PostgreSQL Source Code git master
vacuum.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * vacuum.c
4 * The postgres vacuum cleaner.
5 *
6 * This file includes (a) control and dispatch code for VACUUM and ANALYZE
7 * commands, (b) code to compute various vacuum thresholds, and (c) index
8 * vacuum code.
9 *
10 * VACUUM for heap AM is implemented in vacuumlazy.c, parallel vacuum in
11 * vacuumparallel.c, ANALYZE in analyze.c, and VACUUM FULL is a variant of
12 * CLUSTER, handled in cluster.c.
13 *
14 *
15 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
16 * Portions Copyright (c) 1994, Regents of the University of California
17 *
18 *
19 * IDENTIFICATION
20 * src/backend/commands/vacuum.c
21 *
22 *-------------------------------------------------------------------------
23 */
24#include "postgres.h"
25
26#include <math.h>
27
28#include "access/clog.h"
29#include "access/commit_ts.h"
30#include "access/genam.h"
31#include "access/heapam.h"
32#include "access/htup_details.h"
33#include "access/multixact.h"
34#include "access/tableam.h"
35#include "access/transam.h"
36#include "access/xact.h"
37#include "catalog/namespace.h"
38#include "catalog/pg_database.h"
39#include "catalog/pg_inherits.h"
40#include "commands/async.h"
41#include "commands/cluster.h"
42#include "commands/defrem.h"
43#include "commands/progress.h"
44#include "commands/vacuum.h"
45#include "miscadmin.h"
46#include "nodes/makefuncs.h"
47#include "pgstat.h"
51#include "storage/bufmgr.h"
52#include "storage/lmgr.h"
53#include "storage/pmsignal.h"
54#include "storage/proc.h"
55#include "storage/procarray.h"
56#include "utils/acl.h"
57#include "utils/fmgroids.h"
58#include "utils/guc.h"
59#include "utils/guc_hooks.h"
61#include "utils/memutils.h"
62#include "utils/snapmgr.h"
63#include "utils/syscache.h"
64
65/*
66 * Minimum interval for cost-based vacuum delay reports from a parallel worker.
67 * This aims to avoid sending too many messages and waking up the leader too
68 * frequently.
69 */
70#define PARALLEL_VACUUM_DELAY_REPORT_INTERVAL_NS (NS_PER_S)
71
72/*
73 * GUC parameters
74 */
84
85/*
86 * Variables for cost-based vacuum delay. The defaults differ between
87 * autovacuum and vacuum. They should be set with the appropriate GUC value in
88 * vacuum code. They are initialized here to the defaults for client backends
89 * executing VACUUM or ANALYZE.
90 */
93
94/* Variable for reporting cost-based vacuum delay from parallel workers. */
96
97/*
98 * VacuumFailsafeActive is a defined as a global so that we can determine
99 * whether or not to re-enable cost-based vacuum delay when vacuuming a table.
100 * If failsafe mode has been engaged, we will not re-enable cost-based delay
101 * for the table until after vacuuming has completed, regardless of other
102 * settings.
103 *
104 * Only VACUUM code should inspect this variable and only table access methods
105 * should set it to true. In Table AM-agnostic VACUUM code, this variable is
106 * inspected to determine whether or not to allow cost-based delays. Table AMs
107 * are free to set it if they desire this behavior, but it is false by default
108 * and reset to false in between vacuuming each relation.
109 */
111
112/*
113 * Variables for cost-based parallel vacuum. See comments atop
114 * compute_parallel_delay to understand how it works.
115 */
119
120/* non-export function prototypes */
122 MemoryContext vac_context, int options);
123static List *get_all_vacuum_rels(MemoryContext vac_context, int options);
124static void vac_truncate_clog(TransactionId frozenXID,
125 MultiXactId minMulti,
126 TransactionId lastSaneFrozenXid,
127 MultiXactId lastSaneMinMulti);
128static bool vacuum_rel(Oid relid, RangeVar *relation, VacuumParams params,
129 BufferAccessStrategy bstrategy);
130static double compute_parallel_delay(void);
132static bool vac_tid_reaped(ItemPointer itemptr, void *state);
133
134/*
135 * GUC check function to ensure GUC value specified is within the allowable
136 * range.
137 */
138bool
141{
142 /* Value upper and lower hard limits are inclusive */
143 if (*newval == 0 || (*newval >= MIN_BAS_VAC_RING_SIZE_KB &&
145 return true;
146
147 /* Value does not fall within any allowable range */
148 GUC_check_errdetail("\"%s\" must be 0 or between %d kB and %d kB.",
149 "vacuum_buffer_usage_limit",
151
152 return false;
153}
154
155/*
156 * Primary entry point for manual VACUUM and ANALYZE commands
157 *
158 * This is mainly a preparation wrapper for the real operations that will
159 * happen in vacuum().
160 */
161void
162ExecVacuum(ParseState *pstate, VacuumStmt *vacstmt, bool isTopLevel)
163{
164 VacuumParams params;
165 BufferAccessStrategy bstrategy = NULL;
166 bool verbose = false;
167 bool skip_locked = false;
168 bool analyze = false;
169 bool freeze = false;
170 bool full = false;
171 bool disable_page_skipping = false;
172 bool process_main = true;
173 bool process_toast = true;
174 int ring_size;
175 bool skip_database_stats = false;
176 bool only_database_stats = false;
177 MemoryContext vac_context;
178 ListCell *lc;
179
180 /* index_cleanup and truncate values unspecified for now */
183
184 /* By default parallel vacuum is enabled */
185 params.nworkers = 0;
186
187 /* Will be set later if we recurse to a TOAST table. */
188 params.toast_parent = InvalidOid;
189
190 /*
191 * Set this to an invalid value so it is clear whether or not a
192 * BUFFER_USAGE_LIMIT was specified when making the access strategy.
193 */
194 ring_size = -1;
195
196 /* Parse options list */
197 foreach(lc, vacstmt->options)
198 {
199 DefElem *opt = (DefElem *) lfirst(lc);
200
201 /* Parse common options for VACUUM and ANALYZE */
202 if (strcmp(opt->defname, "verbose") == 0)
203 verbose = defGetBoolean(opt);
204 else if (strcmp(opt->defname, "skip_locked") == 0)
205 skip_locked = defGetBoolean(opt);
206 else if (strcmp(opt->defname, "buffer_usage_limit") == 0)
207 {
208 const char *hintmsg;
209 int result;
210 char *vac_buffer_size;
211
212 vac_buffer_size = defGetString(opt);
213
214 /*
215 * Check that the specified value is valid and the size falls
216 * within the hard upper and lower limits if it is not 0.
217 */
218 if (!parse_int(vac_buffer_size, &result, GUC_UNIT_KB, &hintmsg) ||
219 (result != 0 &&
220 (result < MIN_BAS_VAC_RING_SIZE_KB || result > MAX_BAS_VAC_RING_SIZE_KB)))
221 {
223 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
224 errmsg("%s option must be 0 or between %d kB and %d kB",
225 "BUFFER_USAGE_LIMIT",
227 hintmsg ? errhint_internal("%s", _(hintmsg)) : 0));
228 }
229
230 ring_size = result;
231 }
232 else if (!vacstmt->is_vacuumcmd)
234 (errcode(ERRCODE_SYNTAX_ERROR),
235 errmsg("unrecognized %s option \"%s\"",
236 "ANALYZE", opt->defname),
237 parser_errposition(pstate, opt->location)));
238
239 /* Parse options available on VACUUM */
240 else if (strcmp(opt->defname, "analyze") == 0)
241 analyze = defGetBoolean(opt);
242 else if (strcmp(opt->defname, "freeze") == 0)
243 freeze = defGetBoolean(opt);
244 else if (strcmp(opt->defname, "full") == 0)
245 full = defGetBoolean(opt);
246 else if (strcmp(opt->defname, "disable_page_skipping") == 0)
247 disable_page_skipping = defGetBoolean(opt);
248 else if (strcmp(opt->defname, "index_cleanup") == 0)
249 {
250 /* Interpret no string as the default, which is 'auto' */
251 if (!opt->arg)
253 else
254 {
255 char *sval = defGetString(opt);
256
257 /* Try matching on 'auto' string, or fall back on boolean */
258 if (pg_strcasecmp(sval, "auto") == 0)
260 else
262 }
263 }
264 else if (strcmp(opt->defname, "process_main") == 0)
265 process_main = defGetBoolean(opt);
266 else if (strcmp(opt->defname, "process_toast") == 0)
267 process_toast = defGetBoolean(opt);
268 else if (strcmp(opt->defname, "truncate") == 0)
270 else if (strcmp(opt->defname, "parallel") == 0)
271 {
272 int nworkers = defGetInt32(opt);
273
274 if (nworkers < 0 || nworkers > MAX_PARALLEL_WORKER_LIMIT)
276 (errcode(ERRCODE_SYNTAX_ERROR),
277 errmsg("%s option must be between 0 and %d",
278 "PARALLEL",
280 parser_errposition(pstate, opt->location)));
281
282 /*
283 * Disable parallel vacuum, if user has specified parallel degree
284 * as zero.
285 */
286 if (nworkers == 0)
287 params.nworkers = -1;
288 else
289 params.nworkers = nworkers;
290 }
291 else if (strcmp(opt->defname, "skip_database_stats") == 0)
292 skip_database_stats = defGetBoolean(opt);
293 else if (strcmp(opt->defname, "only_database_stats") == 0)
294 only_database_stats = defGetBoolean(opt);
295 else
297 (errcode(ERRCODE_SYNTAX_ERROR),
298 errmsg("unrecognized %s option \"%s\"",
299 "VACUUM", opt->defname),
300 parser_errposition(pstate, opt->location)));
301 }
302
303 /* Set vacuum options */
304 params.options =
306 (verbose ? VACOPT_VERBOSE : 0) |
307 (skip_locked ? VACOPT_SKIP_LOCKED : 0) |
308 (analyze ? VACOPT_ANALYZE : 0) |
309 (freeze ? VACOPT_FREEZE : 0) |
310 (full ? VACOPT_FULL : 0) |
311 (disable_page_skipping ? VACOPT_DISABLE_PAGE_SKIPPING : 0) |
312 (process_main ? VACOPT_PROCESS_MAIN : 0) |
313 (process_toast ? VACOPT_PROCESS_TOAST : 0) |
314 (skip_database_stats ? VACOPT_SKIP_DATABASE_STATS : 0) |
315 (only_database_stats ? VACOPT_ONLY_DATABASE_STATS : 0);
316
317 /* sanity checks on options */
319 Assert((params.options & VACOPT_VACUUM) ||
320 !(params.options & (VACOPT_FULL | VACOPT_FREEZE)));
321
322 if ((params.options & VACOPT_FULL) && params.nworkers > 0)
324 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
325 errmsg("VACUUM FULL cannot be performed in parallel")));
326
327 /*
328 * BUFFER_USAGE_LIMIT does nothing for VACUUM (FULL) so just raise an
329 * ERROR for that case. VACUUM (FULL, ANALYZE) does make use of it, so
330 * we'll permit that.
331 */
332 if (ring_size != -1 && (params.options & VACOPT_FULL) &&
333 !(params.options & VACOPT_ANALYZE))
335 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
336 errmsg("BUFFER_USAGE_LIMIT cannot be specified for VACUUM FULL")));
337
338 /*
339 * Make sure VACOPT_ANALYZE is specified if any column lists are present.
340 */
341 if (!(params.options & VACOPT_ANALYZE))
342 {
343 foreach(lc, vacstmt->rels)
344 {
346
347 if (vrel->va_cols != NIL)
349 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
350 errmsg("ANALYZE option must be specified when a column list is provided")));
351 }
352 }
353
354
355 /*
356 * Sanity check DISABLE_PAGE_SKIPPING option.
357 */
358 if ((params.options & VACOPT_FULL) != 0 &&
361 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
362 errmsg("VACUUM option DISABLE_PAGE_SKIPPING cannot be used with FULL")));
363
364 /* sanity check for PROCESS_TOAST */
365 if ((params.options & VACOPT_FULL) != 0 &&
366 (params.options & VACOPT_PROCESS_TOAST) == 0)
368 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
369 errmsg("PROCESS_TOAST required with VACUUM FULL")));
370
371 /* sanity check for ONLY_DATABASE_STATS */
373 {
374 Assert(params.options & VACOPT_VACUUM);
375 if (vacstmt->rels != NIL)
377 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
378 errmsg("ONLY_DATABASE_STATS cannot be specified with a list of tables")));
379 /* don't require people to turn off PROCESS_TOAST/MAIN explicitly */
380 if (params.options & ~(VACOPT_VACUUM |
386 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
387 errmsg("ONLY_DATABASE_STATS cannot be specified with other VACUUM options")));
388 }
389
390 /*
391 * All freeze ages are zero if the FREEZE option is given; otherwise pass
392 * them as -1 which means to use the default values.
393 */
394 if (params.options & VACOPT_FREEZE)
395 {
396 params.freeze_min_age = 0;
397 params.freeze_table_age = 0;
398 params.multixact_freeze_min_age = 0;
400 }
401 else
402 {
403 params.freeze_min_age = -1;
404 params.freeze_table_age = -1;
405 params.multixact_freeze_min_age = -1;
406 params.multixact_freeze_table_age = -1;
407 }
408
409 /* user-invoked vacuum is never "for wraparound" */
410 params.is_wraparound = false;
411
412 /*
413 * user-invoked vacuum uses VACOPT_VERBOSE instead of
414 * log_vacuum_min_duration and log_analyze_min_duration
415 */
416 params.log_vacuum_min_duration = -1;
417 params.log_analyze_min_duration = -1;
418
419 /*
420 * Later, in vacuum_rel(), we check if a reloption override was specified.
421 */
423
424 /*
425 * Create special memory context for cross-transaction storage.
426 *
427 * Since it is a child of PortalContext, it will go away eventually even
428 * if we suffer an error; there's no need for special abort cleanup logic.
429 */
431 "Vacuum",
433
434 /*
435 * Make a buffer strategy object in the cross-transaction memory context.
436 * We needn't bother making this for VACUUM (FULL) or VACUUM
437 * (ONLY_DATABASE_STATS) as they'll not make use of it. VACUUM (FULL,
438 * ANALYZE) is possible, so we'd better ensure that we make a strategy
439 * when we see ANALYZE.
440 */
441 if ((params.options & (VACOPT_ONLY_DATABASE_STATS |
442 VACOPT_FULL)) == 0 ||
443 (params.options & VACOPT_ANALYZE) != 0)
444 {
445
446 MemoryContext old_context = MemoryContextSwitchTo(vac_context);
447
448 Assert(ring_size >= -1);
449
450 /*
451 * If BUFFER_USAGE_LIMIT was specified by the VACUUM or ANALYZE
452 * command, it overrides the value of VacuumBufferUsageLimit. Either
453 * value may be 0, in which case GetAccessStrategyWithSize() will
454 * return NULL, effectively allowing full use of shared buffers.
455 */
456 if (ring_size == -1)
457 ring_size = VacuumBufferUsageLimit;
458
459 bstrategy = GetAccessStrategyWithSize(BAS_VACUUM, ring_size);
460
461 MemoryContextSwitchTo(old_context);
462 }
463
464 /* Now go through the common routine */
465 vacuum(vacstmt->rels, params, bstrategy, vac_context, isTopLevel);
466
467 /* Finally, clean up the vacuum memory context */
468 MemoryContextDelete(vac_context);
469}
470
471/*
472 * Internal entry point for autovacuum and the VACUUM / ANALYZE commands.
473 *
474 * relations, if not NIL, is a list of VacuumRelation to process; otherwise,
475 * we process all relevant tables in the database. For each VacuumRelation,
476 * if a valid OID is supplied, the table with that OID is what to process;
477 * otherwise, the VacuumRelation's RangeVar indicates what to process.
478 *
479 * params contains a set of parameters that can be used to customize the
480 * behavior.
481 *
482 * bstrategy may be passed in as NULL when the caller does not want to
483 * restrict the number of shared_buffers that VACUUM / ANALYZE can use,
484 * otherwise, the caller must build a BufferAccessStrategy with the number of
485 * shared_buffers that VACUUM / ANALYZE should try to limit themselves to
486 * using.
487 *
488 * isTopLevel should be passed down from ProcessUtility.
489 *
490 * It is the caller's responsibility that all parameters are allocated in a
491 * memory context that will not disappear at transaction commit.
492 */
493void
494vacuum(List *relations, const VacuumParams params, BufferAccessStrategy bstrategy,
495 MemoryContext vac_context, bool isTopLevel)
496{
497 static bool in_vacuum = false;
498
499 const char *stmttype;
500 volatile bool in_outer_xact,
501 use_own_xacts;
502
503 stmttype = (params.options & VACOPT_VACUUM) ? "VACUUM" : "ANALYZE";
504
505 /*
506 * We cannot run VACUUM inside a user transaction block; if we were inside
507 * a transaction, then our commit- and start-transaction-command calls
508 * would not have the intended effect! There are numerous other subtle
509 * dependencies on this, too.
510 *
511 * ANALYZE (without VACUUM) can run either way.
512 */
513 if (params.options & VACOPT_VACUUM)
514 {
515 PreventInTransactionBlock(isTopLevel, stmttype);
516 in_outer_xact = false;
517 }
518 else
519 in_outer_xact = IsInTransactionBlock(isTopLevel);
520
521 /*
522 * Check for and disallow recursive calls. This could happen when VACUUM
523 * FULL or ANALYZE calls a hostile index expression that itself calls
524 * ANALYZE.
525 */
526 if (in_vacuum)
528 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
529 errmsg("%s cannot be executed from VACUUM or ANALYZE",
530 stmttype)));
531
532 /*
533 * Build list of relation(s) to process, putting any new data in
534 * vac_context for safekeeping.
535 */
537 {
538 /* We don't process any tables in this case */
539 Assert(relations == NIL);
540 }
541 else if (relations != NIL)
542 {
543 List *newrels = NIL;
544 ListCell *lc;
545
546 foreach(lc, relations)
547 {
549 List *sublist;
550 MemoryContext old_context;
551
552 sublist = expand_vacuum_rel(vrel, vac_context, params.options);
553 old_context = MemoryContextSwitchTo(vac_context);
554 newrels = list_concat(newrels, sublist);
555 MemoryContextSwitchTo(old_context);
556 }
557 relations = newrels;
558 }
559 else
560 relations = get_all_vacuum_rels(vac_context, params.options);
561
562 /*
563 * Decide whether we need to start/commit our own transactions.
564 *
565 * For VACUUM (with or without ANALYZE): always do so, so that we can
566 * release locks as soon as possible. (We could possibly use the outer
567 * transaction for a one-table VACUUM, but handling TOAST tables would be
568 * problematic.)
569 *
570 * For ANALYZE (no VACUUM): if inside a transaction block, we cannot
571 * start/commit our own transactions. Also, there's no need to do so if
572 * only processing one relation. For multiple relations when not within a
573 * transaction block, and also in an autovacuum worker, use own
574 * transactions so we can release locks sooner.
575 */
576 if (params.options & VACOPT_VACUUM)
577 use_own_xacts = true;
578 else
579 {
580 Assert(params.options & VACOPT_ANALYZE);
582 use_own_xacts = true;
583 else if (in_outer_xact)
584 use_own_xacts = false;
585 else if (list_length(relations) > 1)
586 use_own_xacts = true;
587 else
588 use_own_xacts = false;
589 }
590
591 /*
592 * vacuum_rel expects to be entered with no transaction active; it will
593 * start and commit its own transaction. But we are called by an SQL
594 * command, and so we are executing inside a transaction already. We
595 * commit the transaction started in PostgresMain() here, and start
596 * another one before exiting to match the commit waiting for us back in
597 * PostgresMain().
598 */
599 if (use_own_xacts)
600 {
601 Assert(!in_outer_xact);
602
603 /* ActiveSnapshot is not set by autovacuum */
604 if (ActiveSnapshotSet())
606
607 /* matches the StartTransaction in PostgresMain() */
609 }
610
611 /* Turn vacuum cost accounting on or off, and set/clear in_vacuum */
612 PG_TRY();
613 {
614 ListCell *cur;
615
616 in_vacuum = true;
617 VacuumFailsafeActive = false;
623
624 /*
625 * Loop to process each selected relation.
626 */
627 foreach(cur, relations)
628 {
630
631 if (params.options & VACOPT_VACUUM)
632 {
633 if (!vacuum_rel(vrel->oid, vrel->relation, params, bstrategy))
634 continue;
635 }
636
637 if (params.options & VACOPT_ANALYZE)
638 {
639 /*
640 * If using separate xacts, start one for analyze. Otherwise,
641 * we can use the outer transaction.
642 */
643 if (use_own_xacts)
644 {
646 /* functions in indexes may want a snapshot set */
648 }
649
650 analyze_rel(vrel->oid, vrel->relation, params,
651 vrel->va_cols, in_outer_xact, bstrategy);
652
653 if (use_own_xacts)
654 {
656 /* standard_ProcessUtility() does CCI if !use_own_xacts */
659 }
660 else
661 {
662 /*
663 * If we're not using separate xacts, better separate the
664 * ANALYZE actions with CCIs. This avoids trouble if user
665 * says "ANALYZE t, t".
666 */
668 }
669 }
670
671 /*
672 * Ensure VacuumFailsafeActive has been reset before vacuuming the
673 * next relation.
674 */
675 VacuumFailsafeActive = false;
676 }
677 }
678 PG_FINALLY();
679 {
680 in_vacuum = false;
681 VacuumCostActive = false;
682 VacuumFailsafeActive = false;
684 }
685 PG_END_TRY();
686
687 /*
688 * Finish up processing.
689 */
690 if (use_own_xacts)
691 {
692 /* here, we are not in a transaction */
693
694 /*
695 * This matches the CommitTransaction waiting for us in
696 * PostgresMain().
697 */
699 }
700
701 if ((params.options & VACOPT_VACUUM) &&
703 {
704 /*
705 * Update pg_database.datfrozenxid, and truncate pg_xact if possible.
706 */
708 }
709
710}
711
712/*
713 * Check if the current user has privileges to vacuum or analyze the relation.
714 * If not, issue a WARNING log message and return false to let the caller
715 * decide what to do with this relation. This routine is used to decide if a
716 * relation can be processed for VACUUM or ANALYZE.
717 */
718bool
721{
722 char *relname;
723
725
726 /*----------
727 * A role has privileges to vacuum or analyze the relation if any of the
728 * following are true:
729 * - the role owns the current database and the relation is not shared
730 * - the role has the MAINTAIN privilege on the relation
731 *----------
732 */
733 if ((object_ownercheck(DatabaseRelationId, MyDatabaseId, GetUserId()) &&
734 !reltuple->relisshared) ||
736 return true;
737
738 relname = NameStr(reltuple->relname);
739
740 if ((options & VACOPT_VACUUM) != 0)
741 {
743 (errmsg("permission denied to vacuum \"%s\", skipping it",
744 relname)));
745
746 /*
747 * For VACUUM ANALYZE, both logs could show up, but just generate
748 * information for VACUUM as that would be the first one to be
749 * processed.
750 */
751 return false;
752 }
753
754 if ((options & VACOPT_ANALYZE) != 0)
756 (errmsg("permission denied to analyze \"%s\", skipping it",
757 relname)));
758
759 return false;
760}
761
762
763/*
764 * vacuum_open_relation
765 *
766 * This routine is used for attempting to open and lock a relation which
767 * is going to be vacuumed or analyzed. If the relation cannot be opened
768 * or locked, a log is emitted if possible.
769 */
772 bool verbose, LOCKMODE lmode)
773{
774 Relation rel;
775 bool rel_lock = true;
776 int elevel;
777
779
780 /*
781 * Open the relation and get the appropriate lock on it.
782 *
783 * There's a race condition here: the relation may have gone away since
784 * the last time we saw it. If so, we don't need to vacuum or analyze it.
785 *
786 * If we've been asked not to wait for the relation lock, acquire it first
787 * in non-blocking mode, before calling try_relation_open().
788 */
790 rel = try_relation_open(relid, lmode);
791 else if (ConditionalLockRelationOid(relid, lmode))
792 rel = try_relation_open(relid, NoLock);
793 else
794 {
795 rel = NULL;
796 rel_lock = false;
797 }
798
799 /* if relation is opened, leave */
800 if (rel)
801 return rel;
802
803 /*
804 * Relation could not be opened, hence generate if possible a log
805 * informing on the situation.
806 *
807 * If the RangeVar is not defined, we do not have enough information to
808 * provide a meaningful log statement. Chances are that the caller has
809 * intentionally not provided this information so that this logging is
810 * skipped, anyway.
811 */
812 if (relation == NULL)
813 return NULL;
814
815 /*
816 * Determine the log level.
817 *
818 * For manual VACUUM or ANALYZE, we emit a WARNING to match the log
819 * statements in the permission checks; otherwise, only log if the caller
820 * so requested.
821 */
823 elevel = WARNING;
824 else if (verbose)
825 elevel = LOG;
826 else
827 return NULL;
828
829 if ((options & VACOPT_VACUUM) != 0)
830 {
831 if (!rel_lock)
832 ereport(elevel,
833 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
834 errmsg("skipping vacuum of \"%s\" --- lock not available",
835 relation->relname)));
836 else
837 ereport(elevel,
839 errmsg("skipping vacuum of \"%s\" --- relation no longer exists",
840 relation->relname)));
841
842 /*
843 * For VACUUM ANALYZE, both logs could show up, but just generate
844 * information for VACUUM as that would be the first one to be
845 * processed.
846 */
847 return NULL;
848 }
849
850 if ((options & VACOPT_ANALYZE) != 0)
851 {
852 if (!rel_lock)
853 ereport(elevel,
854 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
855 errmsg("skipping analyze of \"%s\" --- lock not available",
856 relation->relname)));
857 else
858 ereport(elevel,
860 errmsg("skipping analyze of \"%s\" --- relation no longer exists",
861 relation->relname)));
862 }
863
864 return NULL;
865}
866
867
868/*
869 * Given a VacuumRelation, fill in the table OID if it wasn't specified,
870 * and optionally add VacuumRelations for partitions or inheritance children.
871 *
872 * If a VacuumRelation does not have an OID supplied and is a partitioned
873 * table, an extra entry will be added to the output for each partition.
874 * Presently, only autovacuum supplies OIDs when calling vacuum(), and
875 * it does not want us to expand partitioned tables.
876 *
877 * We take care not to modify the input data structure, but instead build
878 * new VacuumRelation(s) to return. (But note that they will reference
879 * unmodified parts of the input, eg column lists.) New data structures
880 * are made in vac_context.
881 */
882static List *
884 int options)
885{
886 List *vacrels = NIL;
887 MemoryContext oldcontext;
888
889 /* If caller supplied OID, there's nothing we need do here. */
890 if (OidIsValid(vrel->oid))
891 {
892 oldcontext = MemoryContextSwitchTo(vac_context);
893 vacrels = lappend(vacrels, vrel);
894 MemoryContextSwitchTo(oldcontext);
895 }
896 else
897 {
898 /*
899 * Process a specific relation, and possibly partitions or child
900 * tables thereof.
901 */
902 Oid relid;
903 HeapTuple tuple;
904 Form_pg_class classForm;
905 bool include_children;
906 bool is_partitioned_table;
907 int rvr_opts;
908
909 /*
910 * Since autovacuum workers supply OIDs when calling vacuum(), no
911 * autovacuum worker should reach this code.
912 */
914
915 /*
916 * We transiently take AccessShareLock to protect the syscache lookup
917 * below, as well as find_all_inheritors's expectation that the caller
918 * holds some lock on the starting relation.
919 */
920 rvr_opts = (options & VACOPT_SKIP_LOCKED) ? RVR_SKIP_LOCKED : 0;
923 rvr_opts,
924 NULL, NULL);
925
926 /*
927 * If the lock is unavailable, emit the same log statement that
928 * vacuum_rel() and analyze_rel() would.
929 */
930 if (!OidIsValid(relid))
931 {
934 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
935 errmsg("skipping vacuum of \"%s\" --- lock not available",
936 vrel->relation->relname)));
937 else
939 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
940 errmsg("skipping analyze of \"%s\" --- lock not available",
941 vrel->relation->relname)));
942 return vacrels;
943 }
944
945 /*
946 * To check whether the relation is a partitioned table and its
947 * ownership, fetch its syscache entry.
948 */
949 tuple = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
950 if (!HeapTupleIsValid(tuple))
951 elog(ERROR, "cache lookup failed for relation %u", relid);
952 classForm = (Form_pg_class) GETSTRUCT(tuple);
953
954 /*
955 * Make a returnable VacuumRelation for this rel if the user has the
956 * required privileges.
957 */
958 if (vacuum_is_permitted_for_relation(relid, classForm, options))
959 {
960 oldcontext = MemoryContextSwitchTo(vac_context);
961 vacrels = lappend(vacrels, makeVacuumRelation(vrel->relation,
962 relid,
963 vrel->va_cols));
964 MemoryContextSwitchTo(oldcontext);
965 }
966
967 /*
968 * Vacuuming a partitioned table with ONLY will not do anything since
969 * the partitioned table itself is empty. Issue a warning if the user
970 * requests this.
971 */
972 include_children = vrel->relation->inh;
973 is_partitioned_table = (classForm->relkind == RELKIND_PARTITIONED_TABLE);
974 if ((options & VACOPT_VACUUM) && is_partitioned_table && !include_children)
976 (errmsg("VACUUM ONLY of partitioned table \"%s\" has no effect",
977 vrel->relation->relname)));
978
979 ReleaseSysCache(tuple);
980
981 /*
982 * Unless the user has specified ONLY, make relation list entries for
983 * its partitions or inheritance child tables. Note that the list
984 * returned by find_all_inheritors() includes the passed-in OID, so we
985 * have to skip that. There's no point in taking locks on the
986 * individual partitions or child tables yet, and doing so would just
987 * add unnecessary deadlock risk. For this last reason, we do not yet
988 * check the ownership of the partitions/tables, which get added to
989 * the list to process. Ownership will be checked later on anyway.
990 */
991 if (include_children)
992 {
993 List *part_oids = find_all_inheritors(relid, NoLock, NULL);
994 ListCell *part_lc;
995
996 foreach(part_lc, part_oids)
997 {
998 Oid part_oid = lfirst_oid(part_lc);
999
1000 if (part_oid == relid)
1001 continue; /* ignore original table */
1002
1003 /*
1004 * We omit a RangeVar since it wouldn't be appropriate to
1005 * complain about failure to open one of these relations
1006 * later.
1007 */
1008 oldcontext = MemoryContextSwitchTo(vac_context);
1009 vacrels = lappend(vacrels, makeVacuumRelation(NULL,
1010 part_oid,
1011 vrel->va_cols));
1012 MemoryContextSwitchTo(oldcontext);
1013 }
1014 }
1015
1016 /*
1017 * Release lock again. This means that by the time we actually try to
1018 * process the table, it might be gone or renamed. In the former case
1019 * we'll silently ignore it; in the latter case we'll process it
1020 * anyway, but we must beware that the RangeVar doesn't necessarily
1021 * identify it anymore. This isn't ideal, perhaps, but there's little
1022 * practical alternative, since we're typically going to commit this
1023 * transaction and begin a new one between now and then. Moreover,
1024 * holding locks on multiple relations would create significant risk
1025 * of deadlock.
1026 */
1028 }
1029
1030 return vacrels;
1031}
1032
1033/*
1034 * Construct a list of VacuumRelations for all vacuumable rels in
1035 * the current database. The list is built in vac_context.
1036 */
1037static List *
1039{
1040 List *vacrels = NIL;
1041 Relation pgclass;
1042 TableScanDesc scan;
1043 HeapTuple tuple;
1044
1045 pgclass = table_open(RelationRelationId, AccessShareLock);
1046
1047 scan = table_beginscan_catalog(pgclass, 0, NULL);
1048
1049 while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
1050 {
1051 Form_pg_class classForm = (Form_pg_class) GETSTRUCT(tuple);
1052 MemoryContext oldcontext;
1053 Oid relid = classForm->oid;
1054
1055 /*
1056 * We include partitioned tables here; depending on which operation is
1057 * to be performed, caller will decide whether to process or ignore
1058 * them.
1059 */
1060 if (classForm->relkind != RELKIND_RELATION &&
1061 classForm->relkind != RELKIND_MATVIEW &&
1062 classForm->relkind != RELKIND_PARTITIONED_TABLE)
1063 continue;
1064
1065 /* check permissions of relation */
1066 if (!vacuum_is_permitted_for_relation(relid, classForm, options))
1067 continue;
1068
1069 /*
1070 * Build VacuumRelation(s) specifying the table OIDs to be processed.
1071 * We omit a RangeVar since it wouldn't be appropriate to complain
1072 * about failure to open one of these relations later.
1073 */
1074 oldcontext = MemoryContextSwitchTo(vac_context);
1075 vacrels = lappend(vacrels, makeVacuumRelation(NULL,
1076 relid,
1077 NIL));
1078 MemoryContextSwitchTo(oldcontext);
1079 }
1080
1081 table_endscan(scan);
1082 table_close(pgclass, AccessShareLock);
1083
1084 return vacrels;
1085}
1086
1087/*
1088 * vacuum_get_cutoffs() -- compute OldestXmin and freeze cutoff points
1089 *
1090 * The target relation and VACUUM parameters are our inputs.
1091 *
1092 * Output parameters are the cutoffs that VACUUM caller should use.
1093 *
1094 * Return value indicates if vacuumlazy.c caller should make its VACUUM
1095 * operation aggressive. An aggressive VACUUM must advance relfrozenxid up to
1096 * FreezeLimit (at a minimum), and relminmxid up to MultiXactCutoff (at a
1097 * minimum).
1098 */
1099bool
1101 struct VacuumCutoffs *cutoffs)
1102{
1103 int freeze_min_age,
1104 multixact_freeze_min_age,
1105 freeze_table_age,
1106 multixact_freeze_table_age,
1107 effective_multixact_freeze_max_age;
1108 TransactionId nextXID,
1109 safeOldestXmin,
1110 aggressiveXIDCutoff;
1111 MultiXactId nextMXID,
1112 safeOldestMxact,
1113 aggressiveMXIDCutoff;
1114
1115 /* Use mutable copies of freeze age parameters */
1116 freeze_min_age = params.freeze_min_age;
1117 multixact_freeze_min_age = params.multixact_freeze_min_age;
1118 freeze_table_age = params.freeze_table_age;
1119 multixact_freeze_table_age = params.multixact_freeze_table_age;
1120
1121 /* Set pg_class fields in cutoffs */
1122 cutoffs->relfrozenxid = rel->rd_rel->relfrozenxid;
1123 cutoffs->relminmxid = rel->rd_rel->relminmxid;
1124
1125 /*
1126 * Acquire OldestXmin.
1127 *
1128 * We can always ignore processes running lazy vacuum. This is because we
1129 * use these values only for deciding which tuples we must keep in the
1130 * tables. Since lazy vacuum doesn't write its XID anywhere (usually no
1131 * XID assigned), it's safe to ignore it. In theory it could be
1132 * problematic to ignore lazy vacuums in a full vacuum, but keep in mind
1133 * that only one vacuum process can be working on a particular table at
1134 * any time, and that each vacuum is always an independent transaction.
1135 */
1137
1139
1140 /* Acquire OldestMxact */
1141 cutoffs->OldestMxact = GetOldestMultiXactId();
1143
1144 /* Acquire next XID/next MXID values used to apply age-based settings */
1145 nextXID = ReadNextTransactionId();
1146 nextMXID = ReadNextMultiXactId();
1147
1148 /*
1149 * Also compute the multixact age for which freezing is urgent. This is
1150 * normally autovacuum_multixact_freeze_max_age, but may be less if
1151 * multixact members are bloated.
1152 */
1153 effective_multixact_freeze_max_age = MultiXactMemberFreezeThreshold();
1154
1155 /*
1156 * Almost ready to set freeze output parameters; check if OldestXmin or
1157 * OldestMxact are held back to an unsafe degree before we start on that
1158 */
1159 safeOldestXmin = nextXID - autovacuum_freeze_max_age;
1160 if (!TransactionIdIsNormal(safeOldestXmin))
1161 safeOldestXmin = FirstNormalTransactionId;
1162 safeOldestMxact = nextMXID - effective_multixact_freeze_max_age;
1163 if (safeOldestMxact < FirstMultiXactId)
1164 safeOldestMxact = FirstMultiXactId;
1165 if (TransactionIdPrecedes(cutoffs->OldestXmin, safeOldestXmin))
1167 (errmsg("cutoff for removing and freezing tuples is far in the past"),
1168 errhint("Close open transactions soon to avoid wraparound problems.\n"
1169 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1170 if (MultiXactIdPrecedes(cutoffs->OldestMxact, safeOldestMxact))
1172 (errmsg("cutoff for freezing multixacts is far in the past"),
1173 errhint("Close open transactions soon to avoid wraparound problems.\n"
1174 "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1175
1176 /*
1177 * Determine the minimum freeze age to use: as specified by the caller, or
1178 * vacuum_freeze_min_age, but in any case not more than half
1179 * autovacuum_freeze_max_age, so that autovacuums to prevent XID
1180 * wraparound won't occur too frequently.
1181 */
1182 if (freeze_min_age < 0)
1183 freeze_min_age = vacuum_freeze_min_age;
1184 freeze_min_age = Min(freeze_min_age, autovacuum_freeze_max_age / 2);
1185 Assert(freeze_min_age >= 0);
1186
1187 /* Compute FreezeLimit, being careful to generate a normal XID */
1188 cutoffs->FreezeLimit = nextXID - freeze_min_age;
1189 if (!TransactionIdIsNormal(cutoffs->FreezeLimit))
1191 /* FreezeLimit must always be <= OldestXmin */
1192 if (TransactionIdPrecedes(cutoffs->OldestXmin, cutoffs->FreezeLimit))
1193 cutoffs->FreezeLimit = cutoffs->OldestXmin;
1194
1195 /*
1196 * Determine the minimum multixact freeze age to use: as specified by
1197 * caller, or vacuum_multixact_freeze_min_age, but in any case not more
1198 * than half effective_multixact_freeze_max_age, so that autovacuums to
1199 * prevent MultiXact wraparound won't occur too frequently.
1200 */
1201 if (multixact_freeze_min_age < 0)
1202 multixact_freeze_min_age = vacuum_multixact_freeze_min_age;
1203 multixact_freeze_min_age = Min(multixact_freeze_min_age,
1204 effective_multixact_freeze_max_age / 2);
1205 Assert(multixact_freeze_min_age >= 0);
1206
1207 /* Compute MultiXactCutoff, being careful to generate a valid value */
1208 cutoffs->MultiXactCutoff = nextMXID - multixact_freeze_min_age;
1209 if (cutoffs->MultiXactCutoff < FirstMultiXactId)
1211 /* MultiXactCutoff must always be <= OldestMxact */
1212 if (MultiXactIdPrecedes(cutoffs->OldestMxact, cutoffs->MultiXactCutoff))
1213 cutoffs->MultiXactCutoff = cutoffs->OldestMxact;
1214
1215 /*
1216 * Finally, figure out if caller needs to do an aggressive VACUUM or not.
1217 *
1218 * Determine the table freeze age to use: as specified by the caller, or
1219 * the value of the vacuum_freeze_table_age GUC, but in any case not more
1220 * than autovacuum_freeze_max_age * 0.95, so that if you have e.g nightly
1221 * VACUUM schedule, the nightly VACUUM gets a chance to freeze XIDs before
1222 * anti-wraparound autovacuum is launched.
1223 */
1224 if (freeze_table_age < 0)
1225 freeze_table_age = vacuum_freeze_table_age;
1226 freeze_table_age = Min(freeze_table_age, autovacuum_freeze_max_age * 0.95);
1227 Assert(freeze_table_age >= 0);
1228 aggressiveXIDCutoff = nextXID - freeze_table_age;
1229 if (!TransactionIdIsNormal(aggressiveXIDCutoff))
1230 aggressiveXIDCutoff = FirstNormalTransactionId;
1232 aggressiveXIDCutoff))
1233 return true;
1234
1235 /*
1236 * Similar to the above, determine the table freeze age to use for
1237 * multixacts: as specified by the caller, or the value of the
1238 * vacuum_multixact_freeze_table_age GUC, but in any case not more than
1239 * effective_multixact_freeze_max_age * 0.95, so that if you have e.g.
1240 * nightly VACUUM schedule, the nightly VACUUM gets a chance to freeze
1241 * multixacts before anti-wraparound autovacuum is launched.
1242 */
1243 if (multixact_freeze_table_age < 0)
1244 multixact_freeze_table_age = vacuum_multixact_freeze_table_age;
1245 multixact_freeze_table_age =
1246 Min(multixact_freeze_table_age,
1247 effective_multixact_freeze_max_age * 0.95);
1248 Assert(multixact_freeze_table_age >= 0);
1249 aggressiveMXIDCutoff = nextMXID - multixact_freeze_table_age;
1250 if (aggressiveMXIDCutoff < FirstMultiXactId)
1251 aggressiveMXIDCutoff = FirstMultiXactId;
1253 aggressiveMXIDCutoff))
1254 return true;
1255
1256 /* Non-aggressive VACUUM */
1257 return false;
1258}
1259
1260/*
1261 * vacuum_xid_failsafe_check() -- Used by VACUUM's wraparound failsafe
1262 * mechanism to determine if its table's relfrozenxid and relminmxid are now
1263 * dangerously far in the past.
1264 *
1265 * When we return true, VACUUM caller triggers the failsafe.
1266 */
1267bool
1269{
1270 TransactionId relfrozenxid = cutoffs->relfrozenxid;
1271 MultiXactId relminmxid = cutoffs->relminmxid;
1272 TransactionId xid_skip_limit;
1273 MultiXactId multi_skip_limit;
1274 int skip_index_vacuum;
1275
1276 Assert(TransactionIdIsNormal(relfrozenxid));
1277 Assert(MultiXactIdIsValid(relminmxid));
1278
1279 /*
1280 * Determine the index skipping age to use. In any case no less than
1281 * autovacuum_freeze_max_age * 1.05.
1282 */
1283 skip_index_vacuum = Max(vacuum_failsafe_age, autovacuum_freeze_max_age * 1.05);
1284
1285 xid_skip_limit = ReadNextTransactionId() - skip_index_vacuum;
1286 if (!TransactionIdIsNormal(xid_skip_limit))
1287 xid_skip_limit = FirstNormalTransactionId;
1288
1289 if (TransactionIdPrecedes(relfrozenxid, xid_skip_limit))
1290 {
1291 /* The table's relfrozenxid is too old */
1292 return true;
1293 }
1294
1295 /*
1296 * Similar to above, determine the index skipping age to use for
1297 * multixact. In any case no less than autovacuum_multixact_freeze_max_age *
1298 * 1.05.
1299 */
1300 skip_index_vacuum = Max(vacuum_multixact_failsafe_age,
1302
1303 multi_skip_limit = ReadNextMultiXactId() - skip_index_vacuum;
1304 if (multi_skip_limit < FirstMultiXactId)
1305 multi_skip_limit = FirstMultiXactId;
1306
1307 if (MultiXactIdPrecedes(relminmxid, multi_skip_limit))
1308 {
1309 /* The table's relminmxid is too old */
1310 return true;
1311 }
1312
1313 return false;
1314}
1315
1316/*
1317 * vac_estimate_reltuples() -- estimate the new value for pg_class.reltuples
1318 *
1319 * If we scanned the whole relation then we should just use the count of
1320 * live tuples seen; but if we did not, we should not blindly extrapolate
1321 * from that number, since VACUUM may have scanned a quite nonrandom
1322 * subset of the table. When we have only partial information, we take
1323 * the old value of pg_class.reltuples/pg_class.relpages as a measurement
1324 * of the tuple density in the unscanned pages.
1325 *
1326 * Note: scanned_tuples should count only *live* tuples, since
1327 * pg_class.reltuples is defined that way.
1328 */
1329double
1331 BlockNumber total_pages,
1332 BlockNumber scanned_pages,
1333 double scanned_tuples)
1334{
1335 BlockNumber old_rel_pages = relation->rd_rel->relpages;
1336 double old_rel_tuples = relation->rd_rel->reltuples;
1337 double old_density;
1338 double unscanned_pages;
1339 double total_tuples;
1340
1341 /* If we did scan the whole table, just use the count as-is */
1342 if (scanned_pages >= total_pages)
1343 return scanned_tuples;
1344
1345 /*
1346 * When successive VACUUM commands scan the same few pages again and
1347 * again, without anything from the table really changing, there is a risk
1348 * that our beliefs about tuple density will gradually become distorted.
1349 * This might be caused by vacuumlazy.c implementation details, such as
1350 * its tendency to always scan the last heap page. Handle that here.
1351 *
1352 * If the relation is _exactly_ the same size according to the existing
1353 * pg_class entry, and only a few of its pages (less than 2%) were
1354 * scanned, keep the existing value of reltuples. Also keep the existing
1355 * value when only a subset of rel's pages <= a single page were scanned.
1356 *
1357 * (Note: we might be returning -1 here.)
1358 */
1359 if (old_rel_pages == total_pages &&
1360 scanned_pages < (double) total_pages * 0.02)
1361 return old_rel_tuples;
1362 if (scanned_pages <= 1)
1363 return old_rel_tuples;
1364
1365 /*
1366 * If old density is unknown, we can't do much except scale up
1367 * scanned_tuples to match total_pages.
1368 */
1369 if (old_rel_tuples < 0 || old_rel_pages == 0)
1370 return floor((scanned_tuples / scanned_pages) * total_pages + 0.5);
1371
1372 /*
1373 * Okay, we've covered the corner cases. The normal calculation is to
1374 * convert the old measurement to a density (tuples per page), then
1375 * estimate the number of tuples in the unscanned pages using that figure,
1376 * and finally add on the number of tuples in the scanned pages.
1377 */
1378 old_density = old_rel_tuples / old_rel_pages;
1379 unscanned_pages = (double) total_pages - (double) scanned_pages;
1380 total_tuples = old_density * unscanned_pages + scanned_tuples;
1381 return floor(total_tuples + 0.5);
1382}
1383
1384
1385/*
1386 * vac_update_relstats() -- update statistics for one relation
1387 *
1388 * Update the whole-relation statistics that are kept in its pg_class
1389 * row. There are additional stats that will be updated if we are
1390 * doing ANALYZE, but we always update these stats. This routine works
1391 * for both index and heap relation entries in pg_class.
1392 *
1393 * We violate transaction semantics here by overwriting the rel's
1394 * existing pg_class tuple with the new values. This is reasonably
1395 * safe as long as we're sure that the new values are correct whether or
1396 * not this transaction commits. The reason for doing this is that if
1397 * we updated these tuples in the usual way, vacuuming pg_class itself
1398 * wouldn't work very well --- by the time we got done with a vacuum
1399 * cycle, most of the tuples in pg_class would've been obsoleted. Of
1400 * course, this only works for fixed-size not-null columns, but these are.
1401 *
1402 * Another reason for doing it this way is that when we are in a lazy
1403 * VACUUM and have PROC_IN_VACUUM set, we mustn't do any regular updates.
1404 * Somebody vacuuming pg_class might think they could delete a tuple
1405 * marked with xmin = our xid.
1406 *
1407 * In addition to fundamentally nontransactional statistics such as
1408 * relpages and relallvisible, we try to maintain certain lazily-updated
1409 * DDL flags such as relhasindex, by clearing them if no longer correct.
1410 * It's safe to do this in VACUUM, which can't run in parallel with
1411 * CREATE INDEX/RULE/TRIGGER and can't be part of a transaction block.
1412 * However, it's *not* safe to do it in an ANALYZE that's within an
1413 * outer transaction, because for example the current transaction might
1414 * have dropped the last index; then we'd think relhasindex should be
1415 * cleared, but if the transaction later rolls back this would be wrong.
1416 * So we refrain from updating the DDL flags if we're inside an outer
1417 * transaction. This is OK since postponing the flag maintenance is
1418 * always allowable.
1419 *
1420 * Note: num_tuples should count only *live* tuples, since
1421 * pg_class.reltuples is defined that way.
1422 *
1423 * This routine is shared by VACUUM and ANALYZE.
1424 */
1425void
1427 BlockNumber num_pages, double num_tuples,
1428 BlockNumber num_all_visible_pages,
1429 BlockNumber num_all_frozen_pages,
1430 bool hasindex, TransactionId frozenxid,
1431 MultiXactId minmulti,
1432 bool *frozenxid_updated, bool *minmulti_updated,
1433 bool in_outer_xact)
1434{
1435 Oid relid = RelationGetRelid(relation);
1436 Relation rd;
1437 ScanKeyData key[1];
1438 HeapTuple ctup;
1439 void *inplace_state;
1440 Form_pg_class pgcform;
1441 bool dirty,
1442 futurexid,
1443 futuremxid;
1444 TransactionId oldfrozenxid;
1445 MultiXactId oldminmulti;
1446
1447 rd = table_open(RelationRelationId, RowExclusiveLock);
1448
1449 /* Fetch a copy of the tuple to scribble on */
1450 ScanKeyInit(&key[0],
1451 Anum_pg_class_oid,
1452 BTEqualStrategyNumber, F_OIDEQ,
1453 ObjectIdGetDatum(relid));
1454 systable_inplace_update_begin(rd, ClassOidIndexId, true,
1455 NULL, 1, key, &ctup, &inplace_state);
1456 if (!HeapTupleIsValid(ctup))
1457 elog(ERROR, "pg_class entry for relid %u vanished during vacuuming",
1458 relid);
1459 pgcform = (Form_pg_class) GETSTRUCT(ctup);
1460
1461 /* Apply statistical updates, if any, to copied tuple */
1462
1463 dirty = false;
1464 if (pgcform->relpages != (int32) num_pages)
1465 {
1466 pgcform->relpages = (int32) num_pages;
1467 dirty = true;
1468 }
1469 if (pgcform->reltuples != (float4) num_tuples)
1470 {
1471 pgcform->reltuples = (float4) num_tuples;
1472 dirty = true;
1473 }
1474 if (pgcform->relallvisible != (int32) num_all_visible_pages)
1475 {
1476 pgcform->relallvisible = (int32) num_all_visible_pages;
1477 dirty = true;
1478 }
1479 if (pgcform->relallfrozen != (int32) num_all_frozen_pages)
1480 {
1481 pgcform->relallfrozen = (int32) num_all_frozen_pages;
1482 dirty = true;
1483 }
1484
1485 /* Apply DDL updates, but not inside an outer transaction (see above) */
1486
1487 if (!in_outer_xact)
1488 {
1489 /*
1490 * If we didn't find any indexes, reset relhasindex.
1491 */
1492 if (pgcform->relhasindex && !hasindex)
1493 {
1494 pgcform->relhasindex = false;
1495 dirty = true;
1496 }
1497
1498 /* We also clear relhasrules and relhastriggers if needed */
1499 if (pgcform->relhasrules && relation->rd_rules == NULL)
1500 {
1501 pgcform->relhasrules = false;
1502 dirty = true;
1503 }
1504 if (pgcform->relhastriggers && relation->trigdesc == NULL)
1505 {
1506 pgcform->relhastriggers = false;
1507 dirty = true;
1508 }
1509 }
1510
1511 /*
1512 * Update relfrozenxid, unless caller passed InvalidTransactionId
1513 * indicating it has no new data.
1514 *
1515 * Ordinarily, we don't let relfrozenxid go backwards. However, if the
1516 * stored relfrozenxid is "in the future" then it seems best to assume
1517 * it's corrupt, and overwrite with the oldest remaining XID in the table.
1518 * This should match vac_update_datfrozenxid() concerning what we consider
1519 * to be "in the future".
1520 */
1521 oldfrozenxid = pgcform->relfrozenxid;
1522 futurexid = false;
1523 if (frozenxid_updated)
1524 *frozenxid_updated = false;
1525 if (TransactionIdIsNormal(frozenxid) && oldfrozenxid != frozenxid)
1526 {
1527 bool update = false;
1528
1529 if (TransactionIdPrecedes(oldfrozenxid, frozenxid))
1530 update = true;
1531 else if (TransactionIdPrecedes(ReadNextTransactionId(), oldfrozenxid))
1532 futurexid = update = true;
1533
1534 if (update)
1535 {
1536 pgcform->relfrozenxid = frozenxid;
1537 dirty = true;
1538 if (frozenxid_updated)
1539 *frozenxid_updated = true;
1540 }
1541 }
1542
1543 /* Similarly for relminmxid */
1544 oldminmulti = pgcform->relminmxid;
1545 futuremxid = false;
1546 if (minmulti_updated)
1547 *minmulti_updated = false;
1548 if (MultiXactIdIsValid(minmulti) && oldminmulti != minmulti)
1549 {
1550 bool update = false;
1551
1552 if (MultiXactIdPrecedes(oldminmulti, minmulti))
1553 update = true;
1554 else if (MultiXactIdPrecedes(ReadNextMultiXactId(), oldminmulti))
1555 futuremxid = update = true;
1556
1557 if (update)
1558 {
1559 pgcform->relminmxid = minmulti;
1560 dirty = true;
1561 if (minmulti_updated)
1562 *minmulti_updated = true;
1563 }
1564 }
1565
1566 /* If anything changed, write out the tuple. */
1567 if (dirty)
1568 systable_inplace_update_finish(inplace_state, ctup);
1569 else
1570 systable_inplace_update_cancel(inplace_state);
1571
1573
1574 if (futurexid)
1577 errmsg_internal("overwrote invalid relfrozenxid value %u with new value %u for table \"%s\"",
1578 oldfrozenxid, frozenxid,
1579 RelationGetRelationName(relation))));
1580 if (futuremxid)
1583 errmsg_internal("overwrote invalid relminmxid value %u with new value %u for table \"%s\"",
1584 oldminmulti, minmulti,
1585 RelationGetRelationName(relation))));
1586}
1587
1588
1589/*
1590 * vac_update_datfrozenxid() -- update pg_database.datfrozenxid for our DB
1591 *
1592 * Update pg_database's datfrozenxid entry for our database to be the
1593 * minimum of the pg_class.relfrozenxid values.
1594 *
1595 * Similarly, update our datminmxid to be the minimum of the
1596 * pg_class.relminmxid values.
1597 *
1598 * If we are able to advance either pg_database value, also try to
1599 * truncate pg_xact and pg_multixact.
1600 *
1601 * We violate transaction semantics here by overwriting the database's
1602 * existing pg_database tuple with the new values. This is reasonably
1603 * safe since the new values are correct whether or not this transaction
1604 * commits. As with vac_update_relstats, this avoids leaving dead tuples
1605 * behind after a VACUUM.
1606 */
1607void
1609{
1610 HeapTuple tuple;
1611 Form_pg_database dbform;
1612 Relation relation;
1613 SysScanDesc scan;
1614 HeapTuple classTup;
1615 TransactionId newFrozenXid;
1616 MultiXactId newMinMulti;
1617 TransactionId lastSaneFrozenXid;
1618 MultiXactId lastSaneMinMulti;
1619 bool bogus = false;
1620 bool dirty = false;
1621 ScanKeyData key[1];
1622 void *inplace_state;
1623
1624 /*
1625 * Restrict this task to one backend per database. This avoids race
1626 * conditions that would move datfrozenxid or datminmxid backward. It
1627 * avoids calling vac_truncate_clog() with a datfrozenxid preceding a
1628 * datfrozenxid passed to an earlier vac_truncate_clog() call.
1629 */
1631
1632 /*
1633 * Initialize the "min" calculation with
1634 * GetOldestNonRemovableTransactionId(), which is a reasonable
1635 * approximation to the minimum relfrozenxid for not-yet-committed
1636 * pg_class entries for new tables; see AddNewRelationTuple(). So we
1637 * cannot produce a wrong minimum by starting with this.
1638 */
1639 newFrozenXid = GetOldestNonRemovableTransactionId(NULL);
1640
1641 /*
1642 * Similarly, initialize the MultiXact "min" with the value that would be
1643 * used on pg_class for new tables. See AddNewRelationTuple().
1644 */
1645 newMinMulti = GetOldestMultiXactId();
1646
1647 /*
1648 * Identify the latest relfrozenxid and relminmxid values that we could
1649 * validly see during the scan. These are conservative values, but it's
1650 * not really worth trying to be more exact.
1651 */
1652 lastSaneFrozenXid = ReadNextTransactionId();
1653 lastSaneMinMulti = ReadNextMultiXactId();
1654
1655 /*
1656 * We must seqscan pg_class to find the minimum Xid, because there is no
1657 * index that can help us here.
1658 *
1659 * See vac_truncate_clog() for the race condition to prevent.
1660 */
1661 relation = table_open(RelationRelationId, AccessShareLock);
1662
1663 scan = systable_beginscan(relation, InvalidOid, false,
1664 NULL, 0, NULL);
1665
1666 while ((classTup = systable_getnext(scan)) != NULL)
1667 {
1668 volatile FormData_pg_class *classForm = (Form_pg_class) GETSTRUCT(classTup);
1669 TransactionId relfrozenxid = classForm->relfrozenxid;
1670 TransactionId relminmxid = classForm->relminmxid;
1671
1672 /*
1673 * Only consider relations able to hold unfrozen XIDs (anything else
1674 * should have InvalidTransactionId in relfrozenxid anyway).
1675 */
1676 if (classForm->relkind != RELKIND_RELATION &&
1677 classForm->relkind != RELKIND_MATVIEW &&
1678 classForm->relkind != RELKIND_TOASTVALUE)
1679 {
1680 Assert(!TransactionIdIsValid(relfrozenxid));
1681 Assert(!MultiXactIdIsValid(relminmxid));
1682 continue;
1683 }
1684
1685 /*
1686 * Some table AMs might not need per-relation xid / multixid horizons.
1687 * It therefore seems reasonable to allow relfrozenxid and relminmxid
1688 * to not be set (i.e. set to their respective Invalid*Id)
1689 * independently. Thus validate and compute horizon for each only if
1690 * set.
1691 *
1692 * If things are working properly, no relation should have a
1693 * relfrozenxid or relminmxid that is "in the future". However, such
1694 * cases have been known to arise due to bugs in pg_upgrade. If we
1695 * see any entries that are "in the future", chicken out and don't do
1696 * anything. This ensures we won't truncate clog & multixact SLRUs
1697 * before those relations have been scanned and cleaned up.
1698 */
1699
1700 if (TransactionIdIsValid(relfrozenxid))
1701 {
1702 Assert(TransactionIdIsNormal(relfrozenxid));
1703
1704 /* check for values in the future */
1705 if (TransactionIdPrecedes(lastSaneFrozenXid, relfrozenxid))
1706 {
1707 bogus = true;
1708 break;
1709 }
1710
1711 /* determine new horizon */
1712 if (TransactionIdPrecedes(relfrozenxid, newFrozenXid))
1713 newFrozenXid = relfrozenxid;
1714 }
1715
1716 if (MultiXactIdIsValid(relminmxid))
1717 {
1718 /* check for values in the future */
1719 if (MultiXactIdPrecedes(lastSaneMinMulti, relminmxid))
1720 {
1721 bogus = true;
1722 break;
1723 }
1724
1725 /* determine new horizon */
1726 if (MultiXactIdPrecedes(relminmxid, newMinMulti))
1727 newMinMulti = relminmxid;
1728 }
1729 }
1730
1731 /* we're done with pg_class */
1732 systable_endscan(scan);
1733 table_close(relation, AccessShareLock);
1734
1735 /* chicken out if bogus data found */
1736 if (bogus)
1737 return;
1738
1739 Assert(TransactionIdIsNormal(newFrozenXid));
1740 Assert(MultiXactIdIsValid(newMinMulti));
1741
1742 /* Now fetch the pg_database tuple we need to update. */
1743 relation = table_open(DatabaseRelationId, RowExclusiveLock);
1744
1745 /*
1746 * Fetch a copy of the tuple to scribble on. We could check the syscache
1747 * tuple first. If that concluded !dirty, we'd avoid waiting on
1748 * concurrent heap_update() and would avoid exclusive-locking the buffer.
1749 * For now, don't optimize that.
1750 */
1751 ScanKeyInit(&key[0],
1752 Anum_pg_database_oid,
1753 BTEqualStrategyNumber, F_OIDEQ,
1755
1756 systable_inplace_update_begin(relation, DatabaseOidIndexId, true,
1757 NULL, 1, key, &tuple, &inplace_state);
1758
1759 if (!HeapTupleIsValid(tuple))
1760 elog(ERROR, "could not find tuple for database %u", MyDatabaseId);
1761
1762 dbform = (Form_pg_database) GETSTRUCT(tuple);
1763
1764 /*
1765 * As in vac_update_relstats(), we ordinarily don't want to let
1766 * datfrozenxid go backward; but if it's "in the future" then it must be
1767 * corrupt and it seems best to overwrite it.
1768 */
1769 if (dbform->datfrozenxid != newFrozenXid &&
1770 (TransactionIdPrecedes(dbform->datfrozenxid, newFrozenXid) ||
1771 TransactionIdPrecedes(lastSaneFrozenXid, dbform->datfrozenxid)))
1772 {
1773 dbform->datfrozenxid = newFrozenXid;
1774 dirty = true;
1775 }
1776 else
1777 newFrozenXid = dbform->datfrozenxid;
1778
1779 /* Ditto for datminmxid */
1780 if (dbform->datminmxid != newMinMulti &&
1781 (MultiXactIdPrecedes(dbform->datminmxid, newMinMulti) ||
1782 MultiXactIdPrecedes(lastSaneMinMulti, dbform->datminmxid)))
1783 {
1784 dbform->datminmxid = newMinMulti;
1785 dirty = true;
1786 }
1787 else
1788 newMinMulti = dbform->datminmxid;
1789
1790 if (dirty)
1791 systable_inplace_update_finish(inplace_state, tuple);
1792 else
1793 systable_inplace_update_cancel(inplace_state);
1794
1795 heap_freetuple(tuple);
1796 table_close(relation, RowExclusiveLock);
1797
1798 /*
1799 * If we were able to advance datfrozenxid or datminmxid, see if we can
1800 * truncate pg_xact and/or pg_multixact. Also do it if the shared
1801 * XID-wrap-limit info is stale, since this action will update that too.
1802 */
1803 if (dirty || ForceTransactionIdLimitUpdate())
1804 vac_truncate_clog(newFrozenXid, newMinMulti,
1805 lastSaneFrozenXid, lastSaneMinMulti);
1806}
1807
1808
1809/*
1810 * vac_truncate_clog() -- attempt to truncate the commit log
1811 *
1812 * Scan pg_database to determine the system-wide oldest datfrozenxid,
1813 * and use it to truncate the transaction commit log (pg_xact).
1814 * Also update the XID wrap limit info maintained by varsup.c.
1815 * Likewise for datminmxid.
1816 *
1817 * The passed frozenXID and minMulti are the updated values for my own
1818 * pg_database entry. They're used to initialize the "min" calculations.
1819 * The caller also passes the "last sane" XID and MXID, since it has
1820 * those at hand already.
1821 *
1822 * This routine is only invoked when we've managed to change our
1823 * DB's datfrozenxid/datminmxid values, or we found that the shared
1824 * XID-wrap-limit info is stale.
1825 */
1826static void
1828 MultiXactId minMulti,
1829 TransactionId lastSaneFrozenXid,
1830 MultiXactId lastSaneMinMulti)
1831{
1833 Relation relation;
1834 TableScanDesc scan;
1835 HeapTuple tuple;
1836 Oid oldestxid_datoid;
1837 Oid minmulti_datoid;
1838 bool bogus = false;
1839 bool frozenAlreadyWrapped = false;
1840
1841 /* Restrict task to one backend per cluster; see SimpleLruTruncate(). */
1842 LWLockAcquire(WrapLimitsVacuumLock, LW_EXCLUSIVE);
1843
1844 /* init oldest datoids to sync with my frozenXID/minMulti values */
1845 oldestxid_datoid = MyDatabaseId;
1846 minmulti_datoid = MyDatabaseId;
1847
1848 /*
1849 * Scan pg_database to compute the minimum datfrozenxid/datminmxid
1850 *
1851 * Since vac_update_datfrozenxid updates datfrozenxid/datminmxid in-place,
1852 * the values could change while we look at them. Fetch each one just
1853 * once to ensure sane behavior of the comparison logic. (Here, as in
1854 * many other places, we assume that fetching or updating an XID in shared
1855 * storage is atomic.)
1856 *
1857 * Note: we need not worry about a race condition with new entries being
1858 * inserted by CREATE DATABASE. Any such entry will have a copy of some
1859 * existing DB's datfrozenxid, and that source DB cannot be ours because
1860 * of the interlock against copying a DB containing an active backend.
1861 * Hence the new entry will not reduce the minimum. Also, if two VACUUMs
1862 * concurrently modify the datfrozenxid's of different databases, the
1863 * worst possible outcome is that pg_xact is not truncated as aggressively
1864 * as it could be.
1865 */
1866 relation = table_open(DatabaseRelationId, AccessShareLock);
1867
1868 scan = table_beginscan_catalog(relation, 0, NULL);
1869
1870 while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
1871 {
1872 volatile FormData_pg_database *dbform = (Form_pg_database) GETSTRUCT(tuple);
1873 TransactionId datfrozenxid = dbform->datfrozenxid;
1874 TransactionId datminmxid = dbform->datminmxid;
1875
1878
1879 /*
1880 * If database is in the process of getting dropped, or has been
1881 * interrupted while doing so, no connections to it are possible
1882 * anymore. Therefore we don't need to take it into account here.
1883 * Which is good, because it can't be processed by autovacuum either.
1884 */
1886 {
1887 elog(DEBUG2,
1888 "skipping invalid database \"%s\" while computing relfrozenxid",
1889 NameStr(dbform->datname));
1890 continue;
1891 }
1892
1893 /*
1894 * If things are working properly, no database should have a
1895 * datfrozenxid or datminmxid that is "in the future". However, such
1896 * cases have been known to arise due to bugs in pg_upgrade. If we
1897 * see any entries that are "in the future", chicken out and don't do
1898 * anything. This ensures we won't truncate clog before those
1899 * databases have been scanned and cleaned up. (We will issue the
1900 * "already wrapped" warning if appropriate, though.)
1901 */
1902 if (TransactionIdPrecedes(lastSaneFrozenXid, datfrozenxid) ||
1903 MultiXactIdPrecedes(lastSaneMinMulti, datminmxid))
1904 bogus = true;
1905
1906 if (TransactionIdPrecedes(nextXID, datfrozenxid))
1907 frozenAlreadyWrapped = true;
1908 else if (TransactionIdPrecedes(datfrozenxid, frozenXID))
1909 {
1910 frozenXID = datfrozenxid;
1911 oldestxid_datoid = dbform->oid;
1912 }
1913
1914 if (MultiXactIdPrecedes(datminmxid, minMulti))
1915 {
1916 minMulti = datminmxid;
1917 minmulti_datoid = dbform->oid;
1918 }
1919 }
1920
1921 table_endscan(scan);
1922
1923 table_close(relation, AccessShareLock);
1924
1925 /*
1926 * Do not truncate CLOG if we seem to have suffered wraparound already;
1927 * the computed minimum XID might be bogus. This case should now be
1928 * impossible due to the defenses in GetNewTransactionId, but we keep the
1929 * test anyway.
1930 */
1931 if (frozenAlreadyWrapped)
1932 {
1934 (errmsg("some databases have not been vacuumed in over 2 billion transactions"),
1935 errdetail("You might have already suffered transaction-wraparound data loss.")));
1936 LWLockRelease(WrapLimitsVacuumLock);
1937 return;
1938 }
1939
1940 /* chicken out if data is bogus in any other way */
1941 if (bogus)
1942 {
1943 LWLockRelease(WrapLimitsVacuumLock);
1944 return;
1945 }
1946
1947 /*
1948 * Freeze any old transaction IDs in the async notification queue before
1949 * CLOG truncation.
1950 */
1951 AsyncNotifyFreezeXids(frozenXID);
1952
1953 /*
1954 * Advance the oldest value for commit timestamps before truncating, so
1955 * that if a user requests a timestamp for a transaction we're truncating
1956 * away right after this point, they get NULL instead of an ugly "file not
1957 * found" error from slru.c. This doesn't matter for xact/multixact
1958 * because they are not subject to arbitrary lookups from users.
1959 */
1960 AdvanceOldestCommitTsXid(frozenXID);
1961
1962 /*
1963 * Truncate CLOG, multixact and CommitTs to the oldest computed value.
1964 */
1965 TruncateCLOG(frozenXID, oldestxid_datoid);
1966 TruncateCommitTs(frozenXID);
1967 TruncateMultiXact(minMulti, minmulti_datoid);
1968
1969 /*
1970 * Update the wrap limit for GetNewTransactionId and creation of new
1971 * MultiXactIds. Note: these functions will also signal the postmaster
1972 * for an(other) autovac cycle if needed. XXX should we avoid possibly
1973 * signaling twice?
1974 */
1975 SetTransactionIdLimit(frozenXID, oldestxid_datoid);
1976 SetMultiXactIdLimit(minMulti, minmulti_datoid);
1977
1978 LWLockRelease(WrapLimitsVacuumLock);
1979}
1980
1981
1982/*
1983 * vacuum_rel() -- vacuum one heap relation
1984 *
1985 * relid identifies the relation to vacuum. If relation is supplied,
1986 * use the name therein for reporting any failure to open/lock the rel;
1987 * do not use it once we've successfully opened the rel, since it might
1988 * be stale.
1989 *
1990 * Returns true if it's okay to proceed with a requested ANALYZE
1991 * operation on this table.
1992 *
1993 * Doing one heap at a time incurs extra overhead, since we need to
1994 * check that the heap exists again just before we vacuum it. The
1995 * reason that we do this is so that vacuuming can be spread across
1996 * many small transactions. Otherwise, two-phase locking would require
1997 * us to lock the entire database during one pass of the vacuum cleaner.
1998 *
1999 * At entry and exit, we are not inside a transaction.
2000 */
2001static bool
2002vacuum_rel(Oid relid, RangeVar *relation, VacuumParams params,
2003 BufferAccessStrategy bstrategy)
2004{
2005 LOCKMODE lmode;
2006 Relation rel;
2007 LockRelId lockrelid;
2008 Oid priv_relid;
2009 Oid toast_relid;
2010 Oid save_userid;
2011 int save_sec_context;
2012 int save_nestlevel;
2013 VacuumParams toast_vacuum_params;
2014
2015 /*
2016 * This function scribbles on the parameters, so make a copy early to
2017 * avoid affecting the TOAST table (if we do end up recursing to it).
2018 */
2019 memcpy(&toast_vacuum_params, &params, sizeof(VacuumParams));
2020
2021 /* Begin a transaction for vacuuming this relation */
2023
2024 if (!(params.options & VACOPT_FULL))
2025 {
2026 /*
2027 * In lazy vacuum, we can set the PROC_IN_VACUUM flag, which lets
2028 * other concurrent VACUUMs know that they can ignore this one while
2029 * determining their OldestXmin. (The reason we don't set it during a
2030 * full VACUUM is exactly that we may have to run user-defined
2031 * functions for functional indexes, and we want to make sure that if
2032 * they use the snapshot set above, any tuples it requires can't get
2033 * removed from other tables. An index function that depends on the
2034 * contents of other tables is arguably broken, but we won't break it
2035 * here by violating transaction semantics.)
2036 *
2037 * We also set the VACUUM_FOR_WRAPAROUND flag, which is passed down by
2038 * autovacuum; it's used to avoid canceling a vacuum that was invoked
2039 * in an emergency.
2040 *
2041 * Note: these flags remain set until CommitTransaction or
2042 * AbortTransaction. We don't want to clear them until we reset
2043 * MyProc->xid/xmin, otherwise GetOldestNonRemovableTransactionId()
2044 * might appear to go backwards, which is probably Not Good. (We also
2045 * set PROC_IN_VACUUM *before* taking our own snapshot, so that our
2046 * xmin doesn't become visible ahead of setting the flag.)
2047 */
2048 LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
2050 if (params.is_wraparound)
2053 LWLockRelease(ProcArrayLock);
2054 }
2055
2056 /*
2057 * Need to acquire a snapshot to prevent pg_subtrans from being truncated,
2058 * cutoff xids in local memory wrapping around, and to have updated xmin
2059 * horizons.
2060 */
2062
2063 /*
2064 * Check for user-requested abort. Note we want this to be inside a
2065 * transaction, so xact.c doesn't issue useless WARNING.
2066 */
2068
2069 /*
2070 * Determine the type of lock we want --- hard exclusive lock for a FULL
2071 * vacuum, but just ShareUpdateExclusiveLock for concurrent vacuum. Either
2072 * way, we can be sure that no other backend is vacuuming the same table.
2073 */
2074 lmode = (params.options & VACOPT_FULL) ?
2076
2077 /* open the relation and get the appropriate lock on it */
2078 rel = vacuum_open_relation(relid, relation, params.options,
2079 params.log_vacuum_min_duration >= 0, lmode);
2080
2081 /* leave if relation could not be opened or locked */
2082 if (!rel)
2083 {
2086 return false;
2087 }
2088
2089 /*
2090 * When recursing to a TOAST table, check privileges on the parent. NB:
2091 * This is only safe to do because we hold a session lock on the main
2092 * relation that prevents concurrent deletion.
2093 */
2094 if (OidIsValid(params.toast_parent))
2095 priv_relid = params.toast_parent;
2096 else
2097 priv_relid = RelationGetRelid(rel);
2098
2099 /*
2100 * Check if relation needs to be skipped based on privileges. This check
2101 * happens also when building the relation list to vacuum for a manual
2102 * operation, and needs to be done additionally here as VACUUM could
2103 * happen across multiple transactions where privileges could have changed
2104 * in-between. Make sure to only generate logs for VACUUM in this case.
2105 */
2106 if (!vacuum_is_permitted_for_relation(priv_relid,
2107 rel->rd_rel,
2108 params.options & ~VACOPT_ANALYZE))
2109 {
2110 relation_close(rel, lmode);
2113 return false;
2114 }
2115
2116 /*
2117 * Check that it's of a vacuumable relkind.
2118 */
2119 if (rel->rd_rel->relkind != RELKIND_RELATION &&
2120 rel->rd_rel->relkind != RELKIND_MATVIEW &&
2121 rel->rd_rel->relkind != RELKIND_TOASTVALUE &&
2122 rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
2123 {
2125 (errmsg("skipping \"%s\" --- cannot vacuum non-tables or special system tables",
2127 relation_close(rel, lmode);
2130 return false;
2131 }
2132
2133 /*
2134 * Silently ignore tables that are temp tables of other backends ---
2135 * trying to vacuum these will lead to great unhappiness, since their
2136 * contents are probably not up-to-date on disk. (We don't throw a
2137 * warning here; it would just lead to chatter during a database-wide
2138 * VACUUM.)
2139 */
2140 if (RELATION_IS_OTHER_TEMP(rel))
2141 {
2142 relation_close(rel, lmode);
2145 return false;
2146 }
2147
2148 /*
2149 * Silently ignore partitioned tables as there is no work to be done. The
2150 * useful work is on their child partitions, which have been queued up for
2151 * us separately.
2152 */
2153 if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
2154 {
2155 relation_close(rel, lmode);
2158 /* It's OK to proceed with ANALYZE on this table */
2159 return true;
2160 }
2161
2162 /*
2163 * Get a session-level lock too. This will protect our access to the
2164 * relation across multiple transactions, so that we can vacuum the
2165 * relation's TOAST table (if any) secure in the knowledge that no one is
2166 * deleting the parent relation.
2167 *
2168 * NOTE: this cannot block, even if someone else is waiting for access,
2169 * because the lock manager knows that both lock requests are from the
2170 * same process.
2171 */
2172 lockrelid = rel->rd_lockInfo.lockRelId;
2173 LockRelationIdForSession(&lockrelid, lmode);
2174
2175 /*
2176 * Set index_cleanup option based on index_cleanup reloption if it wasn't
2177 * specified in VACUUM command, or when running in an autovacuum worker
2178 */
2180 {
2181 StdRdOptIndexCleanup vacuum_index_cleanup;
2182
2183 if (rel->rd_options == NULL)
2184 vacuum_index_cleanup = STDRD_OPTION_VACUUM_INDEX_CLEANUP_AUTO;
2185 else
2186 vacuum_index_cleanup =
2187 ((StdRdOptions *) rel->rd_options)->vacuum_index_cleanup;
2188
2189 if (vacuum_index_cleanup == STDRD_OPTION_VACUUM_INDEX_CLEANUP_AUTO)
2191 else if (vacuum_index_cleanup == STDRD_OPTION_VACUUM_INDEX_CLEANUP_ON)
2193 else
2194 {
2195 Assert(vacuum_index_cleanup ==
2198 }
2199 }
2200
2201#ifdef USE_INJECTION_POINTS
2202 if (params.index_cleanup == VACOPTVALUE_AUTO)
2203 INJECTION_POINT("vacuum-index-cleanup-auto", NULL);
2204 else if (params.index_cleanup == VACOPTVALUE_DISABLED)
2205 INJECTION_POINT("vacuum-index-cleanup-disabled", NULL);
2206 else if (params.index_cleanup == VACOPTVALUE_ENABLED)
2207 INJECTION_POINT("vacuum-index-cleanup-enabled", NULL);
2208#endif
2209
2210 /*
2211 * Check if the vacuum_max_eager_freeze_failure_rate table storage
2212 * parameter was specified. This overrides the GUC value.
2213 */
2214 if (rel->rd_options != NULL &&
2215 ((StdRdOptions *) rel->rd_options)->vacuum_max_eager_freeze_failure_rate >= 0)
2217 ((StdRdOptions *) rel->rd_options)->vacuum_max_eager_freeze_failure_rate;
2218
2219 /*
2220 * Set truncate option based on truncate reloption or GUC if it wasn't
2221 * specified in VACUUM command, or when running in an autovacuum worker
2222 */
2223 if (params.truncate == VACOPTVALUE_UNSPECIFIED)
2224 {
2226
2227 if (opts && opts->vacuum_truncate_set)
2228 {
2229 if (opts->vacuum_truncate)
2231 else
2233 }
2234 else if (vacuum_truncate)
2236 else
2238 }
2239
2240#ifdef USE_INJECTION_POINTS
2241 if (params.truncate == VACOPTVALUE_AUTO)
2242 INJECTION_POINT("vacuum-truncate-auto", NULL);
2243 else if (params.truncate == VACOPTVALUE_DISABLED)
2244 INJECTION_POINT("vacuum-truncate-disabled", NULL);
2245 else if (params.truncate == VACOPTVALUE_ENABLED)
2246 INJECTION_POINT("vacuum-truncate-enabled", NULL);
2247#endif
2248
2249 /*
2250 * Remember the relation's TOAST relation for later, if the caller asked
2251 * us to process it. In VACUUM FULL, though, the toast table is
2252 * automatically rebuilt by cluster_rel so we shouldn't recurse to it,
2253 * unless PROCESS_MAIN is disabled.
2254 */
2255 if ((params.options & VACOPT_PROCESS_TOAST) != 0 &&
2256 ((params.options & VACOPT_FULL) == 0 ||
2257 (params.options & VACOPT_PROCESS_MAIN) == 0))
2258 toast_relid = rel->rd_rel->reltoastrelid;
2259 else
2260 toast_relid = InvalidOid;
2261
2262 /*
2263 * Switch to the table owner's userid, so that any index functions are run
2264 * as that user. Also lock down security-restricted operations and
2265 * arrange to make GUC variable changes local to this command. (This is
2266 * unnecessary, but harmless, for lazy VACUUM.)
2267 */
2268 GetUserIdAndSecContext(&save_userid, &save_sec_context);
2269 SetUserIdAndSecContext(rel->rd_rel->relowner,
2270 save_sec_context | SECURITY_RESTRICTED_OPERATION);
2271 save_nestlevel = NewGUCNestLevel();
2273
2274 /*
2275 * If PROCESS_MAIN is set (the default), it's time to vacuum the main
2276 * relation. Otherwise, we can skip this part. If processing the TOAST
2277 * table is required (e.g., PROCESS_TOAST is set), we force PROCESS_MAIN
2278 * to be set when we recurse to the TOAST table.
2279 */
2280 if (params.options & VACOPT_PROCESS_MAIN)
2281 {
2282 /*
2283 * Do the actual work --- either FULL or "lazy" vacuum
2284 */
2285 if (params.options & VACOPT_FULL)
2286 {
2287 ClusterParams cluster_params = {0};
2288
2289 if ((params.options & VACOPT_VERBOSE) != 0)
2290 cluster_params.options |= CLUOPT_VERBOSE;
2291
2292 /* VACUUM FULL is now a variant of CLUSTER; see cluster.c */
2293 cluster_rel(rel, InvalidOid, &cluster_params);
2294 /* cluster_rel closes the relation, but keeps lock */
2295
2296 rel = NULL;
2297 }
2298 else
2299 table_relation_vacuum(rel, params, bstrategy);
2300 }
2301
2302 /* Roll back any GUC changes executed by index functions */
2303 AtEOXact_GUC(false, save_nestlevel);
2304
2305 /* Restore userid and security context */
2306 SetUserIdAndSecContext(save_userid, save_sec_context);
2307
2308 /* all done with this class, but hold lock until commit */
2309 if (rel)
2310 relation_close(rel, NoLock);
2311
2312 /*
2313 * Complete the transaction and free all temporary memory used.
2314 */
2317
2318 /*
2319 * If the relation has a secondary toast rel, vacuum that too while we
2320 * still hold the session lock on the main table. Note however that
2321 * "analyze" will not get done on the toast table. This is good, because
2322 * the toaster always uses hardcoded index access and statistics are
2323 * totally unimportant for toast relations.
2324 */
2325 if (toast_relid != InvalidOid)
2326 {
2327 /*
2328 * Force VACOPT_PROCESS_MAIN so vacuum_rel() processes it. Likewise,
2329 * set toast_parent so that the privilege checks are done on the main
2330 * relation. NB: This is only safe to do because we hold a session
2331 * lock on the main relation that prevents concurrent deletion.
2332 */
2333 toast_vacuum_params.options |= VACOPT_PROCESS_MAIN;
2334 toast_vacuum_params.toast_parent = relid;
2335
2336 vacuum_rel(toast_relid, NULL, toast_vacuum_params, bstrategy);
2337 }
2338
2339 /*
2340 * Now release the session-level lock on the main table.
2341 */
2342 UnlockRelationIdForSession(&lockrelid, lmode);
2343
2344 /* Report that we really did it. */
2345 return true;
2346}
2347
2348
2349/*
2350 * Open all the vacuumable indexes of the given relation, obtaining the
2351 * specified kind of lock on each. Return an array of Relation pointers for
2352 * the indexes into *Irel, and the number of indexes into *nindexes.
2353 *
2354 * We consider an index vacuumable if it is marked insertable (indisready).
2355 * If it isn't, probably a CREATE INDEX CONCURRENTLY command failed early in
2356 * execution, and what we have is too corrupt to be processable. We will
2357 * vacuum even if the index isn't indisvalid; this is important because in a
2358 * unique index, uniqueness checks will be performed anyway and had better not
2359 * hit dangling index pointers.
2360 */
2361void
2363 int *nindexes, Relation **Irel)
2364{
2365 List *indexoidlist;
2366 ListCell *indexoidscan;
2367 int i;
2368
2369 Assert(lockmode != NoLock);
2370
2371 indexoidlist = RelationGetIndexList(relation);
2372
2373 /* allocate enough memory for all indexes */
2374 i = list_length(indexoidlist);
2375
2376 if (i > 0)
2377 *Irel = (Relation *) palloc(i * sizeof(Relation));
2378 else
2379 *Irel = NULL;
2380
2381 /* collect just the ready indexes */
2382 i = 0;
2383 foreach(indexoidscan, indexoidlist)
2384 {
2385 Oid indexoid = lfirst_oid(indexoidscan);
2386 Relation indrel;
2387
2388 indrel = index_open(indexoid, lockmode);
2389 if (indrel->rd_index->indisready)
2390 (*Irel)[i++] = indrel;
2391 else
2392 index_close(indrel, lockmode);
2393 }
2394
2395 *nindexes = i;
2396
2397 list_free(indexoidlist);
2398}
2399
2400/*
2401 * Release the resources acquired by vac_open_indexes. Optionally release
2402 * the locks (say NoLock to keep 'em).
2403 */
2404void
2405vac_close_indexes(int nindexes, Relation *Irel, LOCKMODE lockmode)
2406{
2407 if (Irel == NULL)
2408 return;
2409
2410 while (nindexes--)
2411 {
2412 Relation ind = Irel[nindexes];
2413
2414 index_close(ind, lockmode);
2415 }
2416 pfree(Irel);
2417}
2418
2419/*
2420 * vacuum_delay_point --- check for interrupts and cost-based delay.
2421 *
2422 * This should be called in each major loop of VACUUM processing,
2423 * typically once per page processed.
2424 */
2425void
2426vacuum_delay_point(bool is_analyze)
2427{
2428 double msec = 0;
2429
2430 /* Always check for interrupts */
2432
2433 if (InterruptPending ||
2435 return;
2436
2437 /*
2438 * Autovacuum workers should reload the configuration file if requested.
2439 * This allows changes to [autovacuum_]vacuum_cost_limit and
2440 * [autovacuum_]vacuum_cost_delay to take effect while a table is being
2441 * vacuumed or analyzed.
2442 */
2444 {
2445 ConfigReloadPending = false;
2448 }
2449
2450 /*
2451 * If we disabled cost-based delays after reloading the config file,
2452 * return.
2453 */
2454 if (!VacuumCostActive)
2455 return;
2456
2457 /*
2458 * For parallel vacuum, the delay is computed based on the shared cost
2459 * balance. See compute_parallel_delay.
2460 */
2461 if (VacuumSharedCostBalance != NULL)
2462 msec = compute_parallel_delay();
2465
2466 /* Nap if appropriate */
2467 if (msec > 0)
2468 {
2469 instr_time delay_start;
2470
2471 if (msec > vacuum_cost_delay * 4)
2472 msec = vacuum_cost_delay * 4;
2473
2475 INSTR_TIME_SET_CURRENT(delay_start);
2476
2477 pgstat_report_wait_start(WAIT_EVENT_VACUUM_DELAY);
2478 pg_usleep(msec * 1000);
2480
2482 {
2483 instr_time delay_end;
2484 instr_time delay;
2485
2486 INSTR_TIME_SET_CURRENT(delay_end);
2487 INSTR_TIME_SET_ZERO(delay);
2488 INSTR_TIME_ACCUM_DIFF(delay, delay_end, delay_start);
2489
2490 /*
2491 * For parallel workers, we only report the delay time every once
2492 * in a while to avoid overloading the leader with messages and
2493 * interrupts.
2494 */
2495 if (IsParallelWorker())
2496 {
2497 static instr_time last_report_time;
2498 instr_time time_since_last_report;
2499
2500 Assert(!is_analyze);
2501
2502 /* Accumulate the delay time */
2504
2505 /* Calculate interval since last report */
2506 INSTR_TIME_SET_ZERO(time_since_last_report);
2507 INSTR_TIME_ACCUM_DIFF(time_since_last_report, delay_end, last_report_time);
2508
2509 /* If we haven't reported in a while, do so now */
2510 if (INSTR_TIME_GET_NANOSEC(time_since_last_report) >=
2512 {
2515
2516 /* Reset variables */
2517 last_report_time = delay_end;
2519 }
2520 }
2521 else if (is_analyze)
2523 INSTR_TIME_GET_NANOSEC(delay));
2524 else
2526 INSTR_TIME_GET_NANOSEC(delay));
2527 }
2528
2529 /*
2530 * We don't want to ignore postmaster death during very long vacuums
2531 * with vacuum_cost_delay configured. We can't use the usual
2532 * WaitLatch() approach here because we want microsecond-based sleep
2533 * durations above.
2534 */
2536 exit(1);
2537
2539
2540 /*
2541 * Balance and update limit values for autovacuum workers. We must do
2542 * this periodically, as the number of workers across which we are
2543 * balancing the limit may have changed.
2544 *
2545 * TODO: There may be better criteria for determining when to do this
2546 * besides "check after napping".
2547 */
2549
2550 /* Might have gotten an interrupt while sleeping */
2552 }
2553}
2554
2555/*
2556 * Computes the vacuum delay for parallel workers.
2557 *
2558 * The basic idea of a cost-based delay for parallel vacuum is to allow each
2559 * worker to sleep in proportion to the share of work it's done. We achieve this
2560 * by allowing all parallel vacuum workers including the leader process to
2561 * have a shared view of cost related parameters (mainly VacuumCostBalance).
2562 * We allow each worker to update it as and when it has incurred any cost and
2563 * then based on that decide whether it needs to sleep. We compute the time
2564 * to sleep for a worker based on the cost it has incurred
2565 * (VacuumCostBalanceLocal) and then reduce the VacuumSharedCostBalance by
2566 * that amount. This avoids putting to sleep those workers which have done less
2567 * I/O than other workers and therefore ensure that workers
2568 * which are doing more I/O got throttled more.
2569 *
2570 * We allow a worker to sleep only if it has performed I/O above a certain
2571 * threshold, which is calculated based on the number of active workers
2572 * (VacuumActiveNWorkers), and the overall cost balance is more than
2573 * VacuumCostLimit set by the system. Testing reveals that we achieve
2574 * the required throttling if we force a worker that has done more than 50%
2575 * of its share of work to sleep.
2576 */
2577static double
2579{
2580 double msec = 0;
2581 uint32 shared_balance;
2582 int nworkers;
2583
2584 /* Parallel vacuum must be active */
2586
2588
2589 /* At least count itself */
2590 Assert(nworkers >= 1);
2591
2592 /* Update the shared cost balance value atomically */
2594
2595 /* Compute the total local balance for the current worker */
2597
2598 if ((shared_balance >= vacuum_cost_limit) &&
2599 (VacuumCostBalanceLocal > 0.5 * ((double) vacuum_cost_limit / nworkers)))
2600 {
2601 /* Compute sleep time based on the local cost balance */
2605 }
2606
2607 /*
2608 * Reset the local balance as we accumulated it into the shared value.
2609 */
2611
2612 return msec;
2613}
2614
2615/*
2616 * A wrapper function of defGetBoolean().
2617 *
2618 * This function returns VACOPTVALUE_ENABLED and VACOPTVALUE_DISABLED instead
2619 * of true and false.
2620 */
2621static VacOptValue
2623{
2625}
2626
2627/*
2628 * vac_bulkdel_one_index() -- bulk-deletion for index relation.
2629 *
2630 * Returns bulk delete stats derived from input stats
2631 */
2634 TidStore *dead_items, VacDeadItemsInfo *dead_items_info)
2635{
2636 /* Do bulk deletion */
2637 istat = index_bulk_delete(ivinfo, istat, vac_tid_reaped,
2638 dead_items);
2639
2640 ereport(ivinfo->message_level,
2641 (errmsg("scanned index \"%s\" to remove %" PRId64 " row versions",
2643 dead_items_info->num_items)));
2644
2645 return istat;
2646}
2647
2648/*
2649 * vac_cleanup_one_index() -- do post-vacuum cleanup for index relation.
2650 *
2651 * Returns bulk delete stats derived from input stats
2652 */
2655{
2656 istat = index_vacuum_cleanup(ivinfo, istat);
2657
2658 if (istat)
2659 ereport(ivinfo->message_level,
2660 (errmsg("index \"%s\" now contains %.0f row versions in %u pages",
2662 istat->num_index_tuples,
2663 istat->num_pages),
2664 errdetail("%.0f index row versions were removed.\n"
2665 "%u index pages were newly deleted.\n"
2666 "%u index pages are currently deleted, of which %u are currently reusable.",
2667 istat->tuples_removed,
2668 istat->pages_newly_deleted,
2669 istat->pages_deleted, istat->pages_free)));
2670
2671 return istat;
2672}
2673
2674/*
2675 * vac_tid_reaped() -- is a particular tid deletable?
2676 *
2677 * This has the right signature to be an IndexBulkDeleteCallback.
2678 */
2679static bool
2681{
2682 TidStore *dead_items = (TidStore *) state;
2683
2684 return TidStoreIsMember(dead_items, itemptr);
2685}
@ ACLCHECK_OK
Definition: acl.h:183
bool object_ownercheck(Oid classid, Oid objectid, Oid roleid)
Definition: aclchk.c:4090
AclResult pg_class_aclcheck(Oid table_oid, Oid roleid, AclMode mode)
Definition: aclchk.c:4039
void AsyncNotifyFreezeXids(TransactionId newFrozenXid)
Definition: async.c:2196
static uint32 pg_atomic_sub_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
Definition: atomics.h:439
static uint32 pg_atomic_add_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 add_)
Definition: atomics.h:424
static uint32 pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
Definition: atomics.h:237
void VacuumUpdateCosts(void)
Definition: autovacuum.c:1668
int autovacuum_multixact_freeze_max_age
Definition: autovacuum.c:130
int autovacuum_freeze_max_age
Definition: autovacuum.c:129
void AutoVacuumUpdateCostLimit(void)
Definition: autovacuum.c:1737
void pgstat_progress_parallel_incr_param(int index, int64 incr)
void pgstat_progress_incr_param(int index, int64 incr)
#define MAX_PARALLEL_WORKER_LIMIT
uint32 BlockNumber
Definition: block.h:31
@ BAS_VACUUM
Definition: bufmgr.h:40
#define NameStr(name)
Definition: c.h:765
#define Min(x, y)
Definition: c.h:1016
#define Max(x, y)
Definition: c.h:1010
int64_t int64
Definition: c.h:549
TransactionId MultiXactId
Definition: c.h:681
uint32 bits32
Definition: c.h:561
int32_t int32
Definition: c.h:548
uint32_t uint32
Definition: c.h:552
float float4
Definition: c.h:648
uint32 TransactionId
Definition: c.h:671
#define OidIsValid(objectId)
Definition: c.h:788
void TruncateCLOG(TransactionId oldestXact, Oid oldestxid_datoid)
Definition: clog.c:967
void cluster_rel(Relation OldHeap, Oid indexOid, ClusterParams *params)
Definition: cluster.c:311
#define CLUOPT_VERBOSE
Definition: cluster.h:23
void analyze_rel(Oid relid, RangeVar *relation, const VacuumParams params, List *va_cols, bool in_outer_xact, BufferAccessStrategy bstrategy)
Definition: analyze.c:108
void AdvanceOldestCommitTsXid(TransactionId oldestXact)
Definition: commit_ts.c:914
void TruncateCommitTs(TransactionId oldestXact)
Definition: commit_ts.c:861
bool database_is_invalid_form(Form_pg_database datform)
Definition: dbcommands.c:3215
int32 defGetInt32(DefElem *def)
Definition: define.c:149
char * defGetString(DefElem *def)
Definition: define.c:35
bool defGetBoolean(DefElem *def)
Definition: define.c:94
struct cursor * cur
Definition: ecpg.c:29
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errdetail(const char *fmt,...)
Definition: elog.c:1216
int errhint_internal(const char *fmt,...)
Definition: elog.c:1352
int errhint(const char *fmt,...)
Definition: elog.c:1330
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define _(x)
Definition: elog.c:91
#define LOG
Definition: elog.h:31
#define PG_TRY(...)
Definition: elog.h:372
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define PG_END_TRY(...)
Definition: elog.h:397
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define PG_FINALLY(...)
Definition: elog.h:389
#define ereport(elevel,...)
Definition: elog.h:150
BufferAccessStrategy GetAccessStrategyWithSize(BufferAccessStrategyType btype, int ring_size_kb)
Definition: freelist.c:546
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:603
void systable_inplace_update_cancel(void *state)
Definition: genam.c:902
void systable_inplace_update_begin(Relation relation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, const ScanKeyData *key, HeapTuple *oldtupcopy, void **state)
Definition: genam.c:807
void systable_inplace_update_finish(void *state, HeapTuple tuple)
Definition: genam.c:883
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:514
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:388
volatile sig_atomic_t InterruptPending
Definition: globals.c:32
bool VacuumCostActive
Definition: globals.c:158
bool IsUnderPostmaster
Definition: globals.c:120
int VacuumCostBalance
Definition: globals.c:157
int VacuumBufferUsageLimit
Definition: globals.c:149
Oid MyDatabaseId
Definition: globals.c:94
void ProcessConfigFile(GucContext context)
Definition: guc-file.l:120
bool parse_int(const char *value, int *result, int flags, const char **hintmsg)
Definition: guc.c:2743
int NewGUCNestLevel(void)
Definition: guc.c:2110
#define newval
void RestrictSearchPath(void)
Definition: guc.c:2121
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:2137
#define GUC_check_errdetail
Definition: guc.h:505
GucSource
Definition: guc.h:112
@ PGC_SIGHUP
Definition: guc.h:75
#define GUC_UNIT_KB
Definition: guc.h:232
Assert(PointerIsAligned(start, uint64))
HeapTuple heap_getnext(TableScanDesc sscan, ScanDirection direction)
Definition: heapam.c:1361
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1435
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
#define IsParallelWorker()
Definition: parallel.h:60
int verbose
IndexBulkDeleteResult * index_vacuum_cleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *istat)
Definition: indexam.c:826
IndexBulkDeleteResult * index_bulk_delete(IndexVacuumInfo *info, IndexBulkDeleteResult *istat, IndexBulkDeleteCallback callback, void *callback_state)
Definition: indexam.c:805
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
#define INJECTION_POINT(name, arg)
#define INSTR_TIME_SET_CURRENT(t)
Definition: instr_time.h:122
#define INSTR_TIME_GET_NANOSEC(t)
Definition: instr_time.h:125
#define INSTR_TIME_SET_ZERO(t)
Definition: instr_time.h:172
#define INSTR_TIME_ACCUM_DIFF(x, y, z)
Definition: instr_time.h:184
volatile sig_atomic_t ConfigReloadPending
Definition: interrupt.c:27
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
void list_free(List *list)
Definition: list.c:1546
bool ConditionalLockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:151
void UnlockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:229
void LockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:391
void UnlockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:404
void LockDatabaseFrozenIds(LOCKMODE lockmode)
Definition: lmgr.c:491
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define AccessShareLock
Definition: lockdefs.h:36
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define ExclusiveLock
Definition: lockdefs.h:42
#define RowExclusiveLock
Definition: lockdefs.h:38
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1174
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1894
@ LW_EXCLUSIVE
Definition: lwlock.h:112
VacuumRelation * makeVacuumRelation(RangeVar *relation, Oid oid, List *va_cols)
Definition: makefuncs.c:907
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc(Size size)
Definition: mcxt.c:1365
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:469
MemoryContext PortalContext
Definition: mcxt.c:175
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define AmAutoVacuumWorkerProcess()
Definition: miscadmin.h:383
#define MIN_BAS_VAC_RING_SIZE_KB
Definition: miscadmin.h:278
#define MAX_BAS_VAC_RING_SIZE_KB
Definition: miscadmin.h:279
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:319
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:612
Oid GetUserId(void)
Definition: miscinit.c:469
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:619
bool MultiXactIdPrecedes(MultiXactId multi1, MultiXactId multi2)
Definition: multixact.c:2828
bool MultiXactIdPrecedesOrEquals(MultiXactId multi1, MultiXactId multi2)
Definition: multixact.c:2842
MultiXactId GetOldestMultiXactId(void)
Definition: multixact.c:2300
int MultiXactMemberFreezeThreshold(void)
Definition: multixact.c:2510
MultiXactId ReadNextMultiXactId(void)
Definition: multixact.c:622
void TruncateMultiXact(MultiXactId newOldestMulti, Oid newOldestMultiDB)
Definition: multixact.c:2619
void SetMultiXactIdLimit(MultiXactId oldest_datminmxid, Oid oldest_datoid)
Definition: multixact.c:2011
#define MultiXactIdIsValid(multi)
Definition: multixact.h:29
#define FirstMultiXactId
Definition: multixact.h:26
Oid RangeVarGetRelidExtended(const RangeVar *relation, LOCKMODE lockmode, uint32 flags, RangeVarGetRelidCallback callback, void *callback_arg)
Definition: namespace.c:440
@ RVR_SKIP_LOCKED
Definition: namespace.h:92
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:106
#define ACL_MAINTAIN
Definition: parsenodes.h:90
static AmcheckOptions opts
Definition: pg_amcheck.c:112
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:42
NameData relname
Definition: pg_class.h:38
FormData_pg_class * Form_pg_class
Definition: pg_class.h:156
FormData_pg_class
Definition: pg_class.h:145
TransactionId datfrozenxid
Definition: pg_database.h:62
TransactionId datminmxid
Definition: pg_database.h:65
FormData_pg_database * Form_pg_database
Definition: pg_database.h:96
FormData_pg_database
Definition: pg_database.h:89
List * find_all_inheritors(Oid parentrelId, LOCKMODE lockmode, List **numparents)
Definition: pg_inherits.c:255
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define lfirst_oid(lc)
Definition: pg_list.h:174
static rewind_source * source
Definition: pg_rewind.c:89
#define ERRCODE_UNDEFINED_TABLE
Definition: pgbench.c:79
#define PostmasterIsAlive()
Definition: pmsignal.h:107
int pg_strcasecmp(const char *s1, const char *s2)
Definition: pgstrcasecmp.c:32
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:262
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
#define PROC_IN_VACUUM
Definition: proc.h:58
#define PROC_VACUUM_FOR_WRAPAROUND
Definition: proc.h:60
TransactionId GetOldestNonRemovableTransactionId(Relation rel)
Definition: procarray.c:1953
#define PROGRESS_VACUUM_DELAY_TIME
Definition: progress.h:31
#define PROGRESS_ANALYZE_DELAY_TIME
Definition: progress.h:62
static long analyze(struct nfa *nfa)
Definition: regc_nfa.c:3051
#define RelationGetRelid(relation)
Definition: rel.h:515
#define RelationGetRelationName(relation)
Definition: rel.h:549
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:668
StdRdOptIndexCleanup
Definition: rel.h:335
@ STDRD_OPTION_VACUUM_INDEX_CLEANUP_AUTO
Definition: rel.h:336
@ STDRD_OPTION_VACUUM_INDEX_CLEANUP_OFF
Definition: rel.h:337
@ STDRD_OPTION_VACUUM_INDEX_CLEANUP_ON
Definition: rel.h:338
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4836
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
@ ForwardScanDirection
Definition: sdir.h:28
void pg_usleep(long microsec)
Definition: signal.c:53
Snapshot GetTransactionSnapshot(void)
Definition: snapmgr.c:272
void PushActiveSnapshot(Snapshot snapshot)
Definition: snapmgr.c:682
bool ActiveSnapshotSet(void)
Definition: snapmgr.c:812
void PopActiveSnapshot(void)
Definition: snapmgr.c:775
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:205
Relation try_relation_open(Oid relationId, LOCKMODE lockmode)
Definition: relation.c:88
PGPROC * MyProc
Definition: proc.c:67
PROC_HDR * ProcGlobal
Definition: proc.c:79
#define BTEqualStrategyNumber
Definition: stratnum.h:31
bits32 options
Definition: cluster.h:30
char * defname
Definition: parsenodes.h:843
ParseLoc location
Definition: parsenodes.h:847
Node * arg
Definition: parsenodes.h:844
BlockNumber pages_deleted
Definition: genam.h:109
BlockNumber pages_newly_deleted
Definition: genam.h:108
BlockNumber pages_free
Definition: genam.h:110
BlockNumber num_pages
Definition: genam.h:104
double tuples_removed
Definition: genam.h:107
double num_index_tuples
Definition: genam.h:106
Relation index
Definition: genam.h:73
int message_level
Definition: genam.h:78
Definition: pg_list.h:54
LockRelId lockRelId
Definition: rel.h:46
Definition: rel.h:39
uint8 statusFlags
Definition: proc.h:259
int pgxactoff
Definition: proc.h:201
uint8 * statusFlags
Definition: proc.h:403
char * relname
Definition: primnodes.h:83
bool inh
Definition: primnodes.h:86
LockInfoData rd_lockInfo
Definition: rel.h:114
TriggerDesc * trigdesc
Definition: rel.h:117
Form_pg_index rd_index
Definition: rel.h:192
RuleLock * rd_rules
Definition: rel.h:115
bytea * rd_options
Definition: rel.h:175
Form_pg_class rd_rel
Definition: rel.h:111
int64 num_items
Definition: vacuum.h:300
TransactionId FreezeLimit
Definition: vacuum.h:289
TransactionId OldestXmin
Definition: vacuum.h:279
TransactionId relfrozenxid
Definition: vacuum.h:263
MultiXactId relminmxid
Definition: vacuum.h:264
MultiXactId MultiXactCutoff
Definition: vacuum.h:290
MultiXactId OldestMxact
Definition: vacuum.h:280
int nworkers
Definition: vacuum.h:251
int freeze_table_age
Definition: vacuum.h:221
VacOptValue truncate
Definition: vacuum.h:236
bits32 options
Definition: vacuum.h:219
int freeze_min_age
Definition: vacuum.h:220
int log_vacuum_min_duration
Definition: vacuum.h:227
bool is_wraparound
Definition: vacuum.h:226
int multixact_freeze_min_age
Definition: vacuum.h:222
int multixact_freeze_table_age
Definition: vacuum.h:224
Oid toast_parent
Definition: vacuum.h:237
VacOptValue index_cleanup
Definition: vacuum.h:235
int log_analyze_min_duration
Definition: vacuum.h:231
double max_eager_freeze_failure_rate
Definition: vacuum.h:244
RangeVar * relation
Definition: parsenodes.h:3991
List * options
Definition: parsenodes.h:3976
bool is_vacuumcmd
Definition: parsenodes.h:3978
List * rels
Definition: parsenodes.h:3977
Definition: regguts.h:323
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:264
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:220
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
TableScanDesc table_beginscan_catalog(Relation relation, int nkeys, ScanKeyData *key)
Definition: tableam.c:113
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:985
static void table_relation_vacuum(Relation rel, const VacuumParams params, BufferAccessStrategy bstrategy)
Definition: tableam.h:1686
bool TidStoreIsMember(TidStore *ts, const ItemPointerData *tid)
Definition: tidstore.c:421
static TransactionId ReadNextTransactionId(void)
Definition: transam.h:377
static bool TransactionIdPrecedesOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.h:282
#define FirstNormalTransactionId
Definition: transam.h:34
#define TransactionIdIsValid(xid)
Definition: transam.h:41
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
static bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.h:263
static bool vac_tid_reaped(ItemPointer itemptr, void *state)
Definition: vacuum.c:2680
void ExecVacuum(ParseState *pstate, VacuumStmt *vacstmt, bool isTopLevel)
Definition: vacuum.c:162
pg_atomic_uint32 * VacuumActiveNWorkers
Definition: vacuum.c:117
static void vac_truncate_clog(TransactionId frozenXID, MultiXactId minMulti, TransactionId lastSaneFrozenXid, MultiXactId lastSaneMinMulti)
Definition: vacuum.c:1827
void vacuum(List *relations, const VacuumParams params, BufferAccessStrategy bstrategy, MemoryContext vac_context, bool isTopLevel)
Definition: vacuum.c:494
int vacuum_freeze_min_age
Definition: vacuum.c:75
double vacuum_max_eager_freeze_failure_rate
Definition: vacuum.c:81
bool track_cost_delay_timing
Definition: vacuum.c:82
static List * expand_vacuum_rel(VacuumRelation *vrel, MemoryContext vac_context, int options)
Definition: vacuum.c:883
double vacuum_cost_delay
Definition: vacuum.c:91
static double compute_parallel_delay(void)
Definition: vacuum.c:2578
static VacOptValue get_vacoptval_from_boolean(DefElem *def)
Definition: vacuum.c:2622
void vac_open_indexes(Relation relation, LOCKMODE lockmode, int *nindexes, Relation **Irel)
Definition: vacuum.c:2362
#define PARALLEL_VACUUM_DELAY_REPORT_INTERVAL_NS
Definition: vacuum.c:70
bool check_vacuum_buffer_usage_limit(int *newval, void **extra, GucSource source)
Definition: vacuum.c:139
int VacuumCostBalanceLocal
Definition: vacuum.c:118
static List * get_all_vacuum_rels(MemoryContext vac_context, int options)
Definition: vacuum.c:1038
int vacuum_multixact_freeze_table_age
Definition: vacuum.c:78
int vacuum_freeze_table_age
Definition: vacuum.c:76
IndexBulkDeleteResult * vac_cleanup_one_index(IndexVacuumInfo *ivinfo, IndexBulkDeleteResult *istat)
Definition: vacuum.c:2654
int vacuum_multixact_failsafe_age
Definition: vacuum.c:80
int vacuum_multixact_freeze_min_age
Definition: vacuum.c:77
Relation vacuum_open_relation(Oid relid, RangeVar *relation, bits32 options, bool verbose, LOCKMODE lmode)
Definition: vacuum.c:771
int64 parallel_vacuum_worker_delay_ns
Definition: vacuum.c:95
void vac_close_indexes(int nindexes, Relation *Irel, LOCKMODE lockmode)
Definition: vacuum.c:2405
void vac_update_datfrozenxid(void)
Definition: vacuum.c:1608
void vacuum_delay_point(bool is_analyze)
Definition: vacuum.c:2426
bool vacuum_xid_failsafe_check(const struct VacuumCutoffs *cutoffs)
Definition: vacuum.c:1268
pg_atomic_uint32 * VacuumSharedCostBalance
Definition: vacuum.c:116
bool VacuumFailsafeActive
Definition: vacuum.c:110
int vacuum_cost_limit
Definition: vacuum.c:92
int vacuum_failsafe_age
Definition: vacuum.c:79
double vac_estimate_reltuples(Relation relation, BlockNumber total_pages, BlockNumber scanned_pages, double scanned_tuples)
Definition: vacuum.c:1330
bool vacuum_truncate
Definition: vacuum.c:83
bool vacuum_is_permitted_for_relation(Oid relid, Form_pg_class reltuple, bits32 options)
Definition: vacuum.c:719
static bool vacuum_rel(Oid relid, RangeVar *relation, VacuumParams params, BufferAccessStrategy bstrategy)
Definition: vacuum.c:2002
void vac_update_relstats(Relation relation, BlockNumber num_pages, double num_tuples, BlockNumber num_all_visible_pages, BlockNumber num_all_frozen_pages, bool hasindex, TransactionId frozenxid, MultiXactId minmulti, bool *frozenxid_updated, bool *minmulti_updated, bool in_outer_xact)
Definition: vacuum.c:1426
bool vacuum_get_cutoffs(Relation rel, const VacuumParams params, struct VacuumCutoffs *cutoffs)
Definition: vacuum.c:1100
IndexBulkDeleteResult * vac_bulkdel_one_index(IndexVacuumInfo *ivinfo, IndexBulkDeleteResult *istat, TidStore *dead_items, VacDeadItemsInfo *dead_items_info)
Definition: vacuum.c:2633
#define VACOPT_FREEZE
Definition: vacuum.h:183
#define VACOPT_SKIP_LOCKED
Definition: vacuum.h:185
#define VACOPT_VACUUM
Definition: vacuum.h:180
#define VACOPT_VERBOSE
Definition: vacuum.h:182
#define VACOPT_FULL
Definition: vacuum.h:184
#define VACOPT_SKIP_DATABASE_STATS
Definition: vacuum.h:189
VacOptValue
Definition: vacuum.h:201
@ VACOPTVALUE_AUTO
Definition: vacuum.h:203
@ VACOPTVALUE_ENABLED
Definition: vacuum.h:205
@ VACOPTVALUE_UNSPECIFIED
Definition: vacuum.h:202
@ VACOPTVALUE_DISABLED
Definition: vacuum.h:204
#define VACOPT_PROCESS_TOAST
Definition: vacuum.h:187
#define VACOPT_DISABLE_PAGE_SKIPPING
Definition: vacuum.h:188
#define VACOPT_ONLY_DATABASE_STATS
Definition: vacuum.h:190
#define VACOPT_PROCESS_MAIN
Definition: vacuum.h:186
#define VACOPT_ANALYZE
Definition: vacuum.h:181
void SetTransactionIdLimit(TransactionId oldest_datfrozenxid, Oid oldest_datoid)
Definition: varsup.c:372
bool ForceTransactionIdLimitUpdate(void)
Definition: varsup.c:517
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:69
static void pgstat_report_wait_end(void)
Definition: wait_event.h:85
bool IsInTransactionBlock(bool isTopLevel)
Definition: xact.c:3787
void CommandCounterIncrement(void)
Definition: xact.c:1101
void PreventInTransactionBlock(bool isTopLevel, const char *stmtType)
Definition: xact.c:3666
void StartTransactionCommand(void)
Definition: xact.c:3077
void CommitTransactionCommand(void)
Definition: xact.c:3175