PostgreSQL Source Code  git master
vacuumlazy.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * vacuumlazy.c
4  * Concurrent ("lazy") vacuuming.
5  *
6  * The major space usage for vacuuming is storage for the dead tuple IDs that
7  * are to be removed from indexes. We want to ensure we can vacuum even the
8  * very largest relations with finite memory space usage. To do that, we set
9  * upper bounds on the memory that can be used for keeping track of dead TIDs
10  * at once.
11  *
12  * We are willing to use at most maintenance_work_mem (or perhaps
13  * autovacuum_work_mem) memory space to keep track of dead TIDs. If the
14  * TID store is full, we must call lazy_vacuum to vacuum indexes (and to vacuum
15  * the pages that we've pruned). This frees up the memory space dedicated to
16  * store dead TIDs.
17  *
18  * In practice VACUUM will often complete its initial pass over the target
19  * heap relation without ever running out of space to store TIDs. This means
20  * that there only needs to be one call to lazy_vacuum, after the initial pass
21  * completes.
22  *
23  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
24  * Portions Copyright (c) 1994, Regents of the University of California
25  *
26  *
27  * IDENTIFICATION
28  * src/backend/access/heap/vacuumlazy.c
29  *
30  *-------------------------------------------------------------------------
31  */
32 #include "postgres.h"
33 
34 #include <math.h>
35 
36 #include "access/genam.h"
37 #include "access/heapam.h"
38 #include "access/heapam_xlog.h"
39 #include "access/htup_details.h"
40 #include "access/multixact.h"
41 #include "access/tidstore.h"
42 #include "access/transam.h"
43 #include "access/visibilitymap.h"
44 #include "access/xloginsert.h"
45 #include "catalog/storage.h"
46 #include "commands/dbcommands.h"
47 #include "commands/progress.h"
48 #include "commands/vacuum.h"
49 #include "common/int.h"
50 #include "executor/instrument.h"
51 #include "miscadmin.h"
52 #include "pgstat.h"
53 #include "portability/instr_time.h"
54 #include "postmaster/autovacuum.h"
55 #include "storage/bufmgr.h"
56 #include "storage/freespace.h"
57 #include "storage/lmgr.h"
58 #include "utils/lsyscache.h"
59 #include "utils/memutils.h"
60 #include "utils/pg_rusage.h"
61 #include "utils/timestamp.h"
62 
63 
64 /*
65  * Space/time tradeoff parameters: do these need to be user-tunable?
66  *
67  * To consider truncating the relation, we want there to be at least
68  * REL_TRUNCATE_MINIMUM or (relsize / REL_TRUNCATE_FRACTION) (whichever
69  * is less) potentially-freeable pages.
70  */
71 #define REL_TRUNCATE_MINIMUM 1000
72 #define REL_TRUNCATE_FRACTION 16
73 
74 /*
75  * Timing parameters for truncate locking heuristics.
76  *
77  * These were not exposed as user tunable GUC values because it didn't seem
78  * that the potential for improvement was great enough to merit the cost of
79  * supporting them.
80  */
81 #define VACUUM_TRUNCATE_LOCK_CHECK_INTERVAL 20 /* ms */
82 #define VACUUM_TRUNCATE_LOCK_WAIT_INTERVAL 50 /* ms */
83 #define VACUUM_TRUNCATE_LOCK_TIMEOUT 5000 /* ms */
84 
85 /*
86  * Threshold that controls whether we bypass index vacuuming and heap
87  * vacuuming as an optimization
88  */
89 #define BYPASS_THRESHOLD_PAGES 0.02 /* i.e. 2% of rel_pages */
90 
91 /*
92  * Perform a failsafe check each time we scan another 4GB of pages.
93  * (Note that this is deliberately kept to a power-of-two, usually 2^19.)
94  */
95 #define FAILSAFE_EVERY_PAGES \
96  ((BlockNumber) (((uint64) 4 * 1024 * 1024 * 1024) / BLCKSZ))
97 
98 /*
99  * When a table has no indexes, vacuum the FSM after every 8GB, approximately
100  * (it won't be exact because we only vacuum FSM after processing a heap page
101  * that has some removable tuples). When there are indexes, this is ignored,
102  * and we vacuum FSM after each index/heap cleaning pass.
103  */
104 #define VACUUM_FSM_EVERY_PAGES \
105  ((BlockNumber) (((uint64) 8 * 1024 * 1024 * 1024) / BLCKSZ))
106 
107 /*
108  * Before we consider skipping a page that's marked as clean in
109  * visibility map, we must've seen at least this many clean pages.
110  */
111 #define SKIP_PAGES_THRESHOLD ((BlockNumber) 32)
112 
113 /*
114  * Size of the prefetch window for lazy vacuum backwards truncation scan.
115  * Needs to be a power of 2.
116  */
117 #define PREFETCH_SIZE ((BlockNumber) 32)
118 
119 /*
120  * Macro to check if we are in a parallel vacuum. If true, we are in the
121  * parallel mode and the DSM segment is initialized.
122  */
123 #define ParallelVacuumIsActive(vacrel) ((vacrel)->pvs != NULL)
124 
125 /* Phases of vacuum during which we report error context. */
126 typedef enum
127 {
134 } VacErrPhase;
135 
136 typedef struct LVRelState
137 {
138  /* Target heap relation and its indexes */
141  int nindexes;
142 
143  /* Buffer access strategy and parallel vacuum state */
146 
147  /* Aggressive VACUUM? (must set relfrozenxid >= FreezeLimit) */
149  /* Use visibility map to skip? (disabled by DISABLE_PAGE_SKIPPING) */
151  /* Consider index vacuuming bypass optimization? */
153 
154  /* Doing index vacuuming, index cleanup, rel truncation? */
158 
159  /* VACUUM operation's cutoffs for freezing and pruning */
160  struct VacuumCutoffs cutoffs;
162  /* Tracks oldest extant XID/MXID for setting relfrozenxid/relminmxid */
166 
167  /* Error reporting state */
168  char *dbname;
170  char *relname;
171  char *indname; /* Current index name */
172  BlockNumber blkno; /* used only for heap operations */
173  OffsetNumber offnum; /* used only for heap operations */
175  bool verbose; /* VACUUM VERBOSE? */
176 
177  /*
178  * dead_items stores TIDs whose index tuples are deleted by index
179  * vacuuming. Each TID points to an LP_DEAD line pointer from a heap page
180  * that has been processed by lazy_scan_prune. Also needed by
181  * lazy_vacuum_heap_rel, which marks the same LP_DEAD line pointers as
182  * LP_UNUSED during second heap pass.
183  *
184  * Both dead_items and dead_items_info are allocated in shared memory in
185  * parallel vacuum cases.
186  */
187  TidStore *dead_items; /* TIDs whose index tuples we'll delete */
189 
190  BlockNumber rel_pages; /* total number of pages */
191  BlockNumber scanned_pages; /* # pages examined (not skipped via VM) */
192  BlockNumber removed_pages; /* # pages removed by relation truncation */
193  BlockNumber frozen_pages; /* # pages with newly frozen tuples */
194  BlockNumber lpdead_item_pages; /* # pages with LP_DEAD items */
195  BlockNumber missed_dead_pages; /* # pages with missed dead tuples */
196  BlockNumber nonempty_pages; /* actually, last nonempty page + 1 */
197 
198  /* Statistics output by us, for table */
199  double new_rel_tuples; /* new estimated total # of tuples */
200  double new_live_tuples; /* new estimated total # of live tuples */
201  /* Statistics output by index AMs */
203 
204  /* Instrumentation counters */
206  /* Counters that follow are only for scanned_pages */
207  int64 tuples_deleted; /* # deleted from table */
208  int64 tuples_frozen; /* # newly frozen */
209  int64 lpdead_items; /* # deleted from indexes */
210  int64 live_tuples; /* # live tuples remaining */
211  int64 recently_dead_tuples; /* # dead, but not yet removable */
212  int64 missed_dead_tuples; /* # removable, but not removed */
213 
214  /* State maintained by heap_vac_scan_next_block() */
215  BlockNumber current_block; /* last block returned */
216  BlockNumber next_unskippable_block; /* next unskippable block */
217  bool next_unskippable_allvis; /* its visibility status */
218  Buffer next_unskippable_vmbuffer; /* buffer containing its VM bit */
220 
221 /* Struct for saving and restoring vacuum error information. */
222 typedef struct LVSavedErrInfo
223 {
228 
229 
230 /* non-export function prototypes */
231 static void lazy_scan_heap(LVRelState *vacrel);
232 static bool heap_vac_scan_next_block(LVRelState *vacrel, BlockNumber *blkno,
233  bool *all_visible_according_to_vm);
234 static void find_next_unskippable_block(LVRelState *vacrel, bool *skipsallvis);
235 static bool lazy_scan_new_or_empty(LVRelState *vacrel, Buffer buf,
236  BlockNumber blkno, Page page,
237  bool sharelock, Buffer vmbuffer);
238 static void lazy_scan_prune(LVRelState *vacrel, Buffer buf,
239  BlockNumber blkno, Page page,
240  Buffer vmbuffer, bool all_visible_according_to_vm,
241  bool *has_lpdead_items);
242 static bool lazy_scan_noprune(LVRelState *vacrel, Buffer buf,
243  BlockNumber blkno, Page page,
244  bool *has_lpdead_items);
245 static void lazy_vacuum(LVRelState *vacrel);
246 static bool lazy_vacuum_all_indexes(LVRelState *vacrel);
247 static void lazy_vacuum_heap_rel(LVRelState *vacrel);
248 static void lazy_vacuum_heap_page(LVRelState *vacrel, BlockNumber blkno,
249  Buffer buffer, OffsetNumber *deadoffsets,
250  int num_offsets, Buffer vmbuffer);
251 static bool lazy_check_wraparound_failsafe(LVRelState *vacrel);
252 static void lazy_cleanup_all_indexes(LVRelState *vacrel);
254  IndexBulkDeleteResult *istat,
255  double reltuples,
256  LVRelState *vacrel);
258  IndexBulkDeleteResult *istat,
259  double reltuples,
260  bool estimated_count,
261  LVRelState *vacrel);
262 static bool should_attempt_truncation(LVRelState *vacrel);
263 static void lazy_truncate_heap(LVRelState *vacrel);
265  bool *lock_waiter_detected);
266 static void dead_items_alloc(LVRelState *vacrel, int nworkers);
267 static void dead_items_add(LVRelState *vacrel, BlockNumber blkno, OffsetNumber *offsets,
268  int num_offsets);
269 static void dead_items_reset(LVRelState *vacrel);
270 static void dead_items_cleanup(LVRelState *vacrel);
271 static bool heap_page_is_all_visible(LVRelState *vacrel, Buffer buf,
272  TransactionId *visibility_cutoff_xid, bool *all_frozen);
273 static void update_relstats_all_indexes(LVRelState *vacrel);
274 static void vacuum_error_callback(void *arg);
275 static void update_vacuum_error_info(LVRelState *vacrel,
276  LVSavedErrInfo *saved_vacrel,
277  int phase, BlockNumber blkno,
278  OffsetNumber offnum);
279 static void restore_vacuum_error_info(LVRelState *vacrel,
280  const LVSavedErrInfo *saved_vacrel);
281 
282 
283 /*
284  * heap_vacuum_rel() -- perform VACUUM for one heap relation
285  *
286  * This routine sets things up for and then calls lazy_scan_heap, where
287  * almost all work actually takes place. Finalizes everything after call
288  * returns by managing relation truncation and updating rel's pg_class
289  * entry. (Also updates pg_class entries for any indexes that need it.)
290  *
291  * At entry, we have already established a transaction and opened
292  * and locked the relation.
293  */
294 void
296  BufferAccessStrategy bstrategy)
297 {
298  LVRelState *vacrel;
299  bool verbose,
300  instrument,
301  skipwithvm,
302  frozenxid_updated,
303  minmulti_updated;
304  BlockNumber orig_rel_pages,
305  new_rel_pages,
306  new_rel_allvisible;
307  PGRUsage ru0;
308  TimestampTz starttime = 0;
309  PgStat_Counter startreadtime = 0,
310  startwritetime = 0;
311  WalUsage startwalusage = pgWalUsage;
312  BufferUsage startbufferusage = pgBufferUsage;
313  ErrorContextCallback errcallback;
314  char **indnames = NULL;
315 
316  verbose = (params->options & VACOPT_VERBOSE) != 0;
317  instrument = (verbose || (AmAutoVacuumWorkerProcess() &&
318  params->log_min_duration >= 0));
319  if (instrument)
320  {
321  pg_rusage_init(&ru0);
322  starttime = GetCurrentTimestamp();
323  if (track_io_timing)
324  {
325  startreadtime = pgStatBlockReadTime;
326  startwritetime = pgStatBlockWriteTime;
327  }
328  }
329 
331  RelationGetRelid(rel));
332 
333  /*
334  * Setup error traceback support for ereport() first. The idea is to set
335  * up an error context callback to display additional information on any
336  * error during a vacuum. During different phases of vacuum, we update
337  * the state so that the error context callback always display current
338  * information.
339  *
340  * Copy the names of heap rel into local memory for error reporting
341  * purposes, too. It isn't always safe to assume that we can get the name
342  * of each rel. It's convenient for code in lazy_scan_heap to always use
343  * these temp copies.
344  */
345  vacrel = (LVRelState *) palloc0(sizeof(LVRelState));
348  vacrel->relname = pstrdup(RelationGetRelationName(rel));
349  vacrel->indname = NULL;
351  vacrel->verbose = verbose;
352  errcallback.callback = vacuum_error_callback;
353  errcallback.arg = vacrel;
354  errcallback.previous = error_context_stack;
355  error_context_stack = &errcallback;
356 
357  /* Set up high level stuff about rel and its indexes */
358  vacrel->rel = rel;
359  vac_open_indexes(vacrel->rel, RowExclusiveLock, &vacrel->nindexes,
360  &vacrel->indrels);
361  vacrel->bstrategy = bstrategy;
362  if (instrument && vacrel->nindexes > 0)
363  {
364  /* Copy index names used by instrumentation (not error reporting) */
365  indnames = palloc(sizeof(char *) * vacrel->nindexes);
366  for (int i = 0; i < vacrel->nindexes; i++)
367  indnames[i] = pstrdup(RelationGetRelationName(vacrel->indrels[i]));
368  }
369 
370  /*
371  * The index_cleanup param either disables index vacuuming and cleanup or
372  * forces it to go ahead when we would otherwise apply the index bypass
373  * optimization. The default is 'auto', which leaves the final decision
374  * up to lazy_vacuum().
375  *
376  * The truncate param allows user to avoid attempting relation truncation,
377  * though it can't force truncation to happen.
378  */
381  params->truncate != VACOPTVALUE_AUTO);
382 
383  /*
384  * While VacuumFailSafeActive is reset to false before calling this, we
385  * still need to reset it here due to recursive calls.
386  */
387  VacuumFailsafeActive = false;
388  vacrel->consider_bypass_optimization = true;
389  vacrel->do_index_vacuuming = true;
390  vacrel->do_index_cleanup = true;
391  vacrel->do_rel_truncate = (params->truncate != VACOPTVALUE_DISABLED);
392  if (params->index_cleanup == VACOPTVALUE_DISABLED)
393  {
394  /* Force disable index vacuuming up-front */
395  vacrel->do_index_vacuuming = false;
396  vacrel->do_index_cleanup = false;
397  }
398  else if (params->index_cleanup == VACOPTVALUE_ENABLED)
399  {
400  /* Force index vacuuming. Note that failsafe can still bypass. */
401  vacrel->consider_bypass_optimization = false;
402  }
403  else
404  {
405  /* Default/auto, make all decisions dynamically */
407  }
408 
409  /* Initialize page counters explicitly (be tidy) */
410  vacrel->scanned_pages = 0;
411  vacrel->removed_pages = 0;
412  vacrel->frozen_pages = 0;
413  vacrel->lpdead_item_pages = 0;
414  vacrel->missed_dead_pages = 0;
415  vacrel->nonempty_pages = 0;
416  /* dead_items_alloc allocates vacrel->dead_items later on */
417 
418  /* Allocate/initialize output statistics state */
419  vacrel->new_rel_tuples = 0;
420  vacrel->new_live_tuples = 0;
421  vacrel->indstats = (IndexBulkDeleteResult **)
422  palloc0(vacrel->nindexes * sizeof(IndexBulkDeleteResult *));
423 
424  /* Initialize remaining counters (be tidy) */
425  vacrel->num_index_scans = 0;
426  vacrel->tuples_deleted = 0;
427  vacrel->tuples_frozen = 0;
428  vacrel->lpdead_items = 0;
429  vacrel->live_tuples = 0;
430  vacrel->recently_dead_tuples = 0;
431  vacrel->missed_dead_tuples = 0;
432 
433  /*
434  * Get cutoffs that determine which deleted tuples are considered DEAD,
435  * not just RECENTLY_DEAD, and which XIDs/MXIDs to freeze. Then determine
436  * the extent of the blocks that we'll scan in lazy_scan_heap. It has to
437  * happen in this order to ensure that the OldestXmin cutoff field works
438  * as an upper bound on the XIDs stored in the pages we'll actually scan
439  * (NewRelfrozenXid tracking must never be allowed to miss unfrozen XIDs).
440  *
441  * Next acquire vistest, a related cutoff that's used in pruning. We use
442  * vistest in combination with OldestXmin to ensure that
443  * heap_page_prune_and_freeze() always removes any deleted tuple whose
444  * xmax is < OldestXmin. lazy_scan_prune must never become confused about
445  * whether a tuple should be frozen or removed. (In the future we might
446  * want to teach lazy_scan_prune to recompute vistest from time to time,
447  * to increase the number of dead tuples it can prune away.)
448  */
449  vacrel->aggressive = vacuum_get_cutoffs(rel, params, &vacrel->cutoffs);
450  vacrel->rel_pages = orig_rel_pages = RelationGetNumberOfBlocks(rel);
451  vacrel->vistest = GlobalVisTestFor(rel);
452  /* Initialize state used to track oldest extant XID/MXID */
453  vacrel->NewRelfrozenXid = vacrel->cutoffs.OldestXmin;
454  vacrel->NewRelminMxid = vacrel->cutoffs.OldestMxact;
455  vacrel->skippedallvis = false;
456  skipwithvm = true;
458  {
459  /*
460  * Force aggressive mode, and disable skipping blocks using the
461  * visibility map (even those set all-frozen)
462  */
463  vacrel->aggressive = true;
464  skipwithvm = false;
465  }
466 
467  vacrel->skipwithvm = skipwithvm;
468 
469  if (verbose)
470  {
471  if (vacrel->aggressive)
472  ereport(INFO,
473  (errmsg("aggressively vacuuming \"%s.%s.%s\"",
474  vacrel->dbname, vacrel->relnamespace,
475  vacrel->relname)));
476  else
477  ereport(INFO,
478  (errmsg("vacuuming \"%s.%s.%s\"",
479  vacrel->dbname, vacrel->relnamespace,
480  vacrel->relname)));
481  }
482 
483  /*
484  * Allocate dead_items memory using dead_items_alloc. This handles
485  * parallel VACUUM initialization as part of allocating shared memory
486  * space used for dead_items. (But do a failsafe precheck first, to
487  * ensure that parallel VACUUM won't be attempted at all when relfrozenxid
488  * is already dangerously old.)
489  */
491  dead_items_alloc(vacrel, params->nworkers);
492 
493  /*
494  * Call lazy_scan_heap to perform all required heap pruning, index
495  * vacuuming, and heap vacuuming (plus related processing)
496  */
497  lazy_scan_heap(vacrel);
498 
499  /*
500  * Free resources managed by dead_items_alloc. This ends parallel mode in
501  * passing when necessary.
502  */
503  dead_items_cleanup(vacrel);
505 
506  /*
507  * Update pg_class entries for each of rel's indexes where appropriate.
508  *
509  * Unlike the later update to rel's pg_class entry, this is not critical.
510  * Maintains relpages/reltuples statistics used by the planner only.
511  */
512  if (vacrel->do_index_cleanup)
514 
515  /* Done with rel's indexes */
516  vac_close_indexes(vacrel->nindexes, vacrel->indrels, NoLock);
517 
518  /* Optionally truncate rel */
519  if (should_attempt_truncation(vacrel))
520  lazy_truncate_heap(vacrel);
521 
522  /* Pop the error context stack */
523  error_context_stack = errcallback.previous;
524 
525  /* Report that we are now doing final cleanup */
528 
529  /*
530  * Prepare to update rel's pg_class entry.
531  *
532  * Aggressive VACUUMs must always be able to advance relfrozenxid to a
533  * value >= FreezeLimit, and relminmxid to a value >= MultiXactCutoff.
534  * Non-aggressive VACUUMs may advance them by any amount, or not at all.
535  */
536  Assert(vacrel->NewRelfrozenXid == vacrel->cutoffs.OldestXmin ||
538  vacrel->cutoffs.relfrozenxid,
539  vacrel->NewRelfrozenXid));
540  Assert(vacrel->NewRelminMxid == vacrel->cutoffs.OldestMxact ||
542  vacrel->cutoffs.relminmxid,
543  vacrel->NewRelminMxid));
544  if (vacrel->skippedallvis)
545  {
546  /*
547  * Must keep original relfrozenxid in a non-aggressive VACUUM that
548  * chose to skip an all-visible page range. The state that tracks new
549  * values will have missed unfrozen XIDs from the pages we skipped.
550  */
551  Assert(!vacrel->aggressive);
554  }
555 
556  /*
557  * For safety, clamp relallvisible to be not more than what we're setting
558  * pg_class.relpages to
559  */
560  new_rel_pages = vacrel->rel_pages; /* After possible rel truncation */
561  visibilitymap_count(rel, &new_rel_allvisible, NULL);
562  if (new_rel_allvisible > new_rel_pages)
563  new_rel_allvisible = new_rel_pages;
564 
565  /*
566  * Now actually update rel's pg_class entry.
567  *
568  * In principle new_live_tuples could be -1 indicating that we (still)
569  * don't know the tuple count. In practice that can't happen, since we
570  * scan every page that isn't skipped using the visibility map.
571  */
572  vac_update_relstats(rel, new_rel_pages, vacrel->new_live_tuples,
573  new_rel_allvisible, vacrel->nindexes > 0,
574  vacrel->NewRelfrozenXid, vacrel->NewRelminMxid,
575  &frozenxid_updated, &minmulti_updated, false);
576 
577  /*
578  * Report results to the cumulative stats system, too.
579  *
580  * Deliberately avoid telling the stats system about LP_DEAD items that
581  * remain in the table due to VACUUM bypassing index and heap vacuuming.
582  * ANALYZE will consider the remaining LP_DEAD items to be dead "tuples".
583  * It seems like a good idea to err on the side of not vacuuming again too
584  * soon in cases where the failsafe prevented significant amounts of heap
585  * vacuuming.
586  */
588  rel->rd_rel->relisshared,
589  Max(vacrel->new_live_tuples, 0),
590  vacrel->recently_dead_tuples +
591  vacrel->missed_dead_tuples);
593 
594  if (instrument)
595  {
596  TimestampTz endtime = GetCurrentTimestamp();
597 
598  if (verbose || params->log_min_duration == 0 ||
599  TimestampDifferenceExceeds(starttime, endtime,
600  params->log_min_duration))
601  {
602  long secs_dur;
603  int usecs_dur;
604  WalUsage walusage;
605  BufferUsage bufferusage;
607  char *msgfmt;
608  int32 diff;
609  double read_rate = 0,
610  write_rate = 0;
611 
612  TimestampDifference(starttime, endtime, &secs_dur, &usecs_dur);
613  memset(&walusage, 0, sizeof(WalUsage));
614  WalUsageAccumDiff(&walusage, &pgWalUsage, &startwalusage);
615  memset(&bufferusage, 0, sizeof(BufferUsage));
616  BufferUsageAccumDiff(&bufferusage, &pgBufferUsage, &startbufferusage);
617 
619  if (verbose)
620  {
621  /*
622  * Aggressiveness already reported earlier, in dedicated
623  * VACUUM VERBOSE ereport
624  */
625  Assert(!params->is_wraparound);
626  msgfmt = _("finished vacuuming \"%s.%s.%s\": index scans: %d\n");
627  }
628  else if (params->is_wraparound)
629  {
630  /*
631  * While it's possible for a VACUUM to be both is_wraparound
632  * and !aggressive, that's just a corner-case -- is_wraparound
633  * implies aggressive. Produce distinct output for the corner
634  * case all the same, just in case.
635  */
636  if (vacrel->aggressive)
637  msgfmt = _("automatic aggressive vacuum to prevent wraparound of table \"%s.%s.%s\": index scans: %d\n");
638  else
639  msgfmt = _("automatic vacuum to prevent wraparound of table \"%s.%s.%s\": index scans: %d\n");
640  }
641  else
642  {
643  if (vacrel->aggressive)
644  msgfmt = _("automatic aggressive vacuum of table \"%s.%s.%s\": index scans: %d\n");
645  else
646  msgfmt = _("automatic vacuum of table \"%s.%s.%s\": index scans: %d\n");
647  }
648  appendStringInfo(&buf, msgfmt,
649  vacrel->dbname,
650  vacrel->relnamespace,
651  vacrel->relname,
652  vacrel->num_index_scans);
653  appendStringInfo(&buf, _("pages: %u removed, %u remain, %u scanned (%.2f%% of total)\n"),
654  vacrel->removed_pages,
655  new_rel_pages,
656  vacrel->scanned_pages,
657  orig_rel_pages == 0 ? 100.0 :
658  100.0 * vacrel->scanned_pages / orig_rel_pages);
660  _("tuples: %lld removed, %lld remain, %lld are dead but not yet removable\n"),
661  (long long) vacrel->tuples_deleted,
662  (long long) vacrel->new_rel_tuples,
663  (long long) vacrel->recently_dead_tuples);
664  if (vacrel->missed_dead_tuples > 0)
666  _("tuples missed: %lld dead from %u pages not removed due to cleanup lock contention\n"),
667  (long long) vacrel->missed_dead_tuples,
668  vacrel->missed_dead_pages);
669  diff = (int32) (ReadNextTransactionId() -
670  vacrel->cutoffs.OldestXmin);
672  _("removable cutoff: %u, which was %d XIDs old when operation ended\n"),
673  vacrel->cutoffs.OldestXmin, diff);
674  if (frozenxid_updated)
675  {
676  diff = (int32) (vacrel->NewRelfrozenXid -
677  vacrel->cutoffs.relfrozenxid);
679  _("new relfrozenxid: %u, which is %d XIDs ahead of previous value\n"),
680  vacrel->NewRelfrozenXid, diff);
681  }
682  if (minmulti_updated)
683  {
684  diff = (int32) (vacrel->NewRelminMxid -
685  vacrel->cutoffs.relminmxid);
687  _("new relminmxid: %u, which is %d MXIDs ahead of previous value\n"),
688  vacrel->NewRelminMxid, diff);
689  }
690  appendStringInfo(&buf, _("frozen: %u pages from table (%.2f%% of total) had %lld tuples frozen\n"),
691  vacrel->frozen_pages,
692  orig_rel_pages == 0 ? 100.0 :
693  100.0 * vacrel->frozen_pages / orig_rel_pages,
694  (long long) vacrel->tuples_frozen);
695  if (vacrel->do_index_vacuuming)
696  {
697  if (vacrel->nindexes == 0 || vacrel->num_index_scans == 0)
698  appendStringInfoString(&buf, _("index scan not needed: "));
699  else
700  appendStringInfoString(&buf, _("index scan needed: "));
701 
702  msgfmt = _("%u pages from table (%.2f%% of total) had %lld dead item identifiers removed\n");
703  }
704  else
705  {
707  appendStringInfoString(&buf, _("index scan bypassed: "));
708  else
709  appendStringInfoString(&buf, _("index scan bypassed by failsafe: "));
710 
711  msgfmt = _("%u pages from table (%.2f%% of total) have %lld dead item identifiers\n");
712  }
713  appendStringInfo(&buf, msgfmt,
714  vacrel->lpdead_item_pages,
715  orig_rel_pages == 0 ? 100.0 :
716  100.0 * vacrel->lpdead_item_pages / orig_rel_pages,
717  (long long) vacrel->lpdead_items);
718  for (int i = 0; i < vacrel->nindexes; i++)
719  {
720  IndexBulkDeleteResult *istat = vacrel->indstats[i];
721 
722  if (!istat)
723  continue;
724 
726  _("index \"%s\": pages: %u in total, %u newly deleted, %u currently deleted, %u reusable\n"),
727  indnames[i],
728  istat->num_pages,
729  istat->pages_newly_deleted,
730  istat->pages_deleted,
731  istat->pages_free);
732  }
733  if (track_io_timing)
734  {
735  double read_ms = (double) (pgStatBlockReadTime - startreadtime) / 1000;
736  double write_ms = (double) (pgStatBlockWriteTime - startwritetime) / 1000;
737 
738  appendStringInfo(&buf, _("I/O timings: read: %.3f ms, write: %.3f ms\n"),
739  read_ms, write_ms);
740  }
741  if (secs_dur > 0 || usecs_dur > 0)
742  {
743  read_rate = (double) BLCKSZ * (bufferusage.shared_blks_read + bufferusage.local_blks_read) /
744  (1024 * 1024) / (secs_dur + usecs_dur / 1000000.0);
745  write_rate = (double) BLCKSZ * (bufferusage.shared_blks_dirtied + bufferusage.local_blks_dirtied) /
746  (1024 * 1024) / (secs_dur + usecs_dur / 1000000.0);
747  }
748  appendStringInfo(&buf, _("avg read rate: %.3f MB/s, avg write rate: %.3f MB/s\n"),
749  read_rate, write_rate);
751  _("buffer usage: %lld hits, %lld misses, %lld dirtied\n"),
752  (long long) (bufferusage.shared_blks_hit + bufferusage.local_blks_hit),
753  (long long) (bufferusage.shared_blks_read + bufferusage.local_blks_read),
754  (long long) (bufferusage.shared_blks_dirtied + bufferusage.local_blks_dirtied));
756  _("WAL usage: %lld records, %lld full page images, %llu bytes\n"),
757  (long long) walusage.wal_records,
758  (long long) walusage.wal_fpi,
759  (unsigned long long) walusage.wal_bytes);
760  appendStringInfo(&buf, _("system usage: %s"), pg_rusage_show(&ru0));
761 
762  ereport(verbose ? INFO : LOG,
763  (errmsg_internal("%s", buf.data)));
764  pfree(buf.data);
765  }
766  }
767 
768  /* Cleanup index statistics and index names */
769  for (int i = 0; i < vacrel->nindexes; i++)
770  {
771  if (vacrel->indstats[i])
772  pfree(vacrel->indstats[i]);
773 
774  if (instrument)
775  pfree(indnames[i]);
776  }
777 }
778 
779 /*
780  * lazy_scan_heap() -- workhorse function for VACUUM
781  *
782  * This routine prunes each page in the heap, and considers the need to
783  * freeze remaining tuples with storage (not including pages that can be
784  * skipped using the visibility map). Also performs related maintenance
785  * of the FSM and visibility map. These steps all take place during an
786  * initial pass over the target heap relation.
787  *
788  * Also invokes lazy_vacuum_all_indexes to vacuum indexes, which largely
789  * consists of deleting index tuples that point to LP_DEAD items left in
790  * heap pages following pruning. Earlier initial pass over the heap will
791  * have collected the TIDs whose index tuples need to be removed.
792  *
793  * Finally, invokes lazy_vacuum_heap_rel to vacuum heap pages, which
794  * largely consists of marking LP_DEAD items (from vacrel->dead_items)
795  * as LP_UNUSED. This has to happen in a second, final pass over the
796  * heap, to preserve a basic invariant that all index AMs rely on: no
797  * extant index tuple can ever be allowed to contain a TID that points to
798  * an LP_UNUSED line pointer in the heap. We must disallow premature
799  * recycling of line pointers to avoid index scans that get confused
800  * about which TID points to which tuple immediately after recycling.
801  * (Actually, this isn't a concern when target heap relation happens to
802  * have no indexes, which allows us to safely apply the one-pass strategy
803  * as an optimization).
804  *
805  * In practice we often have enough space to fit all TIDs, and so won't
806  * need to call lazy_vacuum more than once, after our initial pass over
807  * the heap has totally finished. Otherwise things are slightly more
808  * complicated: our "initial pass" over the heap applies only to those
809  * pages that were pruned before we needed to call lazy_vacuum, and our
810  * "final pass" over the heap only vacuums these same heap pages.
811  * However, we process indexes in full every time lazy_vacuum is called,
812  * which makes index processing very inefficient when memory is in short
813  * supply.
814  */
815 static void
817 {
818  BlockNumber rel_pages = vacrel->rel_pages,
819  blkno,
820  next_fsm_block_to_vacuum = 0;
821  bool all_visible_according_to_vm;
822 
823  TidStore *dead_items = vacrel->dead_items;
824  VacDeadItemsInfo *dead_items_info = vacrel->dead_items_info;
825  Buffer vmbuffer = InvalidBuffer;
826  const int initprog_index[] = {
830  };
831  int64 initprog_val[3];
832 
833  /* Report that we're scanning the heap, advertising total # of blocks */
834  initprog_val[0] = PROGRESS_VACUUM_PHASE_SCAN_HEAP;
835  initprog_val[1] = rel_pages;
836  initprog_val[2] = dead_items_info->max_bytes;
837  pgstat_progress_update_multi_param(3, initprog_index, initprog_val);
838 
839  /* Initialize for the first heap_vac_scan_next_block() call */
842  vacrel->next_unskippable_allvis = false;
844 
845  while (heap_vac_scan_next_block(vacrel, &blkno, &all_visible_according_to_vm))
846  {
847  Buffer buf;
848  Page page;
849  bool has_lpdead_items;
850  bool got_cleanup_lock = false;
851 
852  vacrel->scanned_pages++;
853 
854  /* Report as block scanned, update error traceback information */
857  blkno, InvalidOffsetNumber);
858 
860 
861  /*
862  * Regularly check if wraparound failsafe should trigger.
863  *
864  * There is a similar check inside lazy_vacuum_all_indexes(), but
865  * relfrozenxid might start to look dangerously old before we reach
866  * that point. This check also provides failsafe coverage for the
867  * one-pass strategy, and the two-pass strategy with the index_cleanup
868  * param set to 'off'.
869  */
870  if (vacrel->scanned_pages % FAILSAFE_EVERY_PAGES == 0)
872 
873  /*
874  * Consider if we definitely have enough space to process TIDs on page
875  * already. If we are close to overrunning the available space for
876  * dead_items TIDs, pause and do a cycle of vacuuming before we tackle
877  * this page.
878  */
879  if (TidStoreMemoryUsage(dead_items) > dead_items_info->max_bytes)
880  {
881  /*
882  * Before beginning index vacuuming, we release any pin we may
883  * hold on the visibility map page. This isn't necessary for
884  * correctness, but we do it anyway to avoid holding the pin
885  * across a lengthy, unrelated operation.
886  */
887  if (BufferIsValid(vmbuffer))
888  {
889  ReleaseBuffer(vmbuffer);
890  vmbuffer = InvalidBuffer;
891  }
892 
893  /* Perform a round of index and heap vacuuming */
894  vacrel->consider_bypass_optimization = false;
895  lazy_vacuum(vacrel);
896 
897  /*
898  * Vacuum the Free Space Map to make newly-freed space visible on
899  * upper-level FSM pages. Note we have not yet processed blkno.
900  */
901  FreeSpaceMapVacuumRange(vacrel->rel, next_fsm_block_to_vacuum,
902  blkno);
903  next_fsm_block_to_vacuum = blkno;
904 
905  /* Report that we are once again scanning the heap */
908  }
909 
910  /*
911  * Pin the visibility map page in case we need to mark the page
912  * all-visible. In most cases this will be very cheap, because we'll
913  * already have the correct page pinned anyway.
914  */
915  visibilitymap_pin(vacrel->rel, blkno, &vmbuffer);
916 
917  buf = ReadBufferExtended(vacrel->rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
918  vacrel->bstrategy);
919  page = BufferGetPage(buf);
920 
921  /*
922  * We need a buffer cleanup lock to prune HOT chains and defragment
923  * the page in lazy_scan_prune. But when it's not possible to acquire
924  * a cleanup lock right away, we may be able to settle for reduced
925  * processing using lazy_scan_noprune.
926  */
927  got_cleanup_lock = ConditionalLockBufferForCleanup(buf);
928 
929  if (!got_cleanup_lock)
931 
932  /* Check for new or empty pages before lazy_scan_[no]prune call */
933  if (lazy_scan_new_or_empty(vacrel, buf, blkno, page, !got_cleanup_lock,
934  vmbuffer))
935  {
936  /* Processed as new/empty page (lock and pin released) */
937  continue;
938  }
939 
940  /*
941  * If we didn't get the cleanup lock, we can still collect LP_DEAD
942  * items in the dead_items area for later vacuuming, count live and
943  * recently dead tuples for vacuum logging, and determine if this
944  * block could later be truncated. If we encounter any xid/mxids that
945  * require advancing the relfrozenxid/relminxid, we'll have to wait
946  * for a cleanup lock and call lazy_scan_prune().
947  */
948  if (!got_cleanup_lock &&
949  !lazy_scan_noprune(vacrel, buf, blkno, page, &has_lpdead_items))
950  {
951  /*
952  * lazy_scan_noprune could not do all required processing. Wait
953  * for a cleanup lock, and call lazy_scan_prune in the usual way.
954  */
955  Assert(vacrel->aggressive);
958  got_cleanup_lock = true;
959  }
960 
961  /*
962  * If we have a cleanup lock, we must now prune, freeze, and count
963  * tuples. We may have acquired the cleanup lock originally, or we may
964  * have gone back and acquired it after lazy_scan_noprune() returned
965  * false. Either way, the page hasn't been processed yet.
966  *
967  * Like lazy_scan_noprune(), lazy_scan_prune() will count
968  * recently_dead_tuples and live tuples for vacuum logging, determine
969  * if the block can later be truncated, and accumulate the details of
970  * remaining LP_DEAD line pointers on the page into dead_items. These
971  * dead items include those pruned by lazy_scan_prune() as well as
972  * line pointers previously marked LP_DEAD.
973  */
974  if (got_cleanup_lock)
975  lazy_scan_prune(vacrel, buf, blkno, page,
976  vmbuffer, all_visible_according_to_vm,
977  &has_lpdead_items);
978 
979  /*
980  * Now drop the buffer lock and, potentially, update the FSM.
981  *
982  * Our goal is to update the freespace map the last time we touch the
983  * page. If we'll process a block in the second pass, we may free up
984  * additional space on the page, so it is better to update the FSM
985  * after the second pass. If the relation has no indexes, or if index
986  * vacuuming is disabled, there will be no second heap pass; if this
987  * particular page has no dead items, the second heap pass will not
988  * touch this page. So, in those cases, update the FSM now.
989  *
990  * Note: In corner cases, it's possible to miss updating the FSM
991  * entirely. If index vacuuming is currently enabled, we'll skip the
992  * FSM update now. But if failsafe mode is later activated, or there
993  * are so few dead tuples that index vacuuming is bypassed, there will
994  * also be no opportunity to update the FSM later, because we'll never
995  * revisit this page. Since updating the FSM is desirable but not
996  * absolutely required, that's OK.
997  */
998  if (vacrel->nindexes == 0
999  || !vacrel->do_index_vacuuming
1000  || !has_lpdead_items)
1001  {
1002  Size freespace = PageGetHeapFreeSpace(page);
1003 
1005  RecordPageWithFreeSpace(vacrel->rel, blkno, freespace);
1006 
1007  /*
1008  * Periodically perform FSM vacuuming to make newly-freed space
1009  * visible on upper FSM pages. This is done after vacuuming if the
1010  * table has indexes. There will only be newly-freed space if we
1011  * held the cleanup lock and lazy_scan_prune() was called.
1012  */
1013  if (got_cleanup_lock && vacrel->nindexes == 0 && has_lpdead_items &&
1014  blkno - next_fsm_block_to_vacuum >= VACUUM_FSM_EVERY_PAGES)
1015  {
1016  FreeSpaceMapVacuumRange(vacrel->rel, next_fsm_block_to_vacuum,
1017  blkno);
1018  next_fsm_block_to_vacuum = blkno;
1019  }
1020  }
1021  else
1023  }
1024 
1025  vacrel->blkno = InvalidBlockNumber;
1026  if (BufferIsValid(vmbuffer))
1027  ReleaseBuffer(vmbuffer);
1028 
1029  /* report that everything is now scanned */
1031 
1032  /* now we can compute the new value for pg_class.reltuples */
1033  vacrel->new_live_tuples = vac_estimate_reltuples(vacrel->rel, rel_pages,
1034  vacrel->scanned_pages,
1035  vacrel->live_tuples);
1036 
1037  /*
1038  * Also compute the total number of surviving heap entries. In the
1039  * (unlikely) scenario that new_live_tuples is -1, take it as zero.
1040  */
1041  vacrel->new_rel_tuples =
1042  Max(vacrel->new_live_tuples, 0) + vacrel->recently_dead_tuples +
1043  vacrel->missed_dead_tuples;
1044 
1045  /*
1046  * Do index vacuuming (call each index's ambulkdelete routine), then do
1047  * related heap vacuuming
1048  */
1049  if (dead_items_info->num_items > 0)
1050  lazy_vacuum(vacrel);
1051 
1052  /*
1053  * Vacuum the remainder of the Free Space Map. We must do this whether or
1054  * not there were indexes, and whether or not we bypassed index vacuuming.
1055  */
1056  if (blkno > next_fsm_block_to_vacuum)
1057  FreeSpaceMapVacuumRange(vacrel->rel, next_fsm_block_to_vacuum, blkno);
1058 
1059  /* report all blocks vacuumed */
1061 
1062  /* Do final index cleanup (call each index's amvacuumcleanup routine) */
1063  if (vacrel->nindexes > 0 && vacrel->do_index_cleanup)
1064  lazy_cleanup_all_indexes(vacrel);
1065 }
1066 
1067 /*
1068  * heap_vac_scan_next_block() -- get next block for vacuum to process
1069  *
1070  * lazy_scan_heap() calls here every time it needs to get the next block to
1071  * prune and vacuum. The function uses the visibility map, vacuum options,
1072  * and various thresholds to skip blocks which do not need to be processed and
1073  * sets blkno to the next block to process.
1074  *
1075  * The block number and visibility status of the next block to process are set
1076  * in *blkno and *all_visible_according_to_vm. The return value is false if
1077  * there are no further blocks to process.
1078  *
1079  * vacrel is an in/out parameter here. Vacuum options and information about
1080  * the relation are read. vacrel->skippedallvis is set if we skip a block
1081  * that's all-visible but not all-frozen, to ensure that we don't update
1082  * relfrozenxid in that case. vacrel also holds information about the next
1083  * unskippable block, as bookkeeping for this function.
1084  */
1085 static bool
1087  bool *all_visible_according_to_vm)
1088 {
1089  BlockNumber next_block;
1090 
1091  /* relies on InvalidBlockNumber + 1 overflowing to 0 on first call */
1092  next_block = vacrel->current_block + 1;
1093 
1094  /* Have we reached the end of the relation? */
1095  if (next_block >= vacrel->rel_pages)
1096  {
1098  {
1101  }
1102  *blkno = vacrel->rel_pages;
1103  return false;
1104  }
1105 
1106  /*
1107  * We must be in one of the three following states:
1108  */
1109  if (next_block > vacrel->next_unskippable_block ||
1111  {
1112  /*
1113  * 1. We have just processed an unskippable block (or we're at the
1114  * beginning of the scan). Find the next unskippable block using the
1115  * visibility map.
1116  */
1117  bool skipsallvis;
1118 
1119  find_next_unskippable_block(vacrel, &skipsallvis);
1120 
1121  /*
1122  * We now know the next block that we must process. It can be the
1123  * next block after the one we just processed, or something further
1124  * ahead. If it's further ahead, we can jump to it, but we choose to
1125  * do so only if we can skip at least SKIP_PAGES_THRESHOLD consecutive
1126  * pages. Since we're reading sequentially, the OS should be doing
1127  * readahead for us, so there's no gain in skipping a page now and
1128  * then. Skipping such a range might even discourage sequential
1129  * detection.
1130  *
1131  * This test also enables more frequent relfrozenxid advancement
1132  * during non-aggressive VACUUMs. If the range has any all-visible
1133  * pages then skipping makes updating relfrozenxid unsafe, which is a
1134  * real downside.
1135  */
1136  if (vacrel->next_unskippable_block - next_block >= SKIP_PAGES_THRESHOLD)
1137  {
1138  next_block = vacrel->next_unskippable_block;
1139  if (skipsallvis)
1140  vacrel->skippedallvis = true;
1141  }
1142  }
1143 
1144  /* Now we must be in one of the two remaining states: */
1145  if (next_block < vacrel->next_unskippable_block)
1146  {
1147  /*
1148  * 2. We are processing a range of blocks that we could have skipped
1149  * but chose not to. We know that they are all-visible in the VM,
1150  * otherwise they would've been unskippable.
1151  */
1152  *blkno = vacrel->current_block = next_block;
1153  *all_visible_according_to_vm = true;
1154  return true;
1155  }
1156  else
1157  {
1158  /*
1159  * 3. We reached the next unskippable block. Process it. On next
1160  * iteration, we will be back in state 1.
1161  */
1162  Assert(next_block == vacrel->next_unskippable_block);
1163 
1164  *blkno = vacrel->current_block = next_block;
1165  *all_visible_according_to_vm = vacrel->next_unskippable_allvis;
1166  return true;
1167  }
1168 }
1169 
1170 /*
1171  * Find the next unskippable block in a vacuum scan using the visibility map.
1172  * The next unskippable block and its visibility information is updated in
1173  * vacrel.
1174  *
1175  * Note: our opinion of which blocks can be skipped can go stale immediately.
1176  * It's okay if caller "misses" a page whose all-visible or all-frozen marking
1177  * was concurrently cleared, though. All that matters is that caller scan all
1178  * pages whose tuples might contain XIDs < OldestXmin, or MXIDs < OldestMxact.
1179  * (Actually, non-aggressive VACUUMs can choose to skip all-visible pages with
1180  * older XIDs/MXIDs. The *skippedallvis flag will be set here when the choice
1181  * to skip such a range is actually made, making everything safe.)
1182  */
1183 static void
1184 find_next_unskippable_block(LVRelState *vacrel, bool *skipsallvis)
1185 {
1186  BlockNumber rel_pages = vacrel->rel_pages;
1187  BlockNumber next_unskippable_block = vacrel->next_unskippable_block + 1;
1188  Buffer next_unskippable_vmbuffer = vacrel->next_unskippable_vmbuffer;
1189  bool next_unskippable_allvis;
1190 
1191  *skipsallvis = false;
1192 
1193  for (;;)
1194  {
1195  uint8 mapbits = visibilitymap_get_status(vacrel->rel,
1196  next_unskippable_block,
1197  &next_unskippable_vmbuffer);
1198 
1199  next_unskippable_allvis = (mapbits & VISIBILITYMAP_ALL_VISIBLE) != 0;
1200 
1201  /*
1202  * A block is unskippable if it is not all visible according to the
1203  * visibility map.
1204  */
1205  if (!next_unskippable_allvis)
1206  {
1207  Assert((mapbits & VISIBILITYMAP_ALL_FROZEN) == 0);
1208  break;
1209  }
1210 
1211  /*
1212  * Caller must scan the last page to determine whether it has tuples
1213  * (caller must have the opportunity to set vacrel->nonempty_pages).
1214  * This rule avoids having lazy_truncate_heap() take access-exclusive
1215  * lock on rel to attempt a truncation that fails anyway, just because
1216  * there are tuples on the last page (it is likely that there will be
1217  * tuples on other nearby pages as well, but those can be skipped).
1218  *
1219  * Implement this by always treating the last block as unsafe to skip.
1220  */
1221  if (next_unskippable_block == rel_pages - 1)
1222  break;
1223 
1224  /* DISABLE_PAGE_SKIPPING makes all skipping unsafe */
1225  if (!vacrel->skipwithvm)
1226  break;
1227 
1228  /*
1229  * Aggressive VACUUM caller can't skip pages just because they are
1230  * all-visible. They may still skip all-frozen pages, which can't
1231  * contain XIDs < OldestXmin (XIDs that aren't already frozen by now).
1232  */
1233  if ((mapbits & VISIBILITYMAP_ALL_FROZEN) == 0)
1234  {
1235  if (vacrel->aggressive)
1236  break;
1237 
1238  /*
1239  * All-visible block is safe to skip in non-aggressive case. But
1240  * remember that the final range contains such a block for later.
1241  */
1242  *skipsallvis = true;
1243  }
1244 
1245  next_unskippable_block++;
1246  }
1247 
1248  /* write the local variables back to vacrel */
1249  vacrel->next_unskippable_block = next_unskippable_block;
1250  vacrel->next_unskippable_allvis = next_unskippable_allvis;
1251  vacrel->next_unskippable_vmbuffer = next_unskippable_vmbuffer;
1252 }
1253 
1254 /*
1255  * lazy_scan_new_or_empty() -- lazy_scan_heap() new/empty page handling.
1256  *
1257  * Must call here to handle both new and empty pages before calling
1258  * lazy_scan_prune or lazy_scan_noprune, since they're not prepared to deal
1259  * with new or empty pages.
1260  *
1261  * It's necessary to consider new pages as a special case, since the rules for
1262  * maintaining the visibility map and FSM with empty pages are a little
1263  * different (though new pages can be truncated away during rel truncation).
1264  *
1265  * Empty pages are not really a special case -- they're just heap pages that
1266  * have no allocated tuples (including even LP_UNUSED items). You might
1267  * wonder why we need to handle them here all the same. It's only necessary
1268  * because of a corner-case involving a hard crash during heap relation
1269  * extension. If we ever make relation-extension crash safe, then it should
1270  * no longer be necessary to deal with empty pages here (or new pages, for
1271  * that matter).
1272  *
1273  * Caller must hold at least a shared lock. We might need to escalate the
1274  * lock in that case, so the type of lock caller holds needs to be specified
1275  * using 'sharelock' argument.
1276  *
1277  * Returns false in common case where caller should go on to call
1278  * lazy_scan_prune (or lazy_scan_noprune). Otherwise returns true, indicating
1279  * that lazy_scan_heap is done processing the page, releasing lock on caller's
1280  * behalf.
1281  */
1282 static bool
1284  Page page, bool sharelock, Buffer vmbuffer)
1285 {
1286  Size freespace;
1287 
1288  if (PageIsNew(page))
1289  {
1290  /*
1291  * All-zeroes pages can be left over if either a backend extends the
1292  * relation by a single page, but crashes before the newly initialized
1293  * page has been written out, or when bulk-extending the relation
1294  * (which creates a number of empty pages at the tail end of the
1295  * relation), and then enters them into the FSM.
1296  *
1297  * Note we do not enter the page into the visibilitymap. That has the
1298  * downside that we repeatedly visit this page in subsequent vacuums,
1299  * but otherwise we'll never discover the space on a promoted standby.
1300  * The harm of repeated checking ought to normally not be too bad. The
1301  * space usually should be used at some point, otherwise there
1302  * wouldn't be any regular vacuums.
1303  *
1304  * Make sure these pages are in the FSM, to ensure they can be reused.
1305  * Do that by testing if there's any space recorded for the page. If
1306  * not, enter it. We do so after releasing the lock on the heap page,
1307  * the FSM is approximate, after all.
1308  */
1310 
1311  if (GetRecordedFreeSpace(vacrel->rel, blkno) == 0)
1312  {
1313  freespace = BLCKSZ - SizeOfPageHeaderData;
1314 
1315  RecordPageWithFreeSpace(vacrel->rel, blkno, freespace);
1316  }
1317 
1318  return true;
1319  }
1320 
1321  if (PageIsEmpty(page))
1322  {
1323  /*
1324  * It seems likely that caller will always be able to get a cleanup
1325  * lock on an empty page. But don't take any chances -- escalate to
1326  * an exclusive lock (still don't need a cleanup lock, though).
1327  */
1328  if (sharelock)
1329  {
1332 
1333  if (!PageIsEmpty(page))
1334  {
1335  /* page isn't new or empty -- keep lock and pin for now */
1336  return false;
1337  }
1338  }
1339  else
1340  {
1341  /* Already have a full cleanup lock (which is more than enough) */
1342  }
1343 
1344  /*
1345  * Unlike new pages, empty pages are always set all-visible and
1346  * all-frozen.
1347  */
1348  if (!PageIsAllVisible(page))
1349  {
1351 
1352  /* mark buffer dirty before writing a WAL record */
1354 
1355  /*
1356  * It's possible that another backend has extended the heap,
1357  * initialized the page, and then failed to WAL-log the page due
1358  * to an ERROR. Since heap extension is not WAL-logged, recovery
1359  * might try to replay our record setting the page all-visible and
1360  * find that the page isn't initialized, which will cause a PANIC.
1361  * To prevent that, check whether the page has been previously
1362  * WAL-logged, and if not, do that now.
1363  */
1364  if (RelationNeedsWAL(vacrel->rel) &&
1365  PageGetLSN(page) == InvalidXLogRecPtr)
1366  log_newpage_buffer(buf, true);
1367 
1368  PageSetAllVisible(page);
1369  visibilitymap_set(vacrel->rel, blkno, buf, InvalidXLogRecPtr,
1370  vmbuffer, InvalidTransactionId,
1372  END_CRIT_SECTION();
1373  }
1374 
1375  freespace = PageGetHeapFreeSpace(page);
1377  RecordPageWithFreeSpace(vacrel->rel, blkno, freespace);
1378  return true;
1379  }
1380 
1381  /* page isn't new or empty -- keep lock and pin */
1382  return false;
1383 }
1384 
1385 /* qsort comparator for sorting OffsetNumbers */
1386 static int
1387 cmpOffsetNumbers(const void *a, const void *b)
1388 {
1389  return pg_cmp_u16(*(const OffsetNumber *) a, *(const OffsetNumber *) b);
1390 }
1391 
1392 /*
1393  * lazy_scan_prune() -- lazy_scan_heap() pruning and freezing.
1394  *
1395  * Caller must hold pin and buffer cleanup lock on the buffer.
1396  *
1397  * vmbuffer is the buffer containing the VM block with visibility information
1398  * for the heap block, blkno. all_visible_according_to_vm is the saved
1399  * visibility status of the heap block looked up earlier by the caller. We
1400  * won't rely entirely on this status, as it may be out of date.
1401  *
1402  * *has_lpdead_items is set to true or false depending on whether, upon return
1403  * from this function, any LP_DEAD items are still present on the page.
1404  */
1405 static void
1407  Buffer buf,
1408  BlockNumber blkno,
1409  Page page,
1410  Buffer vmbuffer,
1411  bool all_visible_according_to_vm,
1412  bool *has_lpdead_items)
1413 {
1414  Relation rel = vacrel->rel;
1415  PruneFreezeResult presult;
1416  int prune_options = 0;
1417 
1418  Assert(BufferGetBlockNumber(buf) == blkno);
1419 
1420  /*
1421  * Prune all HOT-update chains and potentially freeze tuples on this page.
1422  *
1423  * If the relation has no indexes, we can immediately mark would-be dead
1424  * items LP_UNUSED.
1425  *
1426  * The number of tuples removed from the page is returned in
1427  * presult.ndeleted. It should not be confused with presult.lpdead_items;
1428  * presult.lpdead_items's final value can be thought of as the number of
1429  * tuples that were deleted from indexes.
1430  *
1431  * We will update the VM after collecting LP_DEAD items and freezing
1432  * tuples. Pruning will have determined whether or not the page is
1433  * all-visible.
1434  */
1435  prune_options = HEAP_PAGE_PRUNE_FREEZE;
1436  if (vacrel->nindexes == 0)
1437  prune_options |= HEAP_PAGE_PRUNE_MARK_UNUSED_NOW;
1438 
1439  heap_page_prune_and_freeze(rel, buf, vacrel->vistest, prune_options,
1440  &vacrel->cutoffs, &presult, PRUNE_VACUUM_SCAN,
1441  &vacrel->offnum,
1442  &vacrel->NewRelfrozenXid, &vacrel->NewRelminMxid);
1443 
1446 
1447  if (presult.nfrozen > 0)
1448  {
1449  /*
1450  * We don't increment the frozen_pages instrumentation counter when
1451  * nfrozen == 0, since it only counts pages with newly frozen tuples
1452  * (don't confuse that with pages newly set all-frozen in VM).
1453  */
1454  vacrel->frozen_pages++;
1455  }
1456 
1457  /*
1458  * VACUUM will call heap_page_is_all_visible() during the second pass over
1459  * the heap to determine all_visible and all_frozen for the page -- this
1460  * is a specialized version of the logic from this function. Now that
1461  * we've finished pruning and freezing, make sure that we're in total
1462  * agreement with heap_page_is_all_visible() using an assertion.
1463  */
1464 #ifdef USE_ASSERT_CHECKING
1465  /* Note that all_frozen value does not matter when !all_visible */
1466  if (presult.all_visible)
1467  {
1468  TransactionId debug_cutoff;
1469  bool debug_all_frozen;
1470 
1471  Assert(presult.lpdead_items == 0);
1472 
1473  if (!heap_page_is_all_visible(vacrel, buf,
1474  &debug_cutoff, &debug_all_frozen))
1475  Assert(false);
1476 
1477  Assert(presult.all_frozen == debug_all_frozen);
1478 
1479  Assert(!TransactionIdIsValid(debug_cutoff) ||
1480  debug_cutoff == presult.vm_conflict_horizon);
1481  }
1482 #endif
1483 
1484  /*
1485  * Now save details of the LP_DEAD items from the page in vacrel
1486  */
1487  if (presult.lpdead_items > 0)
1488  {
1489  vacrel->lpdead_item_pages++;
1490 
1491  /*
1492  * deadoffsets are collected incrementally in
1493  * heap_page_prune_and_freeze() as each dead line pointer is recorded,
1494  * with an indeterminate order, but dead_items_add requires them to be
1495  * sorted.
1496  */
1497  qsort(presult.deadoffsets, presult.lpdead_items, sizeof(OffsetNumber),
1499 
1500  dead_items_add(vacrel, blkno, presult.deadoffsets, presult.lpdead_items);
1501  }
1502 
1503  /* Finally, add page-local counts to whole-VACUUM counts */
1504  vacrel->tuples_deleted += presult.ndeleted;
1505  vacrel->tuples_frozen += presult.nfrozen;
1506  vacrel->lpdead_items += presult.lpdead_items;
1507  vacrel->live_tuples += presult.live_tuples;
1508  vacrel->recently_dead_tuples += presult.recently_dead_tuples;
1509 
1510  /* Can't truncate this page */
1511  if (presult.hastup)
1512  vacrel->nonempty_pages = blkno + 1;
1513 
1514  /* Did we find LP_DEAD items? */
1515  *has_lpdead_items = (presult.lpdead_items > 0);
1516 
1517  Assert(!presult.all_visible || !(*has_lpdead_items));
1518 
1519  /*
1520  * Handle setting visibility map bit based on information from the VM (as
1521  * of last heap_vac_scan_next_block() call), and from all_visible and
1522  * all_frozen variables
1523  */
1524  if (!all_visible_according_to_vm && presult.all_visible)
1525  {
1527 
1528  if (presult.all_frozen)
1529  {
1531  flags |= VISIBILITYMAP_ALL_FROZEN;
1532  }
1533 
1534  /*
1535  * It should never be the case that the visibility map page is set
1536  * while the page-level bit is clear, but the reverse is allowed (if
1537  * checksums are not enabled). Regardless, set both bits so that we
1538  * get back in sync.
1539  *
1540  * NB: If the heap page is all-visible but the VM bit is not set, we
1541  * don't need to dirty the heap page. However, if checksums are
1542  * enabled, we do need to make sure that the heap page is dirtied
1543  * before passing it to visibilitymap_set(), because it may be logged.
1544  * Given that this situation should only happen in rare cases after a
1545  * crash, it is not worth optimizing.
1546  */
1547  PageSetAllVisible(page);
1549  visibilitymap_set(vacrel->rel, blkno, buf, InvalidXLogRecPtr,
1550  vmbuffer, presult.vm_conflict_horizon,
1551  flags);
1552  }
1553 
1554  /*
1555  * As of PostgreSQL 9.2, the visibility map bit should never be set if the
1556  * page-level bit is clear. However, it's possible that the bit got
1557  * cleared after heap_vac_scan_next_block() was called, so we must recheck
1558  * with buffer lock before concluding that the VM is corrupt.
1559  */
1560  else if (all_visible_according_to_vm && !PageIsAllVisible(page) &&
1561  visibilitymap_get_status(vacrel->rel, blkno, &vmbuffer) != 0)
1562  {
1563  elog(WARNING, "page is not marked all-visible but visibility map bit is set in relation \"%s\" page %u",
1564  vacrel->relname, blkno);
1565  visibilitymap_clear(vacrel->rel, blkno, vmbuffer,
1567  }
1568 
1569  /*
1570  * It's possible for the value returned by
1571  * GetOldestNonRemovableTransactionId() to move backwards, so it's not
1572  * wrong for us to see tuples that appear to not be visible to everyone
1573  * yet, while PD_ALL_VISIBLE is already set. The real safe xmin value
1574  * never moves backwards, but GetOldestNonRemovableTransactionId() is
1575  * conservative and sometimes returns a value that's unnecessarily small,
1576  * so if we see that contradiction it just means that the tuples that we
1577  * think are not visible to everyone yet actually are, and the
1578  * PD_ALL_VISIBLE flag is correct.
1579  *
1580  * There should never be LP_DEAD items on a page with PD_ALL_VISIBLE set,
1581  * however.
1582  */
1583  else if (presult.lpdead_items > 0 && PageIsAllVisible(page))
1584  {
1585  elog(WARNING, "page containing LP_DEAD items is marked as all-visible in relation \"%s\" page %u",
1586  vacrel->relname, blkno);
1587  PageClearAllVisible(page);
1589  visibilitymap_clear(vacrel->rel, blkno, vmbuffer,
1591  }
1592 
1593  /*
1594  * If the all-visible page is all-frozen but not marked as such yet, mark
1595  * it as all-frozen. Note that all_frozen is only valid if all_visible is
1596  * true, so we must check both all_visible and all_frozen.
1597  */
1598  else if (all_visible_according_to_vm && presult.all_visible &&
1599  presult.all_frozen && !VM_ALL_FROZEN(vacrel->rel, blkno, &vmbuffer))
1600  {
1601  /*
1602  * Avoid relying on all_visible_according_to_vm as a proxy for the
1603  * page-level PD_ALL_VISIBLE bit being set, since it might have become
1604  * stale -- even when all_visible is set
1605  */
1606  if (!PageIsAllVisible(page))
1607  {
1608  PageSetAllVisible(page);
1610  }
1611 
1612  /*
1613  * Set the page all-frozen (and all-visible) in the VM.
1614  *
1615  * We can pass InvalidTransactionId as our cutoff_xid, since a
1616  * snapshotConflictHorizon sufficient to make everything safe for REDO
1617  * was logged when the page's tuples were frozen.
1618  */
1620  visibilitymap_set(vacrel->rel, blkno, buf, InvalidXLogRecPtr,
1621  vmbuffer, InvalidTransactionId,
1624  }
1625 }
1626 
1627 /*
1628  * lazy_scan_noprune() -- lazy_scan_prune() without pruning or freezing
1629  *
1630  * Caller need only hold a pin and share lock on the buffer, unlike
1631  * lazy_scan_prune, which requires a full cleanup lock. While pruning isn't
1632  * performed here, it's quite possible that an earlier opportunistic pruning
1633  * operation left LP_DEAD items behind. We'll at least collect any such items
1634  * in dead_items for removal from indexes.
1635  *
1636  * For aggressive VACUUM callers, we may return false to indicate that a full
1637  * cleanup lock is required for processing by lazy_scan_prune. This is only
1638  * necessary when the aggressive VACUUM needs to freeze some tuple XIDs from
1639  * one or more tuples on the page. We always return true for non-aggressive
1640  * callers.
1641  *
1642  * If this function returns true, *has_lpdead_items gets set to true or false
1643  * depending on whether, upon return from this function, any LP_DEAD items are
1644  * present on the page. If this function returns false, *has_lpdead_items
1645  * is not updated.
1646  */
1647 static bool
1649  Buffer buf,
1650  BlockNumber blkno,
1651  Page page,
1652  bool *has_lpdead_items)
1653 {
1654  OffsetNumber offnum,
1655  maxoff;
1656  int lpdead_items,
1657  live_tuples,
1658  recently_dead_tuples,
1659  missed_dead_tuples;
1660  bool hastup;
1661  HeapTupleHeader tupleheader;
1662  TransactionId NoFreezePageRelfrozenXid = vacrel->NewRelfrozenXid;
1663  MultiXactId NoFreezePageRelminMxid = vacrel->NewRelminMxid;
1664  OffsetNumber deadoffsets[MaxHeapTuplesPerPage];
1665 
1666  Assert(BufferGetBlockNumber(buf) == blkno);
1667 
1668  hastup = false; /* for now */
1669 
1670  lpdead_items = 0;
1671  live_tuples = 0;
1672  recently_dead_tuples = 0;
1673  missed_dead_tuples = 0;
1674 
1675  maxoff = PageGetMaxOffsetNumber(page);
1676  for (offnum = FirstOffsetNumber;
1677  offnum <= maxoff;
1678  offnum = OffsetNumberNext(offnum))
1679  {
1680  ItemId itemid;
1681  HeapTupleData tuple;
1682 
1683  vacrel->offnum = offnum;
1684  itemid = PageGetItemId(page, offnum);
1685 
1686  if (!ItemIdIsUsed(itemid))
1687  continue;
1688 
1689  if (ItemIdIsRedirected(itemid))
1690  {
1691  hastup = true;
1692  continue;
1693  }
1694 
1695  if (ItemIdIsDead(itemid))
1696  {
1697  /*
1698  * Deliberately don't set hastup=true here. See same point in
1699  * lazy_scan_prune for an explanation.
1700  */
1701  deadoffsets[lpdead_items++] = offnum;
1702  continue;
1703  }
1704 
1705  hastup = true; /* page prevents rel truncation */
1706  tupleheader = (HeapTupleHeader) PageGetItem(page, itemid);
1707  if (heap_tuple_should_freeze(tupleheader, &vacrel->cutoffs,
1708  &NoFreezePageRelfrozenXid,
1709  &NoFreezePageRelminMxid))
1710  {
1711  /* Tuple with XID < FreezeLimit (or MXID < MultiXactCutoff) */
1712  if (vacrel->aggressive)
1713  {
1714  /*
1715  * Aggressive VACUUMs must always be able to advance rel's
1716  * relfrozenxid to a value >= FreezeLimit (and be able to
1717  * advance rel's relminmxid to a value >= MultiXactCutoff).
1718  * The ongoing aggressive VACUUM won't be able to do that
1719  * unless it can freeze an XID (or MXID) from this tuple now.
1720  *
1721  * The only safe option is to have caller perform processing
1722  * of this page using lazy_scan_prune. Caller might have to
1723  * wait a while for a cleanup lock, but it can't be helped.
1724  */
1725  vacrel->offnum = InvalidOffsetNumber;
1726  return false;
1727  }
1728 
1729  /*
1730  * Non-aggressive VACUUMs are under no obligation to advance
1731  * relfrozenxid (even by one XID). We can be much laxer here.
1732  *
1733  * Currently we always just accept an older final relfrozenxid
1734  * and/or relminmxid value. We never make caller wait or work a
1735  * little harder, even when it likely makes sense to do so.
1736  */
1737  }
1738 
1739  ItemPointerSet(&(tuple.t_self), blkno, offnum);
1740  tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
1741  tuple.t_len = ItemIdGetLength(itemid);
1742  tuple.t_tableOid = RelationGetRelid(vacrel->rel);
1743 
1744  switch (HeapTupleSatisfiesVacuum(&tuple, vacrel->cutoffs.OldestXmin,
1745  buf))
1746  {
1748  case HEAPTUPLE_LIVE:
1749 
1750  /*
1751  * Count both cases as live, just like lazy_scan_prune
1752  */
1753  live_tuples++;
1754 
1755  break;
1756  case HEAPTUPLE_DEAD:
1757 
1758  /*
1759  * There is some useful work for pruning to do, that won't be
1760  * done due to failure to get a cleanup lock.
1761  */
1762  missed_dead_tuples++;
1763  break;
1765 
1766  /*
1767  * Count in recently_dead_tuples, just like lazy_scan_prune
1768  */
1769  recently_dead_tuples++;
1770  break;
1772 
1773  /*
1774  * Do not count these rows as live, just like lazy_scan_prune
1775  */
1776  break;
1777  default:
1778  elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
1779  break;
1780  }
1781  }
1782 
1783  vacrel->offnum = InvalidOffsetNumber;
1784 
1785  /*
1786  * By here we know for sure that caller can put off freezing and pruning
1787  * this particular page until the next VACUUM. Remember its details now.
1788  * (lazy_scan_prune expects a clean slate, so we have to do this last.)
1789  */
1790  vacrel->NewRelfrozenXid = NoFreezePageRelfrozenXid;
1791  vacrel->NewRelminMxid = NoFreezePageRelminMxid;
1792 
1793  /* Save any LP_DEAD items found on the page in dead_items */
1794  if (vacrel->nindexes == 0)
1795  {
1796  /* Using one-pass strategy (since table has no indexes) */
1797  if (lpdead_items > 0)
1798  {
1799  /*
1800  * Perfunctory handling for the corner case where a single pass
1801  * strategy VACUUM cannot get a cleanup lock, and it turns out
1802  * that there is one or more LP_DEAD items: just count the LP_DEAD
1803  * items as missed_dead_tuples instead. (This is a bit dishonest,
1804  * but it beats having to maintain specialized heap vacuuming code
1805  * forever, for vanishingly little benefit.)
1806  */
1807  hastup = true;
1808  missed_dead_tuples += lpdead_items;
1809  }
1810  }
1811  else if (lpdead_items > 0)
1812  {
1813  /*
1814  * Page has LP_DEAD items, and so any references/TIDs that remain in
1815  * indexes will be deleted during index vacuuming (and then marked
1816  * LP_UNUSED in the heap)
1817  */
1818  vacrel->lpdead_item_pages++;
1819 
1820  dead_items_add(vacrel, blkno, deadoffsets, lpdead_items);
1821 
1822  vacrel->lpdead_items += lpdead_items;
1823  }
1824 
1825  /*
1826  * Finally, add relevant page-local counts to whole-VACUUM counts
1827  */
1828  vacrel->live_tuples += live_tuples;
1829  vacrel->recently_dead_tuples += recently_dead_tuples;
1830  vacrel->missed_dead_tuples += missed_dead_tuples;
1831  if (missed_dead_tuples > 0)
1832  vacrel->missed_dead_pages++;
1833 
1834  /* Can't truncate this page */
1835  if (hastup)
1836  vacrel->nonempty_pages = blkno + 1;
1837 
1838  /* Did we find LP_DEAD items? */
1839  *has_lpdead_items = (lpdead_items > 0);
1840 
1841  /* Caller won't need to call lazy_scan_prune with same page */
1842  return true;
1843 }
1844 
1845 /*
1846  * Main entry point for index vacuuming and heap vacuuming.
1847  *
1848  * Removes items collected in dead_items from table's indexes, then marks the
1849  * same items LP_UNUSED in the heap. See the comments above lazy_scan_heap
1850  * for full details.
1851  *
1852  * Also empties dead_items, freeing up space for later TIDs.
1853  *
1854  * We may choose to bypass index vacuuming at this point, though only when the
1855  * ongoing VACUUM operation will definitely only have one index scan/round of
1856  * index vacuuming.
1857  */
1858 static void
1860 {
1861  bool bypass;
1862 
1863  /* Should not end up here with no indexes */
1864  Assert(vacrel->nindexes > 0);
1865  Assert(vacrel->lpdead_item_pages > 0);
1866 
1867  if (!vacrel->do_index_vacuuming)
1868  {
1869  Assert(!vacrel->do_index_cleanup);
1870  dead_items_reset(vacrel);
1871  return;
1872  }
1873 
1874  /*
1875  * Consider bypassing index vacuuming (and heap vacuuming) entirely.
1876  *
1877  * We currently only do this in cases where the number of LP_DEAD items
1878  * for the entire VACUUM operation is close to zero. This avoids sharp
1879  * discontinuities in the duration and overhead of successive VACUUM
1880  * operations that run against the same table with a fixed workload.
1881  * Ideally, successive VACUUM operations will behave as if there are
1882  * exactly zero LP_DEAD items in cases where there are close to zero.
1883  *
1884  * This is likely to be helpful with a table that is continually affected
1885  * by UPDATEs that can mostly apply the HOT optimization, but occasionally
1886  * have small aberrations that lead to just a few heap pages retaining
1887  * only one or two LP_DEAD items. This is pretty common; even when the
1888  * DBA goes out of their way to make UPDATEs use HOT, it is practically
1889  * impossible to predict whether HOT will be applied in 100% of cases.
1890  * It's far easier to ensure that 99%+ of all UPDATEs against a table use
1891  * HOT through careful tuning.
1892  */
1893  bypass = false;
1894  if (vacrel->consider_bypass_optimization && vacrel->rel_pages > 0)
1895  {
1896  BlockNumber threshold;
1897 
1898  Assert(vacrel->num_index_scans == 0);
1899  Assert(vacrel->lpdead_items == vacrel->dead_items_info->num_items);
1900  Assert(vacrel->do_index_vacuuming);
1901  Assert(vacrel->do_index_cleanup);
1902 
1903  /*
1904  * This crossover point at which we'll start to do index vacuuming is
1905  * expressed as a percentage of the total number of heap pages in the
1906  * table that are known to have at least one LP_DEAD item. This is
1907  * much more important than the total number of LP_DEAD items, since
1908  * it's a proxy for the number of heap pages whose visibility map bits
1909  * cannot be set on account of bypassing index and heap vacuuming.
1910  *
1911  * We apply one further precautionary test: the space currently used
1912  * to store the TIDs (TIDs that now all point to LP_DEAD items) must
1913  * not exceed 32MB. This limits the risk that we will bypass index
1914  * vacuuming again and again until eventually there is a VACUUM whose
1915  * dead_items space is not CPU cache resident.
1916  *
1917  * We don't take any special steps to remember the LP_DEAD items (such
1918  * as counting them in our final update to the stats system) when the
1919  * optimization is applied. Though the accounting used in analyze.c's
1920  * acquire_sample_rows() will recognize the same LP_DEAD items as dead
1921  * rows in its own stats report, that's okay. The discrepancy should
1922  * be negligible. If this optimization is ever expanded to cover more
1923  * cases then this may need to be reconsidered.
1924  */
1925  threshold = (double) vacrel->rel_pages * BYPASS_THRESHOLD_PAGES;
1926  bypass = (vacrel->lpdead_item_pages < threshold &&
1927  (TidStoreMemoryUsage(vacrel->dead_items) < (32L * 1024L * 1024L)));
1928  }
1929 
1930  if (bypass)
1931  {
1932  /*
1933  * There are almost zero TIDs. Behave as if there were precisely
1934  * zero: bypass index vacuuming, but do index cleanup.
1935  *
1936  * We expect that the ongoing VACUUM operation will finish very
1937  * quickly, so there is no point in considering speeding up as a
1938  * failsafe against wraparound failure. (Index cleanup is expected to
1939  * finish very quickly in cases where there were no ambulkdelete()
1940  * calls.)
1941  */
1942  vacrel->do_index_vacuuming = false;
1943  }
1944  else if (lazy_vacuum_all_indexes(vacrel))
1945  {
1946  /*
1947  * We successfully completed a round of index vacuuming. Do related
1948  * heap vacuuming now.
1949  */
1950  lazy_vacuum_heap_rel(vacrel);
1951  }
1952  else
1953  {
1954  /*
1955  * Failsafe case.
1956  *
1957  * We attempted index vacuuming, but didn't finish a full round/full
1958  * index scan. This happens when relfrozenxid or relminmxid is too
1959  * far in the past.
1960  *
1961  * From this point on the VACUUM operation will do no further index
1962  * vacuuming or heap vacuuming. This VACUUM operation won't end up
1963  * back here again.
1964  */
1966  }
1967 
1968  /*
1969  * Forget the LP_DEAD items that we just vacuumed (or just decided to not
1970  * vacuum)
1971  */
1972  dead_items_reset(vacrel);
1973 }
1974 
1975 /*
1976  * lazy_vacuum_all_indexes() -- Main entry for index vacuuming
1977  *
1978  * Returns true in the common case when all indexes were successfully
1979  * vacuumed. Returns false in rare cases where we determined that the ongoing
1980  * VACUUM operation is at risk of taking too long to finish, leading to
1981  * wraparound failure.
1982  */
1983 static bool
1985 {
1986  bool allindexes = true;
1987  double old_live_tuples = vacrel->rel->rd_rel->reltuples;
1988  const int progress_start_index[] = {
1991  };
1992  const int progress_end_index[] = {
1996  };
1997  int64 progress_start_val[2];
1998  int64 progress_end_val[3];
1999 
2000  Assert(vacrel->nindexes > 0);
2001  Assert(vacrel->do_index_vacuuming);
2002  Assert(vacrel->do_index_cleanup);
2003 
2004  /* Precheck for XID wraparound emergencies */
2005  if (lazy_check_wraparound_failsafe(vacrel))
2006  {
2007  /* Wraparound emergency -- don't even start an index scan */
2008  return false;
2009  }
2010 
2011  /*
2012  * Report that we are now vacuuming indexes and the number of indexes to
2013  * vacuum.
2014  */
2015  progress_start_val[0] = PROGRESS_VACUUM_PHASE_VACUUM_INDEX;
2016  progress_start_val[1] = vacrel->nindexes;
2017  pgstat_progress_update_multi_param(2, progress_start_index, progress_start_val);
2018 
2019  if (!ParallelVacuumIsActive(vacrel))
2020  {
2021  for (int idx = 0; idx < vacrel->nindexes; idx++)
2022  {
2023  Relation indrel = vacrel->indrels[idx];
2024  IndexBulkDeleteResult *istat = vacrel->indstats[idx];
2025 
2026  vacrel->indstats[idx] = lazy_vacuum_one_index(indrel, istat,
2027  old_live_tuples,
2028  vacrel);
2029 
2030  /* Report the number of indexes vacuumed */
2032  idx + 1);
2033 
2034  if (lazy_check_wraparound_failsafe(vacrel))
2035  {
2036  /* Wraparound emergency -- end current index scan */
2037  allindexes = false;
2038  break;
2039  }
2040  }
2041  }
2042  else
2043  {
2044  /* Outsource everything to parallel variant */
2045  parallel_vacuum_bulkdel_all_indexes(vacrel->pvs, old_live_tuples,
2046  vacrel->num_index_scans);
2047 
2048  /*
2049  * Do a postcheck to consider applying wraparound failsafe now. Note
2050  * that parallel VACUUM only gets the precheck and this postcheck.
2051  */
2052  if (lazy_check_wraparound_failsafe(vacrel))
2053  allindexes = false;
2054  }
2055 
2056  /*
2057  * We delete all LP_DEAD items from the first heap pass in all indexes on
2058  * each call here (except calls where we choose to do the failsafe). This
2059  * makes the next call to lazy_vacuum_heap_rel() safe (except in the event
2060  * of the failsafe triggering, which prevents the next call from taking
2061  * place).
2062  */
2063  Assert(vacrel->num_index_scans > 0 ||
2064  vacrel->dead_items_info->num_items == vacrel->lpdead_items);
2065  Assert(allindexes || VacuumFailsafeActive);
2066 
2067  /*
2068  * Increase and report the number of index scans. Also, we reset
2069  * PROGRESS_VACUUM_INDEXES_TOTAL and PROGRESS_VACUUM_INDEXES_PROCESSED.
2070  *
2071  * We deliberately include the case where we started a round of bulk
2072  * deletes that we weren't able to finish due to the failsafe triggering.
2073  */
2074  vacrel->num_index_scans++;
2075  progress_end_val[0] = 0;
2076  progress_end_val[1] = 0;
2077  progress_end_val[2] = vacrel->num_index_scans;
2078  pgstat_progress_update_multi_param(3, progress_end_index, progress_end_val);
2079 
2080  return allindexes;
2081 }
2082 
2083 /*
2084  * lazy_vacuum_heap_rel() -- second pass over the heap for two pass strategy
2085  *
2086  * This routine marks LP_DEAD items in vacrel->dead_items as LP_UNUSED. Pages
2087  * that never had lazy_scan_prune record LP_DEAD items are not visited at all.
2088  *
2089  * We may also be able to truncate the line pointer array of the heap pages we
2090  * visit. If there is a contiguous group of LP_UNUSED items at the end of the
2091  * array, it can be reclaimed as free space. These LP_UNUSED items usually
2092  * start out as LP_DEAD items recorded by lazy_scan_prune (we set items from
2093  * each page to LP_UNUSED, and then consider if it's possible to truncate the
2094  * page's line pointer array).
2095  *
2096  * Note: the reason for doing this as a second pass is we cannot remove the
2097  * tuples until we've removed their index entries, and we want to process
2098  * index entry removal in batches as large as possible.
2099  */
2100 static void
2102 {
2103  BlockNumber vacuumed_pages = 0;
2104  Buffer vmbuffer = InvalidBuffer;
2105  LVSavedErrInfo saved_err_info;
2106  TidStoreIter *iter;
2107  TidStoreIterResult *iter_result;
2108 
2109  Assert(vacrel->do_index_vacuuming);
2110  Assert(vacrel->do_index_cleanup);
2111  Assert(vacrel->num_index_scans > 0);
2112 
2113  /* Report that we are now vacuuming the heap */
2116 
2117  /* Update error traceback information */
2118  update_vacuum_error_info(vacrel, &saved_err_info,
2121 
2122  iter = TidStoreBeginIterate(vacrel->dead_items);
2123  while ((iter_result = TidStoreIterateNext(iter)) != NULL)
2124  {
2125  BlockNumber blkno;
2126  Buffer buf;
2127  Page page;
2128  Size freespace;
2129  OffsetNumber offsets[MaxOffsetNumber];
2130  int num_offsets;
2131 
2133 
2134  blkno = iter_result->blkno;
2135  vacrel->blkno = blkno;
2136 
2137  num_offsets = TidStoreGetBlockOffsets(iter_result, offsets, lengthof(offsets));
2138  Assert(num_offsets <= lengthof(offsets));
2139 
2140  /*
2141  * Pin the visibility map page in case we need to mark the page
2142  * all-visible. In most cases this will be very cheap, because we'll
2143  * already have the correct page pinned anyway.
2144  */
2145  visibilitymap_pin(vacrel->rel, blkno, &vmbuffer);
2146 
2147  /* We need a non-cleanup exclusive lock to mark dead_items unused */
2148  buf = ReadBufferExtended(vacrel->rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
2149  vacrel->bstrategy);
2151  lazy_vacuum_heap_page(vacrel, blkno, buf, offsets,
2152  num_offsets, vmbuffer);
2153 
2154  /* Now that we've vacuumed the page, record its available space */
2155  page = BufferGetPage(buf);
2156  freespace = PageGetHeapFreeSpace(page);
2157 
2159  RecordPageWithFreeSpace(vacrel->rel, blkno, freespace);
2160  vacuumed_pages++;
2161  }
2162  TidStoreEndIterate(iter);
2163 
2164  vacrel->blkno = InvalidBlockNumber;
2165  if (BufferIsValid(vmbuffer))
2166  ReleaseBuffer(vmbuffer);
2167 
2168  /*
2169  * We set all LP_DEAD items from the first heap pass to LP_UNUSED during
2170  * the second heap pass. No more, no less.
2171  */
2172  Assert(vacrel->num_index_scans > 1 ||
2173  (vacrel->dead_items_info->num_items == vacrel->lpdead_items &&
2174  vacuumed_pages == vacrel->lpdead_item_pages));
2175 
2176  ereport(DEBUG2,
2177  (errmsg("table \"%s\": removed %lld dead item identifiers in %u pages",
2178  vacrel->relname, (long long) vacrel->dead_items_info->num_items,
2179  vacuumed_pages)));
2180 
2181  /* Revert to the previous phase information for error traceback */
2182  restore_vacuum_error_info(vacrel, &saved_err_info);
2183 }
2184 
2185 /*
2186  * lazy_vacuum_heap_page() -- free page's LP_DEAD items listed in the
2187  * vacrel->dead_items store.
2188  *
2189  * Caller must have an exclusive buffer lock on the buffer (though a full
2190  * cleanup lock is also acceptable). vmbuffer must be valid and already have
2191  * a pin on blkno's visibility map page.
2192  */
2193 static void
2195  OffsetNumber *deadoffsets, int num_offsets,
2196  Buffer vmbuffer)
2197 {
2198  Page page = BufferGetPage(buffer);
2200  int nunused = 0;
2201  TransactionId visibility_cutoff_xid;
2202  bool all_frozen;
2203  LVSavedErrInfo saved_err_info;
2204 
2205  Assert(vacrel->do_index_vacuuming);
2206 
2208 
2209  /* Update error traceback information */
2210  update_vacuum_error_info(vacrel, &saved_err_info,
2213 
2215 
2216  for (int i = 0; i < num_offsets; i++)
2217  {
2218  ItemId itemid;
2219  OffsetNumber toff = deadoffsets[i];
2220 
2221  itemid = PageGetItemId(page, toff);
2222 
2223  Assert(ItemIdIsDead(itemid) && !ItemIdHasStorage(itemid));
2224  ItemIdSetUnused(itemid);
2225  unused[nunused++] = toff;
2226  }
2227 
2228  Assert(nunused > 0);
2229 
2230  /* Attempt to truncate line pointer array now */
2232 
2233  /*
2234  * Mark buffer dirty before we write WAL.
2235  */
2236  MarkBufferDirty(buffer);
2237 
2238  /* XLOG stuff */
2239  if (RelationNeedsWAL(vacrel->rel))
2240  {
2241  log_heap_prune_and_freeze(vacrel->rel, buffer,
2243  false, /* no cleanup lock required */
2245  NULL, 0, /* frozen */
2246  NULL, 0, /* redirected */
2247  NULL, 0, /* dead */
2248  unused, nunused);
2249  }
2250 
2251  /*
2252  * End critical section, so we safely can do visibility tests (which
2253  * possibly need to perform IO and allocate memory!). If we crash now the
2254  * page (including the corresponding vm bit) might not be marked all
2255  * visible, but that's fine. A later vacuum will fix that.
2256  */
2257  END_CRIT_SECTION();
2258 
2259  /*
2260  * Now that we have removed the LP_DEAD items from the page, once again
2261  * check if the page has become all-visible. The page is already marked
2262  * dirty, exclusively locked, and, if needed, a full page image has been
2263  * emitted.
2264  */
2265  Assert(!PageIsAllVisible(page));
2266  if (heap_page_is_all_visible(vacrel, buffer, &visibility_cutoff_xid,
2267  &all_frozen))
2268  {
2270 
2271  if (all_frozen)
2272  {
2273  Assert(!TransactionIdIsValid(visibility_cutoff_xid));
2274  flags |= VISIBILITYMAP_ALL_FROZEN;
2275  }
2276 
2277  PageSetAllVisible(page);
2278  visibilitymap_set(vacrel->rel, blkno, buffer, InvalidXLogRecPtr,
2279  vmbuffer, visibility_cutoff_xid, flags);
2280  }
2281 
2282  /* Revert to the previous phase information for error traceback */
2283  restore_vacuum_error_info(vacrel, &saved_err_info);
2284 }
2285 
2286 /*
2287  * Trigger the failsafe to avoid wraparound failure when vacrel table has a
2288  * relfrozenxid and/or relminmxid that is dangerously far in the past.
2289  * Triggering the failsafe makes the ongoing VACUUM bypass any further index
2290  * vacuuming and heap vacuuming. Truncating the heap is also bypassed.
2291  *
2292  * Any remaining work (work that VACUUM cannot just bypass) is typically sped
2293  * up when the failsafe triggers. VACUUM stops applying any cost-based delay
2294  * that it started out with.
2295  *
2296  * Returns true when failsafe has been triggered.
2297  */
2298 static bool
2300 {
2301  /* Don't warn more than once per VACUUM */
2303  return true;
2304 
2306  {
2307  const int progress_index[] = {
2310  };
2311  int64 progress_val[2] = {0, 0};
2312 
2313  VacuumFailsafeActive = true;
2314 
2315  /*
2316  * Abandon use of a buffer access strategy to allow use of all of
2317  * shared buffers. We assume the caller who allocated the memory for
2318  * the BufferAccessStrategy will free it.
2319  */
2320  vacrel->bstrategy = NULL;
2321 
2322  /* Disable index vacuuming, index cleanup, and heap rel truncation */
2323  vacrel->do_index_vacuuming = false;
2324  vacrel->do_index_cleanup = false;
2325  vacrel->do_rel_truncate = false;
2326 
2327  /* Reset the progress counters */
2328  pgstat_progress_update_multi_param(2, progress_index, progress_val);
2329 
2330  ereport(WARNING,
2331  (errmsg("bypassing nonessential maintenance of table \"%s.%s.%s\" as a failsafe after %d index scans",
2332  vacrel->dbname, vacrel->relnamespace, vacrel->relname,
2333  vacrel->num_index_scans),
2334  errdetail("The table's relfrozenxid or relminmxid is too far in the past."),
2335  errhint("Consider increasing configuration parameter \"maintenance_work_mem\" or \"autovacuum_work_mem\".\n"
2336  "You might also need to consider other ways for VACUUM to keep up with the allocation of transaction IDs.")));
2337 
2338  /* Stop applying cost limits from this point on */
2339  VacuumCostActive = false;
2340  VacuumCostBalance = 0;
2341 
2342  return true;
2343  }
2344 
2345  return false;
2346 }
2347 
2348 /*
2349  * lazy_cleanup_all_indexes() -- cleanup all indexes of relation.
2350  */
2351 static void
2353 {
2354  double reltuples = vacrel->new_rel_tuples;
2355  bool estimated_count = vacrel->scanned_pages < vacrel->rel_pages;
2356  const int progress_start_index[] = {
2359  };
2360  const int progress_end_index[] = {
2363  };
2364  int64 progress_start_val[2];
2365  int64 progress_end_val[2] = {0, 0};
2366 
2367  Assert(vacrel->do_index_cleanup);
2368  Assert(vacrel->nindexes > 0);
2369 
2370  /*
2371  * Report that we are now cleaning up indexes and the number of indexes to
2372  * cleanup.
2373  */
2374  progress_start_val[0] = PROGRESS_VACUUM_PHASE_INDEX_CLEANUP;
2375  progress_start_val[1] = vacrel->nindexes;
2376  pgstat_progress_update_multi_param(2, progress_start_index, progress_start_val);
2377 
2378  if (!ParallelVacuumIsActive(vacrel))
2379  {
2380  for (int idx = 0; idx < vacrel->nindexes; idx++)
2381  {
2382  Relation indrel = vacrel->indrels[idx];
2383  IndexBulkDeleteResult *istat = vacrel->indstats[idx];
2384 
2385  vacrel->indstats[idx] =
2386  lazy_cleanup_one_index(indrel, istat, reltuples,
2387  estimated_count, vacrel);
2388 
2389  /* Report the number of indexes cleaned up */
2391  idx + 1);
2392  }
2393  }
2394  else
2395  {
2396  /* Outsource everything to parallel variant */
2397  parallel_vacuum_cleanup_all_indexes(vacrel->pvs, reltuples,
2398  vacrel->num_index_scans,
2399  estimated_count);
2400  }
2401 
2402  /* Reset the progress counters */
2403  pgstat_progress_update_multi_param(2, progress_end_index, progress_end_val);
2404 }
2405 
2406 /*
2407  * lazy_vacuum_one_index() -- vacuum index relation.
2408  *
2409  * Delete all the index tuples containing a TID collected in
2410  * vacrel->dead_items. Also update running statistics. Exact
2411  * details depend on index AM's ambulkdelete routine.
2412  *
2413  * reltuples is the number of heap tuples to be passed to the
2414  * bulkdelete callback. It's always assumed to be estimated.
2415  * See indexam.sgml for more info.
2416  *
2417  * Returns bulk delete stats derived from input stats
2418  */
2419 static IndexBulkDeleteResult *
2421  double reltuples, LVRelState *vacrel)
2422 {
2423  IndexVacuumInfo ivinfo;
2424  LVSavedErrInfo saved_err_info;
2425 
2426  ivinfo.index = indrel;
2427  ivinfo.heaprel = vacrel->rel;
2428  ivinfo.analyze_only = false;
2429  ivinfo.report_progress = false;
2430  ivinfo.estimated_count = true;
2431  ivinfo.message_level = DEBUG2;
2432  ivinfo.num_heap_tuples = reltuples;
2433  ivinfo.strategy = vacrel->bstrategy;
2434 
2435  /*
2436  * Update error traceback information.
2437  *
2438  * The index name is saved during this phase and restored immediately
2439  * after this phase. See vacuum_error_callback.
2440  */
2441  Assert(vacrel->indname == NULL);
2442  vacrel->indname = pstrdup(RelationGetRelationName(indrel));
2443  update_vacuum_error_info(vacrel, &saved_err_info,
2446 
2447  /* Do bulk deletion */
2448  istat = vac_bulkdel_one_index(&ivinfo, istat, (void *) vacrel->dead_items,
2449  vacrel->dead_items_info);
2450 
2451  /* Revert to the previous phase information for error traceback */
2452  restore_vacuum_error_info(vacrel, &saved_err_info);
2453  pfree(vacrel->indname);
2454  vacrel->indname = NULL;
2455 
2456  return istat;
2457 }
2458 
2459 /*
2460  * lazy_cleanup_one_index() -- do post-vacuum cleanup for index relation.
2461  *
2462  * Calls index AM's amvacuumcleanup routine. reltuples is the number
2463  * of heap tuples and estimated_count is true if reltuples is an
2464  * estimated value. See indexam.sgml for more info.
2465  *
2466  * Returns bulk delete stats derived from input stats
2467  */
2468 static IndexBulkDeleteResult *
2470  double reltuples, bool estimated_count,
2471  LVRelState *vacrel)
2472 {
2473  IndexVacuumInfo ivinfo;
2474  LVSavedErrInfo saved_err_info;
2475 
2476  ivinfo.index = indrel;
2477  ivinfo.heaprel = vacrel->rel;
2478  ivinfo.analyze_only = false;
2479  ivinfo.report_progress = false;
2480  ivinfo.estimated_count = estimated_count;
2481  ivinfo.message_level = DEBUG2;
2482 
2483  ivinfo.num_heap_tuples = reltuples;
2484  ivinfo.strategy = vacrel->bstrategy;
2485 
2486  /*
2487  * Update error traceback information.
2488  *
2489  * The index name is saved during this phase and restored immediately
2490  * after this phase. See vacuum_error_callback.
2491  */
2492  Assert(vacrel->indname == NULL);
2493  vacrel->indname = pstrdup(RelationGetRelationName(indrel));
2494  update_vacuum_error_info(vacrel, &saved_err_info,
2497 
2498  istat = vac_cleanup_one_index(&ivinfo, istat);
2499 
2500  /* Revert to the previous phase information for error traceback */
2501  restore_vacuum_error_info(vacrel, &saved_err_info);
2502  pfree(vacrel->indname);
2503  vacrel->indname = NULL;
2504 
2505  return istat;
2506 }
2507 
2508 /*
2509  * should_attempt_truncation - should we attempt to truncate the heap?
2510  *
2511  * Don't even think about it unless we have a shot at releasing a goodly
2512  * number of pages. Otherwise, the time taken isn't worth it, mainly because
2513  * an AccessExclusive lock must be replayed on any hot standby, where it can
2514  * be particularly disruptive.
2515  *
2516  * Also don't attempt it if wraparound failsafe is in effect. The entire
2517  * system might be refusing to allocate new XIDs at this point. The system
2518  * definitely won't return to normal unless and until VACUUM actually advances
2519  * the oldest relfrozenxid -- which hasn't happened for target rel just yet.
2520  * If lazy_truncate_heap attempted to acquire an AccessExclusiveLock to
2521  * truncate the table under these circumstances, an XID exhaustion error might
2522  * make it impossible for VACUUM to fix the underlying XID exhaustion problem.
2523  * There is very little chance of truncation working out when the failsafe is
2524  * in effect in any case. lazy_scan_prune makes the optimistic assumption
2525  * that any LP_DEAD items it encounters will always be LP_UNUSED by the time
2526  * we're called.
2527  */
2528 static bool
2530 {
2531  BlockNumber possibly_freeable;
2532 
2533  if (!vacrel->do_rel_truncate || VacuumFailsafeActive)
2534  return false;
2535 
2536  possibly_freeable = vacrel->rel_pages - vacrel->nonempty_pages;
2537  if (possibly_freeable > 0 &&
2538  (possibly_freeable >= REL_TRUNCATE_MINIMUM ||
2539  possibly_freeable >= vacrel->rel_pages / REL_TRUNCATE_FRACTION))
2540  return true;
2541 
2542  return false;
2543 }
2544 
2545 /*
2546  * lazy_truncate_heap - try to truncate off any empty pages at the end
2547  */
2548 static void
2550 {
2551  BlockNumber orig_rel_pages = vacrel->rel_pages;
2552  BlockNumber new_rel_pages;
2553  bool lock_waiter_detected;
2554  int lock_retry;
2555 
2556  /* Report that we are now truncating */
2559 
2560  /* Update error traceback information one last time */
2563 
2564  /*
2565  * Loop until no more truncating can be done.
2566  */
2567  do
2568  {
2569  /*
2570  * We need full exclusive lock on the relation in order to do
2571  * truncation. If we can't get it, give up rather than waiting --- we
2572  * don't want to block other backends, and we don't want to deadlock
2573  * (which is quite possible considering we already hold a lower-grade
2574  * lock).
2575  */
2576  lock_waiter_detected = false;
2577  lock_retry = 0;
2578  while (true)
2579  {
2581  break;
2582 
2583  /*
2584  * Check for interrupts while trying to (re-)acquire the exclusive
2585  * lock.
2586  */
2588 
2589  if (++lock_retry > (VACUUM_TRUNCATE_LOCK_TIMEOUT /
2591  {
2592  /*
2593  * We failed to establish the lock in the specified number of
2594  * retries. This means we give up truncating.
2595  */
2596  ereport(vacrel->verbose ? INFO : DEBUG2,
2597  (errmsg("\"%s\": stopping truncate due to conflicting lock request",
2598  vacrel->relname)));
2599  return;
2600  }
2601 
2602  (void) WaitLatch(MyLatch,
2605  WAIT_EVENT_VACUUM_TRUNCATE);
2607  }
2608 
2609  /*
2610  * Now that we have exclusive lock, look to see if the rel has grown
2611  * whilst we were vacuuming with non-exclusive lock. If so, give up;
2612  * the newly added pages presumably contain non-deletable tuples.
2613  */
2614  new_rel_pages = RelationGetNumberOfBlocks(vacrel->rel);
2615  if (new_rel_pages != orig_rel_pages)
2616  {
2617  /*
2618  * Note: we intentionally don't update vacrel->rel_pages with the
2619  * new rel size here. If we did, it would amount to assuming that
2620  * the new pages are empty, which is unlikely. Leaving the numbers
2621  * alone amounts to assuming that the new pages have the same
2622  * tuple density as existing ones, which is less unlikely.
2623  */
2625  return;
2626  }
2627 
2628  /*
2629  * Scan backwards from the end to verify that the end pages actually
2630  * contain no tuples. This is *necessary*, not optional, because
2631  * other backends could have added tuples to these pages whilst we
2632  * were vacuuming.
2633  */
2634  new_rel_pages = count_nondeletable_pages(vacrel, &lock_waiter_detected);
2635  vacrel->blkno = new_rel_pages;
2636 
2637  if (new_rel_pages >= orig_rel_pages)
2638  {
2639  /* can't do anything after all */
2641  return;
2642  }
2643 
2644  /*
2645  * Okay to truncate.
2646  */
2647  RelationTruncate(vacrel->rel, new_rel_pages);
2648 
2649  /*
2650  * We can release the exclusive lock as soon as we have truncated.
2651  * Other backends can't safely access the relation until they have
2652  * processed the smgr invalidation that smgrtruncate sent out ... but
2653  * that should happen as part of standard invalidation processing once
2654  * they acquire lock on the relation.
2655  */
2657 
2658  /*
2659  * Update statistics. Here, it *is* correct to adjust rel_pages
2660  * without also touching reltuples, since the tuple count wasn't
2661  * changed by the truncation.
2662  */
2663  vacrel->removed_pages += orig_rel_pages - new_rel_pages;
2664  vacrel->rel_pages = new_rel_pages;
2665 
2666  ereport(vacrel->verbose ? INFO : DEBUG2,
2667  (errmsg("table \"%s\": truncated %u to %u pages",
2668  vacrel->relname,
2669  orig_rel_pages, new_rel_pages)));
2670  orig_rel_pages = new_rel_pages;
2671  } while (new_rel_pages > vacrel->nonempty_pages && lock_waiter_detected);
2672 }
2673 
2674 /*
2675  * Rescan end pages to verify that they are (still) empty of tuples.
2676  *
2677  * Returns number of nondeletable pages (last nonempty page + 1).
2678  */
2679 static BlockNumber
2680 count_nondeletable_pages(LVRelState *vacrel, bool *lock_waiter_detected)
2681 {
2682  BlockNumber blkno;
2683  BlockNumber prefetchedUntil;
2684  instr_time starttime;
2685 
2686  /* Initialize the starttime if we check for conflicting lock requests */
2687  INSTR_TIME_SET_CURRENT(starttime);
2688 
2689  /*
2690  * Start checking blocks at what we believe relation end to be and move
2691  * backwards. (Strange coding of loop control is needed because blkno is
2692  * unsigned.) To make the scan faster, we prefetch a few blocks at a time
2693  * in forward direction, so that OS-level readahead can kick in.
2694  */
2695  blkno = vacrel->rel_pages;
2697  "prefetch size must be power of 2");
2698  prefetchedUntil = InvalidBlockNumber;
2699  while (blkno > vacrel->nonempty_pages)
2700  {
2701  Buffer buf;
2702  Page page;
2703  OffsetNumber offnum,
2704  maxoff;
2705  bool hastup;
2706 
2707  /*
2708  * Check if another process requests a lock on our relation. We are
2709  * holding an AccessExclusiveLock here, so they will be waiting. We
2710  * only do this once per VACUUM_TRUNCATE_LOCK_CHECK_INTERVAL, and we
2711  * only check if that interval has elapsed once every 32 blocks to
2712  * keep the number of system calls and actual shared lock table
2713  * lookups to a minimum.
2714  */
2715  if ((blkno % 32) == 0)
2716  {
2717  instr_time currenttime;
2718  instr_time elapsed;
2719 
2720  INSTR_TIME_SET_CURRENT(currenttime);
2721  elapsed = currenttime;
2722  INSTR_TIME_SUBTRACT(elapsed, starttime);
2723  if ((INSTR_TIME_GET_MICROSEC(elapsed) / 1000)
2725  {
2727  {
2728  ereport(vacrel->verbose ? INFO : DEBUG2,
2729  (errmsg("table \"%s\": suspending truncate due to conflicting lock request",
2730  vacrel->relname)));
2731 
2732  *lock_waiter_detected = true;
2733  return blkno;
2734  }
2735  starttime = currenttime;
2736  }
2737  }
2738 
2739  /*
2740  * We don't insert a vacuum delay point here, because we have an
2741  * exclusive lock on the table which we want to hold for as short a
2742  * time as possible. We still need to check for interrupts however.
2743  */
2745 
2746  blkno--;
2747 
2748  /* If we haven't prefetched this lot yet, do so now. */
2749  if (prefetchedUntil > blkno)
2750  {
2751  BlockNumber prefetchStart;
2752  BlockNumber pblkno;
2753 
2754  prefetchStart = blkno & ~(PREFETCH_SIZE - 1);
2755  for (pblkno = prefetchStart; pblkno <= blkno; pblkno++)
2756  {
2757  PrefetchBuffer(vacrel->rel, MAIN_FORKNUM, pblkno);
2759  }
2760  prefetchedUntil = prefetchStart;
2761  }
2762 
2763  buf = ReadBufferExtended(vacrel->rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
2764  vacrel->bstrategy);
2765 
2766  /* In this phase we only need shared access to the buffer */
2768 
2769  page = BufferGetPage(buf);
2770 
2771  if (PageIsNew(page) || PageIsEmpty(page))
2772  {
2774  continue;
2775  }
2776 
2777  hastup = false;
2778  maxoff = PageGetMaxOffsetNumber(page);
2779  for (offnum = FirstOffsetNumber;
2780  offnum <= maxoff;
2781  offnum = OffsetNumberNext(offnum))
2782  {
2783  ItemId itemid;
2784 
2785  itemid = PageGetItemId(page, offnum);
2786 
2787  /*
2788  * Note: any non-unused item should be taken as a reason to keep
2789  * this page. Even an LP_DEAD item makes truncation unsafe, since
2790  * we must not have cleaned out its index entries.
2791  */
2792  if (ItemIdIsUsed(itemid))
2793  {
2794  hastup = true;
2795  break; /* can stop scanning */
2796  }
2797  } /* scan along page */
2798 
2800 
2801  /* Done scanning if we found a tuple here */
2802  if (hastup)
2803  return blkno + 1;
2804  }
2805 
2806  /*
2807  * If we fall out of the loop, all the previously-thought-to-be-empty
2808  * pages still are; we need not bother to look at the last known-nonempty
2809  * page.
2810  */
2811  return vacrel->nonempty_pages;
2812 }
2813 
2814 /*
2815  * Allocate dead_items and dead_items_info (either using palloc, or in dynamic
2816  * shared memory). Sets both in vacrel for caller.
2817  *
2818  * Also handles parallel initialization as part of allocating dead_items in
2819  * DSM when required.
2820  */
2821 static void
2822 dead_items_alloc(LVRelState *vacrel, int nworkers)
2823 {
2824  VacDeadItemsInfo *dead_items_info;
2825  int vac_work_mem = AmAutoVacuumWorkerProcess() &&
2826  autovacuum_work_mem != -1 ?
2828 
2829  /*
2830  * Initialize state for a parallel vacuum. As of now, only one worker can
2831  * be used for an index, so we invoke parallelism only if there are at
2832  * least two indexes on a table.
2833  */
2834  if (nworkers >= 0 && vacrel->nindexes > 1 && vacrel->do_index_vacuuming)
2835  {
2836  /*
2837  * Since parallel workers cannot access data in temporary tables, we
2838  * can't perform parallel vacuum on them.
2839  */
2840  if (RelationUsesLocalBuffers(vacrel->rel))
2841  {
2842  /*
2843  * Give warning only if the user explicitly tries to perform a
2844  * parallel vacuum on the temporary table.
2845  */
2846  if (nworkers > 0)
2847  ereport(WARNING,
2848  (errmsg("disabling parallel option of vacuum on \"%s\" --- cannot vacuum temporary tables in parallel",
2849  vacrel->relname)));
2850  }
2851  else
2852  vacrel->pvs = parallel_vacuum_init(vacrel->rel, vacrel->indrels,
2853  vacrel->nindexes, nworkers,
2854  vac_work_mem,
2855  vacrel->verbose ? INFO : DEBUG2,
2856  vacrel->bstrategy);
2857 
2858  /*
2859  * If parallel mode started, dead_items and dead_items_info spaces are
2860  * allocated in DSM.
2861  */
2862  if (ParallelVacuumIsActive(vacrel))
2863  {
2864  vacrel->dead_items = parallel_vacuum_get_dead_items(vacrel->pvs,
2865  &vacrel->dead_items_info);
2866  return;
2867  }
2868  }
2869 
2870  /*
2871  * Serial VACUUM case. Allocate both dead_items and dead_items_info
2872  * locally.
2873  */
2874 
2875  dead_items_info = (VacDeadItemsInfo *) palloc(sizeof(VacDeadItemsInfo));
2876  dead_items_info->max_bytes = vac_work_mem * 1024L;
2877  dead_items_info->num_items = 0;
2878  vacrel->dead_items_info = dead_items_info;
2879 
2880  vacrel->dead_items = TidStoreCreateLocal(dead_items_info->max_bytes, true);
2881 }
2882 
2883 /*
2884  * Add the given block number and offset numbers to dead_items.
2885  */
2886 static void
2888  int num_offsets)
2889 {
2890  TidStore *dead_items = vacrel->dead_items;
2891  const int prog_index[2] = {
2894  };
2895  int64 prog_val[2];
2896 
2897  TidStoreSetBlockOffsets(dead_items, blkno, offsets, num_offsets);
2898  vacrel->dead_items_info->num_items += num_offsets;
2899 
2900  /* update the progress information */
2901  prog_val[0] = vacrel->dead_items_info->num_items;
2902  prog_val[1] = TidStoreMemoryUsage(dead_items);
2903  pgstat_progress_update_multi_param(2, prog_index, prog_val);
2904 }
2905 
2906 /*
2907  * Forget all collected dead items.
2908  */
2909 static void
2911 {
2912  TidStore *dead_items = vacrel->dead_items;
2913 
2914  if (ParallelVacuumIsActive(vacrel))
2915  {
2917  return;
2918  }
2919 
2920  /* Recreate the tidstore with the same max_bytes limitation */
2921  TidStoreDestroy(dead_items);
2922  vacrel->dead_items = TidStoreCreateLocal(vacrel->dead_items_info->max_bytes, true);
2923 
2924  /* Reset the counter */
2925  vacrel->dead_items_info->num_items = 0;
2926 }
2927 
2928 /*
2929  * Perform cleanup for resources allocated in dead_items_alloc
2930  */
2931 static void
2933 {
2934  if (!ParallelVacuumIsActive(vacrel))
2935  {
2936  /* Don't bother with pfree here */
2937  return;
2938  }
2939 
2940  /* End parallel mode */
2941  parallel_vacuum_end(vacrel->pvs, vacrel->indstats);
2942  vacrel->pvs = NULL;
2943 }
2944 
2945 /*
2946  * Check if every tuple in the given page is visible to all current and future
2947  * transactions. Also return the visibility_cutoff_xid which is the highest
2948  * xmin amongst the visible tuples. Set *all_frozen to true if every tuple
2949  * on this page is frozen.
2950  *
2951  * This is a stripped down version of lazy_scan_prune(). If you change
2952  * anything here, make sure that everything stays in sync. Note that an
2953  * assertion calls us to verify that everybody still agrees. Be sure to avoid
2954  * introducing new side-effects here.
2955  */
2956 static bool
2958  TransactionId *visibility_cutoff_xid,
2959  bool *all_frozen)
2960 {
2961  Page page = BufferGetPage(buf);
2963  OffsetNumber offnum,
2964  maxoff;
2965  bool all_visible = true;
2966 
2967  *visibility_cutoff_xid = InvalidTransactionId;
2968  *all_frozen = true;
2969 
2970  maxoff = PageGetMaxOffsetNumber(page);
2971  for (offnum = FirstOffsetNumber;
2972  offnum <= maxoff && all_visible;
2973  offnum = OffsetNumberNext(offnum))
2974  {
2975  ItemId itemid;
2976  HeapTupleData tuple;
2977 
2978  /*
2979  * Set the offset number so that we can display it along with any
2980  * error that occurred while processing this tuple.
2981  */
2982  vacrel->offnum = offnum;
2983  itemid = PageGetItemId(page, offnum);
2984 
2985  /* Unused or redirect line pointers are of no interest */
2986  if (!ItemIdIsUsed(itemid) || ItemIdIsRedirected(itemid))
2987  continue;
2988 
2989  ItemPointerSet(&(tuple.t_self), blockno, offnum);
2990 
2991  /*
2992  * Dead line pointers can have index pointers pointing to them. So
2993  * they can't be treated as visible
2994  */
2995  if (ItemIdIsDead(itemid))
2996  {
2997  all_visible = false;
2998  *all_frozen = false;
2999  break;
3000  }
3001 
3002  Assert(ItemIdIsNormal(itemid));
3003 
3004  tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
3005  tuple.t_len = ItemIdGetLength(itemid);
3006  tuple.t_tableOid = RelationGetRelid(vacrel->rel);
3007 
3008  switch (HeapTupleSatisfiesVacuum(&tuple, vacrel->cutoffs.OldestXmin,
3009  buf))
3010  {
3011  case HEAPTUPLE_LIVE:
3012  {
3013  TransactionId xmin;
3014 
3015  /* Check comments in lazy_scan_prune. */
3017  {
3018  all_visible = false;
3019  *all_frozen = false;
3020  break;
3021  }
3022 
3023  /*
3024  * The inserter definitely committed. But is it old enough
3025  * that everyone sees it as committed?
3026  */
3027  xmin = HeapTupleHeaderGetXmin(tuple.t_data);
3028  if (!TransactionIdPrecedes(xmin,
3029  vacrel->cutoffs.OldestXmin))
3030  {
3031  all_visible = false;
3032  *all_frozen = false;
3033  break;
3034  }
3035 
3036  /* Track newest xmin on page. */
3037  if (TransactionIdFollows(xmin, *visibility_cutoff_xid) &&
3038  TransactionIdIsNormal(xmin))
3039  *visibility_cutoff_xid = xmin;
3040 
3041  /* Check whether this tuple is already frozen or not */
3042  if (all_visible && *all_frozen &&
3044  *all_frozen = false;
3045  }
3046  break;
3047 
3048  case HEAPTUPLE_DEAD:
3052  {
3053  all_visible = false;
3054  *all_frozen = false;
3055  break;
3056  }
3057  default:
3058  elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
3059  break;
3060  }
3061  } /* scan along page */
3062 
3063  /* Clear the offset information once we have processed the given page. */
3064  vacrel->offnum = InvalidOffsetNumber;
3065 
3066  return all_visible;
3067 }
3068 
3069 /*
3070  * Update index statistics in pg_class if the statistics are accurate.
3071  */
3072 static void
3074 {
3075  Relation *indrels = vacrel->indrels;
3076  int nindexes = vacrel->nindexes;
3077  IndexBulkDeleteResult **indstats = vacrel->indstats;
3078 
3079  Assert(vacrel->do_index_cleanup);
3080 
3081  for (int idx = 0; idx < nindexes; idx++)
3082  {
3083  Relation indrel = indrels[idx];
3084  IndexBulkDeleteResult *istat = indstats[idx];
3085 
3086  if (istat == NULL || istat->estimated_count)
3087  continue;
3088 
3089  /* Update index statistics */
3090  vac_update_relstats(indrel,
3091  istat->num_pages,
3092  istat->num_index_tuples,
3093  0,
3094  false,
3097  NULL, NULL, false);
3098  }
3099 }
3100 
3101 /*
3102  * Error context callback for errors occurring during vacuum. The error
3103  * context messages for index phases should match the messages set in parallel
3104  * vacuum. If you change this function for those phases, change
3105  * parallel_vacuum_error_callback() as well.
3106  */
3107 static void
3109 {
3110  LVRelState *errinfo = arg;
3111 
3112  switch (errinfo->phase)
3113  {
3115  if (BlockNumberIsValid(errinfo->blkno))
3116  {
3117  if (OffsetNumberIsValid(errinfo->offnum))
3118  errcontext("while scanning block %u offset %u of relation \"%s.%s\"",
3119  errinfo->blkno, errinfo->offnum, errinfo->relnamespace, errinfo->relname);
3120  else
3121  errcontext("while scanning block %u of relation \"%s.%s\"",
3122  errinfo->blkno, errinfo->relnamespace, errinfo->relname);
3123  }
3124  else
3125  errcontext("while scanning relation \"%s.%s\"",
3126  errinfo->relnamespace, errinfo->relname);
3127  break;
3128 
3130  if (BlockNumberIsValid(errinfo->blkno))
3131  {
3132  if (OffsetNumberIsValid(errinfo->offnum))
3133  errcontext("while vacuuming block %u offset %u of relation \"%s.%s\"",
3134  errinfo->blkno, errinfo->offnum, errinfo->relnamespace, errinfo->relname);
3135  else
3136  errcontext("while vacuuming block %u of relation \"%s.%s\"",
3137  errinfo->blkno, errinfo->relnamespace, errinfo->relname);
3138  }
3139  else
3140  errcontext("while vacuuming relation \"%s.%s\"",
3141  errinfo->relnamespace, errinfo->relname);
3142  break;
3143 
3145  errcontext("while vacuuming index \"%s\" of relation \"%s.%s\"",
3146  errinfo->indname, errinfo->relnamespace, errinfo->relname);
3147  break;
3148 
3150  errcontext("while cleaning up index \"%s\" of relation \"%s.%s\"",
3151  errinfo->indname, errinfo->relnamespace, errinfo->relname);
3152  break;
3153 
3155  if (BlockNumberIsValid(errinfo->blkno))
3156  errcontext("while truncating relation \"%s.%s\" to %u blocks",
3157  errinfo->relnamespace, errinfo->relname, errinfo->blkno);
3158  break;
3159 
3161  default:
3162  return; /* do nothing; the errinfo may not be
3163  * initialized */
3164  }
3165 }
3166 
3167 /*
3168  * Updates the information required for vacuum error callback. This also saves
3169  * the current information which can be later restored via restore_vacuum_error_info.
3170  */
3171 static void
3173  int phase, BlockNumber blkno, OffsetNumber offnum)
3174 {
3175  if (saved_vacrel)
3176  {
3177  saved_vacrel->offnum = vacrel->offnum;
3178  saved_vacrel->blkno = vacrel->blkno;
3179  saved_vacrel->phase = vacrel->phase;
3180  }
3181 
3182  vacrel->blkno = blkno;
3183  vacrel->offnum = offnum;
3184  vacrel->phase = phase;
3185 }
3186 
3187 /*
3188  * Restores the vacuum information saved via a prior call to update_vacuum_error_info.
3189  */
3190 static void
3192  const LVSavedErrInfo *saved_vacrel)
3193 {
3194  vacrel->blkno = saved_vacrel->blkno;
3195  vacrel->offnum = saved_vacrel->offnum;
3196  vacrel->phase = saved_vacrel->phase;
3197 }
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:259
int autovacuum_work_mem
Definition: autovacuum.c:119
void TimestampDifference(TimestampTz start_time, TimestampTz stop_time, long *secs, int *microsecs)
Definition: timestamp.c:1731
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1791
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1655
void pgstat_progress_start_command(ProgressCommandType cmdtype, Oid relid)
void pgstat_progress_update_param(int index, int64 val)
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
void pgstat_progress_end_command(void)
@ PROGRESS_COMMAND_VACUUM
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
static bool BlockNumberIsValid(BlockNumber blockNumber)
Definition: block.h:71
int Buffer
Definition: buf.h:23
#define InvalidBuffer
Definition: buf.h:25
bool track_io_timing
Definition: bufmgr.c:170
BlockNumber BufferGetBlockNumber(Buffer buffer)
Definition: bufmgr.c:3736
PrefetchBufferResult PrefetchBuffer(Relation reln, ForkNumber forkNum, BlockNumber blockNum)
Definition: bufmgr.c:666
void ReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:4936
void UnlockReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:4953
void MarkBufferDirty(Buffer buffer)
Definition: bufmgr.c:2543
void LockBufferForCleanup(Buffer buffer)
Definition: bufmgr.c:5251
void LockBuffer(Buffer buffer, int mode)
Definition: bufmgr.c:5171
Buffer ReadBufferExtended(Relation reln, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy)
Definition: bufmgr.c:820
bool ConditionalLockBufferForCleanup(Buffer buffer)
Definition: bufmgr.c:5412
#define BUFFER_LOCK_UNLOCK
Definition: bufmgr.h:189
#define BUFFER_LOCK_SHARE
Definition: bufmgr.h:190
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:273
static Page BufferGetPage(Buffer buffer)
Definition: bufmgr.h:400
#define BUFFER_LOCK_EXCLUSIVE
Definition: bufmgr.h:191
@ RBM_NORMAL
Definition: bufmgr.h:45
static bool BufferIsValid(Buffer bufnum)
Definition: bufmgr.h:351
Size PageGetHeapFreeSpace(Page page)
Definition: bufpage.c:991
void PageTruncateLinePointerArray(Page page)
Definition: bufpage.c:835
static bool PageIsEmpty(Page page)
Definition: bufpage.h:223
Pointer Page
Definition: bufpage.h:81
static Item PageGetItem(Page page, ItemId itemId)
Definition: bufpage.h:354
static void PageClearAllVisible(Page page)
Definition: bufpage.h:439
#define SizeOfPageHeaderData
Definition: bufpage.h:216
static void PageSetAllVisible(Page page)
Definition: bufpage.h:434
static ItemId PageGetItemId(Page page, OffsetNumber offsetNumber)
Definition: bufpage.h:243
static bool PageIsNew(Page page)
Definition: bufpage.h:233
static bool PageIsAllVisible(Page page)
Definition: bufpage.h:429
static XLogRecPtr PageGetLSN(Page page)
Definition: bufpage.h:386
static OffsetNumber PageGetMaxOffsetNumber(Page page)
Definition: bufpage.h:372
signed int int32
Definition: c.h:494
#define Max(x, y)
Definition: c.h:998
#define Assert(condition)
Definition: c.h:858
TransactionId MultiXactId
Definition: c.h:662
#define unlikely(x)
Definition: c.h:311
#define lengthof(array)
Definition: c.h:788
unsigned char uint8
Definition: c.h:504
#define StaticAssertStmt(condition, errmessage)
Definition: c.h:938
uint32 TransactionId
Definition: c.h:652
size_t Size
Definition: c.h:605
int64 TimestampTz
Definition: timestamp.h:39
char * get_database_name(Oid dbid)
Definition: dbcommands.c:3166
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1157
int errdetail(const char *fmt,...)
Definition: elog.c:1203
ErrorContextCallback * error_context_stack
Definition: elog.c:94
int errhint(const char *fmt,...)
Definition: elog.c:1317
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define _(x)
Definition: elog.c:90
#define LOG
Definition: elog.h:31
#define errcontext
Definition: elog.h:196
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define INFO
Definition: elog.h:34
#define ereport(elevel,...)
Definition: elog.h:149
void FreeSpaceMapVacuumRange(Relation rel, BlockNumber start, BlockNumber end)
Definition: freespace.c:377
Size GetRecordedFreeSpace(Relation rel, BlockNumber heapBlk)
Definition: freespace.c:244
void RecordPageWithFreeSpace(Relation rel, BlockNumber heapBlk, Size spaceAvail)
Definition: freespace.c:194
bool VacuumCostActive
Definition: globals.c:160
int VacuumCostBalance
Definition: globals.c:159
int maintenance_work_mem
Definition: globals.c:131
struct Latch * MyLatch
Definition: globals.c:61
Oid MyDatabaseId
Definition: globals.c:92
bool heap_tuple_needs_eventual_freeze(HeapTupleHeader tuple)
Definition: heapam.c:7328
bool heap_tuple_should_freeze(HeapTupleHeader tuple, const struct VacuumCutoffs *cutoffs, TransactionId *NoFreezePageRelfrozenXid, MultiXactId *NoFreezePageRelminMxid)
Definition: heapam.c:7383
#define HEAP_PAGE_PRUNE_FREEZE
Definition: heapam.h:42
@ HEAPTUPLE_RECENTLY_DEAD
Definition: heapam.h:127
@ HEAPTUPLE_INSERT_IN_PROGRESS
Definition: heapam.h:128
@ HEAPTUPLE_LIVE
Definition: heapam.h:126
@ HEAPTUPLE_DELETE_IN_PROGRESS
Definition: heapam.h:129
@ HEAPTUPLE_DEAD
Definition: heapam.h:125
@ PRUNE_VACUUM_CLEANUP
Definition: heapam.h:271
@ PRUNE_VACUUM_SCAN
Definition: heapam.h:270
#define HEAP_PAGE_PRUNE_MARK_UNUSED_NOW
Definition: heapam.h:41
HTSV_Result HeapTupleSatisfiesVacuum(HeapTuple htup, TransactionId OldestXmin, Buffer buffer)
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
#define HeapTupleHeaderGetXmin(tup)
Definition: htup_details.h:309
#define HeapTupleHeaderXminCommitted(tup)
Definition: htup_details.h:320
#define MaxHeapTuplesPerPage
Definition: htup_details.h:572
int verbose
#define INSTR_TIME_SET_CURRENT(t)
Definition: instr_time.h:122
#define INSTR_TIME_SUBTRACT(x, y)
Definition: instr_time.h:181
#define INSTR_TIME_GET_MICROSEC(t)
Definition: instr_time.h:194
WalUsage pgWalUsage
Definition: instrument.c:22
void WalUsageAccumDiff(WalUsage *dst, const WalUsage *add, const WalUsage *sub)
Definition: instrument.c:286
BufferUsage pgBufferUsage
Definition: instrument.c:20
void BufferUsageAccumDiff(BufferUsage *dst, const BufferUsage *add, const BufferUsage *sub)
Definition: instrument.c:248
static int pg_cmp_u16(uint16 a, uint16 b)
Definition: int.h:477
int b
Definition: isn.c:70
int a
Definition: isn.c:69
int i
Definition: isn.c:73
#define ItemIdGetLength(itemId)
Definition: itemid.h:59
#define ItemIdIsNormal(itemId)
Definition: itemid.h:99
#define ItemIdIsDead(itemId)
Definition: itemid.h:113
#define ItemIdIsUsed(itemId)
Definition: itemid.h:92
#define ItemIdSetUnused(itemId)
Definition: itemid.h:128
#define ItemIdIsRedirected(itemId)
Definition: itemid.h:106
#define ItemIdHasStorage(itemId)
Definition: itemid.h:120
static void ItemPointerSet(ItemPointerData *pointer, BlockNumber blockNumber, OffsetNumber offNum)
Definition: itemptr.h:135
void ResetLatch(Latch *latch)
Definition: latch.c:724
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:517
#define WL_TIMEOUT
Definition: latch.h:130
#define WL_EXIT_ON_PM_DEATH
Definition: latch.h:132
#define WL_LATCH_SET
Definition: latch.h:127
void UnlockRelation(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:310
bool ConditionalLockRelation(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:275
bool LockHasWaitersRelation(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:363
#define NoLock
Definition: lockdefs.h:34
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define RowExclusiveLock
Definition: lockdefs.h:38
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3366
char * pstrdup(const char *in)
Definition: mcxt.c:1696
void pfree(void *pointer)
Definition: mcxt.c:1521
void * palloc0(Size size)
Definition: mcxt.c:1347
void * palloc(Size size)
Definition: mcxt.c:1317
#define AmAutoVacuumWorkerProcess()
Definition: miscadmin.h:375
#define START_CRIT_SECTION()
Definition: miscadmin.h:149
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
#define END_CRIT_SECTION()
Definition: miscadmin.h:151
bool MultiXactIdPrecedesOrEquals(MultiXactId multi1, MultiXactId multi2)
Definition: multixact.c:3323
#define MultiXactIdIsValid(multi)
Definition: multixact.h:28
#define InvalidMultiXactId
Definition: multixact.h:24
#define InvalidOffsetNumber
Definition: off.h:26
#define OffsetNumberIsValid(offsetNumber)
Definition: off.h:39
#define OffsetNumberNext(offsetNumber)
Definition: off.h:52
uint16 OffsetNumber
Definition: off.h:24
#define FirstOffsetNumber
Definition: off.h:27
#define MaxOffsetNumber
Definition: off.h:28
void * arg
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
static char * buf
Definition: pg_test_fsync.c:73
int64 PgStat_Counter
Definition: pgstat.h:89
PgStat_Counter pgStatBlockReadTime
PgStat_Counter pgStatBlockWriteTime
void pgstat_report_vacuum(Oid tableoid, bool shared, PgStat_Counter livetuples, PgStat_Counter deadtuples)
#define qsort(a, b, c, d)
Definition: port.h:453
GlobalVisState * GlobalVisTestFor(Relation rel)
Definition: procarray.c:4111
#define PROGRESS_VACUUM_PHASE_FINAL_CLEANUP
Definition: progress.h:38
#define PROGRESS_VACUUM_DEAD_TUPLE_BYTES
Definition: progress.h:27
#define PROGRESS_VACUUM_PHASE_SCAN_HEAP
Definition: progress.h:33
#define PROGRESS_VACUUM_TOTAL_HEAP_BLKS
Definition: progress.h:22
#define PROGRESS_VACUUM_PHASE
Definition: progress.h:21
#define PROGRESS_VACUUM_NUM_INDEX_VACUUMS
Definition: progress.h:25
#define PROGRESS_VACUUM_PHASE_VACUUM_HEAP
Definition: progress.h:35
#define PROGRESS_VACUUM_NUM_DEAD_ITEM_IDS
Definition: progress.h:28
#define PROGRESS_VACUUM_MAX_DEAD_TUPLE_BYTES
Definition: progress.h:26
#define PROGRESS_VACUUM_HEAP_BLKS_SCANNED
Definition: progress.h:23
#define PROGRESS_VACUUM_PHASE_INDEX_CLEANUP
Definition: progress.h:36
#define PROGRESS_VACUUM_PHASE_VACUUM_INDEX
Definition: progress.h:34
#define PROGRESS_VACUUM_INDEXES_PROCESSED
Definition: progress.h:30
#define PROGRESS_VACUUM_INDEXES_TOTAL
Definition: progress.h:29
#define PROGRESS_VACUUM_HEAP_BLKS_VACUUMED
Definition: progress.h:24
#define PROGRESS_VACUUM_PHASE_TRUNCATE
Definition: progress.h:37
void heap_page_prune_and_freeze(Relation relation, Buffer buffer, GlobalVisState *vistest, int options, struct VacuumCutoffs *cutoffs, PruneFreezeResult *presult, PruneReason reason, OffsetNumber *off_loc, TransactionId *new_relfrozen_xid, MultiXactId *new_relmin_mxid)
Definition: pruneheap.c:350
void log_heap_prune_and_freeze(Relation relation, Buffer buffer, TransactionId conflict_xid, bool cleanup_lock, PruneReason reason, HeapTupleFreeze *frozen, int nfrozen, OffsetNumber *redirected, int nredirected, OffsetNumber *dead, int ndead, OffsetNumber *unused, int nunused)
Definition: pruneheap.c:2053
#define RelationGetRelid(relation)
Definition: rel.h:505
#define RelationGetRelationName(relation)
Definition: rel.h:539
#define RelationNeedsWAL(relation)
Definition: rel.h:628
#define RelationUsesLocalBuffers(relation)
Definition: rel.h:637
#define RelationGetNamespace(relation)
Definition: rel.h:546
@ MAIN_FORKNUM
Definition: relpath.h:50
void RelationTruncate(Relation rel, BlockNumber nblocks)
Definition: storage.c:288
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:97
void appendStringInfoString(StringInfo str, const char *s)
Definition: stringinfo.c:182
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
int64 shared_blks_dirtied
Definition: instrument.h:28
int64 local_blks_hit
Definition: instrument.h:30
int64 shared_blks_read
Definition: instrument.h:27
int64 local_blks_read
Definition: instrument.h:31
int64 local_blks_dirtied
Definition: instrument.h:32
int64 shared_blks_hit
Definition: instrument.h:26
struct ErrorContextCallback * previous
Definition: elog.h:295
void(* callback)(void *arg)
Definition: elog.h:296
ItemPointerData t_self
Definition: htup.h:65
uint32 t_len
Definition: htup.h:64
HeapTupleHeader t_data
Definition: htup.h:68
Oid t_tableOid
Definition: htup.h:66
bool estimated_count
Definition: genam.h:78
BlockNumber pages_deleted
Definition: genam.h:82
BlockNumber pages_newly_deleted
Definition: genam.h:81
BlockNumber pages_free
Definition: genam.h:83
BlockNumber num_pages
Definition: genam.h:77
double num_index_tuples
Definition: genam.h:79
Relation index
Definition: genam.h:46
double num_heap_tuples
Definition: genam.h:52
bool analyze_only
Definition: genam.h:48
BufferAccessStrategy strategy
Definition: genam.h:53
Relation heaprel
Definition: genam.h:47
bool report_progress
Definition: genam.h:49
int message_level
Definition: genam.h:51
bool estimated_count
Definition: genam.h:50
ParallelVacuumState * pvs
Definition: vacuumlazy.c:145
bool verbose
Definition: vacuumlazy.c:175
VacDeadItemsInfo * dead_items_info
Definition: vacuumlazy.c:188
int nindexes
Definition: vacuumlazy.c:141
Buffer next_unskippable_vmbuffer
Definition: vacuumlazy.c:218
OffsetNumber offnum
Definition: vacuumlazy.c:173
TidStore * dead_items
Definition: vacuumlazy.c:187
int64 tuples_deleted
Definition: vacuumlazy.c:207
BlockNumber nonempty_pages
Definition: vacuumlazy.c:196
bool do_rel_truncate
Definition: vacuumlazy.c:157
BlockNumber scanned_pages
Definition: vacuumlazy.c:191
bool aggressive
Definition: vacuumlazy.c:148
GlobalVisState * vistest
Definition: vacuumlazy.c:161
BlockNumber removed_pages
Definition: vacuumlazy.c:192
int num_index_scans
Definition: vacuumlazy.c:205
IndexBulkDeleteResult ** indstats
Definition: vacuumlazy.c:202
double new_live_tuples
Definition: vacuumlazy.c:200
double new_rel_tuples
Definition: vacuumlazy.c:199
TransactionId NewRelfrozenXid
Definition: vacuumlazy.c:163
Relation rel
Definition: vacuumlazy.c:139
bool consider_bypass_optimization
Definition: vacuumlazy.c:152
BlockNumber rel_pages
Definition: vacuumlazy.c:190
BlockNumber next_unskippable_block
Definition: vacuumlazy.c:216
int64 recently_dead_tuples
Definition: vacuumlazy.c:211
int64 tuples_frozen
Definition: vacuumlazy.c:208
BlockNumber frozen_pages
Definition: vacuumlazy.c:193
char * dbname
Definition: vacuumlazy.c:168
BlockNumber missed_dead_pages
Definition: vacuumlazy.c:195
BlockNumber current_block
Definition: vacuumlazy.c:215
char * relnamespace
Definition: vacuumlazy.c:169
int64 live_tuples
Definition: vacuumlazy.c:210
int64 lpdead_items
Definition: vacuumlazy.c:209
BufferAccessStrategy bstrategy
Definition: vacuumlazy.c:144
bool skippedallvis
Definition: vacuumlazy.c:165
BlockNumber lpdead_item_pages
Definition: vacuumlazy.c:194
Relation * indrels
Definition: vacuumlazy.c:140
bool skipwithvm
Definition: vacuumlazy.c:150
bool do_index_cleanup
Definition: vacuumlazy.c:156
MultiXactId NewRelminMxid
Definition: vacuumlazy.c:164
int64 missed_dead_tuples
Definition: vacuumlazy.c:212
BlockNumber blkno
Definition: vacuumlazy.c:172
struct VacuumCutoffs cutoffs
Definition: vacuumlazy.c:160
bool next_unskippable_allvis
Definition: vacuumlazy.c:217
char * relname
Definition: vacuumlazy.c:170
VacErrPhase phase
Definition: vacuumlazy.c:174
char * indname
Definition: vacuumlazy.c:171
bool do_index_vacuuming
Definition: vacuumlazy.c:155
BlockNumber blkno
Definition: vacuumlazy.c:224
VacErrPhase phase
Definition: vacuumlazy.c:226
OffsetNumber offnum
Definition: vacuumlazy.c:225
int recently_dead_tuples
Definition: heapam.h:234
TransactionId vm_conflict_horizon
Definition: heapam.h:249
OffsetNumber deadoffsets[MaxHeapTuplesPerPage]
Definition: heapam.h:263
bool all_visible
Definition: heapam.h:247
Form_pg_class rd_rel
Definition: rel.h:111
BlockNumber blkno
Definition: tidstore.h:29
size_t max_bytes
Definition: vacuum.h:287
int64 num_items
Definition: vacuum.h:288
TransactionId FreezeLimit
Definition: vacuum.h:277
TransactionId OldestXmin
Definition: vacuum.h:267
TransactionId relfrozenxid
Definition: vacuum.h:251
MultiXactId relminmxid
Definition: vacuum.h:252
MultiXactId MultiXactCutoff
Definition: vacuum.h:278
MultiXactId OldestMxact
Definition: vacuum.h:268
int nworkers
Definition: vacuum.h:239
VacOptValue truncate
Definition: vacuum.h:231
bits32 options
Definition: vacuum.h:219
bool is_wraparound
Definition: vacuum.h:226
int log_min_duration
Definition: vacuum.h:227
VacOptValue index_cleanup
Definition: vacuum.h:230
uint64 wal_bytes
Definition: instrument.h:55
int64 wal_fpi
Definition: instrument.h:54
int64 wal_records
Definition: instrument.h:53
void TidStoreEndIterate(TidStoreIter *iter)
Definition: tidstore.c:526
TidStoreIterResult * TidStoreIterateNext(TidStoreIter *iter)
Definition: tidstore.c:501
void TidStoreDestroy(TidStore *ts)
Definition: tidstore.c:325
TidStore * TidStoreCreateLocal(size_t max_bytes, bool insert_only)
Definition: tidstore.c:162
int TidStoreGetBlockOffsets(TidStoreIterResult *result, OffsetNumber *offsets, int max_offsets)
Definition: tidstore.c:574
TidStoreIter * TidStoreBeginIterate(TidStore *ts)
Definition: tidstore.c:479
void TidStoreSetBlockOffsets(TidStore *ts, BlockNumber blkno, OffsetNumber *offsets, int num_offsets)
Definition: tidstore.c:353
size_t TidStoreMemoryUsage(TidStore *ts)
Definition: tidstore.c:540
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
bool TransactionIdPrecedesOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.c:299
bool TransactionIdFollows(TransactionId id1, TransactionId id2)
Definition: transam.c:314
static TransactionId ReadNextTransactionId(void)
Definition: transam.h:315
#define InvalidTransactionId
Definition: transam.h:31
#define TransactionIdIsValid(xid)
Definition: transam.h:41
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
IndexBulkDeleteResult * vac_bulkdel_one_index(IndexVacuumInfo *ivinfo, IndexBulkDeleteResult *istat, TidStore *dead_items, VacDeadItemsInfo *dead_items_info)
Definition: vacuum.c:2494
void vac_open_indexes(Relation relation, LOCKMODE lockmode, int *nindexes, Relation **Irel)
Definition: vacuum.c:2276
void vac_update_relstats(Relation relation, BlockNumber num_pages, double num_tuples, BlockNumber num_all_visible_pages, bool hasindex, TransactionId frozenxid, MultiXactId minmulti, bool *frozenxid_updated, bool *minmulti_updated, bool in_outer_xact)
Definition: vacuum.c:1398
void vac_close_indexes(int nindexes, Relation *Irel, LOCKMODE lockmode)
Definition: vacuum.c:2319
void vacuum_delay_point(void)
Definition: vacuum.c:2340
bool vacuum_get_cutoffs(Relation rel, const VacuumParams *params, struct VacuumCutoffs *cutoffs)
Definition: vacuum.c:1072
bool vacuum_xid_failsafe_check(const struct VacuumCutoffs *cutoffs)
Definition: vacuum.c:1240
bool VacuumFailsafeActive
Definition: vacuum.c:96
double vac_estimate_reltuples(Relation relation, BlockNumber total_pages, BlockNumber scanned_pages, double scanned_tuples)
Definition: vacuum.c:1302
IndexBulkDeleteResult * vac_cleanup_one_index(IndexVacuumInfo *ivinfo, IndexBulkDeleteResult *istat)
Definition: vacuum.c:2515
#define VACOPT_VERBOSE
Definition: vacuum.h:182
@ VACOPTVALUE_AUTO
Definition: vacuum.h:203
@ VACOPTVALUE_ENABLED
Definition: vacuum.h:205
@ VACOPTVALUE_UNSPECIFIED
Definition: vacuum.h:202
@ VACOPTVALUE_DISABLED
Definition: vacuum.h:204
#define VACOPT_DISABLE_PAGE_SKIPPING
Definition: vacuum.h:188
static void dead_items_cleanup(LVRelState *vacrel)
Definition: vacuumlazy.c:2932
static bool heap_page_is_all_visible(LVRelState *vacrel, Buffer buf, TransactionId *visibility_cutoff_xid, bool *all_frozen)
Definition: vacuumlazy.c:2957
static void update_relstats_all_indexes(LVRelState *vacrel)
Definition: vacuumlazy.c:3073
static void dead_items_add(LVRelState *vacrel, BlockNumber blkno, OffsetNumber *offsets, int num_offsets)
Definition: vacuumlazy.c:2887
#define VACUUM_TRUNCATE_LOCK_WAIT_INTERVAL
Definition: vacuumlazy.c:82
static void vacuum_error_callback(void *arg)
Definition: vacuumlazy.c:3108
static void lazy_truncate_heap(LVRelState *vacrel)
Definition: vacuumlazy.c:2549
static void lazy_vacuum(LVRelState *vacrel)
Definition: vacuumlazy.c:1859
static void lazy_cleanup_all_indexes(LVRelState *vacrel)
Definition: vacuumlazy.c:2352
static bool lazy_scan_noprune(LVRelState *vacrel, Buffer buf, BlockNumber blkno, Page page, bool *has_lpdead_items)
Definition: vacuumlazy.c:1648
#define REL_TRUNCATE_MINIMUM
Definition: vacuumlazy.c:71
static bool should_attempt_truncation(LVRelState *vacrel)
Definition: vacuumlazy.c:2529
static bool lazy_scan_new_or_empty(LVRelState *vacrel, Buffer buf, BlockNumber blkno, Page page, bool sharelock, Buffer vmbuffer)
Definition: vacuumlazy.c:1283
VacErrPhase
Definition: vacuumlazy.c:127
@ VACUUM_ERRCB_PHASE_SCAN_HEAP
Definition: vacuumlazy.c:129
@ VACUUM_ERRCB_PHASE_VACUUM_INDEX
Definition: vacuumlazy.c:130
@ VACUUM_ERRCB_PHASE_TRUNCATE
Definition: vacuumlazy.c:133
@ VACUUM_ERRCB_PHASE_INDEX_CLEANUP
Definition: vacuumlazy.c:132
@ VACUUM_ERRCB_PHASE_VACUUM_HEAP
Definition: vacuumlazy.c:131
@ VACUUM_ERRCB_PHASE_UNKNOWN
Definition: vacuumlazy.c:128
static void lazy_scan_heap(LVRelState *vacrel)
Definition: vacuumlazy.c:816
#define ParallelVacuumIsActive(vacrel)
Definition: vacuumlazy.c:123
static void restore_vacuum_error_info(LVRelState *vacrel, const LVSavedErrInfo *saved_vacrel)
Definition: vacuumlazy.c:3191
static bool heap_vac_scan_next_block(LVRelState *vacrel, BlockNumber *blkno, bool *all_visible_according_to_vm)
Definition: vacuumlazy.c:1086
static void lazy_scan_prune(LVRelState *vacrel, Buffer buf, BlockNumber blkno, Page page, Buffer vmbuffer, bool all_visible_according_to_vm, bool *has_lpdead_items)
Definition: vacuumlazy.c:1406
void heap_vacuum_rel(Relation rel, VacuumParams *params, BufferAccessStrategy bstrategy)
Definition: vacuumlazy.c:295
static IndexBulkDeleteResult * lazy_vacuum_one_index(Relation indrel, IndexBulkDeleteResult *istat, double reltuples, LVRelState *vacrel)
Definition: vacuumlazy.c:2420
static void find_next_unskippable_block(LVRelState *vacrel, bool *skipsallvis)
Definition: vacuumlazy.c:1184
static void dead_items_reset(LVRelState *vacrel)
Definition: vacuumlazy.c:2910
#define REL_TRUNCATE_FRACTION
Definition: vacuumlazy.c:72
static bool lazy_check_wraparound_failsafe(LVRelState *vacrel)
Definition: vacuumlazy.c:2299
struct LVSavedErrInfo LVSavedErrInfo
static IndexBulkDeleteResult * lazy_cleanup_one_index(Relation indrel, IndexBulkDeleteResult *istat, double reltuples, bool estimated_count, LVRelState *vacrel)
Definition: vacuumlazy.c:2469
#define PREFETCH_SIZE
Definition: vacuumlazy.c:117
static void lazy_vacuum_heap_page(LVRelState *vacrel, BlockNumber blkno, Buffer buffer, OffsetNumber *deadoffsets, int num_offsets, Buffer vmbuffer)
Definition: vacuumlazy.c:2194
struct LVRelState LVRelState
#define BYPASS_THRESHOLD_PAGES
Definition: vacuumlazy.c:89
static void dead_items_alloc(LVRelState *vacrel, int nworkers)
Definition: vacuumlazy.c:2822
#define VACUUM_TRUNCATE_LOCK_TIMEOUT
Definition: vacuumlazy.c:83
static bool lazy_vacuum_all_indexes(LVRelState *vacrel)
Definition: vacuumlazy.c:1984
static void update_vacuum_error_info(LVRelState *vacrel, LVSavedErrInfo *saved_vacrel, int phase, BlockNumber blkno, OffsetNumber offnum)
Definition: vacuumlazy.c:3172
static BlockNumber count_nondeletable_pages(LVRelState *vacrel, bool *lock_waiter_detected)
Definition: vacuumlazy.c:2680
#define SKIP_PAGES_THRESHOLD
Definition: vacuumlazy.c:111
#define FAILSAFE_EVERY_PAGES
Definition: vacuumlazy.c:95
#define VACUUM_TRUNCATE_LOCK_CHECK_INTERVAL
Definition: vacuumlazy.c:81
static int cmpOffsetNumbers(const void *a, const void *b)
Definition: vacuumlazy.c:1387
static void lazy_vacuum_heap_rel(LVRelState *vacrel)
Definition: vacuumlazy.c:2101
#define VACUUM_FSM_EVERY_PAGES
Definition: vacuumlazy.c:104
ParallelVacuumState * parallel_vacuum_init(Relation rel, Relation *indrels, int nindexes, int nrequested_workers, int vac_work_mem, int elevel, BufferAccessStrategy bstrategy)
void parallel_vacuum_bulkdel_all_indexes(ParallelVacuumState *pvs, long num_table_tuples, int num_index_scans)
void parallel_vacuum_reset_dead_items(ParallelVacuumState *pvs)
void parallel_vacuum_cleanup_all_indexes(ParallelVacuumState *pvs, long num_table_tuples, int num_index_scans, bool estimated_count)
TidStore * parallel_vacuum_get_dead_items(ParallelVacuumState *pvs, VacDeadItemsInfo **dead_items_info_p)
void parallel_vacuum_end(ParallelVacuumState *pvs, IndexBulkDeleteResult **istats)
void visibilitymap_set(Relation rel, BlockNumber heapBlk, Buffer heapBuf, XLogRecPtr recptr, Buffer vmBuf, TransactionId cutoff_xid, uint8 flags)
bool visibilitymap_clear(Relation rel, BlockNumber heapBlk, Buffer vmbuf, uint8 flags)
void visibilitymap_pin(Relation rel, BlockNumber heapBlk, Buffer *vmbuf)
uint8 visibilitymap_get_status(Relation rel, BlockNumber heapBlk, Buffer *vmbuf)
void visibilitymap_count(Relation rel, BlockNumber *all_visible, BlockNumber *all_frozen)
#define VM_ALL_FROZEN(r, b, v)
Definition: visibilitymap.h:26
#define VISIBILITYMAP_VALID_BITS
#define VISIBILITYMAP_ALL_FROZEN
#define VISIBILITYMAP_ALL_VISIBLE
bool IsInParallelMode(void)
Definition: xact.c:1087
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
XLogRecPtr log_newpage_buffer(Buffer buffer, bool page_std)
Definition: xloginsert.c:1237