PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
analyze.c File Reference
#include "postgres.h"
#include <math.h>
#include "access/detoast.h"
#include "access/genam.h"
#include "access/multixact.h"
#include "access/relation.h"
#include "access/table.h"
#include "access/tableam.h"
#include "access/transam.h"
#include "access/tupconvert.h"
#include "access/visibilitymap.h"
#include "access/xact.h"
#include "catalog/index.h"
#include "catalog/indexing.h"
#include "catalog/pg_inherits.h"
#include "commands/dbcommands.h"
#include "commands/progress.h"
#include "commands/tablecmds.h"
#include "commands/vacuum.h"
#include "common/pg_prng.h"
#include "executor/executor.h"
#include "foreign/fdwapi.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "parser/parse_oper.h"
#include "parser/parse_relation.h"
#include "pgstat.h"
#include "statistics/extended_stats_internal.h"
#include "statistics/statistics.h"
#include "storage/bufmgr.h"
#include "storage/procarray.h"
#include "utils/attoptcache.h"
#include "utils/datum.h"
#include "utils/guc.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_rusage.h"
#include "utils/sampling.h"
#include "utils/sortsupport.h"
#include "utils/syscache.h"
#include "utils/timestamp.h"
Include dependency graph for analyze.c:

Go to the source code of this file.

Data Structures

struct  AnlIndexData
 
struct  ScalarMCVItem
 
struct  CompareScalarsContext
 

Macros

#define WIDTH_THRESHOLD   1024
 
#define swapInt(a, b)   do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
 
#define swapDatum(a, b)   do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)
 

Typedefs

typedef struct AnlIndexData AnlIndexData
 

Functions

static void do_analyze_rel (Relation onerel, VacuumParams *params, List *va_cols, AcquireSampleRowsFunc acquirefunc, BlockNumber relpages, bool inh, bool in_outer_xact, int elevel)
 
static void compute_index_stats (Relation onerel, double totalrows, AnlIndexData *indexdata, int nindexes, HeapTuple *rows, int numrows, MemoryContext col_context)
 
static VacAttrStatsexamine_attribute (Relation onerel, int attnum, Node *index_expr)
 
static int acquire_sample_rows (Relation onerel, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows)
 
static int compare_rows (const void *a, const void *b, void *arg)
 
static int acquire_inherited_sample_rows (Relation onerel, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows)
 
static void update_attstats (Oid relid, bool inh, int natts, VacAttrStats **vacattrstats)
 
static Datum std_fetch_func (VacAttrStatsP stats, int rownum, bool *isNull)
 
static Datum ind_fetch_func (VacAttrStatsP stats, int rownum, bool *isNull)
 
void analyze_rel (Oid relid, RangeVar *relation, VacuumParams *params, List *va_cols, bool in_outer_xact, BufferAccessStrategy bstrategy)
 
static BlockNumber block_sampling_read_stream_next (ReadStream *stream, void *callback_private_data, void *per_buffer_data)
 
static void compute_trivial_stats (VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
 
static void compute_distinct_stats (VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
 
static void compute_scalar_stats (VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
 
static int compare_scalars (const void *a, const void *b, void *arg)
 
static int compare_mcvs (const void *a, const void *b, void *arg)
 
static int analyze_mcv_list (int *mcv_counts, int num_mcv, double stadistinct, double stanullfrac, int samplerows, double totalrows)
 
bool std_typanalyze (VacAttrStats *stats)
 

Variables

int default_statistics_target = 100
 
static MemoryContext anl_context = NULL
 
static BufferAccessStrategy vac_strategy
 

Macro Definition Documentation

◆ swapDatum

#define swapDatum (   a,
  b 
)    do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)

Definition at line 1842 of file analyze.c.

◆ swapInt

#define swapInt (   a,
  b 
)    do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)

Definition at line 1841 of file analyze.c.

◆ WIDTH_THRESHOLD

#define WIDTH_THRESHOLD   1024

Definition at line 1839 of file analyze.c.

Typedef Documentation

◆ AnlIndexData

typedef struct AnlIndexData AnlIndexData

Function Documentation

◆ acquire_inherited_sample_rows()

static int acquire_inherited_sample_rows ( Relation  onerel,
int  elevel,
HeapTuple rows,
int  targrows,
double *  totalrows,
double *  totaldeadrows 
)
static

Definition at line 1386 of file analyze.c.

1389{
1390 List *tableOIDs;
1391 Relation *rels;
1392 AcquireSampleRowsFunc *acquirefuncs;
1393 double *relblocks;
1394 double totalblocks;
1395 int numrows,
1396 nrels,
1397 i;
1398 ListCell *lc;
1399 bool has_child;
1400
1401 /* Initialize output parameters to zero now, in case we exit early */
1402 *totalrows = 0;
1403 *totaldeadrows = 0;
1404
1405 /*
1406 * Find all members of inheritance set. We only need AccessShareLock on
1407 * the children.
1408 */
1409 tableOIDs =
1411
1412 /*
1413 * Check that there's at least one descendant, else fail. This could
1414 * happen despite analyze_rel's relhassubclass check, if table once had a
1415 * child but no longer does. In that case, we can clear the
1416 * relhassubclass field so as not to make the same mistake again later.
1417 * (This is safe because we hold ShareUpdateExclusiveLock.)
1418 */
1419 if (list_length(tableOIDs) < 2)
1420 {
1421 /* CCI because we already updated the pg_class row in this command */
1424 ereport(elevel,
1425 (errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no child tables",
1427 RelationGetRelationName(onerel))));
1428 return 0;
1429 }
1430
1431 /*
1432 * Identify acquirefuncs to use, and count blocks in all the relations.
1433 * The result could overflow BlockNumber, so we use double arithmetic.
1434 */
1435 rels = (Relation *) palloc(list_length(tableOIDs) * sizeof(Relation));
1436 acquirefuncs = (AcquireSampleRowsFunc *)
1437 palloc(list_length(tableOIDs) * sizeof(AcquireSampleRowsFunc));
1438 relblocks = (double *) palloc(list_length(tableOIDs) * sizeof(double));
1439 totalblocks = 0;
1440 nrels = 0;
1441 has_child = false;
1442 foreach(lc, tableOIDs)
1443 {
1444 Oid childOID = lfirst_oid(lc);
1445 Relation childrel;
1446 AcquireSampleRowsFunc acquirefunc = NULL;
1447 BlockNumber relpages = 0;
1448
1449 /* We already got the needed lock */
1450 childrel = table_open(childOID, NoLock);
1451
1452 /* Ignore if temp table of another backend */
1453 if (RELATION_IS_OTHER_TEMP(childrel))
1454 {
1455 /* ... but release the lock on it */
1456 Assert(childrel != onerel);
1457 table_close(childrel, AccessShareLock);
1458 continue;
1459 }
1460
1461 /* Check table type (MATVIEW can't happen, but might as well allow) */
1462 if (childrel->rd_rel->relkind == RELKIND_RELATION ||
1463 childrel->rd_rel->relkind == RELKIND_MATVIEW)
1464 {
1465 /* Regular table, so use the regular row acquisition function */
1466 acquirefunc = acquire_sample_rows;
1467 relpages = RelationGetNumberOfBlocks(childrel);
1468 }
1469 else if (childrel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
1470 {
1471 /*
1472 * For a foreign table, call the FDW's hook function to see
1473 * whether it supports analysis.
1474 */
1475 FdwRoutine *fdwroutine;
1476 bool ok = false;
1477
1478 fdwroutine = GetFdwRoutineForRelation(childrel, false);
1479
1480 if (fdwroutine->AnalyzeForeignTable != NULL)
1481 ok = fdwroutine->AnalyzeForeignTable(childrel,
1482 &acquirefunc,
1483 &relpages);
1484
1485 if (!ok)
1486 {
1487 /* ignore, but release the lock on it */
1488 Assert(childrel != onerel);
1489 table_close(childrel, AccessShareLock);
1490 continue;
1491 }
1492 }
1493 else
1494 {
1495 /*
1496 * ignore, but release the lock on it. don't try to unlock the
1497 * passed-in relation
1498 */
1499 Assert(childrel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
1500 if (childrel != onerel)
1501 table_close(childrel, AccessShareLock);
1502 else
1503 table_close(childrel, NoLock);
1504 continue;
1505 }
1506
1507 /* OK, we'll process this child */
1508 has_child = true;
1509 rels[nrels] = childrel;
1510 acquirefuncs[nrels] = acquirefunc;
1511 relblocks[nrels] = (double) relpages;
1512 totalblocks += (double) relpages;
1513 nrels++;
1514 }
1515
1516 /*
1517 * If we don't have at least one child table to consider, fail. If the
1518 * relation is a partitioned table, it's not counted as a child table.
1519 */
1520 if (!has_child)
1521 {
1522 ereport(elevel,
1523 (errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no analyzable child tables",
1525 RelationGetRelationName(onerel))));
1526 return 0;
1527 }
1528
1529 /*
1530 * Now sample rows from each relation, proportionally to its fraction of
1531 * the total block count. (This might be less than desirable if the child
1532 * rels have radically different free-space percentages, but it's not
1533 * clear that it's worth working harder.)
1534 */
1536 nrels);
1537 numrows = 0;
1538 for (i = 0; i < nrels; i++)
1539 {
1540 Relation childrel = rels[i];
1541 AcquireSampleRowsFunc acquirefunc = acquirefuncs[i];
1542 double childblocks = relblocks[i];
1543
1544 /*
1545 * Report progress. The sampling function will normally report blocks
1546 * done/total, but we need to reset them to 0 here, so that they don't
1547 * show an old value until that.
1548 */
1549 {
1550 const int progress_index[] = {
1554 };
1555 const int64 progress_vals[] = {
1556 RelationGetRelid(childrel),
1557 0,
1558 0,
1559 };
1560
1561 pgstat_progress_update_multi_param(3, progress_index, progress_vals);
1562 }
1563
1564 if (childblocks > 0)
1565 {
1566 int childtargrows;
1567
1568 childtargrows = (int) rint(targrows * childblocks / totalblocks);
1569 /* Make sure we don't overrun due to roundoff error */
1570 childtargrows = Min(childtargrows, targrows - numrows);
1571 if (childtargrows > 0)
1572 {
1573 int childrows;
1574 double trows,
1575 tdrows;
1576
1577 /* Fetch a random sample of the child's rows */
1578 childrows = (*acquirefunc) (childrel, elevel,
1579 rows + numrows, childtargrows,
1580 &trows, &tdrows);
1581
1582 /* We may need to convert from child's rowtype to parent's */
1583 if (childrows > 0 &&
1585 RelationGetDescr(onerel)))
1586 {
1587 TupleConversionMap *map;
1588
1590 RelationGetDescr(onerel));
1591 if (map != NULL)
1592 {
1593 int j;
1594
1595 for (j = 0; j < childrows; j++)
1596 {
1597 HeapTuple newtup;
1598
1599 newtup = execute_attr_map_tuple(rows[numrows + j], map);
1600 heap_freetuple(rows[numrows + j]);
1601 rows[numrows + j] = newtup;
1602 }
1604 }
1605 }
1606
1607 /* And add to counts */
1608 numrows += childrows;
1609 *totalrows += trows;
1610 *totaldeadrows += tdrows;
1611 }
1612 }
1613
1614 /*
1615 * Note: we cannot release the child-table locks, since we may have
1616 * pointers to their TOAST tables in the sampled rows.
1617 */
1618 table_close(childrel, NoLock);
1620 i + 1);
1621 }
1622
1623 return numrows;
1624}
void pgstat_progress_update_param(int index, int64 val)
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
uint32 BlockNumber
Definition: block.h:31
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:274
#define Min(x, y)
Definition: c.h:975
int64_t int64
Definition: c.h:499
static int acquire_sample_rows(Relation onerel, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows)
Definition: analyze.c:1199
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define ereport(elevel,...)
Definition: elog.h:149
int(* AcquireSampleRowsFunc)(Relation relation, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows)
Definition: fdwapi.h:151
FdwRoutine * GetFdwRoutineForRelation(Relation relation, bool makecopy)
Definition: foreign.c:442
Assert(PointerIsAligned(start, uint64))
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1435
int j
Definition: isn.c:78
int i
Definition: isn.c:77
#define NoLock
Definition: lockdefs.h:34
#define AccessShareLock
Definition: lockdefs.h:36
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3449
void * palloc(Size size)
Definition: mcxt.c:1317
List * find_all_inheritors(Oid parentrelId, LOCKMODE lockmode, List **numparents)
Definition: pg_inherits.c:255
static int list_length(const List *l)
Definition: pg_list.h:152
#define lfirst_oid(lc)
Definition: pg_list.h:174
unsigned int Oid
Definition: postgres_ext.h:30
#define PROGRESS_ANALYZE_BLOCKS_DONE
Definition: progress.h:44
#define PROGRESS_ANALYZE_CHILD_TABLES_TOTAL
Definition: progress.h:47
#define PROGRESS_ANALYZE_BLOCKS_TOTAL
Definition: progress.h:43
#define PROGRESS_ANALYZE_CHILD_TABLES_DONE
Definition: progress.h:48
#define PROGRESS_ANALYZE_CURRENT_CHILD_TABLE_RELID
Definition: progress.h:49
#define RelationGetRelid(relation)
Definition: rel.h:513
#define RelationGetDescr(relation)
Definition: rel.h:539
#define RelationGetRelationName(relation)
Definition: rel.h:547
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:666
#define RelationGetNamespace(relation)
Definition: rel.h:554
struct RelationData * Relation
Definition: relcache.h:27
AnalyzeForeignTable_function AnalyzeForeignTable
Definition: fdwapi.h:257
Definition: pg_list.h:54
Form_pg_class rd_rel
Definition: rel.h:111
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
void SetRelationHasSubclass(Oid relationId, bool relhassubclass)
Definition: tablecmds.c:3617
TupleConversionMap * convert_tuples_by_name(TupleDesc indesc, TupleDesc outdesc)
Definition: tupconvert.c:102
void free_conversion_map(TupleConversionMap *map)
Definition: tupconvert.c:299
HeapTuple execute_attr_map_tuple(HeapTuple tuple, TupleConversionMap *map)
Definition: tupconvert.c:154
bool equalRowTypes(TupleDesc tupdesc1, TupleDesc tupdesc2)
Definition: tupdesc.c:736
void CommandCounterIncrement(void)
Definition: xact.c:1100

References AccessShareLock, acquire_sample_rows(), FdwRoutine::AnalyzeForeignTable, Assert(), CommandCounterIncrement(), convert_tuples_by_name(), equalRowTypes(), ereport, errmsg(), execute_attr_map_tuple(), find_all_inheritors(), free_conversion_map(), get_namespace_name(), GetFdwRoutineForRelation(), heap_freetuple(), i, j, lfirst_oid, list_length(), Min, NoLock, palloc(), pgstat_progress_update_multi_param(), pgstat_progress_update_param(), PROGRESS_ANALYZE_BLOCKS_DONE, PROGRESS_ANALYZE_BLOCKS_TOTAL, PROGRESS_ANALYZE_CHILD_TABLES_DONE, PROGRESS_ANALYZE_CHILD_TABLES_TOTAL, PROGRESS_ANALYZE_CURRENT_CHILD_TABLE_RELID, RelationData::rd_rel, RELATION_IS_OTHER_TEMP, RelationGetDescr, RelationGetNamespace, RelationGetNumberOfBlocks, RelationGetRelationName, RelationGetRelid, SetRelationHasSubclass(), table_close(), and table_open().

Referenced by do_analyze_rel().

◆ acquire_sample_rows()

static int acquire_sample_rows ( Relation  onerel,
int  elevel,
HeapTuple rows,
int  targrows,
double *  totalrows,
double *  totaldeadrows 
)
static

Definition at line 1199 of file analyze.c.

1202{
1203 int numrows = 0; /* # rows now in reservoir */
1204 double samplerows = 0; /* total # rows collected */
1205 double liverows = 0; /* # live rows seen */
1206 double deadrows = 0; /* # dead rows seen */
1207 double rowstoskip = -1; /* -1 means not set yet */
1208 uint32 randseed; /* Seed for block sampler(s) */
1209 BlockNumber totalblocks;
1210 TransactionId OldestXmin;
1212 ReservoirStateData rstate;
1213 TupleTableSlot *slot;
1214 TableScanDesc scan;
1215 BlockNumber nblocks;
1216 BlockNumber blksdone = 0;
1217 ReadStream *stream;
1218
1219 Assert(targrows > 0);
1220
1221 totalblocks = RelationGetNumberOfBlocks(onerel);
1222
1223 /* Need a cutoff xmin for HeapTupleSatisfiesVacuum */
1224 OldestXmin = GetOldestNonRemovableTransactionId(onerel);
1225
1226 /* Prepare for sampling block numbers */
1228 nblocks = BlockSampler_Init(&bs, totalblocks, targrows, randseed);
1229
1230 /* Report sampling block numbers */
1232 nblocks);
1233
1234 /* Prepare for sampling rows */
1235 reservoir_init_selection_state(&rstate, targrows);
1236
1237 scan = table_beginscan_analyze(onerel);
1238 slot = table_slot_create(onerel, NULL);
1239
1242 scan->rs_rd,
1245 &bs,
1246 0);
1247
1248 /* Outer loop over blocks to sample */
1249 while (table_scan_analyze_next_block(scan, stream))
1250 {
1251 vacuum_delay_point(true);
1252
1253 while (table_scan_analyze_next_tuple(scan, OldestXmin, &liverows, &deadrows, slot))
1254 {
1255 /*
1256 * The first targrows sample rows are simply copied into the
1257 * reservoir. Then we start replacing tuples in the sample until
1258 * we reach the end of the relation. This algorithm is from Jeff
1259 * Vitter's paper (see full citation in utils/misc/sampling.c). It
1260 * works by repeatedly computing the number of tuples to skip
1261 * before selecting a tuple, which replaces a randomly chosen
1262 * element of the reservoir (current set of tuples). At all times
1263 * the reservoir is a true random sample of the tuples we've
1264 * passed over so far, so when we fall off the end of the relation
1265 * we're done.
1266 */
1267 if (numrows < targrows)
1268 rows[numrows++] = ExecCopySlotHeapTuple(slot);
1269 else
1270 {
1271 /*
1272 * t in Vitter's paper is the number of records already
1273 * processed. If we need to compute a new S value, we must
1274 * use the not-yet-incremented value of samplerows as t.
1275 */
1276 if (rowstoskip < 0)
1277 rowstoskip = reservoir_get_next_S(&rstate, samplerows, targrows);
1278
1279 if (rowstoskip <= 0)
1280 {
1281 /*
1282 * Found a suitable tuple, so save it, replacing one old
1283 * tuple at random
1284 */
1285 int k = (int) (targrows * sampler_random_fract(&rstate.randstate));
1286
1287 Assert(k >= 0 && k < targrows);
1288 heap_freetuple(rows[k]);
1289 rows[k] = ExecCopySlotHeapTuple(slot);
1290 }
1291
1292 rowstoskip -= 1;
1293 }
1294
1295 samplerows += 1;
1296 }
1297
1299 ++blksdone);
1300 }
1301
1302 read_stream_end(stream);
1303
1305 table_endscan(scan);
1306
1307 /*
1308 * If we didn't find as many tuples as we wanted then we're done. No sort
1309 * is needed, since they're already in order.
1310 *
1311 * Otherwise we need to sort the collected tuples by position
1312 * (itempointer). It's not worth worrying about corner cases where the
1313 * tuples are already sorted.
1314 */
1315 if (numrows == targrows)
1316 qsort_interruptible(rows, numrows, sizeof(HeapTuple),
1317 compare_rows, NULL);
1318
1319 /*
1320 * Estimate total numbers of live and dead rows in relation, extrapolating
1321 * on the assumption that the average tuple density in pages we didn't
1322 * scan is the same as in the pages we did scan. Since what we scanned is
1323 * a random sample of the pages in the relation, this should be a good
1324 * assumption.
1325 */
1326 if (bs.m > 0)
1327 {
1328 *totalrows = floor((liverows / bs.m) * totalblocks + 0.5);
1329 *totaldeadrows = floor((deadrows / bs.m) * totalblocks + 0.5);
1330 }
1331 else
1332 {
1333 *totalrows = 0.0;
1334 *totaldeadrows = 0.0;
1335 }
1336
1337 /*
1338 * Emit some interesting relation info
1339 */
1340 ereport(elevel,
1341 (errmsg("\"%s\": scanned %d of %u pages, "
1342 "containing %.0f live rows and %.0f dead rows; "
1343 "%d rows in sample, %.0f estimated total rows",
1345 bs.m, totalblocks,
1346 liverows, deadrows,
1347 numrows, *totalrows)));
1348
1349 return numrows;
1350}
uint32_t uint32
Definition: c.h:502
uint32 TransactionId
Definition: c.h:623
static BufferAccessStrategy vac_strategy
Definition: analyze.c:75
static BlockNumber block_sampling_read_stream_next(ReadStream *stream, void *callback_private_data, void *per_buffer_data)
Definition: analyze.c:1156
static int compare_rows(const void *a, const void *b, void *arg)
Definition: analyze.c:1356
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1443
uint32 pg_prng_uint32(pg_prng_state *state)
Definition: pg_prng.c:227
pg_prng_state pg_global_prng_state
Definition: pg_prng.c:34
void qsort_interruptible(void *base, size_t nel, size_t elsize, qsort_arg_comparator cmp, void *arg)
TransactionId GetOldestNonRemovableTransactionId(Relation rel)
Definition: procarray.c:2005
ReadStream * read_stream_begin_relation(int flags, BufferAccessStrategy strategy, Relation rel, ForkNumber forknum, ReadStreamBlockNumberCB callback, void *callback_private_data, size_t per_buffer_data_size)
Definition: read_stream.c:688
void read_stream_end(ReadStream *stream)
Definition: read_stream.c:1023
#define READ_STREAM_MAINTENANCE
Definition: read_stream.h:28
@ MAIN_FORKNUM
Definition: relpath.h:58
BlockNumber BlockSampler_Init(BlockSampler bs, BlockNumber nblocks, int samplesize, uint32 randseed)
Definition: sampling.c:39
void reservoir_init_selection_state(ReservoirState rs, int n)
Definition: sampling.c:133
double sampler_random_fract(pg_prng_state *randstate)
Definition: sampling.c:241
double reservoir_get_next_S(ReservoirState rs, double t, int n)
Definition: sampling.c:147
pg_prng_state randstate
Definition: sampling.h:49
Relation rs_rd
Definition: relscan.h:36
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:92
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:989
static bool table_scan_analyze_next_tuple(TableScanDesc scan, TransactionId OldestXmin, double *liverows, double *deadrows, TupleTableSlot *slot)
Definition: tableam.h:1708
static bool table_scan_analyze_next_block(TableScanDesc scan, ReadStream *stream)
Definition: tableam.h:1692
static TableScanDesc table_beginscan_analyze(Relation rel)
Definition: tableam.h:978
static HeapTuple ExecCopySlotHeapTuple(TupleTableSlot *slot)
Definition: tuptable.h:485
void vacuum_delay_point(bool is_analyze)
Definition: vacuum.c:2402

References Assert(), block_sampling_read_stream_next(), BlockSampler_Init(), compare_rows(), ereport, errmsg(), ExecCopySlotHeapTuple(), ExecDropSingleTupleTableSlot(), GetOldestNonRemovableTransactionId(), heap_freetuple(), BlockSamplerData::m, MAIN_FORKNUM, pg_global_prng_state, pg_prng_uint32(), pgstat_progress_update_param(), PROGRESS_ANALYZE_BLOCKS_DONE, PROGRESS_ANALYZE_BLOCKS_TOTAL, qsort_interruptible(), ReservoirStateData::randstate, read_stream_begin_relation(), read_stream_end(), READ_STREAM_MAINTENANCE, RelationGetNumberOfBlocks, RelationGetRelationName, reservoir_get_next_S(), reservoir_init_selection_state(), TableScanDescData::rs_rd, sampler_random_fract(), table_beginscan_analyze(), table_endscan(), table_scan_analyze_next_block(), table_scan_analyze_next_tuple(), table_slot_create(), vac_strategy, and vacuum_delay_point().

Referenced by acquire_inherited_sample_rows(), and analyze_rel().

◆ analyze_mcv_list()

static int analyze_mcv_list ( int *  mcv_counts,
int  num_mcv,
double  stadistinct,
double  stanullfrac,
int  samplerows,
double  totalrows 
)
static

Definition at line 2975 of file analyze.c.

2981{
2982 double ndistinct_table;
2983 double sumcount;
2984 int i;
2985
2986 /*
2987 * If the entire table was sampled, keep the whole list. This also
2988 * protects us against division by zero in the code below.
2989 */
2990 if (samplerows == totalrows || totalrows <= 1.0)
2991 return num_mcv;
2992
2993 /* Re-extract the estimated number of distinct nonnull values in table */
2994 ndistinct_table = stadistinct;
2995 if (ndistinct_table < 0)
2996 ndistinct_table = -ndistinct_table * totalrows;
2997
2998 /*
2999 * Exclude the least common values from the MCV list, if they are not
3000 * significantly more common than the estimated selectivity they would
3001 * have if they weren't in the list. All non-MCV values are assumed to be
3002 * equally common, after taking into account the frequencies of all the
3003 * values in the MCV list and the number of nulls (c.f. eqsel()).
3004 *
3005 * Here sumcount tracks the total count of all but the last (least common)
3006 * value in the MCV list, allowing us to determine the effect of excluding
3007 * that value from the list.
3008 *
3009 * Note that we deliberately do this by removing values from the full
3010 * list, rather than starting with an empty list and adding values,
3011 * because the latter approach can fail to add any values if all the most
3012 * common values have around the same frequency and make up the majority
3013 * of the table, so that the overall average frequency of all values is
3014 * roughly the same as that of the common values. This would lead to any
3015 * uncommon values being significantly overestimated.
3016 */
3017 sumcount = 0.0;
3018 for (i = 0; i < num_mcv - 1; i++)
3019 sumcount += mcv_counts[i];
3020
3021 while (num_mcv > 0)
3022 {
3023 double selec,
3024 otherdistinct,
3025 N,
3026 n,
3027 K,
3028 variance,
3029 stddev;
3030
3031 /*
3032 * Estimated selectivity the least common value would have if it
3033 * wasn't in the MCV list (c.f. eqsel()).
3034 */
3035 selec = 1.0 - sumcount / samplerows - stanullfrac;
3036 if (selec < 0.0)
3037 selec = 0.0;
3038 if (selec > 1.0)
3039 selec = 1.0;
3040 otherdistinct = ndistinct_table - (num_mcv - 1);
3041 if (otherdistinct > 1)
3042 selec /= otherdistinct;
3043
3044 /*
3045 * If the value is kept in the MCV list, its population frequency is
3046 * assumed to equal its sample frequency. We use the lower end of a
3047 * textbook continuity-corrected Wald-type confidence interval to
3048 * determine if that is significantly more common than the non-MCV
3049 * frequency --- specifically we assume the population frequency is
3050 * highly likely to be within around 2 standard errors of the sample
3051 * frequency, which equates to an interval of 2 standard deviations
3052 * either side of the sample count, plus an additional 0.5 for the
3053 * continuity correction. Since we are sampling without replacement,
3054 * this is a hypergeometric distribution.
3055 *
3056 * XXX: Empirically, this approach seems to work quite well, but it
3057 * may be worth considering more advanced techniques for estimating
3058 * the confidence interval of the hypergeometric distribution.
3059 */
3060 N = totalrows;
3061 n = samplerows;
3062 K = N * mcv_counts[num_mcv - 1] / n;
3063 variance = n * K * (N - K) * (N - n) / (N * N * (N - 1));
3064 stddev = sqrt(variance);
3065
3066 if (mcv_counts[num_mcv - 1] > selec * samplerows + 2 * stddev + 0.5)
3067 {
3068 /*
3069 * The value is significantly more common than the non-MCV
3070 * selectivity would suggest. Keep it, and all the other more
3071 * common values in the list.
3072 */
3073 break;
3074 }
3075 else
3076 {
3077 /* Discard this value and consider the next least common value */
3078 num_mcv--;
3079 if (num_mcv == 0)
3080 break;
3081 sumcount -= mcv_counts[num_mcv - 1];
3082 }
3083 }
3084 return num_mcv;
3085}
#define K(t)
Definition: sha1.c:66

References i, and K.

Referenced by compute_distinct_stats(), and compute_scalar_stats().

◆ analyze_rel()

void analyze_rel ( Oid  relid,
RangeVar relation,
VacuumParams params,
List va_cols,
bool  in_outer_xact,
BufferAccessStrategy  bstrategy 
)

Definition at line 109 of file analyze.c.

112{
113 Relation onerel;
114 int elevel;
115 AcquireSampleRowsFunc acquirefunc = NULL;
116 BlockNumber relpages = 0;
117
118 /* Select logging level */
119 if (params->options & VACOPT_VERBOSE)
120 elevel = INFO;
121 else
122 elevel = DEBUG2;
123
124 /* Set up static variables */
125 vac_strategy = bstrategy;
126
127 /*
128 * Check for user-requested abort.
129 */
131
132 /*
133 * Open the relation, getting ShareUpdateExclusiveLock to ensure that two
134 * ANALYZEs don't run on it concurrently. (This also locks out a
135 * concurrent VACUUM, which doesn't matter much at the moment but might
136 * matter if we ever try to accumulate stats on dead tuples.) If the rel
137 * has been dropped since we last saw it, we don't need to process it.
138 *
139 * Make sure to generate only logs for ANALYZE in this case.
140 */
141 onerel = vacuum_open_relation(relid, relation, params->options & ~(VACOPT_VACUUM),
142 params->log_min_duration >= 0,
144
145 /* leave if relation could not be opened or locked */
146 if (!onerel)
147 return;
148
149 /*
150 * Check if relation needs to be skipped based on privileges. This check
151 * happens also when building the relation list to analyze for a manual
152 * operation, and needs to be done additionally here as ANALYZE could
153 * happen across multiple transactions where privileges could have changed
154 * in-between. Make sure to generate only logs for ANALYZE in this case.
155 */
157 onerel->rd_rel,
158 params->options & ~VACOPT_VACUUM))
159 {
161 return;
162 }
163
164 /*
165 * Silently ignore tables that are temp tables of other backends ---
166 * trying to analyze these is rather pointless, since their contents are
167 * probably not up-to-date on disk. (We don't throw a warning here; it
168 * would just lead to chatter during a database-wide ANALYZE.)
169 */
170 if (RELATION_IS_OTHER_TEMP(onerel))
171 {
173 return;
174 }
175
176 /*
177 * We can ANALYZE any table except pg_statistic. See update_attstats
178 */
179 if (RelationGetRelid(onerel) == StatisticRelationId)
180 {
182 return;
183 }
184
185 /*
186 * Check that it's of an analyzable relkind, and set up appropriately.
187 */
188 if (onerel->rd_rel->relkind == RELKIND_RELATION ||
189 onerel->rd_rel->relkind == RELKIND_MATVIEW)
190 {
191 /* Regular table, so we'll use the regular row acquisition function */
192 acquirefunc = acquire_sample_rows;
193 /* Also get regular table's size */
194 relpages = RelationGetNumberOfBlocks(onerel);
195 }
196 else if (onerel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
197 {
198 /*
199 * For a foreign table, call the FDW's hook function to see whether it
200 * supports analysis.
201 */
202 FdwRoutine *fdwroutine;
203 bool ok = false;
204
205 fdwroutine = GetFdwRoutineForRelation(onerel, false);
206
207 if (fdwroutine->AnalyzeForeignTable != NULL)
208 ok = fdwroutine->AnalyzeForeignTable(onerel,
209 &acquirefunc,
210 &relpages);
211
212 if (!ok)
213 {
215 (errmsg("skipping \"%s\" --- cannot analyze this foreign table",
216 RelationGetRelationName(onerel))));
218 return;
219 }
220 }
221 else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
222 {
223 /*
224 * For partitioned tables, we want to do the recursive ANALYZE below.
225 */
226 }
227 else
228 {
229 /* No need for a WARNING if we already complained during VACUUM */
230 if (!(params->options & VACOPT_VACUUM))
232 (errmsg("skipping \"%s\" --- cannot analyze non-tables or special system tables",
233 RelationGetRelationName(onerel))));
235 return;
236 }
237
238 /*
239 * OK, let's do it. First, initialize progress reporting.
240 */
242 RelationGetRelid(onerel));
243
244 /*
245 * Do the normal non-recursive ANALYZE. We can skip this for partitioned
246 * tables, which don't contain any rows.
247 */
248 if (onerel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
249 do_analyze_rel(onerel, params, va_cols, acquirefunc,
250 relpages, false, in_outer_xact, elevel);
251
252 /*
253 * If there are child tables, do recursive ANALYZE.
254 */
255 if (onerel->rd_rel->relhassubclass)
256 do_analyze_rel(onerel, params, va_cols, acquirefunc, relpages,
257 true, in_outer_xact, elevel);
258
259 /*
260 * Close source relation now, but keep lock so that no one deletes it
261 * before we commit. (If someone did, they'd fail to clean up the entries
262 * we made in pg_statistic. Also, releasing the lock before commit would
263 * expose us to concurrent-update failures in update_attstats.)
264 */
265 relation_close(onerel, NoLock);
266
268}
void pgstat_progress_start_command(ProgressCommandType cmdtype, Oid relid)
void pgstat_progress_end_command(void)
@ PROGRESS_COMMAND_ANALYZE
static void do_analyze_rel(Relation onerel, VacuumParams *params, List *va_cols, AcquireSampleRowsFunc acquirefunc, BlockNumber relpages, bool inh, bool in_outer_xact, int elevel)
Definition: analyze.c:278
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define INFO
Definition: elog.h:34
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:205
bits32 options
Definition: vacuum.h:219
int log_min_duration
Definition: vacuum.h:227
Relation vacuum_open_relation(Oid relid, RangeVar *relation, bits32 options, bool verbose, LOCKMODE lmode)
Definition: vacuum.c:773
bool vacuum_is_permitted_for_relation(Oid relid, Form_pg_class reltuple, bits32 options)
Definition: vacuum.c:721
#define VACOPT_VACUUM
Definition: vacuum.h:180
#define VACOPT_VERBOSE
Definition: vacuum.h:182

References acquire_sample_rows(), FdwRoutine::AnalyzeForeignTable, CHECK_FOR_INTERRUPTS, DEBUG2, do_analyze_rel(), ereport, errmsg(), GetFdwRoutineForRelation(), INFO, VacuumParams::log_min_duration, NoLock, VacuumParams::options, pgstat_progress_end_command(), pgstat_progress_start_command(), PROGRESS_COMMAND_ANALYZE, RelationData::rd_rel, relation_close(), RELATION_IS_OTHER_TEMP, RelationGetNumberOfBlocks, RelationGetRelationName, RelationGetRelid, ShareUpdateExclusiveLock, vac_strategy, VACOPT_VACUUM, VACOPT_VERBOSE, vacuum_is_permitted_for_relation(), vacuum_open_relation(), and WARNING.

Referenced by vacuum().

◆ block_sampling_read_stream_next()

static BlockNumber block_sampling_read_stream_next ( ReadStream stream,
void *  callback_private_data,
void *  per_buffer_data 
)
static

Definition at line 1156 of file analyze.c.

1159{
1160 BlockSamplerData *bs = callback_private_data;
1161
1163}
#define InvalidBlockNumber
Definition: block.h:33
bool BlockSampler_HasMore(BlockSampler bs)
Definition: sampling.c:58
BlockNumber BlockSampler_Next(BlockSampler bs)
Definition: sampling.c:64

References BlockSampler_HasMore(), BlockSampler_Next(), and InvalidBlockNumber.

Referenced by acquire_sample_rows().

◆ compare_mcvs()

static int compare_mcvs ( const void *  a,
const void *  b,
void *  arg 
)
static

Definition at line 2957 of file analyze.c.

2958{
2959 int da = ((const ScalarMCVItem *) a)->first;
2960 int db = ((const ScalarMCVItem *) b)->first;
2961
2962 return da - db;
2963}
int b
Definition: isn.c:74
int a
Definition: isn.c:73

References a, and b.

Referenced by compute_scalar_stats().

◆ compare_rows()

static int compare_rows ( const void *  a,
const void *  b,
void *  arg 
)
static

Definition at line 1356 of file analyze.c.

1357{
1358 HeapTuple ha = *(const HeapTuple *) a;
1359 HeapTuple hb = *(const HeapTuple *) b;
1364
1365 if (ba < bb)
1366 return -1;
1367 if (ba > bb)
1368 return 1;
1369 if (oa < ob)
1370 return -1;
1371 if (oa > ob)
1372 return 1;
1373 return 0;
1374}
static OffsetNumber ItemPointerGetOffsetNumber(const ItemPointerData *pointer)
Definition: itemptr.h:124
static BlockNumber ItemPointerGetBlockNumber(const ItemPointerData *pointer)
Definition: itemptr.h:103
uint16 OffsetNumber
Definition: off.h:24
ItemPointerData t_self
Definition: htup.h:65

References a, b, ItemPointerGetBlockNumber(), ItemPointerGetOffsetNumber(), and HeapTupleData::t_self.

Referenced by acquire_sample_rows().

◆ compare_scalars()

static int compare_scalars ( const void *  a,
const void *  b,
void *  arg 
)
static

Definition at line 2926 of file analyze.c.

2927{
2928 Datum da = ((const ScalarItem *) a)->value;
2929 int ta = ((const ScalarItem *) a)->tupno;
2930 Datum db = ((const ScalarItem *) b)->value;
2931 int tb = ((const ScalarItem *) b)->tupno;
2933 int compare;
2934
2935 compare = ApplySortComparator(da, false, db, false, cxt->ssup);
2936 if (compare != 0)
2937 return compare;
2938
2939 /*
2940 * The two datums are equal, so update cxt->tupnoLink[].
2941 */
2942 if (cxt->tupnoLink[ta] < tb)
2943 cxt->tupnoLink[ta] = tb;
2944 if (cxt->tupnoLink[tb] < ta)
2945 cxt->tupnoLink[tb] = ta;
2946
2947 /*
2948 * For equal datums, sort by tupno
2949 */
2950 return ta - tb;
2951}
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
void * arg
uintptr_t Datum
Definition: postgres.h:69
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:200
SortSupport ssup
Definition: analyze.c:1855

References a, ApplySortComparator(), arg, b, compare(), CompareScalarsContext::ssup, and CompareScalarsContext::tupnoLink.

Referenced by compute_scalar_stats().

◆ compute_distinct_stats()

static void compute_distinct_stats ( VacAttrStatsP  stats,
AnalyzeAttrFetchFunc  fetchfunc,
int  samplerows,
double  totalrows 
)
static

Definition at line 2054 of file analyze.c.

2058{
2059 int i;
2060 int null_cnt = 0;
2061 int nonnull_cnt = 0;
2062 int toowide_cnt = 0;
2063 double total_width = 0;
2064 bool is_varlena = (!stats->attrtype->typbyval &&
2065 stats->attrtype->typlen == -1);
2066 bool is_varwidth = (!stats->attrtype->typbyval &&
2067 stats->attrtype->typlen < 0);
2068 FmgrInfo f_cmpeq;
2069 typedef struct
2070 {
2071 Datum value;
2072 int count;
2073 } TrackItem;
2074 TrackItem *track;
2075 int track_cnt,
2076 track_max;
2077 int num_mcv = stats->attstattarget;
2078 StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
2079
2080 /*
2081 * We track up to 2*n values for an n-element MCV list; but at least 10
2082 */
2083 track_max = 2 * num_mcv;
2084 if (track_max < 10)
2085 track_max = 10;
2086 track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
2087 track_cnt = 0;
2088
2089 fmgr_info(mystats->eqfunc, &f_cmpeq);
2090
2091 for (i = 0; i < samplerows; i++)
2092 {
2093 Datum value;
2094 bool isnull;
2095 bool match;
2096 int firstcount1,
2097 j;
2098
2099 vacuum_delay_point(true);
2100
2101 value = fetchfunc(stats, i, &isnull);
2102
2103 /* Check for null/nonnull */
2104 if (isnull)
2105 {
2106 null_cnt++;
2107 continue;
2108 }
2109 nonnull_cnt++;
2110
2111 /*
2112 * If it's a variable-width field, add up widths for average width
2113 * calculation. Note that if the value is toasted, we use the toasted
2114 * width. We don't bother with this calculation if it's a fixed-width
2115 * type.
2116 */
2117 if (is_varlena)
2118 {
2119 total_width += VARSIZE_ANY(DatumGetPointer(value));
2120
2121 /*
2122 * If the value is toasted, we want to detoast it just once to
2123 * avoid repeated detoastings and resultant excess memory usage
2124 * during the comparisons. Also, check to see if the value is
2125 * excessively wide, and if so don't detoast at all --- just
2126 * ignore the value.
2127 */
2129 {
2130 toowide_cnt++;
2131 continue;
2132 }
2134 }
2135 else if (is_varwidth)
2136 {
2137 /* must be cstring */
2138 total_width += strlen(DatumGetCString(value)) + 1;
2139 }
2140
2141 /*
2142 * See if the value matches anything we're already tracking.
2143 */
2144 match = false;
2145 firstcount1 = track_cnt;
2146 for (j = 0; j < track_cnt; j++)
2147 {
2148 if (DatumGetBool(FunctionCall2Coll(&f_cmpeq,
2149 stats->attrcollid,
2150 value, track[j].value)))
2151 {
2152 match = true;
2153 break;
2154 }
2155 if (j < firstcount1 && track[j].count == 1)
2156 firstcount1 = j;
2157 }
2158
2159 if (match)
2160 {
2161 /* Found a match */
2162 track[j].count++;
2163 /* This value may now need to "bubble up" in the track list */
2164 while (j > 0 && track[j].count > track[j - 1].count)
2165 {
2166 swapDatum(track[j].value, track[j - 1].value);
2167 swapInt(track[j].count, track[j - 1].count);
2168 j--;
2169 }
2170 }
2171 else
2172 {
2173 /* No match. Insert at head of count-1 list */
2174 if (track_cnt < track_max)
2175 track_cnt++;
2176 for (j = track_cnt - 1; j > firstcount1; j--)
2177 {
2178 track[j].value = track[j - 1].value;
2179 track[j].count = track[j - 1].count;
2180 }
2181 if (firstcount1 < track_cnt)
2182 {
2183 track[firstcount1].value = value;
2184 track[firstcount1].count = 1;
2185 }
2186 }
2187 }
2188
2189 /* We can only compute real stats if we found some non-null values. */
2190 if (nonnull_cnt > 0)
2191 {
2192 int nmultiple,
2193 summultiple;
2194
2195 stats->stats_valid = true;
2196 /* Do the simple null-frac and width stats */
2197 stats->stanullfrac = (double) null_cnt / (double) samplerows;
2198 if (is_varwidth)
2199 stats->stawidth = total_width / (double) nonnull_cnt;
2200 else
2201 stats->stawidth = stats->attrtype->typlen;
2202
2203 /* Count the number of values we found multiple times */
2204 summultiple = 0;
2205 for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
2206 {
2207 if (track[nmultiple].count == 1)
2208 break;
2209 summultiple += track[nmultiple].count;
2210 }
2211
2212 if (nmultiple == 0)
2213 {
2214 /*
2215 * If we found no repeated non-null values, assume it's a unique
2216 * column; but be sure to discount for any nulls we found.
2217 */
2218 stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
2219 }
2220 else if (track_cnt < track_max && toowide_cnt == 0 &&
2221 nmultiple == track_cnt)
2222 {
2223 /*
2224 * Our track list includes every value in the sample, and every
2225 * value appeared more than once. Assume the column has just
2226 * these values. (This case is meant to address columns with
2227 * small, fixed sets of possible values, such as boolean or enum
2228 * columns. If there are any values that appear just once in the
2229 * sample, including too-wide values, we should assume that that's
2230 * not what we're dealing with.)
2231 */
2232 stats->stadistinct = track_cnt;
2233 }
2234 else
2235 {
2236 /*----------
2237 * Estimate the number of distinct values using the estimator
2238 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
2239 * n*d / (n - f1 + f1*n/N)
2240 * where f1 is the number of distinct values that occurred
2241 * exactly once in our sample of n rows (from a total of N),
2242 * and d is the total number of distinct values in the sample.
2243 * This is their Duj1 estimator; the other estimators they
2244 * recommend are considerably more complex, and are numerically
2245 * very unstable when n is much smaller than N.
2246 *
2247 * In this calculation, we consider only non-nulls. We used to
2248 * include rows with null values in the n and N counts, but that
2249 * leads to inaccurate answers in columns with many nulls, and
2250 * it's intuitively bogus anyway considering the desired result is
2251 * the number of distinct non-null values.
2252 *
2253 * We assume (not very reliably!) that all the multiply-occurring
2254 * values are reflected in the final track[] list, and the other
2255 * nonnull values all appeared but once. (XXX this usually
2256 * results in a drastic overestimate of ndistinct. Can we do
2257 * any better?)
2258 *----------
2259 */
2260 int f1 = nonnull_cnt - summultiple;
2261 int d = f1 + nmultiple;
2262 double n = samplerows - null_cnt;
2263 double N = totalrows * (1.0 - stats->stanullfrac);
2264 double stadistinct;
2265
2266 /* N == 0 shouldn't happen, but just in case ... */
2267 if (N > 0)
2268 stadistinct = (n * d) / ((n - f1) + f1 * n / N);
2269 else
2270 stadistinct = 0;
2271
2272 /* Clamp to sane range in case of roundoff error */
2273 if (stadistinct < d)
2274 stadistinct = d;
2275 if (stadistinct > N)
2276 stadistinct = N;
2277 /* And round to integer */
2278 stats->stadistinct = floor(stadistinct + 0.5);
2279 }
2280
2281 /*
2282 * If we estimated the number of distinct values at more than 10% of
2283 * the total row count (a very arbitrary limit), then assume that
2284 * stadistinct should scale with the row count rather than be a fixed
2285 * value.
2286 */
2287 if (stats->stadistinct > 0.1 * totalrows)
2288 stats->stadistinct = -(stats->stadistinct / totalrows);
2289
2290 /*
2291 * Decide how many values are worth storing as most-common values. If
2292 * we are able to generate a complete MCV list (all the values in the
2293 * sample will fit, and we think these are all the ones in the table),
2294 * then do so. Otherwise, store only those values that are
2295 * significantly more common than the values not in the list.
2296 *
2297 * Note: the first of these cases is meant to address columns with
2298 * small, fixed sets of possible values, such as boolean or enum
2299 * columns. If we can *completely* represent the column population by
2300 * an MCV list that will fit into the stats target, then we should do
2301 * so and thus provide the planner with complete information. But if
2302 * the MCV list is not complete, it's generally worth being more
2303 * selective, and not just filling it all the way up to the stats
2304 * target.
2305 */
2306 if (track_cnt < track_max && toowide_cnt == 0 &&
2307 stats->stadistinct > 0 &&
2308 track_cnt <= num_mcv)
2309 {
2310 /* Track list includes all values seen, and all will fit */
2311 num_mcv = track_cnt;
2312 }
2313 else
2314 {
2315 int *mcv_counts;
2316
2317 /* Incomplete list; decide how many values are worth keeping */
2318 if (num_mcv > track_cnt)
2319 num_mcv = track_cnt;
2320
2321 if (num_mcv > 0)
2322 {
2323 mcv_counts = (int *) palloc(num_mcv * sizeof(int));
2324 for (i = 0; i < num_mcv; i++)
2325 mcv_counts[i] = track[i].count;
2326
2327 num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
2328 stats->stadistinct,
2329 stats->stanullfrac,
2330 samplerows, totalrows);
2331 }
2332 }
2333
2334 /* Generate MCV slot entry */
2335 if (num_mcv > 0)
2336 {
2337 MemoryContext old_context;
2338 Datum *mcv_values;
2339 float4 *mcv_freqs;
2340
2341 /* Must copy the target values into anl_context */
2342 old_context = MemoryContextSwitchTo(stats->anl_context);
2343 mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
2344 mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
2345 for (i = 0; i < num_mcv; i++)
2346 {
2347 mcv_values[i] = datumCopy(track[i].value,
2348 stats->attrtype->typbyval,
2349 stats->attrtype->typlen);
2350 mcv_freqs[i] = (double) track[i].count / (double) samplerows;
2351 }
2352 MemoryContextSwitchTo(old_context);
2353
2354 stats->stakind[0] = STATISTIC_KIND_MCV;
2355 stats->staop[0] = mystats->eqopr;
2356 stats->stacoll[0] = stats->attrcollid;
2357 stats->stanumbers[0] = mcv_freqs;
2358 stats->numnumbers[0] = num_mcv;
2359 stats->stavalues[0] = mcv_values;
2360 stats->numvalues[0] = num_mcv;
2361
2362 /*
2363 * Accept the defaults for stats->statypid and others. They have
2364 * been set before we were called (see vacuum.h)
2365 */
2366 }
2367 }
2368 else if (null_cnt > 0)
2369 {
2370 /* We found only nulls; assume the column is entirely null */
2371 stats->stats_valid = true;
2372 stats->stanullfrac = 1.0;
2373 if (is_varwidth)
2374 stats->stawidth = 0; /* "unknown" */
2375 else
2376 stats->stawidth = stats->attrtype->typlen;
2377 stats->stadistinct = 0.0; /* "unknown" */
2378 }
2379
2380 /* We don't need to bother cleaning up any of our temporary palloc's */
2381}
float float4
Definition: c.h:600
#define swapInt(a, b)
Definition: analyze.c:1841
#define swapDatum(a, b)
Definition: analyze.c:1842
#define WIDTH_THRESHOLD
Definition: analyze.c:1839
static int analyze_mcv_list(int *mcv_counts, int num_mcv, double stadistinct, double stanullfrac, int samplerows, double totalrows)
Definition: analyze.c:2975
Datum datumCopy(Datum value, bool typByVal, int typLen)
Definition: datum.c:132
Size toast_raw_datum_size(Datum value)
Definition: detoast.c:545
Datum FunctionCall2Coll(FmgrInfo *flinfo, Oid collation, Datum arg1, Datum arg2)
Definition: fmgr.c:1149
void fmgr_info(Oid functionId, FmgrInfo *finfo)
Definition: fmgr.c:127
#define PG_DETOAST_DATUM(datum)
Definition: fmgr.h:240
static struct @165 value
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
static bool DatumGetBool(Datum X)
Definition: postgres.h:95
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:327
static char * DatumGetCString(Datum X)
Definition: postgres.h:340
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:317
int f1[ARRAY_SIZE]
Definition: sql-declare.c:113
Definition: fmgr.h:57
bool stats_valid
Definition: vacuum.h:144
float4 stanullfrac
Definition: vacuum.h:145
Form_pg_type attrtype
Definition: vacuum.h:128
int16 stakind[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:148
MemoryContext anl_context
Definition: vacuum.h:130
Oid staop[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:149
Oid stacoll[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:150
float4 * stanumbers[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:152
int attstattarget
Definition: vacuum.h:125
int32 stawidth
Definition: vacuum.h:146
void * extra_data
Definition: vacuum.h:138
int numvalues[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:153
Datum * stavalues[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:154
float4 stadistinct
Definition: vacuum.h:147
int numnumbers[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:151
Oid attrcollid
Definition: vacuum.h:129
#define VARSIZE_ANY(PTR)
Definition: varatt.h:311

References analyze_mcv_list(), VacAttrStats::anl_context, VacAttrStats::attrcollid, VacAttrStats::attrtype, VacAttrStats::attstattarget, datumCopy(), DatumGetBool(), DatumGetCString(), DatumGetPointer(), StdAnalyzeData::eqfunc, StdAnalyzeData::eqopr, VacAttrStats::extra_data, f1, fmgr_info(), FunctionCall2Coll(), i, if(), j, MemoryContextSwitchTo(), VacAttrStats::numnumbers, VacAttrStats::numvalues, palloc(), PG_DETOAST_DATUM, PointerGetDatum(), VacAttrStats::stacoll, VacAttrStats::stadistinct, VacAttrStats::stakind, VacAttrStats::stanullfrac, VacAttrStats::stanumbers, VacAttrStats::staop, VacAttrStats::stats_valid, VacAttrStats::stavalues, VacAttrStats::stawidth, swapDatum, swapInt, toast_raw_datum_size(), vacuum_delay_point(), value, VARSIZE_ANY, and WIDTH_THRESHOLD.

Referenced by std_typanalyze().

◆ compute_index_stats()

static void compute_index_stats ( Relation  onerel,
double  totalrows,
AnlIndexData indexdata,
int  nindexes,
HeapTuple rows,
int  numrows,
MemoryContext  col_context 
)
static

Definition at line 865 of file analyze.c.

869{
870 MemoryContext ind_context,
871 old_context;
873 bool isnull[INDEX_MAX_KEYS];
874 int ind,
875 i;
876
878 "Analyze Index",
880 old_context = MemoryContextSwitchTo(ind_context);
881
882 for (ind = 0; ind < nindexes; ind++)
883 {
884 AnlIndexData *thisdata = &indexdata[ind];
885 IndexInfo *indexInfo = thisdata->indexInfo;
886 int attr_cnt = thisdata->attr_cnt;
887 TupleTableSlot *slot;
888 EState *estate;
889 ExprContext *econtext;
890 ExprState *predicate;
891 Datum *exprvals;
892 bool *exprnulls;
893 int numindexrows,
894 tcnt,
895 rowno;
896 double totalindexrows;
897
898 /* Ignore index if no columns to analyze and not partial */
899 if (attr_cnt == 0 && indexInfo->ii_Predicate == NIL)
900 continue;
901
902 /*
903 * Need an EState for evaluation of index expressions and
904 * partial-index predicates. Create it in the per-index context to be
905 * sure it gets cleaned up at the bottom of the loop.
906 */
907 estate = CreateExecutorState();
908 econtext = GetPerTupleExprContext(estate);
909 /* Need a slot to hold the current heap tuple, too */
912
913 /* Arrange for econtext's scan tuple to be the tuple under test */
914 econtext->ecxt_scantuple = slot;
915
916 /* Set up execution state for predicate. */
917 predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
918
919 /* Compute and save index expression values */
920 exprvals = (Datum *) palloc(numrows * attr_cnt * sizeof(Datum));
921 exprnulls = (bool *) palloc(numrows * attr_cnt * sizeof(bool));
922 numindexrows = 0;
923 tcnt = 0;
924 for (rowno = 0; rowno < numrows; rowno++)
925 {
926 HeapTuple heapTuple = rows[rowno];
927
928 vacuum_delay_point(true);
929
930 /*
931 * Reset the per-tuple context each time, to reclaim any cruft
932 * left behind by evaluating the predicate or index expressions.
933 */
934 ResetExprContext(econtext);
935
936 /* Set up for predicate or expression evaluation */
937 ExecStoreHeapTuple(heapTuple, slot, false);
938
939 /* If index is partial, check predicate */
940 if (predicate != NULL)
941 {
942 if (!ExecQual(predicate, econtext))
943 continue;
944 }
945 numindexrows++;
946
947 if (attr_cnt > 0)
948 {
949 /*
950 * Evaluate the index row to compute expression values. We
951 * could do this by hand, but FormIndexDatum is convenient.
952 */
953 FormIndexDatum(indexInfo,
954 slot,
955 estate,
956 values,
957 isnull);
958
959 /*
960 * Save just the columns we care about. We copy the values
961 * into ind_context from the estate's per-tuple context.
962 */
963 for (i = 0; i < attr_cnt; i++)
964 {
965 VacAttrStats *stats = thisdata->vacattrstats[i];
966 int attnum = stats->tupattnum;
967
968 if (isnull[attnum - 1])
969 {
970 exprvals[tcnt] = (Datum) 0;
971 exprnulls[tcnt] = true;
972 }
973 else
974 {
975 exprvals[tcnt] = datumCopy(values[attnum - 1],
976 stats->attrtype->typbyval,
977 stats->attrtype->typlen);
978 exprnulls[tcnt] = false;
979 }
980 tcnt++;
981 }
982 }
983 }
984
985 /*
986 * Having counted the number of rows that pass the predicate in the
987 * sample, we can estimate the total number of rows in the index.
988 */
989 thisdata->tupleFract = (double) numindexrows / (double) numrows;
990 totalindexrows = ceil(thisdata->tupleFract * totalrows);
991
992 /*
993 * Now we can compute the statistics for the expression columns.
994 */
995 if (numindexrows > 0)
996 {
997 MemoryContextSwitchTo(col_context);
998 for (i = 0; i < attr_cnt; i++)
999 {
1000 VacAttrStats *stats = thisdata->vacattrstats[i];
1001
1002 stats->exprvals = exprvals + i;
1003 stats->exprnulls = exprnulls + i;
1004 stats->rowstride = attr_cnt;
1005 stats->compute_stats(stats,
1007 numindexrows,
1008 totalindexrows);
1009
1010 MemoryContextReset(col_context);
1011 }
1012 }
1013
1014 /* And clean up */
1015 MemoryContextSwitchTo(ind_context);
1016
1018 FreeExecutorState(estate);
1019 MemoryContextReset(ind_context);
1020 }
1021
1022 MemoryContextSwitchTo(old_context);
1023 MemoryContextDelete(ind_context);
1024}
static Datum values[MAXATTR]
Definition: bootstrap.c:151
static MemoryContext anl_context
Definition: analyze.c:74
static Datum ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
Definition: analyze.c:1809
ExprState * ExecPrepareQual(List *qual, EState *estate)
Definition: execExpr.c:793
TupleTableSlot * MakeSingleTupleTableSlot(TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1427
const TupleTableSlotOps TTSOpsHeapTuple
Definition: execTuples.c:85
TupleTableSlot * ExecStoreHeapTuple(HeapTuple tuple, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1541
void FreeExecutorState(EState *estate)
Definition: execUtils.c:193
EState * CreateExecutorState(void)
Definition: execUtils.c:88
#define GetPerTupleExprContext(estate)
Definition: executor.h:674
#define ResetExprContext(econtext)
Definition: executor.h:668
static bool ExecQual(ExprState *state, ExprContext *econtext)
Definition: executor.h:537
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2730
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:383
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
int16 attnum
Definition: pg_attribute.h:74
#define INDEX_MAX_KEYS
#define NIL
Definition: pg_list.h:68
double tupleFract
Definition: analyze.c:64
int attr_cnt
Definition: analyze.c:66
IndexInfo * indexInfo
Definition: analyze.c:63
VacAttrStats ** vacattrstats
Definition: analyze.c:65
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:268
List * ii_Predicate
Definition: execnodes.h:201
int tupattnum
Definition: vacuum.h:171
int rowstride
Definition: vacuum.h:176
bool * exprnulls
Definition: vacuum.h:175
Datum * exprvals
Definition: vacuum.h:174
AnalyzeAttrComputeStatsFunc compute_stats
Definition: vacuum.h:136

References ALLOCSET_DEFAULT_SIZES, AllocSetContextCreate, anl_context, attnum, AnlIndexData::attr_cnt, VacAttrStats::attrtype, VacAttrStats::compute_stats, CreateExecutorState(), datumCopy(), ExprContext::ecxt_scantuple, ExecDropSingleTupleTableSlot(), ExecPrepareQual(), ExecQual(), ExecStoreHeapTuple(), VacAttrStats::exprnulls, VacAttrStats::exprvals, FormIndexDatum(), FreeExecutorState(), GetPerTupleExprContext, i, IndexInfo::ii_Predicate, ind_fetch_func(), INDEX_MAX_KEYS, AnlIndexData::indexInfo, MakeSingleTupleTableSlot(), MemoryContextDelete(), MemoryContextReset(), MemoryContextSwitchTo(), NIL, palloc(), RelationGetDescr, ResetExprContext, VacAttrStats::rowstride, TTSOpsHeapTuple, VacAttrStats::tupattnum, AnlIndexData::tupleFract, AnlIndexData::vacattrstats, vacuum_delay_point(), and values.

Referenced by do_analyze_rel().

◆ compute_scalar_stats()

static void compute_scalar_stats ( VacAttrStatsP  stats,
AnalyzeAttrFetchFunc  fetchfunc,
int  samplerows,
double  totalrows 
)
static

Definition at line 2397 of file analyze.c.

2401{
2402 int i;
2403 int null_cnt = 0;
2404 int nonnull_cnt = 0;
2405 int toowide_cnt = 0;
2406 double total_width = 0;
2407 bool is_varlena = (!stats->attrtype->typbyval &&
2408 stats->attrtype->typlen == -1);
2409 bool is_varwidth = (!stats->attrtype->typbyval &&
2410 stats->attrtype->typlen < 0);
2411 double corr_xysum;
2412 SortSupportData ssup;
2414 int values_cnt = 0;
2415 int *tupnoLink;
2416 ScalarMCVItem *track;
2417 int track_cnt = 0;
2418 int num_mcv = stats->attstattarget;
2419 int num_bins = stats->attstattarget;
2420 StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
2421
2422 values = (ScalarItem *) palloc(samplerows * sizeof(ScalarItem));
2423 tupnoLink = (int *) palloc(samplerows * sizeof(int));
2424 track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));
2425
2426 memset(&ssup, 0, sizeof(ssup));
2428 ssup.ssup_collation = stats->attrcollid;
2429 ssup.ssup_nulls_first = false;
2430
2431 /*
2432 * For now, don't perform abbreviated key conversion, because full values
2433 * are required for MCV slot generation. Supporting that optimization
2434 * would necessitate teaching compare_scalars() to call a tie-breaker.
2435 */
2436 ssup.abbreviate = false;
2437
2438 PrepareSortSupportFromOrderingOp(mystats->ltopr, &ssup);
2439
2440 /* Initial scan to find sortable values */
2441 for (i = 0; i < samplerows; i++)
2442 {
2443 Datum value;
2444 bool isnull;
2445
2446 vacuum_delay_point(true);
2447
2448 value = fetchfunc(stats, i, &isnull);
2449
2450 /* Check for null/nonnull */
2451 if (isnull)
2452 {
2453 null_cnt++;
2454 continue;
2455 }
2456 nonnull_cnt++;
2457
2458 /*
2459 * If it's a variable-width field, add up widths for average width
2460 * calculation. Note that if the value is toasted, we use the toasted
2461 * width. We don't bother with this calculation if it's a fixed-width
2462 * type.
2463 */
2464 if (is_varlena)
2465 {
2466 total_width += VARSIZE_ANY(DatumGetPointer(value));
2467
2468 /*
2469 * If the value is toasted, we want to detoast it just once to
2470 * avoid repeated detoastings and resultant excess memory usage
2471 * during the comparisons. Also, check to see if the value is
2472 * excessively wide, and if so don't detoast at all --- just
2473 * ignore the value.
2474 */
2476 {
2477 toowide_cnt++;
2478 continue;
2479 }
2481 }
2482 else if (is_varwidth)
2483 {
2484 /* must be cstring */
2485 total_width += strlen(DatumGetCString(value)) + 1;
2486 }
2487
2488 /* Add it to the list to be sorted */
2489 values[values_cnt].value = value;
2490 values[values_cnt].tupno = values_cnt;
2491 tupnoLink[values_cnt] = values_cnt;
2492 values_cnt++;
2493 }
2494
2495 /* We can only compute real stats if we found some sortable values. */
2496 if (values_cnt > 0)
2497 {
2498 int ndistinct, /* # distinct values in sample */
2499 nmultiple, /* # that appear multiple times */
2500 num_hist,
2501 dups_cnt;
2502 int slot_idx = 0;
2504
2505 /* Sort the collected values */
2506 cxt.ssup = &ssup;
2507 cxt.tupnoLink = tupnoLink;
2508 qsort_interruptible(values, values_cnt, sizeof(ScalarItem),
2509 compare_scalars, &cxt);
2510
2511 /*
2512 * Now scan the values in order, find the most common ones, and also
2513 * accumulate ordering-correlation statistics.
2514 *
2515 * To determine which are most common, we first have to count the
2516 * number of duplicates of each value. The duplicates are adjacent in
2517 * the sorted list, so a brute-force approach is to compare successive
2518 * datum values until we find two that are not equal. However, that
2519 * requires N-1 invocations of the datum comparison routine, which are
2520 * completely redundant with work that was done during the sort. (The
2521 * sort algorithm must at some point have compared each pair of items
2522 * that are adjacent in the sorted order; otherwise it could not know
2523 * that it's ordered the pair correctly.) We exploit this by having
2524 * compare_scalars remember the highest tupno index that each
2525 * ScalarItem has been found equal to. At the end of the sort, a
2526 * ScalarItem's tupnoLink will still point to itself if and only if it
2527 * is the last item of its group of duplicates (since the group will
2528 * be ordered by tupno).
2529 */
2530 corr_xysum = 0;
2531 ndistinct = 0;
2532 nmultiple = 0;
2533 dups_cnt = 0;
2534 for (i = 0; i < values_cnt; i++)
2535 {
2536 int tupno = values[i].tupno;
2537
2538 corr_xysum += ((double) i) * ((double) tupno);
2539 dups_cnt++;
2540 if (tupnoLink[tupno] == tupno)
2541 {
2542 /* Reached end of duplicates of this value */
2543 ndistinct++;
2544 if (dups_cnt > 1)
2545 {
2546 nmultiple++;
2547 if (track_cnt < num_mcv ||
2548 dups_cnt > track[track_cnt - 1].count)
2549 {
2550 /*
2551 * Found a new item for the mcv list; find its
2552 * position, bubbling down old items if needed. Loop
2553 * invariant is that j points at an empty/ replaceable
2554 * slot.
2555 */
2556 int j;
2557
2558 if (track_cnt < num_mcv)
2559 track_cnt++;
2560 for (j = track_cnt - 1; j > 0; j--)
2561 {
2562 if (dups_cnt <= track[j - 1].count)
2563 break;
2564 track[j].count = track[j - 1].count;
2565 track[j].first = track[j - 1].first;
2566 }
2567 track[j].count = dups_cnt;
2568 track[j].first = i + 1 - dups_cnt;
2569 }
2570 }
2571 dups_cnt = 0;
2572 }
2573 }
2574
2575 stats->stats_valid = true;
2576 /* Do the simple null-frac and width stats */
2577 stats->stanullfrac = (double) null_cnt / (double) samplerows;
2578 if (is_varwidth)
2579 stats->stawidth = total_width / (double) nonnull_cnt;
2580 else
2581 stats->stawidth = stats->attrtype->typlen;
2582
2583 if (nmultiple == 0)
2584 {
2585 /*
2586 * If we found no repeated non-null values, assume it's a unique
2587 * column; but be sure to discount for any nulls we found.
2588 */
2589 stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
2590 }
2591 else if (toowide_cnt == 0 && nmultiple == ndistinct)
2592 {
2593 /*
2594 * Every value in the sample appeared more than once. Assume the
2595 * column has just these values. (This case is meant to address
2596 * columns with small, fixed sets of possible values, such as
2597 * boolean or enum columns. If there are any values that appear
2598 * just once in the sample, including too-wide values, we should
2599 * assume that that's not what we're dealing with.)
2600 */
2601 stats->stadistinct = ndistinct;
2602 }
2603 else
2604 {
2605 /*----------
2606 * Estimate the number of distinct values using the estimator
2607 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
2608 * n*d / (n - f1 + f1*n/N)
2609 * where f1 is the number of distinct values that occurred
2610 * exactly once in our sample of n rows (from a total of N),
2611 * and d is the total number of distinct values in the sample.
2612 * This is their Duj1 estimator; the other estimators they
2613 * recommend are considerably more complex, and are numerically
2614 * very unstable when n is much smaller than N.
2615 *
2616 * In this calculation, we consider only non-nulls. We used to
2617 * include rows with null values in the n and N counts, but that
2618 * leads to inaccurate answers in columns with many nulls, and
2619 * it's intuitively bogus anyway considering the desired result is
2620 * the number of distinct non-null values.
2621 *
2622 * Overwidth values are assumed to have been distinct.
2623 *----------
2624 */
2625 int f1 = ndistinct - nmultiple + toowide_cnt;
2626 int d = f1 + nmultiple;
2627 double n = samplerows - null_cnt;
2628 double N = totalrows * (1.0 - stats->stanullfrac);
2629 double stadistinct;
2630
2631 /* N == 0 shouldn't happen, but just in case ... */
2632 if (N > 0)
2633 stadistinct = (n * d) / ((n - f1) + f1 * n / N);
2634 else
2635 stadistinct = 0;
2636
2637 /* Clamp to sane range in case of roundoff error */
2638 if (stadistinct < d)
2639 stadistinct = d;
2640 if (stadistinct > N)
2641 stadistinct = N;
2642 /* And round to integer */
2643 stats->stadistinct = floor(stadistinct + 0.5);
2644 }
2645
2646 /*
2647 * If we estimated the number of distinct values at more than 10% of
2648 * the total row count (a very arbitrary limit), then assume that
2649 * stadistinct should scale with the row count rather than be a fixed
2650 * value.
2651 */
2652 if (stats->stadistinct > 0.1 * totalrows)
2653 stats->stadistinct = -(stats->stadistinct / totalrows);
2654
2655 /*
2656 * Decide how many values are worth storing as most-common values. If
2657 * we are able to generate a complete MCV list (all the values in the
2658 * sample will fit, and we think these are all the ones in the table),
2659 * then do so. Otherwise, store only those values that are
2660 * significantly more common than the values not in the list.
2661 *
2662 * Note: the first of these cases is meant to address columns with
2663 * small, fixed sets of possible values, such as boolean or enum
2664 * columns. If we can *completely* represent the column population by
2665 * an MCV list that will fit into the stats target, then we should do
2666 * so and thus provide the planner with complete information. But if
2667 * the MCV list is not complete, it's generally worth being more
2668 * selective, and not just filling it all the way up to the stats
2669 * target.
2670 */
2671 if (track_cnt == ndistinct && toowide_cnt == 0 &&
2672 stats->stadistinct > 0 &&
2673 track_cnt <= num_mcv)
2674 {
2675 /* Track list includes all values seen, and all will fit */
2676 num_mcv = track_cnt;
2677 }
2678 else
2679 {
2680 int *mcv_counts;
2681
2682 /* Incomplete list; decide how many values are worth keeping */
2683 if (num_mcv > track_cnt)
2684 num_mcv = track_cnt;
2685
2686 if (num_mcv > 0)
2687 {
2688 mcv_counts = (int *) palloc(num_mcv * sizeof(int));
2689 for (i = 0; i < num_mcv; i++)
2690 mcv_counts[i] = track[i].count;
2691
2692 num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
2693 stats->stadistinct,
2694 stats->stanullfrac,
2695 samplerows, totalrows);
2696 }
2697 }
2698
2699 /* Generate MCV slot entry */
2700 if (num_mcv > 0)
2701 {
2702 MemoryContext old_context;
2703 Datum *mcv_values;
2704 float4 *mcv_freqs;
2705
2706 /* Must copy the target values into anl_context */
2707 old_context = MemoryContextSwitchTo(stats->anl_context);
2708 mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
2709 mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
2710 for (i = 0; i < num_mcv; i++)
2711 {
2712 mcv_values[i] = datumCopy(values[track[i].first].value,
2713 stats->attrtype->typbyval,
2714 stats->attrtype->typlen);
2715 mcv_freqs[i] = (double) track[i].count / (double) samplerows;
2716 }
2717 MemoryContextSwitchTo(old_context);
2718
2719 stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
2720 stats->staop[slot_idx] = mystats->eqopr;
2721 stats->stacoll[slot_idx] = stats->attrcollid;
2722 stats->stanumbers[slot_idx] = mcv_freqs;
2723 stats->numnumbers[slot_idx] = num_mcv;
2724 stats->stavalues[slot_idx] = mcv_values;
2725 stats->numvalues[slot_idx] = num_mcv;
2726
2727 /*
2728 * Accept the defaults for stats->statypid and others. They have
2729 * been set before we were called (see vacuum.h)
2730 */
2731 slot_idx++;
2732 }
2733
2734 /*
2735 * Generate a histogram slot entry if there are at least two distinct
2736 * values not accounted for in the MCV list. (This ensures the
2737 * histogram won't collapse to empty or a singleton.)
2738 */
2739 num_hist = ndistinct - num_mcv;
2740 if (num_hist > num_bins)
2741 num_hist = num_bins + 1;
2742 if (num_hist >= 2)
2743 {
2744 MemoryContext old_context;
2745 Datum *hist_values;
2746 int nvals;
2747 int pos,
2748 posfrac,
2749 delta,
2750 deltafrac;
2751
2752 /* Sort the MCV items into position order to speed next loop */
2753 qsort_interruptible(track, num_mcv, sizeof(ScalarMCVItem),
2754 compare_mcvs, NULL);
2755
2756 /*
2757 * Collapse out the MCV items from the values[] array.
2758 *
2759 * Note we destroy the values[] array here... but we don't need it
2760 * for anything more. We do, however, still need values_cnt.
2761 * nvals will be the number of remaining entries in values[].
2762 */
2763 if (num_mcv > 0)
2764 {
2765 int src,
2766 dest;
2767 int j;
2768
2769 src = dest = 0;
2770 j = 0; /* index of next interesting MCV item */
2771 while (src < values_cnt)
2772 {
2773 int ncopy;
2774
2775 if (j < num_mcv)
2776 {
2777 int first = track[j].first;
2778
2779 if (src >= first)
2780 {
2781 /* advance past this MCV item */
2782 src = first + track[j].count;
2783 j++;
2784 continue;
2785 }
2786 ncopy = first - src;
2787 }
2788 else
2789 ncopy = values_cnt - src;
2790 memmove(&values[dest], &values[src],
2791 ncopy * sizeof(ScalarItem));
2792 src += ncopy;
2793 dest += ncopy;
2794 }
2795 nvals = dest;
2796 }
2797 else
2798 nvals = values_cnt;
2799 Assert(nvals >= num_hist);
2800
2801 /* Must copy the target values into anl_context */
2802 old_context = MemoryContextSwitchTo(stats->anl_context);
2803 hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
2804
2805 /*
2806 * The object of this loop is to copy the first and last values[]
2807 * entries along with evenly-spaced values in between. So the
2808 * i'th value is values[(i * (nvals - 1)) / (num_hist - 1)]. But
2809 * computing that subscript directly risks integer overflow when
2810 * the stats target is more than a couple thousand. Instead we
2811 * add (nvals - 1) / (num_hist - 1) to pos at each step, tracking
2812 * the integral and fractional parts of the sum separately.
2813 */
2814 delta = (nvals - 1) / (num_hist - 1);
2815 deltafrac = (nvals - 1) % (num_hist - 1);
2816 pos = posfrac = 0;
2817
2818 for (i = 0; i < num_hist; i++)
2819 {
2820 hist_values[i] = datumCopy(values[pos].value,
2821 stats->attrtype->typbyval,
2822 stats->attrtype->typlen);
2823 pos += delta;
2824 posfrac += deltafrac;
2825 if (posfrac >= (num_hist - 1))
2826 {
2827 /* fractional part exceeds 1, carry to integer part */
2828 pos++;
2829 posfrac -= (num_hist - 1);
2830 }
2831 }
2832
2833 MemoryContextSwitchTo(old_context);
2834
2835 stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
2836 stats->staop[slot_idx] = mystats->ltopr;
2837 stats->stacoll[slot_idx] = stats->attrcollid;
2838 stats->stavalues[slot_idx] = hist_values;
2839 stats->numvalues[slot_idx] = num_hist;
2840
2841 /*
2842 * Accept the defaults for stats->statypid and others. They have
2843 * been set before we were called (see vacuum.h)
2844 */
2845 slot_idx++;
2846 }
2847
2848 /* Generate a correlation entry if there are multiple values */
2849 if (values_cnt > 1)
2850 {
2851 MemoryContext old_context;
2852 float4 *corrs;
2853 double corr_xsum,
2854 corr_x2sum;
2855
2856 /* Must copy the target values into anl_context */
2857 old_context = MemoryContextSwitchTo(stats->anl_context);
2858 corrs = (float4 *) palloc(sizeof(float4));
2859 MemoryContextSwitchTo(old_context);
2860
2861 /*----------
2862 * Since we know the x and y value sets are both
2863 * 0, 1, ..., values_cnt-1
2864 * we have sum(x) = sum(y) =
2865 * (values_cnt-1)*values_cnt / 2
2866 * and sum(x^2) = sum(y^2) =
2867 * (values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
2868 *----------
2869 */
2870 corr_xsum = ((double) (values_cnt - 1)) *
2871 ((double) values_cnt) / 2.0;
2872 corr_x2sum = ((double) (values_cnt - 1)) *
2873 ((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;
2874
2875 /* And the correlation coefficient reduces to */
2876 corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
2877 (values_cnt * corr_x2sum - corr_xsum * corr_xsum);
2878
2879 stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
2880 stats->staop[slot_idx] = mystats->ltopr;
2881 stats->stacoll[slot_idx] = stats->attrcollid;
2882 stats->stanumbers[slot_idx] = corrs;
2883 stats->numnumbers[slot_idx] = 1;
2884 slot_idx++;
2885 }
2886 }
2887 else if (nonnull_cnt > 0)
2888 {
2889 /* We found some non-null values, but they were all too wide */
2890 Assert(nonnull_cnt == toowide_cnt);
2891 stats->stats_valid = true;
2892 /* Do the simple null-frac and width stats */
2893 stats->stanullfrac = (double) null_cnt / (double) samplerows;
2894 if (is_varwidth)
2895 stats->stawidth = total_width / (double) nonnull_cnt;
2896 else
2897 stats->stawidth = stats->attrtype->typlen;
2898 /* Assume all too-wide values are distinct, so it's a unique column */
2899 stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
2900 }
2901 else if (null_cnt > 0)
2902 {
2903 /* We found only nulls; assume the column is entirely null */
2904 stats->stats_valid = true;
2905 stats->stanullfrac = 1.0;
2906 if (is_varwidth)
2907 stats->stawidth = 0; /* "unknown" */
2908 else
2909 stats->stawidth = stats->attrtype->typlen;
2910 stats->stadistinct = 0.0; /* "unknown" */
2911 }
2912
2913 /* We don't need to bother cleaning up any of our temporary palloc's */
2914}
static int compare_mcvs(const void *a, const void *b, void *arg)
Definition: analyze.c:2957
static int compare_scalars(const void *a, const void *b, void *arg)
Definition: analyze.c:2926
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
void PrepareSortSupportFromOrderingOp(Oid orderingOp, SortSupport ssup)
Definition: sortsupport.c:134
bool ssup_nulls_first
Definition: sortsupport.h:75
MemoryContext ssup_cxt
Definition: sortsupport.h:66

References SortSupportData::abbreviate, analyze_mcv_list(), VacAttrStats::anl_context, Assert(), VacAttrStats::attrcollid, VacAttrStats::attrtype, VacAttrStats::attstattarget, compare_mcvs(), compare_scalars(), ScalarMCVItem::count, CurrentMemoryContext, datumCopy(), DatumGetCString(), DatumGetPointer(), generate_unaccent_rules::dest, StdAnalyzeData::eqopr, VacAttrStats::extra_data, f1, ScalarMCVItem::first, i, j, StdAnalyzeData::ltopr, MemoryContextSwitchTo(), VacAttrStats::numnumbers, VacAttrStats::numvalues, palloc(), PG_DETOAST_DATUM, PointerGetDatum(), PrepareSortSupportFromOrderingOp(), qsort_interruptible(), CompareScalarsContext::ssup, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, VacAttrStats::stacoll, VacAttrStats::stadistinct, VacAttrStats::stakind, VacAttrStats::stanullfrac, VacAttrStats::stanumbers, VacAttrStats::staop, VacAttrStats::stats_valid, VacAttrStats::stavalues, VacAttrStats::stawidth, toast_raw_datum_size(), CompareScalarsContext::tupnoLink, vacuum_delay_point(), value, values, VARSIZE_ANY, and WIDTH_THRESHOLD.

Referenced by std_typanalyze().

◆ compute_trivial_stats()

static void compute_trivial_stats ( VacAttrStatsP  stats,
AnalyzeAttrFetchFunc  fetchfunc,
int  samplerows,
double  totalrows 
)
static

Definition at line 1964 of file analyze.c.

1968{
1969 int i;
1970 int null_cnt = 0;
1971 int nonnull_cnt = 0;
1972 double total_width = 0;
1973 bool is_varlena = (!stats->attrtype->typbyval &&
1974 stats->attrtype->typlen == -1);
1975 bool is_varwidth = (!stats->attrtype->typbyval &&
1976 stats->attrtype->typlen < 0);
1977
1978 for (i = 0; i < samplerows; i++)
1979 {
1980 Datum value;
1981 bool isnull;
1982
1983 vacuum_delay_point(true);
1984
1985 value = fetchfunc(stats, i, &isnull);
1986
1987 /* Check for null/nonnull */
1988 if (isnull)
1989 {
1990 null_cnt++;
1991 continue;
1992 }
1993 nonnull_cnt++;
1994
1995 /*
1996 * If it's a variable-width field, add up widths for average width
1997 * calculation. Note that if the value is toasted, we use the toasted
1998 * width. We don't bother with this calculation if it's a fixed-width
1999 * type.
2000 */
2001 if (is_varlena)
2002 {
2003 total_width += VARSIZE_ANY(DatumGetPointer(value));
2004 }
2005 else if (is_varwidth)
2006 {
2007 /* must be cstring */
2008 total_width += strlen(DatumGetCString(value)) + 1;
2009 }
2010 }
2011
2012 /* We can only compute average width if we found some non-null values. */
2013 if (nonnull_cnt > 0)
2014 {
2015 stats->stats_valid = true;
2016 /* Do the simple null-frac and width stats */
2017 stats->stanullfrac = (double) null_cnt / (double) samplerows;
2018 if (is_varwidth)
2019 stats->stawidth = total_width / (double) nonnull_cnt;
2020 else
2021 stats->stawidth = stats->attrtype->typlen;
2022 stats->stadistinct = 0.0; /* "unknown" */
2023 }
2024 else if (null_cnt > 0)
2025 {
2026 /* We found only nulls; assume the column is entirely null */
2027 stats->stats_valid = true;
2028 stats->stanullfrac = 1.0;
2029 if (is_varwidth)
2030 stats->stawidth = 0; /* "unknown" */
2031 else
2032 stats->stawidth = stats->attrtype->typlen;
2033 stats->stadistinct = 0.0; /* "unknown" */
2034 }
2035}

References VacAttrStats::attrtype, DatumGetCString(), DatumGetPointer(), i, VacAttrStats::stadistinct, VacAttrStats::stanullfrac, VacAttrStats::stats_valid, VacAttrStats::stawidth, vacuum_delay_point(), value, and VARSIZE_ANY.

Referenced by std_typanalyze().

◆ do_analyze_rel()

static void do_analyze_rel ( Relation  onerel,
VacuumParams params,
List va_cols,
AcquireSampleRowsFunc  acquirefunc,
BlockNumber  relpages,
bool  inh,
bool  in_outer_xact,
int  elevel 
)
static

Definition at line 278 of file analyze.c.

282{
283 int attr_cnt,
284 tcnt,
285 i,
286 ind;
287 Relation *Irel;
288 int nindexes;
289 bool verbose,
290 instrument,
291 hasindex;
292 VacAttrStats **vacattrstats;
293 AnlIndexData *indexdata;
294 int targrows,
295 numrows,
296 minrows;
297 double totalrows,
298 totaldeadrows;
299 HeapTuple *rows;
300 PGRUsage ru0;
301 TimestampTz starttime = 0;
302 MemoryContext caller_context;
303 Oid save_userid;
304 int save_sec_context;
305 int save_nestlevel;
306 WalUsage startwalusage = pgWalUsage;
307 BufferUsage startbufferusage = pgBufferUsage;
308 BufferUsage bufferusage;
309 PgStat_Counter startreadtime = 0;
310 PgStat_Counter startwritetime = 0;
311
312 verbose = (params->options & VACOPT_VERBOSE) != 0;
313 instrument = (verbose || (AmAutoVacuumWorkerProcess() &&
314 params->log_min_duration >= 0));
315 if (inh)
316 ereport(elevel,
317 (errmsg("analyzing \"%s.%s\" inheritance tree",
319 RelationGetRelationName(onerel))));
320 else
321 ereport(elevel,
322 (errmsg("analyzing \"%s.%s\"",
324 RelationGetRelationName(onerel))));
325
326 /*
327 * Set up a working context so that we can easily free whatever junk gets
328 * created.
329 */
331 "Analyze",
333 caller_context = MemoryContextSwitchTo(anl_context);
334
335 /*
336 * Switch to the table owner's userid, so that any index functions are run
337 * as that user. Also lock down security-restricted operations and
338 * arrange to make GUC variable changes local to this command.
339 */
340 GetUserIdAndSecContext(&save_userid, &save_sec_context);
341 SetUserIdAndSecContext(onerel->rd_rel->relowner,
342 save_sec_context | SECURITY_RESTRICTED_OPERATION);
343 save_nestlevel = NewGUCNestLevel();
345
346 /*
347 * When verbose or autovacuum logging is used, initialize a resource usage
348 * snapshot and optionally track I/O timing.
349 */
350 if (instrument)
351 {
352 if (track_io_timing)
353 {
354 startreadtime = pgStatBlockReadTime;
355 startwritetime = pgStatBlockWriteTime;
356 }
357
358 pg_rusage_init(&ru0);
359 }
360
361 /* Used for instrumentation and stats report */
362 starttime = GetCurrentTimestamp();
363
364 /*
365 * Determine which columns to analyze
366 *
367 * Note that system attributes are never analyzed, so we just reject them
368 * at the lookup stage. We also reject duplicate column mentions. (We
369 * could alternatively ignore duplicates, but analyzing a column twice
370 * won't work; we'd end up making a conflicting update in pg_statistic.)
371 */
372 if (va_cols != NIL)
373 {
374 Bitmapset *unique_cols = NULL;
375 ListCell *le;
376
377 vacattrstats = (VacAttrStats **) palloc(list_length(va_cols) *
378 sizeof(VacAttrStats *));
379 tcnt = 0;
380 foreach(le, va_cols)
381 {
382 char *col = strVal(lfirst(le));
383
384 i = attnameAttNum(onerel, col, false);
385 if (i == InvalidAttrNumber)
387 (errcode(ERRCODE_UNDEFINED_COLUMN),
388 errmsg("column \"%s\" of relation \"%s\" does not exist",
389 col, RelationGetRelationName(onerel))));
390 if (bms_is_member(i, unique_cols))
392 (errcode(ERRCODE_DUPLICATE_COLUMN),
393 errmsg("column \"%s\" of relation \"%s\" appears more than once",
394 col, RelationGetRelationName(onerel))));
395 unique_cols = bms_add_member(unique_cols, i);
396
397 vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
398 if (vacattrstats[tcnt] != NULL)
399 tcnt++;
400 }
401 attr_cnt = tcnt;
402 }
403 else
404 {
405 attr_cnt = onerel->rd_att->natts;
406 vacattrstats = (VacAttrStats **)
407 palloc(attr_cnt * sizeof(VacAttrStats *));
408 tcnt = 0;
409 for (i = 1; i <= attr_cnt; i++)
410 {
411 vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
412 if (vacattrstats[tcnt] != NULL)
413 tcnt++;
414 }
415 attr_cnt = tcnt;
416 }
417
418 /*
419 * Open all indexes of the relation, and see if there are any analyzable
420 * columns in the indexes. We do not analyze index columns if there was
421 * an explicit column list in the ANALYZE command, however.
422 *
423 * If we are doing a recursive scan, we don't want to touch the parent's
424 * indexes at all. If we're processing a partitioned table, we need to
425 * know if there are any indexes, but we don't want to process them.
426 */
427 if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
428 {
429 List *idxs = RelationGetIndexList(onerel);
430
431 Irel = NULL;
432 nindexes = 0;
433 hasindex = idxs != NIL;
434 list_free(idxs);
435 }
436 else if (!inh)
437 {
438 vac_open_indexes(onerel, AccessShareLock, &nindexes, &Irel);
439 hasindex = nindexes > 0;
440 }
441 else
442 {
443 Irel = NULL;
444 nindexes = 0;
445 hasindex = false;
446 }
447 indexdata = NULL;
448 if (nindexes > 0)
449 {
450 indexdata = (AnlIndexData *) palloc0(nindexes * sizeof(AnlIndexData));
451 for (ind = 0; ind < nindexes; ind++)
452 {
453 AnlIndexData *thisdata = &indexdata[ind];
454 IndexInfo *indexInfo;
455
456 thisdata->indexInfo = indexInfo = BuildIndexInfo(Irel[ind]);
457 thisdata->tupleFract = 1.0; /* fix later if partial */
458 if (indexInfo->ii_Expressions != NIL && va_cols == NIL)
459 {
460 ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
461
462 thisdata->vacattrstats = (VacAttrStats **)
463 palloc(indexInfo->ii_NumIndexAttrs * sizeof(VacAttrStats *));
464 tcnt = 0;
465 for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
466 {
467 int keycol = indexInfo->ii_IndexAttrNumbers[i];
468
469 if (keycol == 0)
470 {
471 /* Found an index expression */
472 Node *indexkey;
473
474 if (indexpr_item == NULL) /* shouldn't happen */
475 elog(ERROR, "too few entries in indexprs list");
476 indexkey = (Node *) lfirst(indexpr_item);
477 indexpr_item = lnext(indexInfo->ii_Expressions,
478 indexpr_item);
479 thisdata->vacattrstats[tcnt] =
480 examine_attribute(Irel[ind], i + 1, indexkey);
481 if (thisdata->vacattrstats[tcnt] != NULL)
482 tcnt++;
483 }
484 }
485 thisdata->attr_cnt = tcnt;
486 }
487 }
488 }
489
490 /*
491 * Determine how many rows we need to sample, using the worst case from
492 * all analyzable columns. We use a lower bound of 100 rows to avoid
493 * possible overflow in Vitter's algorithm. (Note: that will also be the
494 * target in the corner case where there are no analyzable columns.)
495 */
496 targrows = 100;
497 for (i = 0; i < attr_cnt; i++)
498 {
499 if (targrows < vacattrstats[i]->minrows)
500 targrows = vacattrstats[i]->minrows;
501 }
502 for (ind = 0; ind < nindexes; ind++)
503 {
504 AnlIndexData *thisdata = &indexdata[ind];
505
506 for (i = 0; i < thisdata->attr_cnt; i++)
507 {
508 if (targrows < thisdata->vacattrstats[i]->minrows)
509 targrows = thisdata->vacattrstats[i]->minrows;
510 }
511 }
512
513 /*
514 * Look at extended statistics objects too, as those may define custom
515 * statistics target. So we may need to sample more rows and then build
516 * the statistics with enough detail.
517 */
518 minrows = ComputeExtStatisticsRows(onerel, attr_cnt, vacattrstats);
519
520 if (targrows < minrows)
521 targrows = minrows;
522
523 /*
524 * Acquire the sample rows
525 */
526 rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
530 if (inh)
531 numrows = acquire_inherited_sample_rows(onerel, elevel,
532 rows, targrows,
533 &totalrows, &totaldeadrows);
534 else
535 numrows = (*acquirefunc) (onerel, elevel,
536 rows, targrows,
537 &totalrows, &totaldeadrows);
538
539 /*
540 * Compute the statistics. Temporary results during the calculations for
541 * each column are stored in a child context. The calc routines are
542 * responsible to make sure that whatever they store into the VacAttrStats
543 * structure is allocated in anl_context.
544 */
545 if (numrows > 0)
546 {
547 MemoryContext col_context,
548 old_context;
549
552
554 "Analyze Column",
556 old_context = MemoryContextSwitchTo(col_context);
557
558 for (i = 0; i < attr_cnt; i++)
559 {
560 VacAttrStats *stats = vacattrstats[i];
561 AttributeOpts *aopt;
562
563 stats->rows = rows;
564 stats->tupDesc = onerel->rd_att;
565 stats->compute_stats(stats,
567 numrows,
568 totalrows);
569
570 /*
571 * If the appropriate flavor of the n_distinct option is
572 * specified, override with the corresponding value.
573 */
574 aopt = get_attribute_options(onerel->rd_id, stats->tupattnum);
575 if (aopt != NULL)
576 {
577 float8 n_distinct;
578
579 n_distinct = inh ? aopt->n_distinct_inherited : aopt->n_distinct;
580 if (n_distinct != 0.0)
581 stats->stadistinct = n_distinct;
582 }
583
584 MemoryContextReset(col_context);
585 }
586
587 if (nindexes > 0)
588 compute_index_stats(onerel, totalrows,
589 indexdata, nindexes,
590 rows, numrows,
591 col_context);
592
593 MemoryContextSwitchTo(old_context);
594 MemoryContextDelete(col_context);
595
596 /*
597 * Emit the completed stats rows into pg_statistic, replacing any
598 * previous statistics for the target columns. (If there are stats in
599 * pg_statistic for columns we didn't process, we leave them alone.)
600 */
602 attr_cnt, vacattrstats);
603
604 for (ind = 0; ind < nindexes; ind++)
605 {
606 AnlIndexData *thisdata = &indexdata[ind];
607
609 thisdata->attr_cnt, thisdata->vacattrstats);
610 }
611
612 /* Build extended statistics (if there are any). */
613 BuildRelationExtStatistics(onerel, inh, totalrows, numrows, rows,
614 attr_cnt, vacattrstats);
615 }
616
619
620 /*
621 * Update pages/tuples stats in pg_class ... but not if we're doing
622 * inherited stats.
623 *
624 * We assume that VACUUM hasn't set pg_class.reltuples already, even
625 * during a VACUUM ANALYZE. Although VACUUM often updates pg_class,
626 * exceptions exist. A "VACUUM (ANALYZE, INDEX_CLEANUP OFF)" command will
627 * never update pg_class entries for index relations. It's also possible
628 * that an individual index's pg_class entry won't be updated during
629 * VACUUM if the index AM returns NULL from its amvacuumcleanup() routine.
630 */
631 if (!inh)
632 {
633 BlockNumber relallvisible = 0;
634 BlockNumber relallfrozen = 0;
635
636 if (RELKIND_HAS_STORAGE(onerel->rd_rel->relkind))
637 visibilitymap_count(onerel, &relallvisible, &relallfrozen);
638
639 /*
640 * Update pg_class for table relation. CCI first, in case acquirefunc
641 * updated pg_class.
642 */
644 vac_update_relstats(onerel,
645 relpages,
646 totalrows,
647 relallvisible,
648 relallfrozen,
649 hasindex,
652 NULL, NULL,
653 in_outer_xact);
654
655 /* Same for indexes */
656 for (ind = 0; ind < nindexes; ind++)
657 {
658 AnlIndexData *thisdata = &indexdata[ind];
659 double totalindexrows;
660
661 totalindexrows = ceil(thisdata->tupleFract * totalrows);
664 totalindexrows,
665 0, 0,
666 false,
669 NULL, NULL,
670 in_outer_xact);
671 }
672 }
673 else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
674 {
675 /*
676 * Partitioned tables don't have storage, so we don't set any fields
677 * in their pg_class entries except for reltuples and relhasindex.
678 */
680 vac_update_relstats(onerel, -1, totalrows,
681 0, 0, hasindex, InvalidTransactionId,
683 NULL, NULL,
684 in_outer_xact);
685 }
686
687 /*
688 * Now report ANALYZE to the cumulative stats system. For regular tables,
689 * we do it only if not doing inherited stats. For partitioned tables, we
690 * only do it for inherited stats. (We're never called for not-inherited
691 * stats on partitioned tables anyway.)
692 *
693 * Reset the changes_since_analyze counter only if we analyzed all
694 * columns; otherwise, there is still work for auto-analyze to do.
695 */
696 if (!inh)
697 pgstat_report_analyze(onerel, totalrows, totaldeadrows,
698 (va_cols == NIL), starttime);
699 else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
700 pgstat_report_analyze(onerel, 0, 0, (va_cols == NIL), starttime);
701
702 /*
703 * If this isn't part of VACUUM ANALYZE, let index AMs do cleanup.
704 *
705 * Note that most index AMs perform a no-op as a matter of policy for
706 * amvacuumcleanup() when called in ANALYZE-only mode. The only exception
707 * among core index AMs is GIN/ginvacuumcleanup().
708 */
709 if (!(params->options & VACOPT_VACUUM))
710 {
711 for (ind = 0; ind < nindexes; ind++)
712 {
714 IndexVacuumInfo ivinfo;
715
716 ivinfo.index = Irel[ind];
717 ivinfo.heaprel = onerel;
718 ivinfo.analyze_only = true;
719 ivinfo.estimated_count = true;
720 ivinfo.message_level = elevel;
721 ivinfo.num_heap_tuples = onerel->rd_rel->reltuples;
722 ivinfo.strategy = vac_strategy;
723
724 stats = index_vacuum_cleanup(&ivinfo, NULL);
725
726 if (stats)
727 pfree(stats);
728 }
729 }
730
731 /* Done with indexes */
732 vac_close_indexes(nindexes, Irel, NoLock);
733
734 /* Log the action if appropriate */
735 if (instrument)
736 {
738
739 if (verbose || params->log_min_duration == 0 ||
740 TimestampDifferenceExceeds(starttime, endtime,
741 params->log_min_duration))
742 {
743 long delay_in_ms;
744 WalUsage walusage;
745 double read_rate = 0;
746 double write_rate = 0;
747 char *msgfmt;
749 int64 total_blks_hit;
750 int64 total_blks_read;
751 int64 total_blks_dirtied;
752
753 memset(&bufferusage, 0, sizeof(BufferUsage));
754 BufferUsageAccumDiff(&bufferusage, &pgBufferUsage, &startbufferusage);
755 memset(&walusage, 0, sizeof(WalUsage));
756 WalUsageAccumDiff(&walusage, &pgWalUsage, &startwalusage);
757
758 total_blks_hit = bufferusage.shared_blks_hit +
759 bufferusage.local_blks_hit;
760 total_blks_read = bufferusage.shared_blks_read +
761 bufferusage.local_blks_read;
762 total_blks_dirtied = bufferusage.shared_blks_dirtied +
763 bufferusage.local_blks_dirtied;
764
765 /*
766 * We do not expect an analyze to take > 25 days and it simplifies
767 * things a bit to use TimestampDifferenceMilliseconds.
768 */
769 delay_in_ms = TimestampDifferenceMilliseconds(starttime, endtime);
770
771 /*
772 * Note that we are reporting these read/write rates in the same
773 * manner as VACUUM does, which means that while the 'average read
774 * rate' here actually corresponds to page misses and resulting
775 * reads which are also picked up by track_io_timing, if enabled,
776 * the 'average write rate' is actually talking about the rate of
777 * pages being dirtied, not being written out, so it's typical to
778 * have a non-zero 'avg write rate' while I/O timings only reports
779 * reads.
780 *
781 * It's not clear that an ANALYZE will ever result in
782 * FlushBuffer() being called, but we track and support reporting
783 * on I/O write time in case that changes as it's practically free
784 * to do so anyway.
785 */
786
787 if (delay_in_ms > 0)
788 {
789 read_rate = (double) BLCKSZ * total_blks_read /
790 (1024 * 1024) / (delay_in_ms / 1000.0);
791 write_rate = (double) BLCKSZ * total_blks_dirtied /
792 (1024 * 1024) / (delay_in_ms / 1000.0);
793 }
794
795 /*
796 * We split this up so we don't emit empty I/O timing values when
797 * track_io_timing isn't enabled.
798 */
799
801
803 msgfmt = _("automatic analyze of table \"%s.%s.%s\"\n");
804 else
805 msgfmt = _("finished analyzing table \"%s.%s.%s\"\n");
806
807 appendStringInfo(&buf, msgfmt,
812 {
813 /*
814 * We bypass the changecount mechanism because this value is
815 * only updated by the calling process.
816 */
817 appendStringInfo(&buf, _("delay time: %.3f ms\n"),
819 }
820 if (track_io_timing)
821 {
822 double read_ms = (double) (pgStatBlockReadTime - startreadtime) / 1000;
823 double write_ms = (double) (pgStatBlockWriteTime - startwritetime) / 1000;
824
825 appendStringInfo(&buf, _("I/O timings: read: %.3f ms, write: %.3f ms\n"),
826 read_ms, write_ms);
827 }
828 appendStringInfo(&buf, _("avg read rate: %.3f MB/s, avg write rate: %.3f MB/s\n"),
829 read_rate, write_rate);
830 appendStringInfo(&buf, _("buffer usage: %lld hits, %lld reads, %lld dirtied\n"),
831 (long long) total_blks_hit,
832 (long long) total_blks_read,
833 (long long) total_blks_dirtied);
835 _("WAL usage: %lld records, %lld full page images, %llu bytes, %lld buffers full\n"),
836 (long long) walusage.wal_records,
837 (long long) walusage.wal_fpi,
838 (unsigned long long) walusage.wal_bytes,
839 (long long) walusage.wal_buffers_full);
840 appendStringInfo(&buf, _("system usage: %s"), pg_rusage_show(&ru0));
841
843 (errmsg_internal("%s", buf.data)));
844
845 pfree(buf.data);
846 }
847 }
848
849 /* Roll back any GUC changes executed by index functions */
850 AtEOXact_GUC(false, save_nestlevel);
851
852 /* Restore userid and security context */
853 SetUserIdAndSecContext(save_userid, save_sec_context);
854
855 /* Restore current context and release memory */
856 MemoryContextSwitchTo(caller_context);
858 anl_context = NULL;
859}
#define InvalidAttrNumber
Definition: attnum.h:23
AttributeOpts * get_attribute_options(Oid attrelid, int attnum)
Definition: attoptcache.c:131
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1756
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1780
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1644
PgBackendStatus * MyBEEntry
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
bool track_io_timing
Definition: bufmgr.c:143
double float8
Definition: c.h:601
static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
Definition: analyze.c:1793
static void update_attstats(Oid relid, bool inh, int natts, VacAttrStats **vacattrstats)
Definition: analyze.c:1650
static int acquire_inherited_sample_rows(Relation onerel, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows)
Definition: analyze.c:1386
static VacAttrStats * examine_attribute(Relation onerel, int attnum, Node *index_expr)
Definition: analyze.c:1036
static void compute_index_stats(Relation onerel, double totalrows, AnlIndexData *indexdata, int nindexes, HeapTuple *rows, int numrows, MemoryContext col_context)
Definition: analyze.c:865
int64 TimestampTz
Definition: timestamp.h:39
char * get_database_name(Oid dbid)
Definition: dbcommands.c:3188
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1157
int errcode(int sqlerrcode)
Definition: elog.c:853
#define _(x)
Definition: elog.c:90
#define LOG
Definition: elog.h:31
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
int ComputeExtStatisticsRows(Relation onerel, int natts, VacAttrStats **vacattrstats)
void BuildRelationExtStatistics(Relation onerel, bool inh, double totalrows, int numrows, HeapTuple *rows, int natts, VacAttrStats **vacattrstats)
Oid MyDatabaseId
Definition: globals.c:93
int NewGUCNestLevel(void)
Definition: guc.c:2235
void RestrictSearchPath(void)
Definition: guc.c:2246
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:2262
int verbose
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2428
IndexBulkDeleteResult * index_vacuum_cleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *istat)
Definition: indexam.c:815
WalUsage pgWalUsage
Definition: instrument.c:22
void WalUsageAccumDiff(WalUsage *dst, const WalUsage *add, const WalUsage *sub)
Definition: instrument.c:287
BufferUsage pgBufferUsage
Definition: instrument.c:20
void BufferUsageAccumDiff(BufferUsage *dst, const BufferUsage *add, const BufferUsage *sub)
Definition: instrument.c:248
void list_free(List *list)
Definition: list.c:1546
void pfree(void *pointer)
Definition: mcxt.c:1524
void * palloc0(Size size)
Definition: mcxt.c:1347
#define AmAutoVacuumWorkerProcess()
Definition: miscadmin.h:382
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:318
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:663
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:670
#define InvalidMultiXactId
Definition: multixact.h:24
int attnameAttNum(Relation rd, const char *attname, bool sysColOK)
#define lfirst(lc)
Definition: pg_list.h:172
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
static char * buf
Definition: pg_test_fsync.c:72
int64 PgStat_Counter
Definition: pgstat.h:65
PgStat_Counter pgStatBlockReadTime
PgStat_Counter pgStatBlockWriteTime
void pgstat_report_analyze(Relation rel, PgStat_Counter livetuples, PgStat_Counter deadtuples, bool resetcounter, TimestampTz starttime)
#define PROGRESS_ANALYZE_PHASE_FINALIZE_ANALYZE
Definition: progress.h:57
#define PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS_INH
Definition: progress.h:54
#define PROGRESS_ANALYZE_PHASE
Definition: progress.h:42
#define PROGRESS_ANALYZE_PHASE_COMPUTE_STATS
Definition: progress.h:55
#define PROGRESS_ANALYZE_DELAY_TIME
Definition: progress.h:50
#define PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS
Definition: progress.h:53
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4764
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:145
void initStringInfo(StringInfo str)
Definition: stringinfo.c:97
float8 n_distinct
Definition: attoptcache.h:22
float8 n_distinct_inherited
Definition: attoptcache.h:23
int64 shared_blks_dirtied
Definition: instrument.h:28
int64 local_blks_hit
Definition: instrument.h:30
int64 shared_blks_read
Definition: instrument.h:27
int64 local_blks_read
Definition: instrument.h:31
int64 local_blks_dirtied
Definition: instrument.h:32
int64 shared_blks_hit
Definition: instrument.h:26
int ii_NumIndexAttrs
Definition: execnodes.h:196
List * ii_Expressions
Definition: execnodes.h:199
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:198
Relation index
Definition: genam.h:69
double num_heap_tuples
Definition: genam.h:75
bool analyze_only
Definition: genam.h:71
BufferAccessStrategy strategy
Definition: genam.h:76
Relation heaprel
Definition: genam.h:70
int message_level
Definition: genam.h:74
bool estimated_count
Definition: genam.h:73
Definition: nodes.h:135
int64 st_progress_param[PGSTAT_NUM_PROGRESS_PARAM]
TupleDesc rd_att
Definition: rel.h:112
HeapTuple * rows
Definition: vacuum.h:172
int minrows
Definition: vacuum.h:137
TupleDesc tupDesc
Definition: vacuum.h:173
int64 wal_buffers_full
Definition: instrument.h:56
uint64 wal_bytes
Definition: instrument.h:55
int64 wal_fpi
Definition: instrument.h:54
int64 wal_records
Definition: instrument.h:53
#define InvalidTransactionId
Definition: transam.h:31
bool track_cost_delay_timing
Definition: vacuum.c:80
void vac_open_indexes(Relation relation, LOCKMODE lockmode, int *nindexes, Relation **Irel)
Definition: vacuum.c:2338
void vac_close_indexes(int nindexes, Relation *Irel, LOCKMODE lockmode)
Definition: vacuum.c:2381
void vac_update_relstats(Relation relation, BlockNumber num_pages, double num_tuples, BlockNumber num_all_visible_pages, BlockNumber num_all_frozen_pages, bool hasindex, TransactionId frozenxid, MultiXactId minmulti, bool *frozenxid_updated, bool *minmulti_updated, bool in_outer_xact)
Definition: vacuum.c:1428
#define strVal(v)
Definition: value.h:82
void visibilitymap_count(Relation rel, BlockNumber *all_visible, BlockNumber *all_frozen)

References _, AccessShareLock, acquire_inherited_sample_rows(), ALLOCSET_DEFAULT_SIZES, AllocSetContextCreate, AmAutoVacuumWorkerProcess, IndexVacuumInfo::analyze_only, anl_context, appendStringInfo(), AtEOXact_GUC(), attnameAttNum(), AnlIndexData::attr_cnt, bms_add_member(), bms_is_member(), buf, BufferUsageAccumDiff(), BuildIndexInfo(), BuildRelationExtStatistics(), CommandCounterIncrement(), compute_index_stats(), VacAttrStats::compute_stats, ComputeExtStatisticsRows(), CurrentMemoryContext, elog, ereport, errcode(), errmsg(), errmsg_internal(), ERROR, IndexVacuumInfo::estimated_count, examine_attribute(), get_attribute_options(), get_database_name(), get_namespace_name(), GetCurrentTimestamp(), GetUserIdAndSecContext(), IndexVacuumInfo::heaprel, i, IndexInfo::ii_Expressions, IndexInfo::ii_IndexAttrNumbers, IndexInfo::ii_NumIndexAttrs, IndexVacuumInfo::index, index_vacuum_cleanup(), AnlIndexData::indexInfo, INFO, initStringInfo(), InvalidAttrNumber, InvalidMultiXactId, InvalidTransactionId, lfirst, list_free(), list_head(), list_length(), lnext(), BufferUsage::local_blks_dirtied, BufferUsage::local_blks_hit, BufferUsage::local_blks_read, LOG, VacuumParams::log_min_duration, MemoryContextDelete(), MemoryContextReset(), MemoryContextSwitchTo(), IndexVacuumInfo::message_level, VacAttrStats::minrows, MyBEEntry, MyDatabaseId, AttributeOpts::n_distinct, AttributeOpts::n_distinct_inherited, TupleDescData::natts, NewGUCNestLevel(), NIL, NoLock, IndexVacuumInfo::num_heap_tuples, VacuumParams::options, palloc(), palloc0(), pfree(), pg_rusage_init(), pg_rusage_show(), pgBufferUsage, pgstat_progress_update_param(), pgstat_report_analyze(), pgStatBlockReadTime, pgStatBlockWriteTime, pgWalUsage, PROGRESS_ANALYZE_DELAY_TIME, PROGRESS_ANALYZE_PHASE, PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS, PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS_INH, PROGRESS_ANALYZE_PHASE_COMPUTE_STATS, PROGRESS_ANALYZE_PHASE_FINALIZE_ANALYZE, RelationData::rd_att, RelationData::rd_id, RelationData::rd_rel, RelationGetIndexList(), RelationGetNamespace, RelationGetNumberOfBlocks, RelationGetRelationName, RelationGetRelid, RestrictSearchPath(), VacAttrStats::rows, SECURITY_RESTRICTED_OPERATION, SetUserIdAndSecContext(), BufferUsage::shared_blks_dirtied, BufferUsage::shared_blks_hit, BufferUsage::shared_blks_read, PgBackendStatus::st_progress_param, VacAttrStats::stadistinct, std_fetch_func(), IndexVacuumInfo::strategy, strVal, TimestampDifferenceExceeds(), TimestampDifferenceMilliseconds(), track_cost_delay_timing, track_io_timing, VacAttrStats::tupattnum, VacAttrStats::tupDesc, AnlIndexData::tupleFract, update_attstats(), vac_close_indexes(), vac_open_indexes(), vac_strategy, vac_update_relstats(), AnlIndexData::vacattrstats, VACOPT_VACUUM, VACOPT_VERBOSE, verbose, visibilitymap_count(), WalUsage::wal_buffers_full, WalUsage::wal_bytes, WalUsage::wal_fpi, WalUsage::wal_records, and WalUsageAccumDiff().

Referenced by analyze_rel().

◆ examine_attribute()

static VacAttrStats * examine_attribute ( Relation  onerel,
int  attnum,
Node index_expr 
)
static

Definition at line 1036 of file analyze.c.

1037{
1038 Form_pg_attribute attr = TupleDescAttr(onerel->rd_att, attnum - 1);
1039 int attstattarget;
1040 HeapTuple atttuple;
1041 Datum dat;
1042 bool isnull;
1043 HeapTuple typtuple;
1044 VacAttrStats *stats;
1045 int i;
1046 bool ok;
1047
1048 /* Never analyze dropped columns */
1049 if (attr->attisdropped)
1050 return NULL;
1051
1052 /* Don't analyze virtual generated columns */
1053 if (attr->attgenerated == ATTRIBUTE_GENERATED_VIRTUAL)
1054 return NULL;
1055
1056 /*
1057 * Get attstattarget value. Set to -1 if null. (Analyze functions expect
1058 * -1 to mean use default_statistics_target; see for example
1059 * std_typanalyze.)
1060 */
1062 if (!HeapTupleIsValid(atttuple))
1063 elog(ERROR, "cache lookup failed for attribute %d of relation %u",
1064 attnum, RelationGetRelid(onerel));
1065 dat = SysCacheGetAttr(ATTNUM, atttuple, Anum_pg_attribute_attstattarget, &isnull);
1066 attstattarget = isnull ? -1 : DatumGetInt16(dat);
1067 ReleaseSysCache(atttuple);
1068
1069 /* Don't analyze column if user has specified not to */
1070 if (attstattarget == 0)
1071 return NULL;
1072
1073 /*
1074 * Create the VacAttrStats struct.
1075 */
1076 stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
1077 stats->attstattarget = attstattarget;
1078
1079 /*
1080 * When analyzing an expression index, believe the expression tree's type
1081 * not the column datatype --- the latter might be the opckeytype storage
1082 * type of the opclass, which is not interesting for our purposes. (Note:
1083 * if we did anything with non-expression index columns, we'd need to
1084 * figure out where to get the correct type info from, but for now that's
1085 * not a problem.) It's not clear whether anyone will care about the
1086 * typmod, but we store that too just in case.
1087 */
1088 if (index_expr)
1089 {
1090 stats->attrtypid = exprType(index_expr);
1091 stats->attrtypmod = exprTypmod(index_expr);
1092
1093 /*
1094 * If a collation has been specified for the index column, use that in
1095 * preference to anything else; but if not, fall back to whatever we
1096 * can get from the expression.
1097 */
1098 if (OidIsValid(onerel->rd_indcollation[attnum - 1]))
1099 stats->attrcollid = onerel->rd_indcollation[attnum - 1];
1100 else
1101 stats->attrcollid = exprCollation(index_expr);
1102 }
1103 else
1104 {
1105 stats->attrtypid = attr->atttypid;
1106 stats->attrtypmod = attr->atttypmod;
1107 stats->attrcollid = attr->attcollation;
1108 }
1109
1110 typtuple = SearchSysCacheCopy1(TYPEOID,
1111 ObjectIdGetDatum(stats->attrtypid));
1112 if (!HeapTupleIsValid(typtuple))
1113 elog(ERROR, "cache lookup failed for type %u", stats->attrtypid);
1114 stats->attrtype = (Form_pg_type) GETSTRUCT(typtuple);
1115 stats->anl_context = anl_context;
1116 stats->tupattnum = attnum;
1117
1118 /*
1119 * The fields describing the stats->stavalues[n] element types default to
1120 * the type of the data being analyzed, but the type-specific typanalyze
1121 * function can change them if it wants to store something else.
1122 */
1123 for (i = 0; i < STATISTIC_NUM_SLOTS; i++)
1124 {
1125 stats->statypid[i] = stats->attrtypid;
1126 stats->statyplen[i] = stats->attrtype->typlen;
1127 stats->statypbyval[i] = stats->attrtype->typbyval;
1128 stats->statypalign[i] = stats->attrtype->typalign;
1129 }
1130
1131 /*
1132 * Call the type-specific typanalyze function. If none is specified, use
1133 * std_typanalyze().
1134 */
1135 if (OidIsValid(stats->attrtype->typanalyze))
1136 ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
1137 PointerGetDatum(stats)));
1138 else
1139 ok = std_typanalyze(stats);
1140
1141 if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
1142 {
1143 heap_freetuple(typtuple);
1144 pfree(stats);
1145 return NULL;
1146 }
1147
1148 return stats;
1149}
#define OidIsValid(objectId)
Definition: c.h:746
bool std_typanalyze(VacAttrStats *stats)
Definition: analyze.c:1886
#define OidFunctionCall1(functionId, arg1)
Definition: fmgr.h:720
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:301
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:821
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:200
#define STATISTIC_NUM_SLOTS
Definition: pg_statistic.h:127
FormData_pg_type * Form_pg_type
Definition: pg_type.h:261
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:177
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:257
static int16 DatumGetInt16(Datum X)
Definition: postgres.h:167
Oid * rd_indcollation
Definition: rel.h:217
int32 attrtypmod
Definition: vacuum.h:127
Oid statypid[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:162
char statypalign[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:165
Oid attrtypid
Definition: vacuum.h:126
bool statypbyval[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:164
int16 statyplen[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:163
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:269
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:600
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:232
#define SearchSysCacheCopy1(cacheId, key1)
Definition: syscache.h:91
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:154

References anl_context, VacAttrStats::anl_context, attnum, VacAttrStats::attrcollid, VacAttrStats::attrtype, VacAttrStats::attrtypid, VacAttrStats::attrtypmod, VacAttrStats::attstattarget, VacAttrStats::compute_stats, DatumGetBool(), DatumGetInt16(), elog, ERROR, exprCollation(), exprType(), exprTypmod(), GETSTRUCT(), heap_freetuple(), HeapTupleIsValid, i, Int16GetDatum(), VacAttrStats::minrows, ObjectIdGetDatum(), OidFunctionCall1, OidIsValid, palloc0(), pfree(), PointerGetDatum(), RelationData::rd_att, RelationData::rd_indcollation, RelationGetRelid, ReleaseSysCache(), SearchSysCache2(), SearchSysCacheCopy1, STATISTIC_NUM_SLOTS, VacAttrStats::statypalign, VacAttrStats::statypbyval, VacAttrStats::statypid, VacAttrStats::statyplen, std_typanalyze(), SysCacheGetAttr(), VacAttrStats::tupattnum, and TupleDescAttr().

Referenced by do_analyze_rel().

◆ ind_fetch_func()

static Datum ind_fetch_func ( VacAttrStatsP  stats,
int  rownum,
bool *  isNull 
)
static

Definition at line 1809 of file analyze.c.

1810{
1811 int i;
1812
1813 /* exprvals and exprnulls are already offset for proper column */
1814 i = rownum * stats->rowstride;
1815 *isNull = stats->exprnulls[i];
1816 return stats->exprvals[i];
1817}

References VacAttrStats::exprnulls, VacAttrStats::exprvals, i, and VacAttrStats::rowstride.

Referenced by compute_index_stats().

◆ std_fetch_func()

static Datum std_fetch_func ( VacAttrStatsP  stats,
int  rownum,
bool *  isNull 
)
static

Definition at line 1793 of file analyze.c.

1794{
1795 int attnum = stats->tupattnum;
1796 HeapTuple tuple = stats->rows[rownum];
1797 TupleDesc tupDesc = stats->tupDesc;
1798
1799 return heap_getattr(tuple, attnum, tupDesc, isNull);
1800}
static Datum heap_getattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: htup_details.h:904

References attnum, heap_getattr(), VacAttrStats::rows, VacAttrStats::tupattnum, and VacAttrStats::tupDesc.

Referenced by do_analyze_rel().

◆ std_typanalyze()

bool std_typanalyze ( VacAttrStats stats)

Definition at line 1886 of file analyze.c.

1887{
1888 Oid ltopr;
1889 Oid eqopr;
1890 StdAnalyzeData *mystats;
1891
1892 /* If the attstattarget column is negative, use the default value */
1893 if (stats->attstattarget < 0)
1895
1896 /* Look for default "<" and "=" operators for column's type */
1898 false, false, false,
1899 &ltopr, &eqopr, NULL,
1900 NULL);
1901
1902 /* Save the operator info for compute_stats routines */
1903 mystats = (StdAnalyzeData *) palloc(sizeof(StdAnalyzeData));
1904 mystats->eqopr = eqopr;
1905 mystats->eqfunc = OidIsValid(eqopr) ? get_opcode(eqopr) : InvalidOid;
1906 mystats->ltopr = ltopr;
1907 stats->extra_data = mystats;
1908
1909 /*
1910 * Determine which standard statistics algorithm to use
1911 */
1912 if (OidIsValid(eqopr) && OidIsValid(ltopr))
1913 {
1914 /* Seems to be a scalar datatype */
1916 /*--------------------
1917 * The following choice of minrows is based on the paper
1918 * "Random sampling for histogram construction: how much is enough?"
1919 * by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
1920 * Proceedings of ACM SIGMOD International Conference on Management
1921 * of Data, 1998, Pages 436-447. Their Corollary 1 to Theorem 5
1922 * says that for table size n, histogram size k, maximum relative
1923 * error in bin size f, and error probability gamma, the minimum
1924 * random sample size is
1925 * r = 4 * k * ln(2*n/gamma) / f^2
1926 * Taking f = 0.5, gamma = 0.01, n = 10^6 rows, we obtain
1927 * r = 305.82 * k
1928 * Note that because of the log function, the dependence on n is
1929 * quite weak; even at n = 10^12, a 300*k sample gives <= 0.66
1930 * bin size error with probability 0.99. So there's no real need to
1931 * scale for n, which is a good thing because we don't necessarily
1932 * know it at this point.
1933 *--------------------
1934 */
1935 stats->minrows = 300 * stats->attstattarget;
1936 }
1937 else if (OidIsValid(eqopr))
1938 {
1939 /* We can still recognize distinct values */
1941 /* Might as well use the same minrows as above */
1942 stats->minrows = 300 * stats->attstattarget;
1943 }
1944 else
1945 {
1946 /* Can't do much but the trivial stuff */
1948 /* Might as well use the same minrows as above */
1949 stats->minrows = 300 * stats->attstattarget;
1950 }
1951
1952 return true;
1953}
static void compute_scalar_stats(VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
Definition: analyze.c:2397
int default_statistics_target
Definition: analyze.c:71
static void compute_distinct_stats(VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
Definition: analyze.c:2054
static void compute_trivial_stats(VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
Definition: analyze.c:1964
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1368
void get_sort_group_operators(Oid argtype, bool needLT, bool needEQ, bool needGT, Oid *ltOpr, Oid *eqOpr, Oid *gtOpr, bool *isHashable)
Definition: parse_oper.c:180
#define InvalidOid
Definition: postgres_ext.h:35

References VacAttrStats::attrtypid, VacAttrStats::attstattarget, compute_distinct_stats(), compute_scalar_stats(), VacAttrStats::compute_stats, compute_trivial_stats(), default_statistics_target, StdAnalyzeData::eqfunc, StdAnalyzeData::eqopr, VacAttrStats::extra_data, get_opcode(), get_sort_group_operators(), InvalidOid, StdAnalyzeData::ltopr, VacAttrStats::minrows, OidIsValid, and palloc().

Referenced by array_typanalyze(), examine_attribute(), and examine_expression().

◆ update_attstats()

static void update_attstats ( Oid  relid,
bool  inh,
int  natts,
VacAttrStats **  vacattrstats 
)
static

Definition at line 1650 of file analyze.c.

1651{
1652 Relation sd;
1653 int attno;
1654 CatalogIndexState indstate = NULL;
1655
1656 if (natts <= 0)
1657 return; /* nothing to do */
1658
1659 sd = table_open(StatisticRelationId, RowExclusiveLock);
1660
1661 for (attno = 0; attno < natts; attno++)
1662 {
1663 VacAttrStats *stats = vacattrstats[attno];
1664 HeapTuple stup,
1665 oldtup;
1666 int i,
1667 k,
1668 n;
1669 Datum values[Natts_pg_statistic];
1670 bool nulls[Natts_pg_statistic];
1671 bool replaces[Natts_pg_statistic];
1672
1673 /* Ignore attr if we weren't able to collect stats */
1674 if (!stats->stats_valid)
1675 continue;
1676
1677 /*
1678 * Construct a new pg_statistic tuple
1679 */
1680 for (i = 0; i < Natts_pg_statistic; ++i)
1681 {
1682 nulls[i] = false;
1683 replaces[i] = true;
1684 }
1685
1686 values[Anum_pg_statistic_starelid - 1] = ObjectIdGetDatum(relid);
1687 values[Anum_pg_statistic_staattnum - 1] = Int16GetDatum(stats->tupattnum);
1688 values[Anum_pg_statistic_stainherit - 1] = BoolGetDatum(inh);
1689 values[Anum_pg_statistic_stanullfrac - 1] = Float4GetDatum(stats->stanullfrac);
1690 values[Anum_pg_statistic_stawidth - 1] = Int32GetDatum(stats->stawidth);
1691 values[Anum_pg_statistic_stadistinct - 1] = Float4GetDatum(stats->stadistinct);
1692 i = Anum_pg_statistic_stakind1 - 1;
1693 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1694 {
1695 values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */
1696 }
1697 i = Anum_pg_statistic_staop1 - 1;
1698 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1699 {
1700 values[i++] = ObjectIdGetDatum(stats->staop[k]); /* staopN */
1701 }
1702 i = Anum_pg_statistic_stacoll1 - 1;
1703 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1704 {
1705 values[i++] = ObjectIdGetDatum(stats->stacoll[k]); /* stacollN */
1706 }
1707 i = Anum_pg_statistic_stanumbers1 - 1;
1708 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1709 {
1710 int nnum = stats->numnumbers[k];
1711
1712 if (nnum > 0)
1713 {
1714 Datum *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
1715 ArrayType *arry;
1716
1717 for (n = 0; n < nnum; n++)
1718 numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
1719 arry = construct_array_builtin(numdatums, nnum, FLOAT4OID);
1720 values[i++] = PointerGetDatum(arry); /* stanumbersN */
1721 }
1722 else
1723 {
1724 nulls[i] = true;
1725 values[i++] = (Datum) 0;
1726 }
1727 }
1728 i = Anum_pg_statistic_stavalues1 - 1;
1729 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1730 {
1731 if (stats->numvalues[k] > 0)
1732 {
1733 ArrayType *arry;
1734
1735 arry = construct_array(stats->stavalues[k],
1736 stats->numvalues[k],
1737 stats->statypid[k],
1738 stats->statyplen[k],
1739 stats->statypbyval[k],
1740 stats->statypalign[k]);
1741 values[i++] = PointerGetDatum(arry); /* stavaluesN */
1742 }
1743 else
1744 {
1745 nulls[i] = true;
1746 values[i++] = (Datum) 0;
1747 }
1748 }
1749
1750 /* Is there already a pg_statistic tuple for this attribute? */
1751 oldtup = SearchSysCache3(STATRELATTINH,
1752 ObjectIdGetDatum(relid),
1753 Int16GetDatum(stats->tupattnum),
1754 BoolGetDatum(inh));
1755
1756 /* Open index information when we know we need it */
1757 if (indstate == NULL)
1758 indstate = CatalogOpenIndexes(sd);
1759
1760 if (HeapTupleIsValid(oldtup))
1761 {
1762 /* Yes, replace it */
1763 stup = heap_modify_tuple(oldtup,
1764 RelationGetDescr(sd),
1765 values,
1766 nulls,
1767 replaces);
1768 ReleaseSysCache(oldtup);
1769 CatalogTupleUpdateWithInfo(sd, &stup->t_self, stup, indstate);
1770 }
1771 else
1772 {
1773 /* No, insert new tuple */
1774 stup = heap_form_tuple(RelationGetDescr(sd), values, nulls);
1775 CatalogTupleInsertWithInfo(sd, stup, indstate);
1776 }
1777
1778 heap_freetuple(stup);
1779 }
1780
1781 if (indstate != NULL)
1782 CatalogCloseIndexes(indstate);
1784}
ArrayType * construct_array(Datum *elems, int nelems, Oid elmtype, int elmlen, bool elmbyval, char elmalign)
Definition: arrayfuncs.c:3361
ArrayType * construct_array_builtin(Datum *elems, int nelems, Oid elmtype)
Definition: arrayfuncs.c:3381
HeapTuple heap_modify_tuple(HeapTuple tuple, TupleDesc tupleDesc, const Datum *replValues, const bool *replIsnull, const bool *doReplace)
Definition: heaptuple.c:1210
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: heaptuple.c:1117
void CatalogTupleInsertWithInfo(Relation heapRel, HeapTuple tup, CatalogIndexState indstate)
Definition: indexing.c:256
void CatalogCloseIndexes(CatalogIndexState indstate)
Definition: indexing.c:61
CatalogIndexState CatalogOpenIndexes(Relation heapRel)
Definition: indexing.c:43
void CatalogTupleUpdateWithInfo(Relation heapRel, ItemPointer otid, HeapTuple tup, CatalogIndexState indstate)
Definition: indexing.c:337
#define RowExclusiveLock
Definition: lockdefs.h:38
static Datum Float4GetDatum(float4 X)
Definition: postgres.h:480
static Datum BoolGetDatum(bool X)
Definition: postgres.h:107
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:217
HeapTuple SearchSysCache3(int cacheId, Datum key1, Datum key2, Datum key3)
Definition: syscache.c:243

References BoolGetDatum(), CatalogCloseIndexes(), CatalogOpenIndexes(), CatalogTupleInsertWithInfo(), CatalogTupleUpdateWithInfo(), construct_array(), construct_array_builtin(), Float4GetDatum(), heap_form_tuple(), heap_freetuple(), heap_modify_tuple(), HeapTupleIsValid, i, Int16GetDatum(), Int32GetDatum(), VacAttrStats::numnumbers, VacAttrStats::numvalues, ObjectIdGetDatum(), palloc(), PointerGetDatum(), RelationGetDescr, ReleaseSysCache(), RowExclusiveLock, SearchSysCache3(), VacAttrStats::stacoll, VacAttrStats::stadistinct, VacAttrStats::stakind, VacAttrStats::stanullfrac, VacAttrStats::stanumbers, VacAttrStats::staop, STATISTIC_NUM_SLOTS, VacAttrStats::stats_valid, VacAttrStats::statypalign, VacAttrStats::statypbyval, VacAttrStats::statypid, VacAttrStats::statyplen, VacAttrStats::stavalues, VacAttrStats::stawidth, HeapTupleData::t_self, table_close(), table_open(), VacAttrStats::tupattnum, and values.

Referenced by do_analyze_rel().

Variable Documentation

◆ anl_context

MemoryContext anl_context = NULL
static

Definition at line 74 of file analyze.c.

Referenced by compute_index_stats(), do_analyze_rel(), and examine_attribute().

◆ default_statistics_target

int default_statistics_target = 100

◆ vac_strategy

BufferAccessStrategy vac_strategy
static

Definition at line 75 of file analyze.c.

Referenced by acquire_sample_rows(), analyze_rel(), and do_analyze_rel().