PostgreSQL Source Code  git master
verify_nbtree.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * verify_nbtree.c
4  * Verifies the integrity of nbtree indexes based on invariants.
5  *
6  * For B-Tree indexes, verification includes checking that each page in the
7  * target index has items in logical order as reported by an insertion scankey
8  * (the insertion scankey sort-wise NULL semantics are needed for
9  * verification).
10  *
11  * When index-to-heap verification is requested, a Bloom filter is used to
12  * fingerprint all tuples in the target index, as the index is traversed to
13  * verify its structure. A heap scan later uses Bloom filter probes to verify
14  * that every visible heap tuple has a matching index tuple.
15  *
16  *
17  * Copyright (c) 2017-2024, PostgreSQL Global Development Group
18  *
19  * IDENTIFICATION
20  * contrib/amcheck/verify_nbtree.c
21  *
22  *-------------------------------------------------------------------------
23  */
24 #include "postgres.h"
25 
26 #include "access/heaptoast.h"
27 #include "access/htup_details.h"
28 #include "access/nbtree.h"
29 #include "access/table.h"
30 #include "access/tableam.h"
31 #include "access/transam.h"
32 #include "access/xact.h"
33 #include "catalog/index.h"
34 #include "catalog/pg_am.h"
35 #include "catalog/pg_opfamily_d.h"
36 #include "common/pg_prng.h"
37 #include "lib/bloomfilter.h"
38 #include "miscadmin.h"
39 #include "storage/smgr.h"
40 #include "utils/guc.h"
41 #include "utils/memutils.h"
42 #include "utils/snapmgr.h"
43 
44 
46 
47 /*
48  * A B-Tree cannot possibly have this many levels, since there must be one
49  * block per level, which is bound by the range of BlockNumber:
50  */
51 #define InvalidBtreeLevel ((uint32) InvalidBlockNumber)
52 #define BTreeTupleGetNKeyAtts(itup, rel) \
53  Min(IndexRelationGetNumberOfKeyAttributes(rel), BTreeTupleGetNAtts(itup, rel))
54 
55 /*
56  * State associated with verifying a B-Tree index
57  *
58  * target is the point of reference for a verification operation.
59  *
60  * Other B-Tree pages may be allocated, but those are always auxiliary (e.g.,
61  * they are current target's child pages). Conceptually, problems are only
62  * ever found in the current target page (or for a particular heap tuple during
63  * heapallindexed verification). Each page found by verification's left/right,
64  * top/bottom scan becomes the target exactly once.
65  */
66 typedef struct BtreeCheckState
67 {
68  /*
69  * Unchanging state, established at start of verification:
70  */
71 
72  /* B-Tree Index Relation and associated heap relation */
75  /* rel is heapkeyspace index? */
77  /* ShareLock held on heap/index, rather than AccessShareLock? */
78  bool readonly;
79  /* Also verifying heap has no unindexed tuples? */
81  /* Also making sure non-pivot tuples can be found by new search? */
83  /* Also check uniqueness constraint if index is unique */
85  /* Per-page context */
87  /* Buffer access strategy */
89 
90  /*
91  * Info for uniqueness checking. Fill these fields once per index check.
92  */
95 
96  /*
97  * Mutable state, for verification of particular page:
98  */
99 
100  /* Current target page */
102  /* Target block number */
104  /* Target page's LSN */
106 
107  /*
108  * Low key: high key of left sibling of target page. Used only for child
109  * verification. So, 'lowkey' is kept only when 'readonly' is set.
110  */
112 
113  /*
114  * The rightlink and incomplete split flag of block one level down to the
115  * target page, which was visited last time via downlink from target page.
116  * We use it to check for missing downlinks.
117  */
120 
121  /*
122  * Mutable state, for optional heapallindexed verification:
123  */
124 
125  /* Bloom filter fingerprints B-Tree index */
127  /* Debug counter */
130 
131 /*
132  * Starting point for verifying an entire B-Tree index level
133  */
134 typedef struct BtreeLevel
135 {
136  /* Level number (0 is leaf page level). */
138 
139  /* Left most block on level. Scan of level begins here. */
141 
142  /* Is this level reported as "true" root level by meta page? */
145 
146 /*
147  * Information about the last visible entry with current B-tree key. Used
148  * for validation of the unique constraint.
149  */
150 typedef struct BtreeLastVisibleEntry
151 {
152  BlockNumber blkno; /* Index block */
153  OffsetNumber offset; /* Offset on index block */
154  int postingIndex; /* Number in the posting list (-1 for
155  * non-deduplicated tuples) */
156  ItemPointer tid; /* Heap tid */
158 
161 
162 static void bt_index_check_internal(Oid indrelid, bool parentcheck,
163  bool heapallindexed, bool rootdescend,
164  bool checkunique);
165 static inline void btree_index_checkable(Relation rel);
166 static inline bool btree_index_mainfork_expected(Relation rel);
167 static void bt_check_every_level(Relation rel, Relation heaprel,
168  bool heapkeyspace, bool readonly, bool heapallindexed,
169  bool rootdescend, bool checkunique);
171  BtreeLevel level);
174  BTPageOpaque start_opaque);
176  BlockNumber btpo_prev_from_target,
177  BlockNumber leftcurrent);
180  BtreeLastVisibleEntry *lVis,
181  ItemPointer nexttid,
182  BlockNumber nblock, OffsetNumber noffset,
183  int nposting);
185  BlockNumber targetblock, OffsetNumber offset,
186  BtreeLastVisibleEntry *lVis);
189  OffsetNumber *rightfirstoffset);
190 static void bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
191  OffsetNumber downlinkoffnum);
193  OffsetNumber target_downlinkoffnum,
194  Page loaded_child,
195  uint32 target_level);
196 static void bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
197  BlockNumber blkno, Page page);
199  Datum *values, bool *isnull,
200  bool tupleIsAlive, void *checkstate);
202  IndexTuple itup);
203 static inline IndexTuple bt_posting_plain_tuple(IndexTuple itup, int n);
204 static bool bt_rootdescend(BtreeCheckState *state, IndexTuple itup);
205 static inline bool offset_is_negative_infinity(BTPageOpaque opaque,
206  OffsetNumber offset);
208  OffsetNumber upperbound);
209 static inline bool invariant_leq_offset(BtreeCheckState *state,
211  OffsetNumber upperbound);
213  OffsetNumber lowerbound);
216  BlockNumber nontargetblock,
217  Page nontarget,
218  OffsetNumber upperbound);
221  IndexTuple itup);
223  Page page, OffsetNumber offset);
225  IndexTuple itup, bool nonpivot);
227 
228 /*
229  * bt_index_check(index regclass, heapallindexed boolean, checkunique boolean)
230  *
231  * Verify integrity of B-Tree index.
232  *
233  * Acquires AccessShareLock on heap & index relations. Does not consider
234  * invariants that exist between parent/child pages. Optionally verifies
235  * that heap does not contain any unindexed or incorrectly indexed tuples.
236  */
237 Datum
239 {
240  Oid indrelid = PG_GETARG_OID(0);
241  bool heapallindexed = false;
242  bool checkunique = false;
243 
244  if (PG_NARGS() >= 2)
245  heapallindexed = PG_GETARG_BOOL(1);
246  if (PG_NARGS() == 3)
247  checkunique = PG_GETARG_BOOL(2);
248 
249  bt_index_check_internal(indrelid, false, heapallindexed, false, checkunique);
250 
251  PG_RETURN_VOID();
252 }
253 
254 /*
255  * bt_index_parent_check(index regclass, heapallindexed boolean, rootdescend boolean, checkunique boolean)
256  *
257  * Verify integrity of B-Tree index.
258  *
259  * Acquires ShareLock on heap & index relations. Verifies that downlinks in
260  * parent pages are valid lower bounds on child pages. Optionally verifies
261  * that heap does not contain any unindexed or incorrectly indexed tuples.
262  */
263 Datum
265 {
266  Oid indrelid = PG_GETARG_OID(0);
267  bool heapallindexed = false;
268  bool rootdescend = false;
269  bool checkunique = false;
270 
271  if (PG_NARGS() >= 2)
272  heapallindexed = PG_GETARG_BOOL(1);
273  if (PG_NARGS() >= 3)
274  rootdescend = PG_GETARG_BOOL(2);
275  if (PG_NARGS() == 4)
276  checkunique = PG_GETARG_BOOL(3);
277 
278  bt_index_check_internal(indrelid, true, heapallindexed, rootdescend, checkunique);
279 
280  PG_RETURN_VOID();
281 }
282 
283 /*
284  * Helper for bt_index_[parent_]check, coordinating the bulk of the work.
285  */
286 static void
287 bt_index_check_internal(Oid indrelid, bool parentcheck, bool heapallindexed,
288  bool rootdescend, bool checkunique)
289 {
290  Oid heapid;
291  Relation indrel;
292  Relation heaprel;
293  LOCKMODE lockmode;
294  Oid save_userid;
295  int save_sec_context;
296  int save_nestlevel;
297 
298  if (parentcheck)
299  lockmode = ShareLock;
300  else
301  lockmode = AccessShareLock;
302 
303  /*
304  * We must lock table before index to avoid deadlocks. However, if the
305  * passed indrelid isn't an index then IndexGetRelation() will fail.
306  * Rather than emitting a not-very-helpful error message, postpone
307  * complaining, expecting that the is-it-an-index test below will fail.
308  *
309  * In hot standby mode this will raise an error when parentcheck is true.
310  */
311  heapid = IndexGetRelation(indrelid, true);
312  if (OidIsValid(heapid))
313  {
314  heaprel = table_open(heapid, lockmode);
315 
316  /*
317  * Switch to the table owner's userid, so that any index functions are
318  * run as that user. Also lock down security-restricted operations
319  * and arrange to make GUC variable changes local to this command.
320  */
321  GetUserIdAndSecContext(&save_userid, &save_sec_context);
322  SetUserIdAndSecContext(heaprel->rd_rel->relowner,
323  save_sec_context | SECURITY_RESTRICTED_OPERATION);
324  save_nestlevel = NewGUCNestLevel();
326  }
327  else
328  {
329  heaprel = NULL;
330  /* Set these just to suppress "uninitialized variable" warnings */
331  save_userid = InvalidOid;
332  save_sec_context = -1;
333  save_nestlevel = -1;
334  }
335 
336  /*
337  * Open the target index relations separately (like relation_openrv(), but
338  * with heap relation locked first to prevent deadlocking). In hot
339  * standby mode this will raise an error when parentcheck is true.
340  *
341  * There is no need for the usual indcheckxmin usability horizon test
342  * here, even in the heapallindexed case, because index undergoing
343  * verification only needs to have entries for a new transaction snapshot.
344  * (If this is a parentcheck verification, there is no question about
345  * committed or recently dead heap tuples lacking index entries due to
346  * concurrent activity.)
347  */
348  indrel = index_open(indrelid, lockmode);
349 
350  /*
351  * Since we did the IndexGetRelation call above without any lock, it's
352  * barely possible that a race against an index drop/recreation could have
353  * netted us the wrong table.
354  */
355  if (heaprel == NULL || heapid != IndexGetRelation(indrelid, false))
356  ereport(ERROR,
358  errmsg("could not open parent table of index \"%s\"",
359  RelationGetRelationName(indrel))));
360 
361  /* Relation suitable for checking as B-Tree? */
362  btree_index_checkable(indrel);
363 
364  if (btree_index_mainfork_expected(indrel))
365  {
366  bool heapkeyspace,
367  allequalimage;
368 
369  if (!smgrexists(RelationGetSmgr(indrel), MAIN_FORKNUM))
370  ereport(ERROR,
371  (errcode(ERRCODE_INDEX_CORRUPTED),
372  errmsg("index \"%s\" lacks a main relation fork",
373  RelationGetRelationName(indrel))));
374 
375  /* Extract metadata from metapage, and sanitize it in passing */
376  _bt_metaversion(indrel, &heapkeyspace, &allequalimage);
377  if (allequalimage && !heapkeyspace)
378  ereport(ERROR,
379  (errcode(ERRCODE_INDEX_CORRUPTED),
380  errmsg("index \"%s\" metapage has equalimage field set on unsupported nbtree version",
381  RelationGetRelationName(indrel))));
382  if (allequalimage && !_bt_allequalimage(indrel, false))
383  {
384  bool has_interval_ops = false;
385 
386  for (int i = 0; i < IndexRelationGetNumberOfKeyAttributes(indrel); i++)
387  if (indrel->rd_opfamily[i] == INTERVAL_BTREE_FAM_OID)
388  has_interval_ops = true;
389  ereport(ERROR,
390  (errcode(ERRCODE_INDEX_CORRUPTED),
391  errmsg("index \"%s\" metapage incorrectly indicates that deduplication is safe",
392  RelationGetRelationName(indrel)),
393  has_interval_ops
394  ? errhint("This is known of \"interval\" indexes last built on a version predating 2023-11.")
395  : 0));
396  }
397 
398  /* Check index, possibly against table it is an index on */
399  bt_check_every_level(indrel, heaprel, heapkeyspace, parentcheck,
400  heapallindexed, rootdescend, checkunique);
401  }
402 
403  /* Roll back any GUC changes executed by index functions */
404  AtEOXact_GUC(false, save_nestlevel);
405 
406  /* Restore userid and security context */
407  SetUserIdAndSecContext(save_userid, save_sec_context);
408 
409  /*
410  * Release locks early. That's ok here because nothing in the called
411  * routines will trigger shared cache invalidations to be sent, so we can
412  * relax the usual pattern of only releasing locks after commit.
413  */
414  index_close(indrel, lockmode);
415  if (heaprel)
416  table_close(heaprel, lockmode);
417 }
418 
419 /*
420  * Basic checks about the suitability of a relation for checking as a B-Tree
421  * index.
422  *
423  * NB: Intentionally not checking permissions, the function is normally not
424  * callable by non-superusers. If granted, it's useful to be able to check a
425  * whole cluster.
426  */
427 static inline void
429 {
430  if (rel->rd_rel->relkind != RELKIND_INDEX ||
431  rel->rd_rel->relam != BTREE_AM_OID)
432  ereport(ERROR,
433  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
434  errmsg("only B-Tree indexes are supported as targets for verification"),
435  errdetail("Relation \"%s\" is not a B-Tree index.",
436  RelationGetRelationName(rel))));
437 
438  if (RELATION_IS_OTHER_TEMP(rel))
439  ereport(ERROR,
440  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
441  errmsg("cannot access temporary tables of other sessions"),
442  errdetail("Index \"%s\" is associated with temporary relation.",
443  RelationGetRelationName(rel))));
444 
445  if (!rel->rd_index->indisvalid)
446  ereport(ERROR,
447  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
448  errmsg("cannot check index \"%s\"",
450  errdetail("Index is not valid.")));
451 }
452 
453 /*
454  * Check if B-Tree index relation should have a file for its main relation
455  * fork. Verification uses this to skip unlogged indexes when in hot standby
456  * mode, where there is simply nothing to verify. We behave as if the
457  * relation is empty.
458  *
459  * NB: Caller should call btree_index_checkable() before calling here.
460  */
461 static inline bool
463 {
464  if (rel->rd_rel->relpersistence != RELPERSISTENCE_UNLOGGED ||
466  return true;
467 
468  ereport(DEBUG1,
469  (errcode(ERRCODE_READ_ONLY_SQL_TRANSACTION),
470  errmsg("cannot verify unlogged index \"%s\" during recovery, skipping",
471  RelationGetRelationName(rel))));
472 
473  return false;
474 }
475 
476 /*
477  * Main entry point for B-Tree SQL-callable functions. Walks the B-Tree in
478  * logical order, verifying invariants as it goes. Optionally, verification
479  * checks if the heap relation contains any tuples that are not represented in
480  * the index but should be.
481  *
482  * It is the caller's responsibility to acquire appropriate heavyweight lock on
483  * the index relation, and advise us if extra checks are safe when a ShareLock
484  * is held. (A lock of the same type must also have been acquired on the heap
485  * relation.)
486  *
487  * A ShareLock is generally assumed to prevent any kind of physical
488  * modification to the index structure, including modifications that VACUUM may
489  * make. This does not include setting of the LP_DEAD bit by concurrent index
490  * scans, although that is just metadata that is not able to directly affect
491  * any check performed here. Any concurrent process that might act on the
492  * LP_DEAD bit being set (recycle space) requires a heavyweight lock that
493  * cannot be held while we hold a ShareLock. (Besides, even if that could
494  * happen, the ad-hoc recycling when a page might otherwise split is performed
495  * per-page, and requires an exclusive buffer lock, which wouldn't cause us
496  * trouble. _bt_delitems_vacuum() may only delete leaf items, and so the extra
497  * parent/child check cannot be affected.)
498  */
499 static void
500 bt_check_every_level(Relation rel, Relation heaprel, bool heapkeyspace,
501  bool readonly, bool heapallindexed, bool rootdescend,
502  bool checkunique)
503 {
505  Page metapage;
506  BTMetaPageData *metad;
507  uint32 previouslevel;
508  BtreeLevel current;
509  Snapshot snapshot = SnapshotAny;
510 
511  if (!readonly)
512  elog(DEBUG1, "verifying consistency of tree structure for index \"%s\"",
514  else
515  elog(DEBUG1, "verifying consistency of tree structure for index \"%s\" with cross-level checks",
517 
518  /*
519  * This assertion matches the one in index_getnext_tid(). See page
520  * recycling/"visible to everyone" notes in nbtree README.
521  */
523 
524  /*
525  * Initialize state for entire verification operation
526  */
527  state = palloc0(sizeof(BtreeCheckState));
528  state->rel = rel;
529  state->heaprel = heaprel;
530  state->heapkeyspace = heapkeyspace;
531  state->readonly = readonly;
532  state->heapallindexed = heapallindexed;
533  state->rootdescend = rootdescend;
534  state->checkunique = checkunique;
535  state->snapshot = InvalidSnapshot;
536 
537  if (state->heapallindexed)
538  {
539  int64 total_pages;
540  int64 total_elems;
541  uint64 seed;
542 
543  /*
544  * Size Bloom filter based on estimated number of tuples in index,
545  * while conservatively assuming that each block must contain at least
546  * MaxTIDsPerBTreePage / 3 "plain" tuples -- see
547  * bt_posting_plain_tuple() for definition, and details of how posting
548  * list tuples are handled.
549  */
550  total_pages = RelationGetNumberOfBlocks(rel);
551  total_elems = Max(total_pages * (MaxTIDsPerBTreePage / 3),
552  (int64) state->rel->rd_rel->reltuples);
553  /* Generate a random seed to avoid repetition */
555  /* Create Bloom filter to fingerprint index */
556  state->filter = bloom_create(total_elems, maintenance_work_mem, seed);
557  state->heaptuplespresent = 0;
558 
559  /*
560  * Register our own snapshot in !readonly case, rather than asking
561  * table_index_build_scan() to do this for us later. This needs to
562  * happen before index fingerprinting begins, so we can later be
563  * certain that index fingerprinting should have reached all tuples
564  * returned by table_index_build_scan().
565  */
566  if (!state->readonly)
567  {
569 
570  /*
571  * GetTransactionSnapshot() always acquires a new MVCC snapshot in
572  * READ COMMITTED mode. A new snapshot is guaranteed to have all
573  * the entries it requires in the index.
574  *
575  * We must defend against the possibility that an old xact
576  * snapshot was returned at higher isolation levels when that
577  * snapshot is not safe for index scans of the target index. This
578  * is possible when the snapshot sees tuples that are before the
579  * index's indcheckxmin horizon. Throwing an error here should be
580  * very rare. It doesn't seem worth using a secondary snapshot to
581  * avoid this.
582  */
583  if (IsolationUsesXactSnapshot() && rel->rd_index->indcheckxmin &&
585  snapshot->xmin))
586  ereport(ERROR,
588  errmsg("index \"%s\" cannot be verified using transaction snapshot",
589  RelationGetRelationName(rel))));
590  }
591  }
592 
593  /*
594  * We need a snapshot to check the uniqueness of the index. For better
595  * performance take it once per index check. If snapshot already taken
596  * reuse it.
597  */
598  if (state->checkunique)
599  {
600  state->indexinfo = BuildIndexInfo(state->rel);
601  if (state->indexinfo->ii_Unique)
602  {
603  if (snapshot != SnapshotAny)
604  state->snapshot = snapshot;
605  else
607  }
608  }
609 
610  Assert(!state->rootdescend || state->readonly);
611  if (state->rootdescend && !state->heapkeyspace)
612  ereport(ERROR,
613  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
614  errmsg("cannot verify that tuples from index \"%s\" can each be found by an independent index search",
616  errhint("Only B-Tree version 4 indexes support rootdescend verification.")));
617 
618  /* Create context for page */
620  "amcheck context",
622  state->checkstrategy = GetAccessStrategy(BAS_BULKREAD);
623 
624  /* Get true root block from meta-page */
626  metad = BTPageGetMeta(metapage);
627 
628  /*
629  * Certain deletion patterns can result in "skinny" B-Tree indexes, where
630  * the fast root and true root differ.
631  *
632  * Start from the true root, not the fast root, unlike conventional index
633  * scans. This approach is more thorough, and removes the risk of
634  * following a stale fast root from the meta page.
635  */
636  if (metad->btm_fastroot != metad->btm_root)
637  ereport(DEBUG1,
638  (errcode(ERRCODE_NO_DATA),
639  errmsg_internal("harmless fast root mismatch in index \"%s\"",
641  errdetail_internal("Fast root block %u (level %u) differs from true root block %u (level %u).",
642  metad->btm_fastroot, metad->btm_fastlevel,
643  metad->btm_root, metad->btm_level)));
644 
645  /*
646  * Starting at the root, verify every level. Move left to right, top to
647  * bottom. Note that there may be no pages other than the meta page (meta
648  * page can indicate that root is P_NONE when the index is totally empty).
649  */
650  previouslevel = InvalidBtreeLevel;
651  current.level = metad->btm_level;
652  current.leftmost = metad->btm_root;
653  current.istruerootlevel = true;
654  while (current.leftmost != P_NONE)
655  {
656  /*
657  * Verify this level, and get left most page for next level down, if
658  * not at leaf level
659  */
660  current = bt_check_level_from_leftmost(state, current);
661 
662  if (current.leftmost == InvalidBlockNumber)
663  ereport(ERROR,
664  (errcode(ERRCODE_INDEX_CORRUPTED),
665  errmsg("index \"%s\" has no valid pages on level below %u or first level",
666  RelationGetRelationName(rel), previouslevel)));
667 
668  previouslevel = current.level;
669  }
670 
671  /*
672  * * Check whether heap contains unindexed/malformed tuples *
673  */
674  if (state->heapallindexed)
675  {
676  IndexInfo *indexinfo = BuildIndexInfo(state->rel);
677  TableScanDesc scan;
678 
679  /*
680  * Create our own scan for table_index_build_scan(), rather than
681  * getting it to do so for us. This is required so that we can
682  * actually use the MVCC snapshot registered earlier in !readonly
683  * case.
684  *
685  * Note that table_index_build_scan() calls heap_endscan() for us.
686  */
687  scan = table_beginscan_strat(state->heaprel, /* relation */
688  snapshot, /* snapshot */
689  0, /* number of keys */
690  NULL, /* scan key */
691  true, /* buffer access strategy OK */
692  true); /* syncscan OK? */
693 
694  /*
695  * Scan will behave as the first scan of a CREATE INDEX CONCURRENTLY
696  * behaves in !readonly case.
697  *
698  * It's okay that we don't actually use the same lock strength for the
699  * heap relation as any other ii_Concurrent caller would in !readonly
700  * case. We have no reason to care about a concurrent VACUUM
701  * operation, since there isn't going to be a second scan of the heap
702  * that needs to be sure that there was no concurrent recycling of
703  * TIDs.
704  */
705  indexinfo->ii_Concurrent = !state->readonly;
706 
707  /*
708  * Don't wait for uncommitted tuple xact commit/abort when index is a
709  * unique index on a catalog (or an index used by an exclusion
710  * constraint). This could otherwise happen in the readonly case.
711  */
712  indexinfo->ii_Unique = false;
713  indexinfo->ii_ExclusionOps = NULL;
714  indexinfo->ii_ExclusionProcs = NULL;
715  indexinfo->ii_ExclusionStrats = NULL;
716 
717  elog(DEBUG1, "verifying that tuples from index \"%s\" are present in \"%s\"",
719  RelationGetRelationName(state->heaprel));
720 
721  table_index_build_scan(state->heaprel, state->rel, indexinfo, true, false,
723 
724  ereport(DEBUG1,
725  (errmsg_internal("finished verifying presence of " INT64_FORMAT " tuples from table \"%s\" with bitset %.2f%% set",
726  state->heaptuplespresent, RelationGetRelationName(heaprel),
727  100.0 * bloom_prop_bits_set(state->filter))));
728 
729  if (snapshot != SnapshotAny)
730  UnregisterSnapshot(snapshot);
731 
732  bloom_free(state->filter);
733  }
734 
735  /* Be tidy: */
736  if (snapshot == SnapshotAny && state->snapshot != InvalidSnapshot)
737  UnregisterSnapshot(state->snapshot);
738  MemoryContextDelete(state->targetcontext);
739 }
740 
741 /*
742  * Given a left-most block at some level, move right, verifying each page
743  * individually (with more verification across pages for "readonly"
744  * callers). Caller should pass the true root page as the leftmost initially,
745  * working their way down by passing what is returned for the last call here
746  * until level 0 (leaf page level) was reached.
747  *
748  * Returns state for next call, if any. This includes left-most block number
749  * one level lower that should be passed on next level/call, which is set to
750  * P_NONE on last call here (when leaf level is verified). Level numbers
751  * follow the nbtree convention: higher levels have higher numbers, because new
752  * levels are added only due to a root page split. Note that prior to the
753  * first root page split, the root is also a leaf page, so there is always a
754  * level 0 (leaf level), and it's always the last level processed.
755  *
756  * Note on memory management: State's per-page context is reset here, between
757  * each call to bt_target_page_check().
758  */
759 static BtreeLevel
761 {
762  /* State to establish early, concerning entire level */
763  BTPageOpaque opaque;
764  MemoryContext oldcontext;
765  BtreeLevel nextleveldown;
766 
767  /* Variables for iterating across level using right links */
768  BlockNumber leftcurrent = P_NONE;
769  BlockNumber current = level.leftmost;
770 
771  /* Initialize return state */
772  nextleveldown.leftmost = InvalidBlockNumber;
773  nextleveldown.level = InvalidBtreeLevel;
774  nextleveldown.istruerootlevel = false;
775 
776  /* Use page-level context for duration of this call */
777  oldcontext = MemoryContextSwitchTo(state->targetcontext);
778 
779  elog(DEBUG1, "verifying level %u%s", level.level,
780  level.istruerootlevel ?
781  " (true root level)" : level.level == 0 ? " (leaf level)" : "");
782 
783  state->prevrightlink = InvalidBlockNumber;
784  state->previncompletesplit = false;
785 
786  do
787  {
788  /* Don't rely on CHECK_FOR_INTERRUPTS() calls at lower level */
790 
791  /* Initialize state for this iteration */
792  state->targetblock = current;
793  state->target = palloc_btree_page(state, state->targetblock);
794  state->targetlsn = PageGetLSN(state->target);
795 
796  opaque = BTPageGetOpaque(state->target);
797 
798  if (P_IGNORE(opaque))
799  {
800  /*
801  * Since there cannot be a concurrent VACUUM operation in readonly
802  * mode, and since a page has no links within other pages
803  * (siblings and parent) once it is marked fully deleted, it
804  * should be impossible to land on a fully deleted page in
805  * readonly mode. See bt_child_check() for further details.
806  *
807  * The bt_child_check() P_ISDELETED() check is repeated here so
808  * that pages that are only reachable through sibling links get
809  * checked.
810  */
811  if (state->readonly && P_ISDELETED(opaque))
812  ereport(ERROR,
813  (errcode(ERRCODE_INDEX_CORRUPTED),
814  errmsg("downlink or sibling link points to deleted block in index \"%s\"",
816  errdetail_internal("Block=%u left block=%u left link from block=%u.",
817  current, leftcurrent, opaque->btpo_prev)));
818 
819  if (P_RIGHTMOST(opaque))
820  ereport(ERROR,
821  (errcode(ERRCODE_INDEX_CORRUPTED),
822  errmsg("block %u fell off the end of index \"%s\"",
823  current, RelationGetRelationName(state->rel))));
824  else
825  ereport(DEBUG1,
826  (errcode(ERRCODE_NO_DATA),
827  errmsg_internal("block %u of index \"%s\" concurrently deleted",
828  current, RelationGetRelationName(state->rel))));
829  goto nextpage;
830  }
831  else if (nextleveldown.leftmost == InvalidBlockNumber)
832  {
833  /*
834  * A concurrent page split could make the caller supplied leftmost
835  * block no longer contain the leftmost page, or no longer be the
836  * true root, but where that isn't possible due to heavyweight
837  * locking, check that the first valid page meets caller's
838  * expectations.
839  */
840  if (state->readonly)
841  {
842  if (!bt_leftmost_ignoring_half_dead(state, current, opaque))
843  ereport(ERROR,
844  (errcode(ERRCODE_INDEX_CORRUPTED),
845  errmsg("block %u is not leftmost in index \"%s\"",
846  current, RelationGetRelationName(state->rel))));
847 
848  if (level.istruerootlevel && !P_ISROOT(opaque))
849  ereport(ERROR,
850  (errcode(ERRCODE_INDEX_CORRUPTED),
851  errmsg("block %u is not true root in index \"%s\"",
852  current, RelationGetRelationName(state->rel))));
853  }
854 
855  /*
856  * Before beginning any non-trivial examination of level, prepare
857  * state for next bt_check_level_from_leftmost() invocation for
858  * the next level for the next level down (if any).
859  *
860  * There should be at least one non-ignorable page per level,
861  * unless this is the leaf level, which is assumed by caller to be
862  * final level.
863  */
864  if (!P_ISLEAF(opaque))
865  {
866  IndexTuple itup;
867  ItemId itemid;
868 
869  /* Internal page -- downlink gets leftmost on next level */
870  itemid = PageGetItemIdCareful(state, state->targetblock,
871  state->target,
872  P_FIRSTDATAKEY(opaque));
873  itup = (IndexTuple) PageGetItem(state->target, itemid);
874  nextleveldown.leftmost = BTreeTupleGetDownLink(itup);
875  nextleveldown.level = opaque->btpo_level - 1;
876  }
877  else
878  {
879  /*
880  * Leaf page -- final level caller must process.
881  *
882  * Note that this could also be the root page, if there has
883  * been no root page split yet.
884  */
885  nextleveldown.leftmost = P_NONE;
886  nextleveldown.level = InvalidBtreeLevel;
887  }
888 
889  /*
890  * Finished setting up state for this call/level. Control will
891  * never end up back here in any future loop iteration for this
892  * level.
893  */
894  }
895 
896  /*
897  * Sibling links should be in mutual agreement. There arises
898  * leftcurrent == P_NONE && btpo_prev != P_NONE when the left sibling
899  * of the parent's low-key downlink is half-dead. (A half-dead page
900  * has no downlink from its parent.) Under heavyweight locking, the
901  * last bt_leftmost_ignoring_half_dead() validated this btpo_prev.
902  * Without heavyweight locking, validation of the P_NONE case remains
903  * unimplemented.
904  */
905  if (opaque->btpo_prev != leftcurrent && leftcurrent != P_NONE)
906  bt_recheck_sibling_links(state, opaque->btpo_prev, leftcurrent);
907 
908  /* Check level */
909  if (level.level != opaque->btpo_level)
910  ereport(ERROR,
911  (errcode(ERRCODE_INDEX_CORRUPTED),
912  errmsg("leftmost down link for level points to block in index \"%s\" whose level is not one level down",
914  errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
915  current, level.level, opaque->btpo_level)));
916 
917  /* Verify invariants for page */
919 
920 nextpage:
921 
922  /* Try to detect circular links */
923  if (current == leftcurrent || current == opaque->btpo_prev)
924  ereport(ERROR,
925  (errcode(ERRCODE_INDEX_CORRUPTED),
926  errmsg("circular link chain found in block %u of index \"%s\"",
927  current, RelationGetRelationName(state->rel))));
928 
929  leftcurrent = current;
930  current = opaque->btpo_next;
931 
932  if (state->lowkey)
933  {
934  Assert(state->readonly);
935  pfree(state->lowkey);
936  state->lowkey = NULL;
937  }
938 
939  /*
940  * Copy current target high key as the low key of right sibling.
941  * Allocate memory in upper level context, so it would be cleared
942  * after reset of target context.
943  *
944  * We only need the low key in corner cases of checking child high
945  * keys. We use high key only when incomplete split on the child level
946  * falls to the boundary of pages on the target level. See
947  * bt_child_highkey_check() for details. So, typically we won't end
948  * up doing anything with low key, but it's simpler for general case
949  * high key verification to always have it available.
950  *
951  * The correctness of managing low key in the case of concurrent
952  * splits wasn't investigated yet. Thankfully we only need low key
953  * for readonly verification and concurrent splits won't happen.
954  */
955  if (state->readonly && !P_RIGHTMOST(opaque))
956  {
957  IndexTuple itup;
958  ItemId itemid;
959 
960  itemid = PageGetItemIdCareful(state, state->targetblock,
961  state->target, P_HIKEY);
962  itup = (IndexTuple) PageGetItem(state->target, itemid);
963 
964  state->lowkey = MemoryContextAlloc(oldcontext, IndexTupleSize(itup));
965  memcpy(state->lowkey, itup, IndexTupleSize(itup));
966  }
967 
968  /* Free page and associated memory for this iteration */
969  MemoryContextReset(state->targetcontext);
970  }
971  while (current != P_NONE);
972 
973  if (state->lowkey)
974  {
975  Assert(state->readonly);
976  pfree(state->lowkey);
977  state->lowkey = NULL;
978  }
979 
980  /* Don't change context for caller */
981  MemoryContextSwitchTo(oldcontext);
982 
983  return nextleveldown;
984 }
985 
986 /* Check visibility of the table entry referenced by nbtree index */
987 static bool
989 {
990  bool tid_visible;
991 
992  TupleTableSlot *slot = table_slot_create(state->heaprel, NULL);
993 
994  tid_visible = table_tuple_fetch_row_version(state->heaprel,
995  tid, state->snapshot, slot);
996  if (slot != NULL)
998 
999  return tid_visible;
1000 }
1001 
1002 /*
1003  * Prepare an error message for unique constrain violation in
1004  * a btree index and report ERROR.
1005  */
1006 static void
1008  BtreeLastVisibleEntry *lVis,
1009  ItemPointer nexttid, BlockNumber nblock, OffsetNumber noffset,
1010  int nposting)
1011 {
1012  char *htid,
1013  *nhtid,
1014  *itid,
1015  *nitid = "",
1016  *pposting = "",
1017  *pnposting = "";
1018 
1019  htid = psprintf("tid=(%u,%u)",
1022  nhtid = psprintf("tid=(%u,%u)",
1025  itid = psprintf("tid=(%u,%u)", lVis->blkno, lVis->offset);
1026 
1027  if (nblock != lVis->blkno || noffset != lVis->offset)
1028  nitid = psprintf(" tid=(%u,%u)", nblock, noffset);
1029 
1030  if (lVis->postingIndex >= 0)
1031  pposting = psprintf(" posting %u", lVis->postingIndex);
1032 
1033  if (nposting >= 0)
1034  pnposting = psprintf(" posting %u", nposting);
1035 
1036  ereport(ERROR,
1037  (errcode(ERRCODE_INDEX_CORRUPTED),
1038  errmsg("index uniqueness is violated for index \"%s\"",
1040  errdetail("Index %s%s and%s%s (point to heap %s and %s) page lsn=%X/%X.",
1041  itid, pposting, nitid, pnposting, htid, nhtid,
1042  LSN_FORMAT_ARGS(state->targetlsn))));
1043 }
1044 
1045 /* Check if current nbtree leaf entry complies with UNIQUE constraint */
1046 static void
1048  BlockNumber targetblock, OffsetNumber offset,
1049  BtreeLastVisibleEntry *lVis)
1050 {
1051  ItemPointer tid;
1052  bool has_visible_entry = false;
1053 
1054  Assert(targetblock != P_NONE);
1055 
1056  /*
1057  * Current tuple has posting list. Report duplicate if TID of any posting
1058  * list entry is visible and lVis->tid is valid.
1059  */
1060  if (BTreeTupleIsPosting(itup))
1061  {
1062  for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
1063  {
1064  tid = BTreeTupleGetPostingN(itup, i);
1065  if (heap_entry_is_visible(state, tid))
1066  {
1067  has_visible_entry = true;
1068  if (ItemPointerIsValid(lVis->tid))
1069  {
1071  lVis,
1072  tid, targetblock,
1073  offset, i);
1074  }
1075 
1076  /*
1077  * Prevent double reporting unique constraint violation
1078  * between the posting list entries of the first tuple on the
1079  * page after cross-page check.
1080  */
1081  if (lVis->blkno != targetblock && ItemPointerIsValid(lVis->tid))
1082  return;
1083 
1084  lVis->blkno = targetblock;
1085  lVis->offset = offset;
1086  lVis->postingIndex = i;
1087  lVis->tid = tid;
1088  }
1089  }
1090  }
1091 
1092  /*
1093  * Current tuple has no posting list. If TID is visible save info about it
1094  * for the next comparisons in the loop in bt_target_page_check(). Report
1095  * duplicate if lVis->tid is already valid.
1096  */
1097  else
1098  {
1099  tid = BTreeTupleGetHeapTID(itup);
1100  if (heap_entry_is_visible(state, tid))
1101  {
1102  has_visible_entry = true;
1103  if (ItemPointerIsValid(lVis->tid))
1104  {
1106  lVis,
1107  tid, targetblock,
1108  offset, -1);
1109  }
1110 
1111  lVis->blkno = targetblock;
1112  lVis->offset = offset;
1113  lVis->tid = tid;
1114  lVis->postingIndex = -1;
1115  }
1116  }
1117 
1118  if (!has_visible_entry &&
1119  lVis->blkno != InvalidBlockNumber &&
1120  lVis->blkno != targetblock)
1121  {
1122  char *posting = "";
1123 
1124  if (lVis->postingIndex >= 0)
1125  posting = psprintf(" posting %u", lVis->postingIndex);
1126  ereport(DEBUG1,
1127  (errcode(ERRCODE_NO_DATA),
1128  errmsg("index uniqueness can not be checked for index tid=(%u,%u) in index \"%s\"",
1129  targetblock, offset,
1131  errdetail("It doesn't have visible heap tids and key is equal to the tid=(%u,%u)%s (points to heap tid=(%u,%u)).",
1132  lVis->blkno, lVis->offset, posting,
1135  errhint("VACUUM the table and repeat the check.")));
1136  }
1137 }
1138 
1139 /*
1140  * Like P_LEFTMOST(start_opaque), but accept an arbitrarily-long chain of
1141  * half-dead, sibling-linked pages to the left. If a half-dead page appears
1142  * under state->readonly, the database exited recovery between the first-stage
1143  * and second-stage WAL records of a deletion.
1144  */
1145 static bool
1148  BTPageOpaque start_opaque)
1149 {
1150  BlockNumber reached = start_opaque->btpo_prev,
1151  reached_from = start;
1152  bool all_half_dead = true;
1153 
1154  /*
1155  * To handle the !readonly case, we'd need to accept BTP_DELETED pages and
1156  * potentially observe nbtree/README "Page deletion and backwards scans".
1157  */
1158  Assert(state->readonly);
1159 
1160  while (reached != P_NONE && all_half_dead)
1161  {
1162  Page page = palloc_btree_page(state, reached);
1163  BTPageOpaque reached_opaque = BTPageGetOpaque(page);
1164 
1166 
1167  /*
1168  * Try to detect btpo_prev circular links. _bt_unlink_halfdead_page()
1169  * writes that side-links will continue to point to the siblings.
1170  * Check btpo_next for that property.
1171  */
1172  all_half_dead = P_ISHALFDEAD(reached_opaque) &&
1173  reached != start &&
1174  reached != reached_from &&
1175  reached_opaque->btpo_next == reached_from;
1176  if (all_half_dead)
1177  {
1178  XLogRecPtr pagelsn = PageGetLSN(page);
1179 
1180  /* pagelsn should point to an XLOG_BTREE_MARK_PAGE_HALFDEAD */
1181  ereport(DEBUG1,
1182  (errcode(ERRCODE_NO_DATA),
1183  errmsg_internal("harmless interrupted page deletion detected in index \"%s\"",
1185  errdetail_internal("Block=%u right block=%u page lsn=%X/%X.",
1186  reached, reached_from,
1187  LSN_FORMAT_ARGS(pagelsn))));
1188 
1189  reached_from = reached;
1190  reached = reached_opaque->btpo_prev;
1191  }
1192 
1193  pfree(page);
1194  }
1195 
1196  return all_half_dead;
1197 }
1198 
1199 /*
1200  * Raise an error when target page's left link does not point back to the
1201  * previous target page, called leftcurrent here. The leftcurrent page's
1202  * right link was followed to get to the current target page, and we expect
1203  * mutual agreement among leftcurrent and the current target page. Make sure
1204  * that this condition has definitely been violated in the !readonly case,
1205  * where concurrent page splits are something that we need to deal with.
1206  *
1207  * Cross-page inconsistencies involving pages that don't agree about being
1208  * siblings are known to be a particularly good indicator of corruption
1209  * involving partial writes/lost updates. The bt_right_page_check_scankey
1210  * check also provides a way of detecting cross-page inconsistencies for
1211  * !readonly callers, but it can only detect sibling pages that have an
1212  * out-of-order keyspace, which can't catch many of the problems that we
1213  * expect to catch here.
1214  *
1215  * The classic example of the kind of inconsistency that we can only catch
1216  * with this check (when in !readonly mode) involves three sibling pages that
1217  * were affected by a faulty page split at some point in the past. The
1218  * effects of the split are reflected in the original page and its new right
1219  * sibling page, with a lack of any accompanying changes for the _original_
1220  * right sibling page. The original right sibling page's left link fails to
1221  * point to the new right sibling page (its left link still points to the
1222  * original page), even though the first phase of a page split is supposed to
1223  * work as a single atomic action. This subtle inconsistency will probably
1224  * only break backwards scans in practice.
1225  *
1226  * Note that this is the only place where amcheck will "couple" buffer locks
1227  * (and only for !readonly callers). In general we prefer to avoid more
1228  * thorough cross-page checks in !readonly mode, but it seems worth the
1229  * complexity here. Also, the performance overhead of performing lock
1230  * coupling here is negligible in practice. Control only reaches here with a
1231  * non-corrupt index when there is a concurrent page split at the instant
1232  * caller crossed over to target page from leftcurrent page.
1233  */
1234 static void
1236  BlockNumber btpo_prev_from_target,
1237  BlockNumber leftcurrent)
1238 {
1239  /* passing metapage to BTPageGetOpaque() would give irrelevant findings */
1240  Assert(leftcurrent != P_NONE);
1241 
1242  if (!state->readonly)
1243  {
1244  Buffer lbuf;
1245  Buffer newtargetbuf;
1246  Page page;
1247  BTPageOpaque opaque;
1248  BlockNumber newtargetblock;
1249 
1250  /* Couple locks in the usual order for nbtree: Left to right */
1251  lbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM, leftcurrent,
1252  RBM_NORMAL, state->checkstrategy);
1253  LockBuffer(lbuf, BT_READ);
1254  _bt_checkpage(state->rel, lbuf);
1255  page = BufferGetPage(lbuf);
1256  opaque = BTPageGetOpaque(page);
1257  if (P_ISDELETED(opaque))
1258  {
1259  /*
1260  * Cannot reason about concurrently deleted page -- the left link
1261  * in the page to the right is expected to point to some other
1262  * page to the left (not leftcurrent page).
1263  *
1264  * Note that we deliberately don't give up with a half-dead page.
1265  */
1266  UnlockReleaseBuffer(lbuf);
1267  return;
1268  }
1269 
1270  newtargetblock = opaque->btpo_next;
1271  /* Avoid self-deadlock when newtargetblock == leftcurrent */
1272  if (newtargetblock != leftcurrent)
1273  {
1274  newtargetbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM,
1275  newtargetblock, RBM_NORMAL,
1276  state->checkstrategy);
1277  LockBuffer(newtargetbuf, BT_READ);
1278  _bt_checkpage(state->rel, newtargetbuf);
1279  page = BufferGetPage(newtargetbuf);
1280  opaque = BTPageGetOpaque(page);
1281  /* btpo_prev_from_target may have changed; update it */
1282  btpo_prev_from_target = opaque->btpo_prev;
1283  }
1284  else
1285  {
1286  /*
1287  * leftcurrent right sibling points back to leftcurrent block.
1288  * Index is corrupt. Easiest way to handle this is to pretend
1289  * that we actually read from a distinct page that has an invalid
1290  * block number in its btpo_prev.
1291  */
1292  newtargetbuf = InvalidBuffer;
1293  btpo_prev_from_target = InvalidBlockNumber;
1294  }
1295 
1296  /*
1297  * No need to check P_ISDELETED here, since new target block cannot be
1298  * marked deleted as long as we hold a lock on lbuf
1299  */
1300  if (BufferIsValid(newtargetbuf))
1301  UnlockReleaseBuffer(newtargetbuf);
1302  UnlockReleaseBuffer(lbuf);
1303 
1304  if (btpo_prev_from_target == leftcurrent)
1305  {
1306  /* Report split in left sibling, not target (or new target) */
1307  ereport(DEBUG1,
1308  (errcode(ERRCODE_INTERNAL_ERROR),
1309  errmsg_internal("harmless concurrent page split detected in index \"%s\"",
1311  errdetail_internal("Block=%u new right sibling=%u original right sibling=%u.",
1312  leftcurrent, newtargetblock,
1313  state->targetblock)));
1314  return;
1315  }
1316 
1317  /*
1318  * Index is corrupt. Make sure that we report correct target page.
1319  *
1320  * This could have changed in cases where there was a concurrent page
1321  * split, as well as index corruption (at least in theory). Note that
1322  * btpo_prev_from_target was already updated above.
1323  */
1324  state->targetblock = newtargetblock;
1325  }
1326 
1327  ereport(ERROR,
1328  (errcode(ERRCODE_INDEX_CORRUPTED),
1329  errmsg("left link/right link pair in index \"%s\" not in agreement",
1331  errdetail_internal("Block=%u left block=%u left link from block=%u.",
1332  state->targetblock, leftcurrent,
1333  btpo_prev_from_target)));
1334 }
1335 
1336 /*
1337  * Function performs the following checks on target page, or pages ancillary to
1338  * target page:
1339  *
1340  * - That every "real" data item is less than or equal to the high key, which
1341  * is an upper bound on the items on the page. Data items should be
1342  * strictly less than the high key when the page is an internal page.
1343  *
1344  * - That within the page, every data item is strictly less than the item
1345  * immediately to its right, if any (i.e., that the items are in order
1346  * within the page, so that the binary searches performed by index scans are
1347  * sane).
1348  *
1349  * - That the last data item stored on the page is strictly less than the
1350  * first data item on the page to the right (when such a first item is
1351  * available).
1352  *
1353  * - Various checks on the structure of tuples themselves. For example, check
1354  * that non-pivot tuples have no truncated attributes.
1355  *
1356  * - For index with unique constraint make sure that only one of table entries
1357  * for equal keys is visible.
1358  *
1359  * Furthermore, when state passed shows ShareLock held, function also checks:
1360  *
1361  * - That all child pages respect strict lower bound from parent's pivot
1362  * tuple.
1363  *
1364  * - That downlink to block was encountered in parent where that's expected.
1365  *
1366  * - That high keys of child pages matches corresponding pivot keys in parent.
1367  *
1368  * This is also where heapallindexed callers use their Bloom filter to
1369  * fingerprint IndexTuples for later table_index_build_scan() verification.
1370  *
1371  * Note: Memory allocated in this routine is expected to be released by caller
1372  * resetting state->targetcontext.
1373  */
1374 static void
1376 {
1377  OffsetNumber offset;
1378  OffsetNumber max;
1379  BTPageOpaque topaque;
1380 
1381  /* Last visible entry info for checking indexes with unique constraint */
1383 
1384  topaque = BTPageGetOpaque(state->target);
1385  max = PageGetMaxOffsetNumber(state->target);
1386 
1387  elog(DEBUG2, "verifying %u items on %s block %u", max,
1388  P_ISLEAF(topaque) ? "leaf" : "internal", state->targetblock);
1389 
1390  /*
1391  * Check the number of attributes in high key. Note, rightmost page
1392  * doesn't contain a high key, so nothing to check
1393  */
1394  if (!P_RIGHTMOST(topaque))
1395  {
1396  ItemId itemid;
1397  IndexTuple itup;
1398 
1399  /* Verify line pointer before checking tuple */
1400  itemid = PageGetItemIdCareful(state, state->targetblock,
1401  state->target, P_HIKEY);
1402  if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
1403  P_HIKEY))
1404  {
1405  itup = (IndexTuple) PageGetItem(state->target, itemid);
1406  ereport(ERROR,
1407  (errcode(ERRCODE_INDEX_CORRUPTED),
1408  errmsg("wrong number of high key index tuple attributes in index \"%s\"",
1410  errdetail_internal("Index block=%u natts=%u block type=%s page lsn=%X/%X.",
1411  state->targetblock,
1412  BTreeTupleGetNAtts(itup, state->rel),
1413  P_ISLEAF(topaque) ? "heap" : "index",
1414  LSN_FORMAT_ARGS(state->targetlsn))));
1415  }
1416  }
1417 
1418  /*
1419  * Loop over page items, starting from first non-highkey item, not high
1420  * key (if any). Most tests are not performed for the "negative infinity"
1421  * real item (if any).
1422  */
1423  for (offset = P_FIRSTDATAKEY(topaque);
1424  offset <= max;
1425  offset = OffsetNumberNext(offset))
1426  {
1427  ItemId itemid;
1428  IndexTuple itup;
1429  size_t tupsize;
1430  BTScanInsert skey;
1431  bool lowersizelimit;
1432  ItemPointer scantid;
1433 
1434  /*
1435  * True if we already called bt_entry_unique_check() for the current
1436  * item. This helps to avoid visiting the heap for keys, which are
1437  * anyway presented only once and can't comprise a unique violation.
1438  */
1439  bool unique_checked = false;
1440 
1442 
1443  itemid = PageGetItemIdCareful(state, state->targetblock,
1444  state->target, offset);
1445  itup = (IndexTuple) PageGetItem(state->target, itemid);
1446  tupsize = IndexTupleSize(itup);
1447 
1448  /*
1449  * lp_len should match the IndexTuple reported length exactly, since
1450  * lp_len is completely redundant in indexes, and both sources of
1451  * tuple length are MAXALIGN()'d. nbtree does not use lp_len all that
1452  * frequently, and is surprisingly tolerant of corrupt lp_len fields.
1453  */
1454  if (tupsize != ItemIdGetLength(itemid))
1455  ereport(ERROR,
1456  (errcode(ERRCODE_INDEX_CORRUPTED),
1457  errmsg("index tuple size does not equal lp_len in index \"%s\"",
1459  errdetail_internal("Index tid=(%u,%u) tuple size=%zu lp_len=%u page lsn=%X/%X.",
1460  state->targetblock, offset,
1461  tupsize, ItemIdGetLength(itemid),
1462  LSN_FORMAT_ARGS(state->targetlsn)),
1463  errhint("This could be a torn page problem.")));
1464 
1465  /* Check the number of index tuple attributes */
1466  if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
1467  offset))
1468  {
1469  ItemPointer tid;
1470  char *itid,
1471  *htid;
1472 
1473  itid = psprintf("(%u,%u)", state->targetblock, offset);
1474  tid = BTreeTupleGetPointsToTID(itup);
1475  htid = psprintf("(%u,%u)",
1478 
1479  ereport(ERROR,
1480  (errcode(ERRCODE_INDEX_CORRUPTED),
1481  errmsg("wrong number of index tuple attributes in index \"%s\"",
1483  errdetail_internal("Index tid=%s natts=%u points to %s tid=%s page lsn=%X/%X.",
1484  itid,
1485  BTreeTupleGetNAtts(itup, state->rel),
1486  P_ISLEAF(topaque) ? "heap" : "index",
1487  htid,
1488  LSN_FORMAT_ARGS(state->targetlsn))));
1489  }
1490 
1491  /*
1492  * Don't try to generate scankey using "negative infinity" item on
1493  * internal pages. They are always truncated to zero attributes.
1494  */
1495  if (offset_is_negative_infinity(topaque, offset))
1496  {
1497  /*
1498  * We don't call bt_child_check() for "negative infinity" items.
1499  * But if we're performing downlink connectivity check, we do it
1500  * for every item including "negative infinity" one.
1501  */
1502  if (!P_ISLEAF(topaque) && state->readonly)
1503  {
1505  offset,
1506  NULL,
1507  topaque->btpo_level);
1508  }
1509  continue;
1510  }
1511 
1512  /*
1513  * Readonly callers may optionally verify that non-pivot tuples can
1514  * each be found by an independent search that starts from the root.
1515  * Note that we deliberately don't do individual searches for each
1516  * TID, since the posting list itself is validated by other checks.
1517  */
1518  if (state->rootdescend && P_ISLEAF(topaque) &&
1519  !bt_rootdescend(state, itup))
1520  {
1522  char *itid,
1523  *htid;
1524 
1525  itid = psprintf("(%u,%u)", state->targetblock, offset);
1526  htid = psprintf("(%u,%u)", ItemPointerGetBlockNumber(tid),
1528 
1529  ereport(ERROR,
1530  (errcode(ERRCODE_INDEX_CORRUPTED),
1531  errmsg("could not find tuple using search from root page in index \"%s\"",
1533  errdetail_internal("Index tid=%s points to heap tid=%s page lsn=%X/%X.",
1534  itid, htid,
1535  LSN_FORMAT_ARGS(state->targetlsn))));
1536  }
1537 
1538  /*
1539  * If tuple is a posting list tuple, make sure posting list TIDs are
1540  * in order
1541  */
1542  if (BTreeTupleIsPosting(itup))
1543  {
1544  ItemPointerData last;
1545  ItemPointer current;
1546 
1547  ItemPointerCopy(BTreeTupleGetHeapTID(itup), &last);
1548 
1549  for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
1550  {
1551 
1552  current = BTreeTupleGetPostingN(itup, i);
1553 
1554  if (ItemPointerCompare(current, &last) <= 0)
1555  {
1556  char *itid = psprintf("(%u,%u)", state->targetblock, offset);
1557 
1558  ereport(ERROR,
1559  (errcode(ERRCODE_INDEX_CORRUPTED),
1560  errmsg_internal("posting list contains misplaced TID in index \"%s\"",
1562  errdetail_internal("Index tid=%s posting list offset=%d page lsn=%X/%X.",
1563  itid, i,
1564  LSN_FORMAT_ARGS(state->targetlsn))));
1565  }
1566 
1567  ItemPointerCopy(current, &last);
1568  }
1569  }
1570 
1571  /* Build insertion scankey for current page offset */
1572  skey = bt_mkscankey_pivotsearch(state->rel, itup);
1573 
1574  /*
1575  * Make sure tuple size does not exceed the relevant BTREE_VERSION
1576  * specific limit.
1577  *
1578  * BTREE_VERSION 4 (which introduced heapkeyspace rules) requisitioned
1579  * a small amount of space from BTMaxItemSize() in order to ensure
1580  * that suffix truncation always has enough space to add an explicit
1581  * heap TID back to a tuple -- we pessimistically assume that every
1582  * newly inserted tuple will eventually need to have a heap TID
1583  * appended during a future leaf page split, when the tuple becomes
1584  * the basis of the new high key (pivot tuple) for the leaf page.
1585  *
1586  * Since the reclaimed space is reserved for that purpose, we must not
1587  * enforce the slightly lower limit when the extra space has been used
1588  * as intended. In other words, there is only a cross-version
1589  * difference in the limit on tuple size within leaf pages.
1590  *
1591  * Still, we're particular about the details within BTREE_VERSION 4
1592  * internal pages. Pivot tuples may only use the extra space for its
1593  * designated purpose. Enforce the lower limit for pivot tuples when
1594  * an explicit heap TID isn't actually present. (In all other cases
1595  * suffix truncation is guaranteed to generate a pivot tuple that's no
1596  * larger than the firstright tuple provided to it by its caller.)
1597  */
1598  lowersizelimit = skey->heapkeyspace &&
1599  (P_ISLEAF(topaque) || BTreeTupleGetHeapTID(itup) == NULL);
1600  if (tupsize > (lowersizelimit ? BTMaxItemSize(state->target) :
1601  BTMaxItemSizeNoHeapTid(state->target)))
1602  {
1604  char *itid,
1605  *htid;
1606 
1607  itid = psprintf("(%u,%u)", state->targetblock, offset);
1608  htid = psprintf("(%u,%u)",
1611 
1612  ereport(ERROR,
1613  (errcode(ERRCODE_INDEX_CORRUPTED),
1614  errmsg("index row size %zu exceeds maximum for index \"%s\"",
1615  tupsize, RelationGetRelationName(state->rel)),
1616  errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%X.",
1617  itid,
1618  P_ISLEAF(topaque) ? "heap" : "index",
1619  htid,
1620  LSN_FORMAT_ARGS(state->targetlsn))));
1621  }
1622 
1623  /* Fingerprint leaf page tuples (those that point to the heap) */
1624  if (state->heapallindexed && P_ISLEAF(topaque) && !ItemIdIsDead(itemid))
1625  {
1626  IndexTuple norm;
1627 
1628  if (BTreeTupleIsPosting(itup))
1629  {
1630  /* Fingerprint all elements as distinct "plain" tuples */
1631  for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
1632  {
1633  IndexTuple logtuple;
1634 
1635  logtuple = bt_posting_plain_tuple(itup, i);
1636  norm = bt_normalize_tuple(state, logtuple);
1637  bloom_add_element(state->filter, (unsigned char *) norm,
1638  IndexTupleSize(norm));
1639  /* Be tidy */
1640  if (norm != logtuple)
1641  pfree(norm);
1642  pfree(logtuple);
1643  }
1644  }
1645  else
1646  {
1647  norm = bt_normalize_tuple(state, itup);
1648  bloom_add_element(state->filter, (unsigned char *) norm,
1649  IndexTupleSize(norm));
1650  /* Be tidy */
1651  if (norm != itup)
1652  pfree(norm);
1653  }
1654  }
1655 
1656  /*
1657  * * High key check *
1658  *
1659  * If there is a high key (if this is not the rightmost page on its
1660  * entire level), check that high key actually is upper bound on all
1661  * page items. If this is a posting list tuple, we'll need to set
1662  * scantid to be highest TID in posting list.
1663  *
1664  * We prefer to check all items against high key rather than checking
1665  * just the last and trusting that the operator class obeys the
1666  * transitive law (which implies that all previous items also
1667  * respected the high key invariant if they pass the item order
1668  * check).
1669  *
1670  * Ideally, we'd compare every item in the index against every other
1671  * item in the index, and not trust opclass obedience of the
1672  * transitive law to bridge the gap between children and their
1673  * grandparents (as well as great-grandparents, and so on). We don't
1674  * go to those lengths because that would be prohibitively expensive,
1675  * and probably not markedly more effective in practice.
1676  *
1677  * On the leaf level, we check that the key is <= the highkey.
1678  * However, on non-leaf levels we check that the key is < the highkey,
1679  * because the high key is "just another separator" rather than a copy
1680  * of some existing key item; we expect it to be unique among all keys
1681  * on the same level. (Suffix truncation will sometimes produce a
1682  * leaf highkey that is an untruncated copy of the lastleft item, but
1683  * never any other item, which necessitates weakening the leaf level
1684  * check to <=.)
1685  *
1686  * Full explanation for why a highkey is never truly a copy of another
1687  * item from the same level on internal levels:
1688  *
1689  * While the new left page's high key is copied from the first offset
1690  * on the right page during an internal page split, that's not the
1691  * full story. In effect, internal pages are split in the middle of
1692  * the firstright tuple, not between the would-be lastleft and
1693  * firstright tuples: the firstright key ends up on the left side as
1694  * left's new highkey, and the firstright downlink ends up on the
1695  * right side as right's new "negative infinity" item. The negative
1696  * infinity tuple is truncated to zero attributes, so we're only left
1697  * with the downlink. In other words, the copying is just an
1698  * implementation detail of splitting in the middle of a (pivot)
1699  * tuple. (See also: "Notes About Data Representation" in the nbtree
1700  * README.)
1701  */
1702  scantid = skey->scantid;
1703  if (state->heapkeyspace && BTreeTupleIsPosting(itup))
1704  skey->scantid = BTreeTupleGetMaxHeapTID(itup);
1705 
1706  if (!P_RIGHTMOST(topaque) &&
1707  !(P_ISLEAF(topaque) ? invariant_leq_offset(state, skey, P_HIKEY) :
1708  invariant_l_offset(state, skey, P_HIKEY)))
1709  {
1711  char *itid,
1712  *htid;
1713 
1714  itid = psprintf("(%u,%u)", state->targetblock, offset);
1715  htid = psprintf("(%u,%u)",
1718 
1719  ereport(ERROR,
1720  (errcode(ERRCODE_INDEX_CORRUPTED),
1721  errmsg("high key invariant violated for index \"%s\"",
1723  errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%X.",
1724  itid,
1725  P_ISLEAF(topaque) ? "heap" : "index",
1726  htid,
1727  LSN_FORMAT_ARGS(state->targetlsn))));
1728  }
1729  /* Reset, in case scantid was set to (itup) posting tuple's max TID */
1730  skey->scantid = scantid;
1731 
1732  /*
1733  * * Item order check *
1734  *
1735  * Check that items are stored on page in logical order, by checking
1736  * current item is strictly less than next item (if any).
1737  */
1738  if (OffsetNumberNext(offset) <= max &&
1739  !invariant_l_offset(state, skey, OffsetNumberNext(offset)))
1740  {
1741  ItemPointer tid;
1742  char *itid,
1743  *htid,
1744  *nitid,
1745  *nhtid;
1746 
1747  itid = psprintf("(%u,%u)", state->targetblock, offset);
1748  tid = BTreeTupleGetPointsToTID(itup);
1749  htid = psprintf("(%u,%u)",
1752  nitid = psprintf("(%u,%u)", state->targetblock,
1753  OffsetNumberNext(offset));
1754 
1755  /* Reuse itup to get pointed-to heap location of second item */
1756  itemid = PageGetItemIdCareful(state, state->targetblock,
1757  state->target,
1758  OffsetNumberNext(offset));
1759  itup = (IndexTuple) PageGetItem(state->target, itemid);
1760  tid = BTreeTupleGetPointsToTID(itup);
1761  nhtid = psprintf("(%u,%u)",
1764 
1765  ereport(ERROR,
1766  (errcode(ERRCODE_INDEX_CORRUPTED),
1767  errmsg("item order invariant violated for index \"%s\"",
1769  errdetail_internal("Lower index tid=%s (points to %s tid=%s) "
1770  "higher index tid=%s (points to %s tid=%s) "
1771  "page lsn=%X/%X.",
1772  itid,
1773  P_ISLEAF(topaque) ? "heap" : "index",
1774  htid,
1775  nitid,
1776  P_ISLEAF(topaque) ? "heap" : "index",
1777  nhtid,
1778  LSN_FORMAT_ARGS(state->targetlsn))));
1779  }
1780 
1781  /*
1782  * If the index is unique verify entries uniqueness by checking the
1783  * heap tuples visibility. Immediately check posting tuples and
1784  * tuples with repeated keys. Postpone check for keys, which have the
1785  * first appearance.
1786  */
1787  if (state->checkunique && state->indexinfo->ii_Unique &&
1788  P_ISLEAF(topaque) && !skey->anynullkeys &&
1789  (BTreeTupleIsPosting(itup) || ItemPointerIsValid(lVis.tid)))
1790  {
1791  bt_entry_unique_check(state, itup, state->targetblock, offset,
1792  &lVis);
1793  unique_checked = true;
1794  }
1795 
1796  if (state->checkunique && state->indexinfo->ii_Unique &&
1797  P_ISLEAF(topaque) && OffsetNumberNext(offset) <= max)
1798  {
1799  /* Save current scankey tid */
1800  scantid = skey->scantid;
1801 
1802  /*
1803  * Invalidate scankey tid to make _bt_compare compare only keys in
1804  * the item to report equality even if heap TIDs are different
1805  */
1806  skey->scantid = NULL;
1807 
1808  /*
1809  * If next key tuple is different, invalidate last visible entry
1810  * data (whole index tuple or last posting in index tuple). Key
1811  * containing null value does not violate unique constraint and
1812  * treated as different to any other key.
1813  *
1814  * If the next key is the same as the previous one, do the
1815  * bt_entry_unique_check() call if it was postponed.
1816  */
1817  if (_bt_compare(state->rel, skey, state->target,
1818  OffsetNumberNext(offset)) != 0 || skey->anynullkeys)
1819  {
1820  lVis.blkno = InvalidBlockNumber;
1821  lVis.offset = InvalidOffsetNumber;
1822  lVis.postingIndex = -1;
1823  lVis.tid = NULL;
1824  }
1825  else if (!unique_checked)
1826  {
1827  bt_entry_unique_check(state, itup, state->targetblock, offset,
1828  &lVis);
1829  }
1830  skey->scantid = scantid; /* Restore saved scan key state */
1831  }
1832 
1833  /*
1834  * * Last item check *
1835  *
1836  * Check last item against next/right page's first data item's when
1837  * last item on page is reached. This additional check will detect
1838  * transposed pages iff the supposed right sibling page happens to
1839  * belong before target in the key space. (Otherwise, a subsequent
1840  * heap verification will probably detect the problem.)
1841  *
1842  * This check is similar to the item order check that will have
1843  * already been performed for every other "real" item on target page
1844  * when last item is checked. The difference is that the next item
1845  * (the item that is compared to target's last item) needs to come
1846  * from the next/sibling page. There may not be such an item
1847  * available from sibling for various reasons, though (e.g., target is
1848  * the rightmost page on level).
1849  */
1850  if (offset == max)
1851  {
1852  BTScanInsert rightkey;
1853 
1854  /* first offset on a right index page (log only) */
1855  OffsetNumber rightfirstoffset = InvalidOffsetNumber;
1856 
1857  /* Get item in next/right page */
1858  rightkey = bt_right_page_check_scankey(state, &rightfirstoffset);
1859 
1860  if (rightkey &&
1861  !invariant_g_offset(state, rightkey, max))
1862  {
1863  /*
1864  * As explained at length in bt_right_page_check_scankey(),
1865  * there is a known !readonly race that could account for
1866  * apparent violation of invariant, which we must check for
1867  * before actually proceeding with raising error. Our canary
1868  * condition is that target page was deleted.
1869  */
1870  if (!state->readonly)
1871  {
1872  /* Get fresh copy of target page */
1873  state->target = palloc_btree_page(state, state->targetblock);
1874  /* Note that we deliberately do not update target LSN */
1875  topaque = BTPageGetOpaque(state->target);
1876 
1877  /*
1878  * All !readonly checks now performed; just return
1879  */
1880  if (P_IGNORE(topaque))
1881  return;
1882  }
1883 
1884  ereport(ERROR,
1885  (errcode(ERRCODE_INDEX_CORRUPTED),
1886  errmsg("cross page item order invariant violated for index \"%s\"",
1888  errdetail_internal("Last item on page tid=(%u,%u) page lsn=%X/%X.",
1889  state->targetblock, offset,
1890  LSN_FORMAT_ARGS(state->targetlsn))));
1891  }
1892 
1893  /*
1894  * If index has unique constraint make sure that no more than one
1895  * found equal items is visible.
1896  */
1897  if (state->checkunique && state->indexinfo->ii_Unique &&
1898  rightkey && P_ISLEAF(topaque) && !P_RIGHTMOST(topaque))
1899  {
1900  BlockNumber rightblock_number = topaque->btpo_next;
1901 
1902  elog(DEBUG2, "check cross page unique condition");
1903 
1904  /*
1905  * Make _bt_compare compare only index keys without heap TIDs.
1906  * rightkey->scantid is modified destructively but it is ok
1907  * for it is not used later.
1908  */
1909  rightkey->scantid = NULL;
1910 
1911  /* The first key on the next page is the same */
1912  if (_bt_compare(state->rel, rightkey, state->target, max) == 0 &&
1913  !rightkey->anynullkeys)
1914  {
1915  Page rightpage;
1916 
1917  /*
1918  * Do the bt_entry_unique_check() call if it was
1919  * postponed.
1920  */
1921  if (!unique_checked)
1922  bt_entry_unique_check(state, itup, state->targetblock,
1923  offset, &lVis);
1924 
1925  elog(DEBUG2, "cross page equal keys");
1926  rightpage = palloc_btree_page(state,
1927  rightblock_number);
1928  topaque = BTPageGetOpaque(rightpage);
1929 
1930  if (P_IGNORE(topaque))
1931  {
1932  pfree(rightpage);
1933  break;
1934  }
1935 
1936  if (unlikely(!P_ISLEAF(topaque)))
1937  ereport(ERROR,
1938  (errcode(ERRCODE_INDEX_CORRUPTED),
1939  errmsg("right block of leaf block is non-leaf for index \"%s\"",
1941  errdetail_internal("Block=%u page lsn=%X/%X.",
1942  state->targetblock,
1943  LSN_FORMAT_ARGS(state->targetlsn))));
1944 
1945  itemid = PageGetItemIdCareful(state, rightblock_number,
1946  rightpage,
1947  rightfirstoffset);
1948  itup = (IndexTuple) PageGetItem(rightpage, itemid);
1949 
1950  bt_entry_unique_check(state, itup, rightblock_number, rightfirstoffset, &lVis);
1951 
1952  pfree(rightpage);
1953  }
1954  }
1955  }
1956 
1957  /*
1958  * * Downlink check *
1959  *
1960  * Additional check of child items iff this is an internal page and
1961  * caller holds a ShareLock. This happens for every downlink (item)
1962  * in target excluding the negative-infinity downlink (again, this is
1963  * because it has no useful value to compare).
1964  */
1965  if (!P_ISLEAF(topaque) && state->readonly)
1966  bt_child_check(state, skey, offset);
1967  }
1968 
1969  /*
1970  * Special case bt_child_highkey_check() call
1971  *
1972  * We don't pass a real downlink, but we've to finish the level
1973  * processing. If condition is satisfied, we've already processed all the
1974  * downlinks from the target level. But there still might be pages to the
1975  * right of the child page pointer to by our rightmost downlink. And they
1976  * might have missing downlinks. This final call checks for them.
1977  */
1978  if (!P_ISLEAF(topaque) && P_RIGHTMOST(topaque) && state->readonly)
1979  {
1981  NULL, topaque->btpo_level);
1982  }
1983 }
1984 
1985 /*
1986  * Return a scankey for an item on page to right of current target (or the
1987  * first non-ignorable page), sufficient to check ordering invariant on last
1988  * item in current target page. Returned scankey relies on local memory
1989  * allocated for the child page, which caller cannot pfree(). Caller's memory
1990  * context should be reset between calls here.
1991  *
1992  * This is the first data item, and so all adjacent items are checked against
1993  * their immediate sibling item (which may be on a sibling page, or even a
1994  * "cousin" page at parent boundaries where target's rightlink points to page
1995  * with different parent page). If no such valid item is available, return
1996  * NULL instead.
1997  *
1998  * Note that !readonly callers must reverify that target page has not
1999  * been concurrently deleted.
2000  *
2001  * Save rightfirstoffset for detailed error message.
2002  */
2003 static BTScanInsert
2005 {
2006  BTPageOpaque opaque;
2007  ItemId rightitem;
2008  IndexTuple firstitup;
2009  BlockNumber targetnext;
2010  Page rightpage;
2011  OffsetNumber nline;
2012 
2013  /* Determine target's next block number */
2014  opaque = BTPageGetOpaque(state->target);
2015 
2016  /* If target is already rightmost, no right sibling; nothing to do here */
2017  if (P_RIGHTMOST(opaque))
2018  return NULL;
2019 
2020  /*
2021  * General notes on concurrent page splits and page deletion:
2022  *
2023  * Routines like _bt_search() don't require *any* page split interlock
2024  * when descending the tree, including something very light like a buffer
2025  * pin. That's why it's okay that we don't either. This avoidance of any
2026  * need to "couple" buffer locks is the raison d' etre of the Lehman & Yao
2027  * algorithm, in fact.
2028  *
2029  * That leaves deletion. A deleted page won't actually be recycled by
2030  * VACUUM early enough for us to fail to at least follow its right link
2031  * (or left link, or downlink) and find its sibling, because recycling
2032  * does not occur until no possible index scan could land on the page.
2033  * Index scans can follow links with nothing more than their snapshot as
2034  * an interlock and be sure of at least that much. (See page
2035  * recycling/"visible to everyone" notes in nbtree README.)
2036  *
2037  * Furthermore, it's okay if we follow a rightlink and find a half-dead or
2038  * dead (ignorable) page one or more times. There will either be a
2039  * further right link to follow that leads to a live page before too long
2040  * (before passing by parent's rightmost child), or we will find the end
2041  * of the entire level instead (possible when parent page is itself the
2042  * rightmost on its level).
2043  */
2044  targetnext = opaque->btpo_next;
2045  for (;;)
2046  {
2048 
2049  rightpage = palloc_btree_page(state, targetnext);
2050  opaque = BTPageGetOpaque(rightpage);
2051 
2052  if (!P_IGNORE(opaque) || P_RIGHTMOST(opaque))
2053  break;
2054 
2055  /*
2056  * We landed on a deleted or half-dead sibling page. Step right until
2057  * we locate a live sibling page.
2058  */
2059  ereport(DEBUG2,
2060  (errcode(ERRCODE_NO_DATA),
2061  errmsg_internal("level %u sibling page in block %u of index \"%s\" was found deleted or half dead",
2062  opaque->btpo_level, targetnext, RelationGetRelationName(state->rel)),
2063  errdetail_internal("Deleted page found when building scankey from right sibling.")));
2064 
2065  targetnext = opaque->btpo_next;
2066 
2067  /* Be slightly more pro-active in freeing this memory, just in case */
2068  pfree(rightpage);
2069  }
2070 
2071  /*
2072  * No ShareLock held case -- why it's safe to proceed.
2073  *
2074  * Problem:
2075  *
2076  * We must avoid false positive reports of corruption when caller treats
2077  * item returned here as an upper bound on target's last item. In
2078  * general, false positives are disallowed. Avoiding them here when
2079  * caller is !readonly is subtle.
2080  *
2081  * A concurrent page deletion by VACUUM of the target page can result in
2082  * the insertion of items on to this right sibling page that would
2083  * previously have been inserted on our target page. There might have
2084  * been insertions that followed the target's downlink after it was made
2085  * to point to right sibling instead of target by page deletion's first
2086  * phase. The inserters insert items that would belong on target page.
2087  * This race is very tight, but it's possible. This is our only problem.
2088  *
2089  * Non-problems:
2090  *
2091  * We are not hindered by a concurrent page split of the target; we'll
2092  * never land on the second half of the page anyway. A concurrent split
2093  * of the right page will also not matter, because the first data item
2094  * remains the same within the left half, which we'll reliably land on. If
2095  * we had to skip over ignorable/deleted pages, it cannot matter because
2096  * their key space has already been atomically merged with the first
2097  * non-ignorable page we eventually find (doesn't matter whether the page
2098  * we eventually find is a true sibling or a cousin of target, which we go
2099  * into below).
2100  *
2101  * Solution:
2102  *
2103  * Caller knows that it should reverify that target is not ignorable
2104  * (half-dead or deleted) when cross-page sibling item comparison appears
2105  * to indicate corruption (invariant fails). This detects the single race
2106  * condition that exists for caller. This is correct because the
2107  * continued existence of target block as non-ignorable (not half-dead or
2108  * deleted) implies that target page was not merged into from the right by
2109  * deletion; the key space at or after target never moved left. Target's
2110  * parent either has the same downlink to target as before, or a <
2111  * downlink due to deletion at the left of target. Target either has the
2112  * same highkey as before, or a highkey < before when there is a page
2113  * split. (The rightmost concurrently-split-from-target-page page will
2114  * still have the same highkey as target was originally found to have,
2115  * which for our purposes is equivalent to target's highkey itself never
2116  * changing, since we reliably skip over
2117  * concurrently-split-from-target-page pages.)
2118  *
2119  * In simpler terms, we allow that the key space of the target may expand
2120  * left (the key space can move left on the left side of target only), but
2121  * the target key space cannot expand right and get ahead of us without
2122  * our detecting it. The key space of the target cannot shrink, unless it
2123  * shrinks to zero due to the deletion of the original page, our canary
2124  * condition. (To be very precise, we're a bit stricter than that because
2125  * it might just have been that the target page split and only the
2126  * original target page was deleted. We can be more strict, just not more
2127  * lax.)
2128  *
2129  * Top level tree walk caller moves on to next page (makes it the new
2130  * target) following recovery from this race. (cf. The rationale for
2131  * child/downlink verification needing a ShareLock within
2132  * bt_child_check(), where page deletion is also the main source of
2133  * trouble.)
2134  *
2135  * Note that it doesn't matter if right sibling page here is actually a
2136  * cousin page, because in order for the key space to be readjusted in a
2137  * way that causes us issues in next level up (guiding problematic
2138  * concurrent insertions to the cousin from the grandparent rather than to
2139  * the sibling from the parent), there'd have to be page deletion of
2140  * target's parent page (affecting target's parent's downlink in target's
2141  * grandparent page). Internal page deletion only occurs when there are
2142  * no child pages (they were all fully deleted), and caller is checking
2143  * that the target's parent has at least one non-deleted (so
2144  * non-ignorable) child: the target page. (Note that the first phase of
2145  * deletion atomically marks the page to be deleted half-dead/ignorable at
2146  * the same time downlink in its parent is removed, so caller will
2147  * definitely not fail to detect that this happened.)
2148  *
2149  * This trick is inspired by the method backward scans use for dealing
2150  * with concurrent page splits; concurrent page deletion is a problem that
2151  * similarly receives special consideration sometimes (it's possible that
2152  * the backwards scan will re-read its "original" block after failing to
2153  * find a right-link to it, having already moved in the opposite direction
2154  * (right/"forwards") a few times to try to locate one). Just like us,
2155  * that happens only to determine if there was a concurrent page deletion
2156  * of a reference page, and just like us if there was a page deletion of
2157  * that reference page it means we can move on from caring about the
2158  * reference page. See the nbtree README for a full description of how
2159  * that works.
2160  */
2161  nline = PageGetMaxOffsetNumber(rightpage);
2162 
2163  /*
2164  * Get first data item, if any
2165  */
2166  if (P_ISLEAF(opaque) && nline >= P_FIRSTDATAKEY(opaque))
2167  {
2168  /* Return first data item (if any) */
2169  rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
2170  P_FIRSTDATAKEY(opaque));
2171  *rightfirstoffset = P_FIRSTDATAKEY(opaque);
2172  }
2173  else if (!P_ISLEAF(opaque) &&
2174  nline >= OffsetNumberNext(P_FIRSTDATAKEY(opaque)))
2175  {
2176  /*
2177  * Return first item after the internal page's "negative infinity"
2178  * item
2179  */
2180  rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
2181  OffsetNumberNext(P_FIRSTDATAKEY(opaque)));
2182  }
2183  else
2184  {
2185  /*
2186  * No first item. Page is probably empty leaf page, but it's also
2187  * possible that it's an internal page with only a negative infinity
2188  * item.
2189  */
2190  ereport(DEBUG2,
2191  (errcode(ERRCODE_NO_DATA),
2192  errmsg_internal("%s block %u of index \"%s\" has no first data item",
2193  P_ISLEAF(opaque) ? "leaf" : "internal", targetnext,
2194  RelationGetRelationName(state->rel))));
2195  return NULL;
2196  }
2197 
2198  /*
2199  * Return first real item scankey. Note that this relies on right page
2200  * memory remaining allocated.
2201  */
2202  firstitup = (IndexTuple) PageGetItem(rightpage, rightitem);
2203  return bt_mkscankey_pivotsearch(state->rel, firstitup);
2204 }
2205 
2206 /*
2207  * Check if two tuples are binary identical except the block number. So,
2208  * this function is capable to compare pivot keys on different levels.
2209  */
2210 static bool
2211 bt_pivot_tuple_identical(bool heapkeyspace, IndexTuple itup1, IndexTuple itup2)
2212 {
2213  if (IndexTupleSize(itup1) != IndexTupleSize(itup2))
2214  return false;
2215 
2216  if (heapkeyspace)
2217  {
2218  /*
2219  * Offset number will contain important information in heapkeyspace
2220  * indexes: the number of attributes left in the pivot tuple following
2221  * suffix truncation. Don't skip over it (compare it too).
2222  */
2223  if (memcmp(&itup1->t_tid.ip_posid, &itup2->t_tid.ip_posid,
2224  IndexTupleSize(itup1) -
2225  offsetof(ItemPointerData, ip_posid)) != 0)
2226  return false;
2227  }
2228  else
2229  {
2230  /*
2231  * Cannot rely on offset number field having consistent value across
2232  * levels on pg_upgrade'd !heapkeyspace indexes. Compare contents of
2233  * tuple starting from just after item pointer (i.e. after block
2234  * number and offset number).
2235  */
2236  if (memcmp(&itup1->t_info, &itup2->t_info,
2237  IndexTupleSize(itup1) -
2238  offsetof(IndexTupleData, t_info)) != 0)
2239  return false;
2240  }
2241 
2242  return true;
2243 }
2244 
2245 /*---
2246  * Check high keys on the child level. Traverse rightlinks from previous
2247  * downlink to the current one. Check that there are no intermediate pages
2248  * with missing downlinks.
2249  *
2250  * If 'loaded_child' is given, it's assumed to be the page pointed to by the
2251  * downlink referenced by 'downlinkoffnum' of the target page.
2252  *
2253  * Basically this function is called for each target downlink and checks two
2254  * invariants:
2255  *
2256  * 1) You can reach the next child from previous one via rightlinks;
2257  * 2) Each child high key have matching pivot key on target level.
2258  *
2259  * Consider the sample tree picture.
2260  *
2261  * 1
2262  * / \
2263  * 2 <-> 3
2264  * / \ / \
2265  * 4 <> 5 <> 6 <> 7 <> 8
2266  *
2267  * This function will be called for blocks 4, 5, 6 and 8. Consider what is
2268  * happening for each function call.
2269  *
2270  * - The function call for block 4 initializes data structure and matches high
2271  * key of block 4 to downlink's pivot key of block 2.
2272  * - The high key of block 5 is matched to the high key of block 2.
2273  * - The block 6 has an incomplete split flag set, so its high key isn't
2274  * matched to anything.
2275  * - The function call for block 8 checks that block 8 can be found while
2276  * following rightlinks from block 6. The high key of block 7 will be
2277  * matched to downlink's pivot key in block 3.
2278  *
2279  * There is also final call of this function, which checks that there is no
2280  * missing downlinks for children to the right of the child referenced by
2281  * rightmost downlink in target level.
2282  */
2283 static void
2285  OffsetNumber target_downlinkoffnum,
2286  Page loaded_child,
2287  uint32 target_level)
2288 {
2289  BlockNumber blkno = state->prevrightlink;
2290  Page page;
2291  BTPageOpaque opaque;
2292  bool rightsplit = state->previncompletesplit;
2293  bool first = true;
2294  ItemId itemid;
2295  IndexTuple itup;
2296  BlockNumber downlink;
2297 
2298  if (OffsetNumberIsValid(target_downlinkoffnum))
2299  {
2300  itemid = PageGetItemIdCareful(state, state->targetblock,
2301  state->target, target_downlinkoffnum);
2302  itup = (IndexTuple) PageGetItem(state->target, itemid);
2303  downlink = BTreeTupleGetDownLink(itup);
2304  }
2305  else
2306  {
2307  downlink = P_NONE;
2308  }
2309 
2310  /*
2311  * If no previous rightlink is memorized for current level just below
2312  * target page's level, we are about to start from the leftmost page. We
2313  * can't follow rightlinks from previous page, because there is no
2314  * previous page. But we still can match high key.
2315  *
2316  * So we initialize variables for the loop above like there is previous
2317  * page referencing current child. Also we imply previous page to not
2318  * have incomplete split flag, that would make us require downlink for
2319  * current child. That's correct, because leftmost page on the level
2320  * should always have parent downlink.
2321  */
2322  if (!BlockNumberIsValid(blkno))
2323  {
2324  blkno = downlink;
2325  rightsplit = false;
2326  }
2327 
2328  /* Move to the right on the child level */
2329  while (true)
2330  {
2331  /*
2332  * Did we traverse the whole tree level and this is check for pages to
2333  * the right of rightmost downlink?
2334  */
2335  if (blkno == P_NONE && downlink == P_NONE)
2336  {
2337  state->prevrightlink = InvalidBlockNumber;
2338  state->previncompletesplit = false;
2339  return;
2340  }
2341 
2342  /* Did we traverse the whole tree level and don't find next downlink? */
2343  if (blkno == P_NONE)
2344  ereport(ERROR,
2345  (errcode(ERRCODE_INDEX_CORRUPTED),
2346  errmsg("can't traverse from downlink %u to downlink %u of index \"%s\"",
2347  state->prevrightlink, downlink,
2348  RelationGetRelationName(state->rel))));
2349 
2350  /* Load page contents */
2351  if (blkno == downlink && loaded_child)
2352  page = loaded_child;
2353  else
2354  page = palloc_btree_page(state, blkno);
2355 
2356  opaque = BTPageGetOpaque(page);
2357 
2358  /* The first page we visit at the level should be leftmost */
2359  if (first && !BlockNumberIsValid(state->prevrightlink) &&
2360  !bt_leftmost_ignoring_half_dead(state, blkno, opaque))
2361  ereport(ERROR,
2362  (errcode(ERRCODE_INDEX_CORRUPTED),
2363  errmsg("the first child of leftmost target page is not leftmost of its level in index \"%s\"",
2365  errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
2366  state->targetblock, blkno,
2367  LSN_FORMAT_ARGS(state->targetlsn))));
2368 
2369  /* Do level sanity check */
2370  if ((!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque)) &&
2371  opaque->btpo_level != target_level - 1)
2372  ereport(ERROR,
2373  (errcode(ERRCODE_INDEX_CORRUPTED),
2374  errmsg("block found while following rightlinks from child of index \"%s\" has invalid level",
2376  errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
2377  blkno, target_level - 1, opaque->btpo_level)));
2378 
2379  /* Try to detect circular links */
2380  if ((!first && blkno == state->prevrightlink) || blkno == opaque->btpo_prev)
2381  ereport(ERROR,
2382  (errcode(ERRCODE_INDEX_CORRUPTED),
2383  errmsg("circular link chain found in block %u of index \"%s\"",
2384  blkno, RelationGetRelationName(state->rel))));
2385 
2386  if (blkno != downlink && !P_IGNORE(opaque))
2387  {
2388  /* blkno probably has missing parent downlink */
2389  bt_downlink_missing_check(state, rightsplit, blkno, page);
2390  }
2391 
2392  rightsplit = P_INCOMPLETE_SPLIT(opaque);
2393 
2394  /*
2395  * If we visit page with high key, check that it is equal to the
2396  * target key next to corresponding downlink.
2397  */
2398  if (!rightsplit && !P_RIGHTMOST(opaque))
2399  {
2400  BTPageOpaque topaque;
2401  IndexTuple highkey;
2402  OffsetNumber pivotkey_offset;
2403 
2404  /* Get high key */
2405  itemid = PageGetItemIdCareful(state, blkno, page, P_HIKEY);
2406  highkey = (IndexTuple) PageGetItem(page, itemid);
2407 
2408  /*
2409  * There might be two situations when we examine high key. If
2410  * current child page is referenced by given target downlink, we
2411  * should look to the next offset number for matching key from
2412  * target page.
2413  *
2414  * Alternatively, we're following rightlinks somewhere in the
2415  * middle between page referenced by previous target's downlink
2416  * and the page referenced by current target's downlink. If
2417  * current child page hasn't incomplete split flag set, then its
2418  * high key should match to the target's key of current offset
2419  * number. This happens when a previous call here (to
2420  * bt_child_highkey_check()) found an incomplete split, and we
2421  * reach a right sibling page without a downlink -- the right
2422  * sibling page's high key still needs to be matched to a
2423  * separator key on the parent/target level.
2424  *
2425  * Don't apply OffsetNumberNext() to target_downlinkoffnum when we
2426  * already had to step right on the child level. Our traversal of
2427  * the child level must try to move in perfect lockstep behind (to
2428  * the left of) the target/parent level traversal.
2429  */
2430  if (blkno == downlink)
2431  pivotkey_offset = OffsetNumberNext(target_downlinkoffnum);
2432  else
2433  pivotkey_offset = target_downlinkoffnum;
2434 
2435  topaque = BTPageGetOpaque(state->target);
2436 
2437  if (!offset_is_negative_infinity(topaque, pivotkey_offset))
2438  {
2439  /*
2440  * If we're looking for the next pivot tuple in target page,
2441  * but there is no more pivot tuples, then we should match to
2442  * high key instead.
2443  */
2444  if (pivotkey_offset > PageGetMaxOffsetNumber(state->target))
2445  {
2446  if (P_RIGHTMOST(topaque))
2447  ereport(ERROR,
2448  (errcode(ERRCODE_INDEX_CORRUPTED),
2449  errmsg("child high key is greater than rightmost pivot key on target level in index \"%s\"",
2451  errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
2452  state->targetblock, blkno,
2453  LSN_FORMAT_ARGS(state->targetlsn))));
2454  pivotkey_offset = P_HIKEY;
2455  }
2456  itemid = PageGetItemIdCareful(state, state->targetblock,
2457  state->target, pivotkey_offset);
2458  itup = (IndexTuple) PageGetItem(state->target, itemid);
2459  }
2460  else
2461  {
2462  /*
2463  * We cannot try to match child's high key to a negative
2464  * infinity key in target, since there is nothing to compare.
2465  * However, it's still possible to match child's high key
2466  * outside of target page. The reason why we're are is that
2467  * bt_child_highkey_check() was previously called for the
2468  * cousin page of 'loaded_child', which is incomplete split.
2469  * So, now we traverse to the right of that cousin page and
2470  * current child level page under consideration still belongs
2471  * to the subtree of target's left sibling. Thus, we need to
2472  * match child's high key to it's left uncle page high key.
2473  * Thankfully we saved it, it's called a "low key" of target
2474  * page.
2475  */
2476  if (!state->lowkey)
2477  ereport(ERROR,
2478  (errcode(ERRCODE_INDEX_CORRUPTED),
2479  errmsg("can't find left sibling high key in index \"%s\"",
2481  errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
2482  state->targetblock, blkno,
2483  LSN_FORMAT_ARGS(state->targetlsn))));
2484  itup = state->lowkey;
2485  }
2486 
2487  if (!bt_pivot_tuple_identical(state->heapkeyspace, highkey, itup))
2488  {
2489  ereport(ERROR,
2490  (errcode(ERRCODE_INDEX_CORRUPTED),
2491  errmsg("mismatch between parent key and child high key in index \"%s\"",
2493  errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
2494  state->targetblock, blkno,
2495  LSN_FORMAT_ARGS(state->targetlsn))));
2496  }
2497  }
2498 
2499  /* Exit if we already found next downlink */
2500  if (blkno == downlink)
2501  {
2502  state->prevrightlink = opaque->btpo_next;
2503  state->previncompletesplit = rightsplit;
2504  return;
2505  }
2506 
2507  /* Traverse to the next page using rightlink */
2508  blkno = opaque->btpo_next;
2509 
2510  /* Free page contents if it's allocated by us */
2511  if (page != loaded_child)
2512  pfree(page);
2513  first = false;
2514  }
2515 }
2516 
2517 /*
2518  * Checks one of target's downlink against its child page.
2519  *
2520  * Conceptually, the target page continues to be what is checked here. The
2521  * target block is still blamed in the event of finding an invariant violation.
2522  * The downlink insertion into the target is probably where any problem raised
2523  * here arises, and there is no such thing as a parent link, so doing the
2524  * verification this way around is much more practical.
2525  *
2526  * This function visits child page and it's sequentially called for each
2527  * downlink of target page. Assuming this we also check downlink connectivity
2528  * here in order to save child page visits.
2529  */
2530 static void
2532  OffsetNumber downlinkoffnum)
2533 {
2534  ItemId itemid;
2535  IndexTuple itup;
2536  BlockNumber childblock;
2537  OffsetNumber offset;
2538  OffsetNumber maxoffset;
2539  Page child;
2540  BTPageOpaque copaque;
2541  BTPageOpaque topaque;
2542 
2543  itemid = PageGetItemIdCareful(state, state->targetblock,
2544  state->target, downlinkoffnum);
2545  itup = (IndexTuple) PageGetItem(state->target, itemid);
2546  childblock = BTreeTupleGetDownLink(itup);
2547 
2548  /*
2549  * Caller must have ShareLock on target relation, because of
2550  * considerations around page deletion by VACUUM.
2551  *
2552  * NB: In general, page deletion deletes the right sibling's downlink, not
2553  * the downlink of the page being deleted; the deleted page's downlink is
2554  * reused for its sibling. The key space is thereby consolidated between
2555  * the deleted page and its right sibling. (We cannot delete a parent
2556  * page's rightmost child unless it is the last child page, and we intend
2557  * to also delete the parent itself.)
2558  *
2559  * If this verification happened without a ShareLock, the following race
2560  * condition could cause false positives:
2561  *
2562  * In general, concurrent page deletion might occur, including deletion of
2563  * the left sibling of the child page that is examined here. If such a
2564  * page deletion were to occur, closely followed by an insertion into the
2565  * newly expanded key space of the child, a window for the false positive
2566  * opens up: the stale parent/target downlink originally followed to get
2567  * to the child legitimately ceases to be a lower bound on all items in
2568  * the page, since the key space was concurrently expanded "left".
2569  * (Insertion followed the "new" downlink for the child, not our now-stale
2570  * downlink, which was concurrently physically removed in target/parent as
2571  * part of deletion's first phase.)
2572  *
2573  * While we use various techniques elsewhere to perform cross-page
2574  * verification for !readonly callers, a similar trick seems difficult
2575  * here. The tricks used by bt_recheck_sibling_links and by
2576  * bt_right_page_check_scankey both involve verification of a same-level,
2577  * cross-sibling invariant. Cross-level invariants are far more squishy,
2578  * though. The nbtree REDO routines do not actually couple buffer locks
2579  * across levels during page splits, so making any cross-level check work
2580  * reliably in !readonly mode may be impossible.
2581  */
2582  Assert(state->readonly);
2583 
2584  /*
2585  * Verify child page has the downlink key from target page (its parent) as
2586  * a lower bound; downlink must be strictly less than all keys on the
2587  * page.
2588  *
2589  * Check all items, rather than checking just the first and trusting that
2590  * the operator class obeys the transitive law.
2591  */
2592  topaque = BTPageGetOpaque(state->target);
2593  child = palloc_btree_page(state, childblock);
2594  copaque = BTPageGetOpaque(child);
2595  maxoffset = PageGetMaxOffsetNumber(child);
2596 
2597  /*
2598  * Since we've already loaded the child block, combine this check with
2599  * check for downlink connectivity.
2600  */
2601  bt_child_highkey_check(state, downlinkoffnum,
2602  child, topaque->btpo_level);
2603 
2604  /*
2605  * Since there cannot be a concurrent VACUUM operation in readonly mode,
2606  * and since a page has no links within other pages (siblings and parent)
2607  * once it is marked fully deleted, it should be impossible to land on a
2608  * fully deleted page.
2609  *
2610  * It does not quite make sense to enforce that the page cannot even be
2611  * half-dead, despite the fact the downlink is modified at the same stage
2612  * that the child leaf page is marked half-dead. That's incorrect because
2613  * there may occasionally be multiple downlinks from a chain of pages
2614  * undergoing deletion, where multiple successive calls are made to
2615  * _bt_unlink_halfdead_page() by VACUUM before it can finally safely mark
2616  * the leaf page as fully dead. While _bt_mark_page_halfdead() usually
2617  * removes the downlink to the leaf page that is marked half-dead, that's
2618  * not guaranteed, so it's possible we'll land on a half-dead page with a
2619  * downlink due to an interrupted multi-level page deletion.
2620  *
2621  * We go ahead with our checks if the child page is half-dead. It's safe
2622  * to do so because we do not test the child's high key, so it does not
2623  * matter that the original high key will have been replaced by a dummy
2624  * truncated high key within _bt_mark_page_halfdead(). All other page
2625  * items are left intact on a half-dead page, so there is still something
2626  * to test.
2627  */
2628  if (P_ISDELETED(copaque))
2629  ereport(ERROR,
2630  (errcode(ERRCODE_INDEX_CORRUPTED),
2631  errmsg("downlink to deleted page found in index \"%s\"",
2633  errdetail_internal("Parent block=%u child block=%u parent page lsn=%X/%X.",
2634  state->targetblock, childblock,
2635  LSN_FORMAT_ARGS(state->targetlsn))));
2636 
2637  for (offset = P_FIRSTDATAKEY(copaque);
2638  offset <= maxoffset;
2639  offset = OffsetNumberNext(offset))
2640  {
2641  /*
2642  * Skip comparison of target page key against "negative infinity"
2643  * item, if any. Checking it would indicate that it's not a strict
2644  * lower bound, but that's only because of the hard-coding for
2645  * negative infinity items within _bt_compare().
2646  *
2647  * If nbtree didn't truncate negative infinity tuples during internal
2648  * page splits then we'd expect child's negative infinity key to be
2649  * equal to the scankey/downlink from target/parent (it would be a
2650  * "low key" in this hypothetical scenario, and so it would still need
2651  * to be treated as a special case here).
2652  *
2653  * Negative infinity items can be thought of as a strict lower bound
2654  * that works transitively, with the last non-negative-infinity pivot
2655  * followed during a descent from the root as its "true" strict lower
2656  * bound. Only a small number of negative infinity items are truly
2657  * negative infinity; those that are the first items of leftmost
2658  * internal pages. In more general terms, a negative infinity item is
2659  * only negative infinity with respect to the subtree that the page is
2660  * at the root of.
2661  *
2662  * See also: bt_rootdescend(), which can even detect transitive
2663  * inconsistencies on cousin leaf pages.
2664  */
2665  if (offset_is_negative_infinity(copaque, offset))
2666  continue;
2667 
2668  if (!invariant_l_nontarget_offset(state, targetkey, childblock, child,
2669  offset))
2670  ereport(ERROR,
2671  (errcode(ERRCODE_INDEX_CORRUPTED),
2672  errmsg("down-link lower bound invariant violated for index \"%s\"",
2674  errdetail_internal("Parent block=%u child index tid=(%u,%u) parent page lsn=%X/%X.",
2675  state->targetblock, childblock, offset,
2676  LSN_FORMAT_ARGS(state->targetlsn))));
2677  }
2678 
2679  pfree(child);
2680 }
2681 
2682 /*
2683  * Checks if page is missing a downlink that it should have.
2684  *
2685  * A page that lacks a downlink/parent may indicate corruption. However, we
2686  * must account for the fact that a missing downlink can occasionally be
2687  * encountered in a non-corrupt index. This can be due to an interrupted page
2688  * split, or an interrupted multi-level page deletion (i.e. there was a hard
2689  * crash or an error during a page split, or while VACUUM was deleting a
2690  * multi-level chain of pages).
2691  *
2692  * Note that this can only be called in readonly mode, so there is no need to
2693  * be concerned about concurrent page splits or page deletions.
2694  */
2695 static void
2697  BlockNumber blkno, Page page)
2698 {
2699  BTPageOpaque opaque = BTPageGetOpaque(page);
2700  ItemId itemid;
2701  IndexTuple itup;
2702  Page child;
2703  BTPageOpaque copaque;
2704  uint32 level;
2705  BlockNumber childblk;
2706  XLogRecPtr pagelsn;
2707 
2708  Assert(state->readonly);
2709  Assert(!P_IGNORE(opaque));
2710 
2711  /* No next level up with downlinks to fingerprint from the true root */
2712  if (P_ISROOT(opaque))
2713  return;
2714 
2715  pagelsn = PageGetLSN(page);
2716 
2717  /*
2718  * Incomplete (interrupted) page splits can account for the lack of a
2719  * downlink. Some inserting transaction should eventually complete the
2720  * page split in passing, when it notices that the left sibling page is
2721  * P_INCOMPLETE_SPLIT().
2722  *
2723  * In general, VACUUM is not prepared for there to be no downlink to a
2724  * page that it deletes. This is the main reason why the lack of a
2725  * downlink can be reported as corruption here. It's not obvious that an
2726  * invalid missing downlink can result in wrong answers to queries,
2727  * though, since index scans that land on the child may end up
2728  * consistently moving right. The handling of concurrent page splits (and
2729  * page deletions) within _bt_moveright() cannot distinguish
2730  * inconsistencies that last for a moment from inconsistencies that are
2731  * permanent and irrecoverable.
2732  *
2733  * VACUUM isn't even prepared to delete pages that have no downlink due to
2734  * an incomplete page split, but it can detect and reason about that case
2735  * by design, so it shouldn't be taken to indicate corruption. See
2736  * _bt_pagedel() for full details.
2737  */
2738  if (rightsplit)
2739  {
2740  ereport(DEBUG1,
2741  (errcode(ERRCODE_NO_DATA),
2742  errmsg_internal("harmless interrupted page split detected in index \"%s\"",
2744  errdetail_internal("Block=%u level=%u left sibling=%u page lsn=%X/%X.",
2745  blkno, opaque->btpo_level,
2746  opaque->btpo_prev,
2747  LSN_FORMAT_ARGS(pagelsn))));
2748  return;
2749  }
2750 
2751  /*
2752  * Page under check is probably the "top parent" of a multi-level page
2753  * deletion. We'll need to descend the subtree to make sure that
2754  * descendant pages are consistent with that, though.
2755  *
2756  * If the page (which must be non-ignorable) is a leaf page, then clearly
2757  * it can't be the top parent. The lack of a downlink is probably a
2758  * symptom of a broad problem that could just as easily cause
2759  * inconsistencies anywhere else.
2760  */
2761  if (P_ISLEAF(opaque))
2762  ereport(ERROR,
2763  (errcode(ERRCODE_INDEX_CORRUPTED),
2764  errmsg("leaf index block lacks downlink in index \"%s\"",
2766  errdetail_internal("Block=%u page lsn=%X/%X.",
2767  blkno,
2768  LSN_FORMAT_ARGS(pagelsn))));
2769 
2770  /* Descend from the given page, which is an internal page */
2771  elog(DEBUG1, "checking for interrupted multi-level deletion due to missing downlink in index \"%s\"",
2773 
2774  level = opaque->btpo_level;
2775  itemid = PageGetItemIdCareful(state, blkno, page, P_FIRSTDATAKEY(opaque));
2776  itup = (IndexTuple) PageGetItem(page, itemid);
2777  childblk = BTreeTupleGetDownLink(itup);
2778  for (;;)
2779  {
2781 
2782  child = palloc_btree_page(state, childblk);
2783  copaque = BTPageGetOpaque(child);
2784 
2785  if (P_ISLEAF(copaque))
2786  break;
2787 
2788  /* Do an extra sanity check in passing on internal pages */
2789  if (copaque->btpo_level != level - 1)
2790  ereport(ERROR,
2791  (errcode(ERRCODE_INDEX_CORRUPTED),
2792  errmsg_internal("downlink points to block in index \"%s\" whose level is not one level down",
2794  errdetail_internal("Top parent/under check block=%u block pointed to=%u expected level=%u level in pointed to block=%u.",
2795  blkno, childblk,
2796  level - 1, copaque->btpo_level)));
2797 
2798  level = copaque->btpo_level;
2799  itemid = PageGetItemIdCareful(state, childblk, child,
2800  P_FIRSTDATAKEY(copaque));
2801  itup = (IndexTuple) PageGetItem(child, itemid);
2802  childblk = BTreeTupleGetDownLink(itup);
2803  /* Be slightly more pro-active in freeing this memory, just in case */
2804  pfree(child);
2805  }
2806 
2807  /*
2808  * Since there cannot be a concurrent VACUUM operation in readonly mode,
2809  * and since a page has no links within other pages (siblings and parent)
2810  * once it is marked fully deleted, it should be impossible to land on a
2811  * fully deleted page. See bt_child_check() for further details.
2812  *
2813  * The bt_child_check() P_ISDELETED() check is repeated here because
2814  * bt_child_check() does not visit pages reachable through negative
2815  * infinity items. Besides, bt_child_check() is unwilling to descend
2816  * multiple levels. (The similar bt_child_check() P_ISDELETED() check
2817  * within bt_check_level_from_leftmost() won't reach the page either,
2818  * since the leaf's live siblings should have their sibling links updated
2819  * to bypass the deletion target page when it is marked fully dead.)
2820  *
2821  * If this error is raised, it might be due to a previous multi-level page
2822  * deletion that failed to realize that it wasn't yet safe to mark the
2823  * leaf page as fully dead. A "dangling downlink" will still remain when
2824  * this happens. The fact that the dangling downlink's page (the leaf's
2825  * parent/ancestor page) lacked a downlink is incidental.
2826  */
2827  if (P_ISDELETED(copaque))
2828  ereport(ERROR,
2829  (errcode(ERRCODE_INDEX_CORRUPTED),
2830  errmsg_internal("downlink to deleted leaf page found in index \"%s\"",
2832  errdetail_internal("Top parent/target block=%u leaf block=%u top parent/under check lsn=%X/%X.",
2833  blkno, childblk,
2834  LSN_FORMAT_ARGS(pagelsn))));
2835 
2836  /*
2837  * Iff leaf page is half-dead, its high key top parent link should point
2838  * to what VACUUM considered to be the top parent page at the instant it
2839  * was interrupted. Provided the high key link actually points to the
2840  * page under check, the missing downlink we detected is consistent with
2841  * there having been an interrupted multi-level page deletion. This means
2842  * that the subtree with the page under check at its root (a page deletion
2843  * chain) is in a consistent state, enabling VACUUM to resume deleting the
2844  * entire chain the next time it encounters the half-dead leaf page.
2845  */
2846  if (P_ISHALFDEAD(copaque) && !P_RIGHTMOST(copaque))
2847  {
2848  itemid = PageGetItemIdCareful(state, childblk, child, P_HIKEY);
2849  itup = (IndexTuple) PageGetItem(child, itemid);
2850  if (BTreeTupleGetTopParent(itup) == blkno)
2851  return;
2852  }
2853 
2854  ereport(ERROR,
2855  (errcode(ERRCODE_INDEX_CORRUPTED),
2856  errmsg("internal index block lacks downlink in index \"%s\"",
2858  errdetail_internal("Block=%u level=%u page lsn=%X/%X.",
2859  blkno, opaque->btpo_level,
2860  LSN_FORMAT_ARGS(pagelsn))));
2861 }
2862 
2863 /*
2864  * Per-tuple callback from table_index_build_scan, used to determine if index has
2865  * all the entries that definitely should have been observed in leaf pages of
2866  * the target index (that is, all IndexTuples that were fingerprinted by our
2867  * Bloom filter). All heapallindexed checks occur here.
2868  *
2869  * The redundancy between an index and the table it indexes provides a good
2870  * opportunity to detect corruption, especially corruption within the table.
2871  * The high level principle behind the verification performed here is that any
2872  * IndexTuple that should be in an index following a fresh CREATE INDEX (based
2873  * on the same index definition) should also have been in the original,
2874  * existing index, which should have used exactly the same representation
2875  *
2876  * Since the overall structure of the index has already been verified, the most
2877  * likely explanation for error here is a corrupt heap page (could be logical
2878  * or physical corruption). Index corruption may still be detected here,
2879  * though. Only readonly callers will have verified that left links and right
2880  * links are in agreement, and so it's possible that a leaf page transposition
2881  * within index is actually the source of corruption detected here (for
2882  * !readonly callers). The checks performed only for readonly callers might
2883  * more accurately frame the problem as a cross-page invariant issue (this
2884  * could even be due to recovery not replaying all WAL records). The !readonly
2885  * ERROR message raised here includes a HINT about retrying with readonly
2886  * verification, just in case it's a cross-page invariant issue, though that
2887  * isn't particularly likely.
2888  *
2889  * table_index_build_scan() expects to be able to find the root tuple when a
2890  * heap-only tuple (the live tuple at the end of some HOT chain) needs to be
2891  * indexed, in order to replace the actual tuple's TID with the root tuple's
2892  * TID (which is what we're actually passed back here). The index build heap
2893  * scan code will raise an error when a tuple that claims to be the root of the
2894  * heap-only tuple's HOT chain cannot be located. This catches cases where the
2895  * original root item offset/root tuple for a HOT chain indicates (for whatever
2896  * reason) that the entire HOT chain is dead, despite the fact that the latest
2897  * heap-only tuple should be indexed. When this happens, sequential scans may
2898  * always give correct answers, and all indexes may be considered structurally
2899  * consistent (i.e. the nbtree structural checks would not detect corruption).
2900  * It may be the case that only index scans give wrong answers, and yet heap or
2901  * SLRU corruption is the real culprit. (While it's true that LP_DEAD bit
2902  * setting will probably also leave the index in a corrupt state before too
2903  * long, the problem is nonetheless that there is heap corruption.)
2904  *
2905  * Heap-only tuple handling within table_index_build_scan() works in a way that
2906  * helps us to detect index tuples that contain the wrong values (values that
2907  * don't match the latest tuple in the HOT chain). This can happen when there
2908  * is no superseding index tuple due to a faulty assessment of HOT safety,
2909  * perhaps during the original CREATE INDEX. Because the latest tuple's
2910  * contents are used with the root TID, an error will be raised when a tuple
2911  * with the same TID but non-matching attribute values is passed back to us.
2912  * Faulty assessment of HOT-safety was behind at least two distinct CREATE
2913  * INDEX CONCURRENTLY bugs that made it into stable releases, one of which was
2914  * undetected for many years. In short, the same principle that allows a
2915  * REINDEX to repair corruption when there was an (undetected) broken HOT chain
2916  * also allows us to detect the corruption in many cases.
2917  */
2918 static void
2920  bool *isnull, bool tupleIsAlive, void *checkstate)
2921 {
2922  BtreeCheckState *state = (BtreeCheckState *) checkstate;
2923  IndexTuple itup,
2924  norm;
2925 
2926  Assert(state->heapallindexed);
2927 
2928  /* Generate a normalized index tuple for fingerprinting */
2929  itup = index_form_tuple(RelationGetDescr(index), values, isnull);
2930  itup->t_tid = *tid;
2931  norm = bt_normalize_tuple(state, itup);
2932 
2933  /* Probe Bloom filter -- tuple should be present */
2934  if (bloom_lacks_element(state->filter, (unsigned char *) norm,
2935  IndexTupleSize(norm)))
2936  ereport(ERROR,
2938  errmsg("heap tuple (%u,%u) from table \"%s\" lacks matching index tuple within index \"%s\"",
2939  ItemPointerGetBlockNumber(&(itup->t_tid)),
2941  RelationGetRelationName(state->heaprel),
2943  !state->readonly
2944  ? errhint("Retrying verification using the function bt_index_parent_check() might provide a more specific error.")
2945  : 0));
2946 
2947  state->heaptuplespresent++;
2948  pfree(itup);
2949  /* Cannot leak memory here */
2950  if (norm != itup)
2951  pfree(norm);
2952 }
2953 
2954 /*
2955  * Normalize an index tuple for fingerprinting.
2956  *
2957  * In general, index tuple formation is assumed to be deterministic by
2958  * heapallindexed verification, and IndexTuples are assumed immutable. While
2959  * the LP_DEAD bit is mutable in leaf pages, that's ItemId metadata, which is
2960  * not fingerprinted. Normalization is required to compensate for corner
2961  * cases where the determinism assumption doesn't quite work.
2962  *
2963  * There is currently one such case: index_form_tuple() does not try to hide
2964  * the source TOAST state of input datums. The executor applies TOAST
2965  * compression for heap tuples based on different criteria to the compression
2966  * applied within btinsert()'s call to index_form_tuple(): it sometimes
2967  * compresses more aggressively, resulting in compressed heap tuple datums but
2968  * uncompressed corresponding index tuple datums. A subsequent heapallindexed
2969  * verification will get a logically equivalent though bitwise unequal tuple
2970  * from index_form_tuple(). False positive heapallindexed corruption reports
2971  * could occur without normalizing away the inconsistency.
2972  *
2973  * Returned tuple is often caller's own original tuple. Otherwise, it is a
2974  * new representation of caller's original index tuple, palloc()'d in caller's
2975  * memory context.
2976  *
2977  * Note: This routine is not concerned with distinctions about the
2978  * representation of tuples beyond those that might break heapallindexed
2979  * verification. In particular, it won't try to normalize opclass-equal
2980  * datums with potentially distinct representations (e.g., btree/numeric_ops
2981  * index datums will not get their display scale normalized-away here).
2982  * Caller does normalization for non-pivot tuples that have a posting list,
2983  * since dummy CREATE INDEX callback code generates new tuples with the same
2984  * normalized representation.
2985  */
2986 static IndexTuple
2988 {
2989  TupleDesc tupleDescriptor = RelationGetDescr(state->rel);
2990  Datum normalized[INDEX_MAX_KEYS];
2991  bool isnull[INDEX_MAX_KEYS];
2992  bool need_free[INDEX_MAX_KEYS];
2993  bool formnewtup = false;
2994  IndexTuple reformed;
2995  int i;
2996 
2997  /* Caller should only pass "logical" non-pivot tuples here */
2998  Assert(!BTreeTupleIsPosting(itup) && !BTreeTupleIsPivot(itup));
2999 
3000  /* Easy case: It's immediately clear that tuple has no varlena datums */
3001  if (!IndexTupleHasVarwidths(itup))
3002  return itup;
3003 
3004  for (i = 0; i < tupleDescriptor->natts; i++)
3005  {
3006  Form_pg_attribute att;
3007 
3008  att = TupleDescAttr(tupleDescriptor, i);
3009 
3010  /* Assume untoasted/already normalized datum initially */
3011  need_free[i] = false;
3012  normalized[i] = index_getattr(itup, att->attnum,
3013  tupleDescriptor,
3014  &isnull[i]);
3015  if (att->attbyval || att->attlen != -1 || isnull[i])
3016  continue;
3017 
3018  /*
3019  * Callers always pass a tuple that could safely be inserted into the
3020  * index without further processing, so an external varlena header
3021  * should never be encountered here
3022  */
3023  if (VARATT_IS_EXTERNAL(DatumGetPointer(normalized[i])))
3024  ereport(ERROR,
3025  (errcode(ERRCODE_INDEX_CORRUPTED),
3026  errmsg("external varlena datum in tuple that references heap row (%u,%u) in index \"%s\"",
3027  ItemPointerGetBlockNumber(&(itup->t_tid)),
3029  RelationGetRelationName(state->rel))));
3030  else if (!VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])) &&
3031  VARSIZE(DatumGetPointer(normalized[i])) > TOAST_INDEX_TARGET &&
3032  (att->attstorage == TYPSTORAGE_EXTENDED ||
3033  att->attstorage == TYPSTORAGE_MAIN))
3034  {
3035  /*
3036  * This value will be compressed by index_form_tuple() with the
3037  * current storage settings. We may be here because this tuple
3038  * was formed with different storage settings. So, force forming.
3039  */
3040  formnewtup = true;
3041  }
3042  else if (VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])))
3043  {
3044  formnewtup = true;
3045  normalized[i] = PointerGetDatum(PG_DETOAST_DATUM(normalized[i]));
3046  need_free[i] = true;
3047  }
3048 
3049  /*
3050  * Short tuples may have 1B or 4B header. Convert 4B header of short
3051  * tuples to 1B
3052  */
3053  else if (VARATT_CAN_MAKE_SHORT(DatumGetPointer(normalized[i])))
3054  {
3055  /* convert to short varlena */
3057  char *data = palloc(len);
3058 
3060  memcpy(data + 1, VARDATA(DatumGetPointer(normalized[i])), len - 1);
3061 
3062  formnewtup = true;
3063  normalized[i] = PointerGetDatum(data);
3064  need_free[i] = true;
3065  }
3066  }
3067 
3068  /*
3069  * Easier case: Tuple has varlena datums, none of which are compressed or
3070  * short with 4B header
3071  */
3072  if (!formnewtup)
3073  return itup;
3074 
3075  /*
3076  * Hard case: Tuple had compressed varlena datums that necessitate
3077  * creating normalized version of the tuple from uncompressed input datums
3078  * (normalized input datums). This is rather naive, but shouldn't be
3079  * necessary too often.
3080  *
3081  * In the heap, tuples may contain short varlena datums with both 1B
3082  * header and 4B headers. But the corresponding index tuple should always
3083  * have such varlena's with 1B headers. So, if there is a short varlena
3084  * with 4B header, we need to convert it for fingerprinting.
3085  *
3086  * Note that we rely on deterministic index_form_tuple() TOAST compression
3087  * of normalized input.
3088  */
3089  reformed = index_form_tuple(tupleDescriptor, normalized, isnull);
3090  reformed->t_tid = itup->t_tid;
3091 
3092  /* Cannot leak memory here */
3093  for (i = 0; i < tupleDescriptor->natts; i++)
3094  if (need_free[i])
3095  pfree(DatumGetPointer(normalized[i]));
3096 
3097  return reformed;
3098 }
3099 
3100 /*
3101  * Produce palloc()'d "plain" tuple for nth posting list entry/TID.
3102  *
3103  * In general, deduplication is not supposed to change the logical contents of
3104  * an index. Multiple index tuples are merged together into one equivalent
3105  * posting list index tuple when convenient.
3106  *
3107  * heapallindexed verification must normalize-away this variation in
3108  * representation by converting posting list tuples into two or more "plain"
3109  * tuples. Each tuple must be fingerprinted separately -- there must be one
3110  * tuple for each corresponding Bloom filter probe during the heap scan.
3111  *
3112  * Note: Caller still needs to call bt_normalize_tuple() with returned tuple.
3113  */
3114 static inline IndexTuple
3116 {
3117  Assert(BTreeTupleIsPosting(itup));
3118 
3119  /* Returns non-posting-list tuple */
3120  return _bt_form_posting(itup, BTreeTupleGetPostingN(itup, n), 1);
3121 }
3122 
3123 /*
3124  * Search for itup in index, starting from fast root page. itup must be a
3125  * non-pivot tuple. This is only supported with heapkeyspace indexes, since
3126  * we rely on having fully unique keys to find a match with only a single
3127  * visit to a leaf page, barring an interrupted page split, where we may have
3128  * to move right. (A concurrent page split is impossible because caller must
3129  * be readonly caller.)
3130  *
3131  * This routine can detect very subtle transitive consistency issues across
3132  * more than one level of the tree. Leaf pages all have a high key (even the
3133  * rightmost page has a conceptual positive infinity high key), but not a low
3134  * key. Their downlink in parent is a lower bound, which along with the high
3135  * key is almost enough to detect every possible inconsistency. A downlink
3136  * separator key value won't always be available from parent, though, because
3137  * the first items of internal pages are negative infinity items, truncated
3138  * down to zero attributes during internal page splits. While it's true that
3139  * bt_child_check() and the high key check can detect most imaginable key
3140  * space problems, there are remaining problems it won't detect with non-pivot
3141  * tuples in cousin leaf pages. Starting a search from the root for every
3142  * existing leaf tuple detects small inconsistencies in upper levels of the
3143  * tree that cannot be detected any other way. (Besides all this, this is
3144  * probably also useful as a direct test of the code used by index scans
3145  * themselves.)
3146  */
3147 static bool
3149 {
3150  BTScanInsert key;
3151  BTStack stack;
3152  Buffer lbuf;
3153  bool exists;
3154 
3155  key = _bt_mkscankey(state->rel, itup);
3156  Assert(key->heapkeyspace && key->scantid != NULL);
3157 
3158  /*
3159  * Search from root.
3160  *
3161  * Ideally, we would arrange to only move right within _bt_search() when
3162  * an interrupted page split is detected (i.e. when the incomplete split
3163  * bit is found to be set), but for now we accept the possibility that
3164  * that could conceal an inconsistency.
3165  */
3166  Assert(state->readonly && state->rootdescend);
3167  exists = false;
3168  stack = _bt_search(state->rel, NULL, key, &lbuf, BT_READ);
3169 
3170  if (BufferIsValid(lbuf))
3171  {
3172  BTInsertStateData insertstate;
3173  OffsetNumber offnum;
3174  Page page;
3175 
3176  insertstate.itup = itup;
3177  insertstate.itemsz = MAXALIGN(IndexTupleSize(itup));
3178  insertstate.itup_key = key;
3179  insertstate.postingoff = 0;
3180  insertstate.bounds_valid = false;
3181  insertstate.buf = lbuf;
3182 
3183  /* Get matching tuple on leaf page */
3184  offnum = _bt_binsrch_insert(state->rel, &insertstate);
3185  /* Compare first >= matching item on leaf page, if any */
3186  page = BufferGetPage(lbuf);
3187  /* Should match on first heap TID when tuple has a posting list */
3188  if (offnum <= PageGetMaxOffsetNumber(page) &&
3189  insertstate.postingoff <= 0 &&
3190  _bt_compare(state->rel, key, page, offnum) == 0)
3191  exists = true;
3192  _bt_relbuf(state->rel, lbuf);
3193  }
3194 
3195  _bt_freestack(stack);
3196  pfree(key);
3197 
3198  return exists;
3199 }
3200 
3201 /*
3202  * Is particular offset within page (whose special state is passed by caller)
3203  * the page negative-infinity item?
3204  *
3205  * As noted in comments above _bt_compare(), there is special handling of the
3206  * first data item as a "negative infinity" item. The hard-coding within
3207  * _bt_compare() makes comparing this item for the purposes of verification
3208  * pointless at best, since the IndexTuple only contains a valid TID (a
3209  * reference TID to child page).
3210  */
3211 static inline bool
3213 {
3214  /*
3215  * For internal pages only, the first item after high key, if any, is
3216  * negative infinity item. Internal pages always have a negative infinity
3217  * item, whereas leaf pages never have one. This implies that negative
3218  * infinity item is either first or second line item, or there is none
3219  * within page.
3220  *
3221  * Negative infinity items are a special case among pivot tuples. They
3222  * always have zero attributes, while all other pivot tuples always have
3223  * nkeyatts attributes.
3224  *
3225  * Right-most pages don't have a high key, but could be said to
3226  * conceptually have a "positive infinity" high key. Thus, there is a
3227  * symmetry between down link items in parent pages, and high keys in
3228  * children. Together, they represent the part of the key space that
3229  * belongs to each page in the index. For example, all children of the
3230  * root page will have negative infinity as a lower bound from root
3231  * negative infinity downlink, and positive infinity as an upper bound
3232  * (implicitly, from "imaginary" positive infinity high key in root).
3233  */
3234  return !P_ISLEAF(opaque) && offset == P_FIRSTDATAKEY(opaque);
3235 }
3236 
3237 /*
3238  * Does the invariant hold that the key is strictly less than a given upper
3239  * bound offset item?
3240  *
3241  * Verifies line pointer on behalf of caller.
3242  *
3243  * If this function returns false, convention is that caller throws error due
3244  * to corruption.
3245  */
3246 static inline bool
3248  OffsetNumber upperbound)
3249 {
3250  ItemId itemid;
3251  int32 cmp;
3252 
3253  Assert(!key->nextkey && key->backward);
3254 
3255  /* Verify line pointer before checking tuple */
3256  itemid = PageGetItemIdCareful(state, state->targetblock, state->target,
3257  upperbound);
3258  /* pg_upgrade'd indexes may legally have equal sibling tuples */
3259  if (!key->heapkeyspace)
3260  return invariant_leq_offset(state, key, upperbound);
3261 
3262  cmp = _bt_compare(state->rel, key, state->target, upperbound);
3263 
3264  /*
3265  * _bt_compare() is capable of determining that a scankey with a
3266  * filled-out attribute is greater than pivot tuples where the comparison
3267  * is resolved at a truncated attribute (value of attribute in pivot is
3268  * minus infinity). However, it is not capable of determining that a
3269  * scankey is _less than_ a tuple on the basis of a comparison resolved at
3270  * _scankey_ minus infinity attribute. Complete an extra step to simulate
3271  * having minus infinity values for omitted scankey attribute(s).
3272  */
3273  if (cmp == 0)
3274  {
3275  BTPageOpaque topaque;
3276  IndexTuple ritup;
3277  int uppnkeyatts;
3278  ItemPointer rheaptid;
3279  bool nonpivot;
3280 
3281  ritup = (IndexTuple) PageGetItem(state->target, itemid);
3282  topaque = BTPageGetOpaque(state->target);
3283  nonpivot = P_ISLEAF(topaque) && upperbound >= P_FIRSTDATAKEY(topaque);
3284 
3285  /* Get number of keys + heap TID for item to the right */
3286  uppnkeyatts = BTreeTupleGetNKeyAtts(ritup, state->rel);
3287  rheaptid = BTreeTupleGetHeapTIDCareful(state, ritup, nonpivot);
3288 
3289  /* Heap TID is tiebreaker key attribute */
3290  if (key->keysz == uppnkeyatts)
3291  return key->scantid == NULL && rheaptid != NULL;
3292 
3293  return key->keysz < uppnkeyatts;
3294  }
3295 
3296  return cmp < 0;
3297 }
3298 
3299 /*
3300  * Does the invariant hold that the key is less than or equal to a given upper
3301  * bound offset item?
3302  *
3303  * Caller should have verified that upperbound's line pointer is consistent
3304  * using PageGetItemIdCareful() call.
3305  *
3306  * If this function returns false, convention is that caller throws error due
3307  * to corruption.
3308  */
3309 static inline bool
3311  OffsetNumber upperbound)
3312 {
3313  int32 cmp;
3314 
3315  Assert(!key->nextkey && key->backward);
3316 
3317  cmp = _bt_compare(state->rel, key, state->target, upperbound);
3318 
3319  return cmp <= 0;
3320 }
3321 
3322 /*
3323  * Does the invariant hold that the key is strictly greater than a given lower
3324  * bound offset item?
3325  *
3326  * Caller should have verified that lowerbound's line pointer is consistent
3327  * using PageGetItemIdCareful() call.
3328  *
3329  * If this function returns false, convention is that caller throws error due
3330  * to corruption.
3331  */
3332 static inline bool
3334  OffsetNumber lowerbound)
3335 {
3336  int32 cmp;
3337 
3338  Assert(!key->nextkey && key->backward);
3339 
3340  cmp = _bt_compare(state->rel, key, state->target, lowerbound);
3341 
3342  /* pg_upgrade'd indexes may legally have equal sibling tuples */
3343  if (!key->heapkeyspace)
3344  return cmp >= 0;
3345 
3346  /*
3347  * No need to consider the possibility that scankey has attributes that we
3348  * need to force to be interpreted as negative infinity. _bt_compare() is
3349  * able to determine that scankey is greater than negative infinity. The
3350  * distinction between "==" and "<" isn't interesting here, since
3351  * corruption is indicated either way.
3352  */
3353  return cmp > 0;
3354 }
3355 
3356 /*
3357  * Does the invariant hold that the key is strictly less than a given upper
3358  * bound offset item, with the offset relating to a caller-supplied page that
3359  * is not the current target page?
3360  *
3361  * Caller's non-target page is a child page of the target, checked as part of
3362  * checking a property of the target page (i.e. the key comes from the
3363  * target). Verifies line pointer on behalf of caller.
3364  *
3365  * If this function returns false, convention is that caller throws error due
3366  * to corruption.
3367  */
3368 static inline bool
3370  BlockNumber nontargetblock, Page nontarget,
3371  OffsetNumber upperbound)
3372 {
3373  ItemId itemid;
3374  int32 cmp;
3375 
3376  Assert(!key->nextkey && key->backward);
3377 
3378  /* Verify line pointer before checking tuple */
3379  itemid = PageGetItemIdCareful(state, nontargetblock, nontarget,
3380  upperbound);
3381  cmp = _bt_compare(state->rel, key, nontarget, upperbound);
3382 
3383  /* pg_upgrade'd indexes may legally have equal sibling tuples */
3384  if (!key->heapkeyspace)
3385  return cmp <= 0;
3386 
3387  /* See invariant_l_offset() for an explanation of this extra step */
3388  if (cmp == 0)
3389  {
3390  IndexTuple child;
3391  int uppnkeyatts;
3392  ItemPointer childheaptid;
3393  BTPageOpaque copaque;
3394  bool nonpivot;
3395 
3396  child = (IndexTuple) PageGetItem(nontarget, itemid);
3397  copaque = BTPageGetOpaque(nontarget);
3398  nonpivot = P_ISLEAF(copaque) && upperbound >= P_FIRSTDATAKEY(copaque);
3399 
3400  /* Get number of keys + heap TID for child/non-target item */
3401  uppnkeyatts = BTreeTupleGetNKeyAtts(child, state->rel);
3402  childheaptid = BTreeTupleGetHeapTIDCareful(state, child, nonpivot);
3403 
3404  /* Heap TID is tiebreaker key attribute */
3405  if (key->keysz == uppnkeyatts)
3406  return key->scantid == NULL && childheaptid != NULL;
3407 
3408  return key->keysz < uppnkeyatts;
3409  }
3410 
3411  return cmp < 0;
3412 }
3413 
3414 /*
3415  * Given a block number of a B-Tree page, return page in palloc()'d memory.
3416  * While at it, perform some basic checks of the page.
3417  *
3418  * There is never an attempt to get a consistent view of multiple pages using
3419  * multiple concurrent buffer locks; in general, we only acquire a single pin
3420  * and buffer lock at a time, which is often all that the nbtree code requires.
3421  * (Actually, bt_recheck_sibling_links couples buffer locks, which is the only
3422  * exception to this general rule.)
3423  *
3424  * Operating on a copy of the page is useful because it prevents control
3425  * getting stuck in an uninterruptible state when an underlying operator class
3426  * misbehaves.
3427  */
3428 static Page
3430 {
3431  Buffer buffer;
3432  Page page;
3433  BTPageOpaque opaque;
3434  OffsetNumber maxoffset;
3435 
3436  page = palloc(BLCKSZ);
3437 
3438  /*
3439  * We copy the page into local storage to avoid holding pin on the buffer
3440  * longer than we must.
3441  */
3442  buffer = ReadBufferExtended(state->rel, MAIN_FORKNUM, blocknum, RBM_NORMAL,
3443  state->checkstrategy);
3444  LockBuffer(buffer, BT_READ);
3445 
3446  /*
3447  * Perform the same basic sanity checking that nbtree itself performs for
3448  * every page:
3449  */
3450  _bt_checkpage(state->rel, buffer);
3451 
3452  /* Only use copy of page in palloc()'d memory */
3453  memcpy(page, BufferGetPage(buffer), BLCKSZ);
3454  UnlockReleaseBuffer(buffer);
3455 
3456  opaque = BTPageGetOpaque(page);
3457 
3458  if (P_ISMETA(opaque) && blocknum != BTREE_METAPAGE)
3459  ereport(ERROR,
3460  (errcode(ERRCODE_INDEX_CORRUPTED),
3461  errmsg("invalid meta page found at block %u in index \"%s\"",
3462  blocknum, RelationGetRelationName(state->rel))));
3463 
3464  /* Check page from block that ought to be meta page */
3465  if (blocknum == BTREE_METAPAGE)
3466  {
3467  BTMetaPageData *metad = BTPageGetMeta(page);
3468 
3469  if (!P_ISMETA(opaque) ||
3470  metad->btm_magic != BTREE_MAGIC)
3471  ereport(ERROR,
3472  (errcode(ERRCODE_INDEX_CORRUPTED),
3473  errmsg("index \"%s\" meta page is corrupt",
3474  RelationGetRelationName(state->rel))));
3475 
3476  if (metad->btm_version < BTREE_MIN_VERSION ||
3477  metad->btm_version > BTREE_VERSION)
3478  ereport(ERROR,
3479  (errcode(ERRCODE_INDEX_CORRUPTED),
3480  errmsg("version mismatch in index \"%s\": file version %d, "
3481  "current version %d, minimum supported version %d",
3483  metad->btm_version, BTREE_VERSION,
3484  BTREE_MIN_VERSION)));
3485 
3486  /* Finished with metapage checks */
3487  return page;
3488  }
3489 
3490  /*
3491  * Deleted pages that still use the old 32-bit XID representation have no
3492  * sane "level" field because they type pun the field, but all other pages
3493  * (including pages deleted on Postgres 14+) have a valid value.
3494  */
3495  if (!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque))
3496  {
3497  /* Okay, no reason not to trust btpo_level field from page */
3498 
3499  if (P_ISLEAF(opaque) && opaque->btpo_level != 0)
3500  ereport(ERROR,
3501  (errcode(ERRCODE_INDEX_CORRUPTED),
3502  errmsg_internal("invalid leaf page level %u for block %u in index \"%s\"",
3503  opaque->btpo_level, blocknum,
3504  RelationGetRelationName(state->rel))));
3505 
3506  if (!P_ISLEAF(opaque) && opaque->btpo_level == 0)
3507  ereport(ERROR,
3508  (errcode(ERRCODE_INDEX_CORRUPTED),
3509  errmsg_internal("invalid internal page level 0 for block %u in index \"%s\"",
3510  blocknum,
3511  RelationGetRelationName(state->rel))));
3512  }
3513 
3514  /*
3515  * Sanity checks for number of items on page.
3516  *
3517  * As noted at the beginning of _bt_binsrch(), an internal page must have
3518  * children, since there must always be a negative infinity downlink
3519  * (there may also be a highkey). In the case of non-rightmost leaf
3520  * pages, there must be at least a highkey. The exceptions are deleted
3521  * pages, which contain no items.
3522  *
3523  * This is correct when pages are half-dead, since internal pages are
3524  * never half-dead, and leaf pages must have a high key when half-dead
3525  * (the rightmost page can never be deleted). It's also correct with
3526  * fully deleted pages: _bt_unlink_halfdead_page() doesn't change anything
3527  * about the target page other than setting the page as fully dead, and
3528  * setting its xact field. In particular, it doesn't change the sibling
3529  * links in the deletion target itself, since they're required when index
3530  * scans land on the deletion target, and then need to move right (or need
3531  * to move left, in the case of backward index scans).
3532  */
3533  maxoffset = PageGetMaxOffsetNumber(page);
3534  if (maxoffset > MaxIndexTuplesPerPage)
3535  ereport(ERROR,
3536  (errcode(ERRCODE_INDEX_CORRUPTED),
3537  errmsg("Number of items on block %u of index \"%s\" exceeds MaxIndexTuplesPerPage (%u)",
3538  blocknum, RelationGetRelationName(state->rel),
3540 
3541  if (!P_ISLEAF(opaque) && !P_ISDELETED(opaque) && maxoffset < P_FIRSTDATAKEY(opaque))
3542  ereport(ERROR,
3543  (errcode(ERRCODE_INDEX_CORRUPTED),
3544  errmsg("internal block %u in index \"%s\" lacks high key and/or at least one downlink",
3545  blocknum, RelationGetRelationName(state->rel))));
3546 
3547  if (P_ISLEAF(opaque) && !P_ISDELETED(opaque) && !P_RIGHTMOST(opaque) && maxoffset < P_HIKEY)
3548  ereport(ERROR,
3549  (errcode(ERRCODE_INDEX_CORRUPTED),
3550  errmsg("non-rightmost leaf block %u in index \"%s\" lacks high key item",
3551  blocknum, RelationGetRelationName(state->rel))));
3552 
3553  /*
3554  * In general, internal pages are never marked half-dead, except on
3555  * versions of Postgres prior to 9.4, where it can be valid transient
3556  * state. This state is nonetheless treated as corruption by VACUUM on
3557  * from version 9.4 on, so do the same here. See _bt_pagedel() for full
3558  * details.
3559  */
3560  if (!P_ISLEAF(opaque) && P_ISHALFDEAD(opaque))
3561  ereport(ERROR,
3562  (errcode(ERRCODE_INDEX_CORRUPTED),
3563  errmsg("internal page block %u in index \"%s\" is half-dead",
3564  blocknum, RelationGetRelationName(state->rel)),
3565  errhint("This can be caused by an interrupted VACUUM in version 9.3 or older, before upgrade. Please REINDEX it.")));
3566 
3567  /*
3568  * Check that internal pages have no garbage items, and that no page has
3569  * an invalid combination of deletion-related page level flags
3570  */
3571  if (!P_ISLEAF(opaque) && P_HAS_GARBAGE(opaque))
3572  ereport(ERROR,
3573  (errcode(ERRCODE_INDEX_CORRUPTED),
3574  errmsg_internal("internal page block %u in index \"%s\" has garbage items",
3575  blocknum, RelationGetRelationName(state->rel))));
3576 
3577  if (P_HAS_FULLXID(opaque) && !P_ISDELETED(opaque))
3578  ereport(ERROR,
3579  (errcode(ERRCODE_INDEX_CORRUPTED),
3580  errmsg_internal("full transaction id page flag appears in non-deleted block %u in index \"%s\"",
3581  blocknum, RelationGetRelationName(state->rel))));
3582 
3583  if (P_ISDELETED(opaque) && P_ISHALFDEAD(opaque))
3584  ereport(ERROR,
3585  (errcode(ERRCODE_INDEX_CORRUPTED),
3586  errmsg_internal("deleted page block %u in index \"%s\" is half-dead",
3587  blocknum, RelationGetRelationName(state->rel))));
3588 
3589  return page;
3590 }
3591 
3592 /*
3593  * _bt_mkscankey() wrapper that automatically prevents insertion scankey from
3594  * being considered greater than the pivot tuple that its values originated
3595  * from (or some other identical pivot tuple) in the common case where there
3596  * are truncated/minus infinity attributes. Without this extra step, there
3597  * are forms of corruption that amcheck could theoretically fail to report.
3598  *
3599  * For example, invariant_g_offset() might miss a cross-page invariant failure
3600  * on an internal level if the scankey built from the first item on the
3601  * target's right sibling page happened to be equal to (not greater than) the
3602  * last item on target page. The !backward tiebreaker in _bt_compare() might
3603  * otherwise cause amcheck to assume (rather than actually verify) that the
3604  * scankey is greater.
3605  */
3606 static inline BTScanInsert
3608 {
3609  BTScanInsert skey;
3610 
3611  skey = _bt_mkscankey(rel, itup);
3612  skey->backward = true;
3613 
3614  return skey;
3615 }
3616 
3617 /*
3618  * PageGetItemId() wrapper that validates returned line pointer.
3619  *
3620  * Buffer page/page item access macros generally trust that line pointers are
3621  * not corrupt, which might cause problems for verification itself. For
3622  * example, there is no bounds checking in PageGetItem(). Passing it a
3623  * corrupt line pointer can cause it to return a tuple/pointer that is unsafe
3624  * to dereference.
3625  *
3626  * Validating line pointers before tuples avoids undefined behavior and
3627  * assertion failures with corrupt indexes, making the verification process
3628  * more robust and predictable.
3629  */
3630 static ItemId
3632  OffsetNumber offset)
3633 {
3634  ItemId itemid = PageGetItemId(page, offset);
3635 
3636  if (ItemIdGetOffset(itemid) + ItemIdGetLength(itemid) >
3637  BLCKSZ - MAXALIGN(sizeof(BTPageOpaqueData)))
3638  ereport(ERROR,
3639  (errcode(ERRCODE_INDEX_CORRUPTED),
3640  errmsg("line pointer points past end of tuple space in index \"%s\"",
3642  errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
3643  block, offset, ItemIdGetOffset(itemid),
3644  ItemIdGetLength(itemid),
3645  ItemIdGetFlags(itemid))));
3646 
3647  /*
3648  * Verify that line pointer isn't LP_REDIRECT or LP_UNUSED, since nbtree
3649  * never uses either. Verify that line pointer has storage, too, since
3650  * even LP_DEAD items should within nbtree.
3651  */
3652  if (ItemIdIsRedirected(itemid) || !ItemIdIsUsed(itemid) ||
3653  ItemIdGetLength(itemid) == 0)
3654  ereport(ERROR,
3655  (errcode(ERRCODE_INDEX_CORRUPTED),
3656  errmsg("invalid line pointer storage in index \"%s\"",
3658  errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
3659  block, offset, ItemIdGetOffset(itemid),
3660  ItemIdGetLength(itemid),
3661  ItemIdGetFlags(itemid))));
3662 
3663  return itemid;
3664 }
3665 
3666 /*
3667  * BTreeTupleGetHeapTID() wrapper that enforces that a heap TID is present in
3668  * cases where that is mandatory (i.e. for non-pivot tuples)
3669  */
3670 static inline ItemPointer
3672  bool nonpivot)
3673 {
3674  ItemPointer htid;
3675 
3676  /*
3677  * Caller determines whether this is supposed to be a pivot or non-pivot
3678  * tuple using page type and item offset number. Verify that tuple
3679  * metadata agrees with this.
3680  */
3681  Assert(state->heapkeyspace);
3682  if (BTreeTupleIsPivot(itup) && nonpivot)
3683  ereport(ERROR,
3684  (errcode(ERRCODE_INDEX_CORRUPTED),
3685  errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected pivot tuple",
3686  state->targetblock,
3687  RelationGetRelationName(state->rel))));
3688 
3689  if (!BTreeTupleIsPivot(itup) && !nonpivot)
3690  ereport(ERROR,
3691  (errcode(ERRCODE_INDEX_CORRUPTED),
3692  errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected non-pivot tuple",
3693  state->targetblock,
3694  RelationGetRelationName(state->rel))));
3695 
3696  htid = BTreeTupleGetHeapTID(itup);
3697  if (!ItemPointerIsValid(htid) && nonpivot)
3698  ereport(ERROR,
3699  (errcode(ERRCODE_INDEX_CORRUPTED),
3700  errmsg("block %u or its right sibling block or child block in index \"%s\" contains non-pivot tuple that lacks a heap TID",
3701  state->targetblock,
3702  RelationGetRelationName(state->rel))));
3703 
3704  return htid;
3705 }
3706 
3707 /*
3708  * Return the "pointed to" TID for itup, which is used to generate a
3709  * descriptive error message. itup must be a "data item" tuple (it wouldn't
3710  * make much sense to call here with a high key tuple, since there won't be a
3711  * valid downlink/block number to display).
3712  *
3713  * Returns either a heap TID (which will be the first heap TID in posting list
3714  * if itup is posting list tuple), or a TID that contains downlink block
3715  * number, plus some encoded metadata (e.g., the number of attributes present
3716  * in itup).
3717  */
3718 static inline ItemPointer
3720 {
3721  /*
3722  * Rely on the assumption that !heapkeyspace internal page data items will
3723  * correctly return TID with downlink here -- BTreeTupleGetHeapTID() won't
3724  * recognize it as a pivot tuple, but everything still works out because
3725  * the t_tid field is still returned
3726  */
3727  if (!BTreeTupleIsPivot(itup))
3728  return BTreeTupleGetHeapTID(itup);
3729 
3730  /* Pivot tuple returns TID with downlink block (heapkeyspace variant) */
3731  return &itup->t_tid;
3732 }
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
static bool BlockNumberIsValid(BlockNumber blockNumber)
Definition: block.h:71
void bloom_free(bloom_filter *filter)
Definition: bloomfilter.c:126
bloom_filter * bloom_create(int64 total_elems, int bloom_work_mem, uint64 seed)
Definition: bloomfilter.c:87
double bloom_prop_bits_set(bloom_filter *filter)
Definition: bloomfilter.c:187
bool bloom_lacks_element(bloom_filter *filter, unsigned char *elem, size_t len)
Definition: bloomfilter.c:157
void bloom_add_element(bloom_filter *filter, unsigned char *elem, size_t len)
Definition: bloomfilter.c:135
static Datum values[MAXATTR]
Definition: bootstrap.c:151
int Buffer
Definition: buf.h:23
#define InvalidBuffer
Definition: buf.h:25
void UnlockReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:4941
void LockBuffer(Buffer buffer, int mode)
Definition: bufmgr.c:5158
Buffer ReadBufferExtended(Relation reln, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy)
Definition: bufmgr.c:793
@ BAS_BULKREAD
Definition: bufmgr.h:36
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:273
static Page BufferGetPage(Buffer buffer)
Definition: bufmgr.h:400
@ RBM_NORMAL
Definition: bufmgr.h:45
static bool BufferIsValid(Buffer bufnum)
Definition: bufmgr.h:351
Pointer Page
Definition: bufpage.h:81
static Item PageGetItem(Page page, ItemId itemId)
Definition: bufpage.h:354
static ItemId PageGetItemId(Page page, OffsetNumber offsetNumber)
Definition: bufpage.h:243
static XLogRecPtr PageGetLSN(const char *page)
Definition: bufpage.h:386
static OffsetNumber PageGetMaxOffsetNumber(Page page)
Definition: bufpage.h:372
unsigned int uint32
Definition: c.h:492
#define MAXALIGN(LEN)
Definition: c.h:790
signed int int32
Definition: c.h:482
#define Max(x, y)
Definition: c.h:977
#define INT64_FORMAT
Definition: c.h:525
#define Assert(condition)
Definition: c.h:837
#define unlikely(x)
Definition: c.h:326
#define OidIsValid(objectId)
Definition: c.h:754
size_t Size
Definition: c.h:584
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1157
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1230
int errdetail(const char *fmt,...)
Definition: elog.c:1203
int errhint(const char *fmt,...)
Definition: elog.c:1317
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1341
#define PG_RETURN_VOID()
Definition: fmgr.h:349
#define PG_GETARG_OID(n)
Definition: fmgr.h:275
#define PG_NARGS()
Definition: fmgr.h:203
#define PG_DETOAST_DATUM(datum)
Definition: fmgr.h:240
#define PG_GETARG_BOOL(n)
Definition: fmgr.h:274
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
BufferAccessStrategy GetAccessStrategy(BufferAccessStrategyType btype)
Definition: freelist.c:541
int maintenance_work_mem
Definition: globals.c:132
int NewGUCNestLevel(void)
Definition: guc.c:2235
void RestrictSearchPath(void)
Definition: guc.c:2246
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:2262
return str start
#define TOAST_INDEX_TARGET
Definition: heaptoast.h:68
#define HeapTupleHeaderGetXmin(tup)
Definition: htup_details.h:309
Oid IndexGetRelation(Oid indexId, bool missing_ok)
Definition: index.c:3552
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2425
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
IndexTuple index_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: indextuple.c:44
int i
Definition: isn.c:72
#define ItemIdGetLength(itemId)
Definition: itemid.h:59
#define ItemIdGetOffset(itemId)
Definition: itemid.h:65
#define ItemIdIsDead(itemId)
Definition: itemid.h:113
#define ItemIdIsUsed(itemId)
Definition: itemid.h:92
#define ItemIdIsRedirected(itemId)
Definition: itemid.h:106
#define ItemIdGetFlags(itemId)
Definition: itemid.h:71
int32 ItemPointerCompare(ItemPointer arg1, ItemPointer arg2)
Definition: itemptr.c:51
static OffsetNumber ItemPointerGetOffsetNumber(const ItemPointerData *pointer)
Definition: itemptr.h:124
static OffsetNumber ItemPointerGetOffsetNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:114
static BlockNumber ItemPointerGetBlockNumber(const ItemPointerData *pointer)
Definition: itemptr.h:103
static BlockNumber ItemPointerGetBlockNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:93
static void ItemPointerCopy(const ItemPointerData *fromPointer, ItemPointerData *toPointer)
Definition: itemptr.h:172
static bool ItemPointerIsValid(const ItemPointerData *pointer)
Definition: itemptr.h:83
#define IndexTupleHasVarwidths(itup)
Definition: itup.h:72
IndexTupleData * IndexTuple
Definition: itup.h:53
#define IndexTupleSize(itup)
Definition: itup.h:70
static Datum index_getattr(IndexTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: itup.h:117
#define MaxIndexTuplesPerPage
Definition: itup.h:165
int LOCKMODE
Definition: lockdefs.h:26
#define AccessShareLock
Definition: lockdefs.h:36
#define ShareLock
Definition: lockdefs.h:40
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:383
void pfree(void *pointer)
Definition: mcxt.c:1521
void * palloc0(Size size)
Definition: mcxt.c:1347
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1181
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
void * palloc(Size size)
Definition: mcxt.c:1317
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:312
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:667
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:674
IndexTuple _bt_form_posting(IndexTuple base, ItemPointer htids, int nhtids)
Definition: nbtdedup.c:864
void _bt_relbuf(Relation rel, Buffer buf)
Definition: nbtpage.c:1023
void _bt_checkpage(Relation rel, Buffer buf)
Definition: nbtpage.c:797
void _bt_metaversion(Relation rel, bool *heapkeyspace, bool *allequalimage)
Definition: nbtpage.c:739
#define P_HAS_FULLXID(opaque)
Definition: nbtree.h:228
#define P_ISHALFDEAD(opaque)
Definition: nbtree.h:224
static uint16 BTreeTupleGetNPosting(IndexTuple posting)
Definition: nbtree.h:518
static bool BTreeTupleIsPivot(IndexTuple itup)
Definition: nbtree.h:480
#define BTPageGetMeta(p)
Definition: nbtree.h:121
#define P_ISLEAF(opaque)
Definition: nbtree.h:220
#define BTREE_MIN_VERSION
Definition: nbtree.h:151
#define P_HIKEY
Definition: nbtree.h:367
#define P_HAS_GARBAGE(opaque)
Definition: nbtree.h:226
#define BTMaxItemSizeNoHeapTid(page)
Definition: nbtree.h:169
#define P_ISMETA(opaque)
Definition: nbtree.h:223
#define BTPageGetOpaque(page)
Definition: nbtree.h:73
#define P_ISDELETED(opaque)
Definition: nbtree.h:222
#define BTREE_MAGIC
Definition: nbtree.h:149
#define BTREE_VERSION
Definition: nbtree.h:150
static BlockNumber BTreeTupleGetTopParent(IndexTuple leafhikey)
Definition: nbtree.h:620
#define MaxTIDsPerBTreePage
Definition: nbtree.h:185
#define P_FIRSTDATAKEY(opaque)
Definition: nbtree.h:369
#define P_ISROOT(opaque)
Definition: nbtree.h:221
#define P_NONE
Definition: nbtree.h:212
#define P_RIGHTMOST(opaque)
Definition: nbtree.h:219
#define BTMaxItemSize(page)
Definition: nbtree.h:164
#define P_INCOMPLETE_SPLIT(opaque)
Definition: nbtree.h:227
#define BTREE_METAPAGE
Definition: nbtree.h:148
static ItemPointer BTreeTupleGetPostingN(IndexTuple posting, int n)
Definition: nbtree.h:544
#define BT_READ
Definition: nbtree.h:719
static BlockNumber BTreeTupleGetDownLink(IndexTuple pivot)
Definition: nbtree.h:556
#define P_IGNORE(opaque)
Definition: nbtree.h:225
static ItemPointer BTreeTupleGetMaxHeapTID(IndexTuple itup)
Definition: nbtree.h:664
static bool BTreeTupleIsPosting(IndexTuple itup)
Definition: nbtree.h:492
static ItemPointer BTreeTupleGetHeapTID(IndexTuple itup)
Definition: nbtree.h:638
#define BTreeTupleGetNAtts(itup, rel)
Definition: nbtree.h:577
BTStack _bt_search(Relation rel, Relation heaprel, BTScanInsert key, Buffer *bufP, int access)
Definition: nbtsearch.c:102
OffsetNumber _bt_binsrch_insert(Relation rel, BTInsertState insertstate)
Definition: nbtsearch.c:474
int32 _bt_compare(Relation rel, BTScanInsert key, Page page, OffsetNumber offnum)
Definition: nbtsearch.c:688
void _bt_freestack(BTStack stack)
Definition: nbtutils.c:221
BTScanInsert _bt_mkscankey(Relation rel, IndexTuple itup)
Definition: nbtutils.c:129
bool _bt_check_natts(Relation rel, bool heapkeyspace, Page page, OffsetNumber offnum)
Definition: nbtutils.c:4923
bool _bt_allequalimage(Relation rel, bool debugmessage)
Definition: nbtutils.c:5141
#define InvalidOffsetNumber
Definition: off.h:26
#define OffsetNumberIsValid(offsetNumber)
Definition: off.h:39
#define OffsetNumberNext(offsetNumber)
Definition: off.h:52
uint16 OffsetNumber
Definition: off.h:24
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:209
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:41
#define INDEX_MAX_KEYS
const void size_t len
const void * data
uint64 pg_prng_uint64(pg_prng_state *state)
Definition: pg_prng.c:134
pg_prng_state pg_global_prng_state
Definition: pg_prng.c:34
#define ERRCODE_T_R_SERIALIZATION_FAILURE
Definition: pgbench.c:76
#define ERRCODE_UNDEFINED_TABLE
Definition: pgbench.c:78
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
char * psprintf(const char *fmt,...)
Definition: psprintf.c:43
MemoryContextSwitchTo(old_ctx)
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:743
static SMgrRelation RelationGetSmgr(Relation rel)
Definition: rel.h:567
#define RelationGetDescr(relation)
Definition: rel.h:531
#define RelationGetRelationName(relation)
Definition: rel.h:539
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:658
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:524
@ MAIN_FORKNUM
Definition: relpath.h:58
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:401
TransactionId RecentXmin
Definition: snapmgr.c:99
Snapshot GetTransactionSnapshot(void)
Definition: snapmgr.c:216
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:836
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:794
#define SnapshotAny
Definition: snapmgr.h:33
#define InvalidSnapshot
Definition: snapshot.h:123
bool bounds_valid
Definition: nbtree.h:823
IndexTuple itup
Definition: nbtree.h:811
BTScanInsert itup_key
Definition: nbtree.h:813
uint32 btm_level
Definition: nbtree.h:108
BlockNumber btm_fastroot
Definition: nbtree.h:109
uint32 btm_version
Definition: nbtree.h:106
uint32 btm_magic
Definition: nbtree.h:105
BlockNumber btm_root
Definition: nbtree.h:107
uint32 btm_fastlevel
Definition: nbtree.h:110
BlockNumber btpo_next
Definition: nbtree.h:65
BlockNumber btpo_prev
Definition: nbtree.h:64
uint32 btpo_level
Definition: nbtree.h:66
ItemPointer scantid
Definition: nbtree.h:791
bool heapkeyspace
Definition: nbtree.h:786
bool anynullkeys
Definition: nbtree.h:788
BufferAccessStrategy checkstrategy
Definition: verify_nbtree.c:88
Snapshot snapshot
Definition: verify_nbtree.c:94
bloom_filter * filter
BlockNumber targetblock
BlockNumber prevrightlink
XLogRecPtr targetlsn
MemoryContext targetcontext
Definition: verify_nbtree.c:86
IndexTuple lowkey
Relation heaprel
Definition: verify_nbtree.c:74
IndexInfo * indexinfo
Definition: verify_nbtree.c:93
bool istruerootlevel
uint32 level
BlockNumber leftmost
HeapTupleHeader t_data
Definition: htup.h:68
bool ii_Unique
Definition: execnodes.h:199
uint16 * ii_ExclusionStrats
Definition: execnodes.h:195
Oid * ii_ExclusionOps
Definition: execnodes.h:193
bool ii_Concurrent
Definition: execnodes.h:204
Oid * ii_ExclusionProcs
Definition: execnodes.h:194
ItemPointerData t_tid
Definition: itup.h:37
unsigned short t_info
Definition: itup.h:49
OffsetNumber ip_posid
Definition: itemptr.h:39
struct HeapTupleData * rd_indextuple
Definition: rel.h:194
Form_pg_index rd_index
Definition: rel.h:192
Oid * rd_opfamily
Definition: rel.h:207
Form_pg_class rd_rel
Definition: rel.h:111
TransactionId xmin
Definition: snapshot.h:157
Definition: type.h:96
Definition: regguts.h:323
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:91
static TableScanDesc table_beginscan_strat(Relation rel, Snapshot snapshot, int nkeys, struct ScanKeyData *key, bool allow_strat, bool allow_sync)
Definition: tableam.h:936
static double table_index_build_scan(Relation table_rel, Relation index_rel, struct IndexInfo *index_info, bool allow_sync, bool progress, IndexBuildCallback callback, void *callback_state, TableScanDesc scan)
Definition: tableam.h:1784
static bool table_tuple_fetch_row_version(Relation rel, ItemPointer tid, Snapshot snapshot, TupleTableSlot *slot)
Definition: tableam.h:1297
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
#define TransactionIdIsValid(xid)
Definition: transam.h:41
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
#define SET_VARSIZE_SHORT(PTR, len)
Definition: varatt.h:306
#define VARATT_CAN_MAKE_SHORT(PTR)
Definition: varatt.h:258
#define VARDATA(PTR)
Definition: varatt.h:278
#define VARATT_IS_COMPRESSED(PTR)
Definition: varatt.h:288
#define VARSIZE(PTR)
Definition: varatt.h:279
#define VARATT_CONVERTED_SHORT_SIZE(PTR)
Definition: varatt.h:261
#define VARATT_IS_EXTERNAL(PTR)
Definition: varatt.h:289
static bool offset_is_negative_infinity(BTPageOpaque opaque, OffsetNumber offset)
static bool bt_leftmost_ignoring_half_dead(BtreeCheckState *state, BlockNumber start, BTPageOpaque start_opaque)
static bool invariant_l_offset(BtreeCheckState *state, BTScanInsert key, OffsetNumber upperbound)
static ItemPointer BTreeTupleGetPointsToTID(IndexTuple itup)
struct BtreeCheckState BtreeCheckState
static IndexTuple bt_posting_plain_tuple(IndexTuple itup, int n)
struct BtreeLastVisibleEntry BtreeLastVisibleEntry
static void bt_target_page_check(BtreeCheckState *state)
static void bt_check_every_level(Relation rel, Relation heaprel, bool heapkeyspace, bool readonly, bool heapallindexed, bool rootdescend, bool checkunique)
static void bt_report_duplicate(BtreeCheckState *state, BtreeLastVisibleEntry *lVis, ItemPointer nexttid, BlockNumber nblock, OffsetNumber noffset, int nposting)
PG_MODULE_MAGIC
Definition: verify_nbtree.c:45
static bool bt_pivot_tuple_identical(bool heapkeyspace, IndexTuple itup1, IndexTuple itup2)
static void bt_index_check_internal(Oid indrelid, bool parentcheck, bool heapallindexed, bool rootdescend, bool checkunique)
static bool invariant_leq_offset(BtreeCheckState *state, BTScanInsert key, OffsetNumber upperbound)
Datum bt_index_parent_check(PG_FUNCTION_ARGS)
static void bt_child_highkey_check(BtreeCheckState *state, OffsetNumber target_downlinkoffnum, Page loaded_child, uint32 target_level)
static bool heap_entry_is_visible(BtreeCheckState *state, ItemPointer tid)
static BTScanInsert bt_mkscankey_pivotsearch(Relation rel, IndexTuple itup)
Datum bt_index_check(PG_FUNCTION_ARGS)
static BtreeLevel bt_check_level_from_leftmost(BtreeCheckState *state, BtreeLevel level)
static void bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit, BlockNumber blkno, Page page)
PG_FUNCTION_INFO_V1(bt_index_check)
static ItemId PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block, Page page, OffsetNumber offset)
static void bt_tuple_present_callback(Relation index, ItemPointer tid, Datum *values, bool *isnull, bool tupleIsAlive, void *checkstate)
static bool btree_index_mainfork_expected(Relation rel)
static bool bt_rootdescend(BtreeCheckState *state, IndexTuple itup)
static BTScanInsert bt_right_page_check_scankey(BtreeCheckState *state, OffsetNumber *rightfirstoffset)
static bool invariant_g_offset(BtreeCheckState *state, BTScanInsert key, OffsetNumber lowerbound)
#define InvalidBtreeLevel
Definition: verify_nbtree.c:51
static Page palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum)
static IndexTuple bt_normalize_tuple(BtreeCheckState *state, IndexTuple itup)
static void bt_recheck_sibling_links(BtreeCheckState *state, BlockNumber btpo_prev_from_target, BlockNumber leftcurrent)
static ItemPointer BTreeTupleGetHeapTIDCareful(BtreeCheckState *state, IndexTuple itup, bool nonpivot)
#define BTreeTupleGetNKeyAtts(itup, rel)
Definition: verify_nbtree.c:52
static void bt_child_check(BtreeCheckState *state, BTScanInsert targetkey, OffsetNumber downlinkoffnum)
static void bt_entry_unique_check(BtreeCheckState *state, IndexTuple itup, BlockNumber targetblock, OffsetNumber offset, BtreeLastVisibleEntry *lVis)
static void btree_index_checkable(Relation rel)
static bool invariant_l_nontarget_offset(BtreeCheckState *state, BTScanInsert key, BlockNumber nontargetblock, Page nontarget, OffsetNumber upperbound)
struct BtreeLevel BtreeLevel
#define IsolationUsesXactSnapshot()
Definition: xact.h:51
bool RecoveryInProgress(void)
Definition: xlog.c:6334
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
uint64 XLogRecPtr
Definition: xlogdefs.h:21