PostgreSQL Source Code  git master
pgoutput.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * pgoutput.c
4  * Logical Replication output plugin
5  *
6  * Copyright (c) 2012-2024, PostgreSQL Global Development Group
7  *
8  * IDENTIFICATION
9  * src/backend/replication/pgoutput/pgoutput.c
10  *
11  *-------------------------------------------------------------------------
12  */
13 #include "postgres.h"
14 
15 #include "access/tupconvert.h"
16 #include "catalog/partition.h"
17 #include "catalog/pg_publication.h"
20 #include "commands/defrem.h"
22 #include "executor/executor.h"
23 #include "fmgr.h"
24 #include "nodes/makefuncs.h"
25 #include "parser/parse_relation.h"
26 #include "replication/logical.h"
28 #include "replication/origin.h"
29 #include "replication/pgoutput.h"
30 #include "utils/builtins.h"
31 #include "utils/inval.h"
32 #include "utils/lsyscache.h"
33 #include "utils/memutils.h"
34 #include "utils/rel.h"
35 #include "utils/syscache.h"
36 #include "utils/varlena.h"
37 
39 
41  OutputPluginOptions *opt, bool is_init);
44  ReorderBufferTXN *txn);
46  ReorderBufferTXN *txn, XLogRecPtr commit_lsn);
48  ReorderBufferTXN *txn, Relation relation,
49  ReorderBufferChange *change);
51  ReorderBufferTXN *txn, int nrelations, Relation relations[],
52  ReorderBufferChange *change);
54  ReorderBufferTXN *txn, XLogRecPtr message_lsn,
55  bool transactional, const char *prefix,
56  Size sz, const char *message);
58  RepOriginId origin_id);
60  ReorderBufferTXN *txn);
62  ReorderBufferTXN *txn, XLogRecPtr prepare_lsn);
64  ReorderBufferTXN *txn, XLogRecPtr commit_lsn);
66  ReorderBufferTXN *txn,
67  XLogRecPtr prepare_end_lsn,
68  TimestampTz prepare_time);
69 static void pgoutput_stream_start(struct LogicalDecodingContext *ctx,
70  ReorderBufferTXN *txn);
71 static void pgoutput_stream_stop(struct LogicalDecodingContext *ctx,
72  ReorderBufferTXN *txn);
73 static void pgoutput_stream_abort(struct LogicalDecodingContext *ctx,
74  ReorderBufferTXN *txn,
75  XLogRecPtr abort_lsn);
76 static void pgoutput_stream_commit(struct LogicalDecodingContext *ctx,
77  ReorderBufferTXN *txn,
78  XLogRecPtr commit_lsn);
80  ReorderBufferTXN *txn, XLogRecPtr prepare_lsn);
81 
82 static bool publications_valid;
83 
84 static List *LoadPublications(List *pubnames);
85 static void publication_invalidation_cb(Datum arg, int cacheid,
86  uint32 hashvalue);
87 static void send_relation_and_attrs(Relation relation, TransactionId xid,
89  Bitmapset *columns);
91  RepOriginId origin_id, XLogRecPtr origin_lsn,
92  bool send_origin);
93 
94 /*
95  * Only 3 publication actions are used for row filtering ("insert", "update",
96  * "delete"). See RelationSyncEntry.exprstate[].
97  */
99 {
103 };
104 
105 #define NUM_ROWFILTER_PUBACTIONS (PUBACTION_DELETE+1)
106 
107 /*
108  * Entry in the map used to remember which relation schemas we sent.
109  *
110  * The schema_sent flag determines if the current schema record for the
111  * relation (and for its ancestor if publish_as_relid is set) was already
112  * sent to the subscriber (in which case we don't need to send it again).
113  *
114  * The schema cache on downstream is however updated only at commit time,
115  * and with streamed transactions the commit order may be different from
116  * the order the transactions are sent in. Also, the (sub) transactions
117  * might get aborted so we need to send the schema for each (sub) transaction
118  * so that we don't lose the schema information on abort. For handling this,
119  * we maintain the list of xids (streamed_txns) for those we have already sent
120  * the schema.
121  *
122  * For partitions, 'pubactions' considers not only the table's own
123  * publications, but also those of all of its ancestors.
124  */
125 typedef struct RelationSyncEntry
126 {
127  Oid relid; /* relation oid */
128 
129  bool replicate_valid; /* overall validity flag for entry */
130 
132  List *streamed_txns; /* streamed toplevel transactions with this
133  * schema */
134 
135  /* are we publishing this rel? */
137 
138  /*
139  * ExprState array for row filter. Different publication actions don't
140  * allow multiple expressions to always be combined into one, because
141  * updates or deletes restrict the column in expression to be part of the
142  * replica identity index whereas inserts do not have this restriction, so
143  * there is one ExprState per publication action.
144  */
146  EState *estate; /* executor state used for row filter */
147  TupleTableSlot *new_slot; /* slot for storing new tuple */
148  TupleTableSlot *old_slot; /* slot for storing old tuple */
149 
150  /*
151  * OID of the relation to publish changes as. For a partition, this may
152  * be set to one of its ancestors whose schema will be used when
153  * replicating changes, if publish_via_partition_root is set for the
154  * publication.
155  */
157 
158  /*
159  * Map used when replicating using an ancestor's schema to convert tuples
160  * from partition's type to the ancestor's; NULL if publish_as_relid is
161  * same as 'relid' or if unnecessary due to partition and the ancestor
162  * having identical TupleDesc.
163  */
165 
166  /*
167  * Columns included in the publication, or NULL if all columns are
168  * included implicitly. Note that the attnums in this bitmap are not
169  * shifted by FirstLowInvalidHeapAttributeNumber.
170  */
172 
173  /*
174  * Private context to store additional data for this entry - state for the
175  * row filter expressions, column list, etc.
176  */
179 
180 /*
181  * Maintain a per-transaction level variable to track whether the transaction
182  * has sent BEGIN. BEGIN is only sent when the first change in a transaction
183  * is processed. This makes it possible to skip sending a pair of BEGIN/COMMIT
184  * messages for empty transactions which saves network bandwidth.
185  *
186  * This optimization is not used for prepared transactions because if the
187  * WALSender restarts after prepare of a transaction and before commit prepared
188  * of the same transaction then we won't be able to figure out if we have
189  * skipped sending BEGIN/PREPARE of a transaction as it was empty. This is
190  * because we would have lost the in-memory txndata information that was
191  * present prior to the restart. This will result in sending a spurious
192  * COMMIT PREPARED without a corresponding prepared transaction at the
193  * downstream which would lead to an error when it tries to process it.
194  *
195  * XXX We could achieve this optimization by changing protocol to send
196  * additional information so that downstream can detect that the corresponding
197  * prepare has not been sent. However, adding such a check for every
198  * transaction in the downstream could be costly so we might want to do it
199  * optionally.
200  *
201  * We also don't have this optimization for streamed transactions because
202  * they can contain prepared transactions.
203  */
204 typedef struct PGOutputTxnData
205 {
206  bool sent_begin_txn; /* flag indicating whether BEGIN has been sent */
208 
209 /* Map used to remember which relation schemas we sent. */
210 static HTAB *RelationSyncCache = NULL;
211 
212 static void init_rel_sync_cache(MemoryContext cachectx);
213 static void cleanup_rel_sync_cache(TransactionId xid, bool is_commit);
215  Relation relation);
216 static void rel_sync_cache_relation_cb(Datum arg, Oid relid);
217 static void rel_sync_cache_publication_cb(Datum arg, int cacheid,
218  uint32 hashvalue);
220  TransactionId xid);
222  TransactionId xid);
223 static void init_tuple_slot(PGOutputData *data, Relation relation,
224  RelationSyncEntry *entry);
225 
226 /* row filter routines */
229  List *publications,
230  RelationSyncEntry *entry);
232  ExprContext *econtext);
233 static bool pgoutput_row_filter(Relation relation, TupleTableSlot *old_slot,
234  TupleTableSlot **new_slot_ptr,
235  RelationSyncEntry *entry,
237 
238 /* column list routines */
240  List *publications,
241  RelationSyncEntry *entry);
242 
243 /*
244  * Specify output plugin callbacks
245  */
246 void
248 {
255 
262 
263  /* transaction streaming */
271  /* transaction streaming - two-phase commit */
273 }
274 
275 static void
277 {
278  ListCell *lc;
279  bool protocol_version_given = false;
280  bool publication_names_given = false;
281  bool binary_option_given = false;
282  bool messages_option_given = false;
283  bool streaming_given = false;
284  bool two_phase_option_given = false;
285  bool origin_option_given = false;
286 
287  data->binary = false;
288  data->streaming = LOGICALREP_STREAM_OFF;
289  data->messages = false;
290  data->two_phase = false;
291 
292  foreach(lc, options)
293  {
294  DefElem *defel = (DefElem *) lfirst(lc);
295 
296  Assert(defel->arg == NULL || IsA(defel->arg, String));
297 
298  /* Check each param, whether or not we recognize it */
299  if (strcmp(defel->defname, "proto_version") == 0)
300  {
301  unsigned long parsed;
302  char *endptr;
303 
304  if (protocol_version_given)
305  ereport(ERROR,
306  (errcode(ERRCODE_SYNTAX_ERROR),
307  errmsg("conflicting or redundant options")));
308  protocol_version_given = true;
309 
310  errno = 0;
311  parsed = strtoul(strVal(defel->arg), &endptr, 10);
312  if (errno != 0 || *endptr != '\0')
313  ereport(ERROR,
314  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
315  errmsg("invalid proto_version")));
316 
317  if (parsed > PG_UINT32_MAX)
318  ereport(ERROR,
319  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
320  errmsg("proto_version \"%s\" out of range",
321  strVal(defel->arg))));
322 
323  data->protocol_version = (uint32) parsed;
324  }
325  else if (strcmp(defel->defname, "publication_names") == 0)
326  {
327  if (publication_names_given)
328  ereport(ERROR,
329  (errcode(ERRCODE_SYNTAX_ERROR),
330  errmsg("conflicting or redundant options")));
331  publication_names_given = true;
332 
333  if (!SplitIdentifierString(strVal(defel->arg), ',',
334  &data->publication_names))
335  ereport(ERROR,
336  (errcode(ERRCODE_INVALID_NAME),
337  errmsg("invalid publication_names syntax")));
338  }
339  else if (strcmp(defel->defname, "binary") == 0)
340  {
341  if (binary_option_given)
342  ereport(ERROR,
343  (errcode(ERRCODE_SYNTAX_ERROR),
344  errmsg("conflicting or redundant options")));
345  binary_option_given = true;
346 
347  data->binary = defGetBoolean(defel);
348  }
349  else if (strcmp(defel->defname, "messages") == 0)
350  {
351  if (messages_option_given)
352  ereport(ERROR,
353  (errcode(ERRCODE_SYNTAX_ERROR),
354  errmsg("conflicting or redundant options")));
355  messages_option_given = true;
356 
357  data->messages = defGetBoolean(defel);
358  }
359  else if (strcmp(defel->defname, "streaming") == 0)
360  {
361  if (streaming_given)
362  ereport(ERROR,
363  (errcode(ERRCODE_SYNTAX_ERROR),
364  errmsg("conflicting or redundant options")));
365  streaming_given = true;
366 
367  data->streaming = defGetStreamingMode(defel);
368  }
369  else if (strcmp(defel->defname, "two_phase") == 0)
370  {
371  if (two_phase_option_given)
372  ereport(ERROR,
373  (errcode(ERRCODE_SYNTAX_ERROR),
374  errmsg("conflicting or redundant options")));
375  two_phase_option_given = true;
376 
377  data->two_phase = defGetBoolean(defel);
378  }
379  else if (strcmp(defel->defname, "origin") == 0)
380  {
381  char *origin;
382 
383  if (origin_option_given)
384  ereport(ERROR,
385  errcode(ERRCODE_SYNTAX_ERROR),
386  errmsg("conflicting or redundant options"));
387  origin_option_given = true;
388 
389  origin = defGetString(defel);
390  if (pg_strcasecmp(origin, LOGICALREP_ORIGIN_NONE) == 0)
391  data->publish_no_origin = true;
392  else if (pg_strcasecmp(origin, LOGICALREP_ORIGIN_ANY) == 0)
393  data->publish_no_origin = false;
394  else
395  ereport(ERROR,
396  errcode(ERRCODE_INVALID_PARAMETER_VALUE),
397  errmsg("unrecognized origin value: \"%s\"", origin));
398  }
399  else
400  elog(ERROR, "unrecognized pgoutput option: %s", defel->defname);
401  }
402 
403  /* Check required options */
404  if (!protocol_version_given)
405  ereport(ERROR,
406  errcode(ERRCODE_INVALID_PARAMETER_VALUE),
407  errmsg("proto_version option missing"));
408  if (!publication_names_given)
409  ereport(ERROR,
410  errcode(ERRCODE_INVALID_PARAMETER_VALUE),
411  errmsg("publication_names option missing"));
412 }
413 
414 /*
415  * Initialize this plugin
416  */
417 static void
419  bool is_init)
420 {
422  static bool publication_callback_registered = false;
423 
424  /* Create our memory context for private allocations. */
425  data->context = AllocSetContextCreate(ctx->context,
426  "logical replication output context",
428 
429  data->cachectx = AllocSetContextCreate(ctx->context,
430  "logical replication cache context",
432 
434 
435  /* This plugin uses binary protocol. */
437 
438  /*
439  * This is replication start and not slot initialization.
440  *
441  * Parse and validate options passed by the client.
442  */
443  if (!is_init)
444  {
445  /* Parse the params and ERROR if we see any we don't recognize */
447 
448  /* Check if we support requested protocol */
449  if (data->protocol_version > LOGICALREP_PROTO_MAX_VERSION_NUM)
450  ereport(ERROR,
451  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
452  errmsg("client sent proto_version=%d but server only supports protocol %d or lower",
453  data->protocol_version, LOGICALREP_PROTO_MAX_VERSION_NUM)));
454 
455  if (data->protocol_version < LOGICALREP_PROTO_MIN_VERSION_NUM)
456  ereport(ERROR,
457  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
458  errmsg("client sent proto_version=%d but server only supports protocol %d or higher",
459  data->protocol_version, LOGICALREP_PROTO_MIN_VERSION_NUM)));
460 
461  /*
462  * Decide whether to enable streaming. It is disabled by default, in
463  * which case we just update the flag in decoding context. Otherwise
464  * we only allow it with sufficient version of the protocol, and when
465  * the output plugin supports it.
466  */
467  if (data->streaming == LOGICALREP_STREAM_OFF)
468  ctx->streaming = false;
469  else if (data->streaming == LOGICALREP_STREAM_ON &&
470  data->protocol_version < LOGICALREP_PROTO_STREAM_VERSION_NUM)
471  ereport(ERROR,
472  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
473  errmsg("requested proto_version=%d does not support streaming, need %d or higher",
474  data->protocol_version, LOGICALREP_PROTO_STREAM_VERSION_NUM)));
475  else if (data->streaming == LOGICALREP_STREAM_PARALLEL &&
477  ereport(ERROR,
478  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
479  errmsg("requested proto_version=%d does not support parallel streaming, need %d or higher",
481  else if (!ctx->streaming)
482  ereport(ERROR,
483  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
484  errmsg("streaming requested, but not supported by output plugin")));
485 
486  /*
487  * Here, we just check whether the two-phase option is passed by
488  * plugin and decide whether to enable it at later point of time. It
489  * remains enabled if the previous start-up has done so. But we only
490  * allow the option to be passed in with sufficient version of the
491  * protocol, and when the output plugin supports it.
492  */
493  if (!data->two_phase)
494  ctx->twophase_opt_given = false;
495  else if (data->protocol_version < LOGICALREP_PROTO_TWOPHASE_VERSION_NUM)
496  ereport(ERROR,
497  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
498  errmsg("requested proto_version=%d does not support two-phase commit, need %d or higher",
499  data->protocol_version, LOGICALREP_PROTO_TWOPHASE_VERSION_NUM)));
500  else if (!ctx->twophase)
501  ereport(ERROR,
502  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
503  errmsg("two-phase commit requested, but not supported by output plugin")));
504  else
505  ctx->twophase_opt_given = true;
506 
507  /* Init publication state. */
508  data->publications = NIL;
509  publications_valid = false;
510 
511  /*
512  * Register callback for pg_publication if we didn't already do that
513  * during some previous call in this process.
514  */
515  if (!publication_callback_registered)
516  {
517  CacheRegisterSyscacheCallback(PUBLICATIONOID,
519  (Datum) 0);
520  publication_callback_registered = true;
521  }
522 
523  /* Initialize relation schema cache. */
525  }
526  else
527  {
528  /*
529  * Disable the streaming and prepared transactions during the slot
530  * initialization mode.
531  */
532  ctx->streaming = false;
533  ctx->twophase = false;
534  }
535 }
536 
537 /*
538  * BEGIN callback.
539  *
540  * Don't send the BEGIN message here instead postpone it until the first
541  * change. In logical replication, a common scenario is to replicate a set of
542  * tables (instead of all tables) and transactions whose changes were on
543  * the table(s) that are not published will produce empty transactions. These
544  * empty transactions will send BEGIN and COMMIT messages to subscribers,
545  * using bandwidth on something with little/no use for logical replication.
546  */
547 static void
549 {
551  sizeof(PGOutputTxnData));
552 
553  txn->output_plugin_private = txndata;
554 }
555 
556 /*
557  * Send BEGIN.
558  *
559  * This is called while processing the first change of the transaction.
560  */
561 static void
563 {
564  bool send_replication_origin = txn->origin_id != InvalidRepOriginId;
566 
567  Assert(txndata);
568  Assert(!txndata->sent_begin_txn);
569 
570  OutputPluginPrepareWrite(ctx, !send_replication_origin);
571  logicalrep_write_begin(ctx->out, txn);
572  txndata->sent_begin_txn = true;
573 
574  send_repl_origin(ctx, txn->origin_id, txn->origin_lsn,
575  send_replication_origin);
576 
577  OutputPluginWrite(ctx, true);
578 }
579 
580 /*
581  * COMMIT callback
582  */
583 static void
585  XLogRecPtr commit_lsn)
586 {
588  bool sent_begin_txn;
589 
590  Assert(txndata);
591 
592  /*
593  * We don't need to send the commit message unless some relevant change
594  * from this transaction has been sent to the downstream.
595  */
596  sent_begin_txn = txndata->sent_begin_txn;
597  OutputPluginUpdateProgress(ctx, !sent_begin_txn);
598  pfree(txndata);
599  txn->output_plugin_private = NULL;
600 
601  if (!sent_begin_txn)
602  {
603  elog(DEBUG1, "skipped replication of an empty transaction with XID: %u", txn->xid);
604  return;
605  }
606 
607  OutputPluginPrepareWrite(ctx, true);
608  logicalrep_write_commit(ctx->out, txn, commit_lsn);
609  OutputPluginWrite(ctx, true);
610 }
611 
612 /*
613  * BEGIN PREPARE callback
614  */
615 static void
617 {
618  bool send_replication_origin = txn->origin_id != InvalidRepOriginId;
619 
620  OutputPluginPrepareWrite(ctx, !send_replication_origin);
622 
623  send_repl_origin(ctx, txn->origin_id, txn->origin_lsn,
624  send_replication_origin);
625 
626  OutputPluginWrite(ctx, true);
627 }
628 
629 /*
630  * PREPARE callback
631  */
632 static void
634  XLogRecPtr prepare_lsn)
635 {
636  OutputPluginUpdateProgress(ctx, false);
637 
638  OutputPluginPrepareWrite(ctx, true);
639  logicalrep_write_prepare(ctx->out, txn, prepare_lsn);
640  OutputPluginWrite(ctx, true);
641 }
642 
643 /*
644  * COMMIT PREPARED callback
645  */
646 static void
648  XLogRecPtr commit_lsn)
649 {
650  OutputPluginUpdateProgress(ctx, false);
651 
652  OutputPluginPrepareWrite(ctx, true);
653  logicalrep_write_commit_prepared(ctx->out, txn, commit_lsn);
654  OutputPluginWrite(ctx, true);
655 }
656 
657 /*
658  * ROLLBACK PREPARED callback
659  */
660 static void
662  ReorderBufferTXN *txn,
663  XLogRecPtr prepare_end_lsn,
664  TimestampTz prepare_time)
665 {
666  OutputPluginUpdateProgress(ctx, false);
667 
668  OutputPluginPrepareWrite(ctx, true);
669  logicalrep_write_rollback_prepared(ctx->out, txn, prepare_end_lsn,
670  prepare_time);
671  OutputPluginWrite(ctx, true);
672 }
673 
674 /*
675  * Write the current schema of the relation and its ancestor (if any) if not
676  * done yet.
677  */
678 static void
680  ReorderBufferChange *change,
681  Relation relation, RelationSyncEntry *relentry)
682 {
684  bool schema_sent;
687 
688  /*
689  * Remember XID of the (sub)transaction for the change. We don't care if
690  * it's top-level transaction or not (we have already sent that XID in
691  * start of the current streaming block).
692  *
693  * If we're not in a streaming block, just use InvalidTransactionId and
694  * the write methods will not include it.
695  */
696  if (data->in_streaming)
697  xid = change->txn->xid;
698 
699  if (rbtxn_is_subtxn(change->txn))
700  topxid = rbtxn_get_toptxn(change->txn)->xid;
701  else
702  topxid = xid;
703 
704  /*
705  * Do we need to send the schema? We do track streamed transactions
706  * separately, because those may be applied later (and the regular
707  * transactions won't see their effects until then) and in an order that
708  * we don't know at this point.
709  *
710  * XXX There is a scope of optimization here. Currently, we always send
711  * the schema first time in a streaming transaction but we can probably
712  * avoid that by checking 'relentry->schema_sent' flag. However, before
713  * doing that we need to study its impact on the case where we have a mix
714  * of streaming and non-streaming transactions.
715  */
716  if (data->in_streaming)
717  schema_sent = get_schema_sent_in_streamed_txn(relentry, topxid);
718  else
719  schema_sent = relentry->schema_sent;
720 
721  /* Nothing to do if we already sent the schema. */
722  if (schema_sent)
723  return;
724 
725  /*
726  * Send the schema. If the changes will be published using an ancestor's
727  * schema, not the relation's own, send that ancestor's schema before
728  * sending relation's own (XXX - maybe sending only the former suffices?).
729  */
730  if (relentry->publish_as_relid != RelationGetRelid(relation))
731  {
732  Relation ancestor = RelationIdGetRelation(relentry->publish_as_relid);
733 
734  send_relation_and_attrs(ancestor, xid, ctx, relentry->columns);
735  RelationClose(ancestor);
736  }
737 
738  send_relation_and_attrs(relation, xid, ctx, relentry->columns);
739 
740  if (data->in_streaming)
741  set_schema_sent_in_streamed_txn(relentry, topxid);
742  else
743  relentry->schema_sent = true;
744 }
745 
746 /*
747  * Sends a relation
748  */
749 static void
752  Bitmapset *columns)
753 {
754  TupleDesc desc = RelationGetDescr(relation);
755  int i;
756 
757  /*
758  * Write out type info if needed. We do that only for user-created types.
759  * We use FirstGenbkiObjectId as the cutoff, so that we only consider
760  * objects with hand-assigned OIDs to be "built in", not for instance any
761  * function or type defined in the information_schema. This is important
762  * because only hand-assigned OIDs can be expected to remain stable across
763  * major versions.
764  */
765  for (i = 0; i < desc->natts; i++)
766  {
767  Form_pg_attribute att = TupleDescAttr(desc, i);
768 
769  if (att->attisdropped || att->attgenerated)
770  continue;
771 
772  if (att->atttypid < FirstGenbkiObjectId)
773  continue;
774 
775  /* Skip this attribute if it's not present in the column list */
776  if (columns != NULL && !bms_is_member(att->attnum, columns))
777  continue;
778 
779  OutputPluginPrepareWrite(ctx, false);
780  logicalrep_write_typ(ctx->out, xid, att->atttypid);
781  OutputPluginWrite(ctx, false);
782  }
783 
784  OutputPluginPrepareWrite(ctx, false);
785  logicalrep_write_rel(ctx->out, xid, relation, columns);
786  OutputPluginWrite(ctx, false);
787 }
788 
789 /*
790  * Executor state preparation for evaluation of row filter expressions for the
791  * specified relation.
792  */
793 static EState *
795 {
796  EState *estate;
797  RangeTblEntry *rte;
798  List *perminfos = NIL;
799 
800  estate = CreateExecutorState();
801 
802  rte = makeNode(RangeTblEntry);
803  rte->rtekind = RTE_RELATION;
804  rte->relid = RelationGetRelid(rel);
805  rte->relkind = rel->rd_rel->relkind;
807 
808  addRTEPermissionInfo(&perminfos, rte);
809 
810  ExecInitRangeTable(estate, list_make1(rte), perminfos);
811 
812  estate->es_output_cid = GetCurrentCommandId(false);
813 
814  return estate;
815 }
816 
817 /*
818  * Evaluates row filter.
819  *
820  * If the row filter evaluates to NULL, it is taken as false i.e. the change
821  * isn't replicated.
822  */
823 static bool
825 {
826  Datum ret;
827  bool isnull;
828 
829  Assert(state != NULL);
830 
831  ret = ExecEvalExprSwitchContext(state, econtext, &isnull);
832 
833  elog(DEBUG3, "row filter evaluates to %s (isnull: %s)",
834  isnull ? "false" : DatumGetBool(ret) ? "true" : "false",
835  isnull ? "true" : "false");
836 
837  if (isnull)
838  return false;
839 
840  return DatumGetBool(ret);
841 }
842 
843 /*
844  * Make sure the per-entry memory context exists.
845  */
846 static void
848 {
849  Relation relation;
850 
851  /* The context may already exist, in which case bail out. */
852  if (entry->entry_cxt)
853  return;
854 
855  relation = RelationIdGetRelation(entry->publish_as_relid);
856 
857  entry->entry_cxt = AllocSetContextCreate(data->cachectx,
858  "entry private context",
860 
862  RelationGetRelationName(relation));
863 }
864 
865 /*
866  * Initialize the row filter.
867  */
868 static void
870  RelationSyncEntry *entry)
871 {
872  ListCell *lc;
873  List *rfnodes[] = {NIL, NIL, NIL}; /* One per pubaction */
874  bool no_filter[] = {false, false, false}; /* One per pubaction */
875  MemoryContext oldctx;
876  int idx;
877  bool has_filter = true;
878  Oid schemaid = get_rel_namespace(entry->publish_as_relid);
879 
880  /*
881  * Find if there are any row filters for this relation. If there are, then
882  * prepare the necessary ExprState and cache it in entry->exprstate. To
883  * build an expression state, we need to ensure the following:
884  *
885  * All the given publication-table mappings must be checked.
886  *
887  * Multiple publications might have multiple row filters for this
888  * relation. Since row filter usage depends on the DML operation, there
889  * are multiple lists (one for each operation) to which row filters will
890  * be appended.
891  *
892  * FOR ALL TABLES and FOR TABLES IN SCHEMA implies "don't use row filter
893  * expression" so it takes precedence.
894  */
895  foreach(lc, publications)
896  {
897  Publication *pub = lfirst(lc);
898  HeapTuple rftuple = NULL;
899  Datum rfdatum = 0;
900  bool pub_no_filter = true;
901 
902  /*
903  * If the publication is FOR ALL TABLES, or the publication includes a
904  * FOR TABLES IN SCHEMA where the table belongs to the referred
905  * schema, then it is treated the same as if there are no row filters
906  * (even if other publications have a row filter).
907  */
908  if (!pub->alltables &&
909  !SearchSysCacheExists2(PUBLICATIONNAMESPACEMAP,
910  ObjectIdGetDatum(schemaid),
911  ObjectIdGetDatum(pub->oid)))
912  {
913  /*
914  * Check for the presence of a row filter in this publication.
915  */
916  rftuple = SearchSysCache2(PUBLICATIONRELMAP,
918  ObjectIdGetDatum(pub->oid));
919 
920  if (HeapTupleIsValid(rftuple))
921  {
922  /* Null indicates no filter. */
923  rfdatum = SysCacheGetAttr(PUBLICATIONRELMAP, rftuple,
924  Anum_pg_publication_rel_prqual,
925  &pub_no_filter);
926  }
927  }
928 
929  if (pub_no_filter)
930  {
931  if (rftuple)
932  ReleaseSysCache(rftuple);
933 
934  no_filter[PUBACTION_INSERT] |= pub->pubactions.pubinsert;
935  no_filter[PUBACTION_UPDATE] |= pub->pubactions.pubupdate;
936  no_filter[PUBACTION_DELETE] |= pub->pubactions.pubdelete;
937 
938  /*
939  * Quick exit if all the DML actions are publicized via this
940  * publication.
941  */
942  if (no_filter[PUBACTION_INSERT] &&
943  no_filter[PUBACTION_UPDATE] &&
944  no_filter[PUBACTION_DELETE])
945  {
946  has_filter = false;
947  break;
948  }
949 
950  /* No additional work for this publication. Next one. */
951  continue;
952  }
953 
954  /* Form the per pubaction row filter lists. */
955  if (pub->pubactions.pubinsert && !no_filter[PUBACTION_INSERT])
956  rfnodes[PUBACTION_INSERT] = lappend(rfnodes[PUBACTION_INSERT],
957  TextDatumGetCString(rfdatum));
958  if (pub->pubactions.pubupdate && !no_filter[PUBACTION_UPDATE])
959  rfnodes[PUBACTION_UPDATE] = lappend(rfnodes[PUBACTION_UPDATE],
960  TextDatumGetCString(rfdatum));
961  if (pub->pubactions.pubdelete && !no_filter[PUBACTION_DELETE])
962  rfnodes[PUBACTION_DELETE] = lappend(rfnodes[PUBACTION_DELETE],
963  TextDatumGetCString(rfdatum));
964 
965  ReleaseSysCache(rftuple);
966  } /* loop all subscribed publications */
967 
968  /* Clean the row filter */
969  for (idx = 0; idx < NUM_ROWFILTER_PUBACTIONS; idx++)
970  {
971  if (no_filter[idx])
972  {
973  list_free_deep(rfnodes[idx]);
974  rfnodes[idx] = NIL;
975  }
976  }
977 
978  if (has_filter)
979  {
981 
983 
984  /*
985  * Now all the filters for all pubactions are known. Combine them when
986  * their pubactions are the same.
987  */
988  oldctx = MemoryContextSwitchTo(entry->entry_cxt);
989  entry->estate = create_estate_for_relation(relation);
990  for (idx = 0; idx < NUM_ROWFILTER_PUBACTIONS; idx++)
991  {
992  List *filters = NIL;
993  Expr *rfnode;
994 
995  if (rfnodes[idx] == NIL)
996  continue;
997 
998  foreach(lc, rfnodes[idx])
999  filters = lappend(filters, stringToNode((char *) lfirst(lc)));
1000 
1001  /* combine the row filter and cache the ExprState */
1002  rfnode = make_orclause(filters);
1003  entry->exprstate[idx] = ExecPrepareExpr(rfnode, entry->estate);
1004  } /* for each pubaction */
1005  MemoryContextSwitchTo(oldctx);
1006 
1007  RelationClose(relation);
1008  }
1009 }
1010 
1011 /*
1012  * Initialize the column list.
1013  */
1014 static void
1016  RelationSyncEntry *entry)
1017 {
1018  ListCell *lc;
1019  bool first = true;
1020  Relation relation = RelationIdGetRelation(entry->publish_as_relid);
1021 
1022  /*
1023  * Find if there are any column lists for this relation. If there are,
1024  * build a bitmap using the column lists.
1025  *
1026  * Multiple publications might have multiple column lists for this
1027  * relation.
1028  *
1029  * Note that we don't support the case where the column list is different
1030  * for the same table when combining publications. See comments atop
1031  * fetch_table_list. But one can later change the publication so we still
1032  * need to check all the given publication-table mappings and report an
1033  * error if any publications have a different column list.
1034  *
1035  * FOR ALL TABLES and FOR TABLES IN SCHEMA imply "don't use column list".
1036  */
1037  foreach(lc, publications)
1038  {
1039  Publication *pub = lfirst(lc);
1040  HeapTuple cftuple = NULL;
1041  Datum cfdatum = 0;
1042  Bitmapset *cols = NULL;
1043 
1044  /*
1045  * If the publication is FOR ALL TABLES then it is treated the same as
1046  * if there are no column lists (even if other publications have a
1047  * list).
1048  */
1049  if (!pub->alltables)
1050  {
1051  bool pub_no_list = true;
1052 
1053  /*
1054  * Check for the presence of a column list in this publication.
1055  *
1056  * Note: If we find no pg_publication_rel row, it's a publication
1057  * defined for a whole schema, so it can't have a column list,
1058  * just like a FOR ALL TABLES publication.
1059  */
1060  cftuple = SearchSysCache2(PUBLICATIONRELMAP,
1062  ObjectIdGetDatum(pub->oid));
1063 
1064  if (HeapTupleIsValid(cftuple))
1065  {
1066  /* Lookup the column list attribute. */
1067  cfdatum = SysCacheGetAttr(PUBLICATIONRELMAP, cftuple,
1068  Anum_pg_publication_rel_prattrs,
1069  &pub_no_list);
1070 
1071  /* Build the column list bitmap in the per-entry context. */
1072  if (!pub_no_list) /* when not null */
1073  {
1074  int i;
1075  int nliveatts = 0;
1076  TupleDesc desc = RelationGetDescr(relation);
1077 
1079 
1080  cols = pub_collist_to_bitmapset(cols, cfdatum,
1081  entry->entry_cxt);
1082 
1083  /* Get the number of live attributes. */
1084  for (i = 0; i < desc->natts; i++)
1085  {
1086  Form_pg_attribute att = TupleDescAttr(desc, i);
1087 
1088  if (att->attisdropped || att->attgenerated)
1089  continue;
1090 
1091  nliveatts++;
1092  }
1093 
1094  /*
1095  * If column list includes all the columns of the table,
1096  * set it to NULL.
1097  */
1098  if (bms_num_members(cols) == nliveatts)
1099  {
1100  bms_free(cols);
1101  cols = NULL;
1102  }
1103  }
1104 
1105  ReleaseSysCache(cftuple);
1106  }
1107  }
1108 
1109  if (first)
1110  {
1111  entry->columns = cols;
1112  first = false;
1113  }
1114  else if (!bms_equal(entry->columns, cols))
1115  ereport(ERROR,
1116  errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1117  errmsg("cannot use different column lists for table \"%s.%s\" in different publications",
1119  RelationGetRelationName(relation)));
1120  } /* loop all subscribed publications */
1121 
1122  RelationClose(relation);
1123 }
1124 
1125 /*
1126  * Initialize the slot for storing new and old tuples, and build the map that
1127  * will be used to convert the relation's tuples into the ancestor's format.
1128  */
1129 static void
1131  RelationSyncEntry *entry)
1132 {
1133  MemoryContext oldctx;
1134  TupleDesc oldtupdesc;
1135  TupleDesc newtupdesc;
1136 
1137  oldctx = MemoryContextSwitchTo(data->cachectx);
1138 
1139  /*
1140  * Create tuple table slots. Create a copy of the TupleDesc as it needs to
1141  * live as long as the cache remains.
1142  */
1143  oldtupdesc = CreateTupleDescCopyConstr(RelationGetDescr(relation));
1144  newtupdesc = CreateTupleDescCopyConstr(RelationGetDescr(relation));
1145 
1146  entry->old_slot = MakeSingleTupleTableSlot(oldtupdesc, &TTSOpsHeapTuple);
1147  entry->new_slot = MakeSingleTupleTableSlot(newtupdesc, &TTSOpsHeapTuple);
1148 
1149  MemoryContextSwitchTo(oldctx);
1150 
1151  /*
1152  * Cache the map that will be used to convert the relation's tuples into
1153  * the ancestor's format, if needed.
1154  */
1155  if (entry->publish_as_relid != RelationGetRelid(relation))
1156  {
1157  Relation ancestor = RelationIdGetRelation(entry->publish_as_relid);
1158  TupleDesc indesc = RelationGetDescr(relation);
1159  TupleDesc outdesc = RelationGetDescr(ancestor);
1160 
1161  /* Map must live as long as the session does. */
1163 
1164  entry->attrmap = build_attrmap_by_name_if_req(indesc, outdesc, false);
1165 
1166  MemoryContextSwitchTo(oldctx);
1167  RelationClose(ancestor);
1168  }
1169 }
1170 
1171 /*
1172  * Change is checked against the row filter if any.
1173  *
1174  * Returns true if the change is to be replicated, else false.
1175  *
1176  * For inserts, evaluate the row filter for new tuple.
1177  * For deletes, evaluate the row filter for old tuple.
1178  * For updates, evaluate the row filter for old and new tuple.
1179  *
1180  * For updates, if both evaluations are true, we allow sending the UPDATE and
1181  * if both the evaluations are false, it doesn't replicate the UPDATE. Now, if
1182  * only one of the tuples matches the row filter expression, we transform
1183  * UPDATE to DELETE or INSERT to avoid any data inconsistency based on the
1184  * following rules:
1185  *
1186  * Case 1: old-row (no match) new-row (no match) -> (drop change)
1187  * Case 2: old-row (no match) new row (match) -> INSERT
1188  * Case 3: old-row (match) new-row (no match) -> DELETE
1189  * Case 4: old-row (match) new row (match) -> UPDATE
1190  *
1191  * The new action is updated in the action parameter.
1192  *
1193  * The new slot could be updated when transforming the UPDATE into INSERT,
1194  * because the original new tuple might not have column values from the replica
1195  * identity.
1196  *
1197  * Examples:
1198  * Let's say the old tuple satisfies the row filter but the new tuple doesn't.
1199  * Since the old tuple satisfies, the initial table synchronization copied this
1200  * row (or another method was used to guarantee that there is data
1201  * consistency). However, after the UPDATE the new tuple doesn't satisfy the
1202  * row filter, so from a data consistency perspective, that row should be
1203  * removed on the subscriber. The UPDATE should be transformed into a DELETE
1204  * statement and be sent to the subscriber. Keeping this row on the subscriber
1205  * is undesirable because it doesn't reflect what was defined in the row filter
1206  * expression on the publisher. This row on the subscriber would likely not be
1207  * modified by replication again. If someone inserted a new row with the same
1208  * old identifier, replication could stop due to a constraint violation.
1209  *
1210  * Let's say the old tuple doesn't match the row filter but the new tuple does.
1211  * Since the old tuple doesn't satisfy, the initial table synchronization
1212  * probably didn't copy this row. However, after the UPDATE the new tuple does
1213  * satisfy the row filter, so from a data consistency perspective, that row
1214  * should be inserted on the subscriber. Otherwise, subsequent UPDATE or DELETE
1215  * statements have no effect (it matches no row -- see
1216  * apply_handle_update_internal()). So, the UPDATE should be transformed into a
1217  * INSERT statement and be sent to the subscriber. However, this might surprise
1218  * someone who expects the data set to satisfy the row filter expression on the
1219  * provider.
1220  */
1221 static bool
1223  TupleTableSlot **new_slot_ptr, RelationSyncEntry *entry,
1225 {
1226  TupleDesc desc;
1227  int i;
1228  bool old_matched,
1229  new_matched,
1230  result;
1231  TupleTableSlot *tmp_new_slot;
1232  TupleTableSlot *new_slot = *new_slot_ptr;
1233  ExprContext *ecxt;
1234  ExprState *filter_exprstate;
1235 
1236  /*
1237  * We need this map to avoid relying on ReorderBufferChangeType enums
1238  * having specific values.
1239  */
1240  static const int map_changetype_pubaction[] = {
1244  };
1245 
1249 
1250  Assert(new_slot || old_slot);
1251 
1252  /* Get the corresponding row filter */
1253  filter_exprstate = entry->exprstate[map_changetype_pubaction[*action]];
1254 
1255  /* Bail out if there is no row filter */
1256  if (!filter_exprstate)
1257  return true;
1258 
1259  elog(DEBUG3, "table \"%s.%s\" has row filter",
1261  RelationGetRelationName(relation));
1262 
1264 
1265  ecxt = GetPerTupleExprContext(entry->estate);
1266 
1267  /*
1268  * For the following occasions where there is only one tuple, we can
1269  * evaluate the row filter for that tuple and return.
1270  *
1271  * For inserts, we only have the new tuple.
1272  *
1273  * For updates, we can have only a new tuple when none of the replica
1274  * identity columns changed and none of those columns have external data
1275  * but we still need to evaluate the row filter for the new tuple as the
1276  * existing values of those columns might not match the filter. Also,
1277  * users can use constant expressions in the row filter, so we anyway need
1278  * to evaluate it for the new tuple.
1279  *
1280  * For deletes, we only have the old tuple.
1281  */
1282  if (!new_slot || !old_slot)
1283  {
1284  ecxt->ecxt_scantuple = new_slot ? new_slot : old_slot;
1285  result = pgoutput_row_filter_exec_expr(filter_exprstate, ecxt);
1286 
1287  return result;
1288  }
1289 
1290  /*
1291  * Both the old and new tuples must be valid only for updates and need to
1292  * be checked against the row filter.
1293  */
1294  Assert(map_changetype_pubaction[*action] == PUBACTION_UPDATE);
1295 
1296  slot_getallattrs(new_slot);
1297  slot_getallattrs(old_slot);
1298 
1299  tmp_new_slot = NULL;
1300  desc = RelationGetDescr(relation);
1301 
1302  /*
1303  * The new tuple might not have all the replica identity columns, in which
1304  * case it needs to be copied over from the old tuple.
1305  */
1306  for (i = 0; i < desc->natts; i++)
1307  {
1308  Form_pg_attribute att = TupleDescAttr(desc, i);
1309 
1310  /*
1311  * if the column in the new tuple or old tuple is null, nothing to do
1312  */
1313  if (new_slot->tts_isnull[i] || old_slot->tts_isnull[i])
1314  continue;
1315 
1316  /*
1317  * Unchanged toasted replica identity columns are only logged in the
1318  * old tuple. Copy this over to the new tuple. The changed (or WAL
1319  * Logged) toast values are always assembled in memory and set as
1320  * VARTAG_INDIRECT. See ReorderBufferToastReplace.
1321  */
1322  if (att->attlen == -1 &&
1323  VARATT_IS_EXTERNAL_ONDISK(new_slot->tts_values[i]) &&
1324  !VARATT_IS_EXTERNAL_ONDISK(old_slot->tts_values[i]))
1325  {
1326  if (!tmp_new_slot)
1327  {
1328  tmp_new_slot = MakeSingleTupleTableSlot(desc, &TTSOpsVirtual);
1329  ExecClearTuple(tmp_new_slot);
1330 
1331  memcpy(tmp_new_slot->tts_values, new_slot->tts_values,
1332  desc->natts * sizeof(Datum));
1333  memcpy(tmp_new_slot->tts_isnull, new_slot->tts_isnull,
1334  desc->natts * sizeof(bool));
1335  }
1336 
1337  tmp_new_slot->tts_values[i] = old_slot->tts_values[i];
1338  tmp_new_slot->tts_isnull[i] = old_slot->tts_isnull[i];
1339  }
1340  }
1341 
1342  ecxt->ecxt_scantuple = old_slot;
1343  old_matched = pgoutput_row_filter_exec_expr(filter_exprstate, ecxt);
1344 
1345  if (tmp_new_slot)
1346  {
1347  ExecStoreVirtualTuple(tmp_new_slot);
1348  ecxt->ecxt_scantuple = tmp_new_slot;
1349  }
1350  else
1351  ecxt->ecxt_scantuple = new_slot;
1352 
1353  new_matched = pgoutput_row_filter_exec_expr(filter_exprstate, ecxt);
1354 
1355  /*
1356  * Case 1: if both tuples don't match the row filter, bailout. Send
1357  * nothing.
1358  */
1359  if (!old_matched && !new_matched)
1360  return false;
1361 
1362  /*
1363  * Case 2: if the old tuple doesn't satisfy the row filter but the new
1364  * tuple does, transform the UPDATE into INSERT.
1365  *
1366  * Use the newly transformed tuple that must contain the column values for
1367  * all the replica identity columns. This is required to ensure that the
1368  * while inserting the tuple in the downstream node, we have all the
1369  * required column values.
1370  */
1371  if (!old_matched && new_matched)
1372  {
1374 
1375  if (tmp_new_slot)
1376  *new_slot_ptr = tmp_new_slot;
1377  }
1378 
1379  /*
1380  * Case 3: if the old tuple satisfies the row filter but the new tuple
1381  * doesn't, transform the UPDATE into DELETE.
1382  *
1383  * This transformation does not require another tuple. The Old tuple will
1384  * be used for DELETE.
1385  */
1386  else if (old_matched && !new_matched)
1388 
1389  /*
1390  * Case 4: if both tuples match the row filter, transformation isn't
1391  * required. (*action is default UPDATE).
1392  */
1393 
1394  return true;
1395 }
1396 
1397 /*
1398  * Sends the decoded DML over wire.
1399  *
1400  * This is called both in streaming and non-streaming modes.
1401  */
1402 static void
1404  Relation relation, ReorderBufferChange *change)
1405 {
1408  MemoryContext old;
1409  RelationSyncEntry *relentry;
1411  Relation ancestor = NULL;
1412  Relation targetrel = relation;
1414  TupleTableSlot *old_slot = NULL;
1415  TupleTableSlot *new_slot = NULL;
1416 
1417  if (!is_publishable_relation(relation))
1418  return;
1419 
1420  /*
1421  * Remember the xid for the change in streaming mode. We need to send xid
1422  * with each change in the streaming mode so that subscriber can make
1423  * their association and on aborts, it can discard the corresponding
1424  * changes.
1425  */
1426  if (data->in_streaming)
1427  xid = change->txn->xid;
1428 
1429  relentry = get_rel_sync_entry(data, relation);
1430 
1431  /* First check the table filter */
1432  switch (action)
1433  {
1435  if (!relentry->pubactions.pubinsert)
1436  return;
1437  break;
1439  if (!relentry->pubactions.pubupdate)
1440  return;
1441  break;
1443  if (!relentry->pubactions.pubdelete)
1444  return;
1445 
1446  /*
1447  * This is only possible if deletes are allowed even when replica
1448  * identity is not defined for a table. Since the DELETE action
1449  * can't be published, we simply return.
1450  */
1451  if (!change->data.tp.oldtuple)
1452  {
1453  elog(DEBUG1, "didn't send DELETE change because of missing oldtuple");
1454  return;
1455  }
1456  break;
1457  default:
1458  Assert(false);
1459  }
1460 
1461  /* Avoid leaking memory by using and resetting our own context */
1462  old = MemoryContextSwitchTo(data->context);
1463 
1464  /* Switch relation if publishing via root. */
1465  if (relentry->publish_as_relid != RelationGetRelid(relation))
1466  {
1467  Assert(relation->rd_rel->relispartition);
1468  ancestor = RelationIdGetRelation(relentry->publish_as_relid);
1469  targetrel = ancestor;
1470  }
1471 
1472  if (change->data.tp.oldtuple)
1473  {
1474  old_slot = relentry->old_slot;
1475  ExecStoreHeapTuple(change->data.tp.oldtuple, old_slot, false);
1476 
1477  /* Convert tuple if needed. */
1478  if (relentry->attrmap)
1479  {
1481  &TTSOpsVirtual);
1482 
1483  old_slot = execute_attr_map_slot(relentry->attrmap, old_slot, slot);
1484  }
1485  }
1486 
1487  if (change->data.tp.newtuple)
1488  {
1489  new_slot = relentry->new_slot;
1490  ExecStoreHeapTuple(change->data.tp.newtuple, new_slot, false);
1491 
1492  /* Convert tuple if needed. */
1493  if (relentry->attrmap)
1494  {
1496  &TTSOpsVirtual);
1497 
1498  new_slot = execute_attr_map_slot(relentry->attrmap, new_slot, slot);
1499  }
1500  }
1501 
1502  /*
1503  * Check row filter.
1504  *
1505  * Updates could be transformed to inserts or deletes based on the results
1506  * of the row filter for old and new tuple.
1507  */
1508  if (!pgoutput_row_filter(targetrel, old_slot, &new_slot, relentry, &action))
1509  goto cleanup;
1510 
1511  /*
1512  * Send BEGIN if we haven't yet.
1513  *
1514  * We send the BEGIN message after ensuring that we will actually send the
1515  * change. This avoids sending a pair of BEGIN/COMMIT messages for empty
1516  * transactions.
1517  */
1518  if (txndata && !txndata->sent_begin_txn)
1519  pgoutput_send_begin(ctx, txn);
1520 
1521  /*
1522  * Schema should be sent using the original relation because it also sends
1523  * the ancestor's relation.
1524  */
1525  maybe_send_schema(ctx, change, relation, relentry);
1526 
1527  OutputPluginPrepareWrite(ctx, true);
1528 
1529  /* Send the data */
1530  switch (action)
1531  {
1533  logicalrep_write_insert(ctx->out, xid, targetrel, new_slot,
1534  data->binary, relentry->columns);
1535  break;
1537  logicalrep_write_update(ctx->out, xid, targetrel, old_slot,
1538  new_slot, data->binary, relentry->columns);
1539  break;
1541  logicalrep_write_delete(ctx->out, xid, targetrel, old_slot,
1542  data->binary, relentry->columns);
1543  break;
1544  default:
1545  Assert(false);
1546  }
1547 
1548  OutputPluginWrite(ctx, true);
1549 
1550 cleanup:
1551  if (RelationIsValid(ancestor))
1552  {
1553  RelationClose(ancestor);
1554  ancestor = NULL;
1555  }
1556 
1557  MemoryContextSwitchTo(old);
1558  MemoryContextReset(data->context);
1559 }
1560 
1561 static void
1563  int nrelations, Relation relations[], ReorderBufferChange *change)
1564 {
1567  MemoryContext old;
1568  RelationSyncEntry *relentry;
1569  int i;
1570  int nrelids;
1571  Oid *relids;
1573 
1574  /* Remember the xid for the change in streaming mode. See pgoutput_change. */
1575  if (data->in_streaming)
1576  xid = change->txn->xid;
1577 
1578  old = MemoryContextSwitchTo(data->context);
1579 
1580  relids = palloc0(nrelations * sizeof(Oid));
1581  nrelids = 0;
1582 
1583  for (i = 0; i < nrelations; i++)
1584  {
1585  Relation relation = relations[i];
1586  Oid relid = RelationGetRelid(relation);
1587 
1588  if (!is_publishable_relation(relation))
1589  continue;
1590 
1591  relentry = get_rel_sync_entry(data, relation);
1592 
1593  if (!relentry->pubactions.pubtruncate)
1594  continue;
1595 
1596  /*
1597  * Don't send partitions if the publication wants to send only the
1598  * root tables through it.
1599  */
1600  if (relation->rd_rel->relispartition &&
1601  relentry->publish_as_relid != relid)
1602  continue;
1603 
1604  relids[nrelids++] = relid;
1605 
1606  /* Send BEGIN if we haven't yet */
1607  if (txndata && !txndata->sent_begin_txn)
1608  pgoutput_send_begin(ctx, txn);
1609 
1610  maybe_send_schema(ctx, change, relation, relentry);
1611  }
1612 
1613  if (nrelids > 0)
1614  {
1615  OutputPluginPrepareWrite(ctx, true);
1617  xid,
1618  nrelids,
1619  relids,
1620  change->data.truncate.cascade,
1621  change->data.truncate.restart_seqs);
1622  OutputPluginWrite(ctx, true);
1623  }
1624 
1625  MemoryContextSwitchTo(old);
1626  MemoryContextReset(data->context);
1627 }
1628 
1629 static void
1631  XLogRecPtr message_lsn, bool transactional, const char *prefix, Size sz,
1632  const char *message)
1633 {
1636 
1637  if (!data->messages)
1638  return;
1639 
1640  /*
1641  * Remember the xid for the message in streaming mode. See
1642  * pgoutput_change.
1643  */
1644  if (data->in_streaming)
1645  xid = txn->xid;
1646 
1647  /*
1648  * Output BEGIN if we haven't yet. Avoid for non-transactional messages.
1649  */
1650  if (transactional)
1651  {
1653 
1654  /* Send BEGIN if we haven't yet */
1655  if (txndata && !txndata->sent_begin_txn)
1656  pgoutput_send_begin(ctx, txn);
1657  }
1658 
1659  OutputPluginPrepareWrite(ctx, true);
1661  xid,
1662  message_lsn,
1663  transactional,
1664  prefix,
1665  sz,
1666  message);
1667  OutputPluginWrite(ctx, true);
1668 }
1669 
1670 /*
1671  * Return true if the data is associated with an origin and the user has
1672  * requested the changes that don't have an origin, false otherwise.
1673  */
1674 static bool
1676  RepOriginId origin_id)
1677 {
1679 
1680  if (data->publish_no_origin && origin_id != InvalidRepOriginId)
1681  return true;
1682 
1683  return false;
1684 }
1685 
1686 /*
1687  * Shutdown the output plugin.
1688  *
1689  * Note, we don't need to clean the data->context and data->cachectx as
1690  * they are child contexts of the ctx->context so they will be cleaned up by
1691  * logical decoding machinery.
1692  */
1693 static void
1695 {
1696  if (RelationSyncCache)
1697  {
1699  RelationSyncCache = NULL;
1700  }
1701 }
1702 
1703 /*
1704  * Load publications from the list of publication names.
1705  */
1706 static List *
1708 {
1709  List *result = NIL;
1710  ListCell *lc;
1711 
1712  foreach(lc, pubnames)
1713  {
1714  char *pubname = (char *) lfirst(lc);
1715  Publication *pub = GetPublicationByName(pubname, false);
1716 
1717  result = lappend(result, pub);
1718  }
1719 
1720  return result;
1721 }
1722 
1723 /*
1724  * Publication syscache invalidation callback.
1725  *
1726  * Called for invalidations on pg_publication.
1727  */
1728 static void
1730 {
1731  publications_valid = false;
1732 
1733  /*
1734  * Also invalidate per-relation cache so that next time the filtering info
1735  * is checked it will be updated with the new publication settings.
1736  */
1737  rel_sync_cache_publication_cb(arg, cacheid, hashvalue);
1738 }
1739 
1740 /*
1741  * START STREAM callback
1742  */
1743 static void
1745  ReorderBufferTXN *txn)
1746 {
1748  bool send_replication_origin = txn->origin_id != InvalidRepOriginId;
1749 
1750  /* we can't nest streaming of transactions */
1751  Assert(!data->in_streaming);
1752 
1753  /*
1754  * If we already sent the first stream for this transaction then don't
1755  * send the origin id in the subsequent streams.
1756  */
1757  if (rbtxn_is_streamed(txn))
1758  send_replication_origin = false;
1759 
1760  OutputPluginPrepareWrite(ctx, !send_replication_origin);
1762 
1764  send_replication_origin);
1765 
1766  OutputPluginWrite(ctx, true);
1767 
1768  /* we're streaming a chunk of transaction now */
1769  data->in_streaming = true;
1770 }
1771 
1772 /*
1773  * STOP STREAM callback
1774  */
1775 static void
1777  ReorderBufferTXN *txn)
1778 {
1780 
1781  /* we should be streaming a transaction */
1782  Assert(data->in_streaming);
1783 
1784  OutputPluginPrepareWrite(ctx, true);
1786  OutputPluginWrite(ctx, true);
1787 
1788  /* we've stopped streaming a transaction */
1789  data->in_streaming = false;
1790 }
1791 
1792 /*
1793  * Notify downstream to discard the streamed transaction (along with all
1794  * it's subtransactions, if it's a toplevel transaction).
1795  */
1796 static void
1798  ReorderBufferTXN *txn,
1799  XLogRecPtr abort_lsn)
1800 {
1801  ReorderBufferTXN *toptxn;
1803  bool write_abort_info = (data->streaming == LOGICALREP_STREAM_PARALLEL);
1804 
1805  /*
1806  * The abort should happen outside streaming block, even for streamed
1807  * transactions. The transaction has to be marked as streamed, though.
1808  */
1809  Assert(!data->in_streaming);
1810 
1811  /* determine the toplevel transaction */
1812  toptxn = rbtxn_get_toptxn(txn);
1813 
1814  Assert(rbtxn_is_streamed(toptxn));
1815 
1816  OutputPluginPrepareWrite(ctx, true);
1817  logicalrep_write_stream_abort(ctx->out, toptxn->xid, txn->xid, abort_lsn,
1818  txn->xact_time.abort_time, write_abort_info);
1819 
1820  OutputPluginWrite(ctx, true);
1821 
1822  cleanup_rel_sync_cache(toptxn->xid, false);
1823 }
1824 
1825 /*
1826  * Notify downstream to apply the streamed transaction (along with all
1827  * it's subtransactions).
1828  */
1829 static void
1831  ReorderBufferTXN *txn,
1832  XLogRecPtr commit_lsn)
1833 {
1835 
1836  /*
1837  * The commit should happen outside streaming block, even for streamed
1838  * transactions. The transaction has to be marked as streamed, though.
1839  */
1840  Assert(!data->in_streaming);
1841  Assert(rbtxn_is_streamed(txn));
1842 
1843  OutputPluginUpdateProgress(ctx, false);
1844 
1845  OutputPluginPrepareWrite(ctx, true);
1846  logicalrep_write_stream_commit(ctx->out, txn, commit_lsn);
1847  OutputPluginWrite(ctx, true);
1848 
1849  cleanup_rel_sync_cache(txn->xid, true);
1850 }
1851 
1852 /*
1853  * PREPARE callback (for streaming two-phase commit).
1854  *
1855  * Notify the downstream to prepare the transaction.
1856  */
1857 static void
1859  ReorderBufferTXN *txn,
1860  XLogRecPtr prepare_lsn)
1861 {
1862  Assert(rbtxn_is_streamed(txn));
1863 
1864  OutputPluginUpdateProgress(ctx, false);
1865  OutputPluginPrepareWrite(ctx, true);
1866  logicalrep_write_stream_prepare(ctx->out, txn, prepare_lsn);
1867  OutputPluginWrite(ctx, true);
1868 }
1869 
1870 /*
1871  * Initialize the relation schema sync cache for a decoding session.
1872  *
1873  * The hash table is destroyed at the end of a decoding session. While
1874  * relcache invalidations still exist and will still be invoked, they
1875  * will just see the null hash table global and take no action.
1876  */
1877 static void
1879 {
1880  HASHCTL ctl;
1881  static bool relation_callbacks_registered = false;
1882 
1883  /* Nothing to do if hash table already exists */
1884  if (RelationSyncCache != NULL)
1885  return;
1886 
1887  /* Make a new hash table for the cache */
1888  ctl.keysize = sizeof(Oid);
1889  ctl.entrysize = sizeof(RelationSyncEntry);
1890  ctl.hcxt = cachectx;
1891 
1892  RelationSyncCache = hash_create("logical replication output relation cache",
1893  128, &ctl,
1895 
1896  Assert(RelationSyncCache != NULL);
1897 
1898  /* No more to do if we already registered callbacks */
1899  if (relation_callbacks_registered)
1900  return;
1901 
1902  /* We must update the cache entry for a relation after a relcache flush */
1904 
1905  /*
1906  * Flush all cache entries after a pg_namespace change, in case it was a
1907  * schema rename affecting a relation being replicated.
1908  */
1909  CacheRegisterSyscacheCallback(NAMESPACEOID,
1911  (Datum) 0);
1912 
1913  /*
1914  * Flush all cache entries after any publication changes. (We need no
1915  * callback entry for pg_publication, because publication_invalidation_cb
1916  * will take care of it.)
1917  */
1918  CacheRegisterSyscacheCallback(PUBLICATIONRELMAP,
1920  (Datum) 0);
1921  CacheRegisterSyscacheCallback(PUBLICATIONNAMESPACEMAP,
1923  (Datum) 0);
1924 
1925  relation_callbacks_registered = true;
1926 }
1927 
1928 /*
1929  * We expect relatively small number of streamed transactions.
1930  */
1931 static bool
1933 {
1934  return list_member_xid(entry->streamed_txns, xid);
1935 }
1936 
1937 /*
1938  * Add the xid in the rel sync entry for which we have already sent the schema
1939  * of the relation.
1940  */
1941 static void
1943 {
1944  MemoryContext oldctx;
1945 
1947 
1948  entry->streamed_txns = lappend_xid(entry->streamed_txns, xid);
1949 
1950  MemoryContextSwitchTo(oldctx);
1951 }
1952 
1953 /*
1954  * Find or create entry in the relation schema cache.
1955  *
1956  * This looks up publications that the given relation is directly or
1957  * indirectly part of (the latter if it's really the relation's ancestor that
1958  * is part of a publication) and fills up the found entry with the information
1959  * about which operations to publish and whether to use an ancestor's schema
1960  * when publishing.
1961  */
1962 static RelationSyncEntry *
1964 {
1965  RelationSyncEntry *entry;
1966  bool found;
1967  MemoryContext oldctx;
1968  Oid relid = RelationGetRelid(relation);
1969 
1970  Assert(RelationSyncCache != NULL);
1971 
1972  /* Find cached relation info, creating if not found */
1974  &relid,
1975  HASH_ENTER, &found);
1976  Assert(entry != NULL);
1977 
1978  /* initialize entry, if it's new */
1979  if (!found)
1980  {
1981  entry->replicate_valid = false;
1982  entry->schema_sent = false;
1983  entry->streamed_txns = NIL;
1984  entry->pubactions.pubinsert = entry->pubactions.pubupdate =
1985  entry->pubactions.pubdelete = entry->pubactions.pubtruncate = false;
1986  entry->new_slot = NULL;
1987  entry->old_slot = NULL;
1988  memset(entry->exprstate, 0, sizeof(entry->exprstate));
1989  entry->entry_cxt = NULL;
1990  entry->publish_as_relid = InvalidOid;
1991  entry->columns = NULL;
1992  entry->attrmap = NULL;
1993  }
1994 
1995  /* Validate the entry */
1996  if (!entry->replicate_valid)
1997  {
1998  Oid schemaId = get_rel_namespace(relid);
1999  List *pubids = GetRelationPublications(relid);
2000 
2001  /*
2002  * We don't acquire a lock on the namespace system table as we build
2003  * the cache entry using a historic snapshot and all the later changes
2004  * are absorbed while decoding WAL.
2005  */
2006  List *schemaPubids = GetSchemaPublications(schemaId);
2007  ListCell *lc;
2008  Oid publish_as_relid = relid;
2009  int publish_ancestor_level = 0;
2010  bool am_partition = get_rel_relispartition(relid);
2011  char relkind = get_rel_relkind(relid);
2012  List *rel_publications = NIL;
2013 
2014  /* Reload publications if needed before use. */
2015  if (!publications_valid)
2016  {
2018  if (data->publications)
2019  {
2020  list_free_deep(data->publications);
2021  data->publications = NIL;
2022  }
2023  data->publications = LoadPublications(data->publication_names);
2024  MemoryContextSwitchTo(oldctx);
2025  publications_valid = true;
2026  }
2027 
2028  /*
2029  * Reset schema_sent status as the relation definition may have
2030  * changed. Also reset pubactions to empty in case rel was dropped
2031  * from a publication. Also free any objects that depended on the
2032  * earlier definition.
2033  */
2034  entry->schema_sent = false;
2035  list_free(entry->streamed_txns);
2036  entry->streamed_txns = NIL;
2037  bms_free(entry->columns);
2038  entry->columns = NULL;
2039  entry->pubactions.pubinsert = false;
2040  entry->pubactions.pubupdate = false;
2041  entry->pubactions.pubdelete = false;
2042  entry->pubactions.pubtruncate = false;
2043 
2044  /*
2045  * Tuple slots cleanups. (Will be rebuilt later if needed).
2046  */
2047  if (entry->old_slot)
2049  if (entry->new_slot)
2051 
2052  entry->old_slot = NULL;
2053  entry->new_slot = NULL;
2054 
2055  if (entry->attrmap)
2056  free_attrmap(entry->attrmap);
2057  entry->attrmap = NULL;
2058 
2059  /*
2060  * Row filter cache cleanups.
2061  */
2062  if (entry->entry_cxt)
2064 
2065  entry->entry_cxt = NULL;
2066  entry->estate = NULL;
2067  memset(entry->exprstate, 0, sizeof(entry->exprstate));
2068 
2069  /*
2070  * Build publication cache. We can't use one provided by relcache as
2071  * relcache considers all publications that the given relation is in,
2072  * but here we only need to consider ones that the subscriber
2073  * requested.
2074  */
2075  foreach(lc, data->publications)
2076  {
2077  Publication *pub = lfirst(lc);
2078  bool publish = false;
2079 
2080  /*
2081  * Under what relid should we publish changes in this publication?
2082  * We'll use the top-most relid across all publications. Also
2083  * track the ancestor level for this publication.
2084  */
2085  Oid pub_relid = relid;
2086  int ancestor_level = 0;
2087 
2088  /*
2089  * If this is a FOR ALL TABLES publication, pick the partition
2090  * root and set the ancestor level accordingly.
2091  */
2092  if (pub->alltables)
2093  {
2094  publish = true;
2095  if (pub->pubviaroot && am_partition)
2096  {
2097  List *ancestors = get_partition_ancestors(relid);
2098 
2099  pub_relid = llast_oid(ancestors);
2100  ancestor_level = list_length(ancestors);
2101  }
2102  }
2103 
2104  if (!publish)
2105  {
2106  bool ancestor_published = false;
2107 
2108  /*
2109  * For a partition, check if any of the ancestors are
2110  * published. If so, note down the topmost ancestor that is
2111  * published via this publication, which will be used as the
2112  * relation via which to publish the partition's changes.
2113  */
2114  if (am_partition)
2115  {
2116  Oid ancestor;
2117  int level;
2118  List *ancestors = get_partition_ancestors(relid);
2119 
2120  ancestor = GetTopMostAncestorInPublication(pub->oid,
2121  ancestors,
2122  &level);
2123 
2124  if (ancestor != InvalidOid)
2125  {
2126  ancestor_published = true;
2127  if (pub->pubviaroot)
2128  {
2129  pub_relid = ancestor;
2130  ancestor_level = level;
2131  }
2132  }
2133  }
2134 
2135  if (list_member_oid(pubids, pub->oid) ||
2136  list_member_oid(schemaPubids, pub->oid) ||
2137  ancestor_published)
2138  publish = true;
2139  }
2140 
2141  /*
2142  * If the relation is to be published, determine actions to
2143  * publish, and list of columns, if appropriate.
2144  *
2145  * Don't publish changes for partitioned tables, because
2146  * publishing those of its partitions suffices, unless partition
2147  * changes won't be published due to pubviaroot being set.
2148  */
2149  if (publish &&
2150  (relkind != RELKIND_PARTITIONED_TABLE || pub->pubviaroot))
2151  {
2152  entry->pubactions.pubinsert |= pub->pubactions.pubinsert;
2153  entry->pubactions.pubupdate |= pub->pubactions.pubupdate;
2154  entry->pubactions.pubdelete |= pub->pubactions.pubdelete;
2156 
2157  /*
2158  * We want to publish the changes as the top-most ancestor
2159  * across all publications. So we need to check if the already
2160  * calculated level is higher than the new one. If yes, we can
2161  * ignore the new value (as it's a child). Otherwise the new
2162  * value is an ancestor, so we keep it.
2163  */
2164  if (publish_ancestor_level > ancestor_level)
2165  continue;
2166 
2167  /*
2168  * If we found an ancestor higher up in the tree, discard the
2169  * list of publications through which we replicate it, and use
2170  * the new ancestor.
2171  */
2172  if (publish_ancestor_level < ancestor_level)
2173  {
2174  publish_as_relid = pub_relid;
2175  publish_ancestor_level = ancestor_level;
2176 
2177  /* reset the publication list for this relation */
2178  rel_publications = NIL;
2179  }
2180  else
2181  {
2182  /* Same ancestor level, has to be the same OID. */
2183  Assert(publish_as_relid == pub_relid);
2184  }
2185 
2186  /* Track publications for this ancestor. */
2187  rel_publications = lappend(rel_publications, pub);
2188  }
2189  }
2190 
2191  entry->publish_as_relid = publish_as_relid;
2192 
2193  /*
2194  * Initialize the tuple slot, map, and row filter. These are only used
2195  * when publishing inserts, updates, or deletes.
2196  */
2197  if (entry->pubactions.pubinsert || entry->pubactions.pubupdate ||
2198  entry->pubactions.pubdelete)
2199  {
2200  /* Initialize the tuple slot and map */
2201  init_tuple_slot(data, relation, entry);
2202 
2203  /* Initialize the row filter */
2204  pgoutput_row_filter_init(data, rel_publications, entry);
2205 
2206  /* Initialize the column list */
2207  pgoutput_column_list_init(data, rel_publications, entry);
2208  }
2209 
2210  list_free(pubids);
2211  list_free(schemaPubids);
2212  list_free(rel_publications);
2213 
2214  entry->replicate_valid = true;
2215  }
2216 
2217  return entry;
2218 }
2219 
2220 /*
2221  * Cleanup list of streamed transactions and update the schema_sent flag.
2222  *
2223  * When a streamed transaction commits or aborts, we need to remove the
2224  * toplevel XID from the schema cache. If the transaction aborted, the
2225  * subscriber will simply throw away the schema records we streamed, so
2226  * we don't need to do anything else.
2227  *
2228  * If the transaction is committed, the subscriber will update the relation
2229  * cache - so tweak the schema_sent flag accordingly.
2230  */
2231 static void
2233 {
2234  HASH_SEQ_STATUS hash_seq;
2235  RelationSyncEntry *entry;
2236 
2237  Assert(RelationSyncCache != NULL);
2238 
2239  hash_seq_init(&hash_seq, RelationSyncCache);
2240  while ((entry = hash_seq_search(&hash_seq)) != NULL)
2241  {
2242  /*
2243  * We can set the schema_sent flag for an entry that has committed xid
2244  * in the list as that ensures that the subscriber would have the
2245  * corresponding schema and we don't need to send it unless there is
2246  * any invalidation for that relation.
2247  */
2248  foreach_xid(streamed_txn, entry->streamed_txns)
2249  {
2250  if (xid == streamed_txn)
2251  {
2252  if (is_commit)
2253  entry->schema_sent = true;
2254 
2255  entry->streamed_txns =
2256  foreach_delete_current(entry->streamed_txns, streamed_txn);
2257  break;
2258  }
2259  }
2260  }
2261 }
2262 
2263 /*
2264  * Relcache invalidation callback
2265  */
2266 static void
2268 {
2269  RelationSyncEntry *entry;
2270 
2271  /*
2272  * We can get here if the plugin was used in SQL interface as the
2273  * RelationSyncCache is destroyed when the decoding finishes, but there is
2274  * no way to unregister the relcache invalidation callback.
2275  */
2276  if (RelationSyncCache == NULL)
2277  return;
2278 
2279  /*
2280  * Nobody keeps pointers to entries in this hash table around outside
2281  * logical decoding callback calls - but invalidation events can come in
2282  * *during* a callback if we do any syscache access in the callback.
2283  * Because of that we must mark the cache entry as invalid but not damage
2284  * any of its substructure here. The next get_rel_sync_entry() call will
2285  * rebuild it all.
2286  */
2287  if (OidIsValid(relid))
2288  {
2289  /*
2290  * Getting invalidations for relations that aren't in the table is
2291  * entirely normal. So we don't care if it's found or not.
2292  */
2293  entry = (RelationSyncEntry *) hash_search(RelationSyncCache, &relid,
2294  HASH_FIND, NULL);
2295  if (entry != NULL)
2296  entry->replicate_valid = false;
2297  }
2298  else
2299  {
2300  /* Whole cache must be flushed. */
2301  HASH_SEQ_STATUS status;
2302 
2303  hash_seq_init(&status, RelationSyncCache);
2304  while ((entry = (RelationSyncEntry *) hash_seq_search(&status)) != NULL)
2305  {
2306  entry->replicate_valid = false;
2307  }
2308  }
2309 }
2310 
2311 /*
2312  * Publication relation/schema map syscache invalidation callback
2313  *
2314  * Called for invalidations on pg_publication, pg_publication_rel,
2315  * pg_publication_namespace, and pg_namespace.
2316  */
2317 static void
2319 {
2320  HASH_SEQ_STATUS status;
2321  RelationSyncEntry *entry;
2322 
2323  /*
2324  * We can get here if the plugin was used in SQL interface as the
2325  * RelationSyncCache is destroyed when the decoding finishes, but there is
2326  * no way to unregister the invalidation callbacks.
2327  */
2328  if (RelationSyncCache == NULL)
2329  return;
2330 
2331  /*
2332  * We have no easy way to identify which cache entries this invalidation
2333  * event might have affected, so just mark them all invalid.
2334  */
2335  hash_seq_init(&status, RelationSyncCache);
2336  while ((entry = (RelationSyncEntry *) hash_seq_search(&status)) != NULL)
2337  {
2338  entry->replicate_valid = false;
2339  }
2340 }
2341 
2342 /* Send Replication origin */
2343 static void
2345  XLogRecPtr origin_lsn, bool send_origin)
2346 {
2347  if (send_origin)
2348  {
2349  char *origin;
2350 
2351  /*----------
2352  * XXX: which behaviour do we want here?
2353  *
2354  * Alternatives:
2355  * - don't send origin message if origin name not found
2356  * (that's what we do now)
2357  * - throw error - that will break replication, not good
2358  * - send some special "unknown" origin
2359  *----------
2360  */
2361  if (replorigin_by_oid(origin_id, true, &origin))
2362  {
2363  /* Message boundary */
2364  OutputPluginWrite(ctx, false);
2365  OutputPluginPrepareWrite(ctx, true);
2366 
2367  logicalrep_write_origin(ctx->out, origin, origin_lsn);
2368  }
2369  }
2370 }
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:259
void free_attrmap(AttrMap *map)
Definition: attmap.c:56
AttrMap * build_attrmap_by_name_if_req(TupleDesc indesc, TupleDesc outdesc, bool missing_ok)
Definition: attmap.c:263
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
int bms_num_members(const Bitmapset *a)
Definition: bitmapset.c:751
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
static void cleanup(void)
Definition: bootstrap.c:682
#define TextDatumGetCString(d)
Definition: builtins.h:98
unsigned int uint32
Definition: c.h:493
#define PG_UINT32_MAX
Definition: c.h:577
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:169
uint32 TransactionId
Definition: c.h:639
#define OidIsValid(objectId)
Definition: c.h:762
size_t Size
Definition: c.h:592
int64 TimestampTz
Definition: timestamp.h:39
bool defGetBoolean(DefElem *def)
Definition: define.c:107
char * defGetString(DefElem *def)
Definition: define.c:48
void hash_destroy(HTAB *hashp)
Definition: dynahash.c:865
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1395
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1385
int errcode(int sqlerrcode)
Definition: elog.c:859
int errmsg(const char *fmt,...)
Definition: elog.c:1072
#define DEBUG3
Definition: elog.h:28
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define ereport(elevel,...)
Definition: elog.h:149
ExprState * ExecPrepareExpr(Expr *node, EState *estate)
Definition: execExpr.c:732
TupleTableSlot * MakeTupleTableSlot(TupleDesc tupleDesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1111
const TupleTableSlotOps TTSOpsVirtual
Definition: execTuples.c:83
TupleTableSlot * ExecStoreVirtualTuple(TupleTableSlot *slot)
Definition: execTuples.c:1551
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1253
TupleTableSlot * ExecStoreHeapTuple(HeapTuple tuple, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1351
const TupleTableSlotOps TTSOpsHeapTuple
Definition: execTuples.c:84
TupleTableSlot * MakeSingleTupleTableSlot(TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1237
void ExecInitRangeTable(EState *estate, List *rangeTable, List *permInfos)
Definition: execUtils.c:728
EState * CreateExecutorState(void)
Definition: execUtils.c:88
#define ResetPerTupleExprContext(estate)
Definition: executor.h:559
#define GetPerTupleExprContext(estate)
Definition: executor.h:550
static Datum ExecEvalExprSwitchContext(ExprState *state, ExprContext *econtext, bool *isNull)
Definition: executor.h:348
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
void CacheRegisterRelcacheCallback(RelcacheCallbackFunction func, Datum arg)
Definition: inval.c:1558
void CacheRegisterSyscacheCallback(int cacheid, SyscacheCallbackFunction func, Datum arg)
Definition: inval.c:1516
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
Assert(fmt[strlen(fmt) - 1] !='\n')
List * lappend_xid(List *list, TransactionId datum)
Definition: list.c:393
bool list_member_xid(const List *list, TransactionId datum)
Definition: list.c:742
List * lappend(List *list, void *datum)
Definition: list.c:339
void list_free(List *list)
Definition: list.c:1546
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:722
void list_free_deep(List *list)
Definition: list.c:1560
#define AccessShareLock
Definition: lockdefs.h:36
void OutputPluginWrite(struct LogicalDecodingContext *ctx, bool last_write)
Definition: logical.c:714
void OutputPluginUpdateProgress(struct LogicalDecodingContext *ctx, bool skipped_xact)
Definition: logical.c:727
void OutputPluginPrepareWrite(struct LogicalDecodingContext *ctx, bool last_write)
Definition: logical.c:701
#define LOGICALREP_PROTO_STREAM_PARALLEL_VERSION_NUM
Definition: logicalproto.h:44
#define LOGICALREP_PROTO_MIN_VERSION_NUM
Definition: logicalproto.h:40
#define LOGICALREP_PROTO_STREAM_VERSION_NUM
Definition: logicalproto.h:42
#define LOGICALREP_PROTO_TWOPHASE_VERSION_NUM
Definition: logicalproto.h:43
#define LOGICALREP_PROTO_MAX_VERSION_NUM
Definition: logicalproto.h:45
bool get_rel_relispartition(Oid relid)
Definition: lsyscache.c:2005
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3322
char get_rel_relkind(Oid relid)
Definition: lsyscache.c:1981
Oid get_rel_namespace(Oid relid)
Definition: lsyscache.c:1930
Expr * make_orclause(List *orclauses)
Definition: makefuncs.c:654
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:371
void pfree(void *pointer)
Definition: mcxt.c:1508
void * palloc0(Size size)
Definition: mcxt.c:1334
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1202
MemoryContext CacheMemoryContext
Definition: mcxt.c:140
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:442
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:153
#define ALLOCSET_SMALL_SIZES
Definition: memutils.h:163
#define MemoryContextCopyAndSetIdentifier(cxt, id)
Definition: memutils.h:101
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define makeNode(_type_)
Definition: nodes.h:155
bool replorigin_by_oid(RepOriginId roident, bool missing_ok, char **roname)
Definition: origin.c:465
#define InvalidRepOriginId
Definition: origin.h:33
@ OUTPUT_PLUGIN_BINARY_OUTPUT
Definition: output_plugin.h:19
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
RTEPermissionInfo * addRTEPermissionInfo(List **rteperminfos, RangeTblEntry *rte)
@ RTE_RELATION
Definition: parsenodes.h:1011
List * get_partition_ancestors(Oid relid)
Definition: partition.c:134
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:209
void * arg
const void * data
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
#define foreach_xid(var, lst)
Definition: pg_list.h:472
#define list_make1(x1)
Definition: pg_list.h:212
#define llast_oid(l)
Definition: pg_list.h:200
Publication * GetPublicationByName(const char *pubname, bool missing_ok)
List * GetSchemaPublications(Oid schemaid)
List * GetRelationPublications(Oid relid)
Oid GetTopMostAncestorInPublication(Oid puboid, List *ancestors, int *ancestor_level)
Bitmapset * pub_collist_to_bitmapset(Bitmapset *columns, Datum pubcols, MemoryContext mcxt)
bool is_publishable_relation(Relation rel)
#define LOGICALREP_ORIGIN_NONE
#define LOGICALREP_STREAM_ON
#define LOGICALREP_ORIGIN_ANY
#define LOGICALREP_STREAM_OFF
#define LOGICALREP_STREAM_PARALLEL
static List * LoadPublications(List *pubnames)
Definition: pgoutput.c:1707
static void pgoutput_send_begin(LogicalDecodingContext *ctx, ReorderBufferTXN *txn)
Definition: pgoutput.c:562
static void rel_sync_cache_publication_cb(Datum arg, int cacheid, uint32 hashvalue)
Definition: pgoutput.c:2318
struct RelationSyncEntry RelationSyncEntry
static void pgoutput_ensure_entry_cxt(PGOutputData *data, RelationSyncEntry *entry)
Definition: pgoutput.c:847
static void parse_output_parameters(List *options, PGOutputData *data)
Definition: pgoutput.c:276
static void init_tuple_slot(PGOutputData *data, Relation relation, RelationSyncEntry *entry)
Definition: pgoutput.c:1130
static bool pgoutput_row_filter_exec_expr(ExprState *state, ExprContext *econtext)
Definition: pgoutput.c:824
static void pgoutput_change(LogicalDecodingContext *ctx, ReorderBufferTXN *txn, Relation relation, ReorderBufferChange *change)
Definition: pgoutput.c:1403
#define NUM_ROWFILTER_PUBACTIONS
Definition: pgoutput.c:105
static void pgoutput_begin_prepare_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn)
Definition: pgoutput.c:616
struct PGOutputTxnData PGOutputTxnData
static void pgoutput_startup(LogicalDecodingContext *ctx, OutputPluginOptions *opt, bool is_init)
Definition: pgoutput.c:418
static void pgoutput_truncate(LogicalDecodingContext *ctx, ReorderBufferTXN *txn, int nrelations, Relation relations[], ReorderBufferChange *change)
Definition: pgoutput.c:1562
static void init_rel_sync_cache(MemoryContext cachectx)
Definition: pgoutput.c:1878
RowFilterPubAction
Definition: pgoutput.c:99
@ PUBACTION_INSERT
Definition: pgoutput.c:100
@ PUBACTION_UPDATE
Definition: pgoutput.c:101
@ PUBACTION_DELETE
Definition: pgoutput.c:102
PG_MODULE_MAGIC
Definition: pgoutput.c:38
static void rel_sync_cache_relation_cb(Datum arg, Oid relid)
Definition: pgoutput.c:2267
static void pgoutput_prepare_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn, XLogRecPtr prepare_lsn)
Definition: pgoutput.c:633
static RelationSyncEntry * get_rel_sync_entry(PGOutputData *data, Relation relation)
Definition: pgoutput.c:1963
static bool pgoutput_origin_filter(LogicalDecodingContext *ctx, RepOriginId origin_id)
Definition: pgoutput.c:1675
static void send_repl_origin(LogicalDecodingContext *ctx, RepOriginId origin_id, XLogRecPtr origin_lsn, bool send_origin)
Definition: pgoutput.c:2344
static void pgoutput_rollback_prepared_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn, XLogRecPtr prepare_end_lsn, TimestampTz prepare_time)
Definition: pgoutput.c:661
static void pgoutput_shutdown(LogicalDecodingContext *ctx)
Definition: pgoutput.c:1694
static void cleanup_rel_sync_cache(TransactionId xid, bool is_commit)
Definition: pgoutput.c:2232
static void pgoutput_stream_abort(struct LogicalDecodingContext *ctx, ReorderBufferTXN *txn, XLogRecPtr abort_lsn)
Definition: pgoutput.c:1797
static void pgoutput_stream_prepare_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn, XLogRecPtr prepare_lsn)
Definition: pgoutput.c:1858
static void maybe_send_schema(LogicalDecodingContext *ctx, ReorderBufferChange *change, Relation relation, RelationSyncEntry *relentry)
Definition: pgoutput.c:679
static void pgoutput_begin_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn)
Definition: pgoutput.c:548
static void send_relation_and_attrs(Relation relation, TransactionId xid, LogicalDecodingContext *ctx, Bitmapset *columns)
Definition: pgoutput.c:750
static HTAB * RelationSyncCache
Definition: pgoutput.c:210
static void pgoutput_row_filter_init(PGOutputData *data, List *publications, RelationSyncEntry *entry)
Definition: pgoutput.c:869
static void pgoutput_stream_commit(struct LogicalDecodingContext *ctx, ReorderBufferTXN *txn, XLogRecPtr commit_lsn)
Definition: pgoutput.c:1830
static void pgoutput_commit_prepared_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn, XLogRecPtr commit_lsn)
Definition: pgoutput.c:647
static bool pgoutput_row_filter(Relation relation, TupleTableSlot *old_slot, TupleTableSlot **new_slot_ptr, RelationSyncEntry *entry, ReorderBufferChangeType *action)
Definition: pgoutput.c:1222
static void set_schema_sent_in_streamed_txn(RelationSyncEntry *entry, TransactionId xid)
Definition: pgoutput.c:1942
static void pgoutput_column_list_init(PGOutputData *data, List *publications, RelationSyncEntry *entry)
Definition: pgoutput.c:1015
static void pgoutput_stream_stop(struct LogicalDecodingContext *ctx, ReorderBufferTXN *txn)
Definition: pgoutput.c:1776
static void pgoutput_stream_start(struct LogicalDecodingContext *ctx, ReorderBufferTXN *txn)
Definition: pgoutput.c:1744
static void publication_invalidation_cb(Datum arg, int cacheid, uint32 hashvalue)
Definition: pgoutput.c:1729
void _PG_output_plugin_init(OutputPluginCallbacks *cb)
Definition: pgoutput.c:247
static void pgoutput_message(LogicalDecodingContext *ctx, ReorderBufferTXN *txn, XLogRecPtr message_lsn, bool transactional, const char *prefix, Size sz, const char *message)
Definition: pgoutput.c:1630
static void pgoutput_commit_txn(LogicalDecodingContext *ctx, ReorderBufferTXN *txn, XLogRecPtr commit_lsn)
Definition: pgoutput.c:584
static bool publications_valid
Definition: pgoutput.c:82
static bool get_schema_sent_in_streamed_txn(RelationSyncEntry *entry, TransactionId xid)
Definition: pgoutput.c:1932
static EState * create_estate_for_relation(Relation rel)
Definition: pgoutput.c:794
int pg_strcasecmp(const char *s1, const char *s2)
Definition: pgstrcasecmp.c:36
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
uintptr_t Datum
Definition: postgres.h:64
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
void logicalrep_write_commit(StringInfo out, ReorderBufferTXN *txn, XLogRecPtr commit_lsn)
Definition: proto.c:89
void logicalrep_write_rollback_prepared(StringInfo out, ReorderBufferTXN *txn, XLogRecPtr prepare_end_lsn, TimestampTz prepare_time)
Definition: proto.c:304
void logicalrep_write_origin(StringInfo out, const char *origin, XLogRecPtr origin_lsn)
Definition: proto.c:385
void logicalrep_write_stream_abort(StringInfo out, TransactionId xid, TransactionId subxid, XLogRecPtr abort_lsn, TimestampTz abort_time, bool write_abort_info)
Definition: proto.c:1166
void logicalrep_write_rel(StringInfo out, TransactionId xid, Relation rel, Bitmapset *columns)
Definition: proto.c:670
void logicalrep_write_message(StringInfo out, TransactionId xid, XLogRecPtr lsn, bool transactional, const char *prefix, Size sz, const char *message)
Definition: proto.c:643
void logicalrep_write_update(StringInfo out, TransactionId xid, Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot, bool binary, Bitmapset *columns)
Definition: proto.c:458
void logicalrep_write_prepare(StringInfo out, ReorderBufferTXN *txn, XLogRecPtr prepare_lsn)
Definition: proto.c:198
void logicalrep_write_insert(StringInfo out, TransactionId xid, Relation rel, TupleTableSlot *newslot, bool binary, Bitmapset *columns)
Definition: proto.c:414
void logicalrep_write_typ(StringInfo out, TransactionId xid, Oid typoid)
Definition: proto.c:725
void logicalrep_write_truncate(StringInfo out, TransactionId xid, int nrelids, Oid relids[], bool cascade, bool restart_seqs)
Definition: proto.c:586
void logicalrep_write_begin(StringInfo out, ReorderBufferTXN *txn)
Definition: proto.c:60
void logicalrep_write_delete(StringInfo out, TransactionId xid, Relation rel, TupleTableSlot *oldslot, bool binary, Bitmapset *columns)
Definition: proto.c:533
void logicalrep_write_commit_prepared(StringInfo out, ReorderBufferTXN *txn, XLogRecPtr commit_lsn)
Definition: proto.c:248
void logicalrep_write_stream_commit(StringInfo out, ReorderBufferTXN *txn, XLogRecPtr commit_lsn)
Definition: proto.c:1112
void logicalrep_write_stream_prepare(StringInfo out, ReorderBufferTXN *txn, XLogRecPtr prepare_lsn)
Definition: proto.c:364
void logicalrep_write_begin_prepare(StringInfo out, ReorderBufferTXN *txn)
Definition: proto.c:127
void logicalrep_write_stream_start(StringInfo out, TransactionId xid, bool first_segment)
Definition: proto.c:1069
void logicalrep_write_stream_stop(StringInfo out)
Definition: proto.c:1103
void * stringToNode(const char *str)
Definition: read.c:90
#define RelationGetRelid(relation)
Definition: rel.h:505
#define RelationGetDescr(relation)
Definition: rel.h:531
#define RelationGetRelationName(relation)
Definition: rel.h:539
#define RelationIsValid(relation)
Definition: rel.h:478
#define RelationGetNamespace(relation)
Definition: rel.h:546
Relation RelationIdGetRelation(Oid relationId)
Definition: relcache.c:2055
void RelationClose(Relation relation)
Definition: relcache.c:2186
#define rbtxn_is_streamed(txn)
#define rbtxn_get_toptxn(txn)
#define rbtxn_is_subtxn(txn)
ReorderBufferChangeType
Definition: reorderbuffer.h:45
@ REORDER_BUFFER_CHANGE_INSERT
Definition: reorderbuffer.h:46
@ REORDER_BUFFER_CHANGE_DELETE
Definition: reorderbuffer.h:48
@ REORDER_BUFFER_CHANGE_UPDATE
Definition: reorderbuffer.h:47
Definition: attmap.h:35
char * defname
Definition: parsenodes.h:811
Node * arg
Definition: parsenodes.h:812
CommandId es_output_cid
Definition: execnodes.h:637
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:255
Size keysize
Definition: hsearch.h:75
Size entrysize
Definition: hsearch.h:76
MemoryContext hcxt
Definition: hsearch.h:86
Definition: dynahash.c:220
Definition: pg_list.h:54
MemoryContext context
Definition: logical.h:36
StringInfo out
Definition: logical.h:71
void * output_plugin_private
Definition: logical.h:76
List * output_plugin_options
Definition: logical.h:59
LogicalDecodeStreamChangeCB stream_change_cb
LogicalDecodeMessageCB message_cb
LogicalDecodeStreamTruncateCB stream_truncate_cb
LogicalDecodeStreamMessageCB stream_message_cb
LogicalDecodeFilterByOriginCB filter_by_origin_cb
LogicalDecodeTruncateCB truncate_cb
LogicalDecodeStreamStopCB stream_stop_cb
LogicalDecodeStreamCommitCB stream_commit_cb
LogicalDecodeRollbackPreparedCB rollback_prepared_cb
LogicalDecodeStreamPrepareCB stream_prepare_cb
LogicalDecodeCommitPreparedCB commit_prepared_cb
LogicalDecodeStreamStartCB stream_start_cb
LogicalDecodePrepareCB prepare_cb
LogicalDecodeStartupCB startup_cb
LogicalDecodeCommitCB commit_cb
LogicalDecodeBeginCB begin_cb
LogicalDecodeStreamAbortCB stream_abort_cb
LogicalDecodeBeginPrepareCB begin_prepare_cb
LogicalDecodeChangeCB change_cb
LogicalDecodeShutdownCB shutdown_cb
OutputPluginOutputType output_type
Definition: output_plugin.h:28
bool sent_begin_txn
Definition: pgoutput.c:206
PublicationActions pubactions
RTEKind rtekind
Definition: parsenodes.h:1030
Form_pg_class rd_rel
Definition: rel.h:111
ExprState * exprstate[NUM_ROWFILTER_PUBACTIONS]
Definition: pgoutput.c:145
Bitmapset * columns
Definition: pgoutput.c:171
PublicationActions pubactions
Definition: pgoutput.c:136
TupleTableSlot * old_slot
Definition: pgoutput.c:148
bool replicate_valid
Definition: pgoutput.c:129
MemoryContext entry_cxt
Definition: pgoutput.c:177
EState * estate
Definition: pgoutput.c:146
TupleTableSlot * new_slot
Definition: pgoutput.c:147
List * streamed_txns
Definition: pgoutput.c:132
AttrMap * attrmap
Definition: pgoutput.c:164
struct ReorderBufferChange::@100::@101 tp
ReorderBufferChangeType action
Definition: reorderbuffer.h:75
struct ReorderBufferTXN * txn
Definition: reorderbuffer.h:78
struct ReorderBufferChange::@100::@102 truncate
union ReorderBufferChange::@100 data
RepOriginId origin_id
TimestampTz abort_time
void * output_plugin_private
XLogRecPtr origin_lsn
TransactionId xid
union ReorderBufferTXN::@106 xact_time
Definition: value.h:64
bool * tts_isnull
Definition: tuptable.h:127
Datum * tts_values
Definition: tuptable.h:125
Definition: regguts.h:323
char defGetStreamingMode(DefElem *def)
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:266
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:479
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:229
#define SearchSysCacheExists2(cacheId, key1, key2)
Definition: syscache.h:97
#define InvalidTransactionId
Definition: transam.h:31
#define FirstGenbkiObjectId
Definition: transam.h:195
TupleTableSlot * execute_attr_map_slot(AttrMap *attrMap, TupleTableSlot *in_slot, TupleTableSlot *out_slot)
Definition: tupconvert.c:192
TupleDesc CreateTupleDescCopyConstr(TupleDesc tupdesc)
Definition: tupdesc.c:173
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
static TupleTableSlot * ExecClearTuple(TupleTableSlot *slot)
Definition: tuptable.h:433
static void slot_getallattrs(TupleTableSlot *slot)
Definition: tuptable.h:362
#define strVal(v)
Definition: value.h:82
#define VARATT_IS_EXTERNAL_ONDISK(PTR)
Definition: varatt.h:290
bool SplitIdentifierString(char *rawstring, char separator, List **namelist)
Definition: varlena.c:3456
CommandId GetCurrentCommandId(bool used)
Definition: xact.c:819
uint16 RepOriginId
Definition: xlogdefs.h:65
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28