PostgreSQL Source Code git master
analyze.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * analyze.c
4 * the Postgres statistics generator
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/commands/analyze.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include <math.h>
18
19#include "access/detoast.h"
20#include "access/genam.h"
21#include "access/multixact.h"
22#include "access/relation.h"
23#include "access/table.h"
24#include "access/tableam.h"
25#include "access/transam.h"
26#include "access/tupconvert.h"
28#include "access/xact.h"
29#include "catalog/index.h"
30#include "catalog/indexing.h"
31#include "catalog/pg_inherits.h"
32#include "commands/progress.h"
33#include "commands/tablecmds.h"
34#include "commands/vacuum.h"
35#include "common/pg_prng.h"
36#include "executor/executor.h"
37#include "foreign/fdwapi.h"
38#include "miscadmin.h"
39#include "nodes/nodeFuncs.h"
40#include "parser/parse_oper.h"
42#include "pgstat.h"
45#include "storage/bufmgr.h"
46#include "storage/procarray.h"
47#include "utils/attoptcache.h"
48#include "utils/datum.h"
49#include "utils/guc.h"
50#include "utils/lsyscache.h"
51#include "utils/memutils.h"
52#include "utils/pg_rusage.h"
53#include "utils/sampling.h"
54#include "utils/sortsupport.h"
55#include "utils/syscache.h"
56#include "utils/timestamp.h"
57
58
59/* Per-index data for ANALYZE */
60typedef struct AnlIndexData
61{
62 IndexInfo *indexInfo; /* BuildIndexInfo result */
63 double tupleFract; /* fraction of rows for partial index */
64 VacAttrStats **vacattrstats; /* index attrs to analyze */
67
68
69/* Default statistics target (GUC parameter) */
71
72/* A few variables that don't seem worth passing around as parameters */
75
76
77static void do_analyze_rel(Relation onerel,
78 const VacuumParams params, List *va_cols,
79 AcquireSampleRowsFunc acquirefunc, BlockNumber relpages,
80 bool inh, bool in_outer_xact, int elevel);
81static void compute_index_stats(Relation onerel, double totalrows,
82 AnlIndexData *indexdata, int nindexes,
83 HeapTuple *rows, int numrows,
84 MemoryContext col_context);
86 Node *index_expr);
87static int acquire_sample_rows(Relation onerel, int elevel,
88 HeapTuple *rows, int targrows,
89 double *totalrows, double *totaldeadrows);
90static int compare_rows(const void *a, const void *b, void *arg);
91static int acquire_inherited_sample_rows(Relation onerel, int elevel,
92 HeapTuple *rows, int targrows,
93 double *totalrows, double *totaldeadrows);
94static void update_attstats(Oid relid, bool inh,
95 int natts, VacAttrStats **vacattrstats);
96static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
97static Datum ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
98
99
100/*
101 * analyze_rel() -- analyze one relation
102 *
103 * relid identifies the relation to analyze. If relation is supplied, use
104 * the name therein for reporting any failure to open/lock the rel; do not
105 * use it once we've successfully opened the rel, since it might be stale.
106 */
107void
108analyze_rel(Oid relid, RangeVar *relation,
109 const VacuumParams params, List *va_cols, bool in_outer_xact,
110 BufferAccessStrategy bstrategy)
111{
112 Relation onerel;
113 int elevel;
114 AcquireSampleRowsFunc acquirefunc = NULL;
115 BlockNumber relpages = 0;
116
117 /* Select logging level */
118 if (params.options & VACOPT_VERBOSE)
119 elevel = INFO;
120 else
121 elevel = DEBUG2;
122
123 /* Set up static variables */
124 vac_strategy = bstrategy;
125
126 /*
127 * Check for user-requested abort.
128 */
130
131 /*
132 * Open the relation, getting ShareUpdateExclusiveLock to ensure that two
133 * ANALYZEs don't run on it concurrently. (This also locks out a
134 * concurrent VACUUM, which doesn't matter much at the moment but might
135 * matter if we ever try to accumulate stats on dead tuples.) If the rel
136 * has been dropped since we last saw it, we don't need to process it.
137 *
138 * Make sure to generate only logs for ANALYZE in this case.
139 */
140 onerel = vacuum_open_relation(relid, relation, params.options & ~(VACOPT_VACUUM),
141 params.log_analyze_min_duration >= 0,
143
144 /* leave if relation could not be opened or locked */
145 if (!onerel)
146 return;
147
148 /*
149 * Check if relation needs to be skipped based on privileges. This check
150 * happens also when building the relation list to analyze for a manual
151 * operation, and needs to be done additionally here as ANALYZE could
152 * happen across multiple transactions where privileges could have changed
153 * in-between. Make sure to generate only logs for ANALYZE in this case.
154 */
156 onerel->rd_rel,
157 params.options & ~VACOPT_VACUUM))
158 {
160 return;
161 }
162
163 /*
164 * Silently ignore tables that are temp tables of other backends ---
165 * trying to analyze these is rather pointless, since their contents are
166 * probably not up-to-date on disk. (We don't throw a warning here; it
167 * would just lead to chatter during a database-wide ANALYZE.)
168 */
169 if (RELATION_IS_OTHER_TEMP(onerel))
170 {
172 return;
173 }
174
175 /*
176 * We can ANALYZE any table except pg_statistic. See update_attstats
177 */
178 if (RelationGetRelid(onerel) == StatisticRelationId)
179 {
181 return;
182 }
183
184 /*
185 * Check that it's of an analyzable relkind, and set up appropriately.
186 */
187 if (onerel->rd_rel->relkind == RELKIND_RELATION ||
188 onerel->rd_rel->relkind == RELKIND_MATVIEW)
189 {
190 /* Regular table, so we'll use the regular row acquisition function */
191 acquirefunc = acquire_sample_rows;
192 /* Also get regular table's size */
193 relpages = RelationGetNumberOfBlocks(onerel);
194 }
195 else if (onerel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
196 {
197 /*
198 * For a foreign table, call the FDW's hook function to see whether it
199 * supports analysis.
200 */
201 FdwRoutine *fdwroutine;
202 bool ok = false;
203
204 fdwroutine = GetFdwRoutineForRelation(onerel, false);
205
206 if (fdwroutine->AnalyzeForeignTable != NULL)
207 ok = fdwroutine->AnalyzeForeignTable(onerel,
208 &acquirefunc,
209 &relpages);
210
211 if (!ok)
212 {
214 (errmsg("skipping \"%s\" --- cannot analyze this foreign table",
215 RelationGetRelationName(onerel))));
217 return;
218 }
219 }
220 else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
221 {
222 /*
223 * For partitioned tables, we want to do the recursive ANALYZE below.
224 */
225 }
226 else
227 {
228 /* No need for a WARNING if we already complained during VACUUM */
229 if (!(params.options & VACOPT_VACUUM))
231 (errmsg("skipping \"%s\" --- cannot analyze non-tables or special system tables",
232 RelationGetRelationName(onerel))));
234 return;
235 }
236
237 /*
238 * OK, let's do it. First, initialize progress reporting.
239 */
241 RelationGetRelid(onerel));
242
243 /*
244 * Do the normal non-recursive ANALYZE. We can skip this for partitioned
245 * tables, which don't contain any rows.
246 */
247 if (onerel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
248 do_analyze_rel(onerel, params, va_cols, acquirefunc,
249 relpages, false, in_outer_xact, elevel);
250
251 /*
252 * If there are child tables, do recursive ANALYZE.
253 */
254 if (onerel->rd_rel->relhassubclass)
255 do_analyze_rel(onerel, params, va_cols, acquirefunc, relpages,
256 true, in_outer_xact, elevel);
257
258 /*
259 * Close source relation now, but keep lock so that no one deletes it
260 * before we commit. (If someone did, they'd fail to clean up the entries
261 * we made in pg_statistic. Also, releasing the lock before commit would
262 * expose us to concurrent-update failures in update_attstats.)
263 */
264 relation_close(onerel, NoLock);
265
267}
268
269/*
270 * do_analyze_rel() -- analyze one relation, recursively or not
271 *
272 * Note that "acquirefunc" is only relevant for the non-inherited case.
273 * For the inherited case, acquire_inherited_sample_rows() determines the
274 * appropriate acquirefunc for each child table.
275 */
276static void
278 List *va_cols, AcquireSampleRowsFunc acquirefunc,
279 BlockNumber relpages, bool inh, bool in_outer_xact,
280 int elevel)
281{
282 int attr_cnt,
283 tcnt,
284 i,
285 ind;
286 Relation *Irel;
287 int nindexes;
288 bool verbose,
289 instrument,
290 hasindex;
291 VacAttrStats **vacattrstats;
292 AnlIndexData *indexdata;
293 int targrows,
294 numrows,
295 minrows;
296 double totalrows,
297 totaldeadrows;
298 HeapTuple *rows;
299 PGRUsage ru0;
300 TimestampTz starttime = 0;
301 MemoryContext caller_context;
302 Oid save_userid;
303 int save_sec_context;
304 int save_nestlevel;
305 WalUsage startwalusage = pgWalUsage;
306 BufferUsage startbufferusage = pgBufferUsage;
307 BufferUsage bufferusage;
308 PgStat_Counter startreadtime = 0;
309 PgStat_Counter startwritetime = 0;
310
311 verbose = (params.options & VACOPT_VERBOSE) != 0;
312 instrument = (verbose || (AmAutoVacuumWorkerProcess() &&
313 params.log_analyze_min_duration >= 0));
314 if (inh)
315 ereport(elevel,
316 (errmsg("analyzing \"%s.%s\" inheritance tree",
318 RelationGetRelationName(onerel))));
319 else
320 ereport(elevel,
321 (errmsg("analyzing \"%s.%s\"",
323 RelationGetRelationName(onerel))));
324
325 /*
326 * Set up a working context so that we can easily free whatever junk gets
327 * created.
328 */
330 "Analyze",
332 caller_context = MemoryContextSwitchTo(anl_context);
333
334 /*
335 * Switch to the table owner's userid, so that any index functions are run
336 * as that user. Also lock down security-restricted operations and
337 * arrange to make GUC variable changes local to this command.
338 */
339 GetUserIdAndSecContext(&save_userid, &save_sec_context);
340 SetUserIdAndSecContext(onerel->rd_rel->relowner,
341 save_sec_context | SECURITY_RESTRICTED_OPERATION);
342 save_nestlevel = NewGUCNestLevel();
344
345 /*
346 * When verbose or autovacuum logging is used, initialize a resource usage
347 * snapshot and optionally track I/O timing.
348 */
349 if (instrument)
350 {
351 if (track_io_timing)
352 {
353 startreadtime = pgStatBlockReadTime;
354 startwritetime = pgStatBlockWriteTime;
355 }
356
357 pg_rusage_init(&ru0);
358 }
359
360 /* Used for instrumentation and stats report */
361 starttime = GetCurrentTimestamp();
362
363 /*
364 * Determine which columns to analyze
365 *
366 * Note that system attributes are never analyzed, so we just reject them
367 * at the lookup stage. We also reject duplicate column mentions. (We
368 * could alternatively ignore duplicates, but analyzing a column twice
369 * won't work; we'd end up making a conflicting update in pg_statistic.)
370 */
371 if (va_cols != NIL)
372 {
373 Bitmapset *unique_cols = NULL;
374 ListCell *le;
375
376 vacattrstats = (VacAttrStats **) palloc(list_length(va_cols) *
377 sizeof(VacAttrStats *));
378 tcnt = 0;
379 foreach(le, va_cols)
380 {
381 char *col = strVal(lfirst(le));
382
383 i = attnameAttNum(onerel, col, false);
384 if (i == InvalidAttrNumber)
386 (errcode(ERRCODE_UNDEFINED_COLUMN),
387 errmsg("column \"%s\" of relation \"%s\" does not exist",
388 col, RelationGetRelationName(onerel))));
389 if (bms_is_member(i, unique_cols))
391 (errcode(ERRCODE_DUPLICATE_COLUMN),
392 errmsg("column \"%s\" of relation \"%s\" appears more than once",
393 col, RelationGetRelationName(onerel))));
394 unique_cols = bms_add_member(unique_cols, i);
395
396 vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
397 if (vacattrstats[tcnt] != NULL)
398 tcnt++;
399 }
400 attr_cnt = tcnt;
401 }
402 else
403 {
404 attr_cnt = onerel->rd_att->natts;
405 vacattrstats = (VacAttrStats **)
406 palloc(attr_cnt * sizeof(VacAttrStats *));
407 tcnt = 0;
408 for (i = 1; i <= attr_cnt; i++)
409 {
410 vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
411 if (vacattrstats[tcnt] != NULL)
412 tcnt++;
413 }
414 attr_cnt = tcnt;
415 }
416
417 /*
418 * Open all indexes of the relation, and see if there are any analyzable
419 * columns in the indexes. We do not analyze index columns if there was
420 * an explicit column list in the ANALYZE command, however.
421 *
422 * If we are doing a recursive scan, we don't want to touch the parent's
423 * indexes at all. If we're processing a partitioned table, we need to
424 * know if there are any indexes, but we don't want to process them.
425 */
426 if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
427 {
428 List *idxs = RelationGetIndexList(onerel);
429
430 Irel = NULL;
431 nindexes = 0;
432 hasindex = idxs != NIL;
433 list_free(idxs);
434 }
435 else if (!inh)
436 {
437 vac_open_indexes(onerel, AccessShareLock, &nindexes, &Irel);
438 hasindex = nindexes > 0;
439 }
440 else
441 {
442 Irel = NULL;
443 nindexes = 0;
444 hasindex = false;
445 }
446 indexdata = NULL;
447 if (nindexes > 0)
448 {
449 indexdata = (AnlIndexData *) palloc0(nindexes * sizeof(AnlIndexData));
450 for (ind = 0; ind < nindexes; ind++)
451 {
452 AnlIndexData *thisdata = &indexdata[ind];
453 IndexInfo *indexInfo;
454
455 thisdata->indexInfo = indexInfo = BuildIndexInfo(Irel[ind]);
456 thisdata->tupleFract = 1.0; /* fix later if partial */
457 if (indexInfo->ii_Expressions != NIL && va_cols == NIL)
458 {
459 ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
460
461 thisdata->vacattrstats = (VacAttrStats **)
462 palloc(indexInfo->ii_NumIndexAttrs * sizeof(VacAttrStats *));
463 tcnt = 0;
464 for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
465 {
466 int keycol = indexInfo->ii_IndexAttrNumbers[i];
467
468 if (keycol == 0)
469 {
470 /* Found an index expression */
471 Node *indexkey;
472
473 if (indexpr_item == NULL) /* shouldn't happen */
474 elog(ERROR, "too few entries in indexprs list");
475 indexkey = (Node *) lfirst(indexpr_item);
476 indexpr_item = lnext(indexInfo->ii_Expressions,
477 indexpr_item);
478 thisdata->vacattrstats[tcnt] =
479 examine_attribute(Irel[ind], i + 1, indexkey);
480 if (thisdata->vacattrstats[tcnt] != NULL)
481 tcnt++;
482 }
483 }
484 thisdata->attr_cnt = tcnt;
485 }
486 }
487 }
488
489 /*
490 * Determine how many rows we need to sample, using the worst case from
491 * all analyzable columns. We use a lower bound of 100 rows to avoid
492 * possible overflow in Vitter's algorithm. (Note: that will also be the
493 * target in the corner case where there are no analyzable columns.)
494 */
495 targrows = 100;
496 for (i = 0; i < attr_cnt; i++)
497 {
498 if (targrows < vacattrstats[i]->minrows)
499 targrows = vacattrstats[i]->minrows;
500 }
501 for (ind = 0; ind < nindexes; ind++)
502 {
503 AnlIndexData *thisdata = &indexdata[ind];
504
505 for (i = 0; i < thisdata->attr_cnt; i++)
506 {
507 if (targrows < thisdata->vacattrstats[i]->minrows)
508 targrows = thisdata->vacattrstats[i]->minrows;
509 }
510 }
511
512 /*
513 * Look at extended statistics objects too, as those may define custom
514 * statistics target. So we may need to sample more rows and then build
515 * the statistics with enough detail.
516 */
517 minrows = ComputeExtStatisticsRows(onerel, attr_cnt, vacattrstats);
518
519 if (targrows < minrows)
520 targrows = minrows;
521
522 /*
523 * Acquire the sample rows
524 */
525 rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
529 if (inh)
530 numrows = acquire_inherited_sample_rows(onerel, elevel,
531 rows, targrows,
532 &totalrows, &totaldeadrows);
533 else
534 numrows = (*acquirefunc) (onerel, elevel,
535 rows, targrows,
536 &totalrows, &totaldeadrows);
537
538 /*
539 * Compute the statistics. Temporary results during the calculations for
540 * each column are stored in a child context. The calc routines are
541 * responsible to make sure that whatever they store into the VacAttrStats
542 * structure is allocated in anl_context.
543 */
544 if (numrows > 0)
545 {
546 MemoryContext col_context,
547 old_context;
548
551
553 "Analyze Column",
555 old_context = MemoryContextSwitchTo(col_context);
556
557 for (i = 0; i < attr_cnt; i++)
558 {
559 VacAttrStats *stats = vacattrstats[i];
560 AttributeOpts *aopt;
561
562 stats->rows = rows;
563 stats->tupDesc = onerel->rd_att;
564 stats->compute_stats(stats,
566 numrows,
567 totalrows);
568
569 /*
570 * If the appropriate flavor of the n_distinct option is
571 * specified, override with the corresponding value.
572 */
573 aopt = get_attribute_options(onerel->rd_id, stats->tupattnum);
574 if (aopt != NULL)
575 {
576 float8 n_distinct;
577
578 n_distinct = inh ? aopt->n_distinct_inherited : aopt->n_distinct;
579 if (n_distinct != 0.0)
580 stats->stadistinct = n_distinct;
581 }
582
583 MemoryContextReset(col_context);
584 }
585
586 if (nindexes > 0)
587 compute_index_stats(onerel, totalrows,
588 indexdata, nindexes,
589 rows, numrows,
590 col_context);
591
592 MemoryContextSwitchTo(old_context);
593 MemoryContextDelete(col_context);
594
595 /*
596 * Emit the completed stats rows into pg_statistic, replacing any
597 * previous statistics for the target columns. (If there are stats in
598 * pg_statistic for columns we didn't process, we leave them alone.)
599 */
601 attr_cnt, vacattrstats);
602
603 for (ind = 0; ind < nindexes; ind++)
604 {
605 AnlIndexData *thisdata = &indexdata[ind];
606
608 thisdata->attr_cnt, thisdata->vacattrstats);
609 }
610
611 /* Build extended statistics (if there are any). */
612 BuildRelationExtStatistics(onerel, inh, totalrows, numrows, rows,
613 attr_cnt, vacattrstats);
614 }
615
618
619 /*
620 * Update pages/tuples stats in pg_class ... but not if we're doing
621 * inherited stats.
622 *
623 * We assume that VACUUM hasn't set pg_class.reltuples already, even
624 * during a VACUUM ANALYZE. Although VACUUM often updates pg_class,
625 * exceptions exist. A "VACUUM (ANALYZE, INDEX_CLEANUP OFF)" command will
626 * never update pg_class entries for index relations. It's also possible
627 * that an individual index's pg_class entry won't be updated during
628 * VACUUM if the index AM returns NULL from its amvacuumcleanup() routine.
629 */
630 if (!inh)
631 {
632 BlockNumber relallvisible = 0;
633 BlockNumber relallfrozen = 0;
634
635 if (RELKIND_HAS_STORAGE(onerel->rd_rel->relkind))
636 visibilitymap_count(onerel, &relallvisible, &relallfrozen);
637
638 /*
639 * Update pg_class for table relation. CCI first, in case acquirefunc
640 * updated pg_class.
641 */
643 vac_update_relstats(onerel,
644 relpages,
645 totalrows,
646 relallvisible,
647 relallfrozen,
648 hasindex,
651 NULL, NULL,
652 in_outer_xact);
653
654 /* Same for indexes */
655 for (ind = 0; ind < nindexes; ind++)
656 {
657 AnlIndexData *thisdata = &indexdata[ind];
658 double totalindexrows;
659
660 totalindexrows = ceil(thisdata->tupleFract * totalrows);
663 totalindexrows,
664 0, 0,
665 false,
668 NULL, NULL,
669 in_outer_xact);
670 }
671 }
672 else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
673 {
674 /*
675 * Partitioned tables don't have storage, so we don't set any fields
676 * in their pg_class entries except for reltuples and relhasindex.
677 */
679 vac_update_relstats(onerel, -1, totalrows,
680 0, 0, hasindex, InvalidTransactionId,
682 NULL, NULL,
683 in_outer_xact);
684 }
685
686 /*
687 * Now report ANALYZE to the cumulative stats system. For regular tables,
688 * we do it only if not doing inherited stats. For partitioned tables, we
689 * only do it for inherited stats. (We're never called for not-inherited
690 * stats on partitioned tables anyway.)
691 *
692 * Reset the mod_since_analyze counter only if we analyzed all columns;
693 * otherwise, there is still work for auto-analyze to do.
694 */
695 if (!inh)
696 pgstat_report_analyze(onerel, totalrows, totaldeadrows,
697 (va_cols == NIL), starttime);
698 else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
699 pgstat_report_analyze(onerel, 0, 0, (va_cols == NIL), starttime);
700
701 /*
702 * If this isn't part of VACUUM ANALYZE, let index AMs do cleanup.
703 *
704 * Note that most index AMs perform a no-op as a matter of policy for
705 * amvacuumcleanup() when called in ANALYZE-only mode. The only exception
706 * among core index AMs is GIN/ginvacuumcleanup().
707 */
708 if (!(params.options & VACOPT_VACUUM))
709 {
710 for (ind = 0; ind < nindexes; ind++)
711 {
713 IndexVacuumInfo ivinfo;
714
715 ivinfo.index = Irel[ind];
716 ivinfo.heaprel = onerel;
717 ivinfo.analyze_only = true;
718 ivinfo.estimated_count = true;
719 ivinfo.message_level = elevel;
720 ivinfo.num_heap_tuples = onerel->rd_rel->reltuples;
721 ivinfo.strategy = vac_strategy;
722
723 stats = index_vacuum_cleanup(&ivinfo, NULL);
724
725 if (stats)
726 pfree(stats);
727 }
728 }
729
730 /* Done with indexes */
731 vac_close_indexes(nindexes, Irel, NoLock);
732
733 /* Log the action if appropriate */
734 if (instrument)
735 {
737
738 if (verbose || params.log_analyze_min_duration == 0 ||
739 TimestampDifferenceExceeds(starttime, endtime,
741 {
742 long delay_in_ms;
743 WalUsage walusage;
744 double read_rate = 0;
745 double write_rate = 0;
746 char *msgfmt;
748 int64 total_blks_hit;
749 int64 total_blks_read;
750 int64 total_blks_dirtied;
751
752 memset(&bufferusage, 0, sizeof(BufferUsage));
753 BufferUsageAccumDiff(&bufferusage, &pgBufferUsage, &startbufferusage);
754 memset(&walusage, 0, sizeof(WalUsage));
755 WalUsageAccumDiff(&walusage, &pgWalUsage, &startwalusage);
756
757 total_blks_hit = bufferusage.shared_blks_hit +
758 bufferusage.local_blks_hit;
759 total_blks_read = bufferusage.shared_blks_read +
760 bufferusage.local_blks_read;
761 total_blks_dirtied = bufferusage.shared_blks_dirtied +
762 bufferusage.local_blks_dirtied;
763
764 /*
765 * We do not expect an analyze to take > 25 days and it simplifies
766 * things a bit to use TimestampDifferenceMilliseconds.
767 */
768 delay_in_ms = TimestampDifferenceMilliseconds(starttime, endtime);
769
770 /*
771 * Note that we are reporting these read/write rates in the same
772 * manner as VACUUM does, which means that while the 'average read
773 * rate' here actually corresponds to page misses and resulting
774 * reads which are also picked up by track_io_timing, if enabled,
775 * the 'average write rate' is actually talking about the rate of
776 * pages being dirtied, not being written out, so it's typical to
777 * have a non-zero 'avg write rate' while I/O timings only reports
778 * reads.
779 *
780 * It's not clear that an ANALYZE will ever result in
781 * FlushBuffer() being called, but we track and support reporting
782 * on I/O write time in case that changes as it's practically free
783 * to do so anyway.
784 */
785
786 if (delay_in_ms > 0)
787 {
788 read_rate = (double) BLCKSZ * total_blks_read /
789 (1024 * 1024) / (delay_in_ms / 1000.0);
790 write_rate = (double) BLCKSZ * total_blks_dirtied /
791 (1024 * 1024) / (delay_in_ms / 1000.0);
792 }
793
794 /*
795 * We split this up so we don't emit empty I/O timing values when
796 * track_io_timing isn't enabled.
797 */
798
800
802 msgfmt = _("automatic analyze of table \"%s.%s.%s\"\n");
803 else
804 msgfmt = _("finished analyzing table \"%s.%s.%s\"\n");
805
806 appendStringInfo(&buf, msgfmt,
811 {
812 /*
813 * We bypass the changecount mechanism because this value is
814 * only updated by the calling process.
815 */
816 appendStringInfo(&buf, _("delay time: %.3f ms\n"),
818 }
819 if (track_io_timing)
820 {
821 double read_ms = (double) (pgStatBlockReadTime - startreadtime) / 1000;
822 double write_ms = (double) (pgStatBlockWriteTime - startwritetime) / 1000;
823
824 appendStringInfo(&buf, _("I/O timings: read: %.3f ms, write: %.3f ms\n"),
825 read_ms, write_ms);
826 }
827 appendStringInfo(&buf, _("avg read rate: %.3f MB/s, avg write rate: %.3f MB/s\n"),
828 read_rate, write_rate);
829 appendStringInfo(&buf, _("buffer usage: %" PRId64 " hits, %" PRId64 " reads, %" PRId64 " dirtied\n"),
830 total_blks_hit,
831 total_blks_read,
832 total_blks_dirtied);
834 _("WAL usage: %" PRId64 " records, %" PRId64 " full page images, %" PRIu64 " bytes, %" PRIu64 " full page image bytes, %" PRId64 " buffers full\n"),
835 walusage.wal_records,
836 walusage.wal_fpi,
837 walusage.wal_bytes,
838 walusage.wal_fpi_bytes,
839 walusage.wal_buffers_full);
840 appendStringInfo(&buf, _("system usage: %s"), pg_rusage_show(&ru0));
841
843 (errmsg_internal("%s", buf.data)));
844
845 pfree(buf.data);
846 }
847 }
848
849 /* Roll back any GUC changes executed by index functions */
850 AtEOXact_GUC(false, save_nestlevel);
851
852 /* Restore userid and security context */
853 SetUserIdAndSecContext(save_userid, save_sec_context);
854
855 /* Restore current context and release memory */
856 MemoryContextSwitchTo(caller_context);
858 anl_context = NULL;
859}
860
861/*
862 * Compute statistics about indexes of a relation
863 */
864static void
865compute_index_stats(Relation onerel, double totalrows,
866 AnlIndexData *indexdata, int nindexes,
867 HeapTuple *rows, int numrows,
868 MemoryContext col_context)
869{
870 MemoryContext ind_context,
871 old_context;
873 bool isnull[INDEX_MAX_KEYS];
874 int ind,
875 i;
876
878 "Analyze Index",
880 old_context = MemoryContextSwitchTo(ind_context);
881
882 for (ind = 0; ind < nindexes; ind++)
883 {
884 AnlIndexData *thisdata = &indexdata[ind];
885 IndexInfo *indexInfo = thisdata->indexInfo;
886 int attr_cnt = thisdata->attr_cnt;
887 TupleTableSlot *slot;
888 EState *estate;
889 ExprContext *econtext;
890 ExprState *predicate;
891 Datum *exprvals;
892 bool *exprnulls;
893 int numindexrows,
894 tcnt,
895 rowno;
896 double totalindexrows;
897
898 /* Ignore index if no columns to analyze and not partial */
899 if (attr_cnt == 0 && indexInfo->ii_Predicate == NIL)
900 continue;
901
902 /*
903 * Need an EState for evaluation of index expressions and
904 * partial-index predicates. Create it in the per-index context to be
905 * sure it gets cleaned up at the bottom of the loop.
906 */
907 estate = CreateExecutorState();
908 econtext = GetPerTupleExprContext(estate);
909 /* Need a slot to hold the current heap tuple, too */
912
913 /* Arrange for econtext's scan tuple to be the tuple under test */
914 econtext->ecxt_scantuple = slot;
915
916 /* Set up execution state for predicate. */
917 predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
918
919 /* Compute and save index expression values */
920 exprvals = (Datum *) palloc(numrows * attr_cnt * sizeof(Datum));
921 exprnulls = (bool *) palloc(numrows * attr_cnt * sizeof(bool));
922 numindexrows = 0;
923 tcnt = 0;
924 for (rowno = 0; rowno < numrows; rowno++)
925 {
926 HeapTuple heapTuple = rows[rowno];
927
928 vacuum_delay_point(true);
929
930 /*
931 * Reset the per-tuple context each time, to reclaim any cruft
932 * left behind by evaluating the predicate or index expressions.
933 */
934 ResetExprContext(econtext);
935
936 /* Set up for predicate or expression evaluation */
937 ExecStoreHeapTuple(heapTuple, slot, false);
938
939 /* If index is partial, check predicate */
940 if (predicate != NULL)
941 {
942 if (!ExecQual(predicate, econtext))
943 continue;
944 }
945 numindexrows++;
946
947 if (attr_cnt > 0)
948 {
949 /*
950 * Evaluate the index row to compute expression values. We
951 * could do this by hand, but FormIndexDatum is convenient.
952 */
953 FormIndexDatum(indexInfo,
954 slot,
955 estate,
956 values,
957 isnull);
958
959 /*
960 * Save just the columns we care about. We copy the values
961 * into ind_context from the estate's per-tuple context.
962 */
963 for (i = 0; i < attr_cnt; i++)
964 {
965 VacAttrStats *stats = thisdata->vacattrstats[i];
966 int attnum = stats->tupattnum;
967
968 if (isnull[attnum - 1])
969 {
970 exprvals[tcnt] = (Datum) 0;
971 exprnulls[tcnt] = true;
972 }
973 else
974 {
975 exprvals[tcnt] = datumCopy(values[attnum - 1],
976 stats->attrtype->typbyval,
977 stats->attrtype->typlen);
978 exprnulls[tcnt] = false;
979 }
980 tcnt++;
981 }
982 }
983 }
984
985 /*
986 * Having counted the number of rows that pass the predicate in the
987 * sample, we can estimate the total number of rows in the index.
988 */
989 thisdata->tupleFract = (double) numindexrows / (double) numrows;
990 totalindexrows = ceil(thisdata->tupleFract * totalrows);
991
992 /*
993 * Now we can compute the statistics for the expression columns.
994 */
995 if (numindexrows > 0)
996 {
997 MemoryContextSwitchTo(col_context);
998 for (i = 0; i < attr_cnt; i++)
999 {
1000 VacAttrStats *stats = thisdata->vacattrstats[i];
1001
1002 stats->exprvals = exprvals + i;
1003 stats->exprnulls = exprnulls + i;
1004 stats->rowstride = attr_cnt;
1005 stats->compute_stats(stats,
1007 numindexrows,
1008 totalindexrows);
1009
1010 MemoryContextReset(col_context);
1011 }
1012 }
1013
1014 /* And clean up */
1015 MemoryContextSwitchTo(ind_context);
1016
1018 FreeExecutorState(estate);
1019 MemoryContextReset(ind_context);
1020 }
1021
1022 MemoryContextSwitchTo(old_context);
1023 MemoryContextDelete(ind_context);
1024}
1025
1026/*
1027 * examine_attribute -- pre-analysis of a single column
1028 *
1029 * Determine whether the column is analyzable; if so, create and initialize
1030 * a VacAttrStats struct for it. If not, return NULL.
1031 *
1032 * If index_expr isn't NULL, then we're trying to analyze an expression index,
1033 * and index_expr is the expression tree representing the column's data.
1034 */
1035static VacAttrStats *
1036examine_attribute(Relation onerel, int attnum, Node *index_expr)
1037{
1038 Form_pg_attribute attr = TupleDescAttr(onerel->rd_att, attnum - 1);
1039 int attstattarget;
1040 HeapTuple atttuple;
1041 Datum dat;
1042 bool isnull;
1043 HeapTuple typtuple;
1044 VacAttrStats *stats;
1045 int i;
1046 bool ok;
1047
1048 /* Never analyze dropped columns */
1049 if (attr->attisdropped)
1050 return NULL;
1051
1052 /* Don't analyze virtual generated columns */
1053 if (attr->attgenerated == ATTRIBUTE_GENERATED_VIRTUAL)
1054 return NULL;
1055
1056 /*
1057 * Get attstattarget value. Set to -1 if null. (Analyze functions expect
1058 * -1 to mean use default_statistics_target; see for example
1059 * std_typanalyze.)
1060 */
1062 if (!HeapTupleIsValid(atttuple))
1063 elog(ERROR, "cache lookup failed for attribute %d of relation %u",
1064 attnum, RelationGetRelid(onerel));
1065 dat = SysCacheGetAttr(ATTNUM, atttuple, Anum_pg_attribute_attstattarget, &isnull);
1066 attstattarget = isnull ? -1 : DatumGetInt16(dat);
1067 ReleaseSysCache(atttuple);
1068
1069 /* Don't analyze column if user has specified not to */
1070 if (attstattarget == 0)
1071 return NULL;
1072
1073 /*
1074 * Create the VacAttrStats struct.
1075 */
1076 stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
1077 stats->attstattarget = attstattarget;
1078
1079 /*
1080 * When analyzing an expression index, believe the expression tree's type
1081 * not the column datatype --- the latter might be the opckeytype storage
1082 * type of the opclass, which is not interesting for our purposes. (Note:
1083 * if we did anything with non-expression index columns, we'd need to
1084 * figure out where to get the correct type info from, but for now that's
1085 * not a problem.) It's not clear whether anyone will care about the
1086 * typmod, but we store that too just in case.
1087 */
1088 if (index_expr)
1089 {
1090 stats->attrtypid = exprType(index_expr);
1091 stats->attrtypmod = exprTypmod(index_expr);
1092
1093 /*
1094 * If a collation has been specified for the index column, use that in
1095 * preference to anything else; but if not, fall back to whatever we
1096 * can get from the expression.
1097 */
1098 if (OidIsValid(onerel->rd_indcollation[attnum - 1]))
1099 stats->attrcollid = onerel->rd_indcollation[attnum - 1];
1100 else
1101 stats->attrcollid = exprCollation(index_expr);
1102 }
1103 else
1104 {
1105 stats->attrtypid = attr->atttypid;
1106 stats->attrtypmod = attr->atttypmod;
1107 stats->attrcollid = attr->attcollation;
1108 }
1109
1110 typtuple = SearchSysCacheCopy1(TYPEOID,
1111 ObjectIdGetDatum(stats->attrtypid));
1112 if (!HeapTupleIsValid(typtuple))
1113 elog(ERROR, "cache lookup failed for type %u", stats->attrtypid);
1114 stats->attrtype = (Form_pg_type) GETSTRUCT(typtuple);
1115 stats->anl_context = anl_context;
1116 stats->tupattnum = attnum;
1117
1118 /*
1119 * The fields describing the stats->stavalues[n] element types default to
1120 * the type of the data being analyzed, but the type-specific typanalyze
1121 * function can change them if it wants to store something else.
1122 */
1123 for (i = 0; i < STATISTIC_NUM_SLOTS; i++)
1124 {
1125 stats->statypid[i] = stats->attrtypid;
1126 stats->statyplen[i] = stats->attrtype->typlen;
1127 stats->statypbyval[i] = stats->attrtype->typbyval;
1128 stats->statypalign[i] = stats->attrtype->typalign;
1129 }
1130
1131 /*
1132 * Call the type-specific typanalyze function. If none is specified, use
1133 * std_typanalyze().
1134 */
1135 if (OidIsValid(stats->attrtype->typanalyze))
1136 ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
1137 PointerGetDatum(stats)));
1138 else
1139 ok = std_typanalyze(stats);
1140
1141 if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
1142 {
1143 heap_freetuple(typtuple);
1144 pfree(stats);
1145 return NULL;
1146 }
1147
1148 return stats;
1149}
1150
1151/*
1152 * Read stream callback returning the next BlockNumber as chosen by the
1153 * BlockSampling algorithm.
1154 */
1155static BlockNumber
1157 void *callback_private_data,
1158 void *per_buffer_data)
1159{
1160 BlockSamplerData *bs = callback_private_data;
1161
1163}
1164
1165/*
1166 * acquire_sample_rows -- acquire a random sample of rows from the table
1167 *
1168 * Selected rows are returned in the caller-allocated array rows[], which
1169 * must have at least targrows entries.
1170 * The actual number of rows selected is returned as the function result.
1171 * We also estimate the total numbers of live and dead rows in the table,
1172 * and return them into *totalrows and *totaldeadrows, respectively.
1173 *
1174 * The returned list of tuples is in order by physical position in the table.
1175 * (We will rely on this later to derive correlation estimates.)
1176 *
1177 * As of May 2004 we use a new two-stage method: Stage one selects up
1178 * to targrows random blocks (or all blocks, if there aren't so many).
1179 * Stage two scans these blocks and uses the Vitter algorithm to create
1180 * a random sample of targrows rows (or less, if there are less in the
1181 * sample of blocks). The two stages are executed simultaneously: each
1182 * block is processed as soon as stage one returns its number and while
1183 * the rows are read stage two controls which ones are to be inserted
1184 * into the sample.
1185 *
1186 * Although every row has an equal chance of ending up in the final
1187 * sample, this sampling method is not perfect: not every possible
1188 * sample has an equal chance of being selected. For large relations
1189 * the number of different blocks represented by the sample tends to be
1190 * too small. We can live with that for now. Improvements are welcome.
1191 *
1192 * An important property of this sampling method is that because we do
1193 * look at a statistically unbiased set of blocks, we should get
1194 * unbiased estimates of the average numbers of live and dead rows per
1195 * block. The previous sampling method put too much credence in the row
1196 * density near the start of the table.
1197 */
1198static int
1200 HeapTuple *rows, int targrows,
1201 double *totalrows, double *totaldeadrows)
1202{
1203 int numrows = 0; /* # rows now in reservoir */
1204 double samplerows = 0; /* total # rows collected */
1205 double liverows = 0; /* # live rows seen */
1206 double deadrows = 0; /* # dead rows seen */
1207 double rowstoskip = -1; /* -1 means not set yet */
1208 uint32 randseed; /* Seed for block sampler(s) */
1209 BlockNumber totalblocks;
1210 TransactionId OldestXmin;
1212 ReservoirStateData rstate;
1213 TupleTableSlot *slot;
1214 TableScanDesc scan;
1215 BlockNumber nblocks;
1216 BlockNumber blksdone = 0;
1217 ReadStream *stream;
1218
1219 Assert(targrows > 0);
1220
1221 totalblocks = RelationGetNumberOfBlocks(onerel);
1222
1223 /* Need a cutoff xmin for HeapTupleSatisfiesVacuum */
1224 OldestXmin = GetOldestNonRemovableTransactionId(onerel);
1225
1226 /* Prepare for sampling block numbers */
1228 nblocks = BlockSampler_Init(&bs, totalblocks, targrows, randseed);
1229
1230 /* Report sampling block numbers */
1232 nblocks);
1233
1234 /* Prepare for sampling rows */
1235 reservoir_init_selection_state(&rstate, targrows);
1236
1237 scan = table_beginscan_analyze(onerel);
1238 slot = table_slot_create(onerel, NULL);
1239
1240 /*
1241 * It is safe to use batching, as block_sampling_read_stream_next never
1242 * blocks.
1243 */
1247 scan->rs_rd,
1250 &bs,
1251 0);
1252
1253 /* Outer loop over blocks to sample */
1254 while (table_scan_analyze_next_block(scan, stream))
1255 {
1256 vacuum_delay_point(true);
1257
1258 while (table_scan_analyze_next_tuple(scan, OldestXmin, &liverows, &deadrows, slot))
1259 {
1260 /*
1261 * The first targrows sample rows are simply copied into the
1262 * reservoir. Then we start replacing tuples in the sample until
1263 * we reach the end of the relation. This algorithm is from Jeff
1264 * Vitter's paper (see full citation in utils/misc/sampling.c). It
1265 * works by repeatedly computing the number of tuples to skip
1266 * before selecting a tuple, which replaces a randomly chosen
1267 * element of the reservoir (current set of tuples). At all times
1268 * the reservoir is a true random sample of the tuples we've
1269 * passed over so far, so when we fall off the end of the relation
1270 * we're done.
1271 */
1272 if (numrows < targrows)
1273 rows[numrows++] = ExecCopySlotHeapTuple(slot);
1274 else
1275 {
1276 /*
1277 * t in Vitter's paper is the number of records already
1278 * processed. If we need to compute a new S value, we must
1279 * use the not-yet-incremented value of samplerows as t.
1280 */
1281 if (rowstoskip < 0)
1282 rowstoskip = reservoir_get_next_S(&rstate, samplerows, targrows);
1283
1284 if (rowstoskip <= 0)
1285 {
1286 /*
1287 * Found a suitable tuple, so save it, replacing one old
1288 * tuple at random
1289 */
1290 int k = (int) (targrows * sampler_random_fract(&rstate.randstate));
1291
1292 Assert(k >= 0 && k < targrows);
1293 heap_freetuple(rows[k]);
1294 rows[k] = ExecCopySlotHeapTuple(slot);
1295 }
1296
1297 rowstoskip -= 1;
1298 }
1299
1300 samplerows += 1;
1301 }
1302
1304 ++blksdone);
1305 }
1306
1307 read_stream_end(stream);
1308
1310 table_endscan(scan);
1311
1312 /*
1313 * If we didn't find as many tuples as we wanted then we're done. No sort
1314 * is needed, since they're already in order.
1315 *
1316 * Otherwise we need to sort the collected tuples by position
1317 * (itempointer). It's not worth worrying about corner cases where the
1318 * tuples are already sorted.
1319 */
1320 if (numrows == targrows)
1321 qsort_interruptible(rows, numrows, sizeof(HeapTuple),
1322 compare_rows, NULL);
1323
1324 /*
1325 * Estimate total numbers of live and dead rows in relation, extrapolating
1326 * on the assumption that the average tuple density in pages we didn't
1327 * scan is the same as in the pages we did scan. Since what we scanned is
1328 * a random sample of the pages in the relation, this should be a good
1329 * assumption.
1330 */
1331 if (bs.m > 0)
1332 {
1333 *totalrows = floor((liverows / bs.m) * totalblocks + 0.5);
1334 *totaldeadrows = floor((deadrows / bs.m) * totalblocks + 0.5);
1335 }
1336 else
1337 {
1338 *totalrows = 0.0;
1339 *totaldeadrows = 0.0;
1340 }
1341
1342 /*
1343 * Emit some interesting relation info
1344 */
1345 ereport(elevel,
1346 (errmsg("\"%s\": scanned %d of %u pages, "
1347 "containing %.0f live rows and %.0f dead rows; "
1348 "%d rows in sample, %.0f estimated total rows",
1350 bs.m, totalblocks,
1351 liverows, deadrows,
1352 numrows, *totalrows)));
1353
1354 return numrows;
1355}
1356
1357/*
1358 * Comparator for sorting rows[] array
1359 */
1360static int
1361compare_rows(const void *a, const void *b, void *arg)
1362{
1363 HeapTuple ha = *(const HeapTuple *) a;
1364 HeapTuple hb = *(const HeapTuple *) b;
1369
1370 if (ba < bb)
1371 return -1;
1372 if (ba > bb)
1373 return 1;
1374 if (oa < ob)
1375 return -1;
1376 if (oa > ob)
1377 return 1;
1378 return 0;
1379}
1380
1381
1382/*
1383 * acquire_inherited_sample_rows -- acquire sample rows from inheritance tree
1384 *
1385 * This has the same API as acquire_sample_rows, except that rows are
1386 * collected from all inheritance children as well as the specified table.
1387 * We fail and return zero if there are no inheritance children, or if all
1388 * children are foreign tables that don't support ANALYZE.
1389 */
1390static int
1392 HeapTuple *rows, int targrows,
1393 double *totalrows, double *totaldeadrows)
1394{
1395 List *tableOIDs;
1396 Relation *rels;
1397 AcquireSampleRowsFunc *acquirefuncs;
1398 double *relblocks;
1399 double totalblocks;
1400 int numrows,
1401 nrels,
1402 i;
1403 ListCell *lc;
1404 bool has_child;
1405
1406 /* Initialize output parameters to zero now, in case we exit early */
1407 *totalrows = 0;
1408 *totaldeadrows = 0;
1409
1410 /*
1411 * Find all members of inheritance set. We only need AccessShareLock on
1412 * the children.
1413 */
1414 tableOIDs =
1416
1417 /*
1418 * Check that there's at least one descendant, else fail. This could
1419 * happen despite analyze_rel's relhassubclass check, if table once had a
1420 * child but no longer does. In that case, we can clear the
1421 * relhassubclass field so as not to make the same mistake again later.
1422 * (This is safe because we hold ShareUpdateExclusiveLock.)
1423 */
1424 if (list_length(tableOIDs) < 2)
1425 {
1426 /* CCI because we already updated the pg_class row in this command */
1429 ereport(elevel,
1430 (errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no child tables",
1432 RelationGetRelationName(onerel))));
1433 return 0;
1434 }
1435
1436 /*
1437 * Identify acquirefuncs to use, and count blocks in all the relations.
1438 * The result could overflow BlockNumber, so we use double arithmetic.
1439 */
1440 rels = (Relation *) palloc(list_length(tableOIDs) * sizeof(Relation));
1441 acquirefuncs = (AcquireSampleRowsFunc *)
1442 palloc(list_length(tableOIDs) * sizeof(AcquireSampleRowsFunc));
1443 relblocks = (double *) palloc(list_length(tableOIDs) * sizeof(double));
1444 totalblocks = 0;
1445 nrels = 0;
1446 has_child = false;
1447 foreach(lc, tableOIDs)
1448 {
1449 Oid childOID = lfirst_oid(lc);
1450 Relation childrel;
1451 AcquireSampleRowsFunc acquirefunc = NULL;
1452 BlockNumber relpages = 0;
1453
1454 /* We already got the needed lock */
1455 childrel = table_open(childOID, NoLock);
1456
1457 /* Ignore if temp table of another backend */
1458 if (RELATION_IS_OTHER_TEMP(childrel))
1459 {
1460 /* ... but release the lock on it */
1461 Assert(childrel != onerel);
1462 table_close(childrel, AccessShareLock);
1463 continue;
1464 }
1465
1466 /* Check table type (MATVIEW can't happen, but might as well allow) */
1467 if (childrel->rd_rel->relkind == RELKIND_RELATION ||
1468 childrel->rd_rel->relkind == RELKIND_MATVIEW)
1469 {
1470 /* Regular table, so use the regular row acquisition function */
1471 acquirefunc = acquire_sample_rows;
1472 relpages = RelationGetNumberOfBlocks(childrel);
1473 }
1474 else if (childrel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
1475 {
1476 /*
1477 * For a foreign table, call the FDW's hook function to see
1478 * whether it supports analysis.
1479 */
1480 FdwRoutine *fdwroutine;
1481 bool ok = false;
1482
1483 fdwroutine = GetFdwRoutineForRelation(childrel, false);
1484
1485 if (fdwroutine->AnalyzeForeignTable != NULL)
1486 ok = fdwroutine->AnalyzeForeignTable(childrel,
1487 &acquirefunc,
1488 &relpages);
1489
1490 if (!ok)
1491 {
1492 /* ignore, but release the lock on it */
1493 Assert(childrel != onerel);
1494 table_close(childrel, AccessShareLock);
1495 continue;
1496 }
1497 }
1498 else
1499 {
1500 /*
1501 * ignore, but release the lock on it. don't try to unlock the
1502 * passed-in relation
1503 */
1504 Assert(childrel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
1505 if (childrel != onerel)
1506 table_close(childrel, AccessShareLock);
1507 else
1508 table_close(childrel, NoLock);
1509 continue;
1510 }
1511
1512 /* OK, we'll process this child */
1513 has_child = true;
1514 rels[nrels] = childrel;
1515 acquirefuncs[nrels] = acquirefunc;
1516 relblocks[nrels] = (double) relpages;
1517 totalblocks += (double) relpages;
1518 nrels++;
1519 }
1520
1521 /*
1522 * If we don't have at least one child table to consider, fail. If the
1523 * relation is a partitioned table, it's not counted as a child table.
1524 */
1525 if (!has_child)
1526 {
1527 ereport(elevel,
1528 (errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no analyzable child tables",
1530 RelationGetRelationName(onerel))));
1531 return 0;
1532 }
1533
1534 /*
1535 * Now sample rows from each relation, proportionally to its fraction of
1536 * the total block count. (This might be less than desirable if the child
1537 * rels have radically different free-space percentages, but it's not
1538 * clear that it's worth working harder.)
1539 */
1541 nrels);
1542 numrows = 0;
1543 for (i = 0; i < nrels; i++)
1544 {
1545 Relation childrel = rels[i];
1546 AcquireSampleRowsFunc acquirefunc = acquirefuncs[i];
1547 double childblocks = relblocks[i];
1548
1549 /*
1550 * Report progress. The sampling function will normally report blocks
1551 * done/total, but we need to reset them to 0 here, so that they don't
1552 * show an old value until that.
1553 */
1554 {
1555 const int progress_index[] = {
1559 };
1560 const int64 progress_vals[] = {
1561 RelationGetRelid(childrel),
1562 0,
1563 0,
1564 };
1565
1566 pgstat_progress_update_multi_param(3, progress_index, progress_vals);
1567 }
1568
1569 if (childblocks > 0)
1570 {
1571 int childtargrows;
1572
1573 childtargrows = (int) rint(targrows * childblocks / totalblocks);
1574 /* Make sure we don't overrun due to roundoff error */
1575 childtargrows = Min(childtargrows, targrows - numrows);
1576 if (childtargrows > 0)
1577 {
1578 int childrows;
1579 double trows,
1580 tdrows;
1581
1582 /* Fetch a random sample of the child's rows */
1583 childrows = (*acquirefunc) (childrel, elevel,
1584 rows + numrows, childtargrows,
1585 &trows, &tdrows);
1586
1587 /* We may need to convert from child's rowtype to parent's */
1588 if (childrows > 0 &&
1590 RelationGetDescr(onerel)))
1591 {
1592 TupleConversionMap *map;
1593
1595 RelationGetDescr(onerel));
1596 if (map != NULL)
1597 {
1598 int j;
1599
1600 for (j = 0; j < childrows; j++)
1601 {
1602 HeapTuple newtup;
1603
1604 newtup = execute_attr_map_tuple(rows[numrows + j], map);
1605 heap_freetuple(rows[numrows + j]);
1606 rows[numrows + j] = newtup;
1607 }
1609 }
1610 }
1611
1612 /* And add to counts */
1613 numrows += childrows;
1614 *totalrows += trows;
1615 *totaldeadrows += tdrows;
1616 }
1617 }
1618
1619 /*
1620 * Note: we cannot release the child-table locks, since we may have
1621 * pointers to their TOAST tables in the sampled rows.
1622 */
1623 table_close(childrel, NoLock);
1625 i + 1);
1626 }
1627
1628 return numrows;
1629}
1630
1631
1632/*
1633 * update_attstats() -- update attribute statistics for one relation
1634 *
1635 * Statistics are stored in several places: the pg_class row for the
1636 * relation has stats about the whole relation, and there is a
1637 * pg_statistic row for each (non-system) attribute that has ever
1638 * been analyzed. The pg_class values are updated by VACUUM, not here.
1639 *
1640 * pg_statistic rows are just added or updated normally. This means
1641 * that pg_statistic will probably contain some deleted rows at the
1642 * completion of a vacuum cycle, unless it happens to get vacuumed last.
1643 *
1644 * To keep things simple, we punt for pg_statistic, and don't try
1645 * to compute or store rows for pg_statistic itself in pg_statistic.
1646 * This could possibly be made to work, but it's not worth the trouble.
1647 * Note analyze_rel() has seen to it that we won't come here when
1648 * vacuuming pg_statistic itself.
1649 *
1650 * Note: there would be a race condition here if two backends could
1651 * ANALYZE the same table concurrently. Presently, we lock that out
1652 * by taking a self-exclusive lock on the relation in analyze_rel().
1653 */
1654static void
1655update_attstats(Oid relid, bool inh, int natts, VacAttrStats **vacattrstats)
1656{
1657 Relation sd;
1658 int attno;
1659 CatalogIndexState indstate = NULL;
1660
1661 if (natts <= 0)
1662 return; /* nothing to do */
1663
1664 sd = table_open(StatisticRelationId, RowExclusiveLock);
1665
1666 for (attno = 0; attno < natts; attno++)
1667 {
1668 VacAttrStats *stats = vacattrstats[attno];
1669 HeapTuple stup,
1670 oldtup;
1671 int i,
1672 k,
1673 n;
1674 Datum values[Natts_pg_statistic];
1675 bool nulls[Natts_pg_statistic];
1676 bool replaces[Natts_pg_statistic];
1677
1678 /* Ignore attr if we weren't able to collect stats */
1679 if (!stats->stats_valid)
1680 continue;
1681
1682 /*
1683 * Construct a new pg_statistic tuple
1684 */
1685 for (i = 0; i < Natts_pg_statistic; ++i)
1686 {
1687 nulls[i] = false;
1688 replaces[i] = true;
1689 }
1690
1691 values[Anum_pg_statistic_starelid - 1] = ObjectIdGetDatum(relid);
1692 values[Anum_pg_statistic_staattnum - 1] = Int16GetDatum(stats->tupattnum);
1693 values[Anum_pg_statistic_stainherit - 1] = BoolGetDatum(inh);
1694 values[Anum_pg_statistic_stanullfrac - 1] = Float4GetDatum(stats->stanullfrac);
1695 values[Anum_pg_statistic_stawidth - 1] = Int32GetDatum(stats->stawidth);
1696 values[Anum_pg_statistic_stadistinct - 1] = Float4GetDatum(stats->stadistinct);
1697 i = Anum_pg_statistic_stakind1 - 1;
1698 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1699 {
1700 values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */
1701 }
1702 i = Anum_pg_statistic_staop1 - 1;
1703 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1704 {
1705 values[i++] = ObjectIdGetDatum(stats->staop[k]); /* staopN */
1706 }
1707 i = Anum_pg_statistic_stacoll1 - 1;
1708 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1709 {
1710 values[i++] = ObjectIdGetDatum(stats->stacoll[k]); /* stacollN */
1711 }
1712 i = Anum_pg_statistic_stanumbers1 - 1;
1713 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1714 {
1715 if (stats->stanumbers[k] != NULL)
1716 {
1717 int nnum = stats->numnumbers[k];
1718 Datum *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
1719 ArrayType *arry;
1720
1721 for (n = 0; n < nnum; n++)
1722 numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
1723 arry = construct_array_builtin(numdatums, nnum, FLOAT4OID);
1724 values[i++] = PointerGetDatum(arry); /* stanumbersN */
1725 }
1726 else
1727 {
1728 nulls[i] = true;
1729 values[i++] = (Datum) 0;
1730 }
1731 }
1732 i = Anum_pg_statistic_stavalues1 - 1;
1733 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1734 {
1735 if (stats->stavalues[k] != NULL)
1736 {
1737 ArrayType *arry;
1738
1739 arry = construct_array(stats->stavalues[k],
1740 stats->numvalues[k],
1741 stats->statypid[k],
1742 stats->statyplen[k],
1743 stats->statypbyval[k],
1744 stats->statypalign[k]);
1745 values[i++] = PointerGetDatum(arry); /* stavaluesN */
1746 }
1747 else
1748 {
1749 nulls[i] = true;
1750 values[i++] = (Datum) 0;
1751 }
1752 }
1753
1754 /* Is there already a pg_statistic tuple for this attribute? */
1755 oldtup = SearchSysCache3(STATRELATTINH,
1756 ObjectIdGetDatum(relid),
1757 Int16GetDatum(stats->tupattnum),
1758 BoolGetDatum(inh));
1759
1760 /* Open index information when we know we need it */
1761 if (indstate == NULL)
1762 indstate = CatalogOpenIndexes(sd);
1763
1764 if (HeapTupleIsValid(oldtup))
1765 {
1766 /* Yes, replace it */
1767 stup = heap_modify_tuple(oldtup,
1768 RelationGetDescr(sd),
1769 values,
1770 nulls,
1771 replaces);
1772 ReleaseSysCache(oldtup);
1773 CatalogTupleUpdateWithInfo(sd, &stup->t_self, stup, indstate);
1774 }
1775 else
1776 {
1777 /* No, insert new tuple */
1778 stup = heap_form_tuple(RelationGetDescr(sd), values, nulls);
1779 CatalogTupleInsertWithInfo(sd, stup, indstate);
1780 }
1781
1782 heap_freetuple(stup);
1783 }
1784
1785 if (indstate != NULL)
1786 CatalogCloseIndexes(indstate);
1788}
1789
1790/*
1791 * Standard fetch function for use by compute_stats subroutines.
1792 *
1793 * This exists to provide some insulation between compute_stats routines
1794 * and the actual storage of the sample data.
1795 */
1796static Datum
1797std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
1798{
1799 int attnum = stats->tupattnum;
1800 HeapTuple tuple = stats->rows[rownum];
1801 TupleDesc tupDesc = stats->tupDesc;
1802
1803 return heap_getattr(tuple, attnum, tupDesc, isNull);
1804}
1805
1806/*
1807 * Fetch function for analyzing index expressions.
1808 *
1809 * We have not bothered to construct index tuples, instead the data is
1810 * just in Datum arrays.
1811 */
1812static Datum
1813ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
1814{
1815 int i;
1816
1817 /* exprvals and exprnulls are already offset for proper column */
1818 i = rownum * stats->rowstride;
1819 *isNull = stats->exprnulls[i];
1820 return stats->exprvals[i];
1821}
1822
1823
1824/*==========================================================================
1825 *
1826 * Code below this point represents the "standard" type-specific statistics
1827 * analysis algorithms. This code can be replaced on a per-data-type basis
1828 * by setting a nonzero value in pg_type.typanalyze.
1829 *
1830 *==========================================================================
1831 */
1832
1833
1834/*
1835 * To avoid consuming too much memory during analysis and/or too much space
1836 * in the resulting pg_statistic rows, we ignore varlena datums that are wider
1837 * than WIDTH_THRESHOLD (after detoasting!). This is legitimate for MCV
1838 * and distinct-value calculations since a wide value is unlikely to be
1839 * duplicated at all, much less be a most-common value. For the same reason,
1840 * ignoring wide values will not affect our estimates of histogram bin
1841 * boundaries very much.
1842 */
1843#define WIDTH_THRESHOLD 1024
1844
1845#define swapInt(a,b) do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
1846#define swapDatum(a,b) do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)
1847
1848/*
1849 * Extra information used by the default analysis routines
1850 */
1851typedef struct
1852{
1853 int count; /* # of duplicates */
1854 int first; /* values[] index of first occurrence */
1856
1857typedef struct
1858{
1862
1863
1864static void compute_trivial_stats(VacAttrStatsP stats,
1865 AnalyzeAttrFetchFunc fetchfunc,
1866 int samplerows,
1867 double totalrows);
1868static void compute_distinct_stats(VacAttrStatsP stats,
1869 AnalyzeAttrFetchFunc fetchfunc,
1870 int samplerows,
1871 double totalrows);
1872static void compute_scalar_stats(VacAttrStatsP stats,
1873 AnalyzeAttrFetchFunc fetchfunc,
1874 int samplerows,
1875 double totalrows);
1876static int compare_scalars(const void *a, const void *b, void *arg);
1877static int compare_mcvs(const void *a, const void *b, void *arg);
1878static int analyze_mcv_list(int *mcv_counts,
1879 int num_mcv,
1880 double stadistinct,
1881 double stanullfrac,
1882 int samplerows,
1883 double totalrows);
1884
1885
1886/*
1887 * std_typanalyze -- the default type-specific typanalyze function
1888 */
1889bool
1891{
1892 Oid ltopr;
1893 Oid eqopr;
1894 StdAnalyzeData *mystats;
1895
1896 /* If the attstattarget column is negative, use the default value */
1897 if (stats->attstattarget < 0)
1899
1900 /* Look for default "<" and "=" operators for column's type */
1902 false, false, false,
1903 &ltopr, &eqopr, NULL,
1904 NULL);
1905
1906 /* Save the operator info for compute_stats routines */
1907 mystats = (StdAnalyzeData *) palloc(sizeof(StdAnalyzeData));
1908 mystats->eqopr = eqopr;
1909 mystats->eqfunc = OidIsValid(eqopr) ? get_opcode(eqopr) : InvalidOid;
1910 mystats->ltopr = ltopr;
1911 stats->extra_data = mystats;
1912
1913 /*
1914 * Determine which standard statistics algorithm to use
1915 */
1916 if (OidIsValid(eqopr) && OidIsValid(ltopr))
1917 {
1918 /* Seems to be a scalar datatype */
1920 /*--------------------
1921 * The following choice of minrows is based on the paper
1922 * "Random sampling for histogram construction: how much is enough?"
1923 * by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
1924 * Proceedings of ACM SIGMOD International Conference on Management
1925 * of Data, 1998, Pages 436-447. Their Corollary 1 to Theorem 5
1926 * says that for table size n, histogram size k, maximum relative
1927 * error in bin size f, and error probability gamma, the minimum
1928 * random sample size is
1929 * r = 4 * k * ln(2*n/gamma) / f^2
1930 * Taking f = 0.5, gamma = 0.01, n = 10^6 rows, we obtain
1931 * r = 305.82 * k
1932 * Note that because of the log function, the dependence on n is
1933 * quite weak; even at n = 10^12, a 300*k sample gives <= 0.66
1934 * bin size error with probability 0.99. So there's no real need to
1935 * scale for n, which is a good thing because we don't necessarily
1936 * know it at this point.
1937 *--------------------
1938 */
1939 stats->minrows = 300 * stats->attstattarget;
1940 }
1941 else if (OidIsValid(eqopr))
1942 {
1943 /* We can still recognize distinct values */
1945 /* Might as well use the same minrows as above */
1946 stats->minrows = 300 * stats->attstattarget;
1947 }
1948 else
1949 {
1950 /* Can't do much but the trivial stuff */
1952 /* Might as well use the same minrows as above */
1953 stats->minrows = 300 * stats->attstattarget;
1954 }
1955
1956 return true;
1957}
1958
1959
1960/*
1961 * compute_trivial_stats() -- compute very basic column statistics
1962 *
1963 * We use this when we cannot find a hash "=" operator for the datatype.
1964 *
1965 * We determine the fraction of non-null rows and the average datum width.
1966 */
1967static void
1969 AnalyzeAttrFetchFunc fetchfunc,
1970 int samplerows,
1971 double totalrows)
1972{
1973 int i;
1974 int null_cnt = 0;
1975 int nonnull_cnt = 0;
1976 double total_width = 0;
1977 bool is_varlena = (!stats->attrtype->typbyval &&
1978 stats->attrtype->typlen == -1);
1979 bool is_varwidth = (!stats->attrtype->typbyval &&
1980 stats->attrtype->typlen < 0);
1981
1982 for (i = 0; i < samplerows; i++)
1983 {
1984 Datum value;
1985 bool isnull;
1986
1987 vacuum_delay_point(true);
1988
1989 value = fetchfunc(stats, i, &isnull);
1990
1991 /* Check for null/nonnull */
1992 if (isnull)
1993 {
1994 null_cnt++;
1995 continue;
1996 }
1997 nonnull_cnt++;
1998
1999 /*
2000 * If it's a variable-width field, add up widths for average width
2001 * calculation. Note that if the value is toasted, we use the toasted
2002 * width. We don't bother with this calculation if it's a fixed-width
2003 * type.
2004 */
2005 if (is_varlena)
2006 {
2007 total_width += VARSIZE_ANY(DatumGetPointer(value));
2008 }
2009 else if (is_varwidth)
2010 {
2011 /* must be cstring */
2012 total_width += strlen(DatumGetCString(value)) + 1;
2013 }
2014 }
2015
2016 /* We can only compute average width if we found some non-null values. */
2017 if (nonnull_cnt > 0)
2018 {
2019 stats->stats_valid = true;
2020 /* Do the simple null-frac and width stats */
2021 stats->stanullfrac = (double) null_cnt / (double) samplerows;
2022 if (is_varwidth)
2023 stats->stawidth = total_width / (double) nonnull_cnt;
2024 else
2025 stats->stawidth = stats->attrtype->typlen;
2026 stats->stadistinct = 0.0; /* "unknown" */
2027 }
2028 else if (null_cnt > 0)
2029 {
2030 /* We found only nulls; assume the column is entirely null */
2031 stats->stats_valid = true;
2032 stats->stanullfrac = 1.0;
2033 if (is_varwidth)
2034 stats->stawidth = 0; /* "unknown" */
2035 else
2036 stats->stawidth = stats->attrtype->typlen;
2037 stats->stadistinct = 0.0; /* "unknown" */
2038 }
2039}
2040
2041
2042/*
2043 * compute_distinct_stats() -- compute column statistics including ndistinct
2044 *
2045 * We use this when we can find only an "=" operator for the datatype.
2046 *
2047 * We determine the fraction of non-null rows, the average width, the
2048 * most common values, and the (estimated) number of distinct values.
2049 *
2050 * The most common values are determined by brute force: we keep a list
2051 * of previously seen values, ordered by number of times seen, as we scan
2052 * the samples. A newly seen value is inserted just after the last
2053 * multiply-seen value, causing the bottommost (oldest) singly-seen value
2054 * to drop off the list. The accuracy of this method, and also its cost,
2055 * depend mainly on the length of the list we are willing to keep.
2056 */
2057static void
2059 AnalyzeAttrFetchFunc fetchfunc,
2060 int samplerows,
2061 double totalrows)
2062{
2063 int i;
2064 int null_cnt = 0;
2065 int nonnull_cnt = 0;
2066 int toowide_cnt = 0;
2067 double total_width = 0;
2068 bool is_varlena = (!stats->attrtype->typbyval &&
2069 stats->attrtype->typlen == -1);
2070 bool is_varwidth = (!stats->attrtype->typbyval &&
2071 stats->attrtype->typlen < 0);
2072 FmgrInfo f_cmpeq;
2073 typedef struct
2074 {
2075 Datum value;
2076 int count;
2077 } TrackItem;
2078 TrackItem *track;
2079 int track_cnt,
2080 track_max;
2081 int num_mcv = stats->attstattarget;
2082 StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
2083
2084 /*
2085 * We track up to 2*n values for an n-element MCV list; but at least 10
2086 */
2087 track_max = 2 * num_mcv;
2088 if (track_max < 10)
2089 track_max = 10;
2090 track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
2091 track_cnt = 0;
2092
2093 fmgr_info(mystats->eqfunc, &f_cmpeq);
2094
2095 for (i = 0; i < samplerows; i++)
2096 {
2097 Datum value;
2098 bool isnull;
2099 bool match;
2100 int firstcount1,
2101 j;
2102
2103 vacuum_delay_point(true);
2104
2105 value = fetchfunc(stats, i, &isnull);
2106
2107 /* Check for null/nonnull */
2108 if (isnull)
2109 {
2110 null_cnt++;
2111 continue;
2112 }
2113 nonnull_cnt++;
2114
2115 /*
2116 * If it's a variable-width field, add up widths for average width
2117 * calculation. Note that if the value is toasted, we use the toasted
2118 * width. We don't bother with this calculation if it's a fixed-width
2119 * type.
2120 */
2121 if (is_varlena)
2122 {
2123 total_width += VARSIZE_ANY(DatumGetPointer(value));
2124
2125 /*
2126 * If the value is toasted, we want to detoast it just once to
2127 * avoid repeated detoastings and resultant excess memory usage
2128 * during the comparisons. Also, check to see if the value is
2129 * excessively wide, and if so don't detoast at all --- just
2130 * ignore the value.
2131 */
2133 {
2134 toowide_cnt++;
2135 continue;
2136 }
2138 }
2139 else if (is_varwidth)
2140 {
2141 /* must be cstring */
2142 total_width += strlen(DatumGetCString(value)) + 1;
2143 }
2144
2145 /*
2146 * See if the value matches anything we're already tracking.
2147 */
2148 match = false;
2149 firstcount1 = track_cnt;
2150 for (j = 0; j < track_cnt; j++)
2151 {
2152 if (DatumGetBool(FunctionCall2Coll(&f_cmpeq,
2153 stats->attrcollid,
2154 value, track[j].value)))
2155 {
2156 match = true;
2157 break;
2158 }
2159 if (j < firstcount1 && track[j].count == 1)
2160 firstcount1 = j;
2161 }
2162
2163 if (match)
2164 {
2165 /* Found a match */
2166 track[j].count++;
2167 /* This value may now need to "bubble up" in the track list */
2168 while (j > 0 && track[j].count > track[j - 1].count)
2169 {
2170 swapDatum(track[j].value, track[j - 1].value);
2171 swapInt(track[j].count, track[j - 1].count);
2172 j--;
2173 }
2174 }
2175 else
2176 {
2177 /* No match. Insert at head of count-1 list */
2178 if (track_cnt < track_max)
2179 track_cnt++;
2180 for (j = track_cnt - 1; j > firstcount1; j--)
2181 {
2182 track[j].value = track[j - 1].value;
2183 track[j].count = track[j - 1].count;
2184 }
2185 if (firstcount1 < track_cnt)
2186 {
2187 track[firstcount1].value = value;
2188 track[firstcount1].count = 1;
2189 }
2190 }
2191 }
2192
2193 /* We can only compute real stats if we found some non-null values. */
2194 if (nonnull_cnt > 0)
2195 {
2196 int nmultiple,
2197 summultiple;
2198
2199 stats->stats_valid = true;
2200 /* Do the simple null-frac and width stats */
2201 stats->stanullfrac = (double) null_cnt / (double) samplerows;
2202 if (is_varwidth)
2203 stats->stawidth = total_width / (double) nonnull_cnt;
2204 else
2205 stats->stawidth = stats->attrtype->typlen;
2206
2207 /* Count the number of values we found multiple times */
2208 summultiple = 0;
2209 for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
2210 {
2211 if (track[nmultiple].count == 1)
2212 break;
2213 summultiple += track[nmultiple].count;
2214 }
2215
2216 if (nmultiple == 0)
2217 {
2218 /*
2219 * If we found no repeated non-null values, assume it's a unique
2220 * column; but be sure to discount for any nulls we found.
2221 */
2222 stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
2223 }
2224 else if (track_cnt < track_max && toowide_cnt == 0 &&
2225 nmultiple == track_cnt)
2226 {
2227 /*
2228 * Our track list includes every value in the sample, and every
2229 * value appeared more than once. Assume the column has just
2230 * these values. (This case is meant to address columns with
2231 * small, fixed sets of possible values, such as boolean or enum
2232 * columns. If there are any values that appear just once in the
2233 * sample, including too-wide values, we should assume that that's
2234 * not what we're dealing with.)
2235 */
2236 stats->stadistinct = track_cnt;
2237 }
2238 else
2239 {
2240 /*----------
2241 * Estimate the number of distinct values using the estimator
2242 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
2243 * n*d / (n - f1 + f1*n/N)
2244 * where f1 is the number of distinct values that occurred
2245 * exactly once in our sample of n rows (from a total of N),
2246 * and d is the total number of distinct values in the sample.
2247 * This is their Duj1 estimator; the other estimators they
2248 * recommend are considerably more complex, and are numerically
2249 * very unstable when n is much smaller than N.
2250 *
2251 * In this calculation, we consider only non-nulls. We used to
2252 * include rows with null values in the n and N counts, but that
2253 * leads to inaccurate answers in columns with many nulls, and
2254 * it's intuitively bogus anyway considering the desired result is
2255 * the number of distinct non-null values.
2256 *
2257 * We assume (not very reliably!) that all the multiply-occurring
2258 * values are reflected in the final track[] list, and the other
2259 * nonnull values all appeared but once. (XXX this usually
2260 * results in a drastic overestimate of ndistinct. Can we do
2261 * any better?)
2262 *----------
2263 */
2264 int f1 = nonnull_cnt - summultiple;
2265 int d = f1 + nmultiple;
2266 double n = samplerows - null_cnt;
2267 double N = totalrows * (1.0 - stats->stanullfrac);
2268 double stadistinct;
2269
2270 /* N == 0 shouldn't happen, but just in case ... */
2271 if (N > 0)
2272 stadistinct = (n * d) / ((n - f1) + f1 * n / N);
2273 else
2274 stadistinct = 0;
2275
2276 /* Clamp to sane range in case of roundoff error */
2277 if (stadistinct < d)
2278 stadistinct = d;
2279 if (stadistinct > N)
2280 stadistinct = N;
2281 /* And round to integer */
2282 stats->stadistinct = floor(stadistinct + 0.5);
2283 }
2284
2285 /*
2286 * If we estimated the number of distinct values at more than 10% of
2287 * the total row count (a very arbitrary limit), then assume that
2288 * stadistinct should scale with the row count rather than be a fixed
2289 * value.
2290 */
2291 if (stats->stadistinct > 0.1 * totalrows)
2292 stats->stadistinct = -(stats->stadistinct / totalrows);
2293
2294 /*
2295 * Decide how many values are worth storing as most-common values. If
2296 * we are able to generate a complete MCV list (all the values in the
2297 * sample will fit, and we think these are all the ones in the table),
2298 * then do so. Otherwise, store only those values that are
2299 * significantly more common than the values not in the list.
2300 *
2301 * Note: the first of these cases is meant to address columns with
2302 * small, fixed sets of possible values, such as boolean or enum
2303 * columns. If we can *completely* represent the column population by
2304 * an MCV list that will fit into the stats target, then we should do
2305 * so and thus provide the planner with complete information. But if
2306 * the MCV list is not complete, it's generally worth being more
2307 * selective, and not just filling it all the way up to the stats
2308 * target.
2309 */
2310 if (track_cnt < track_max && toowide_cnt == 0 &&
2311 stats->stadistinct > 0 &&
2312 track_cnt <= num_mcv)
2313 {
2314 /* Track list includes all values seen, and all will fit */
2315 num_mcv = track_cnt;
2316 }
2317 else
2318 {
2319 int *mcv_counts;
2320
2321 /* Incomplete list; decide how many values are worth keeping */
2322 if (num_mcv > track_cnt)
2323 num_mcv = track_cnt;
2324
2325 if (num_mcv > 0)
2326 {
2327 mcv_counts = (int *) palloc(num_mcv * sizeof(int));
2328 for (i = 0; i < num_mcv; i++)
2329 mcv_counts[i] = track[i].count;
2330
2331 num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
2332 stats->stadistinct,
2333 stats->stanullfrac,
2334 samplerows, totalrows);
2335 }
2336 }
2337
2338 /* Generate MCV slot entry */
2339 if (num_mcv > 0)
2340 {
2341 MemoryContext old_context;
2342 Datum *mcv_values;
2343 float4 *mcv_freqs;
2344
2345 /* Must copy the target values into anl_context */
2346 old_context = MemoryContextSwitchTo(stats->anl_context);
2347 mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
2348 mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
2349 for (i = 0; i < num_mcv; i++)
2350 {
2351 mcv_values[i] = datumCopy(track[i].value,
2352 stats->attrtype->typbyval,
2353 stats->attrtype->typlen);
2354 mcv_freqs[i] = (double) track[i].count / (double) samplerows;
2355 }
2356 MemoryContextSwitchTo(old_context);
2357
2358 stats->stakind[0] = STATISTIC_KIND_MCV;
2359 stats->staop[0] = mystats->eqopr;
2360 stats->stacoll[0] = stats->attrcollid;
2361 stats->stanumbers[0] = mcv_freqs;
2362 stats->numnumbers[0] = num_mcv;
2363 stats->stavalues[0] = mcv_values;
2364 stats->numvalues[0] = num_mcv;
2365
2366 /*
2367 * Accept the defaults for stats->statypid and others. They have
2368 * been set before we were called (see vacuum.h)
2369 */
2370 }
2371 }
2372 else if (null_cnt > 0)
2373 {
2374 /* We found only nulls; assume the column is entirely null */
2375 stats->stats_valid = true;
2376 stats->stanullfrac = 1.0;
2377 if (is_varwidth)
2378 stats->stawidth = 0; /* "unknown" */
2379 else
2380 stats->stawidth = stats->attrtype->typlen;
2381 stats->stadistinct = 0.0; /* "unknown" */
2382 }
2383
2384 /* We don't need to bother cleaning up any of our temporary palloc's */
2385}
2386
2387
2388/*
2389 * compute_scalar_stats() -- compute column statistics
2390 *
2391 * We use this when we can find "=" and "<" operators for the datatype.
2392 *
2393 * We determine the fraction of non-null rows, the average width, the
2394 * most common values, the (estimated) number of distinct values, the
2395 * distribution histogram, and the correlation of physical to logical order.
2396 *
2397 * The desired stats can be determined fairly easily after sorting the
2398 * data values into order.
2399 */
2400static void
2402 AnalyzeAttrFetchFunc fetchfunc,
2403 int samplerows,
2404 double totalrows)
2405{
2406 int i;
2407 int null_cnt = 0;
2408 int nonnull_cnt = 0;
2409 int toowide_cnt = 0;
2410 double total_width = 0;
2411 bool is_varlena = (!stats->attrtype->typbyval &&
2412 stats->attrtype->typlen == -1);
2413 bool is_varwidth = (!stats->attrtype->typbyval &&
2414 stats->attrtype->typlen < 0);
2415 double corr_xysum;
2416 SortSupportData ssup;
2418 int values_cnt = 0;
2419 int *tupnoLink;
2420 ScalarMCVItem *track;
2421 int track_cnt = 0;
2422 int num_mcv = stats->attstattarget;
2423 int num_bins = stats->attstattarget;
2424 StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
2425
2426 values = (ScalarItem *) palloc(samplerows * sizeof(ScalarItem));
2427 tupnoLink = (int *) palloc(samplerows * sizeof(int));
2428 track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));
2429
2430 memset(&ssup, 0, sizeof(ssup));
2432 ssup.ssup_collation = stats->attrcollid;
2433 ssup.ssup_nulls_first = false;
2434
2435 /*
2436 * For now, don't perform abbreviated key conversion, because full values
2437 * are required for MCV slot generation. Supporting that optimization
2438 * would necessitate teaching compare_scalars() to call a tie-breaker.
2439 */
2440 ssup.abbreviate = false;
2441
2442 PrepareSortSupportFromOrderingOp(mystats->ltopr, &ssup);
2443
2444 /* Initial scan to find sortable values */
2445 for (i = 0; i < samplerows; i++)
2446 {
2447 Datum value;
2448 bool isnull;
2449
2450 vacuum_delay_point(true);
2451
2452 value = fetchfunc(stats, i, &isnull);
2453
2454 /* Check for null/nonnull */
2455 if (isnull)
2456 {
2457 null_cnt++;
2458 continue;
2459 }
2460 nonnull_cnt++;
2461
2462 /*
2463 * If it's a variable-width field, add up widths for average width
2464 * calculation. Note that if the value is toasted, we use the toasted
2465 * width. We don't bother with this calculation if it's a fixed-width
2466 * type.
2467 */
2468 if (is_varlena)
2469 {
2470 total_width += VARSIZE_ANY(DatumGetPointer(value));
2471
2472 /*
2473 * If the value is toasted, we want to detoast it just once to
2474 * avoid repeated detoastings and resultant excess memory usage
2475 * during the comparisons. Also, check to see if the value is
2476 * excessively wide, and if so don't detoast at all --- just
2477 * ignore the value.
2478 */
2480 {
2481 toowide_cnt++;
2482 continue;
2483 }
2485 }
2486 else if (is_varwidth)
2487 {
2488 /* must be cstring */
2489 total_width += strlen(DatumGetCString(value)) + 1;
2490 }
2491
2492 /* Add it to the list to be sorted */
2493 values[values_cnt].value = value;
2494 values[values_cnt].tupno = values_cnt;
2495 tupnoLink[values_cnt] = values_cnt;
2496 values_cnt++;
2497 }
2498
2499 /* We can only compute real stats if we found some sortable values. */
2500 if (values_cnt > 0)
2501 {
2502 int ndistinct, /* # distinct values in sample */
2503 nmultiple, /* # that appear multiple times */
2504 num_hist,
2505 dups_cnt;
2506 int slot_idx = 0;
2508
2509 /* Sort the collected values */
2510 cxt.ssup = &ssup;
2511 cxt.tupnoLink = tupnoLink;
2512 qsort_interruptible(values, values_cnt, sizeof(ScalarItem),
2513 compare_scalars, &cxt);
2514
2515 /*
2516 * Now scan the values in order, find the most common ones, and also
2517 * accumulate ordering-correlation statistics.
2518 *
2519 * To determine which are most common, we first have to count the
2520 * number of duplicates of each value. The duplicates are adjacent in
2521 * the sorted list, so a brute-force approach is to compare successive
2522 * datum values until we find two that are not equal. However, that
2523 * requires N-1 invocations of the datum comparison routine, which are
2524 * completely redundant with work that was done during the sort. (The
2525 * sort algorithm must at some point have compared each pair of items
2526 * that are adjacent in the sorted order; otherwise it could not know
2527 * that it's ordered the pair correctly.) We exploit this by having
2528 * compare_scalars remember the highest tupno index that each
2529 * ScalarItem has been found equal to. At the end of the sort, a
2530 * ScalarItem's tupnoLink will still point to itself if and only if it
2531 * is the last item of its group of duplicates (since the group will
2532 * be ordered by tupno).
2533 */
2534 corr_xysum = 0;
2535 ndistinct = 0;
2536 nmultiple = 0;
2537 dups_cnt = 0;
2538 for (i = 0; i < values_cnt; i++)
2539 {
2540 int tupno = values[i].tupno;
2541
2542 corr_xysum += ((double) i) * ((double) tupno);
2543 dups_cnt++;
2544 if (tupnoLink[tupno] == tupno)
2545 {
2546 /* Reached end of duplicates of this value */
2547 ndistinct++;
2548 if (dups_cnt > 1)
2549 {
2550 nmultiple++;
2551 if (track_cnt < num_mcv ||
2552 dups_cnt > track[track_cnt - 1].count)
2553 {
2554 /*
2555 * Found a new item for the mcv list; find its
2556 * position, bubbling down old items if needed. Loop
2557 * invariant is that j points at an empty/ replaceable
2558 * slot.
2559 */
2560 int j;
2561
2562 if (track_cnt < num_mcv)
2563 track_cnt++;
2564 for (j = track_cnt - 1; j > 0; j--)
2565 {
2566 if (dups_cnt <= track[j - 1].count)
2567 break;
2568 track[j].count = track[j - 1].count;
2569 track[j].first = track[j - 1].first;
2570 }
2571 track[j].count = dups_cnt;
2572 track[j].first = i + 1 - dups_cnt;
2573 }
2574 }
2575 dups_cnt = 0;
2576 }
2577 }
2578
2579 stats->stats_valid = true;
2580 /* Do the simple null-frac and width stats */
2581 stats->stanullfrac = (double) null_cnt / (double) samplerows;
2582 if (is_varwidth)
2583 stats->stawidth = total_width / (double) nonnull_cnt;
2584 else
2585 stats->stawidth = stats->attrtype->typlen;
2586
2587 if (nmultiple == 0)
2588 {
2589 /*
2590 * If we found no repeated non-null values, assume it's a unique
2591 * column; but be sure to discount for any nulls we found.
2592 */
2593 stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
2594 }
2595 else if (toowide_cnt == 0 && nmultiple == ndistinct)
2596 {
2597 /*
2598 * Every value in the sample appeared more than once. Assume the
2599 * column has just these values. (This case is meant to address
2600 * columns with small, fixed sets of possible values, such as
2601 * boolean or enum columns. If there are any values that appear
2602 * just once in the sample, including too-wide values, we should
2603 * assume that that's not what we're dealing with.)
2604 */
2605 stats->stadistinct = ndistinct;
2606 }
2607 else
2608 {
2609 /*----------
2610 * Estimate the number of distinct values using the estimator
2611 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
2612 * n*d / (n - f1 + f1*n/N)
2613 * where f1 is the number of distinct values that occurred
2614 * exactly once in our sample of n rows (from a total of N),
2615 * and d is the total number of distinct values in the sample.
2616 * This is their Duj1 estimator; the other estimators they
2617 * recommend are considerably more complex, and are numerically
2618 * very unstable when n is much smaller than N.
2619 *
2620 * In this calculation, we consider only non-nulls. We used to
2621 * include rows with null values in the n and N counts, but that
2622 * leads to inaccurate answers in columns with many nulls, and
2623 * it's intuitively bogus anyway considering the desired result is
2624 * the number of distinct non-null values.
2625 *
2626 * Overwidth values are assumed to have been distinct.
2627 *----------
2628 */
2629 int f1 = ndistinct - nmultiple + toowide_cnt;
2630 int d = f1 + nmultiple;
2631 double n = samplerows - null_cnt;
2632 double N = totalrows * (1.0 - stats->stanullfrac);
2633 double stadistinct;
2634
2635 /* N == 0 shouldn't happen, but just in case ... */
2636 if (N > 0)
2637 stadistinct = (n * d) / ((n - f1) + f1 * n / N);
2638 else
2639 stadistinct = 0;
2640
2641 /* Clamp to sane range in case of roundoff error */
2642 if (stadistinct < d)
2643 stadistinct = d;
2644 if (stadistinct > N)
2645 stadistinct = N;
2646 /* And round to integer */
2647 stats->stadistinct = floor(stadistinct + 0.5);
2648 }
2649
2650 /*
2651 * If we estimated the number of distinct values at more than 10% of
2652 * the total row count (a very arbitrary limit), then assume that
2653 * stadistinct should scale with the row count rather than be a fixed
2654 * value.
2655 */
2656 if (stats->stadistinct > 0.1 * totalrows)
2657 stats->stadistinct = -(stats->stadistinct / totalrows);
2658
2659 /*
2660 * Decide how many values are worth storing as most-common values. If
2661 * we are able to generate a complete MCV list (all the values in the
2662 * sample will fit, and we think these are all the ones in the table),
2663 * then do so. Otherwise, store only those values that are
2664 * significantly more common than the values not in the list.
2665 *
2666 * Note: the first of these cases is meant to address columns with
2667 * small, fixed sets of possible values, such as boolean or enum
2668 * columns. If we can *completely* represent the column population by
2669 * an MCV list that will fit into the stats target, then we should do
2670 * so and thus provide the planner with complete information. But if
2671 * the MCV list is not complete, it's generally worth being more
2672 * selective, and not just filling it all the way up to the stats
2673 * target.
2674 */
2675 if (track_cnt == ndistinct && toowide_cnt == 0 &&
2676 stats->stadistinct > 0 &&
2677 track_cnt <= num_mcv)
2678 {
2679 /* Track list includes all values seen, and all will fit */
2680 num_mcv = track_cnt;
2681 }
2682 else
2683 {
2684 int *mcv_counts;
2685
2686 /* Incomplete list; decide how many values are worth keeping */
2687 if (num_mcv > track_cnt)
2688 num_mcv = track_cnt;
2689
2690 if (num_mcv > 0)
2691 {
2692 mcv_counts = (int *) palloc(num_mcv * sizeof(int));
2693 for (i = 0; i < num_mcv; i++)
2694 mcv_counts[i] = track[i].count;
2695
2696 num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
2697 stats->stadistinct,
2698 stats->stanullfrac,
2699 samplerows, totalrows);
2700 }
2701 }
2702
2703 /* Generate MCV slot entry */
2704 if (num_mcv > 0)
2705 {
2706 MemoryContext old_context;
2707 Datum *mcv_values;
2708 float4 *mcv_freqs;
2709
2710 /* Must copy the target values into anl_context */
2711 old_context = MemoryContextSwitchTo(stats->anl_context);
2712 mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
2713 mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
2714 for (i = 0; i < num_mcv; i++)
2715 {
2716 mcv_values[i] = datumCopy(values[track[i].first].value,
2717 stats->attrtype->typbyval,
2718 stats->attrtype->typlen);
2719 mcv_freqs[i] = (double) track[i].count / (double) samplerows;
2720 }
2721 MemoryContextSwitchTo(old_context);
2722
2723 stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
2724 stats->staop[slot_idx] = mystats->eqopr;
2725 stats->stacoll[slot_idx] = stats->attrcollid;
2726 stats->stanumbers[slot_idx] = mcv_freqs;
2727 stats->numnumbers[slot_idx] = num_mcv;
2728 stats->stavalues[slot_idx] = mcv_values;
2729 stats->numvalues[slot_idx] = num_mcv;
2730
2731 /*
2732 * Accept the defaults for stats->statypid and others. They have
2733 * been set before we were called (see vacuum.h)
2734 */
2735 slot_idx++;
2736 }
2737
2738 /*
2739 * Generate a histogram slot entry if there are at least two distinct
2740 * values not accounted for in the MCV list. (This ensures the
2741 * histogram won't collapse to empty or a singleton.)
2742 */
2743 num_hist = ndistinct - num_mcv;
2744 if (num_hist > num_bins)
2745 num_hist = num_bins + 1;
2746 if (num_hist >= 2)
2747 {
2748 MemoryContext old_context;
2749 Datum *hist_values;
2750 int nvals;
2751 int pos,
2752 posfrac,
2753 delta,
2754 deltafrac;
2755
2756 /* Sort the MCV items into position order to speed next loop */
2757 qsort_interruptible(track, num_mcv, sizeof(ScalarMCVItem),
2758 compare_mcvs, NULL);
2759
2760 /*
2761 * Collapse out the MCV items from the values[] array.
2762 *
2763 * Note we destroy the values[] array here... but we don't need it
2764 * for anything more. We do, however, still need values_cnt.
2765 * nvals will be the number of remaining entries in values[].
2766 */
2767 if (num_mcv > 0)
2768 {
2769 int src,
2770 dest;
2771 int j;
2772
2773 src = dest = 0;
2774 j = 0; /* index of next interesting MCV item */
2775 while (src < values_cnt)
2776 {
2777 int ncopy;
2778
2779 if (j < num_mcv)
2780 {
2781 int first = track[j].first;
2782
2783 if (src >= first)
2784 {
2785 /* advance past this MCV item */
2786 src = first + track[j].count;
2787 j++;
2788 continue;
2789 }
2790 ncopy = first - src;
2791 }
2792 else
2793 ncopy = values_cnt - src;
2794 memmove(&values[dest], &values[src],
2795 ncopy * sizeof(ScalarItem));
2796 src += ncopy;
2797 dest += ncopy;
2798 }
2799 nvals = dest;
2800 }
2801 else
2802 nvals = values_cnt;
2803 Assert(nvals >= num_hist);
2804
2805 /* Must copy the target values into anl_context */
2806 old_context = MemoryContextSwitchTo(stats->anl_context);
2807 hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
2808
2809 /*
2810 * The object of this loop is to copy the first and last values[]
2811 * entries along with evenly-spaced values in between. So the
2812 * i'th value is values[(i * (nvals - 1)) / (num_hist - 1)]. But
2813 * computing that subscript directly risks integer overflow when
2814 * the stats target is more than a couple thousand. Instead we
2815 * add (nvals - 1) / (num_hist - 1) to pos at each step, tracking
2816 * the integral and fractional parts of the sum separately.
2817 */
2818 delta = (nvals - 1) / (num_hist - 1);
2819 deltafrac = (nvals - 1) % (num_hist - 1);
2820 pos = posfrac = 0;
2821
2822 for (i = 0; i < num_hist; i++)
2823 {
2824 hist_values[i] = datumCopy(values[pos].value,
2825 stats->attrtype->typbyval,
2826 stats->attrtype->typlen);
2827 pos += delta;
2828 posfrac += deltafrac;
2829 if (posfrac >= (num_hist - 1))
2830 {
2831 /* fractional part exceeds 1, carry to integer part */
2832 pos++;
2833 posfrac -= (num_hist - 1);
2834 }
2835 }
2836
2837 MemoryContextSwitchTo(old_context);
2838
2839 stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
2840 stats->staop[slot_idx] = mystats->ltopr;
2841 stats->stacoll[slot_idx] = stats->attrcollid;
2842 stats->stavalues[slot_idx] = hist_values;
2843 stats->numvalues[slot_idx] = num_hist;
2844
2845 /*
2846 * Accept the defaults for stats->statypid and others. They have
2847 * been set before we were called (see vacuum.h)
2848 */
2849 slot_idx++;
2850 }
2851
2852 /* Generate a correlation entry if there are multiple values */
2853 if (values_cnt > 1)
2854 {
2855 MemoryContext old_context;
2856 float4 *corrs;
2857 double corr_xsum,
2858 corr_x2sum;
2859
2860 /* Must copy the target values into anl_context */
2861 old_context = MemoryContextSwitchTo(stats->anl_context);
2862 corrs = (float4 *) palloc(sizeof(float4));
2863 MemoryContextSwitchTo(old_context);
2864
2865 /*----------
2866 * Since we know the x and y value sets are both
2867 * 0, 1, ..., values_cnt-1
2868 * we have sum(x) = sum(y) =
2869 * (values_cnt-1)*values_cnt / 2
2870 * and sum(x^2) = sum(y^2) =
2871 * (values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
2872 *----------
2873 */
2874 corr_xsum = ((double) (values_cnt - 1)) *
2875 ((double) values_cnt) / 2.0;
2876 corr_x2sum = ((double) (values_cnt - 1)) *
2877 ((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;
2878
2879 /* And the correlation coefficient reduces to */
2880 corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
2881 (values_cnt * corr_x2sum - corr_xsum * corr_xsum);
2882
2883 stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
2884 stats->staop[slot_idx] = mystats->ltopr;
2885 stats->stacoll[slot_idx] = stats->attrcollid;
2886 stats->stanumbers[slot_idx] = corrs;
2887 stats->numnumbers[slot_idx] = 1;
2888 slot_idx++;
2889 }
2890 }
2891 else if (nonnull_cnt > 0)
2892 {
2893 /* We found some non-null values, but they were all too wide */
2894 Assert(nonnull_cnt == toowide_cnt);
2895 stats->stats_valid = true;
2896 /* Do the simple null-frac and width stats */
2897 stats->stanullfrac = (double) null_cnt / (double) samplerows;
2898 if (is_varwidth)
2899 stats->stawidth = total_width / (double) nonnull_cnt;
2900 else
2901 stats->stawidth = stats->attrtype->typlen;
2902 /* Assume all too-wide values are distinct, so it's a unique column */
2903 stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
2904 }
2905 else if (null_cnt > 0)
2906 {
2907 /* We found only nulls; assume the column is entirely null */
2908 stats->stats_valid = true;
2909 stats->stanullfrac = 1.0;
2910 if (is_varwidth)
2911 stats->stawidth = 0; /* "unknown" */
2912 else
2913 stats->stawidth = stats->attrtype->typlen;
2914 stats->stadistinct = 0.0; /* "unknown" */
2915 }
2916
2917 /* We don't need to bother cleaning up any of our temporary palloc's */
2918}
2919
2920/*
2921 * Comparator for sorting ScalarItems
2922 *
2923 * Aside from sorting the items, we update the tupnoLink[] array
2924 * whenever two ScalarItems are found to contain equal datums. The array
2925 * is indexed by tupno; for each ScalarItem, it contains the highest
2926 * tupno that that item's datum has been found to be equal to. This allows
2927 * us to avoid additional comparisons in compute_scalar_stats().
2928 */
2929static int
2930compare_scalars(const void *a, const void *b, void *arg)
2931{
2932 Datum da = ((const ScalarItem *) a)->value;
2933 int ta = ((const ScalarItem *) a)->tupno;
2934 Datum db = ((const ScalarItem *) b)->value;
2935 int tb = ((const ScalarItem *) b)->tupno;
2937 int compare;
2938
2939 compare = ApplySortComparator(da, false, db, false, cxt->ssup);
2940 if (compare != 0)
2941 return compare;
2942
2943 /*
2944 * The two datums are equal, so update cxt->tupnoLink[].
2945 */
2946 if (cxt->tupnoLink[ta] < tb)
2947 cxt->tupnoLink[ta] = tb;
2948 if (cxt->tupnoLink[tb] < ta)
2949 cxt->tupnoLink[tb] = ta;
2950
2951 /*
2952 * For equal datums, sort by tupno
2953 */
2954 return ta - tb;
2955}
2956
2957/*
2958 * Comparator for sorting ScalarMCVItems by position
2959 */
2960static int
2961compare_mcvs(const void *a, const void *b, void *arg)
2962{
2963 int da = ((const ScalarMCVItem *) a)->first;
2964 int db = ((const ScalarMCVItem *) b)->first;
2965
2966 return da - db;
2967}
2968
2969/*
2970 * Analyze the list of common values in the sample and decide how many are
2971 * worth storing in the table's MCV list.
2972 *
2973 * mcv_counts is assumed to be a list of the counts of the most common values
2974 * seen in the sample, starting with the most common. The return value is the
2975 * number that are significantly more common than the values not in the list,
2976 * and which are therefore deemed worth storing in the table's MCV list.
2977 */
2978static int
2979analyze_mcv_list(int *mcv_counts,
2980 int num_mcv,
2981 double stadistinct,
2982 double stanullfrac,
2983 int samplerows,
2984 double totalrows)
2985{
2986 double ndistinct_table;
2987 double sumcount;
2988 int i;
2989
2990 /*
2991 * If the entire table was sampled, keep the whole list. This also
2992 * protects us against division by zero in the code below.
2993 */
2994 if (samplerows == totalrows || totalrows <= 1.0)
2995 return num_mcv;
2996
2997 /* Re-extract the estimated number of distinct nonnull values in table */
2998 ndistinct_table = stadistinct;
2999 if (ndistinct_table < 0)
3000 ndistinct_table = -ndistinct_table * totalrows;
3001
3002 /*
3003 * Exclude the least common values from the MCV list, if they are not
3004 * significantly more common than the estimated selectivity they would
3005 * have if they weren't in the list. All non-MCV values are assumed to be
3006 * equally common, after taking into account the frequencies of all the
3007 * values in the MCV list and the number of nulls (c.f. eqsel()).
3008 *
3009 * Here sumcount tracks the total count of all but the last (least common)
3010 * value in the MCV list, allowing us to determine the effect of excluding
3011 * that value from the list.
3012 *
3013 * Note that we deliberately do this by removing values from the full
3014 * list, rather than starting with an empty list and adding values,
3015 * because the latter approach can fail to add any values if all the most
3016 * common values have around the same frequency and make up the majority
3017 * of the table, so that the overall average frequency of all values is
3018 * roughly the same as that of the common values. This would lead to any
3019 * uncommon values being significantly overestimated.
3020 */
3021 sumcount = 0.0;
3022 for (i = 0; i < num_mcv - 1; i++)
3023 sumcount += mcv_counts[i];
3024
3025 while (num_mcv > 0)
3026 {
3027 double selec,
3028 otherdistinct,
3029 N,
3030 n,
3031 K,
3032 variance,
3033 stddev;
3034
3035 /*
3036 * Estimated selectivity the least common value would have if it
3037 * wasn't in the MCV list (c.f. eqsel()).
3038 */
3039 selec = 1.0 - sumcount / samplerows - stanullfrac;
3040 if (selec < 0.0)
3041 selec = 0.0;
3042 if (selec > 1.0)
3043 selec = 1.0;
3044 otherdistinct = ndistinct_table - (num_mcv - 1);
3045 if (otherdistinct > 1)
3046 selec /= otherdistinct;
3047
3048 /*
3049 * If the value is kept in the MCV list, its population frequency is
3050 * assumed to equal its sample frequency. We use the lower end of a
3051 * textbook continuity-corrected Wald-type confidence interval to
3052 * determine if that is significantly more common than the non-MCV
3053 * frequency --- specifically we assume the population frequency is
3054 * highly likely to be within around 2 standard errors of the sample
3055 * frequency, which equates to an interval of 2 standard deviations
3056 * either side of the sample count, plus an additional 0.5 for the
3057 * continuity correction. Since we are sampling without replacement,
3058 * this is a hypergeometric distribution.
3059 *
3060 * XXX: Empirically, this approach seems to work quite well, but it
3061 * may be worth considering more advanced techniques for estimating
3062 * the confidence interval of the hypergeometric distribution.
3063 */
3064 N = totalrows;
3065 n = samplerows;
3066 K = N * mcv_counts[num_mcv - 1] / n;
3067 variance = n * K * (N - K) * (N - n) / (N * N * (N - 1));
3068 stddev = sqrt(variance);
3069
3070 if (mcv_counts[num_mcv - 1] > selec * samplerows + 2 * stddev + 0.5)
3071 {
3072 /*
3073 * The value is significantly more common than the non-MCV
3074 * selectivity would suggest. Keep it, and all the other more
3075 * common values in the list.
3076 */
3077 break;
3078 }
3079 else
3080 {
3081 /* Discard this value and consider the next least common value */
3082 num_mcv--;
3083 if (num_mcv == 0)
3084 break;
3085 sumcount -= mcv_counts[num_mcv - 1];
3086 }
3087 }
3088 return num_mcv;
3089}
ArrayType * construct_array(Datum *elems, int nelems, Oid elmtype, int elmlen, bool elmbyval, char elmalign)
Definition: arrayfuncs.c:3362
ArrayType * construct_array_builtin(Datum *elems, int nelems, Oid elmtype)
Definition: arrayfuncs.c:3382
#define InvalidAttrNumber
Definition: attnum.h:23
AttributeOpts * get_attribute_options(Oid attrelid, int attnum)
Definition: attoptcache.c:131
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1757
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1781
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1645
void pgstat_progress_start_command(ProgressCommandType cmdtype, Oid relid)
void pgstat_progress_update_param(int index, int64 val)
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
void pgstat_progress_end_command(void)
@ PROGRESS_COMMAND_ANALYZE
PgBackendStatus * MyBEEntry
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:814
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
static Datum values[MAXATTR]
Definition: bootstrap.c:153
bool track_io_timing
Definition: bufmgr.c:147
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:294
#define Min(x, y)
Definition: c.h:1006
int64_t int64
Definition: c.h:538
double float8
Definition: c.h:638
uint32_t uint32
Definition: c.h:541
float float4
Definition: c.h:637
uint32 TransactionId
Definition: c.h:660
#define OidIsValid(objectId)
Definition: c.h:777
static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
Definition: analyze.c:1797
#define swapInt(a, b)
Definition: analyze.c:1845
static void compute_scalar_stats(VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
Definition: analyze.c:2401
#define swapDatum(a, b)
Definition: analyze.c:1846
#define WIDTH_THRESHOLD
Definition: analyze.c:1843
static void update_attstats(Oid relid, bool inh, int natts, VacAttrStats **vacattrstats)
Definition: analyze.c:1655
int default_statistics_target
Definition: analyze.c:70
static void do_analyze_rel(Relation onerel, const VacuumParams params, List *va_cols, AcquireSampleRowsFunc acquirefunc, BlockNumber relpages, bool inh, bool in_outer_xact, int elevel)
Definition: analyze.c:277
static void compute_distinct_stats(VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
Definition: analyze.c:2058
static MemoryContext anl_context
Definition: analyze.c:73
bool std_typanalyze(VacAttrStats *stats)
Definition: analyze.c:1890
static int analyze_mcv_list(int *mcv_counts, int num_mcv, double stadistinct, double stanullfrac, int samplerows, double totalrows)
Definition: analyze.c:2979
static int acquire_inherited_sample_rows(Relation onerel, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows)
Definition: analyze.c:1391
static BufferAccessStrategy vac_strategy
Definition: analyze.c:74
static BlockNumber block_sampling_read_stream_next(ReadStream *stream, void *callback_private_data, void *per_buffer_data)
Definition: analyze.c:1156
static int compare_mcvs(const void *a, const void *b, void *arg)
Definition: analyze.c:2961
void analyze_rel(Oid relid, RangeVar *relation, const VacuumParams params, List *va_cols, bool in_outer_xact, BufferAccessStrategy bstrategy)
Definition: analyze.c:108
struct AnlIndexData AnlIndexData
static int acquire_sample_rows(Relation onerel, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows)
Definition: analyze.c:1199
static void compute_trivial_stats(VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
Definition: analyze.c:1968
static int compare_scalars(const void *a, const void *b, void *arg)
Definition: analyze.c:2930
static Datum ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
Definition: analyze.c:1813
static VacAttrStats * examine_attribute(Relation onerel, int attnum, Node *index_expr)
Definition: analyze.c:1036
static int compare_rows(const void *a, const void *b, void *arg)
Definition: analyze.c:1361
static void compute_index_stats(Relation onerel, double totalrows, AnlIndexData *indexdata, int nindexes, HeapTuple *rows, int numrows, MemoryContext col_context)
Definition: analyze.c:865
int64 TimestampTz
Definition: timestamp.h:39
Datum datumCopy(Datum value, bool typByVal, int typLen)
Definition: datum.c:132
Size toast_raw_datum_size(Datum value)
Definition: detoast.c:545
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define _(x)
Definition: elog.c:91
#define LOG
Definition: elog.h:31
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define INFO
Definition: elog.h:34
#define ereport(elevel,...)
Definition: elog.h:150
ExprState * ExecPrepareQual(List *qual, EState *estate)
Definition: execExpr.c:793
TupleTableSlot * MakeSingleTupleTableSlot(TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1427
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1443
const TupleTableSlotOps TTSOpsHeapTuple
Definition: execTuples.c:85
TupleTableSlot * ExecStoreHeapTuple(HeapTuple tuple, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1541
void FreeExecutorState(EState *estate)
Definition: execUtils.c:192
EState * CreateExecutorState(void)
Definition: execUtils.c:88
#define GetPerTupleExprContext(estate)
Definition: executor.h:656
#define ResetExprContext(econtext)
Definition: executor.h:650
static bool ExecQual(ExprState *state, ExprContext *econtext)
Definition: executor.h:519
int ComputeExtStatisticsRows(Relation onerel, int natts, VacAttrStats **vacattrstats)
void BuildRelationExtStatistics(Relation onerel, bool inh, double totalrows, int numrows, HeapTuple *rows, int natts, VacAttrStats **vacattrstats)
int(* AcquireSampleRowsFunc)(Relation relation, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows)
Definition: fdwapi.h:151
Datum FunctionCall2Coll(FmgrInfo *flinfo, Oid collation, Datum arg1, Datum arg2)
Definition: fmgr.c:1150
void fmgr_info(Oid functionId, FmgrInfo *finfo)
Definition: fmgr.c:128
#define OidFunctionCall1(functionId, arg1)
Definition: fmgr.h:720
#define PG_DETOAST_DATUM(datum)
Definition: fmgr.h:240
FdwRoutine * GetFdwRoutineForRelation(Relation relation, bool makecopy)
Definition: foreign.c:443
struct RelationData * Relation
Definition: genam.h:30
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
Oid MyDatabaseId
Definition: globals.c:94
int NewGUCNestLevel(void)
Definition: guc.c:2110
void RestrictSearchPath(void)
Definition: guc.c:2121
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:2137
Assert(PointerIsAligned(start, uint64))
HeapTuple heap_modify_tuple(HeapTuple tuple, TupleDesc tupleDesc, const Datum *replValues, const bool *replIsnull, const bool *doReplace)
Definition: heaptuple.c:1210
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: heaptuple.c:1117
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1435
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
static Datum heap_getattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: htup_details.h:904
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
int verbose
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2428
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2730
IndexBulkDeleteResult * index_vacuum_cleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *istat)
Definition: indexam.c:826
void CatalogTupleUpdateWithInfo(Relation heapRel, const ItemPointerData *otid, HeapTuple tup, CatalogIndexState indstate)
Definition: indexing.c:337
void CatalogTupleInsertWithInfo(Relation heapRel, HeapTuple tup, CatalogIndexState indstate)
Definition: indexing.c:256
void CatalogCloseIndexes(CatalogIndexState indstate)
Definition: indexing.c:61
CatalogIndexState CatalogOpenIndexes(Relation heapRel)
Definition: indexing.c:43
static struct @171 value
WalUsage pgWalUsage
Definition: instrument.c:22
void WalUsageAccumDiff(WalUsage *dst, const WalUsage *add, const WalUsage *sub)
Definition: instrument.c:288
BufferUsage pgBufferUsage
Definition: instrument.c:20
void BufferUsageAccumDiff(BufferUsage *dst, const BufferUsage *add, const BufferUsage *sub)
Definition: instrument.c:248
int b
Definition: isn.c:74
int a
Definition: isn.c:73
int j
Definition: isn.c:78
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
static OffsetNumber ItemPointerGetOffsetNumber(const ItemPointerData *pointer)
Definition: itemptr.h:124
static BlockNumber ItemPointerGetBlockNumber(const ItemPointerData *pointer)
Definition: itemptr.h:103
void list_free(List *list)
Definition: list.c:1546
#define NoLock
Definition: lockdefs.h:34
#define AccessShareLock
Definition: lockdefs.h:36
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define RowExclusiveLock
Definition: lockdefs.h:38
char * get_database_name(Oid dbid)
Definition: lsyscache.c:1259
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1452
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3533
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:400
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc0(Size size)
Definition: mcxt.c:1395
void * palloc(Size size)
Definition: mcxt.c:1365
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:469
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define AmAutoVacuumWorkerProcess()
Definition: miscadmin.h:383
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:319
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:612
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:619
#define InvalidMultiXactId
Definition: multixact.h:25
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:301
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:821
uint16 OffsetNumber
Definition: off.h:24
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
void get_sort_group_operators(Oid argtype, bool needLT, bool needEQ, bool needGT, Oid *ltOpr, Oid *eqOpr, Oid *gtOpr, bool *isHashable)
Definition: parse_oper.c:181
int attnameAttNum(Relation rd, const char *attname, bool sysColOK)
int16 attnum
Definition: pg_attribute.h:74
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:202
void * arg
#define INDEX_MAX_KEYS
List * find_all_inheritors(Oid parentrelId, LOCKMODE lockmode, List **numparents)
Definition: pg_inherits.c:255
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define lfirst_oid(lc)
Definition: pg_list.h:174
uint32 pg_prng_uint32(pg_prng_state *state)
Definition: pg_prng.c:227
pg_prng_state pg_global_prng_state
Definition: pg_prng.c:34
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
#define STATISTIC_NUM_SLOTS
Definition: pg_statistic.h:127
static char * buf
Definition: pg_test_fsync.c:72
FormData_pg_type * Form_pg_type
Definition: pg_type.h:261
int64 PgStat_Counter
Definition: pgstat.h:67
PgStat_Counter pgStatBlockReadTime
PgStat_Counter pgStatBlockWriteTime
void pgstat_report_analyze(Relation rel, PgStat_Counter livetuples, PgStat_Counter deadtuples, bool resetcounter, TimestampTz starttime)
void qsort_interruptible(void *base, size_t nel, size_t elsize, qsort_arg_comparator cmp, void *arg)
static bool DatumGetBool(Datum X)
Definition: postgres.h:100
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:332
static Datum Float4GetDatum(float4 X)
Definition: postgres.h:458
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:182
static Datum BoolGetDatum(bool X)
Definition: postgres.h:112
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:262
static char * DatumGetCString(Datum X)
Definition: postgres.h:345
uint64_t Datum
Definition: postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:322
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:222
static int16 DatumGetInt16(Datum X)
Definition: postgres.h:172
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
TransactionId GetOldestNonRemovableTransactionId(Relation rel)
Definition: procarray.c:1953
#define PROGRESS_ANALYZE_PHASE_FINALIZE_ANALYZE
Definition: progress.h:57
#define PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS_INH
Definition: progress.h:54
#define PROGRESS_ANALYZE_BLOCKS_DONE
Definition: progress.h:44
#define PROGRESS_ANALYZE_PHASE
Definition: progress.h:42
#define PROGRESS_ANALYZE_CHILD_TABLES_TOTAL
Definition: progress.h:47
#define PROGRESS_ANALYZE_BLOCKS_TOTAL
Definition: progress.h:43
#define PROGRESS_ANALYZE_PHASE_COMPUTE_STATS
Definition: progress.h:55
#define PROGRESS_ANALYZE_DELAY_TIME
Definition: progress.h:50
#define PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS
Definition: progress.h:53
#define PROGRESS_ANALYZE_CHILD_TABLES_DONE
Definition: progress.h:48
#define PROGRESS_ANALYZE_CURRENT_CHILD_TABLE_RELID
Definition: progress.h:49
ReadStream * read_stream_begin_relation(int flags, BufferAccessStrategy strategy, Relation rel, ForkNumber forknum, ReadStreamBlockNumberCB callback, void *callback_private_data, size_t per_buffer_data_size)
Definition: read_stream.c:737
void read_stream_end(ReadStream *stream)
Definition: read_stream.c:1089
#define READ_STREAM_MAINTENANCE
Definition: read_stream.h:28
#define READ_STREAM_USE_BATCHING
Definition: read_stream.h:64
#define RelationGetRelid(relation)
Definition: rel.h:515
#define RelationGetDescr(relation)
Definition: rel.h:541
#define RelationGetRelationName(relation)
Definition: rel.h:549
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:668
#define RelationGetNamespace(relation)
Definition: rel.h:556
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4836
@ MAIN_FORKNUM
Definition: relpath.h:58
BlockNumber BlockSampler_Init(BlockSampler bs, BlockNumber nblocks, int samplesize, uint32 randseed)
Definition: sampling.c:39
void reservoir_init_selection_state(ReservoirState rs, int n)
Definition: sampling.c:133
double sampler_random_fract(pg_prng_state *randstate)
Definition: sampling.c:241
bool BlockSampler_HasMore(BlockSampler bs)
Definition: sampling.c:58
BlockNumber BlockSampler_Next(BlockSampler bs)
Definition: sampling.c:64
double reservoir_get_next_S(ReservoirState rs, double t, int n)
Definition: sampling.c:147
#define K(t)
Definition: sha1.c:66
void PrepareSortSupportFromOrderingOp(Oid orderingOp, SortSupport ssup)
Definition: sortsupport.c:134
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:200
int f1[ARRAY_SIZE]
Definition: sql-declare.c:113
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:205
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:145
void initStringInfo(StringInfo str)
Definition: stringinfo.c:97
double tupleFract
Definition: analyze.c:63
int attr_cnt
Definition: analyze.c:65
IndexInfo * indexInfo
Definition: analyze.c:62
VacAttrStats ** vacattrstats
Definition: analyze.c:64
float8 n_distinct
Definition: attoptcache.h:22
float8 n_distinct_inherited
Definition: attoptcache.h:23
int64 shared_blks_dirtied
Definition: instrument.h:28
int64 local_blks_hit
Definition: instrument.h:30
int64 shared_blks_read
Definition: instrument.h:27
int64 local_blks_read
Definition: instrument.h:31
int64 local_blks_dirtied
Definition: instrument.h:32
int64 shared_blks_hit
Definition: instrument.h:26
SortSupport ssup
Definition: analyze.c:1859
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:273
AnalyzeForeignTable_function AnalyzeForeignTable
Definition: fdwapi.h:257
Definition: fmgr.h:57
ItemPointerData t_self
Definition: htup.h:65
int ii_NumIndexAttrs
Definition: execnodes.h:167
List * ii_Expressions
Definition: execnodes.h:178
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:175
List * ii_Predicate
Definition: execnodes.h:183
Relation index
Definition: genam.h:73
double num_heap_tuples
Definition: genam.h:79
bool analyze_only
Definition: genam.h:75
BufferAccessStrategy strategy
Definition: genam.h:80
Relation heaprel
Definition: genam.h:74
int message_level
Definition: genam.h:78
bool estimated_count
Definition: genam.h:77
Definition: pg_list.h:54
Definition: nodes.h:135
int64 st_progress_param[PGSTAT_NUM_PROGRESS_PARAM]
TupleDesc rd_att
Definition: rel.h:112
Oid rd_id
Definition: rel.h:113
Oid * rd_indcollation
Definition: rel.h:217
Form_pg_class rd_rel
Definition: rel.h:111
pg_prng_state randstate
Definition: sampling.h:49
bool ssup_nulls_first
Definition: sortsupport.h:75
MemoryContext ssup_cxt
Definition: sortsupport.h:66
Relation rs_rd
Definition: relscan.h:36
int32 attrtypmod
Definition: vacuum.h:127
bool stats_valid
Definition: vacuum.h:144
float4 stanullfrac
Definition: vacuum.h:145
Form_pg_type attrtype
Definition: vacuum.h:128
int16 stakind[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:148
int tupattnum
Definition: vacuum.h:171
MemoryContext anl_context
Definition: vacuum.h:130
Oid statypid[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:162
Oid staop[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:149
Oid stacoll[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:150
char statypalign[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:165
float4 * stanumbers[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:152
int rowstride
Definition: vacuum.h:176
Oid attrtypid
Definition: vacuum.h:126
HeapTuple * rows
Definition: vacuum.h:172
int minrows
Definition: vacuum.h:137
int attstattarget
Definition: vacuum.h:125
int32 stawidth
Definition: vacuum.h:146
void * extra_data
Definition: vacuum.h:138
bool statypbyval[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:164
int16 statyplen[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:163
bool * exprnulls
Definition: vacuum.h:175
TupleDesc tupDesc
Definition: vacuum.h:173
Datum * exprvals
Definition: vacuum.h:174
int numvalues[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:153
Datum * stavalues[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:154
float4 stadistinct
Definition: vacuum.h:147
int numnumbers[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:151
AnalyzeAttrComputeStatsFunc compute_stats
Definition: vacuum.h:136
Oid attrcollid
Definition: vacuum.h:129
bits32 options
Definition: vacuum.h:219
int log_analyze_min_duration
Definition: vacuum.h:231
int64 wal_buffers_full
Definition: instrument.h:57
uint64 wal_bytes
Definition: instrument.h:55
int64 wal_fpi
Definition: instrument.h:54
uint64 wal_fpi_bytes
Definition: instrument.h:56
int64 wal_records
Definition: instrument.h:53
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:264
HeapTuple SearchSysCache3(int cacheId, Datum key1, Datum key2, Datum key3)
Definition: syscache.c:240
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:595
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:230
#define SearchSysCacheCopy1(cacheId, key1)
Definition: syscache.h:91
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:92
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:985
static bool table_scan_analyze_next_tuple(TableScanDesc scan, TransactionId OldestXmin, double *liverows, double *deadrows, TupleTableSlot *slot)
Definition: tableam.h:1717
static bool table_scan_analyze_next_block(TableScanDesc scan, ReadStream *stream)
Definition: tableam.h:1701
static TableScanDesc table_beginscan_analyze(Relation rel)
Definition: tableam.h:974
void SetRelationHasSubclass(Oid relationId, bool relhassubclass)
Definition: tablecmds.c:3639
#define InvalidTransactionId
Definition: transam.h:31
TupleConversionMap * convert_tuples_by_name(TupleDesc indesc, TupleDesc outdesc)
Definition: tupconvert.c:103
void free_conversion_map(TupleConversionMap *map)
Definition: tupconvert.c:300
HeapTuple execute_attr_map_tuple(HeapTuple tuple, TupleConversionMap *map)
Definition: tupconvert.c:155
bool equalRowTypes(TupleDesc tupdesc1, TupleDesc tupdesc2)
Definition: tupdesc.c:777
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:160
static HeapTuple ExecCopySlotHeapTuple(TupleTableSlot *slot)
Definition: tuptable.h:484
bool track_cost_delay_timing
Definition: vacuum.c:82
void vac_open_indexes(Relation relation, LOCKMODE lockmode, int *nindexes, Relation **Irel)
Definition: vacuum.c:2360
Relation vacuum_open_relation(Oid relid, RangeVar *relation, bits32 options, bool verbose, LOCKMODE lmode)
Definition: vacuum.c:769
void vac_close_indexes(int nindexes, Relation *Irel, LOCKMODE lockmode)
Definition: vacuum.c:2403
void vacuum_delay_point(bool is_analyze)
Definition: vacuum.c:2424
bool vacuum_is_permitted_for_relation(Oid relid, Form_pg_class reltuple, bits32 options)
Definition: vacuum.c:717
void vac_update_relstats(Relation relation, BlockNumber num_pages, double num_tuples, BlockNumber num_all_visible_pages, BlockNumber num_all_frozen_pages, bool hasindex, TransactionId frozenxid, MultiXactId minmulti, bool *frozenxid_updated, bool *minmulti_updated, bool in_outer_xact)
Definition: vacuum.c:1424
#define VACOPT_VACUUM
Definition: vacuum.h:180
#define VACOPT_VERBOSE
Definition: vacuum.h:182
Datum(* AnalyzeAttrFetchFunc)(VacAttrStatsP stats, int rownum, bool *isNull)
Definition: vacuum.h:108
#define strVal(v)
Definition: value.h:82
static Size VARSIZE_ANY(const void *PTR)
Definition: varatt.h:460
void visibilitymap_count(Relation rel, BlockNumber *all_visible, BlockNumber *all_frozen)
void CommandCounterIncrement(void)
Definition: xact.c:1101