock the rel;
1983 * do not use it once we've successfully opened the rel, since it might
1984 * be stale.
1985 *
1986 * Returns true if it's okay to proceed with a requested ANALYZE
1987 * operation on this table.
1988 *
1989 * Doing one heap at a time incurs extra overhead, since we need to
1990 * check that the heap exists again just before we vacuum it. The
1991 * reason that we do this is so that vacuuming can be spread across
1992 * many small transactions. Otherwise, two-phase locking would require
1993 * us to lock the entire database during one pass of the vacuum cleaner.
1994 *
1995 * At entry and exit, we are not inside a transaction.
1996 */
1997static bool
1998vacuum_rel(Oid relid, RangeVar *relation, VacuumParams *params,
1999 BufferAccessStrategy bstrategy)
2000{
2001 LOCKMODE lmode;
2002 Relation rel;
2003 LockRelId lockrelid;
2004 Oid priv_relid;
2005 Oid toast_relid;
2006 Oid save_userid;
2007 int save_sec_context;
2008 int save_nestlevel;
2009
2010 Assert(params != NULL);
2011
2012 /* Begin a transaction for vacuuming this relation */
2014
2015 if (!(params->options & VACOPT_FULL))
2016 {
2017 /*
2018 * In lazy vacuum, we can set the PROC_IN_VACUUM flag, which lets
2019 * other concurrent VACUUMs know that they can ignore this one while
2020 * determining their OldestXmin. (The reason we don't set it during a
2021 * full VACUUM is exactly that we may have to run user-defined
2022 * functions for functional indexes, and we want to make sure that if
2023 * they use the snapshot set above, any tuples it requires can't get
2024 * removed from other tables. An index function that depends on the
2025 * contents of other tables is arguably broken, but we won't break it
2026 * here by violating transaction semantics.)
2027 *
2028 * We also set the VACUUM_FOR_WRAPAROUND flag, which is passed down by
2029 * autovacuum; it's used to avoid canceling a vacuum that was invoked
2030 * in an emergency.
2031 *
2032 * Note: these flags remain set until CommitTransaction or
2033 * AbortTransaction. We don't want to clear them until we reset
2034 * MyProc->xid/xmin, otherwise GetOldestNonRemovableTransactionId()
2035 * might appear to go backwards, which is probably Not Good. (We also
2036 * set PROC_IN_VACUUM *before* taking our own snapshot, so that our
2037 * xmin doesn't become visible ahead of setting the flag.)
2038 */
2039 LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
2041 if (params->is_wraparound)
2044 LWLockRelease(ProcArrayLock);
2045 }
2046
2047 /*
2048 * Need to acquire a snapshot to prevent pg_subtrans from being truncated,
2049 * cutoff xids in local memory wrapping around, and to have updated xmin
2050 * horizons.
2051 */
2053
2054 /*
2055 * Check for user-requested abort. Note we want this to be inside a
2056 * transaction, so xact.c doesn't issue useless WARNING.
2057 */
2059
2060 /*
2061 * Determine the type of lock we want --- hard exclusive lock for a FULL
2062 * vacuum, but just ShareUpdateExclusiveLock for concurrent vacuum. Either
2063 * way, we can be sure that no other backend is vacuuming the same table.
2064 */
2065 lmode = (params->options & VACOPT_FULL) ?
2067
2068 /* open the relation and get the appropriate lock on it */
2069 rel = vacuum_open_relation(relid, relation, params->options,
2070 params->log_min_duration >= 0, lmode);
2071
2072 /* leave if relation could not be opened or locked */
2073 if (!rel)
2074 {
2077 return false;
2078 }
2079
2080 /*
2081 * When recursing to a TOAST table, check privileges on the parent. NB:
2082 * This is only safe to do because we hold a session lock on the main
2083 * relation that prevents concurrent deletion.
2084 */
2085 if (OidIsValid(params->toast_parent))
2086 priv_relid = params->toast_parent;
2087 else
2088 priv_relid = RelationGetRelid(rel);
2089
2090 /*
2091 * Check if relation needs to be skipped based on privileges. This check
2092 * happens also when building the relation list to vacuum for a manual
2093 * operation, and needs to be done additionally here as VACUUM could
2094 * happen across multiple transactions where privileges could have changed
2095 * in-between. Make sure to only generate logs for VACUUM in this case.
2096 */
2097 if (!vacuum_is_permitted_for_relation(priv_relid,
2098 rel->rd_rel,
2099 params->options & ~VACOPT_ANALYZE))
2100 {
2101 relation_close(rel, lmode);
2104 return false;
2105 }
2106
2107 /*
2108 * Check that it's of a vacuumable relkind.
2109 */
2110 if (rel->rd_rel->relkind != RELKIND_RELATION &&
2111 rel->rd_rel->relkind != RELKIND_MATVIEW &&
2112 rel->rd_rel->relkind != RELKIND_TOASTVALUE &&
2113 rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
2114 {
2116 (errmsg("skipping \"%s\" --- cannot vacuum non-tables or special system tables",
2118 relation_close(rel, lmode);
2121 return false;
2122 }
2123
2124 /*
2125 * Silently ignore tables that are temp tables of other backends ---
2126 * trying to vacuum these will lead to great unhappiness, since their
2127 * contents are probably not up-to-date on disk. (We don't throw a
2128 * warning here; it would just lead to chatter during a database-wide
2129 * VACUUM.)
2130 */
2131 if (RELATION_IS_OTHER_TEMP(rel))
2132 {
2133 relation_close(rel, lmode);
2136 return false;
2137 }
2138
2139 /*
2140 * Silently ignore partitioned tables as there is no work to be done. The
2141 * useful work is on their child partitions, which have been queued up for
2142 * us separately.
2143 */
2144 if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
2145 {
2146 relation_close(rel, lmode);
2149 /* It's OK to proceed with ANALYZE on this table */
2150 return true;
2151 }
2152
2153 /*
2154 * Get a session-level lock too. This will protect our access to the
2155 * relation across multiple transactions, so that we can vacuum the
2156 * relation's TOAST table (if any) secure in the knowledge that no one is
2157 * deleting the parent relation.
2158 *
2159 * NOTE: this cannot block, even if someone else is waiting for access,
2160 * because the lock manager knows that both lock requests are from the
2161 * same process.
2162 */
2163 lockrelid = rel->rd_lockInfo.lockRelId;
2164 LockRelationIdForSession(&lockrelid, lmode);
2165
2166 /*
2167 * Set index_cleanup option based on index_cleanup reloption if it wasn't
2168 * specified in VACUUM command, or when running in an autovacuum worker
2169 */
2171 {
2172 StdRdOptIndexCleanup vacuum_index_cleanup;
2173
2174 if (rel->rd_options == NULL)
2175 vacuum_index_cleanup = STDRD_OPTION_VACUUM_INDEX_CLEANUP_AUTO;
2176 else
2177 vacuum_index_cleanup =
2178 ((StdRdOptions *) rel->rd_options)->vacuum_index_cleanup;
2179
2180 if (vacuum_index_cleanup == STDRD_OPTION_VACUUM_INDEX_CLEANUP_AUTO)
2182 else if (vacuum_index_cleanup == STDRD_OPTION_VACUUM_INDEX_CLEANUP_ON)
2184 else
2185 {
2186 Assert(vacuum_index_cleanup ==
2189 }
2190 }
2191
2192 /*
2193 * Check if the vacuum_max_eager_freeze_failure_rate table storage
2194 * parameter was specified. This overrides the GUC value.
2195 */
2196 if (rel->rd_options != NULL &&
2197 ((StdRdOptions *) rel->rd_options)->vacuum_max_eager_freeze_failure_rate >= 0)
2199 ((StdRdOptions *) rel->rd_options)->vacuum_max_eager_freeze_failure_rate;
2200
2201 /*
2202 * Set truncate option based on truncate reloption or GUC if it wasn't
2203 * specified in VACUUM command, or when running in an autovacuum worker
2204 */
2205 if (params->truncate == VACOPTVALUE_UNSPECIFIED)
2206 {
2208
2209 if (opts && opts->vacuum_truncate_set)
2210 {
2211 if (opts->vacuum_truncate)
2212 params->truncate = VACOPTVALUE_ENABLED;
2213 else
2215 }
2216 else if (vacuum_truncate)
2217 params->truncate = VACOPTVALUE_ENABLED;
2218 else
2220 }
2221
2222 /*
2223 * Remember the relation's TOAST relation for later, if the caller asked
2224 * us to process it. In VACUUM FULL, though, the toast table is
2225 * automatically rebuilt by cluster_rel so we shouldn't recurse to it,
2226 * unless PROCESS_MAIN is disabled.
2227 */
2228 if ((params->options & VACOPT_PROCESS_TOAST) != 0 &&
2229 ((params->options & VACOPT_FULL) == 0 ||
2230 (params->options & VACOPT_PROCESS_MAIN) == 0))
2231 toast_relid = rel->rd_rel->reltoastrelid;
2232 else
2233 toast_relid = InvalidOid;
2234
2235 /*
2236 * Switch to the table owner's userid, so that any index functions are run
2237 * as that user. Also lock down security-restricted operations and
2238 * arrange to make GUC variable changes local to this command. (This is
2239 * unnecessary, but harmless, for lazy VACUUM.)
2240 */
2241 GetUserIdAndSecContext(&save_userid, &save_sec_context);
2242 SetUserIdAndSecContext(rel->rd_rel->relowner,
2243 save_sec_context | SECURITY_RESTRICTED_OPERATION);
2244 save_nestlevel = NewGUCNestLevel();
2246
2247 /*
2248 * If PROCESS_MAIN is set (the default), it's time to vacuum the main
2249 * relation. Otherwise, we can skip this part. If processing the TOAST
2250 * table is required (e.g., PROCESS_TOAST is set), we force PROCESS_MAIN
2251 * to be set when we recurse to the TOAST table.
2252 */
2253 if (params->options & VACOPT_PROCESS_MAIN)
2254 {
2255 /*
2256 * Do the actual work --- either FULL or "lazy" vacuum
2257 */
2258 if (params->options & VACOPT_FULL)
2259 {
2260 ClusterParams cluster_params = {0};
2261
2262 if ((params->options & VACOPT_VERBOSE) != 0)
2263 cluster_params.options |= CLUOPT_VERBOSE;
2264
2265 /* VACUUM FULL is now a variant of CLUSTER; see cluster.c */
2266 cluster_rel(rel, InvalidOid, &cluster_params);
2267 /* cluster_rel closes the relation, but keeps lock */
2268
2269 rel = NULL;
2270 }
2271 else
2272 table_relation_vacuum(rel, params, bstrategy);
2273 }
2274
2275 /* Roll back any GUC changes executed by index functions */
2276 AtEOXact_GUC(false, save_nestlevel);
2277
2278 /* Restore userid and security context */
2279 SetUserIdAndSecContext(save_userid, save_sec_context);
2280
2281 /* all done with this class, but hold lock until commit */
2282 if (rel)
2283 relation_close(rel, NoLock);
2284
2285 /*
2286 * Complete the transaction and free all temporary memory used.
2287 */
2290
2291 /*
2292 * If the relation has a secondary toast rel, vacuum that too while we
2293 * still hold the session lock on the main table. Note however that
2294 * "analyze" will not get done on the toast table. This is good, because
2295 * the toaster always uses hardcoded index access and statistics are
2296 * totally unimportant for toast relations.
2297 */
2298 if (toast_relid != InvalidOid)
2299 {
2300 VacuumParams toast_vacuum_params;
2301
2302 /*
2303 * Force VACOPT_PROCESS_MAIN so vacuum_rel() processes it. Likewise,
2304 * set toast_parent so that the privilege checks are done on the main
2305 * relation. NB: This is only safe to do because we hold a session
2306 * lock on the main relation that prevents concurrent deletion.
2307 */
2308 memcpy(&toast_vacuum_params, params, sizeof(VacuumParams));
2309 toast_vacuum_params.options |= VACOPT_PROCESS_MAIN;
2310 toast_vacuum_params.toast_parent = relid;
2311
2312 vacuum_rel(toast_relid, NULL, &toast_vacuum_params, bstrategy);
2313 }
2314
2315 /*
2316 * Now release the session-level lock on the main table.
2317 */
2318 UnlockRelationIdForSession(&lockrelid, lmode);
2319
2320 /* Report that we really did it. */
2321 return true;
2322}
2323
2324
2325/*
2326 * Open all the vacuumable indexes of the given relation, obtaining the
2327 * specified kind of lock on each. Return an array of Relation pointers for
2328 * the indexes into *Irel, and the number of indexes into *nindexes.
2329 *
2330 * We consider an index vacuumable if it is marked insertable (indisready).
2331 * If it isn't, probably a CREATE INDEX CONCURRENTLY command failed early in
2332 * execution, and what we have is too corrupt to be processable. We will
2333 * vacuum even if the index isn't indisvalid; this is important because in a
2334 * unique index, uniqueness checks will be performed anyway and had better not
2335 * hit dangling index pointers.
2336 */
2337void
2339 int *nindexes, Relation **Irel)
2340{
2341 List *indexoidlist;
2342 ListCell *indexoidscan;
2343 int i;
2344
2345 Assert(lockmode != NoLock);
2346
2347 indexoidlist = RelationGetIndexList(relation);
2348
2349 /* allocate enough memory for all indexes */
2350 i = list_length(indexoidlist);
2351
2352 if (i > 0)
2353 *Irel = (Relation *) palloc(i * sizeof(Relation));
2354 else
2355 *Irel = NULL;
2356
2357 /* collect just the ready indexes */
2358 i = 0;
2359 foreach(indexoidscan, indexoidlist)
2360 {
2361 Oid indexoid = lfirst_oid(indexoidscan);
2362 Relation indrel;
2363
2364 indrel = index_open(indexoid, lockmode);
2365 if (indrel->rd_index->indisready)
2366 (*Irel)[i++] = indrel;
2367 else
2368 index_close(indrel, lockmode);
2369 }
2370
2371 *nindexes = i;
2372
2373 list_free(indexoidlist);
2374}
2375
2376/*
2377 * Release the resources acquired by vac_open_indexes. Optionally release
2378 * the locks (say NoLock to keep 'em).
2379 */
2380void
2381vac_close_indexes(int nindexes, Relation *Irel, LOCKMODE lockmode)
2382{
2383 if (Irel == NULL)
2384 return;
2385
2386 while (nindexes--)
2387 {
2388 Relation ind = Irel[nindexes];
2389
2390 index_close(ind, lockmode);
2391 }
2392 pfree(Irel);
2393}
2394
2395/*
2396 * vacuum_delay_point --- check for interrupts and cost-based delay.
2397 *
2398 * This should be called in each major loop of VACUUM processing,
2399 * typically once per page processed.
2400 */
2401void
2402vacuum_delay_point(bool is_analyze)
2403{
2404 double msec = 0;
2405
2406 /* Always check for interrupts */
2408
2409 if (InterruptPending ||
2411 return;
2412
2413 /*
2414 * Autovacuum workers should reload the configuration file if requested.
2415 * This allows changes to [autovacuum_]vacuum_cost_limit and
2416 * [autovacuum_]vacuum_cost_delay to take effect while a table is being
2417 * vacuumed or analyzed.
2418 */
2420 {
2421 ConfigReloadPending = false;
2424 }
2425
2426 /*
2427 * If we disabled cost-based delays after reloading the config file,
2428 * return.
2429 */
2430 if (!VacuumCostActive)
2431 return;
2432
2433 /*
2434 * For parallel vacuum, the delay is computed based on the shared cost
2435 * balance. See compute_parallel_delay.
2436 */
2437 if (VacuumSharedCostBalance != NULL)
2438 msec = compute_parallel_delay();
2441
2442 /* Nap if appropriate */
2443 if (msec > 0)
2444 {
2445 instr_time delay_start;
2446
2447 if (msec > vacuum_cost_delay * 4)
2448 msec = vacuum_cost_delay * 4;
2449
2451 INSTR_TIME_SET_CURRENT(delay_start);
2452
2453 pgstat_report_wait_start(WAIT_EVENT_VACUUM_DELAY);
2454 pg_usleep(msec * 1000);
2456
2458 {
2459 instr_time delay_end;
2460 instr_time delay;
2461
2462 INSTR_TIME_SET_CURRENT(delay_end);
2463 INSTR_TIME_SET_ZERO(delay);
2464 INSTR_TIME_ACCUM_DIFF(delay, delay_end, delay_start);
2465
2466 /*
2467 * For parallel workers, we only report the delay time every once
2468 * in a while to avoid overloading the leader with messages and
2469 * interrupts.
2470 */
2471 if (IsParallelWorker())
2472 {
2473 static instr_time last_report_time;
2474 instr_time time_since_last_report;
2475
2476 Assert(!is_analyze);
2477
2478 /* Accumulate the delay time */
2480
2481 /* Calculate interval since last report */
2482 INSTR_TIME_SET_ZERO(time_since_last_report);
2483 INSTR_TIME_ACCUM_DIFF(time_since_last_report, delay_end, last_report_time);
2484
2485 /* If we haven't reported in a while, do so now */
2486 if (INSTR_TIME_GET_NANOSEC(time_since_last_report) >=
2488 {
2491
2492 /* Reset variables */
2493 last_report_time = delay_end;
2495 }
2496 }
2497 else if (is_analyze)
2499 INSTR_TIME_GET_NANOSEC(delay));
2500 else
2502 INSTR_TIME_GET_NANOSEC(delay));
2503 }
2504
2505 /*
2506 * We don't want to ignore postmaster death during very long vacuums
2507 * with vacuum_cost_delay configured. We can't use the usual
2508 * WaitLatch() approach here because we want microsecond-based sleep
2509 * durations above.
2510 */
2512 exit(1);
2513
2515
2516 /*
2517 * Balance and update limit values for autovacuum workers. We must do
2518 * this periodically, as the number of workers across which we are
2519 * balancing the limit may have changed.
2520 *
2521 * TODO: There may be better criteria for determining when to do this
2522 * besides "check after napping".
2523 */
2525
2526 /* Might have gotten an interrupt while sleeping */
2528 }
2529}
2530
2531/*
2532 * Computes the vacuum delay for parallel workers.
2533 *
2534 * The basic idea of a cost-based delay for parallel vacuum is to allow each
2535 * worker to sleep in proportion to the share of work it's done. We achieve this
2536 * by allowing all parallel vacuum workers including the leader process to
2537 * have a shared view of cost related parameters (mainly VacuumCostBalance).
2538 * We allow each worker to update it as and when it has incurred any cost and
2539 * then based on that decide whether it needs to sleep. We compute the time
2540 * to sleep for a worker based on the cost it has incurred
2541 * (VacuumCostBalanceLocal) and then reduce the VacuumSharedCostBalance by
2542 * that amount. This avoids putting to sleep those workers which have done less
2543 * I/O than other workers and therefore ensure that workers
2544 * which are doing more I/O got throttled more.
2545 *
2546 * We allow a worker to sleep only if it has performed I/O above a certain
2547 * threshold, which is calculated based on the number of active workers
2548 * (VacuumActiveNWorkers), and the overall cost balance is more than
2549 * VacuumCostLimit set by the system. Testing reveals that we achieve
2550 * the required throttling if we force a worker that has done more than 50%
2551 * of its share of work to sleep.
2552 */
2553static double
2555{
2556 double msec = 0;
2557 uint32 shared_balance;
2558 int nworkers;
2559
2560 /* Parallel vacuum must be active */
2562
2564
2565 /* At least count itself */
2566 Assert(nworkers >= 1);
2567
2568 /* Update the shared cost balance value atomically */
2570
2571 /* Compute the total local balance for the current worker */
2573
2574 if ((shared_balance >= vacuum_cost_limit) &&
2575 (VacuumCostBalanceLocal > 0.5 * ((double) vacuum_cost_limit / nworkers)))
2576 {
2577 /* Compute sleep time based on the local cost balance */
2581 }
2582
2583 /*
2584 * Reset the local balance as we accumulated it into the shared value.
2585 */
2587
2588 return msec;
2589}
2590
2591/*
2592 * A wrapper function of defGetBoolean().
2593 *
2594 * This function returns VACOPTVALUE_ENABLED and VACOPTVALUE_DISABLED instead
2595 * of true and false.
2596 */
2597static VacOptValue
2599{
2601}
2602
2603/*
2604 * vac_bulkdel_one_index() -- bulk-deletion for index relation.
2605 *
2606 * Returns bulk delete stats derived from input stats
2607 */
2610 TidStore *dead_items, VacDeadItemsInfo *dead_items_info)
2611{
2612 /* Do bulk deletion */
2613 istat = index_bulk_delete(ivinfo, istat, vac_tid_reaped,
2614 dead_items);
2615
2616 ereport(ivinfo->message_level,
2617 (errmsg("scanned index \"%s\" to remove %" PRId64 " row versions",
2619 dead_items_info->num_items)));
2620
2621 return istat;
2622}
2623
2624/*
2625 * vac_cleanup_one_index() -- do post-vacuum cleanup for index relation.
2626 *
2627 * Returns bulk delete stats derived from input stats
2628 */
2631{
2632 istat = index_vacuum_cleanup(ivinfo, istat);
2633
2634 if (istat)
2635 ereport(ivinfo->message_level,
2636 (errmsg("index \"%s\" now contains %.0f row versions in %u pages",
2638 istat->num_index_tuples,
2639 istat->num_pages),
2640 errdetail("%.0f index row versions were removed.\n"
2641 "%u index pages were newly deleted.\n"
2642 "%u index pages are currently deleted, of which %u are currently reusable.",
2643 istat->tuples_removed,
2644 istat->pages_newly_deleted,
2645 istat->pages_deleted, istat->pages_free)));
2646
2647 return istat;
2648}
2649
2650/*
2651 * vac_tid_reaped() -- is a particular tid deletable?
2652 *
2653 * This has the right signature to be an IndexBulkDeleteCallback.
2654 */
2655static bool
2657{
2658 TidStore *dead_items = (TidStore *) state;
2659
2660 return TidStoreIsMember(dead_items, itemptr);
2661}
@ ACLCHECK_OK
Definition: acl.h:183
bool object_ownercheck(Oid classid, Oid objectid, Oid roleid)
Definition: aclchk.c:4075
AclResult pg_class_aclcheck(Oid table_oid, Oid roleid, AclMode mode)
Definition: aclchk.c:4024
static uint32 pg_atomic_sub_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
Definition: atomics.h:439
static uint32 pg_atomic_add_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 add_)
Definition: atomics.h:424
static uint32 pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
Definition: atomics.h:239
void VacuumUpdateCosts(void)
Definition: autovacuum.c:1658
int autovacuum_multixact_freeze_max_age
Definition: autovacuum.c:131
int autovacuum_freeze_max_age
Definition: autovacuum.c:130
void AutoVacuumUpdateCostLimit(void)
Definition: autovacuum.c:1727
void pgstat_progress_parallel_incr_param(int index, int64 incr)
void pgstat_progress_incr_param(int index, int64 incr)
#define MAX_PARALLEL_WORKER_LIMIT
uint32 BlockNumber
Definition: block.h:31
@ BAS_VACUUM
Definition: bufmgr.h:40
#define NameStr(name)
Definition: c.h:717
#define Min(x, y)
Definition: c.h:975
#define Max(x, y)
Definition: c.h:969
int64_t int64
Definition: c.h:499
TransactionId MultiXactId
Definition: c.h:633
uint32 bits32
Definition: c.h:511
int32_t int32
Definition: c.h:498
uint32_t uint32
Definition: c.h:502
float float4
Definition: c.h:600
uint32 TransactionId
Definition: c.h:623
#define OidIsValid(objectId)
Definition: c.h:746
void TruncateCLOG(TransactionId oldestXact, Oid oldestxid_datoid)
Definition: clog.c:1000
void cluster_rel(Relation OldHeap, Oid indexOid, ClusterParams *params)
Definition: cluster.c:311
#define CLUOPT_VERBOSE
Definition: cluster.h:23
void analyze_rel(Oid relid, RangeVar *relation, VacuumParams *params, List *va_cols, bool in_outer_xact, BufferAccessStrategy bstrategy)
Definition: analyze.c:109
void AdvanceOldestCommitTsXid(TransactionId oldestXact)
Definition: commit_ts.c:936
void TruncateCommitTs(TransactionId oldestXact)
Definition: commit_ts.c:883
bool database_is_invalid_form(Form_pg_database datform)
Definition: dbcommands.c:3212
int32 defGetInt32(DefElem *def)
Definition: define.c:149
char * defGetString(DefElem *def)
Definition: define.c:35
bool defGetBoolean(DefElem *def)
Definition: define.c:94
struct cursor * cur
Definition: ecpg.c:29
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1158
int errdetail(const char *fmt,...)
Definition: elog.c:1204
int errhint(const char *fmt,...)
Definition: elog.c:1318
int errcode(int sqlerrcode)
Definition: elog.c:854
int errmsg(const char *fmt,...)
Definition: elog.c:1071
#define _(x)
Definition: elog.c:91
#define LOG
Definition: elog.h:31
#define PG_TRY(...)
Definition: elog.h:372
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define PG_END_TRY(...)
Definition: elog.h:397
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define PG_FINALLY(...)
Definition: elog.h:389
#define ereport(elevel,...)
Definition: elog.h:149
BufferAccessStrategy GetAccessStrategyWithSize(BufferAccessStrategyType btype, int ring_size_kb)
Definition: freelist.c:626
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:603
void systable_inplace_update_cancel(void *state)
Definition: genam.c:902
void systable_inplace_update_begin(Relation relation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, const ScanKeyData *key, HeapTuple *oldtupcopy, void **state)
Definition: genam.c:807
void systable_inplace_update_finish(void *state, HeapTuple tuple)
Definition: genam.c:883
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:514
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:388
volatile sig_atomic_t InterruptPending
Definition: globals.c:32
bool VacuumCostActive
Definition: globals.c:159
bool IsUnderPostmaster
Definition: globals.c:121
int VacuumCostBalance
Definition: globals.c:158
int VacuumBufferUsageLimit
Definition: globals.c:150
Oid MyDatabaseId
Definition: globals.c:95
void ProcessConfigFile(GucContext context)
Definition: guc-file.l:120
bool parse_int(const char *value, int *result, int flags, const char **hintmsg)
Definition: guc.c:2871
int NewGUCNestLevel(void)
Definition: guc.c:2235
#define newval
void RestrictSearchPath(void)
Definition: guc.c:2246
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:2262
#define GUC_check_errdetail
Definition: guc.h:481
GucSource
Definition: guc.h:112
@ PGC_SIGHUP
Definition: guc.h:75
#define GUC_UNIT_KB
Definition: guc.h:232
Assert(PointerIsAligned(start, uint64))
HeapTuple heap_getnext(TableScanDesc sscan, ScanDirection direction)
Definition: heapam.c:1314
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1435
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
#define IsParallelWorker()
Definition: parallel.h:60
int verbose
IndexBulkDeleteResult * index_vacuum_cleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *istat)
Definition: indexam.c:816
IndexBulkDeleteResult * index_bulk_delete(IndexVacuumInfo *info, IndexBulkDeleteResult *istat, IndexBulkDeleteCallback callback, void *callback_state)
Definition: indexam.c:795
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
#define INSTR_TIME_SET_CURRENT(t)
Definition: instr_time.h:122
#define INSTR_TIME_GET_NANOSEC(t)
Definition: instr_time.h:125
#define INSTR_TIME_SET_ZERO(t)
Definition: instr_time.h:172
#define INSTR_TIME_ACCUM_DIFF(x, y, z)
Definition: instr_time.h:184
volatile sig_atomic_t ConfigReloadPending
Definition: interrupt.c:27
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
void list_free(List *list)
Definition: list.c:1546
bool ConditionalLockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:151
void UnlockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:229
void LockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:391
void UnlockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:404
void LockDatabaseFrozenIds(LOCKMODE lockmode)
Definition: lmgr.c:491
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define AccessShareLock
Definition: lockdefs.h:36
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define ExclusiveLock
Definition: lockdefs.h:42
#define RowExclusiveLock
Definition: lockdefs.h:38
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1182
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1902
@ LW_EXCLUSIVE
Definition: lwlock.h:114
VacuumRelation * makeVacuumRelation(RangeVar *relation, Oid oid, List *va_cols)
Definition: makefuncs.c:907
void pfree(void *pointer)
Definition: mcxt.c:2147
void * palloc(Size size)
Definition: mcxt.c:1940
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:485
MemoryContext PortalContext
Definition: mcxt.c:174
#define AllocSetContextCreate
Definition: memutils.h:149
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:180
#define AmAutoVacuumWorkerProcess()
Definition: miscadmin.h:383
#define MIN_BAS_VAC_RING_SIZE_KB
Definition: miscadmin.h:278
#define MAX_BAS_VAC_RING_SIZE_KB
Definition: miscadmin.h:279
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:319
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:663
Oid GetUserId(void)
Definition: miscinit.c:520
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:670
bool MultiXactIdPrecedes(MultiXactId multi1, MultiXactId multi2)
Definition: multixact.c:3317
bool MultiXactIdPrecedesOrEquals(MultiXactId multi1, MultiXactId multi2)
Definition: multixact.c:3331
void SetMultiXactIdLimit(MultiXactId oldest_datminmxid, Oid oldest_datoid, bool is_startup)
Definition: multixact.c:2362
MultiXactId GetOldestMultiXactId(void)
Definition: multixact.c:2660
int MultiXactMemberFreezeThreshold(void)
Definition: multixact.c:2978
MultiXactId ReadNextMultiXactId(void)
Definition: multixact.c:771
void TruncateMultiXact(MultiXactId newOldestMulti, Oid newOldestMultiDB)
Definition: multixact.c:3102
#define MultiXactIdIsValid(multi)
Definition: multixact.h:28
#define FirstMultiXactId
Definition: multixact.h:25
Oid RangeVarGetRelidExtended(const RangeVar *relation, LOCKMODE lockmode, uint32 flags, RangeVarGetRelidCallback callback, void *callback_arg)
Definition: namespace.c:441
@ RVR_SKIP_LOCKED
Definition: namespace.h:74
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:106
#define ACL_MAINTAIN
Definition: parsenodes.h:90
static AmcheckOptions opts
Definition: pg_amcheck.c:112
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:41
NameData relname
Definition: pg_class.h:38
FormData_pg_class * Form_pg_class
Definition: pg_class.h:156
FormData_pg_class
Definition: pg_class.h:145
TransactionId datfrozenxid
Definition: pg_database.h:62
TransactionId datminmxid
Definition: pg_database.h:65
FormData_pg_database * Form_pg_database
Definition: pg_database.h:96
FormData_pg_database
Definition: pg_database.h:89
List * find_all_inheritors(Oid parentrelId, LOCKMODE lockmode, List **numparents)
Definition: pg_inherits.c:255
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define lfirst_oid(lc)
Definition: pg_list.h:174
static rewind_source * source
Definition: pg_rewind.c:89
#define ERRCODE_UNDEFINED_TABLE
Definition: pgbench.c:79
#define PostmasterIsAlive()
Definition: pmsignal.h:107
int pg_strcasecmp(const char *s1, const char *s2)
Definition: pgstrcasecmp.c:36
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:257
#define InvalidOid
Definition: postgres_ext.h:35
unsigned int Oid
Definition: postgres_ext.h:30
#define PROC_IN_VACUUM
Definition: proc.h:58
#define PROC_VACUUM_FOR_WRAPAROUND
Definition: proc.h:60
TransactionId GetOldestNonRemovableTransactionId(Relation rel)
Definition: procarray.c:2005
#define PROGRESS_VACUUM_DELAY_TIME
Definition: progress.h:31
#define PROGRESS_ANALYZE_DELAY_TIME
Definition: progress.h:50
static long analyze(struct nfa *nfa)
Definition: regc_nfa.c:3051
#define RelationGetRelid(relation)
Definition: rel.h:516
#define RelationGetRelationName(relation)
Definition: rel.h:550
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:669
StdRdOptIndexCleanup
Definition: rel.h:334
@ STDRD_OPTION_VACUUM_INDEX_CLEANUP_AUTO
Definition: rel.h:335
@ STDRD_OPTION_VACUUM_INDEX_CLEANUP_OFF
Definition: rel.h:336
@ STDRD_OPTION_VACUUM_INDEX_CLEANUP_ON
Definition: rel.h:337
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4819
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
@ ForwardScanDirection
Definition: sdir.h:28
void pg_usleep(long microsec)
Definition: signal.c:53
Snapshot GetTransactionSnapshot(void)
Definition: snapmgr.c:271
void PushActiveSnapshot(Snapshot snapshot)
Definition: snapmgr.c:669
bool ActiveSnapshotSet(void)
Definition: snapmgr.c:799
void PopActiveSnapshot(void)
Definition: snapmgr.c:762
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:205
Relation try_relation_open(Oid relationId, LOCKMODE lockmode)
Definition: relation.c:88
PGPROC * MyProc
Definition: proc.c:67
PROC_HDR * ProcGlobal
Definition: proc.c:79
#define BTEqualStrategyNumber
Definition: stratnum.h:31
bits32 options
Definition: cluster.h:30
char * defname
Definition: parsenodes.h:826
ParseLoc location
Definition: parsenodes.h:830
Node * arg
Definition: parsenodes.h:827
BlockNumber pages_deleted
Definition: genam.h:105
BlockNumber pages_newly_deleted
Definition: genam.h:104
BlockNumber pages_free
Definition: genam.h:106
BlockNumber num_pages
Definition: genam.h:100
double tuples_removed
Definition: genam.h:103
double num_index_tuples
Definition: genam.h:102
Relation index
Definition: genam.h:69
int message_level
Definition: genam.h:74
Definition: pg_list.h:54
LockRelId lockRelId
Definition: rel.h:46
Definition: rel.h:39
uint8 statusFlags
Definition: proc.h:243
int pgxactoff
Definition: proc.h:185
uint8 * statusFlags
Definition: proc.h:387
char * relname
Definition: primnodes.h:83
bool inh
Definition: primnodes.h:86
LockInfoData rd_lockInfo
Definition: rel.h:114
TriggerDesc * trigdesc
Definition: rel.h:117
Form_pg_index rd_index
Definition: rel.h:192
RuleLock * rd_rules
Definition: rel.h:115
bytea * rd_options
Definition: rel.h:175
Form_pg_class rd_rel
Definition: rel.h:111
int64 num_items
Definition: vacuum.h:295
TransactionId FreezeLimit
Definition: vacuum.h:284
TransactionId OldestXmin
Definition: vacuum.h:274
TransactionId relfrozenxid
Definition: vacuum.h:258
MultiXactId relminmxid
Definition: vacuum.h:259
MultiXactId MultiXactCutoff
Definition: vacuum.h:285
MultiXactId OldestMxact
Definition: vacuum.h:275
int nworkers
Definition: vacuum.h:246
int freeze_table_age
Definition: vacuum.h:221
VacOptValue truncate
Definition: vacuum.h:231
bits32 options
Definition: vacuum.h:219
int freeze_min_age
Definition: vacuum.h:220
bool is_wraparound
Definition: vacuum.h:226
int multixact_freeze_min_age
Definition: vacuum.h:222
int multixact_freeze_table_age
Definition: vacuum.h:224
int log_min_duration
Definition: vacuum.h:227
Oid toast_parent
Definition: vacuum.h:232
VacOptValue index_cleanup
Definition: vacuum.h:230
double max_eager_freeze_failure_rate
Definition: vacuum.h:239
RangeVar * relation
Definition: parsenodes.h:3951
List * options
Definition: parsenodes.h:3936
bool is_vacuumcmd
Definition: parsenodes.h:3938
List * rels
Definition: parsenodes.h:3937
Definition: regguts.h:323
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:269
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:221
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
TableScanDesc table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
Definition: tableam.c:113
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:979
static void table_relation_vacuum(Relation rel, struct VacuumParams *params, BufferAccessStrategy bstrategy)
Definition: tableam.h:1667
bool TidStoreIsMember(TidStore *ts, ItemPointer tid)
Definition: tidstore.c:421
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
bool TransactionIdPrecedesOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.c:299
static TransactionId ReadNextTransactionId(void)
Definition: transam.h:315
#define FirstNormalTransactionId
Definition: transam.h:34
#define TransactionIdIsValid(xid)
Definition: transam.h:41
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
static bool vac_tid_reaped(ItemPointer itemptr, void *state)
Definition: vacuum.c:2656
void ExecVacuum(ParseState *pstate, VacuumStmt *vacstmt, bool isTopLevel)
Definition: vacuum.c:160
pg_atomic_uint32 * VacuumActiveNWorkers
Definition: vacuum.c:115
static void vac_truncate_clog(TransactionId frozenXID, MultiXactId minMulti, TransactionId lastSaneFrozenXid, MultiXactId lastSaneMinMulti)
Definition: vacuum.c:1829
int vacuum_freeze_min_age
Definition: vacuum.c:73
double vacuum_max_eager_freeze_failure_rate
Definition: vacuum.c:79
bool track_cost_delay_timing
Definition: vacuum.c:80
static List * expand_vacuum_rel(VacuumRelation *vrel, MemoryContext vac_context, int options)
Definition: vacuum.c:885
double vacuum_cost_delay
Definition: vacuum.c:89
static double compute_parallel_delay(void)
Definition: vacuum.c:2554
static VacOptValue get_vacoptval_from_boolean(DefElem *def)
Definition: vacuum.c:2598
void vac_open_indexes(Relation relation, LOCKMODE lockmode, int *nindexes, Relation **Irel)
Definition: vacuum.c:2338
void vacuum(List *relations, VacuumParams *params, BufferAccessStrategy bstrategy, MemoryContext vac_context, bool isTopLevel)
Definition: vacuum.c:496
#define PARALLEL_VACUUM_DELAY_REPORT_INTERVAL_NS
Definition: vacuum.c:68
bool check_vacuum_buffer_usage_limit(int *newval, void **extra, GucSource source)
Definition: vacuum.c:137
int VacuumCostBalanceLocal
Definition: vacuum.c:116
static List * get_all_vacuum_rels(MemoryContext vac_context, int options)
Definition: vacuum.c:1040
int vacuum_multixact_freeze_table_age
Definition: vacuum.c:76
int vacuum_freeze_table_age
Definition: vacuum.c:74
IndexBulkDeleteResult * vac_cleanup_one_index(IndexVacuumInfo *ivinfo, IndexBulkDeleteResult *istat)
Definition: vacuum.c:2630
int vacuum_multixact_failsafe_age
Definition: vacuum.c:78
int vacuum_multixact_freeze_min_age
Definition: vacuum.c:75
Relation vacuum_open_relation(Oid relid, RangeVar *relation, bits32 options, bool verbose, LOCKMODE lmode)
Definition: vacuum.c:773
static bool vacuum_rel(Oid relid, RangeVar *relation, VacuumParams *params, BufferAccessStrategy bstrategy)
Definition: vacuum.c:1998
int64 parallel_vacuum_worker_delay_ns
Definition: vacuum.c:93
void vac_close_indexes(int nindexes, Relation *Irel, LOCKMODE lockmode)
Definition: vacuum.c:2381
void vac_update_datfrozenxid(void)
Definition: vacuum.c:1610
void vacuum_delay_point(bool is_analyze)
Definition: vacuum.c:2402
bool vacuum_get_cutoffs(Relation rel, const VacuumParams *params, struct VacuumCutoffs *cutoffs)
Definition: vacuum.c:1102
bool vacuum_xid_failsafe_check(const struct VacuumCutoffs *cutoffs)
Definition: vacuum.c:1270
pg_atomic_uint32 * VacuumSharedCostBalance
Definition: vacuum.c:114
bool VacuumFailsafeActive
Definition: vacuum.c:108
int vacuum_cost_limit
Definition: vacuum.c:90
int vacuum_failsafe_age
Definition: vacuum.c:77
double vac_estimate_reltuples(Relation relation, BlockNumber total_pages, BlockNumber scanned_pages, double scanned_tuples)
Definition: vacuum.c:1332
bool vacuum_truncate
Definition: vacuum.c:81
bool vacuum_is_permitted_for_relation(Oid relid, Form_pg_class reltuple, bits32 options)
Definition: vacuum.c:721
void vac_update_relstats(Relation relation, BlockNumber num_pages, double num_tuples, BlockNumber num_all_visible_pages, BlockNumber num_all_frozen_pages, bool hasindex, TransactionId frozenxid, MultiXactId minmulti, bool *frozenxid_updated, bool *minmulti_updated, bool in_outer_xact)
Definition: vacuum.c:1428
IndexBulkDeleteResult * vac_bulkdel_one_index(IndexVacuumInfo *ivinfo, IndexBulkDeleteResult *istat, TidStore *dead_items, VacDeadItemsInfo *dead_items_info)
Definition: vacuum.c:2609
#define VACOPT_FREEZE
Definition: vacuum.h:183
#define VACOPT_SKIP_LOCKED
Definition: vacuum.h:185
#define VACOPT_VACUUM
Definition: vacuum.h:180
#define VACOPT_VERBOSE
Definition: vacuum.h:182
#define VACOPT_FULL
Definition: vacuum.h:184
#define VACOPT_SKIP_DATABASE_STATS
Definition: vacuum.h:189
VacOptValue
Definition: vacuum.h:201
@ VACOPTVALUE_AUTO
Definition: vacuum.h:203
@ VACOPTVALUE_ENABLED
Definition: vacuum.h:205
@ VACOPTVALUE_UNSPECIFIED
Definition: vacuum.h:202
@ VACOPTVALUE_DISABLED
Definition: vacuum.h:204
#define VACOPT_PROCESS_TOAST
Definition: vacuum.h:187
#define VACOPT_DISABLE_PAGE_SKIPPING
Definition: vacuum.h:188
#define VACOPT_ONLY_DATABASE_STATS
Definition: vacuum.h:190
#define VACOPT_PROCESS_MAIN
Definition: vacuum.h:186
#define VACOPT_ANALYZE
Definition: vacuum.h:181
void SetTransactionIdLimit(TransactionId oldest_datfrozenxid, Oid oldest_datoid)
Definition: varsup.c:372
bool ForceTransactionIdLimitUpdate(void)
Definition: varsup.c:517
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:85
static void pgstat_report_wait_end(void)
Definition: wait_event.h:101
bool IsInTransactionBlock(bool isTopLevel)
Definition: xact.c:3769
void CommandCounterIncrement(void)
Definition: xact.c:1100
void PreventInTransactionBlock(bool isTopLevel, const char *stmtType)
Definition: xact.c:3648
void StartTransactionCommand(void)
Definition: xact.c:3059
void CommitTransactionCommand(void)
Definition: xact.c:3157