PostgreSQL Source Code  git master
verify_nbtree.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * verify_nbtree.c
4  * Verifies the integrity of nbtree indexes based on invariants.
5  *
6  * For B-Tree indexes, verification includes checking that each page in the
7  * target index has items in logical order as reported by an insertion scankey
8  * (the insertion scankey sort-wise NULL semantics are needed for
9  * verification).
10  *
11  * When index-to-heap verification is requested, a Bloom filter is used to
12  * fingerprint all tuples in the target index, as the index is traversed to
13  * verify its structure. A heap scan later uses Bloom filter probes to verify
14  * that every visible heap tuple has a matching index tuple.
15  *
16  *
17  * Copyright (c) 2017-2020, PostgreSQL Global Development Group
18  *
19  * IDENTIFICATION
20  * contrib/amcheck/verify_nbtree.c
21  *
22  *-------------------------------------------------------------------------
23  */
24 #include "postgres.h"
25 
26 #include "access/htup_details.h"
27 #include "access/nbtree.h"
28 #include "access/table.h"
29 #include "access/tableam.h"
30 #include "access/transam.h"
31 #include "access/xact.h"
32 #include "catalog/index.h"
33 #include "catalog/pg_am.h"
34 #include "commands/tablecmds.h"
35 #include "lib/bloomfilter.h"
36 #include "miscadmin.h"
37 #include "storage/lmgr.h"
38 #include "storage/smgr.h"
39 #include "utils/memutils.h"
40 #include "utils/snapmgr.h"
41 
42 
44 
45 /*
46  * A B-Tree cannot possibly have this many levels, since there must be one
47  * block per level, which is bound by the range of BlockNumber:
48  */
49 #define InvalidBtreeLevel ((uint32) InvalidBlockNumber)
50 #define BTreeTupleGetNKeyAtts(itup, rel) \
51  Min(IndexRelationGetNumberOfKeyAttributes(rel), BTreeTupleGetNAtts(itup, rel))
52 
53 /*
54  * State associated with verifying a B-Tree index
55  *
56  * target is the point of reference for a verification operation.
57  *
58  * Other B-Tree pages may be allocated, but those are always auxiliary (e.g.,
59  * they are current target's child pages). Conceptually, problems are only
60  * ever found in the current target page (or for a particular heap tuple during
61  * heapallindexed verification). Each page found by verification's left/right,
62  * top/bottom scan becomes the target exactly once.
63  */
64 typedef struct BtreeCheckState
65 {
66  /*
67  * Unchanging state, established at start of verification:
68  */
69 
70  /* B-Tree Index Relation and associated heap relation */
73  /* rel is heapkeyspace index? */
75  /* ShareLock held on heap/index, rather than AccessShareLock? */
76  bool readonly;
77  /* Also verifying heap has no unindexed tuples? */
79  /* Also making sure non-pivot tuples can be found by new search? */
81  /* Per-page context */
83  /* Buffer access strategy */
85 
86  /*
87  * Mutable state, for verification of particular page:
88  */
89 
90  /* Current target page */
92  /* Target block number */
94  /* Target page's LSN */
96 
97  /*
98  * Low key: high key of left sibling of target page. Used only for child
99  * verification. So, 'lowkey' is kept only when 'readonly' is set.
100  */
102 
103  /*
104  * The rightlink and incomplete split flag of block one level down to the
105  * target page, which was visited last time via downlink from taget page.
106  * We use it to check for missing downlinks.
107  */
110 
111  /*
112  * Mutable state, for optional heapallindexed verification:
113  */
114 
115  /* Bloom filter fingerprints B-Tree index */
117  /* Debug counter */
120 
121 /*
122  * Starting point for verifying an entire B-Tree index level
123  */
124 typedef struct BtreeLevel
125 {
126  /* Level number (0 is leaf page level). */
128 
129  /* Left most block on level. Scan of level begins here. */
131 
132  /* Is this level reported as "true" root level by meta page? */
134 } BtreeLevel;
135 
138 
139 static void bt_index_check_internal(Oid indrelid, bool parentcheck,
140  bool heapallindexed, bool rootdescend);
141 static inline void btree_index_checkable(Relation rel);
142 static inline bool btree_index_mainfork_expected(Relation rel);
144  bool heapkeyspace, bool readonly, bool heapallindexed,
145  bool rootdescend);
147  BtreeLevel level);
150 static void bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
151  OffsetNumber downlinkoffnum);
153  OffsetNumber target_downlinkoffnum,
154  Page loaded_child,
155  uint32 target_level);
156 static void bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
159  Datum *values, bool *isnull,
160  bool tupleIsAlive, void *checkstate);
162  IndexTuple itup);
163 static inline IndexTuple bt_posting_plain_tuple(IndexTuple itup, int n);
164 static bool bt_rootdescend(BtreeCheckState *state, IndexTuple itup);
165 static inline bool offset_is_negative_infinity(BTPageOpaque opaque,
166  OffsetNumber offset);
168  OffsetNumber upperbound);
169 static inline bool invariant_leq_offset(BtreeCheckState *state,
171  OffsetNumber upperbound);
173  OffsetNumber lowerbound);
176  BlockNumber nontargetblock,
177  Page nontarget,
178  OffsetNumber upperbound);
181  IndexTuple itup);
183  Page page, OffsetNumber offset);
185  IndexTuple itup, bool nonpivot);
187 
188 /*
189  * bt_index_check(index regclass, heapallindexed boolean)
190  *
191  * Verify integrity of B-Tree index.
192  *
193  * Acquires AccessShareLock on heap & index relations. Does not consider
194  * invariants that exist between parent/child pages. Optionally verifies
195  * that heap does not contain any unindexed or incorrectly indexed tuples.
196  */
197 Datum
199 {
200  Oid indrelid = PG_GETARG_OID(0);
201  bool heapallindexed = false;
202 
203  if (PG_NARGS() == 2)
204  heapallindexed = PG_GETARG_BOOL(1);
205 
206  bt_index_check_internal(indrelid, false, heapallindexed, false);
207 
208  PG_RETURN_VOID();
209 }
210 
211 /*
212  * bt_index_parent_check(index regclass, heapallindexed boolean)
213  *
214  * Verify integrity of B-Tree index.
215  *
216  * Acquires ShareLock on heap & index relations. Verifies that downlinks in
217  * parent pages are valid lower bounds on child pages. Optionally verifies
218  * that heap does not contain any unindexed or incorrectly indexed tuples.
219  */
220 Datum
222 {
223  Oid indrelid = PG_GETARG_OID(0);
224  bool heapallindexed = false;
225  bool rootdescend = false;
226 
227  if (PG_NARGS() >= 2)
228  heapallindexed = PG_GETARG_BOOL(1);
229  if (PG_NARGS() == 3)
230  rootdescend = PG_GETARG_BOOL(2);
231 
232  bt_index_check_internal(indrelid, true, heapallindexed, rootdescend);
233 
234  PG_RETURN_VOID();
235 }
236 
237 /*
238  * Helper for bt_index_[parent_]check, coordinating the bulk of the work.
239  */
240 static void
241 bt_index_check_internal(Oid indrelid, bool parentcheck, bool heapallindexed,
242  bool rootdescend)
243 {
244  Oid heapid;
245  Relation indrel;
247  LOCKMODE lockmode;
248 
249  if (parentcheck)
250  lockmode = ShareLock;
251  else
252  lockmode = AccessShareLock;
253 
254  /*
255  * We must lock table before index to avoid deadlocks. However, if the
256  * passed indrelid isn't an index then IndexGetRelation() will fail.
257  * Rather than emitting a not-very-helpful error message, postpone
258  * complaining, expecting that the is-it-an-index test below will fail.
259  *
260  * In hot standby mode this will raise an error when parentcheck is true.
261  */
262  heapid = IndexGetRelation(indrelid, true);
263  if (OidIsValid(heapid))
264  heaprel = table_open(heapid, lockmode);
265  else
266  heaprel = NULL;
267 
268  /*
269  * Open the target index relations separately (like relation_openrv(), but
270  * with heap relation locked first to prevent deadlocking). In hot
271  * standby mode this will raise an error when parentcheck is true.
272  *
273  * There is no need for the usual indcheckxmin usability horizon test
274  * here, even in the heapallindexed case, because index undergoing
275  * verification only needs to have entries for a new transaction snapshot.
276  * (If this is a parentcheck verification, there is no question about
277  * committed or recently dead heap tuples lacking index entries due to
278  * concurrent activity.)
279  */
280  indrel = index_open(indrelid, lockmode);
281 
282  /*
283  * Since we did the IndexGetRelation call above without any lock, it's
284  * barely possible that a race against an index drop/recreation could have
285  * netted us the wrong table.
286  */
287  if (heaprel == NULL || heapid != IndexGetRelation(indrelid, false))
288  ereport(ERROR,
290  errmsg("could not open parent table of index %s",
291  RelationGetRelationName(indrel))));
292 
293  /* Relation suitable for checking as B-Tree? */
294  btree_index_checkable(indrel);
295 
296  if (btree_index_mainfork_expected(indrel))
297  {
298  bool heapkeyspace,
299  allequalimage;
300 
301  RelationOpenSmgr(indrel);
302  if (!smgrexists(indrel->rd_smgr, MAIN_FORKNUM))
303  ereport(ERROR,
304  (errcode(ERRCODE_INDEX_CORRUPTED),
305  errmsg("index \"%s\" lacks a main relation fork",
306  RelationGetRelationName(indrel))));
307 
308  /* Check index, possibly against table it is an index on */
309  _bt_metaversion(indrel, &heapkeyspace, &allequalimage);
310  bt_check_every_level(indrel, heaprel, heapkeyspace, parentcheck,
311  heapallindexed, rootdescend);
312  }
313 
314  /*
315  * Release locks early. That's ok here because nothing in the called
316  * routines will trigger shared cache invalidations to be sent, so we can
317  * relax the usual pattern of only releasing locks after commit.
318  */
319  index_close(indrel, lockmode);
320  if (heaprel)
321  table_close(heaprel, lockmode);
322 }
323 
324 /*
325  * Basic checks about the suitability of a relation for checking as a B-Tree
326  * index.
327  *
328  * NB: Intentionally not checking permissions, the function is normally not
329  * callable by non-superusers. If granted, it's useful to be able to check a
330  * whole cluster.
331  */
332 static inline void
334 {
335  if (rel->rd_rel->relkind != RELKIND_INDEX ||
336  rel->rd_rel->relam != BTREE_AM_OID)
337  ereport(ERROR,
338  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
339  errmsg("only B-Tree indexes are supported as targets for verification"),
340  errdetail("Relation \"%s\" is not a B-Tree index.",
341  RelationGetRelationName(rel))));
342 
343  if (RELATION_IS_OTHER_TEMP(rel))
344  ereport(ERROR,
345  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
346  errmsg("cannot access temporary tables of other sessions"),
347  errdetail("Index \"%s\" is associated with temporary relation.",
348  RelationGetRelationName(rel))));
349 
350  if (!rel->rd_index->indisvalid)
351  ereport(ERROR,
352  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
353  errmsg("cannot check index \"%s\"",
355  errdetail("Index is not valid.")));
356 }
357 
358 /*
359  * Check if B-Tree index relation should have a file for its main relation
360  * fork. Verification uses this to skip unlogged indexes when in hot standby
361  * mode, where there is simply nothing to verify.
362  *
363  * NB: Caller should call btree_index_checkable() before calling here.
364  */
365 static inline bool
367 {
368  if (rel->rd_rel->relpersistence != RELPERSISTENCE_UNLOGGED ||
370  return true;
371 
372  ereport(NOTICE,
373  (errcode(ERRCODE_READ_ONLY_SQL_TRANSACTION),
374  errmsg("cannot verify unlogged index \"%s\" during recovery, skipping",
375  RelationGetRelationName(rel))));
376 
377  return false;
378 }
379 
380 /*
381  * Main entry point for B-Tree SQL-callable functions. Walks the B-Tree in
382  * logical order, verifying invariants as it goes. Optionally, verification
383  * checks if the heap relation contains any tuples that are not represented in
384  * the index but should be.
385  *
386  * It is the caller's responsibility to acquire appropriate heavyweight lock on
387  * the index relation, and advise us if extra checks are safe when a ShareLock
388  * is held. (A lock of the same type must also have been acquired on the heap
389  * relation.)
390  *
391  * A ShareLock is generally assumed to prevent any kind of physical
392  * modification to the index structure, including modifications that VACUUM may
393  * make. This does not include setting of the LP_DEAD bit by concurrent index
394  * scans, although that is just metadata that is not able to directly affect
395  * any check performed here. Any concurrent process that might act on the
396  * LP_DEAD bit being set (recycle space) requires a heavyweight lock that
397  * cannot be held while we hold a ShareLock. (Besides, even if that could
398  * happen, the ad-hoc recycling when a page might otherwise split is performed
399  * per-page, and requires an exclusive buffer lock, which wouldn't cause us
400  * trouble. _bt_delitems_vacuum() may only delete leaf items, and so the extra
401  * parent/child check cannot be affected.)
402  */
403 static void
405  bool readonly, bool heapallindexed, bool rootdescend)
406 {
408  Page metapage;
409  BTMetaPageData *metad;
410  uint32 previouslevel;
411  BtreeLevel current;
412  Snapshot snapshot = SnapshotAny;
413 
414  if (!readonly)
415  elog(DEBUG1, "verifying consistency of tree structure for index \"%s\"",
417  else
418  elog(DEBUG1, "verifying consistency of tree structure for index \"%s\" with cross-level checks",
420 
421  /*
422  * RecentGlobalXmin assertion matches index_getnext_tid(). See note on
423  * RecentGlobalXmin/B-Tree page deletion.
424  */
426 
427  /*
428  * Initialize state for entire verification operation
429  */
430  state = palloc0(sizeof(BtreeCheckState));
431  state->rel = rel;
432  state->heaprel = heaprel;
433  state->heapkeyspace = heapkeyspace;
434  state->readonly = readonly;
436  state->rootdescend = rootdescend;
437 
438  if (state->heapallindexed)
439  {
440  int64 total_pages;
441  int64 total_elems;
442  uint64 seed;
443 
444  /*
445  * Size Bloom filter based on estimated number of tuples in index,
446  * while conservatively assuming that each block must contain at least
447  * MaxTIDsPerBTreePage / 3 "plain" tuples -- see
448  * bt_posting_plain_tuple() for definition, and details of how posting
449  * list tuples are handled.
450  */
451  total_pages = RelationGetNumberOfBlocks(rel);
452  total_elems = Max(total_pages * (MaxTIDsPerBTreePage / 3),
453  (int64) state->rel->rd_rel->reltuples);
454  /* Random seed relies on backend srandom() call to avoid repetition */
455  seed = random();
456  /* Create Bloom filter to fingerprint index */
457  state->filter = bloom_create(total_elems, maintenance_work_mem, seed);
458  state->heaptuplespresent = 0;
459 
460  /*
461  * Register our own snapshot in !readonly case, rather than asking
462  * table_index_build_scan() to do this for us later. This needs to
463  * happen before index fingerprinting begins, so we can later be
464  * certain that index fingerprinting should have reached all tuples
465  * returned by table_index_build_scan().
466  */
467  if (!state->readonly)
468  {
470 
471  /*
472  * GetTransactionSnapshot() always acquires a new MVCC snapshot in
473  * READ COMMITTED mode. A new snapshot is guaranteed to have all
474  * the entries it requires in the index.
475  *
476  * We must defend against the possibility that an old xact
477  * snapshot was returned at higher isolation levels when that
478  * snapshot is not safe for index scans of the target index. This
479  * is possible when the snapshot sees tuples that are before the
480  * index's indcheckxmin horizon. Throwing an error here should be
481  * very rare. It doesn't seem worth using a secondary snapshot to
482  * avoid this.
483  */
484  if (IsolationUsesXactSnapshot() && rel->rd_index->indcheckxmin &&
486  snapshot->xmin))
487  ereport(ERROR,
488  (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
489  errmsg("index \"%s\" cannot be verified using transaction snapshot",
490  RelationGetRelationName(rel))));
491  }
492  }
493 
494  Assert(!state->rootdescend || state->readonly);
495  if (state->rootdescend && !state->heapkeyspace)
496  ereport(ERROR,
497  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
498  errmsg("cannot verify that tuples from index \"%s\" can each be found by an independent index search",
500  errhint("Only B-Tree version 4 indexes support rootdescend verification.")));
501 
502  /* Create context for page */
504  "amcheck context",
507 
508  /* Get true root block from meta-page */
509  metapage = palloc_btree_page(state, BTREE_METAPAGE);
510  metad = BTPageGetMeta(metapage);
511 
512  /*
513  * Certain deletion patterns can result in "skinny" B-Tree indexes, where
514  * the fast root and true root differ.
515  *
516  * Start from the true root, not the fast root, unlike conventional index
517  * scans. This approach is more thorough, and removes the risk of
518  * following a stale fast root from the meta page.
519  */
520  if (metad->btm_fastroot != metad->btm_root)
521  ereport(DEBUG1,
522  (errcode(ERRCODE_NO_DATA),
523  errmsg("harmless fast root mismatch in index %s",
525  errdetail_internal("Fast root block %u (level %u) differs from true root block %u (level %u).",
526  metad->btm_fastroot, metad->btm_fastlevel,
527  metad->btm_root, metad->btm_level)));
528 
529  /*
530  * Starting at the root, verify every level. Move left to right, top to
531  * bottom. Note that there may be no pages other than the meta page (meta
532  * page can indicate that root is P_NONE when the index is totally empty).
533  */
534  previouslevel = InvalidBtreeLevel;
535  current.level = metad->btm_level;
536  current.leftmost = metad->btm_root;
537  current.istruerootlevel = true;
538  while (current.leftmost != P_NONE)
539  {
540  /*
541  * Verify this level, and get left most page for next level down, if
542  * not at leaf level
543  */
544  current = bt_check_level_from_leftmost(state, current);
545 
546  if (current.leftmost == InvalidBlockNumber)
547  ereport(ERROR,
548  (errcode(ERRCODE_INDEX_CORRUPTED),
549  errmsg("index \"%s\" has no valid pages on level below %u or first level",
550  RelationGetRelationName(rel), previouslevel)));
551 
552  previouslevel = current.level;
553  }
554 
555  /*
556  * * Check whether heap contains unindexed/malformed tuples *
557  */
558  if (state->heapallindexed)
559  {
560  IndexInfo *indexinfo = BuildIndexInfo(state->rel);
561  TableScanDesc scan;
562 
563  /*
564  * Create our own scan for table_index_build_scan(), rather than
565  * getting it to do so for us. This is required so that we can
566  * actually use the MVCC snapshot registered earlier in !readonly
567  * case.
568  *
569  * Note that table_index_build_scan() calls heap_endscan() for us.
570  */
571  scan = table_beginscan_strat(state->heaprel, /* relation */
572  snapshot, /* snapshot */
573  0, /* number of keys */
574  NULL, /* scan key */
575  true, /* buffer access strategy OK */
576  true); /* syncscan OK? */
577 
578  /*
579  * Scan will behave as the first scan of a CREATE INDEX CONCURRENTLY
580  * behaves in !readonly case.
581  *
582  * It's okay that we don't actually use the same lock strength for the
583  * heap relation as any other ii_Concurrent caller would in !readonly
584  * case. We have no reason to care about a concurrent VACUUM
585  * operation, since there isn't going to be a second scan of the heap
586  * that needs to be sure that there was no concurrent recycling of
587  * TIDs.
588  */
589  indexinfo->ii_Concurrent = !state->readonly;
590 
591  /*
592  * Don't wait for uncommitted tuple xact commit/abort when index is a
593  * unique index on a catalog (or an index used by an exclusion
594  * constraint). This could otherwise happen in the readonly case.
595  */
596  indexinfo->ii_Unique = false;
597  indexinfo->ii_ExclusionOps = NULL;
598  indexinfo->ii_ExclusionProcs = NULL;
599  indexinfo->ii_ExclusionStrats = NULL;
600 
601  elog(DEBUG1, "verifying that tuples from index \"%s\" are present in \"%s\"",
604 
605  table_index_build_scan(state->heaprel, state->rel, indexinfo, true, false,
606  bt_tuple_present_callback, (void *) state, scan);
607 
608  ereport(DEBUG1,
609  (errmsg_internal("finished verifying presence of " INT64_FORMAT " tuples from table \"%s\" with bitset %.2f%% set",
610  state->heaptuplespresent, RelationGetRelationName(heaprel),
611  100.0 * bloom_prop_bits_set(state->filter))));
612 
613  if (snapshot != SnapshotAny)
614  UnregisterSnapshot(snapshot);
615 
616  bloom_free(state->filter);
617  }
618 
619  /* Be tidy: */
621 }
622 
623 /*
624  * Given a left-most block at some level, move right, verifying each page
625  * individually (with more verification across pages for "readonly"
626  * callers). Caller should pass the true root page as the leftmost initially,
627  * working their way down by passing what is returned for the last call here
628  * until level 0 (leaf page level) was reached.
629  *
630  * Returns state for next call, if any. This includes left-most block number
631  * one level lower that should be passed on next level/call, which is set to
632  * P_NONE on last call here (when leaf level is verified). Level numbers
633  * follow the nbtree convention: higher levels have higher numbers, because new
634  * levels are added only due to a root page split. Note that prior to the
635  * first root page split, the root is also a leaf page, so there is always a
636  * level 0 (leaf level), and it's always the last level processed.
637  *
638  * Note on memory management: State's per-page context is reset here, between
639  * each call to bt_target_page_check().
640  */
641 static BtreeLevel
643 {
644  /* State to establish early, concerning entire level */
645  BTPageOpaque opaque;
646  MemoryContext oldcontext;
647  BtreeLevel nextleveldown;
648 
649  /* Variables for iterating across level using right links */
650  BlockNumber leftcurrent = P_NONE;
651  BlockNumber current = level.leftmost;
652 
653  /* Initialize return state */
654  nextleveldown.leftmost = InvalidBlockNumber;
655  nextleveldown.level = InvalidBtreeLevel;
656  nextleveldown.istruerootlevel = false;
657 
658  /* Use page-level context for duration of this call */
659  oldcontext = MemoryContextSwitchTo(state->targetcontext);
660 
661  elog(DEBUG1, "verifying level %u%s", level.level,
662  level.istruerootlevel ?
663  " (true root level)" : level.level == 0 ? " (leaf level)" : "");
664 
666  state->previncompletesplit = false;
667 
668  do
669  {
670  /* Don't rely on CHECK_FOR_INTERRUPTS() calls at lower level */
672 
673  /* Initialize state for this iteration */
674  state->targetblock = current;
675  state->target = palloc_btree_page(state, state->targetblock);
676  state->targetlsn = PageGetLSN(state->target);
677 
678  opaque = (BTPageOpaque) PageGetSpecialPointer(state->target);
679 
680  if (P_IGNORE(opaque))
681  {
682  /*
683  * Since there cannot be a concurrent VACUUM operation in readonly
684  * mode, and since a page has no links within other pages
685  * (siblings and parent) once it is marked fully deleted, it
686  * should be impossible to land on a fully deleted page in
687  * readonly mode. See bt_child_check() for further details.
688  *
689  * The bt_child_check() P_ISDELETED() check is repeated here so
690  * that pages that are only reachable through sibling links get
691  * checked.
692  */
693  if (state->readonly && P_ISDELETED(opaque))
694  ereport(ERROR,
695  (errcode(ERRCODE_INDEX_CORRUPTED),
696  errmsg("downlink or sibling link points to deleted block in index \"%s\"",
697  RelationGetRelationName(state->rel)),
698  errdetail_internal("Block=%u left block=%u left link from block=%u.",
699  current, leftcurrent, opaque->btpo_prev)));
700 
701  if (P_RIGHTMOST(opaque))
702  ereport(ERROR,
703  (errcode(ERRCODE_INDEX_CORRUPTED),
704  errmsg("block %u fell off the end of index \"%s\"",
705  current, RelationGetRelationName(state->rel))));
706  else
707  ereport(DEBUG1,
708  (errcode(ERRCODE_NO_DATA),
709  errmsg("block %u of index \"%s\" ignored",
710  current, RelationGetRelationName(state->rel))));
711  goto nextpage;
712  }
713  else if (nextleveldown.leftmost == InvalidBlockNumber)
714  {
715  /*
716  * A concurrent page split could make the caller supplied leftmost
717  * block no longer contain the leftmost page, or no longer be the
718  * true root, but where that isn't possible due to heavyweight
719  * locking, check that the first valid page meets caller's
720  * expectations.
721  */
722  if (state->readonly)
723  {
724  if (!P_LEFTMOST(opaque))
725  ereport(ERROR,
726  (errcode(ERRCODE_INDEX_CORRUPTED),
727  errmsg("block %u is not leftmost in index \"%s\"",
728  current, RelationGetRelationName(state->rel))));
729 
730  if (level.istruerootlevel && !P_ISROOT(opaque))
731  ereport(ERROR,
732  (errcode(ERRCODE_INDEX_CORRUPTED),
733  errmsg("block %u is not true root in index \"%s\"",
734  current, RelationGetRelationName(state->rel))));
735  }
736 
737  /*
738  * Before beginning any non-trivial examination of level, prepare
739  * state for next bt_check_level_from_leftmost() invocation for
740  * the next level for the next level down (if any).
741  *
742  * There should be at least one non-ignorable page per level,
743  * unless this is the leaf level, which is assumed by caller to be
744  * final level.
745  */
746  if (!P_ISLEAF(opaque))
747  {
748  IndexTuple itup;
749  ItemId itemid;
750 
751  /* Internal page -- downlink gets leftmost on next level */
752  itemid = PageGetItemIdCareful(state, state->targetblock,
753  state->target,
754  P_FIRSTDATAKEY(opaque));
755  itup = (IndexTuple) PageGetItem(state->target, itemid);
756  nextleveldown.leftmost = BTreeTupleGetDownLink(itup);
757  nextleveldown.level = opaque->btpo.level - 1;
758  }
759  else
760  {
761  /*
762  * Leaf page -- final level caller must process.
763  *
764  * Note that this could also be the root page, if there has
765  * been no root page split yet.
766  */
767  nextleveldown.leftmost = P_NONE;
768  nextleveldown.level = InvalidBtreeLevel;
769  }
770 
771  /*
772  * Finished setting up state for this call/level. Control will
773  * never end up back here in any future loop iteration for this
774  * level.
775  */
776  }
777 
778  /*
779  * readonly mode can only ever land on live pages and half-dead pages,
780  * so sibling pointers should always be in mutual agreement
781  */
782  if (state->readonly && opaque->btpo_prev != leftcurrent)
783  ereport(ERROR,
784  (errcode(ERRCODE_INDEX_CORRUPTED),
785  errmsg("left link/right link pair in index \"%s\" not in agreement",
786  RelationGetRelationName(state->rel)),
787  errdetail_internal("Block=%u left block=%u left link from block=%u.",
788  current, leftcurrent, opaque->btpo_prev)));
789 
790  /* Check level, which must be valid for non-ignorable page */
791  if (level.level != opaque->btpo.level)
792  ereport(ERROR,
793  (errcode(ERRCODE_INDEX_CORRUPTED),
794  errmsg("leftmost down link for level points to block in index \"%s\" whose level is not one level down",
795  RelationGetRelationName(state->rel)),
796  errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
797  current, level.level, opaque->btpo.level)));
798 
799  /* Verify invariants for page */
800  bt_target_page_check(state);
801 
802 nextpage:
803 
804  /* Try to detect circular links */
805  if (current == leftcurrent || current == opaque->btpo_prev)
806  ereport(ERROR,
807  (errcode(ERRCODE_INDEX_CORRUPTED),
808  errmsg("circular link chain found in block %u of index \"%s\"",
809  current, RelationGetRelationName(state->rel))));
810 
811  leftcurrent = current;
812  current = opaque->btpo_next;
813 
814  if (state->lowkey)
815  {
816  Assert(state->readonly);
817  pfree(state->lowkey);
818  state->lowkey = NULL;
819  }
820 
821  /*
822  * Copy current target high key as the low key of right sibling.
823  * Allocate memory in upper level context, so it would be cleared
824  * after reset of target context.
825  *
826  * We only need the low key in corner cases of checking child high
827  * keys. We use high key only when incomplete split on the child level
828  * falls to the boundary of pages on the target level. See
829  * bt_child_highkey_check() for details. So, typically we won't end
830  * up doing anything with low key, but it's simpler for general case
831  * high key verification to always have it available.
832  *
833  * The correctness of managing low key in the case of concurrent
834  * splits wasn't investigated yet. Thankfully we only need low key
835  * for readonly verification and concurrent splits won't happen.
836  */
837  if (state->readonly && !P_RIGHTMOST(opaque))
838  {
839  IndexTuple itup;
840  ItemId itemid;
841 
842  itemid = PageGetItemIdCareful(state, state->targetblock,
843  state->target, P_HIKEY);
844  itup = (IndexTuple) PageGetItem(state->target, itemid);
845 
846  state->lowkey = MemoryContextAlloc(oldcontext, IndexTupleSize(itup));
847  memcpy(state->lowkey, itup, IndexTupleSize(itup));
848  }
849 
850  /* Free page and associated memory for this iteration */
852  }
853  while (current != P_NONE);
854 
855  if (state->lowkey)
856  {
857  Assert(state->readonly);
858  pfree(state->lowkey);
859  state->lowkey = NULL;
860  }
861 
862  /* Don't change context for caller */
863  MemoryContextSwitchTo(oldcontext);
864 
865  return nextleveldown;
866 }
867 
868 /*
869  * Function performs the following checks on target page, or pages ancillary to
870  * target page:
871  *
872  * - That every "real" data item is less than or equal to the high key, which
873  * is an upper bound on the items on the page. Data items should be
874  * strictly less than the high key when the page is an internal page.
875  *
876  * - That within the page, every data item is strictly less than the item
877  * immediately to its right, if any (i.e., that the items are in order
878  * within the page, so that the binary searches performed by index scans are
879  * sane).
880  *
881  * - That the last data item stored on the page is strictly less than the
882  * first data item on the page to the right (when such a first item is
883  * available).
884  *
885  * - Various checks on the structure of tuples themselves. For example, check
886  * that non-pivot tuples have no truncated attributes.
887  *
888  * Furthermore, when state passed shows ShareLock held, function also checks:
889  *
890  * - That all child pages respect strict lower bound from parent's pivot
891  * tuple.
892  *
893  * - That downlink to block was encountered in parent where that's expected.
894  * (Limited to readonly callers.)
895  *
896  * - That high keys of child pages matches corresponding pivot keys in parent.
897  *
898  * This is also where heapallindexed callers use their Bloom filter to
899  * fingerprint IndexTuples for later table_index_build_scan() verification.
900  *
901  * Note: Memory allocated in this routine is expected to be released by caller
902  * resetting state->targetcontext.
903  */
904 static void
906 {
907  OffsetNumber offset;
908  OffsetNumber max;
909  BTPageOpaque topaque;
910 
911  topaque = (BTPageOpaque) PageGetSpecialPointer(state->target);
912  max = PageGetMaxOffsetNumber(state->target);
913 
914  elog(DEBUG2, "verifying %u items on %s block %u", max,
915  P_ISLEAF(topaque) ? "leaf" : "internal", state->targetblock);
916 
917  /*
918  * Check the number of attributes in high key. Note, rightmost page
919  * doesn't contain a high key, so nothing to check
920  */
921  if (!P_RIGHTMOST(topaque))
922  {
923  ItemId itemid;
924  IndexTuple itup;
925 
926  /* Verify line pointer before checking tuple */
927  itemid = PageGetItemIdCareful(state, state->targetblock,
928  state->target, P_HIKEY);
929  if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
930  P_HIKEY))
931  {
932  itup = (IndexTuple) PageGetItem(state->target, itemid);
933  ereport(ERROR,
934  (errcode(ERRCODE_INDEX_CORRUPTED),
935  errmsg("wrong number of high key index tuple attributes in index \"%s\"",
936  RelationGetRelationName(state->rel)),
937  errdetail_internal("Index block=%u natts=%u block type=%s page lsn=%X/%X.",
938  state->targetblock,
939  BTreeTupleGetNAtts(itup, state->rel),
940  P_ISLEAF(topaque) ? "heap" : "index",
941  (uint32) (state->targetlsn >> 32),
942  (uint32) state->targetlsn)));
943  }
944  }
945 
946  /*
947  * Loop over page items, starting from first non-highkey item, not high
948  * key (if any). Most tests are not performed for the "negative infinity"
949  * real item (if any).
950  */
951  for (offset = P_FIRSTDATAKEY(topaque);
952  offset <= max;
953  offset = OffsetNumberNext(offset))
954  {
955  ItemId itemid;
956  IndexTuple itup;
957  size_t tupsize;
958  BTScanInsert skey;
959  bool lowersizelimit;
960  ItemPointer scantid;
961 
963 
964  itemid = PageGetItemIdCareful(state, state->targetblock,
965  state->target, offset);
966  itup = (IndexTuple) PageGetItem(state->target, itemid);
967  tupsize = IndexTupleSize(itup);
968 
969  /*
970  * lp_len should match the IndexTuple reported length exactly, since
971  * lp_len is completely redundant in indexes, and both sources of
972  * tuple length are MAXALIGN()'d. nbtree does not use lp_len all that
973  * frequently, and is surprisingly tolerant of corrupt lp_len fields.
974  */
975  if (tupsize != ItemIdGetLength(itemid))
976  ereport(ERROR,
977  (errcode(ERRCODE_INDEX_CORRUPTED),
978  errmsg("index tuple size does not equal lp_len in index \"%s\"",
979  RelationGetRelationName(state->rel)),
980  errdetail_internal("Index tid=(%u,%u) tuple size=%zu lp_len=%u page lsn=%X/%X.",
981  state->targetblock, offset,
982  tupsize, ItemIdGetLength(itemid),
983  (uint32) (state->targetlsn >> 32),
984  (uint32) state->targetlsn),
985  errhint("This could be a torn page problem.")));
986 
987  /* Check the number of index tuple attributes */
988  if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
989  offset))
990  {
991  ItemPointer tid;
992  char *itid,
993  *htid;
994 
995  itid = psprintf("(%u,%u)", state->targetblock, offset);
996  tid = BTreeTupleGetPointsToTID(itup);
997  htid = psprintf("(%u,%u)",
1000 
1001  ereport(ERROR,
1002  (errcode(ERRCODE_INDEX_CORRUPTED),
1003  errmsg("wrong number of index tuple attributes in index \"%s\"",
1004  RelationGetRelationName(state->rel)),
1005  errdetail_internal("Index tid=%s natts=%u points to %s tid=%s page lsn=%X/%X.",
1006  itid,
1007  BTreeTupleGetNAtts(itup, state->rel),
1008  P_ISLEAF(topaque) ? "heap" : "index",
1009  htid,
1010  (uint32) (state->targetlsn >> 32),
1011  (uint32) state->targetlsn)));
1012  }
1013 
1014  /*
1015  * Don't try to generate scankey using "negative infinity" item on
1016  * internal pages. They are always truncated to zero attributes.
1017  */
1018  if (offset_is_negative_infinity(topaque, offset))
1019  {
1020  /*
1021  * We don't call bt_child_check() for "negative infinity" items.
1022  * But if we're performing downlink connectivity check, we do it
1023  * for every item including "negative infinity" one.
1024  */
1025  if (!P_ISLEAF(topaque) && state->readonly)
1026  {
1027  bt_child_highkey_check(state,
1028  offset,
1029  NULL,
1030  topaque->btpo.level);
1031  }
1032  continue;
1033  }
1034 
1035  /*
1036  * Readonly callers may optionally verify that non-pivot tuples can
1037  * each be found by an independent search that starts from the root.
1038  * Note that we deliberately don't do individual searches for each
1039  * TID, since the posting list itself is validated by other checks.
1040  */
1041  if (state->rootdescend && P_ISLEAF(topaque) &&
1042  !bt_rootdescend(state, itup))
1043  {
1045  char *itid,
1046  *htid;
1047 
1048  itid = psprintf("(%u,%u)", state->targetblock, offset);
1049  htid = psprintf("(%u,%u)", ItemPointerGetBlockNumber(tid),
1051 
1052  ereport(ERROR,
1053  (errcode(ERRCODE_INDEX_CORRUPTED),
1054  errmsg("could not find tuple using search from root page in index \"%s\"",
1055  RelationGetRelationName(state->rel)),
1056  errdetail_internal("Index tid=%s points to heap tid=%s page lsn=%X/%X.",
1057  itid, htid,
1058  (uint32) (state->targetlsn >> 32),
1059  (uint32) state->targetlsn)));
1060  }
1061 
1062  /*
1063  * If tuple is a posting list tuple, make sure posting list TIDs are
1064  * in order
1065  */
1066  if (BTreeTupleIsPosting(itup))
1067  {
1068  ItemPointerData last;
1069  ItemPointer current;
1070 
1071  ItemPointerCopy(BTreeTupleGetHeapTID(itup), &last);
1072 
1073  for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
1074  {
1075 
1076  current = BTreeTupleGetPostingN(itup, i);
1077 
1078  if (ItemPointerCompare(current, &last) <= 0)
1079  {
1080  char *itid = psprintf("(%u,%u)", state->targetblock, offset);
1081 
1082  ereport(ERROR,
1083  (errcode(ERRCODE_INDEX_CORRUPTED),
1084  errmsg_internal("posting list contains misplaced TID in index \"%s\"",
1085  RelationGetRelationName(state->rel)),
1086  errdetail_internal("Index tid=%s posting list offset=%d page lsn=%X/%X.",
1087  itid, i,
1088  (uint32) (state->targetlsn >> 32),
1089  (uint32) state->targetlsn)));
1090  }
1091 
1092  ItemPointerCopy(current, &last);
1093  }
1094  }
1095 
1096  /* Build insertion scankey for current page offset */
1097  skey = bt_mkscankey_pivotsearch(state->rel, itup);
1098 
1099  /*
1100  * Make sure tuple size does not exceed the relevant BTREE_VERSION
1101  * specific limit.
1102  *
1103  * BTREE_VERSION 4 (which introduced heapkeyspace rules) requisitioned
1104  * a small amount of space from BTMaxItemSize() in order to ensure
1105  * that suffix truncation always has enough space to add an explicit
1106  * heap TID back to a tuple -- we pessimistically assume that every
1107  * newly inserted tuple will eventually need to have a heap TID
1108  * appended during a future leaf page split, when the tuple becomes
1109  * the basis of the new high key (pivot tuple) for the leaf page.
1110  *
1111  * Since the reclaimed space is reserved for that purpose, we must not
1112  * enforce the slightly lower limit when the extra space has been used
1113  * as intended. In other words, there is only a cross-version
1114  * difference in the limit on tuple size within leaf pages.
1115  *
1116  * Still, we're particular about the details within BTREE_VERSION 4
1117  * internal pages. Pivot tuples may only use the extra space for its
1118  * designated purpose. Enforce the lower limit for pivot tuples when
1119  * an explicit heap TID isn't actually present. (In all other cases
1120  * suffix truncation is guaranteed to generate a pivot tuple that's no
1121  * larger than the firstright tuple provided to it by its caller.)
1122  */
1123  lowersizelimit = skey->heapkeyspace &&
1124  (P_ISLEAF(topaque) || BTreeTupleGetHeapTID(itup) == NULL);
1125  if (tupsize > (lowersizelimit ? BTMaxItemSize(state->target) :
1126  BTMaxItemSizeNoHeapTid(state->target)))
1127  {
1129  char *itid,
1130  *htid;
1131 
1132  itid = psprintf("(%u,%u)", state->targetblock, offset);
1133  htid = psprintf("(%u,%u)",
1136 
1137  ereport(ERROR,
1138  (errcode(ERRCODE_INDEX_CORRUPTED),
1139  errmsg("index row size %zu exceeds maximum for index \"%s\"",
1140  tupsize, RelationGetRelationName(state->rel)),
1141  errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%X.",
1142  itid,
1143  P_ISLEAF(topaque) ? "heap" : "index",
1144  htid,
1145  (uint32) (state->targetlsn >> 32),
1146  (uint32) state->targetlsn)));
1147  }
1148 
1149  /* Fingerprint leaf page tuples (those that point to the heap) */
1150  if (state->heapallindexed && P_ISLEAF(topaque) && !ItemIdIsDead(itemid))
1151  {
1152  IndexTuple norm;
1153 
1154  if (BTreeTupleIsPosting(itup))
1155  {
1156  /* Fingerprint all elements as distinct "plain" tuples */
1157  for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
1158  {
1159  IndexTuple logtuple;
1160 
1161  logtuple = bt_posting_plain_tuple(itup, i);
1162  norm = bt_normalize_tuple(state, logtuple);
1163  bloom_add_element(state->filter, (unsigned char *) norm,
1164  IndexTupleSize(norm));
1165  /* Be tidy */
1166  if (norm != logtuple)
1167  pfree(norm);
1168  pfree(logtuple);
1169  }
1170  }
1171  else
1172  {
1173  norm = bt_normalize_tuple(state, itup);
1174  bloom_add_element(state->filter, (unsigned char *) norm,
1175  IndexTupleSize(norm));
1176  /* Be tidy */
1177  if (norm != itup)
1178  pfree(norm);
1179  }
1180  }
1181 
1182  /*
1183  * * High key check *
1184  *
1185  * If there is a high key (if this is not the rightmost page on its
1186  * entire level), check that high key actually is upper bound on all
1187  * page items. If this is a posting list tuple, we'll need to set
1188  * scantid to be highest TID in posting list.
1189  *
1190  * We prefer to check all items against high key rather than checking
1191  * just the last and trusting that the operator class obeys the
1192  * transitive law (which implies that all previous items also
1193  * respected the high key invariant if they pass the item order
1194  * check).
1195  *
1196  * Ideally, we'd compare every item in the index against every other
1197  * item in the index, and not trust opclass obedience of the
1198  * transitive law to bridge the gap between children and their
1199  * grandparents (as well as great-grandparents, and so on). We don't
1200  * go to those lengths because that would be prohibitively expensive,
1201  * and probably not markedly more effective in practice.
1202  *
1203  * On the leaf level, we check that the key is <= the highkey.
1204  * However, on non-leaf levels we check that the key is < the highkey,
1205  * because the high key is "just another separator" rather than a copy
1206  * of some existing key item; we expect it to be unique among all keys
1207  * on the same level. (Suffix truncation will sometimes produce a
1208  * leaf highkey that is an untruncated copy of the lastleft item, but
1209  * never any other item, which necessitates weakening the leaf level
1210  * check to <=.)
1211  *
1212  * Full explanation for why a highkey is never truly a copy of another
1213  * item from the same level on internal levels:
1214  *
1215  * While the new left page's high key is copied from the first offset
1216  * on the right page during an internal page split, that's not the
1217  * full story. In effect, internal pages are split in the middle of
1218  * the firstright tuple, not between the would-be lastleft and
1219  * firstright tuples: the firstright key ends up on the left side as
1220  * left's new highkey, and the firstright downlink ends up on the
1221  * right side as right's new "negative infinity" item. The negative
1222  * infinity tuple is truncated to zero attributes, so we're only left
1223  * with the downlink. In other words, the copying is just an
1224  * implementation detail of splitting in the middle of a (pivot)
1225  * tuple. (See also: "Notes About Data Representation" in the nbtree
1226  * README.)
1227  */
1228  scantid = skey->scantid;
1229  if (state->heapkeyspace && BTreeTupleIsPosting(itup))
1230  skey->scantid = BTreeTupleGetMaxHeapTID(itup);
1231 
1232  if (!P_RIGHTMOST(topaque) &&
1233  !(P_ISLEAF(topaque) ? invariant_leq_offset(state, skey, P_HIKEY) :
1234  invariant_l_offset(state, skey, P_HIKEY)))
1235  {
1237  char *itid,
1238  *htid;
1239 
1240  itid = psprintf("(%u,%u)", state->targetblock, offset);
1241  htid = psprintf("(%u,%u)",
1244 
1245  ereport(ERROR,
1246  (errcode(ERRCODE_INDEX_CORRUPTED),
1247  errmsg("high key invariant violated for index \"%s\"",
1248  RelationGetRelationName(state->rel)),
1249  errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%X.",
1250  itid,
1251  P_ISLEAF(topaque) ? "heap" : "index",
1252  htid,
1253  (uint32) (state->targetlsn >> 32),
1254  (uint32) state->targetlsn)));
1255  }
1256  /* Reset, in case scantid was set to (itup) posting tuple's max TID */
1257  skey->scantid = scantid;
1258 
1259  /*
1260  * * Item order check *
1261  *
1262  * Check that items are stored on page in logical order, by checking
1263  * current item is strictly less than next item (if any).
1264  */
1265  if (OffsetNumberNext(offset) <= max &&
1266  !invariant_l_offset(state, skey, OffsetNumberNext(offset)))
1267  {
1268  ItemPointer tid;
1269  char *itid,
1270  *htid,
1271  *nitid,
1272  *nhtid;
1273 
1274  itid = psprintf("(%u,%u)", state->targetblock, offset);
1275  tid = BTreeTupleGetPointsToTID(itup);
1276  htid = psprintf("(%u,%u)",
1279  nitid = psprintf("(%u,%u)", state->targetblock,
1280  OffsetNumberNext(offset));
1281 
1282  /* Reuse itup to get pointed-to heap location of second item */
1283  itemid = PageGetItemIdCareful(state, state->targetblock,
1284  state->target,
1285  OffsetNumberNext(offset));
1286  itup = (IndexTuple) PageGetItem(state->target, itemid);
1287  tid = BTreeTupleGetPointsToTID(itup);
1288  nhtid = psprintf("(%u,%u)",
1291 
1292  ereport(ERROR,
1293  (errcode(ERRCODE_INDEX_CORRUPTED),
1294  errmsg("item order invariant violated for index \"%s\"",
1295  RelationGetRelationName(state->rel)),
1296  errdetail_internal("Lower index tid=%s (points to %s tid=%s) "
1297  "higher index tid=%s (points to %s tid=%s) "
1298  "page lsn=%X/%X.",
1299  itid,
1300  P_ISLEAF(topaque) ? "heap" : "index",
1301  htid,
1302  nitid,
1303  P_ISLEAF(topaque) ? "heap" : "index",
1304  nhtid,
1305  (uint32) (state->targetlsn >> 32),
1306  (uint32) state->targetlsn)));
1307  }
1308 
1309  /*
1310  * * Last item check *
1311  *
1312  * Check last item against next/right page's first data item's when
1313  * last item on page is reached. This additional check will detect
1314  * transposed pages iff the supposed right sibling page happens to
1315  * belong before target in the key space. (Otherwise, a subsequent
1316  * heap verification will probably detect the problem.)
1317  *
1318  * This check is similar to the item order check that will have
1319  * already been performed for every other "real" item on target page
1320  * when last item is checked. The difference is that the next item
1321  * (the item that is compared to target's last item) needs to come
1322  * from the next/sibling page. There may not be such an item
1323  * available from sibling for various reasons, though (e.g., target is
1324  * the rightmost page on level).
1325  */
1326  else if (offset == max)
1327  {
1328  BTScanInsert rightkey;
1329 
1330  /* Get item in next/right page */
1331  rightkey = bt_right_page_check_scankey(state);
1332 
1333  if (rightkey &&
1334  !invariant_g_offset(state, rightkey, max))
1335  {
1336  /*
1337  * As explained at length in bt_right_page_check_scankey(),
1338  * there is a known !readonly race that could account for
1339  * apparent violation of invariant, which we must check for
1340  * before actually proceeding with raising error. Our canary
1341  * condition is that target page was deleted.
1342  */
1343  if (!state->readonly)
1344  {
1345  /* Get fresh copy of target page */
1346  state->target = palloc_btree_page(state, state->targetblock);
1347  /* Note that we deliberately do not update target LSN */
1348  topaque = (BTPageOpaque) PageGetSpecialPointer(state->target);
1349 
1350  /*
1351  * All !readonly checks now performed; just return
1352  */
1353  if (P_IGNORE(topaque))
1354  return;
1355  }
1356 
1357  ereport(ERROR,
1358  (errcode(ERRCODE_INDEX_CORRUPTED),
1359  errmsg("cross page item order invariant violated for index \"%s\"",
1360  RelationGetRelationName(state->rel)),
1361  errdetail_internal("Last item on page tid=(%u,%u) page lsn=%X/%X.",
1362  state->targetblock, offset,
1363  (uint32) (state->targetlsn >> 32),
1364  (uint32) state->targetlsn)));
1365  }
1366  }
1367 
1368  /*
1369  * * Downlink check *
1370  *
1371  * Additional check of child items iff this is an internal page and
1372  * caller holds a ShareLock. This happens for every downlink (item)
1373  * in target excluding the negative-infinity downlink (again, this is
1374  * because it has no useful value to compare).
1375  */
1376  if (!P_ISLEAF(topaque) && state->readonly)
1377  bt_child_check(state, skey, offset);
1378  }
1379 
1380  /*
1381  * Special case bt_child_highkey_check() call
1382  *
1383  * We don't pass an real downlink, but we've to finish the level
1384  * processing. If condition is satisfied, we've already processed all the
1385  * downlinks from the target level. But there still might be pages to the
1386  * right of the child page pointer to by our rightmost downlink. And they
1387  * might have missing downlinks. This final call checks for them.
1388  */
1389  if (!P_ISLEAF(topaque) && P_RIGHTMOST(topaque) && state->readonly)
1390  {
1392  NULL, topaque->btpo.level);
1393  }
1394 }
1395 
1396 /*
1397  * Return a scankey for an item on page to right of current target (or the
1398  * first non-ignorable page), sufficient to check ordering invariant on last
1399  * item in current target page. Returned scankey relies on local memory
1400  * allocated for the child page, which caller cannot pfree(). Caller's memory
1401  * context should be reset between calls here.
1402  *
1403  * This is the first data item, and so all adjacent items are checked against
1404  * their immediate sibling item (which may be on a sibling page, or even a
1405  * "cousin" page at parent boundaries where target's rightlink points to page
1406  * with different parent page). If no such valid item is available, return
1407  * NULL instead.
1408  *
1409  * Note that !readonly callers must reverify that target page has not
1410  * been concurrently deleted.
1411  */
1412 static BTScanInsert
1414 {
1415  BTPageOpaque opaque;
1416  ItemId rightitem;
1417  IndexTuple firstitup;
1418  BlockNumber targetnext;
1419  Page rightpage;
1420  OffsetNumber nline;
1421 
1422  /* Determine target's next block number */
1423  opaque = (BTPageOpaque) PageGetSpecialPointer(state->target);
1424 
1425  /* If target is already rightmost, no right sibling; nothing to do here */
1426  if (P_RIGHTMOST(opaque))
1427  return NULL;
1428 
1429  /*
1430  * General notes on concurrent page splits and page deletion:
1431  *
1432  * Routines like _bt_search() don't require *any* page split interlock
1433  * when descending the tree, including something very light like a buffer
1434  * pin. That's why it's okay that we don't either. This avoidance of any
1435  * need to "couple" buffer locks is the raison d' etre of the Lehman & Yao
1436  * algorithm, in fact.
1437  *
1438  * That leaves deletion. A deleted page won't actually be recycled by
1439  * VACUUM early enough for us to fail to at least follow its right link
1440  * (or left link, or downlink) and find its sibling, because recycling
1441  * does not occur until no possible index scan could land on the page.
1442  * Index scans can follow links with nothing more than their snapshot as
1443  * an interlock and be sure of at least that much. (See page
1444  * recycling/RecentGlobalXmin notes in nbtree README.)
1445  *
1446  * Furthermore, it's okay if we follow a rightlink and find a half-dead or
1447  * dead (ignorable) page one or more times. There will either be a
1448  * further right link to follow that leads to a live page before too long
1449  * (before passing by parent's rightmost child), or we will find the end
1450  * of the entire level instead (possible when parent page is itself the
1451  * rightmost on its level).
1452  */
1453  targetnext = opaque->btpo_next;
1454  for (;;)
1455  {
1457 
1458  rightpage = palloc_btree_page(state, targetnext);
1459  opaque = (BTPageOpaque) PageGetSpecialPointer(rightpage);
1460 
1461  if (!P_IGNORE(opaque) || P_RIGHTMOST(opaque))
1462  break;
1463 
1464  /* We landed on a deleted page, so step right to find a live page */
1465  targetnext = opaque->btpo_next;
1466  ereport(DEBUG1,
1467  (errcode(ERRCODE_NO_DATA),
1468  errmsg("level %u leftmost page of index \"%s\" was found deleted or half dead",
1469  opaque->btpo.level, RelationGetRelationName(state->rel)),
1470  errdetail_internal("Deleted page found when building scankey from right sibling.")));
1471 
1472  /* Be slightly more pro-active in freeing this memory, just in case */
1473  pfree(rightpage);
1474  }
1475 
1476  /*
1477  * No ShareLock held case -- why it's safe to proceed.
1478  *
1479  * Problem:
1480  *
1481  * We must avoid false positive reports of corruption when caller treats
1482  * item returned here as an upper bound on target's last item. In
1483  * general, false positives are disallowed. Avoiding them here when
1484  * caller is !readonly is subtle.
1485  *
1486  * A concurrent page deletion by VACUUM of the target page can result in
1487  * the insertion of items on to this right sibling page that would
1488  * previously have been inserted on our target page. There might have
1489  * been insertions that followed the target's downlink after it was made
1490  * to point to right sibling instead of target by page deletion's first
1491  * phase. The inserters insert items that would belong on target page.
1492  * This race is very tight, but it's possible. This is our only problem.
1493  *
1494  * Non-problems:
1495  *
1496  * We are not hindered by a concurrent page split of the target; we'll
1497  * never land on the second half of the page anyway. A concurrent split
1498  * of the right page will also not matter, because the first data item
1499  * remains the same within the left half, which we'll reliably land on. If
1500  * we had to skip over ignorable/deleted pages, it cannot matter because
1501  * their key space has already been atomically merged with the first
1502  * non-ignorable page we eventually find (doesn't matter whether the page
1503  * we eventually find is a true sibling or a cousin of target, which we go
1504  * into below).
1505  *
1506  * Solution:
1507  *
1508  * Caller knows that it should reverify that target is not ignorable
1509  * (half-dead or deleted) when cross-page sibling item comparison appears
1510  * to indicate corruption (invariant fails). This detects the single race
1511  * condition that exists for caller. This is correct because the
1512  * continued existence of target block as non-ignorable (not half-dead or
1513  * deleted) implies that target page was not merged into from the right by
1514  * deletion; the key space at or after target never moved left. Target's
1515  * parent either has the same downlink to target as before, or a <
1516  * downlink due to deletion at the left of target. Target either has the
1517  * same highkey as before, or a highkey < before when there is a page
1518  * split. (The rightmost concurrently-split-from-target-page page will
1519  * still have the same highkey as target was originally found to have,
1520  * which for our purposes is equivalent to target's highkey itself never
1521  * changing, since we reliably skip over
1522  * concurrently-split-from-target-page pages.)
1523  *
1524  * In simpler terms, we allow that the key space of the target may expand
1525  * left (the key space can move left on the left side of target only), but
1526  * the target key space cannot expand right and get ahead of us without
1527  * our detecting it. The key space of the target cannot shrink, unless it
1528  * shrinks to zero due to the deletion of the original page, our canary
1529  * condition. (To be very precise, we're a bit stricter than that because
1530  * it might just have been that the target page split and only the
1531  * original target page was deleted. We can be more strict, just not more
1532  * lax.)
1533  *
1534  * Top level tree walk caller moves on to next page (makes it the new
1535  * target) following recovery from this race. (cf. The rationale for
1536  * child/downlink verification needing a ShareLock within
1537  * bt_child_check(), where page deletion is also the main source of
1538  * trouble.)
1539  *
1540  * Note that it doesn't matter if right sibling page here is actually a
1541  * cousin page, because in order for the key space to be readjusted in a
1542  * way that causes us issues in next level up (guiding problematic
1543  * concurrent insertions to the cousin from the grandparent rather than to
1544  * the sibling from the parent), there'd have to be page deletion of
1545  * target's parent page (affecting target's parent's downlink in target's
1546  * grandparent page). Internal page deletion only occurs when there are
1547  * no child pages (they were all fully deleted), and caller is checking
1548  * that the target's parent has at least one non-deleted (so
1549  * non-ignorable) child: the target page. (Note that the first phase of
1550  * deletion atomically marks the page to be deleted half-dead/ignorable at
1551  * the same time downlink in its parent is removed, so caller will
1552  * definitely not fail to detect that this happened.)
1553  *
1554  * This trick is inspired by the method backward scans use for dealing
1555  * with concurrent page splits; concurrent page deletion is a problem that
1556  * similarly receives special consideration sometimes (it's possible that
1557  * the backwards scan will re-read its "original" block after failing to
1558  * find a right-link to it, having already moved in the opposite direction
1559  * (right/"forwards") a few times to try to locate one). Just like us,
1560  * that happens only to determine if there was a concurrent page deletion
1561  * of a reference page, and just like us if there was a page deletion of
1562  * that reference page it means we can move on from caring about the
1563  * reference page. See the nbtree README for a full description of how
1564  * that works.
1565  */
1566  nline = PageGetMaxOffsetNumber(rightpage);
1567 
1568  /*
1569  * Get first data item, if any
1570  */
1571  if (P_ISLEAF(opaque) && nline >= P_FIRSTDATAKEY(opaque))
1572  {
1573  /* Return first data item (if any) */
1574  rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
1575  P_FIRSTDATAKEY(opaque));
1576  }
1577  else if (!P_ISLEAF(opaque) &&
1578  nline >= OffsetNumberNext(P_FIRSTDATAKEY(opaque)))
1579  {
1580  /*
1581  * Return first item after the internal page's "negative infinity"
1582  * item
1583  */
1584  rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
1585  OffsetNumberNext(P_FIRSTDATAKEY(opaque)));
1586  }
1587  else
1588  {
1589  /*
1590  * No first item. Page is probably empty leaf page, but it's also
1591  * possible that it's an internal page with only a negative infinity
1592  * item.
1593  */
1594  ereport(DEBUG1,
1595  (errcode(ERRCODE_NO_DATA),
1596  errmsg("%s block %u of index \"%s\" has no first data item",
1597  P_ISLEAF(opaque) ? "leaf" : "internal", targetnext,
1598  RelationGetRelationName(state->rel))));
1599  return NULL;
1600  }
1601 
1602  /*
1603  * Return first real item scankey. Note that this relies on right page
1604  * memory remaining allocated.
1605  */
1606  firstitup = (IndexTuple) PageGetItem(rightpage, rightitem);
1607  return bt_mkscankey_pivotsearch(state->rel, firstitup);
1608 }
1609 
1610 /*
1611  * Check if two tuples are binary identical except the block number. So,
1612  * this function is capable to compare pivot keys on different levels.
1613  */
1614 static bool
1616 {
1617  if (IndexTupleSize(itup1) != IndexTupleSize(itup2))
1618  return false;
1619 
1620  if (memcmp(&itup1->t_tid.ip_posid, &itup2->t_tid.ip_posid,
1621  IndexTupleSize(itup1) - offsetof(ItemPointerData, ip_posid)) != 0)
1622  return false;
1623 
1624  return true;
1625 }
1626 
1627 /*---
1628  * Check high keys on the child level. Traverse rightlinks from previous
1629  * downlink to the current one. Check that there are no intermediate pages
1630  * with missing downlinks.
1631  *
1632  * If 'loaded_child' is given, it's assumed to be the page pointed to by the
1633  * downlink referenced by 'downlinkoffnum' of the target page.
1634  *
1635  * Basically this function is called for each target downlink and checks two
1636  * invariants:
1637  *
1638  * 1) You can reach the next child from previous one via rightlinks;
1639  * 2) Each child high key have matching pivot key on target level.
1640  *
1641  * Consider the sample tree picture.
1642  *
1643  * 1
1644  * / \
1645  * 2 <-> 3
1646  * / \ / \
1647  * 4 <> 5 <> 6 <> 7 <> 8
1648  *
1649  * This function will be called for blocks 4, 5, 6 and 8. Consider what is
1650  * happening for each function call.
1651  *
1652  * - The function call for block 4 initializes data structure and matches high
1653  * key of block 4 to downlink's pivot key of block 2.
1654  * - The high key of block 5 is matched to the high key of block 2.
1655  * - The block 6 has an incomplete split flag set, so its high key isn't
1656  * matched to anything.
1657  * - The function call for block 8 checks that block 8 can be found while
1658  * following rightlinks from block 6. The high key of block 7 will be
1659  * matched to downlink's pivot key in block 3.
1660  *
1661  * There is also final call of this function, which checks that there is no
1662  * missing downlinks for children to the right of the child referenced by
1663  * rightmost downlink in target level.
1664  */
1665 static void
1667  OffsetNumber target_downlinkoffnum,
1668  Page loaded_child,
1669  uint32 target_level)
1670 {
1671  BlockNumber blkno = state->prevrightlink;
1672  Page page;
1673  BTPageOpaque opaque;
1674  bool rightsplit = state->previncompletesplit;
1675  bool first = true;
1676  ItemId itemid;
1677  IndexTuple itup;
1678  BlockNumber downlink;
1679 
1680  if (OffsetNumberIsValid(target_downlinkoffnum))
1681  {
1682  itemid = PageGetItemIdCareful(state, state->targetblock,
1683  state->target, target_downlinkoffnum);
1684  itup = (IndexTuple) PageGetItem(state->target, itemid);
1685  downlink = BTreeTupleGetDownLink(itup);
1686  }
1687  else
1688  {
1689  downlink = P_NONE;
1690  }
1691 
1692  /*
1693  * If no previous rightlink is memorized for current level just below
1694  * target page's level, we are about to start from the leftmost page. We
1695  * can't follow rightlinks from previous page, because there is no
1696  * previous page. But we still can match high key.
1697  *
1698  * So we initialize variables for the loop above like there is previous
1699  * page referencing current child. Also we imply previous page to not
1700  * have incomplete split flag, that would make us require downlink for
1701  * current child. That's correct, because leftmost page on the level
1702  * should always have parent downlink.
1703  */
1704  if (!BlockNumberIsValid(blkno))
1705  {
1706  blkno = downlink;
1707  rightsplit = false;
1708  }
1709 
1710  /* Move to the right on the child level */
1711  while (true)
1712  {
1713  /*
1714  * Did we traverse the whole tree level and this is check for pages to
1715  * the right of rightmost downlink?
1716  */
1717  if (blkno == P_NONE && downlink == P_NONE)
1718  {
1720  state->previncompletesplit = false;
1721  return;
1722  }
1723 
1724  /* Did we traverse the whole tree level and don't find next downlink? */
1725  if (blkno == P_NONE)
1726  ereport(ERROR,
1727  (errcode(ERRCODE_INDEX_CORRUPTED),
1728  errmsg("can't traverse from downlink %u to downlink %u of index \"%s\"",
1729  state->prevrightlink, downlink,
1730  RelationGetRelationName(state->rel))));
1731 
1732  /* Load page contents */
1733  if (blkno == downlink && loaded_child)
1734  page = loaded_child;
1735  else
1736  page = palloc_btree_page(state, blkno);
1737 
1738  opaque = (BTPageOpaque) PageGetSpecialPointer(page);
1739 
1740  /* The first page we visit at the level should be leftmost */
1741  if (first && !BlockNumberIsValid(state->prevrightlink) && !P_LEFTMOST(opaque))
1742  ereport(ERROR,
1743  (errcode(ERRCODE_INDEX_CORRUPTED),
1744  errmsg("the first child of leftmost target page is not leftmost of its level in index \"%s\"",
1745  RelationGetRelationName(state->rel)),
1746  errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
1747  state->targetblock, blkno,
1748  (uint32) (state->targetlsn >> 32),
1749  (uint32) state->targetlsn)));
1750 
1751  /* Check level for non-ignorable page */
1752  if (!P_IGNORE(opaque) && opaque->btpo.level != target_level - 1)
1753  ereport(ERROR,
1754  (errcode(ERRCODE_INDEX_CORRUPTED),
1755  errmsg("block found while following rightlinks from child of index \"%s\" has invalid level",
1756  RelationGetRelationName(state->rel)),
1757  errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
1758  blkno, target_level - 1, opaque->btpo.level)));
1759 
1760  /* Try to detect circular links */
1761  if ((!first && blkno == state->prevrightlink) || blkno == opaque->btpo_prev)
1762  ereport(ERROR,
1763  (errcode(ERRCODE_INDEX_CORRUPTED),
1764  errmsg("circular link chain found in block %u of index \"%s\"",
1765  blkno, RelationGetRelationName(state->rel))));
1766 
1767  if (blkno != downlink && !P_IGNORE(opaque))
1768  {
1769  /* blkno probably has missing parent downlink */
1770  bt_downlink_missing_check(state, rightsplit, blkno, page);
1771  }
1772 
1773  rightsplit = P_INCOMPLETE_SPLIT(opaque);
1774 
1775  /*
1776  * If we visit page with high key, check that it is be equal to the
1777  * target key next to corresponding downlink.
1778  */
1779  if (!rightsplit && !P_RIGHTMOST(opaque))
1780  {
1781  BTPageOpaque topaque;
1782  IndexTuple highkey;
1783  OffsetNumber pivotkey_offset;
1784 
1785  /* Get high key */
1786  itemid = PageGetItemIdCareful(state, blkno, page, P_HIKEY);
1787  highkey = (IndexTuple) PageGetItem(page, itemid);
1788 
1789  /*
1790  * There might be two situations when we examine high key. If
1791  * current child page is referenced by given target downlink, we
1792  * should look to the next offset number for matching key from
1793  * target page.
1794  *
1795  * Alternatively, we're following rightlinks somewhere in the
1796  * middle between page referenced by previous target's downlink
1797  * and the page referenced by current target's downlink. If
1798  * current child page hasn't incomplete split flag set, then its
1799  * high key should match to the target's key of current offset
1800  * number. This happens when a previous call here (to
1801  * bt_child_highkey_check()) found an incomplete split, and we
1802  * reach a right sibling page without a downlink -- the right
1803  * sibling page's high key still needs to be matched to a
1804  * separator key on the parent/target level.
1805  *
1806  * Don't apply OffsetNumberNext() to target_downlinkoffnum when we
1807  * already had to step right on the child level. Our traversal of
1808  * the child level must try to move in perfect lockstep behind (to
1809  * the left of) the target/parent level traversal.
1810  */
1811  if (blkno == downlink)
1812  pivotkey_offset = OffsetNumberNext(target_downlinkoffnum);
1813  else
1814  pivotkey_offset = target_downlinkoffnum;
1815 
1816  topaque = (BTPageOpaque) PageGetSpecialPointer(state->target);
1817 
1818  if (!offset_is_negative_infinity(topaque, pivotkey_offset))
1819  {
1820  /*
1821  * If we're looking for the next pivot tuple in target page,
1822  * but there is no more pivot tuples, then we should match to
1823  * high key instead.
1824  */
1825  if (pivotkey_offset > PageGetMaxOffsetNumber(state->target))
1826  {
1827  if (P_RIGHTMOST(topaque))
1828  ereport(ERROR,
1829  (errcode(ERRCODE_INDEX_CORRUPTED),
1830  errmsg("child high key is greater than rightmost pivot key on target level in index \"%s\"",
1831  RelationGetRelationName(state->rel)),
1832  errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
1833  state->targetblock, blkno,
1834  (uint32) (state->targetlsn >> 32),
1835  (uint32) state->targetlsn)));
1836  pivotkey_offset = P_HIKEY;
1837  }
1838  itemid = PageGetItemIdCareful(state, state->targetblock,
1839  state->target, pivotkey_offset);
1840  itup = (IndexTuple) PageGetItem(state->target, itemid);
1841  }
1842  else
1843  {
1844  /*
1845  * We cannot try to match child's high key to a negative
1846  * infinity key in target, since there is nothing to compare.
1847  * However, it's still possible to match child's high key
1848  * outside of target page. The reason why we're are is that
1849  * bt_child_highkey_check() was previously called for the
1850  * cousin page of 'loaded_child', which is incomplete split.
1851  * So, now we traverse to the right of that cousin page and
1852  * current child level page under consideration still belongs
1853  * to the subtree of target's left sibling. Thus, we need to
1854  * match child's high key to it's left uncle page high key.
1855  * Thankfully we saved it, it's called a "low key" of target
1856  * page.
1857  */
1858  if (!state->lowkey)
1859  ereport(ERROR,
1860  (errcode(ERRCODE_INDEX_CORRUPTED),
1861  errmsg("can't find left sibling high key in index \"%s\"",
1862  RelationGetRelationName(state->rel)),
1863  errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
1864  state->targetblock, blkno,
1865  (uint32) (state->targetlsn >> 32),
1866  (uint32) state->targetlsn)));
1867  itup = state->lowkey;
1868  }
1869 
1870  if (!bt_pivot_tuple_identical(highkey, itup))
1871  {
1872  ereport(ERROR,
1873  (errcode(ERRCODE_INDEX_CORRUPTED),
1874  errmsg("mismatch between parent key and child high key in index \"%s\"",
1875  RelationGetRelationName(state->rel)),
1876  errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
1877  state->targetblock, blkno,
1878  (uint32) (state->targetlsn >> 32),
1879  (uint32) state->targetlsn)));
1880  }
1881  }
1882 
1883  /* Exit if we already found next downlink */
1884  if (blkno == downlink)
1885  {
1886  state->prevrightlink = opaque->btpo_next;
1887  state->previncompletesplit = rightsplit;
1888  return;
1889  }
1890 
1891  /* Traverse to the next page using rightlink */
1892  blkno = opaque->btpo_next;
1893 
1894  /* Free page contents if it's allocated by us */
1895  if (page != loaded_child)
1896  pfree(page);
1897  first = false;
1898  }
1899 }
1900 
1901 /*
1902  * Checks one of target's downlink against its child page.
1903  *
1904  * Conceptually, the target page continues to be what is checked here. The
1905  * target block is still blamed in the event of finding an invariant violation.
1906  * The downlink insertion into the target is probably where any problem raised
1907  * here arises, and there is no such thing as a parent link, so doing the
1908  * verification this way around is much more practical.
1909  *
1910  * This function visits child page and it's sequentially called for each
1911  * downlink of target page. Assuming this we also check downlink connectivity
1912  * here in order to save child page visits.
1913  */
1914 static void
1916  OffsetNumber downlinkoffnum)
1917 {
1918  ItemId itemid;
1919  IndexTuple itup;
1920  BlockNumber childblock;
1921  OffsetNumber offset;
1922  OffsetNumber maxoffset;
1923  Page child;
1924  BTPageOpaque copaque;
1925  BTPageOpaque topaque;
1926 
1927  itemid = PageGetItemIdCareful(state, state->targetblock,
1928  state->target, downlinkoffnum);
1929  itup = (IndexTuple) PageGetItem(state->target, itemid);
1930  childblock = BTreeTupleGetDownLink(itup);
1931 
1932  /*
1933  * Caller must have ShareLock on target relation, because of
1934  * considerations around page deletion by VACUUM.
1935  *
1936  * NB: In general, page deletion deletes the right sibling's downlink, not
1937  * the downlink of the page being deleted; the deleted page's downlink is
1938  * reused for its sibling. The key space is thereby consolidated between
1939  * the deleted page and its right sibling. (We cannot delete a parent
1940  * page's rightmost child unless it is the last child page, and we intend
1941  * to also delete the parent itself.)
1942  *
1943  * If this verification happened without a ShareLock, the following race
1944  * condition could cause false positives:
1945  *
1946  * In general, concurrent page deletion might occur, including deletion of
1947  * the left sibling of the child page that is examined here. If such a
1948  * page deletion were to occur, closely followed by an insertion into the
1949  * newly expanded key space of the child, a window for the false positive
1950  * opens up: the stale parent/target downlink originally followed to get
1951  * to the child legitimately ceases to be a lower bound on all items in
1952  * the page, since the key space was concurrently expanded "left".
1953  * (Insertion followed the "new" downlink for the child, not our now-stale
1954  * downlink, which was concurrently physically removed in target/parent as
1955  * part of deletion's first phase.)
1956  *
1957  * Note that while the cross-page-same-level last item check uses a trick
1958  * that allows it to perform verification for !readonly callers, a similar
1959  * trick seems difficult here. The trick that that other check uses is,
1960  * in essence, to lock down race conditions to those that occur due to
1961  * concurrent page deletion of the target; that's a race that can be
1962  * reliably detected before actually reporting corruption.
1963  *
1964  * On the other hand, we'd need to lock down race conditions involving
1965  * deletion of child's left page, for long enough to read the child page
1966  * into memory (in other words, a scheme with concurrently held buffer
1967  * locks on both child and left-of-child pages). That's unacceptable for
1968  * amcheck functions on general principle, though.
1969  */
1970  Assert(state->readonly);
1971 
1972  /*
1973  * Verify child page has the downlink key from target page (its parent) as
1974  * a lower bound; downlink must be strictly less than all keys on the
1975  * page.
1976  *
1977  * Check all items, rather than checking just the first and trusting that
1978  * the operator class obeys the transitive law.
1979  */
1980  topaque = (BTPageOpaque) PageGetSpecialPointer(state->target);
1981  child = palloc_btree_page(state, childblock);
1982  copaque = (BTPageOpaque) PageGetSpecialPointer(child);
1983  maxoffset = PageGetMaxOffsetNumber(child);
1984 
1985  /*
1986  * Since we've already loaded the child block, combine this check with
1987  * check for downlink connectivity.
1988  */
1989  bt_child_highkey_check(state, downlinkoffnum,
1990  child, topaque->btpo.level);
1991 
1992  /*
1993  * Since there cannot be a concurrent VACUUM operation in readonly mode,
1994  * and since a page has no links within other pages (siblings and parent)
1995  * once it is marked fully deleted, it should be impossible to land on a
1996  * fully deleted page.
1997  *
1998  * It does not quite make sense to enforce that the page cannot even be
1999  * half-dead, despite the fact the downlink is modified at the same stage
2000  * that the child leaf page is marked half-dead. That's incorrect because
2001  * there may occasionally be multiple downlinks from a chain of pages
2002  * undergoing deletion, where multiple successive calls are made to
2003  * _bt_unlink_halfdead_page() by VACUUM before it can finally safely mark
2004  * the leaf page as fully dead. While _bt_mark_page_halfdead() usually
2005  * removes the downlink to the leaf page that is marked half-dead, that's
2006  * not guaranteed, so it's possible we'll land on a half-dead page with a
2007  * downlink due to an interrupted multi-level page deletion.
2008  *
2009  * We go ahead with our checks if the child page is half-dead. It's safe
2010  * to do so because we do not test the child's high key, so it does not
2011  * matter that the original high key will have been replaced by a dummy
2012  * truncated high key within _bt_mark_page_halfdead(). All other page
2013  * items are left intact on a half-dead page, so there is still something
2014  * to test.
2015  */
2016  if (P_ISDELETED(copaque))
2017  ereport(ERROR,
2018  (errcode(ERRCODE_INDEX_CORRUPTED),
2019  errmsg("downlink to deleted page found in index \"%s\"",
2020  RelationGetRelationName(state->rel)),
2021  errdetail_internal("Parent block=%u child block=%u parent page lsn=%X/%X.",
2022  state->targetblock, childblock,
2023  (uint32) (state->targetlsn >> 32),
2024  (uint32) state->targetlsn)));
2025 
2026  for (offset = P_FIRSTDATAKEY(copaque);
2027  offset <= maxoffset;
2028  offset = OffsetNumberNext(offset))
2029  {
2030  /*
2031  * Skip comparison of target page key against "negative infinity"
2032  * item, if any. Checking it would indicate that it's not a strict
2033  * lower bound, but that's only because of the hard-coding for
2034  * negative infinity items within _bt_compare().
2035  *
2036  * If nbtree didn't truncate negative infinity tuples during internal
2037  * page splits then we'd expect child's negative infinity key to be
2038  * equal to the scankey/downlink from target/parent (it would be a
2039  * "low key" in this hypothetical scenario, and so it would still need
2040  * to be treated as a special case here).
2041  *
2042  * Negative infinity items can be thought of as a strict lower bound
2043  * that works transitively, with the last non-negative-infinity pivot
2044  * followed during a descent from the root as its "true" strict lower
2045  * bound. Only a small number of negative infinity items are truly
2046  * negative infinity; those that are the first items of leftmost
2047  * internal pages. In more general terms, a negative infinity item is
2048  * only negative infinity with respect to the subtree that the page is
2049  * at the root of.
2050  *
2051  * See also: bt_rootdescend(), which can even detect transitive
2052  * inconsistencies on cousin leaf pages.
2053  */
2054  if (offset_is_negative_infinity(copaque, offset))
2055  continue;
2056 
2057  if (!invariant_l_nontarget_offset(state, targetkey, childblock, child,
2058  offset))
2059  ereport(ERROR,
2060  (errcode(ERRCODE_INDEX_CORRUPTED),
2061  errmsg("down-link lower bound invariant violated for index \"%s\"",
2062  RelationGetRelationName(state->rel)),
2063  errdetail_internal("Parent block=%u child index tid=(%u,%u) parent page lsn=%X/%X.",
2064  state->targetblock, childblock, offset,
2065  (uint32) (state->targetlsn >> 32),
2066  (uint32) state->targetlsn)));
2067  }
2068 
2069  pfree(child);
2070 }
2071 
2072 /*
2073  * Checks if page is missing a downlink that it should have.
2074  *
2075  * A page that lacks a downlink/parent may indicate corruption. However, we
2076  * must account for the fact that a missing downlink can occasionally be
2077  * encountered in a non-corrupt index. This can be due to an interrupted page
2078  * split, or an interrupted multi-level page deletion (i.e. there was a hard
2079  * crash or an error during a page split, or while VACUUM was deleting a
2080  * multi-level chain of pages).
2081  *
2082  * Note that this can only be called in readonly mode, so there is no need to
2083  * be concerned about concurrent page splits or page deletions.
2084  */
2085 static void
2087  BlockNumber blkno, Page page)
2088 {
2090  ItemId itemid;
2091  IndexTuple itup;
2092  Page child;
2093  BTPageOpaque copaque;
2094  uint32 level;
2095  BlockNumber childblk;
2096  XLogRecPtr pagelsn;
2097 
2098  Assert(state->readonly);
2099  Assert(!P_IGNORE(opaque));
2100 
2101  /* No next level up with downlinks to fingerprint from the true root */
2102  if (P_ISROOT(opaque))
2103  return;
2104 
2105  pagelsn = PageGetLSN(page);
2106 
2107  /*
2108  * Incomplete (interrupted) page splits can account for the lack of a
2109  * downlink. Some inserting transaction should eventually complete the
2110  * page split in passing, when it notices that the left sibling page is
2111  * P_INCOMPLETE_SPLIT().
2112  *
2113  * In general, VACUUM is not prepared for there to be no downlink to a
2114  * page that it deletes. This is the main reason why the lack of a
2115  * downlink can be reported as corruption here. It's not obvious that an
2116  * invalid missing downlink can result in wrong answers to queries,
2117  * though, since index scans that land on the child may end up
2118  * consistently moving right. The handling of concurrent page splits (and
2119  * page deletions) within _bt_moveright() cannot distinguish
2120  * inconsistencies that last for a moment from inconsistencies that are
2121  * permanent and irrecoverable.
2122  *
2123  * VACUUM isn't even prepared to delete pages that have no downlink due to
2124  * an incomplete page split, but it can detect and reason about that case
2125  * by design, so it shouldn't be taken to indicate corruption. See
2126  * _bt_pagedel() for full details.
2127  */
2128  if (rightsplit)
2129  {
2130  ereport(DEBUG1,
2131  (errcode(ERRCODE_NO_DATA),
2132  errmsg("harmless interrupted page split detected in index %s",
2133  RelationGetRelationName(state->rel)),
2134  errdetail_internal("Block=%u level=%u left sibling=%u page lsn=%X/%X.",
2135  blkno, opaque->btpo.level,
2136  opaque->btpo_prev,
2137  (uint32) (pagelsn >> 32),
2138  (uint32) pagelsn)));
2139  return;
2140  }
2141 
2142  /*
2143  * Page under check is probably the "top parent" of a multi-level page
2144  * deletion. We'll need to descend the subtree to make sure that
2145  * descendant pages are consistent with that, though.
2146  *
2147  * If the page (which must be non-ignorable) is a leaf page, then clearly
2148  * it can't be the top parent. The lack of a downlink is probably a
2149  * symptom of a broad problem that could just as easily cause
2150  * inconsistencies anywhere else.
2151  */
2152  if (P_ISLEAF(opaque))
2153  ereport(ERROR,
2154  (errcode(ERRCODE_INDEX_CORRUPTED),
2155  errmsg("leaf index block lacks downlink in index \"%s\"",
2156  RelationGetRelationName(state->rel)),
2157  errdetail_internal("Block=%u page lsn=%X/%X.",
2158  blkno,
2159  (uint32) (pagelsn >> 32),
2160  (uint32) pagelsn)));
2161 
2162  /* Descend from the given page, which is an internal page */
2163  elog(DEBUG1, "checking for interrupted multi-level deletion due to missing downlink in index \"%s\"",
2164  RelationGetRelationName(state->rel));
2165 
2166  level = opaque->btpo.level;
2167  itemid = PageGetItemIdCareful(state, blkno, page, P_FIRSTDATAKEY(opaque));
2168  itup = (IndexTuple) PageGetItem(page, itemid);
2169  childblk = BTreeTupleGetDownLink(itup);
2170  for (;;)
2171  {
2173 
2174  child = palloc_btree_page(state, childblk);
2175  copaque = (BTPageOpaque) PageGetSpecialPointer(child);
2176 
2177  if (P_ISLEAF(copaque))
2178  break;
2179 
2180  /* Do an extra sanity check in passing on internal pages */
2181  if (copaque->btpo.level != level - 1)
2182  ereport(ERROR,
2183  (errcode(ERRCODE_INDEX_CORRUPTED),
2184  errmsg_internal("downlink points to block in index \"%s\" whose level is not one level down",
2185  RelationGetRelationName(state->rel)),
2186  errdetail_internal("Top parent/under check block=%u block pointed to=%u expected level=%u level in pointed to block=%u.",
2187  blkno, childblk,
2188  level - 1, copaque->btpo.level)));
2189 
2190  level = copaque->btpo.level;
2191  itemid = PageGetItemIdCareful(state, childblk, child,
2192  P_FIRSTDATAKEY(copaque));
2193  itup = (IndexTuple) PageGetItem(child, itemid);
2194  childblk = BTreeTupleGetDownLink(itup);
2195  /* Be slightly more pro-active in freeing this memory, just in case */
2196  pfree(child);
2197  }
2198 
2199  /*
2200  * Since there cannot be a concurrent VACUUM operation in readonly mode,
2201  * and since a page has no links within other pages (siblings and parent)
2202  * once it is marked fully deleted, it should be impossible to land on a
2203  * fully deleted page. See bt_child_check() for further details.
2204  *
2205  * The bt_child_check() P_ISDELETED() check is repeated here because
2206  * bt_child_check() does not visit pages reachable through negative
2207  * infinity items. Besides, bt_child_check() is unwilling to descend
2208  * multiple levels. (The similar bt_child_check() P_ISDELETED() check
2209  * within bt_check_level_from_leftmost() won't reach the page either,
2210  * since the leaf's live siblings should have their sibling links updated
2211  * to bypass the deletion target page when it is marked fully dead.)
2212  *
2213  * If this error is raised, it might be due to a previous multi-level page
2214  * deletion that failed to realize that it wasn't yet safe to mark the
2215  * leaf page as fully dead. A "dangling downlink" will still remain when
2216  * this happens. The fact that the dangling downlink's page (the leaf's
2217  * parent/ancestor page) lacked a downlink is incidental.
2218  */
2219  if (P_ISDELETED(copaque))
2220  ereport(ERROR,
2221  (errcode(ERRCODE_INDEX_CORRUPTED),
2222  errmsg_internal("downlink to deleted leaf page found in index \"%s\"",
2223  RelationGetRelationName(state->rel)),
2224  errdetail_internal("Top parent/target block=%u leaf block=%u top parent/under check lsn=%X/%X.",
2225  blkno, childblk,
2226  (uint32) (pagelsn >> 32),
2227  (uint32) pagelsn)));
2228 
2229  /*
2230  * Iff leaf page is half-dead, its high key top parent link should point
2231  * to what VACUUM considered to be the top parent page at the instant it
2232  * was interrupted. Provided the high key link actually points to the
2233  * page under check, the missing downlink we detected is consistent with
2234  * there having been an interrupted multi-level page deletion. This means
2235  * that the subtree with the page under check at its root (a page deletion
2236  * chain) is in a consistent state, enabling VACUUM to resume deleting the
2237  * entire chain the next time it encounters the half-dead leaf page.
2238  */
2239  if (P_ISHALFDEAD(copaque) && !P_RIGHTMOST(copaque))
2240  {
2241  itemid = PageGetItemIdCareful(state, childblk, child, P_HIKEY);
2242  itup = (IndexTuple) PageGetItem(child, itemid);
2243  if (BTreeTupleGetTopParent(itup) == blkno)
2244  return;
2245  }
2246 
2247  ereport(ERROR,
2248  (errcode(ERRCODE_INDEX_CORRUPTED),
2249  errmsg("internal index block lacks downlink in index \"%s\"",
2250  RelationGetRelationName(state->rel)),
2251  errdetail_internal("Block=%u level=%u page lsn=%X/%X.",
2252  blkno, opaque->btpo.level,
2253  (uint32) (pagelsn >> 32),
2254  (uint32) pagelsn)));
2255 }
2256 
2257 /*
2258  * Per-tuple callback from table_index_build_scan, used to determine if index has
2259  * all the entries that definitely should have been observed in leaf pages of
2260  * the target index (that is, all IndexTuples that were fingerprinted by our
2261  * Bloom filter). All heapallindexed checks occur here.
2262  *
2263  * The redundancy between an index and the table it indexes provides a good
2264  * opportunity to detect corruption, especially corruption within the table.
2265  * The high level principle behind the verification performed here is that any
2266  * IndexTuple that should be in an index following a fresh CREATE INDEX (based
2267  * on the same index definition) should also have been in the original,
2268  * existing index, which should have used exactly the same representation
2269  *
2270  * Since the overall structure of the index has already been verified, the most
2271  * likely explanation for error here is a corrupt heap page (could be logical
2272  * or physical corruption). Index corruption may still be detected here,
2273  * though. Only readonly callers will have verified that left links and right
2274  * links are in agreement, and so it's possible that a leaf page transposition
2275  * within index is actually the source of corruption detected here (for
2276  * !readonly callers). The checks performed only for readonly callers might
2277  * more accurately frame the problem as a cross-page invariant issue (this
2278  * could even be due to recovery not replaying all WAL records). The !readonly
2279  * ERROR message raised here includes a HINT about retrying with readonly
2280  * verification, just in case it's a cross-page invariant issue, though that
2281  * isn't particularly likely.
2282  *
2283  * table_index_build_scan() expects to be able to find the root tuple when a
2284  * heap-only tuple (the live tuple at the end of some HOT chain) needs to be
2285  * indexed, in order to replace the actual tuple's TID with the root tuple's
2286  * TID (which is what we're actually passed back here). The index build heap
2287  * scan code will raise an error when a tuple that claims to be the root of the
2288  * heap-only tuple's HOT chain cannot be located. This catches cases where the
2289  * original root item offset/root tuple for a HOT chain indicates (for whatever
2290  * reason) that the entire HOT chain is dead, despite the fact that the latest
2291  * heap-only tuple should be indexed. When this happens, sequential scans may
2292  * always give correct answers, and all indexes may be considered structurally
2293  * consistent (i.e. the nbtree structural checks would not detect corruption).
2294  * It may be the case that only index scans give wrong answers, and yet heap or
2295  * SLRU corruption is the real culprit. (While it's true that LP_DEAD bit
2296  * setting will probably also leave the index in a corrupt state before too
2297  * long, the problem is nonetheless that there is heap corruption.)
2298  *
2299  * Heap-only tuple handling within table_index_build_scan() works in a way that
2300  * helps us to detect index tuples that contain the wrong values (values that
2301  * don't match the latest tuple in the HOT chain). This can happen when there
2302  * is no superseding index tuple due to a faulty assessment of HOT safety,
2303  * perhaps during the original CREATE INDEX. Because the latest tuple's
2304  * contents are used with the root TID, an error will be raised when a tuple
2305  * with the same TID but non-matching attribute values is passed back to us.
2306  * Faulty assessment of HOT-safety was behind at least two distinct CREATE
2307  * INDEX CONCURRENTLY bugs that made it into stable releases, one of which was
2308  * undetected for many years. In short, the same principle that allows a
2309  * REINDEX to repair corruption when there was an (undetected) broken HOT chain
2310  * also allows us to detect the corruption in many cases.
2311  */
2312 static void
2314  bool *isnull, bool tupleIsAlive, void *checkstate)
2315 {
2316  BtreeCheckState *state = (BtreeCheckState *) checkstate;
2317  IndexTuple itup,
2318  norm;
2319 
2320  Assert(state->heapallindexed);
2321 
2322  /* Generate a normalized index tuple for fingerprinting */
2323  itup = index_form_tuple(RelationGetDescr(index), values, isnull);
2324  itup->t_tid = *tid;
2325  norm = bt_normalize_tuple(state, itup);
2326 
2327  /* Probe Bloom filter -- tuple should be present */
2328  if (bloom_lacks_element(state->filter, (unsigned char *) norm,
2329  IndexTupleSize(norm)))
2330  ereport(ERROR,
2332  errmsg("heap tuple (%u,%u) from table \"%s\" lacks matching index tuple within index \"%s\"",
2333  ItemPointerGetBlockNumber(&(itup->t_tid)),
2336  RelationGetRelationName(state->rel)),
2337  !state->readonly
2338  ? errhint("Retrying verification using the function bt_index_parent_check() might provide a more specific error.")
2339  : 0));
2340 
2341  state->heaptuplespresent++;
2342  pfree(itup);
2343  /* Cannot leak memory here */
2344  if (norm != itup)
2345  pfree(norm);
2346 }
2347 
2348 /*
2349  * Normalize an index tuple for fingerprinting.
2350  *
2351  * In general, index tuple formation is assumed to be deterministic by
2352  * heapallindexed verification, and IndexTuples are assumed immutable. While
2353  * the LP_DEAD bit is mutable in leaf pages, that's ItemId metadata, which is
2354  * not fingerprinted. Normalization is required to compensate for corner
2355  * cases where the determinism assumption doesn't quite work.
2356  *
2357  * There is currently one such case: index_form_tuple() does not try to hide
2358  * the source TOAST state of input datums. The executor applies TOAST
2359  * compression for heap tuples based on different criteria to the compression
2360  * applied within btinsert()'s call to index_form_tuple(): it sometimes
2361  * compresses more aggressively, resulting in compressed heap tuple datums but
2362  * uncompressed corresponding index tuple datums. A subsequent heapallindexed
2363  * verification will get a logically equivalent though bitwise unequal tuple
2364  * from index_form_tuple(). False positive heapallindexed corruption reports
2365  * could occur without normalizing away the inconsistency.
2366  *
2367  * Returned tuple is often caller's own original tuple. Otherwise, it is a
2368  * new representation of caller's original index tuple, palloc()'d in caller's
2369  * memory context.
2370  *
2371  * Note: This routine is not concerned with distinctions about the
2372  * representation of tuples beyond those that might break heapallindexed
2373  * verification. In particular, it won't try to normalize opclass-equal
2374  * datums with potentially distinct representations (e.g., btree/numeric_ops
2375  * index datums will not get their display scale normalized-away here).
2376  * Caller does normalization for non-pivot tuples that have a posting list,
2377  * since dummy CREATE INDEX callback code generates new tuples with the same
2378  * normalized representation.
2379  */
2380 static IndexTuple
2382 {
2383  TupleDesc tupleDescriptor = RelationGetDescr(state->rel);
2384  Datum normalized[INDEX_MAX_KEYS];
2385  bool isnull[INDEX_MAX_KEYS];
2386  bool toast_free[INDEX_MAX_KEYS];
2387  bool formnewtup = false;
2388  IndexTuple reformed;
2389  int i;
2390 
2391  /* Caller should only pass "logical" non-pivot tuples here */
2392  Assert(!BTreeTupleIsPosting(itup) && !BTreeTupleIsPivot(itup));
2393 
2394  /* Easy case: It's immediately clear that tuple has no varlena datums */
2395  if (!IndexTupleHasVarwidths(itup))
2396  return itup;
2397 
2398  for (i = 0; i < tupleDescriptor->natts; i++)
2399  {
2400  Form_pg_attribute att;
2401 
2402  att = TupleDescAttr(tupleDescriptor, i);
2403 
2404  /* Assume untoasted/already normalized datum initially */
2405  toast_free[i] = false;
2406  normalized[i] = index_getattr(itup, att->attnum,
2407  tupleDescriptor,
2408  &isnull[i]);
2409  if (att->attbyval || att->attlen != -1 || isnull[i])
2410  continue;
2411 
2412  /*
2413  * Callers always pass a tuple that could safely be inserted into the
2414  * index without further processing, so an external varlena header
2415  * should never be encountered here
2416  */
2417  if (VARATT_IS_EXTERNAL(DatumGetPointer(normalized[i])))
2418  ereport(ERROR,
2419  (errcode(ERRCODE_INDEX_CORRUPTED),
2420  errmsg("external varlena datum in tuple that references heap row (%u,%u) in index \"%s\"",
2421  ItemPointerGetBlockNumber(&(itup->t_tid)),
2423  RelationGetRelationName(state->rel))));
2424  else if (VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])))
2425  {
2426  formnewtup = true;
2427  normalized[i] = PointerGetDatum(PG_DETOAST_DATUM(normalized[i]));
2428  toast_free[i] = true;
2429  }
2430  }
2431 
2432  /* Easier case: Tuple has varlena datums, none of which are compressed */
2433  if (!formnewtup)
2434  return itup;
2435 
2436  /*
2437  * Hard case: Tuple had compressed varlena datums that necessitate
2438  * creating normalized version of the tuple from uncompressed input datums
2439  * (normalized input datums). This is rather naive, but shouldn't be
2440  * necessary too often.
2441  *
2442  * Note that we rely on deterministic index_form_tuple() TOAST compression
2443  * of normalized input.
2444  */
2445  reformed = index_form_tuple(tupleDescriptor, normalized, isnull);
2446  reformed->t_tid = itup->t_tid;
2447 
2448  /* Cannot leak memory here */
2449  for (i = 0; i < tupleDescriptor->natts; i++)
2450  if (toast_free[i])
2451  pfree(DatumGetPointer(normalized[i]));
2452 
2453  return reformed;
2454 }
2455 
2456 /*
2457  * Produce palloc()'d "plain" tuple for nth posting list entry/TID.
2458  *
2459  * In general, deduplication is not supposed to change the logical contents of
2460  * an index. Multiple index tuples are merged together into one equivalent
2461  * posting list index tuple when convenient.
2462  *
2463  * heapallindexed verification must normalize-away this variation in
2464  * representation by converting posting list tuples into two or more "plain"
2465  * tuples. Each tuple must be fingerprinted separately -- there must be one
2466  * tuple for each corresponding Bloom filter probe during the heap scan.
2467  *
2468  * Note: Caller still needs to call bt_normalize_tuple() with returned tuple.
2469  */
2470 static inline IndexTuple
2472 {
2473  Assert(BTreeTupleIsPosting(itup));
2474 
2475  /* Returns non-posting-list tuple */
2476  return _bt_form_posting(itup, BTreeTupleGetPostingN(itup, n), 1);
2477 }
2478 
2479 /*
2480  * Search for itup in index, starting from fast root page. itup must be a
2481  * non-pivot tuple. This is only supported with heapkeyspace indexes, since
2482  * we rely on having fully unique keys to find a match with only a single
2483  * visit to a leaf page, barring an interrupted page split, where we may have
2484  * to move right. (A concurrent page split is impossible because caller must
2485  * be readonly caller.)
2486  *
2487  * This routine can detect very subtle transitive consistency issues across
2488  * more than one level of the tree. Leaf pages all have a high key (even the
2489  * rightmost page has a conceptual positive infinity high key), but not a low
2490  * key. Their downlink in parent is a lower bound, which along with the high
2491  * key is almost enough to detect every possible inconsistency. A downlink
2492  * separator key value won't always be available from parent, though, because
2493  * the first items of internal pages are negative infinity items, truncated
2494  * down to zero attributes during internal page splits. While it's true that
2495  * bt_child_check() and the high key check can detect most imaginable key
2496  * space problems, there are remaining problems it won't detect with non-pivot
2497  * tuples in cousin leaf pages. Starting a search from the root for every
2498  * existing leaf tuple detects small inconsistencies in upper levels of the
2499  * tree that cannot be detected any other way. (Besides all this, this is
2500  * probably also useful as a direct test of the code used by index scans
2501  * themselves.)
2502  */
2503 static bool
2505 {
2506  BTScanInsert key;
2507  BTStack stack;
2508  Buffer lbuf;
2509  bool exists;
2510 
2511  key = _bt_mkscankey(state->rel, itup);
2512  Assert(key->heapkeyspace && key->scantid != NULL);
2513 
2514  /*
2515  * Search from root.
2516  *
2517  * Ideally, we would arrange to only move right within _bt_search() when
2518  * an interrupted page split is detected (i.e. when the incomplete split
2519  * bit is found to be set), but for now we accept the possibility that
2520  * that could conceal an inconsistency.
2521  */
2522  Assert(state->readonly && state->rootdescend);
2523  exists = false;
2524  stack = _bt_search(state->rel, key, &lbuf, BT_READ, NULL);
2525 
2526  if (BufferIsValid(lbuf))
2527  {
2528  BTInsertStateData insertstate;
2529  OffsetNumber offnum;
2530  Page page;
2531 
2532  insertstate.itup = itup;
2533  insertstate.itemsz = MAXALIGN(IndexTupleSize(itup));
2534  insertstate.itup_key = key;
2535  insertstate.postingoff = 0;
2536  insertstate.bounds_valid = false;
2537  insertstate.buf = lbuf;
2538 
2539  /* Get matching tuple on leaf page */
2540  offnum = _bt_binsrch_insert(state->rel, &insertstate);
2541  /* Compare first >= matching item on leaf page, if any */
2542  page = BufferGetPage(lbuf);
2543  /* Should match on first heap TID when tuple has a posting list */
2544  if (offnum <= PageGetMaxOffsetNumber(page) &&
2545  insertstate.postingoff <= 0 &&
2546  _bt_compare(state->rel, key, page, offnum) == 0)
2547  exists = true;
2548  _bt_relbuf(state->rel, lbuf);
2549  }
2550 
2551  _bt_freestack(stack);
2552  pfree(key);
2553 
2554  return exists;
2555 }
2556 
2557 /*
2558  * Is particular offset within page (whose special state is passed by caller)
2559  * the page negative-infinity item?
2560  *
2561  * As noted in comments above _bt_compare(), there is special handling of the
2562  * first data item as a "negative infinity" item. The hard-coding within
2563  * _bt_compare() makes comparing this item for the purposes of verification
2564  * pointless at best, since the IndexTuple only contains a valid TID (a
2565  * reference TID to child page).
2566  */
2567 static inline bool
2569 {
2570  /*
2571  * For internal pages only, the first item after high key, if any, is
2572  * negative infinity item. Internal pages always have a negative infinity
2573  * item, whereas leaf pages never have one. This implies that negative
2574  * infinity item is either first or second line item, or there is none
2575  * within page.
2576  *
2577  * Negative infinity items are a special case among pivot tuples. They
2578  * always have zero attributes, while all other pivot tuples always have
2579  * nkeyatts attributes.
2580  *
2581  * Right-most pages don't have a high key, but could be said to
2582  * conceptually have a "positive infinity" high key. Thus, there is a
2583  * symmetry between down link items in parent pages, and high keys in
2584  * children. Together, they represent the part of the key space that
2585  * belongs to each page in the index. For example, all children of the
2586  * root page will have negative infinity as a lower bound from root
2587  * negative infinity downlink, and positive infinity as an upper bound
2588  * (implicitly, from "imaginary" positive infinity high key in root).
2589  */
2590  return !P_ISLEAF(opaque) && offset == P_FIRSTDATAKEY(opaque);
2591 }
2592 
2593 /*
2594  * Does the invariant hold that the key is strictly less than a given upper
2595  * bound offset item?
2596  *
2597  * Verifies line pointer on behalf of caller.
2598  *
2599  * If this function returns false, convention is that caller throws error due
2600  * to corruption.
2601  */
2602 static inline bool
2604  OffsetNumber upperbound)
2605 {
2606  ItemId itemid;
2607  int32 cmp;
2608 
2609  Assert(key->pivotsearch);
2610 
2611  /* Verify line pointer before checking tuple */
2612  itemid = PageGetItemIdCareful(state, state->targetblock, state->target,
2613  upperbound);
2614  /* pg_upgrade'd indexes may legally have equal sibling tuples */
2615  if (!key->heapkeyspace)
2616  return invariant_leq_offset(state, key, upperbound);
2617 
2618  cmp = _bt_compare(state->rel, key, state->target, upperbound);
2619 
2620  /*
2621  * _bt_compare() is capable of determining that a scankey with a
2622  * filled-out attribute is greater than pivot tuples where the comparison
2623  * is resolved at a truncated attribute (value of attribute in pivot is
2624  * minus infinity). However, it is not capable of determining that a
2625  * scankey is _less than_ a tuple on the basis of a comparison resolved at
2626  * _scankey_ minus infinity attribute. Complete an extra step to simulate
2627  * having minus infinity values for omitted scankey attribute(s).
2628  */
2629  if (cmp == 0)
2630  {
2631  BTPageOpaque topaque;
2632  IndexTuple ritup;
2633  int uppnkeyatts;
2634  ItemPointer rheaptid;
2635  bool nonpivot;
2636 
2637  ritup = (IndexTuple) PageGetItem(state->target, itemid);
2638  topaque = (BTPageOpaque) PageGetSpecialPointer(state->target);
2639  nonpivot = P_ISLEAF(topaque) && upperbound >= P_FIRSTDATAKEY(topaque);
2640 
2641  /* Get number of keys + heap TID for item to the right */
2642  uppnkeyatts = BTreeTupleGetNKeyAtts(ritup, state->rel);
2643  rheaptid = BTreeTupleGetHeapTIDCareful(state, ritup, nonpivot);
2644 
2645  /* Heap TID is tiebreaker key attribute */
2646  if (key->keysz == uppnkeyatts)
2647  return key->scantid == NULL && rheaptid != NULL;
2648 
2649  return key->keysz < uppnkeyatts;
2650  }
2651 
2652  return cmp < 0;
2653 }
2654 
2655 /*
2656  * Does the invariant hold that the key is less than or equal to a given upper
2657  * bound offset item?
2658  *
2659  * Caller should have verified that upperbound's line pointer is consistent
2660  * using PageGetItemIdCareful() call.
2661  *
2662  * If this function returns false, convention is that caller throws error due
2663  * to corruption.
2664  */
2665 static inline bool
2667  OffsetNumber upperbound)
2668 {
2669  int32 cmp;
2670 
2671  Assert(key->pivotsearch);
2672 
2673  cmp = _bt_compare(state->rel, key, state->target, upperbound);
2674 
2675  return cmp <= 0;
2676 }
2677 
2678 /*
2679  * Does the invariant hold that the key is strictly greater than a given lower
2680  * bound offset item?
2681  *
2682  * Caller should have verified that lowerbound's line pointer is consistent
2683  * using PageGetItemIdCareful() call.
2684  *
2685  * If this function returns false, convention is that caller throws error due
2686  * to corruption.
2687  */
2688 static inline bool
2690  OffsetNumber lowerbound)
2691 {
2692  int32 cmp;
2693 
2694  Assert(key->pivotsearch);
2695 
2696  cmp = _bt_compare(state->rel, key, state->target, lowerbound);
2697 
2698  /* pg_upgrade'd indexes may legally have equal sibling tuples */
2699  if (!key->heapkeyspace)
2700  return cmp >= 0;
2701 
2702  /*
2703  * No need to consider the possibility that scankey has attributes that we
2704  * need to force to be interpreted as negative infinity. _bt_compare() is
2705  * able to determine that scankey is greater than negative infinity. The
2706  * distinction between "==" and "<" isn't interesting here, since
2707  * corruption is indicated either way.
2708  */
2709  return cmp > 0;
2710 }
2711 
2712 /*
2713  * Does the invariant hold that the key is strictly less than a given upper
2714  * bound offset item, with the offset relating to a caller-supplied page that
2715  * is not the current target page?
2716  *
2717  * Caller's non-target page is a child page of the target, checked as part of
2718  * checking a property of the target page (i.e. the key comes from the
2719  * target). Verifies line pointer on behalf of caller.
2720  *
2721  * If this function returns false, convention is that caller throws error due
2722  * to corruption.
2723  */
2724 static inline bool
2726  BlockNumber nontargetblock, Page nontarget,
2727  OffsetNumber upperbound)
2728 {
2729  ItemId itemid;
2730  int32 cmp;
2731 
2732  Assert(key->pivotsearch);
2733 
2734  /* Verify line pointer before checking tuple */
2735  itemid = PageGetItemIdCareful(state, nontargetblock, nontarget,
2736  upperbound);
2737  cmp = _bt_compare(state->rel, key, nontarget, upperbound);
2738 
2739  /* pg_upgrade'd indexes may legally have equal sibling tuples */
2740  if (!key->heapkeyspace)
2741  return cmp <= 0;
2742 
2743  /* See invariant_l_offset() for an explanation of this extra step */
2744  if (cmp == 0)
2745  {
2746  IndexTuple child;
2747  int uppnkeyatts;
2748  ItemPointer childheaptid;
2749  BTPageOpaque copaque;
2750  bool nonpivot;
2751 
2752  child = (IndexTuple) PageGetItem(nontarget, itemid);
2753  copaque = (BTPageOpaque) PageGetSpecialPointer(nontarget);
2754  nonpivot = P_ISLEAF(copaque) && upperbound >= P_FIRSTDATAKEY(copaque);
2755 
2756  /* Get number of keys + heap TID for child/non-target item */
2757  uppnkeyatts = BTreeTupleGetNKeyAtts(child, state->rel);
2758  childheaptid = BTreeTupleGetHeapTIDCareful(state, child, nonpivot);
2759 
2760  /* Heap TID is tiebreaker key attribute */
2761  if (key->keysz == uppnkeyatts)
2762  return key->scantid == NULL && childheaptid != NULL;
2763 
2764  return key->keysz < uppnkeyatts;
2765  }
2766 
2767  return cmp < 0;
2768 }
2769 
2770 /*
2771  * Given a block number of a B-Tree page, return page in palloc()'d memory.
2772  * While at it, perform some basic checks of the page.
2773  *
2774  * There is never an attempt to get a consistent view of multiple pages using
2775  * multiple concurrent buffer locks; in general, we only acquire a single pin
2776  * and buffer lock at a time, which is often all that the nbtree code requires.
2777  *
2778  * Operating on a copy of the page is useful because it prevents control
2779  * getting stuck in an uninterruptible state when an underlying operator class
2780  * misbehaves.
2781  */
2782 static Page
2784 {
2785  Buffer buffer;
2786  Page page;
2787  BTPageOpaque opaque;
2788  OffsetNumber maxoffset;
2789 
2790  page = palloc(BLCKSZ);
2791 
2792  /*
2793  * We copy the page into local storage to avoid holding pin on the buffer
2794  * longer than we must.
2795  */
2796  buffer = ReadBufferExtended(state->rel, MAIN_FORKNUM, blocknum, RBM_NORMAL,
2797  state->checkstrategy);
2798  LockBuffer(buffer, BT_READ);
2799 
2800  /*
2801  * Perform the same basic sanity checking that nbtree itself performs for
2802  * every page:
2803  */
2804  _bt_checkpage(state->rel, buffer);
2805 
2806  /* Only use copy of page in palloc()'d memory */
2807  memcpy(page, BufferGetPage(buffer), BLCKSZ);
2808  UnlockReleaseBuffer(buffer);
2809 
2810  opaque = (BTPageOpaque) PageGetSpecialPointer(page);
2811 
2812  if (P_ISMETA(opaque) && blocknum != BTREE_METAPAGE)
2813  ereport(ERROR,
2814  (errcode(ERRCODE_INDEX_CORRUPTED),
2815  errmsg("invalid meta page found at block %u in index \"%s\"",
2816  blocknum, RelationGetRelationName(state->rel))));
2817 
2818  /* Check page from block that ought to be meta page */
2819  if (blocknum == BTREE_METAPAGE)
2820  {
2821  BTMetaPageData *metad = BTPageGetMeta(page);
2822 
2823  if (!P_ISMETA(opaque) ||
2824  metad->btm_magic != BTREE_MAGIC)
2825  ereport(ERROR,
2826  (errcode(ERRCODE_INDEX_CORRUPTED),
2827  errmsg("index \"%s\" meta page is corrupt",
2828  RelationGetRelationName(state->rel))));
2829 
2830  if (metad->btm_version < BTREE_MIN_VERSION ||
2831  metad->btm_version > BTREE_VERSION)
2832  ereport(ERROR,
2833  (errcode(ERRCODE_INDEX_CORRUPTED),
2834  errmsg("version mismatch in index \"%s\": file version %d, "
2835  "current version %d, minimum supported version %d",
2836  RelationGetRelationName(state->rel),
2837  metad->btm_version, BTREE_VERSION,
2838  BTREE_MIN_VERSION)));
2839 
2840  /* Finished with metapage checks */
2841  return page;
2842  }
2843 
2844  /*
2845  * Deleted pages have no sane "level" field, so can only check non-deleted
2846  * page level
2847  */
2848  if (P_ISLEAF(opaque) && !P_ISDELETED(opaque) && opaque->btpo.level != 0)
2849  ereport(ERROR,
2850  (errcode(ERRCODE_INDEX_CORRUPTED),
2851  errmsg("invalid leaf page level %u for block %u in index \"%s\"",
2852  opaque->btpo.level, blocknum, RelationGetRelationName(state->rel))));
2853 
2854  if (!P_ISLEAF(opaque) && !P_ISDELETED(opaque) &&
2855  opaque->btpo.level == 0)
2856  ereport(ERROR,
2857  (errcode(ERRCODE_INDEX_CORRUPTED),
2858  errmsg("invalid internal page level 0 for block %u in index \"%s\"",
2859  blocknum, RelationGetRelationName(state->rel))));
2860 
2861  /*
2862  * Sanity checks for number of items on page.
2863  *
2864  * As noted at the beginning of _bt_binsrch(), an internal page must have
2865  * children, since there must always be a negative infinity downlink
2866  * (there may also be a highkey). In the case of non-rightmost leaf
2867  * pages, there must be at least a highkey. Deleted pages on replica
2868  * might contain no items, because page unlink re-initializes
2869  * page-to-be-deleted. Deleted pages with no items might be on primary
2870  * too due to preceding recovery, but on primary new deletions can't
2871  * happen concurrently to amcheck.
2872  *
2873  * This is correct when pages are half-dead, since internal pages are
2874  * never half-dead, and leaf pages must have a high key when half-dead
2875  * (the rightmost page can never be deleted). It's also correct with
2876  * fully deleted pages: _bt_unlink_halfdead_page() doesn't change anything
2877  * about the target page other than setting the page as fully dead, and
2878  * setting its xact field. In particular, it doesn't change the sibling
2879  * links in the deletion target itself, since they're required when index
2880  * scans land on the deletion target, and then need to move right (or need
2881  * to move left, in the case of backward index scans).
2882  */
2883  maxoffset = PageGetMaxOffsetNumber(page);
2884  if (maxoffset > MaxIndexTuplesPerPage)
2885  ereport(ERROR,
2886  (errcode(ERRCODE_INDEX_CORRUPTED),
2887  errmsg("Number of items on block %u of index \"%s\" exceeds MaxIndexTuplesPerPage (%u)",
2888  blocknum, RelationGetRelationName(state->rel),
2890 
2891  if (!P_ISLEAF(opaque) && !P_ISDELETED(opaque) && maxoffset < P_FIRSTDATAKEY(opaque))
2892  ereport(ERROR,
2893  (errcode(ERRCODE_INDEX_CORRUPTED),
2894  errmsg("internal block %u in index \"%s\" lacks high key and/or at least one downlink",
2895  blocknum, RelationGetRelationName(state->rel))));
2896 
2897  if (P_ISLEAF(opaque) && !P_ISDELETED(opaque) && !P_RIGHTMOST(opaque) && maxoffset < P_HIKEY)
2898  ereport(ERROR,
2899  (errcode(ERRCODE_INDEX_CORRUPTED),
2900  errmsg("non-rightmost leaf block %u in index \"%s\" lacks high key item",
2901  blocknum, RelationGetRelationName(state->rel))));
2902 
2903  /*
2904  * In general, internal pages are never marked half-dead, except on
2905  * versions of Postgres prior to 9.4, where it can be valid transient
2906  * state. This state is nonetheless treated as corruption by VACUUM on
2907  * from version 9.4 on, so do the same here. See _bt_pagedel() for full
2908  * details.
2909  *
2910  * Internal pages should never have garbage items, either.
2911  */
2912  if (!P_ISLEAF(opaque) && P_ISHALFDEAD(opaque))
2913  ereport(ERROR,
2914  (errcode(ERRCODE_INDEX_CORRUPTED),
2915  errmsg("internal page block %u in index \"%s\" is half-dead",
2916  blocknum, RelationGetRelationName(state->rel)),
2917  errhint("This can be caused by an interrupted VACUUM in version 9.3 or older, before upgrade. Please REINDEX it.")));
2918 
2919  if (!P_ISLEAF(opaque) && P_HAS_GARBAGE(opaque))
2920  ereport(ERROR,
2921  (errcode(ERRCODE_INDEX_CORRUPTED),
2922  errmsg("internal page block %u in index \"%s\" has garbage items",
2923  blocknum, RelationGetRelationName(state->rel))));
2924 
2925  return page;
2926 }
2927 
2928 /*
2929  * _bt_mkscankey() wrapper that automatically prevents insertion scankey from
2930  * being considered greater than the pivot tuple that its values originated
2931  * from (or some other identical pivot tuple) in the common case where there
2932  * are truncated/minus infinity attributes. Without this extra step, there
2933  * are forms of corruption that amcheck could theoretically fail to report.
2934  *
2935  * For example, invariant_g_offset() might miss a cross-page invariant failure
2936  * on an internal level if the scankey built from the first item on the
2937  * target's right sibling page happened to be equal to (not greater than) the
2938  * last item on target page. The !pivotsearch tiebreaker in _bt_compare()
2939  * might otherwise cause amcheck to assume (rather than actually verify) that
2940  * the scankey is greater.
2941  */
2942 static inline BTScanInsert
2944 {
2945  BTScanInsert skey;
2946 
2947  skey = _bt_mkscankey(rel, itup);
2948  skey->pivotsearch = true;
2949 
2950  return skey;
2951 }
2952 
2953 /*
2954  * PageGetItemId() wrapper that validates returned line pointer.
2955  *
2956  * Buffer page/page item access macros generally trust that line pointers are
2957  * not corrupt, which might cause problems for verification itself. For
2958  * example, there is no bounds checking in PageGetItem(). Passing it a
2959  * corrupt line pointer can cause it to return a tuple/pointer that is unsafe
2960  * to dereference.
2961  *
2962  * Validating line pointers before tuples avoids undefined behavior and
2963  * assertion failures with corrupt indexes, making the verification process
2964  * more robust and predictable.
2965  */
2966 static ItemId
2968  OffsetNumber offset)
2969 {
2970  ItemId itemid = PageGetItemId(page, offset);
2971 
2972  if (ItemIdGetOffset(itemid) + ItemIdGetLength(itemid) >
2973  BLCKSZ - sizeof(BTPageOpaqueData))
2974  ereport(ERROR,
2975  (errcode(ERRCODE_INDEX_CORRUPTED),
2976  errmsg("line pointer points past end of tuple space in index \"%s\"",
2977  RelationGetRelationName(state->rel)),
2978  errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
2979  block, offset, ItemIdGetOffset(itemid),
2980  ItemIdGetLength(itemid),
2981  ItemIdGetFlags(itemid))));
2982 
2983  /*
2984  * Verify that line pointer isn't LP_REDIRECT or LP_UNUSED, since nbtree
2985  * never uses either. Verify that line pointer has storage, too, since
2986  * even LP_DEAD items should within nbtree.
2987  */
2988  if (ItemIdIsRedirected(itemid) || !ItemIdIsUsed(itemid) ||
2989  ItemIdGetLength(itemid) == 0)
2990  ereport(ERROR,
2991  (errcode(ERRCODE_INDEX_CORRUPTED),
2992  errmsg("invalid line pointer storage in index \"%s\"",
2993  RelationGetRelationName(state->rel)),
2994  errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
2995  block, offset, ItemIdGetOffset(itemid),
2996  ItemIdGetLength(itemid),
2997  ItemIdGetFlags(itemid))));
2998 
2999  return itemid;
3000 }
3001 
3002 /*
3003  * BTreeTupleGetHeapTID() wrapper that enforces that a heap TID is present in
3004  * cases where that is mandatory (i.e. for non-pivot tuples)
3005  */
3006 static inline ItemPointer
3008  bool nonpivot)
3009 {
3010  ItemPointer htid;
3011 
3012  /*
3013  * Caller determines whether this is supposed to be a pivot or non-pivot
3014  * tuple using page type and item offset number. Verify that tuple
3015  * metadata agrees with this.
3016  */
3017  Assert(state->heapkeyspace);
3018  if (BTreeTupleIsPivot(itup) && nonpivot)
3019  ereport(ERROR,
3020  (errcode(ERRCODE_INDEX_CORRUPTED),
3021  errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected pivot tuple",
3022  state->targetblock,
3023  RelationGetRelationName(state->rel))));
3024 
3025  if (!BTreeTupleIsPivot(itup) && !nonpivot)
3026  ereport(ERROR,
3027  (errcode(ERRCODE_INDEX_CORRUPTED),
3028  errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected non-pivot tuple",
3029  state->targetblock,
3030  RelationGetRelationName(state->rel))));
3031 
3032  htid = BTreeTupleGetHeapTID(itup);
3033  if (!ItemPointerIsValid(htid) && nonpivot)
3034  ereport(ERROR,
3035  (errcode(ERRCODE_INDEX_CORRUPTED),
3036  errmsg("block %u or its right sibling block or child block in index \"%s\" contains non-pivot tuple that lacks a heap TID",
3037  state->targetblock,
3038  RelationGetRelationName(state->rel))));
3039 
3040  return htid;
3041 }
3042 
3043 /*
3044  * Return the "pointed to" TID for itup, which is used to generate a
3045  * descriptive error message. itup must be a "data item" tuple (it wouldn't
3046  * make much sense to call here with a high key tuple, since there won't be a
3047  * valid downlink/block number to display).
3048  *
3049  * Returns either a heap TID (which will be the first heap TID in posting list
3050  * if itup is posting list tuple), or a TID that contains downlink block
3051  * number, plus some encoded metadata (e.g., the number of attributes present
3052  * in itup).
3053  */
3054 static inline ItemPointer
3056 {
3057  /*
3058  * Rely on the assumption that !heapkeyspace internal page data items will
3059  * correctly return TID with downlink here -- BTreeTupleGetHeapTID() won't
3060  * recognize it as a pivot tuple, but everything still works out because
3061  * the t_tid field is still returned
3062  */
3063  if (!BTreeTupleIsPivot(itup))
3064  return BTreeTupleGetHeapTID(itup);
3065 
3066  /* Pivot tuple returns TID with downlink block (heapkeyspace variant) */
3067  return &itup->t_tid;
3068 }
PG_MODULE_MAGIC
Definition: verify_nbtree.c:43
BufferAccessStrategy GetAccessStrategy(BufferAccessStrategyType btype)
Definition: freelist.c:542
int32 ItemPointerCompare(ItemPointer arg1, ItemPointer arg2)
Definition: itemptr.c:52
#define ItemPointerIsValid(pointer)
Definition: itemptr.h:82
#define ItemPointerGetOffsetNumberNoCheck(pointer)
Definition: itemptr.h:108
bloom_filter * bloom_create(int64 total_elems, int bloom_work_mem, uint64 seed)
Definition: bloomfilter.c:88
Oid IndexGetRelation(Oid indexId, bool missing_ok)
Definition: index.c:3408
#define VARATT_IS_COMPRESSED(PTR)
Definition: postgres.h:312
static bool invariant_leq_offset(BtreeCheckState *state, BTScanInsert key, OffsetNumber upperbound)
static ItemPointer BTreeTupleGetPointsToTID(IndexTuple itup)
void _bt_freestack(BTStack stack)
Definition: nbtutils.c:175
BlockNumber targetblock
Definition: verify_nbtree.c:93
IndexTuple _bt_form_posting(IndexTuple base, ItemPointer htids, int nhtids)
Definition: nbtdedup.c:601
BlockNumber btpo_next
Definition: nbtree.h:59
static bool btree_index_mainfork_expected(Relation rel)
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:211
#define AllocSetContextCreate
Definition: memutils.h:170
#define DEBUG1
Definition: elog.h:25
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:133
int errhint(const char *fmt,...)
Definition: elog.c:1071
#define ERRCODE_UNDEFINED_TABLE
Definition: pgbench.c:73
Datum bt_index_parent_check(PG_FUNCTION_ARGS)
static void btree_index_checkable(Relation rel)
#define ItemIdIsRedirected(itemId)
Definition: itemid.h:106
#define P_IGNORE(opaque)
Definition: nbtree.h:219
static bool BTreeTupleIsPivot(IndexTuple itup)
Definition: nbtree.h:348
bool bounds_valid
Definition: nbtree.h:696
static BtreeLevel bt_check_level_from_leftmost(BtreeCheckState *state, BtreeLevel level)
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:865
uint32 btm_version
Definition: nbtree.h:101
static ItemPointer BTreeTupleGetHeapTID(IndexTuple itup)
Definition: nbtree.h:506
#define RelationGetDescr(relation)
Definition: rel.h:482
int LOCKMODE
Definition: lockdefs.h:26
BTScanInsert _bt_mkscankey(Relation rel, IndexTuple itup)
Definition: nbtutils.c:90
ItemPointer scantid
Definition: nbtree.h:664
static Page palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum)
uint32 level
#define PointerGetDatum(X)
Definition: postgres.h:556
#define BTREE_VERSION
Definition: nbtree.h:143
void bloom_add_element(bloom_filter *filter, unsigned char *elem, size_t len)
Definition: bloomfilter.c:136
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
long random(void)
Definition: random.c:22
struct SMgrRelationData * rd_smgr
Definition: rel.h:57
static void bt_tuple_present_callback(Relation index, ItemPointer tid, Datum *values, bool *isnull, bool tupleIsAlive, void *checkstate)
char * psprintf(const char *fmt,...)
Definition: psprintf.c:46
#define P_FIRSTDATAKEY(opaque)
Definition: nbtree.h:244
uint32 btm_magic
Definition: nbtree.h:100
Buffer ReadBufferExtended(Relation reln, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy)
Definition: bufmgr.c:652
static IndexTuple bt_normalize_tuple(BtreeCheckState *state, IndexTuple itup)
ItemPointerData t_tid
Definition: itup.h:37
#define ItemIdIsUsed(itemId)
Definition: itemid.h:92
union BTPageOpaqueData::@45 btpo
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
#define IsolationUsesXactSnapshot()
Definition: xact.h:51
#define P_NONE
Definition: nbtree.h:206
static BlockNumber BTreeTupleGetDownLink(IndexTuple pivot)
Definition: nbtree.h:424
#define AccessShareLock
Definition: lockdefs.h:36
#define BTMaxItemSizeNoHeapTid(page)
Definition: nbtree.h:163
Oid * ii_ExclusionProcs
Definition: execnodes.h:166
#define P_HAS_GARBAGE(opaque)
Definition: nbtree.h:220
int errcode(int sqlerrcode)
Definition: elog.c:610
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:136
static BTScanInsert bt_right_page_check_scankey(BtreeCheckState *state)
uint32 BlockNumber
Definition: block.h:31
#define P_INCOMPLETE_SPLIT(opaque)
Definition: nbtree.h:221
#define PG_GETARG_BOOL(n)
Definition: fmgr.h:274
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2311
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:247
#define MaxTIDsPerBTreePage
Definition: nbtree.h:179
Form_pg_class rd_rel
Definition: rel.h:109
unsigned int Oid
Definition: postgres_ext.h:31
bool RecoveryInProgress(void)
Definition: xlog.c:8069
#define ItemIdIsDead(itemId)
Definition: itemid.h:113
#define BTreeTupleGetNAtts(itup, rel)
Definition: nbtree.h:445
BufferAccessStrategy checkstrategy
Definition: verify_nbtree.c:84
Snapshot GetTransactionSnapshot(void)
Definition: snapmgr.c:306
#define OidIsValid(objectId)
Definition: c.h:644
#define PageGetMaxOffsetNumber(page)
Definition: bufpage.h:357
BTPageOpaqueData * BTPageOpaque
Definition: nbtree.h:69
static void bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit, BlockNumber targetblock, Page target)
static TableScanDesc table_beginscan_strat(Relation rel, Snapshot snapshot, int nkeys, struct ScanKeyData *key, bool allow_strat, bool allow_sync)
Definition: tableam.h:778
bloom_filter * filter
signed int int32
Definition: c.h:355
int errdetail_internal(const char *fmt,...)
Definition: elog.c:984
struct HeapTupleData * rd_indextuple
Definition: rel.h:176
uint16 OffsetNumber
Definition: off.h:24
HeapTupleHeader t_data
Definition: htup.h:68
static bool invariant_l_offset(BtreeCheckState *state, BTScanInsert key, OffsetNumber upperbound)
Definition: type.h:89
#define P_ISMETA(opaque)
Definition: nbtree.h:217
static void bt_index_check_internal(Oid indrelid, bool parentcheck, bool heapallindexed, bool rootdescend)
static bool invariant_g_offset(BtreeCheckState *state, BTScanInsert key, OffsetNumber lowerbound)
#define RelationOpenSmgr(relation)
Definition: rel.h:513
#define VARATT_IS_EXTERNAL(PTR)
Definition: postgres.h:313
IndexTuple index_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: indextuple.c:47
#define BT_READ
Definition: nbtree.h:587
XLogRecPtr targetlsn
Definition: verify_nbtree.c:95
Form_pg_index rd_index
Definition: rel.h:174
BlockNumber btm_fastroot
Definition: nbtree.h:104
#define ItemIdGetLength(itemId)
Definition: itemid.h:59
void pfree(void *pointer)
Definition: mcxt.c:1056
#define BTREE_MAGIC
Definition: nbtree.h:142
void _bt_checkpage(Relation rel, Buffer buf)
Definition: nbtpage.c:725
#define P_ISHALFDEAD(opaque)
Definition: nbtree.h:218
void UnlockReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:3506
#define ERROR
Definition: elog.h:43
static double table_index_build_scan(Relation table_rel, Relation index_rel, struct IndexInfo *index_info, bool allow_sync, bool progress, IndexBuildCallback callback, void *callback_state, TableScanDesc scan)
Definition: tableam.h:1524
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:192
#define DEBUG2
Definition: elog.h:24
#define BTPageGetMeta(p)
Definition: nbtree.h:114
BlockNumber btpo_prev
Definition: nbtree.h:58
Datum bt_index_check(PG_FUNCTION_ARGS)
#define PG_GETARG_OID(n)
Definition: fmgr.h:275
static void bt_check_every_level(Relation rel, Relation heaprel, bool heapkeyspace, bool readonly, bool heapallindexed, bool rootdescend)
TransactionId RecentGlobalXmin
Definition: snapmgr.c:168
OffsetNumber _bt_binsrch_insert(Relation rel, BTInsertState insertstate)
Definition: nbtsearch.c:451
BlockNumber leftmost
IndexTupleData * IndexTuple
Definition: itup.h:53
int errdetail(const char *fmt,...)
Definition: elog.c:957
#define RelationGetRelationName(relation)
Definition: rel.h:490
#define P_LEFTMOST(opaque)
Definition: nbtree.h:212
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:193
unsigned int uint32
Definition: c.h:367
#define ItemIdGetOffset(itemId)
Definition: itemid.h:65
TransactionId xmin
Definition: snapshot.h:157
MemoryContext CurrentMemoryContext
Definition: mcxt.c:38
IndexTuple itup
Definition: nbtree.h:684
int32 _bt_compare(Relation rel, BTScanInsert key, Page page, OffsetNumber offnum)
Definition: nbtsearch.c:648
#define BufferGetPage(buffer)
Definition: bufmgr.h:169
static ItemPointer BTreeTupleGetHeapTIDCareful(BtreeCheckState *state, IndexTuple itup, bool nonpivot)
#define BTREE_METAPAGE
Definition: nbtree.h:141
bool pivotsearch
Definition: nbtree.h:663
#define P_ISDELETED(opaque)
Definition: nbtree.h:216
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:300
#define P_ISROOT(opaque)
Definition: nbtree.h:215
void _bt_metaversion(Relation rel, bool *heapkeyspace, bool *allequalimage)
Definition: nbtpage.c:667
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:907
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:45
void bloom_free(bloom_filter *filter)
Definition: bloomfilter.c:127
#define PageGetItemId(page, offsetNumber)
Definition: bufpage.h:235
Relation heaprel
Definition: verify_nbtree.c:72
uint32 btm_fastlevel
Definition: nbtree.h:105
static ItemPointer BTreeTupleGetMaxHeapTID(IndexTuple itup)
Definition: nbtree.h:532
uint32 level
Definition: nbtree.h:62
static bool invariant_l_nontarget_offset(BtreeCheckState *state, BTScanInsert key, BlockNumber nontargetblock, Page nontarget, OffsetNumber upperbound)
#define ItemIdGetFlags(itemId)
Definition: itemid.h:71
void * palloc0(Size size)
Definition: mcxt.c:980
uintptr_t Datum
Definition: postgres.h:367
static BTScanInsert bt_mkscankey_pivotsearch(Relation rel, IndexTuple itup)
void LockBuffer(Buffer buffer, int mode)
Definition: bufmgr.c:3722
BlockNumber btm_root
Definition: nbtree.h:102
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:211
#define BTREE_MIN_VERSION
Definition: nbtree.h:144
#define InvalidOffsetNumber
Definition: off.h:26
void _bt_relbuf(Relation rel, Buffer buf)
Definition: nbtpage.c:947
#define ereport(elevel,...)
Definition: elog.h:144
int maintenance_work_mem
Definition: globals.c:122
#define BlockNumberIsValid(blockNumber)
Definition: block.h:70
#define NOTICE
Definition: elog.h:37
static ItemPointer BTreeTupleGetPostingN(IndexTuple posting, int n)
Definition: nbtree.h:412
#define PG_RETURN_VOID()
Definition: fmgr.h:348
static bool BTreeTupleIsPosting(IndexTuple itup)
Definition: nbtree.h:360
int errmsg_internal(const char *fmt,...)
Definition: elog.c:911
bool ii_Unique
Definition: execnodes.h:172
#define Max(x, y)
Definition: c.h:914
bool _bt_check_natts(Relation rel, bool heapkeyspace, Page page, OffsetNumber offnum)
Definition: nbtutils.c:2465
static void bt_child_highkey_check(BtreeCheckState *state, OffsetNumber target_downlinkoffnum, Page loaded_child, uint32 target_level)
uint64 XLogRecPtr
Definition: xlogdefs.h:21
BTScanInsert itup_key
Definition: nbtree.h:686
#define Assert(condition)
Definition: c.h:738
Definition: regguts.h:298
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:593
#define BTreeTupleGetNKeyAtts(itup, rel)
Definition: verify_nbtree.c:50
static void bt_target_page_check(BtreeCheckState *state)
struct BtreeLevel BtreeLevel
bool heapkeyspace
Definition: nbtree.h:659
#define HeapTupleHeaderGetXmin(tup)
Definition: htup_details.h:313
#define INDEX_MAX_KEYS
#define OffsetNumberNext(offsetNumber)
Definition: off.h:52
#define PageGetSpecialPointer(page)
Definition: bufpage.h:326
#define InvalidBlockNumber
Definition: block.h:33
#define MAXALIGN(LEN)
Definition: c.h:691
#define BufferIsValid(bufnum)
Definition: bufmgr.h:123
#define index_getattr(tup, attnum, tupleDesc, isnull)
Definition: itup.h:100
#define ItemPointerGetOffsetNumber(pointer)
Definition: itemptr.h:117
#define PG_NARGS()
Definition: fmgr.h:203
static bool bt_pivot_tuple_identical(IndexTuple itup1, IndexTuple itup2)
#define IndexTupleHasVarwidths(itup)
Definition: itup.h:73
bool ii_Concurrent
Definition: execnodes.h:174
#define INT64_FORMAT
Definition: c.h:409
#define SnapshotAny
Definition: snapmgr.h:69
double bloom_prop_bits_set(bloom_filter *filter)
Definition: bloomfilter.c:188
static void bt_child_check(BtreeCheckState *state, BTScanInsert targetkey, OffsetNumber downlinkoffnum)
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:158
#define PageGetLSN(page)
Definition: bufpage.h:366
#define DatumGetPointer(X)
Definition: postgres.h:549
IndexTuple lowkey
#define BTMaxItemSize(page)
Definition: nbtree.h:157
#define P_HIKEY
Definition: nbtree.h:242
static bool bt_rootdescend(BtreeCheckState *state, IndexTuple itup)
static Datum values[MAXATTR]
Definition: bootstrap.c:167
Oid * ii_ExclusionOps
Definition: execnodes.h:165
#define MaxIndexTuplesPerPage
Definition: itup.h:145
void * palloc(Size size)
Definition: mcxt.c:949
int errmsg(const char *fmt,...)
Definition: elog.c:824
static ItemId PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block, Page page, OffsetNumber offset)
#define ItemPointerGetBlockNumberNoCheck(pointer)
Definition: itemptr.h:89
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:796
uint32 btm_level
Definition: nbtree.h:103
#define elog(elevel,...)
Definition: elog.h:214
#define ShareLock
Definition: lockdefs.h:41
int i
#define OffsetNumberIsValid(offsetNumber)
Definition: off.h:39
bool istruerootlevel
static BlockNumber BTreeTupleGetTopParent(IndexTuple leafhikey)
Definition: nbtree.h:488
static uint16 BTreeTupleGetNPosting(IndexTuple posting)
Definition: nbtree.h:386
#define PG_DETOAST_DATUM(datum)
Definition: fmgr.h:240
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
static bool offset_is_negative_infinity(BTPageOpaque opaque, OffsetNumber offset)
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:99
#define ItemPointerGetBlockNumber(pointer)
Definition: itemptr.h:98
#define InvalidBtreeLevel
Definition: verify_nbtree.c:49
#define TransactionIdIsValid(xid)
Definition: transam.h:41
PG_FUNCTION_INFO_V1(bt_index_check)
uint16 * ii_ExclusionStrats
Definition: execnodes.h:167
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:39
MemoryContext targetcontext
Definition: verify_nbtree.c:82
int Buffer
Definition: buf.h:23
#define P_RIGHTMOST(opaque)
Definition: nbtree.h:213
BlockNumber prevrightlink
OffsetNumber ip_posid
Definition: itemptr.h:39
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:132
BTStack _bt_search(Relation rel, BTScanInsert key, Buffer *bufP, int access, Snapshot snapshot)
Definition: nbtsearch.c:100
#define offsetof(type, field)
Definition: c.h:661
bool bloom_lacks_element(bloom_filter *filter, unsigned char *elem, size_t len)
Definition: bloomfilter.c:158
#define PageGetItem(page, itemId)
Definition: bufpage.h:340
Pointer Page
Definition: bufpage.h:78
#define IndexTupleSize(itup)
Definition: itup.h:71
#define ItemPointerCopy(fromPointer, toPointer)
Definition: itemptr.h:161
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:742
static IndexTuple bt_posting_plain_tuple(IndexTuple itup, int n)
#define P_ISLEAF(opaque)
Definition: nbtree.h:214
struct BtreeCheckState BtreeCheckState