PostgreSQL Source Code git master
verify_nbtree.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * verify_nbtree.c
4 * Verifies the integrity of nbtree indexes based on invariants.
5 *
6 * For B-Tree indexes, verification includes checking that each page in the
7 * target index has items in logical order as reported by an insertion scankey
8 * (the insertion scankey sort-wise NULL semantics are needed for
9 * verification).
10 *
11 * When index-to-heap verification is requested, a Bloom filter is used to
12 * fingerprint all tuples in the target index, as the index is traversed to
13 * verify its structure. A heap scan later uses Bloom filter probes to verify
14 * that every visible heap tuple has a matching index tuple.
15 *
16 *
17 * Copyright (c) 2017-2025, PostgreSQL Global Development Group
18 *
19 * IDENTIFICATION
20 * contrib/amcheck/verify_nbtree.c
21 *
22 *-------------------------------------------------------------------------
23 */
24#include "postgres.h"
25
26#include "access/heaptoast.h"
27#include "access/htup_details.h"
28#include "access/nbtree.h"
29#include "access/table.h"
30#include "access/tableam.h"
31#include "access/transam.h"
32#include "access/xact.h"
33#include "verify_common.h"
34#include "catalog/index.h"
35#include "catalog/pg_am.h"
36#include "catalog/pg_opfamily_d.h"
37#include "common/pg_prng.h"
38#include "lib/bloomfilter.h"
39#include "miscadmin.h"
40#include "storage/smgr.h"
41#include "utils/guc.h"
42#include "utils/memutils.h"
43#include "utils/snapmgr.h"
44
45
47 .name = "amcheck",
48 .version = PG_VERSION
49);
50
51/*
52 * A B-Tree cannot possibly have this many levels, since there must be one
53 * block per level, which is bound by the range of BlockNumber:
54 */
55#define InvalidBtreeLevel ((uint32) InvalidBlockNumber)
56#define BTreeTupleGetNKeyAtts(itup, rel) \
57 Min(IndexRelationGetNumberOfKeyAttributes(rel), BTreeTupleGetNAtts(itup, rel))
58
59/*
60 * State associated with verifying a B-Tree index
61 *
62 * target is the point of reference for a verification operation.
63 *
64 * Other B-Tree pages may be allocated, but those are always auxiliary (e.g.,
65 * they are current target's child pages). Conceptually, problems are only
66 * ever found in the current target page (or for a particular heap tuple during
67 * heapallindexed verification). Each page found by verification's left/right,
68 * top/bottom scan becomes the target exactly once.
69 */
70typedef struct BtreeCheckState
71{
72 /*
73 * Unchanging state, established at start of verification:
74 */
75
76 /* B-Tree Index Relation and associated heap relation */
79 /* rel is heapkeyspace index? */
81 /* ShareLock held on heap/index, rather than AccessShareLock? */
83 /* Also verifying heap has no unindexed tuples? */
85 /* Also making sure non-pivot tuples can be found by new search? */
87 /* Also check uniqueness constraint if index is unique */
89 /* Per-page context */
91 /* Buffer access strategy */
93
94 /*
95 * Info for uniqueness checking. Fill these fields once per index check.
96 */
99
100 /*
101 * Mutable state, for verification of particular page:
102 */
103
104 /* Current target page */
106 /* Target block number */
108 /* Target page's LSN */
110
111 /*
112 * Low key: high key of left sibling of target page. Used only for child
113 * verification. So, 'lowkey' is kept only when 'readonly' is set.
114 */
116
117 /*
118 * The rightlink and incomplete split flag of block one level down to the
119 * target page, which was visited last time via downlink from target page.
120 * We use it to check for missing downlinks.
121 */
124
125 /*
126 * Mutable state, for optional heapallindexed verification:
127 */
128
129 /* Bloom filter fingerprints B-Tree index */
131 /* Debug counter */
134
135/*
136 * Starting point for verifying an entire B-Tree index level
137 */
138typedef struct BtreeLevel
139{
140 /* Level number (0 is leaf page level). */
142
143 /* Left most block on level. Scan of level begins here. */
145
146 /* Is this level reported as "true" root level by meta page? */
149
150/*
151 * Information about the last visible entry with current B-tree key. Used
152 * for validation of the unique constraint.
153 */
155{
156 BlockNumber blkno; /* Index block */
157 OffsetNumber offset; /* Offset on index block */
158 int postingIndex; /* Number in the posting list (-1 for
159 * non-deduplicated tuples) */
160 ItemPointer tid; /* Heap tid */
162
163/*
164 * arguments for the bt_index_check_callback callback
165 */
166typedef struct BTCallbackState
167{
173
176
177static void bt_index_check_callback(Relation indrel, Relation heaprel,
178 void *state, bool readonly);
179static void bt_check_every_level(Relation rel, Relation heaprel,
180 bool heapkeyspace, bool readonly, bool heapallindexed,
181 bool rootdescend, bool checkunique);
183 BtreeLevel level);
186 BTPageOpaque start_opaque);
188 BlockNumber btpo_prev_from_target,
189 BlockNumber leftcurrent);
193 ItemPointer nexttid,
194 BlockNumber nblock, OffsetNumber noffset,
195 int nposting);
197 BlockNumber targetblock, OffsetNumber offset,
201 OffsetNumber *rightfirstoffset);
202static void bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
203 OffsetNumber downlinkoffnum);
205 OffsetNumber target_downlinkoffnum,
206 Page loaded_child,
207 uint32 target_level);
208static void bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
209 BlockNumber blkno, Page page);
211 Datum *values, bool *isnull,
212 bool tupleIsAlive, void *checkstate);
214 IndexTuple itup);
215static inline IndexTuple bt_posting_plain_tuple(IndexTuple itup, int n);
217static inline bool offset_is_negative_infinity(BTPageOpaque opaque,
218 OffsetNumber offset);
220 OffsetNumber upperbound);
221static inline bool invariant_leq_offset(BtreeCheckState *state,
223 OffsetNumber upperbound);
225 OffsetNumber lowerbound);
228 BlockNumber nontargetblock,
229 Page nontarget,
230 OffsetNumber upperbound);
233 IndexTuple itup);
235 Page page, OffsetNumber offset);
237 IndexTuple itup, bool nonpivot);
239
240/*
241 * bt_index_check(index regclass, heapallindexed boolean, checkunique boolean)
242 *
243 * Verify integrity of B-Tree index.
244 *
245 * Acquires AccessShareLock on heap & index relations. Does not consider
246 * invariants that exist between parent/child pages. Optionally verifies
247 * that heap does not contain any unindexed or incorrectly indexed tuples.
248 */
249Datum
251{
252 Oid indrelid = PG_GETARG_OID(0);
254
255 args.heapallindexed = false;
256 args.rootdescend = false;
257 args.parentcheck = false;
258 args.checkunique = false;
259
260 if (PG_NARGS() >= 2)
261 args.heapallindexed = PG_GETARG_BOOL(1);
262 if (PG_NARGS() >= 3)
263 args.checkunique = PG_GETARG_BOOL(2);
264
265 amcheck_lock_relation_and_check(indrelid, BTREE_AM_OID,
268
270}
271
272/*
273 * bt_index_parent_check(index regclass, heapallindexed boolean, rootdescend boolean, checkunique boolean)
274 *
275 * Verify integrity of B-Tree index.
276 *
277 * Acquires ShareLock on heap & index relations. Verifies that downlinks in
278 * parent pages are valid lower bounds on child pages. Optionally verifies
279 * that heap does not contain any unindexed or incorrectly indexed tuples.
280 */
281Datum
283{
284 Oid indrelid = PG_GETARG_OID(0);
286
287 args.heapallindexed = false;
288 args.rootdescend = false;
289 args.parentcheck = true;
290 args.checkunique = false;
291
292 if (PG_NARGS() >= 2)
293 args.heapallindexed = PG_GETARG_BOOL(1);
294 if (PG_NARGS() >= 3)
295 args.rootdescend = PG_GETARG_BOOL(2);
296 if (PG_NARGS() >= 4)
297 args.checkunique = PG_GETARG_BOOL(3);
298
299 amcheck_lock_relation_and_check(indrelid, BTREE_AM_OID,
301 ShareLock, &args);
302
304}
305
306/*
307 * Helper for bt_index_[parent_]check, coordinating the bulk of the work.
308 */
309static void
310bt_index_check_callback(Relation indrel, Relation heaprel, void *state, bool readonly)
311{
313 bool heapkeyspace,
314 allequalimage;
315
318 (errcode(ERRCODE_INDEX_CORRUPTED),
319 errmsg("index \"%s\" lacks a main relation fork",
320 RelationGetRelationName(indrel))));
321
322 /* Extract metadata from metapage, and sanitize it in passing */
323 _bt_metaversion(indrel, &heapkeyspace, &allequalimage);
324 if (allequalimage && !heapkeyspace)
326 (errcode(ERRCODE_INDEX_CORRUPTED),
327 errmsg("index \"%s\" metapage has equalimage field set on unsupported nbtree version",
328 RelationGetRelationName(indrel))));
329 if (allequalimage && !_bt_allequalimage(indrel, false))
330 {
331 bool has_interval_ops = false;
332
333 for (int i = 0; i < IndexRelationGetNumberOfKeyAttributes(indrel); i++)
334 if (indrel->rd_opfamily[i] == INTERVAL_BTREE_FAM_OID)
335 {
336 has_interval_ops = true;
338 (errcode(ERRCODE_INDEX_CORRUPTED),
339 errmsg("index \"%s\" metapage incorrectly indicates that deduplication is safe",
341 has_interval_ops
342 ? errhint("This is known of \"interval\" indexes last built on a version predating 2023-11.")
343 : 0));
344 }
345 }
346
347 /* Check index, possibly against table it is an index on */
348 bt_check_every_level(indrel, heaprel, heapkeyspace, readonly,
349 args->heapallindexed, args->rootdescend, args->checkunique);
350}
351
352/*
353 * Main entry point for B-Tree SQL-callable functions. Walks the B-Tree in
354 * logical order, verifying invariants as it goes. Optionally, verification
355 * checks if the heap relation contains any tuples that are not represented in
356 * the index but should be.
357 *
358 * It is the caller's responsibility to acquire appropriate heavyweight lock on
359 * the index relation, and advise us if extra checks are safe when a ShareLock
360 * is held. (A lock of the same type must also have been acquired on the heap
361 * relation.)
362 *
363 * A ShareLock is generally assumed to prevent any kind of physical
364 * modification to the index structure, including modifications that VACUUM may
365 * make. This does not include setting of the LP_DEAD bit by concurrent index
366 * scans, although that is just metadata that is not able to directly affect
367 * any check performed here. Any concurrent process that might act on the
368 * LP_DEAD bit being set (recycle space) requires a heavyweight lock that
369 * cannot be held while we hold a ShareLock. (Besides, even if that could
370 * happen, the ad-hoc recycling when a page might otherwise split is performed
371 * per-page, and requires an exclusive buffer lock, which wouldn't cause us
372 * trouble. _bt_delitems_vacuum() may only delete leaf items, and so the extra
373 * parent/child check cannot be affected.)
374 */
375static void
376bt_check_every_level(Relation rel, Relation heaprel, bool heapkeyspace,
377 bool readonly, bool heapallindexed, bool rootdescend,
378 bool checkunique)
379{
381 Page metapage;
382 BTMetaPageData *metad;
383 uint32 previouslevel;
384 BtreeLevel current;
385
386 if (!readonly)
387 elog(DEBUG1, "verifying consistency of tree structure for index \"%s\"",
389 else
390 elog(DEBUG1, "verifying consistency of tree structure for index \"%s\" with cross-level checks",
392
393 /*
394 * This assertion matches the one in index_getnext_tid(). See page
395 * recycling/"visible to everyone" notes in nbtree README.
396 */
398
399 /*
400 * Initialize state for entire verification operation
401 */
402 state = palloc0(sizeof(BtreeCheckState));
403 state->rel = rel;
404 state->heaprel = heaprel;
405 state->heapkeyspace = heapkeyspace;
406 state->readonly = readonly;
407 state->heapallindexed = heapallindexed;
408 state->rootdescend = rootdescend;
409 state->checkunique = checkunique;
410 state->snapshot = InvalidSnapshot;
411
412 if (state->heapallindexed)
413 {
414 int64 total_pages;
415 int64 total_elems;
416 uint64 seed;
417
418 /*
419 * Size Bloom filter based on estimated number of tuples in index,
420 * while conservatively assuming that each block must contain at least
421 * MaxTIDsPerBTreePage / 3 "plain" tuples -- see
422 * bt_posting_plain_tuple() for definition, and details of how posting
423 * list tuples are handled.
424 */
425 total_pages = RelationGetNumberOfBlocks(rel);
426 total_elems = Max(total_pages * (MaxTIDsPerBTreePage / 3),
427 (int64) state->rel->rd_rel->reltuples);
428 /* Generate a random seed to avoid repetition */
430 /* Create Bloom filter to fingerprint index */
431 state->filter = bloom_create(total_elems, maintenance_work_mem, seed);
432 state->heaptuplespresent = 0;
433
434 /*
435 * Register our own snapshot for heapallindexed, rather than asking
436 * table_index_build_scan() to do this for us later. This needs to
437 * happen before index fingerprinting begins, so we can later be
438 * certain that index fingerprinting should have reached all tuples
439 * returned by table_index_build_scan().
440 */
442
443 /*
444 * GetTransactionSnapshot() always acquires a new MVCC snapshot in
445 * READ COMMITTED mode. A new snapshot is guaranteed to have all the
446 * entries it requires in the index.
447 *
448 * We must defend against the possibility that an old xact snapshot
449 * was returned at higher isolation levels when that snapshot is not
450 * safe for index scans of the target index. This is possible when
451 * the snapshot sees tuples that are before the index's indcheckxmin
452 * horizon. Throwing an error here should be very rare. It doesn't
453 * seem worth using a secondary snapshot to avoid this.
454 */
455 if (IsolationUsesXactSnapshot() && rel->rd_index->indcheckxmin &&
457 state->snapshot->xmin))
460 errmsg("index \"%s\" cannot be verified using transaction snapshot",
462 }
463
464 /*
465 * We need a snapshot to check the uniqueness of the index. For better
466 * performance, take it once per index check. If one was already taken
467 * above, use that.
468 */
469 if (state->checkunique)
470 {
471 state->indexinfo = BuildIndexInfo(state->rel);
472
473 if (state->indexinfo->ii_Unique && state->snapshot == InvalidSnapshot)
475 }
476
477 Assert(!state->rootdescend || state->readonly);
478 if (state->rootdescend && !state->heapkeyspace)
480 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
481 errmsg("cannot verify that tuples from index \"%s\" can each be found by an independent index search",
483 errhint("Only B-Tree version 4 indexes support rootdescend verification.")));
484
485 /* Create context for page */
487 "amcheck context",
489 state->checkstrategy = GetAccessStrategy(BAS_BULKREAD);
490
491 /* Get true root block from meta-page */
493 metad = BTPageGetMeta(metapage);
494
495 /*
496 * Certain deletion patterns can result in "skinny" B-Tree indexes, where
497 * the fast root and true root differ.
498 *
499 * Start from the true root, not the fast root, unlike conventional index
500 * scans. This approach is more thorough, and removes the risk of
501 * following a stale fast root from the meta page.
502 */
503 if (metad->btm_fastroot != metad->btm_root)
505 (errcode(ERRCODE_NO_DATA),
506 errmsg_internal("harmless fast root mismatch in index \"%s\"",
508 errdetail_internal("Fast root block %u (level %u) differs from true root block %u (level %u).",
509 metad->btm_fastroot, metad->btm_fastlevel,
510 metad->btm_root, metad->btm_level)));
511
512 /*
513 * Starting at the root, verify every level. Move left to right, top to
514 * bottom. Note that there may be no pages other than the meta page (meta
515 * page can indicate that root is P_NONE when the index is totally empty).
516 */
517 previouslevel = InvalidBtreeLevel;
518 current.level = metad->btm_level;
519 current.leftmost = metad->btm_root;
520 current.istruerootlevel = true;
521 while (current.leftmost != P_NONE)
522 {
523 /*
524 * Verify this level, and get left most page for next level down, if
525 * not at leaf level
526 */
527 current = bt_check_level_from_leftmost(state, current);
528
529 if (current.leftmost == InvalidBlockNumber)
531 (errcode(ERRCODE_INDEX_CORRUPTED),
532 errmsg("index \"%s\" has no valid pages on level below %u or first level",
533 RelationGetRelationName(rel), previouslevel)));
534
535 previouslevel = current.level;
536 }
537
538 /*
539 * * Check whether heap contains unindexed/malformed tuples *
540 */
541 if (state->heapallindexed)
542 {
543 IndexInfo *indexinfo = BuildIndexInfo(state->rel);
544 TableScanDesc scan;
545
546 /*
547 * Create our own scan for table_index_build_scan(), rather than
548 * getting it to do so for us. This is required so that we can
549 * actually use the MVCC snapshot registered earlier.
550 *
551 * Note that table_index_build_scan() calls heap_endscan() for us.
552 */
553 scan = table_beginscan_strat(state->heaprel, /* relation */
554 state->snapshot, /* snapshot */
555 0, /* number of keys */
556 NULL, /* scan key */
557 true, /* buffer access strategy OK */
558 true); /* syncscan OK? */
559
560 /*
561 * Scan will behave as the first scan of a CREATE INDEX CONCURRENTLY
562 * behaves.
563 *
564 * It's okay that we don't actually use the same lock strength for the
565 * heap relation as any other ii_Concurrent caller would. We have no
566 * reason to care about a concurrent VACUUM operation, since there
567 * isn't going to be a second scan of the heap that needs to be sure
568 * that there was no concurrent recycling of TIDs.
569 */
570 indexinfo->ii_Concurrent = true;
571
572 /*
573 * Don't wait for uncommitted tuple xact commit/abort when index is a
574 * unique index on a catalog (or an index used by an exclusion
575 * constraint). This could otherwise happen in the readonly case.
576 */
577 indexinfo->ii_Unique = false;
578 indexinfo->ii_ExclusionOps = NULL;
579 indexinfo->ii_ExclusionProcs = NULL;
580 indexinfo->ii_ExclusionStrats = NULL;
581
582 elog(DEBUG1, "verifying that tuples from index \"%s\" are present in \"%s\"",
585
586 table_index_build_scan(state->heaprel, state->rel, indexinfo, true, false,
588
590 (errmsg_internal("finished verifying presence of " INT64_FORMAT " tuples from table \"%s\" with bitset %.2f%% set",
591 state->heaptuplespresent, RelationGetRelationName(heaprel),
592 100.0 * bloom_prop_bits_set(state->filter))));
593
594 bloom_free(state->filter);
595 }
596
597 /* Be tidy: */
598 if (state->snapshot != InvalidSnapshot)
599 UnregisterSnapshot(state->snapshot);
600 MemoryContextDelete(state->targetcontext);
601}
602
603/*
604 * Given a left-most block at some level, move right, verifying each page
605 * individually (with more verification across pages for "readonly"
606 * callers). Caller should pass the true root page as the leftmost initially,
607 * working their way down by passing what is returned for the last call here
608 * until level 0 (leaf page level) was reached.
609 *
610 * Returns state for next call, if any. This includes left-most block number
611 * one level lower that should be passed on next level/call, which is set to
612 * P_NONE on last call here (when leaf level is verified). Level numbers
613 * follow the nbtree convention: higher levels have higher numbers, because new
614 * levels are added only due to a root page split. Note that prior to the
615 * first root page split, the root is also a leaf page, so there is always a
616 * level 0 (leaf level), and it's always the last level processed.
617 *
618 * Note on memory management: State's per-page context is reset here, between
619 * each call to bt_target_page_check().
620 */
621static BtreeLevel
623{
624 /* State to establish early, concerning entire level */
625 BTPageOpaque opaque;
626 MemoryContext oldcontext;
627 BtreeLevel nextleveldown;
628
629 /* Variables for iterating across level using right links */
630 BlockNumber leftcurrent = P_NONE;
631 BlockNumber current = level.leftmost;
632
633 /* Initialize return state */
634 nextleveldown.leftmost = InvalidBlockNumber;
635 nextleveldown.level = InvalidBtreeLevel;
636 nextleveldown.istruerootlevel = false;
637
638 /* Use page-level context for duration of this call */
639 oldcontext = MemoryContextSwitchTo(state->targetcontext);
640
641 elog(DEBUG1, "verifying level %u%s", level.level,
642 level.istruerootlevel ?
643 " (true root level)" : level.level == 0 ? " (leaf level)" : "");
644
645 state->prevrightlink = InvalidBlockNumber;
646 state->previncompletesplit = false;
647
648 do
649 {
650 /* Don't rely on CHECK_FOR_INTERRUPTS() calls at lower level */
652
653 /* Initialize state for this iteration */
654 state->targetblock = current;
655 state->target = palloc_btree_page(state, state->targetblock);
656 state->targetlsn = PageGetLSN(state->target);
657
658 opaque = BTPageGetOpaque(state->target);
659
660 if (P_IGNORE(opaque))
661 {
662 /*
663 * Since there cannot be a concurrent VACUUM operation in readonly
664 * mode, and since a page has no links within other pages
665 * (siblings and parent) once it is marked fully deleted, it
666 * should be impossible to land on a fully deleted page in
667 * readonly mode. See bt_child_check() for further details.
668 *
669 * The bt_child_check() P_ISDELETED() check is repeated here so
670 * that pages that are only reachable through sibling links get
671 * checked.
672 */
673 if (state->readonly && P_ISDELETED(opaque))
675 (errcode(ERRCODE_INDEX_CORRUPTED),
676 errmsg("downlink or sibling link points to deleted block in index \"%s\"",
678 errdetail_internal("Block=%u left block=%u left link from block=%u.",
679 current, leftcurrent, opaque->btpo_prev)));
680
681 if (P_RIGHTMOST(opaque))
683 (errcode(ERRCODE_INDEX_CORRUPTED),
684 errmsg("block %u fell off the end of index \"%s\"",
685 current, RelationGetRelationName(state->rel))));
686 else
688 (errcode(ERRCODE_NO_DATA),
689 errmsg_internal("block %u of index \"%s\" concurrently deleted",
690 current, RelationGetRelationName(state->rel))));
691 goto nextpage;
692 }
693 else if (nextleveldown.leftmost == InvalidBlockNumber)
694 {
695 /*
696 * A concurrent page split could make the caller supplied leftmost
697 * block no longer contain the leftmost page, or no longer be the
698 * true root, but where that isn't possible due to heavyweight
699 * locking, check that the first valid page meets caller's
700 * expectations.
701 */
702 if (state->readonly)
703 {
704 if (!bt_leftmost_ignoring_half_dead(state, current, opaque))
706 (errcode(ERRCODE_INDEX_CORRUPTED),
707 errmsg("block %u is not leftmost in index \"%s\"",
708 current, RelationGetRelationName(state->rel))));
709
710 if (level.istruerootlevel && (!P_ISROOT(opaque) && !P_INCOMPLETE_SPLIT(opaque)))
712 (errcode(ERRCODE_INDEX_CORRUPTED),
713 errmsg("block %u is not true root in index \"%s\"",
714 current, RelationGetRelationName(state->rel))));
715 }
716
717 /*
718 * Before beginning any non-trivial examination of level, prepare
719 * state for next bt_check_level_from_leftmost() invocation for
720 * the next level for the next level down (if any).
721 *
722 * There should be at least one non-ignorable page per level,
723 * unless this is the leaf level, which is assumed by caller to be
724 * final level.
725 */
726 if (!P_ISLEAF(opaque))
727 {
728 IndexTuple itup;
729 ItemId itemid;
730
731 /* Internal page -- downlink gets leftmost on next level */
732 itemid = PageGetItemIdCareful(state, state->targetblock,
733 state->target,
734 P_FIRSTDATAKEY(opaque));
735 itup = (IndexTuple) PageGetItem(state->target, itemid);
736 nextleveldown.leftmost = BTreeTupleGetDownLink(itup);
737 nextleveldown.level = opaque->btpo_level - 1;
738 }
739 else
740 {
741 /*
742 * Leaf page -- final level caller must process.
743 *
744 * Note that this could also be the root page, if there has
745 * been no root page split yet.
746 */
747 nextleveldown.leftmost = P_NONE;
748 nextleveldown.level = InvalidBtreeLevel;
749 }
750
751 /*
752 * Finished setting up state for this call/level. Control will
753 * never end up back here in any future loop iteration for this
754 * level.
755 */
756 }
757
758 /*
759 * Sibling links should be in mutual agreement. There arises
760 * leftcurrent == P_NONE && btpo_prev != P_NONE when the left sibling
761 * of the parent's low-key downlink is half-dead. (A half-dead page
762 * has no downlink from its parent.) Under heavyweight locking, the
763 * last bt_leftmost_ignoring_half_dead() validated this btpo_prev.
764 * Without heavyweight locking, validation of the P_NONE case remains
765 * unimplemented.
766 */
767 if (opaque->btpo_prev != leftcurrent && leftcurrent != P_NONE)
768 bt_recheck_sibling_links(state, opaque->btpo_prev, leftcurrent);
769
770 /* Check level */
771 if (level.level != opaque->btpo_level)
773 (errcode(ERRCODE_INDEX_CORRUPTED),
774 errmsg("leftmost down link for level points to block in index \"%s\" whose level is not one level down",
776 errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
777 current, level.level, opaque->btpo_level)));
778
779 /* Verify invariants for page */
781
782nextpage:
783
784 /* Try to detect circular links */
785 if (current == leftcurrent || current == opaque->btpo_prev)
787 (errcode(ERRCODE_INDEX_CORRUPTED),
788 errmsg("circular link chain found in block %u of index \"%s\"",
789 current, RelationGetRelationName(state->rel))));
790
791 leftcurrent = current;
792 current = opaque->btpo_next;
793
794 if (state->lowkey)
795 {
796 Assert(state->readonly);
797 pfree(state->lowkey);
798 state->lowkey = NULL;
799 }
800
801 /*
802 * Copy current target high key as the low key of right sibling.
803 * Allocate memory in upper level context, so it would be cleared
804 * after reset of target context.
805 *
806 * We only need the low key in corner cases of checking child high
807 * keys. We use high key only when incomplete split on the child level
808 * falls to the boundary of pages on the target level. See
809 * bt_child_highkey_check() for details. So, typically we won't end
810 * up doing anything with low key, but it's simpler for general case
811 * high key verification to always have it available.
812 *
813 * The correctness of managing low key in the case of concurrent
814 * splits wasn't investigated yet. Thankfully we only need low key
815 * for readonly verification and concurrent splits won't happen.
816 */
817 if (state->readonly && !P_RIGHTMOST(opaque))
818 {
819 IndexTuple itup;
820 ItemId itemid;
821
822 itemid = PageGetItemIdCareful(state, state->targetblock,
823 state->target, P_HIKEY);
824 itup = (IndexTuple) PageGetItem(state->target, itemid);
825
826 state->lowkey = MemoryContextAlloc(oldcontext, IndexTupleSize(itup));
827 memcpy(state->lowkey, itup, IndexTupleSize(itup));
828 }
829
830 /* Free page and associated memory for this iteration */
831 MemoryContextReset(state->targetcontext);
832 }
833 while (current != P_NONE);
834
835 if (state->lowkey)
836 {
837 Assert(state->readonly);
838 pfree(state->lowkey);
839 state->lowkey = NULL;
840 }
841
842 /* Don't change context for caller */
843 MemoryContextSwitchTo(oldcontext);
844
845 return nextleveldown;
846}
847
848/* Check visibility of the table entry referenced by nbtree index */
849static bool
851{
852 bool tid_visible;
853
854 TupleTableSlot *slot = table_slot_create(state->heaprel, NULL);
855
856 tid_visible = table_tuple_fetch_row_version(state->heaprel,
857 tid, state->snapshot, slot);
858 if (slot != NULL)
860
861 return tid_visible;
862}
863
864/*
865 * Prepare an error message for unique constrain violation in
866 * a btree index and report ERROR.
867 */
868static void
871 ItemPointer nexttid, BlockNumber nblock, OffsetNumber noffset,
872 int nposting)
873{
874 char *htid,
875 *nhtid,
876 *itid,
877 *nitid = "",
878 *pposting = "",
879 *pnposting = "";
880
881 htid = psprintf("tid=(%u,%u)",
884 nhtid = psprintf("tid=(%u,%u)",
887 itid = psprintf("tid=(%u,%u)", lVis->blkno, lVis->offset);
888
889 if (nblock != lVis->blkno || noffset != lVis->offset)
890 nitid = psprintf(" tid=(%u,%u)", nblock, noffset);
891
892 if (lVis->postingIndex >= 0)
893 pposting = psprintf(" posting %u", lVis->postingIndex);
894
895 if (nposting >= 0)
896 pnposting = psprintf(" posting %u", nposting);
897
899 (errcode(ERRCODE_INDEX_CORRUPTED),
900 errmsg("index uniqueness is violated for index \"%s\"",
902 errdetail("Index %s%s and%s%s (point to heap %s and %s) page lsn=%X/%08X.",
903 itid, pposting, nitid, pnposting, htid, nhtid,
904 LSN_FORMAT_ARGS(state->targetlsn))));
905}
906
907/* Check if current nbtree leaf entry complies with UNIQUE constraint */
908static void
910 BlockNumber targetblock, OffsetNumber offset,
912{
913 ItemPointer tid;
914 bool has_visible_entry = false;
915
916 Assert(targetblock != P_NONE);
917
918 /*
919 * Current tuple has posting list. Report duplicate if TID of any posting
920 * list entry is visible and lVis->tid is valid.
921 */
922 if (BTreeTupleIsPosting(itup))
923 {
924 for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
925 {
926 tid = BTreeTupleGetPostingN(itup, i);
928 {
929 has_visible_entry = true;
930 if (ItemPointerIsValid(lVis->tid))
931 {
933 lVis,
934 tid, targetblock,
935 offset, i);
936 }
937
938 /*
939 * Prevent double reporting unique constraint violation
940 * between the posting list entries of the first tuple on the
941 * page after cross-page check.
942 */
943 if (lVis->blkno != targetblock && ItemPointerIsValid(lVis->tid))
944 return;
945
946 lVis->blkno = targetblock;
947 lVis->offset = offset;
948 lVis->postingIndex = i;
949 lVis->tid = tid;
950 }
951 }
952 }
953
954 /*
955 * Current tuple has no posting list. If TID is visible save info about it
956 * for the next comparisons in the loop in bt_target_page_check(). Report
957 * duplicate if lVis->tid is already valid.
958 */
959 else
960 {
961 tid = BTreeTupleGetHeapTID(itup);
963 {
964 has_visible_entry = true;
965 if (ItemPointerIsValid(lVis->tid))
966 {
968 lVis,
969 tid, targetblock,
970 offset, -1);
971 }
972
973 lVis->blkno = targetblock;
974 lVis->offset = offset;
975 lVis->tid = tid;
976 lVis->postingIndex = -1;
977 }
978 }
979
980 if (!has_visible_entry &&
981 lVis->blkno != InvalidBlockNumber &&
982 lVis->blkno != targetblock)
983 {
984 char *posting = "";
985
986 if (lVis->postingIndex >= 0)
987 posting = psprintf(" posting %u", lVis->postingIndex);
989 (errcode(ERRCODE_NO_DATA),
990 errmsg("index uniqueness can not be checked for index tid=(%u,%u) in index \"%s\"",
991 targetblock, offset,
993 errdetail("It doesn't have visible heap tids and key is equal to the tid=(%u,%u)%s (points to heap tid=(%u,%u)).",
994 lVis->blkno, lVis->offset, posting,
997 errhint("VACUUM the table and repeat the check.")));
998 }
999}
1000
1001/*
1002 * Like P_LEFTMOST(start_opaque), but accept an arbitrarily-long chain of
1003 * half-dead, sibling-linked pages to the left. If a half-dead page appears
1004 * under state->readonly, the database exited recovery between the first-stage
1005 * and second-stage WAL records of a deletion.
1006 */
1007static bool
1010 BTPageOpaque start_opaque)
1011{
1012 BlockNumber reached = start_opaque->btpo_prev,
1013 reached_from = start;
1014 bool all_half_dead = true;
1015
1016 /*
1017 * To handle the !readonly case, we'd need to accept BTP_DELETED pages and
1018 * potentially observe nbtree/README "Page deletion and backwards scans".
1019 */
1020 Assert(state->readonly);
1021
1022 while (reached != P_NONE && all_half_dead)
1023 {
1024 Page page = palloc_btree_page(state, reached);
1025 BTPageOpaque reached_opaque = BTPageGetOpaque(page);
1026
1028
1029 /*
1030 * Try to detect btpo_prev circular links. _bt_unlink_halfdead_page()
1031 * writes that side-links will continue to point to the siblings.
1032 * Check btpo_next for that property.
1033 */
1034 all_half_dead = P_ISHALFDEAD(reached_opaque) &&
1035 reached != start &&
1036 reached != reached_from &&
1037 reached_opaque->btpo_next == reached_from;
1038 if (all_half_dead)
1039 {
1040 XLogRecPtr pagelsn = PageGetLSN(page);
1041
1042 /* pagelsn should point to an XLOG_BTREE_MARK_PAGE_HALFDEAD */
1044 (errcode(ERRCODE_NO_DATA),
1045 errmsg_internal("harmless interrupted page deletion detected in index \"%s\"",
1047 errdetail_internal("Block=%u right block=%u page lsn=%X/%08X.",
1048 reached, reached_from,
1049 LSN_FORMAT_ARGS(pagelsn))));
1050
1051 reached_from = reached;
1052 reached = reached_opaque->btpo_prev;
1053 }
1054
1055 pfree(page);
1056 }
1057
1058 return all_half_dead;
1059}
1060
1061/*
1062 * Raise an error when target page's left link does not point back to the
1063 * previous target page, called leftcurrent here. The leftcurrent page's
1064 * right link was followed to get to the current target page, and we expect
1065 * mutual agreement among leftcurrent and the current target page. Make sure
1066 * that this condition has definitely been violated in the !readonly case,
1067 * where concurrent page splits are something that we need to deal with.
1068 *
1069 * Cross-page inconsistencies involving pages that don't agree about being
1070 * siblings are known to be a particularly good indicator of corruption
1071 * involving partial writes/lost updates. The bt_right_page_check_scankey
1072 * check also provides a way of detecting cross-page inconsistencies for
1073 * !readonly callers, but it can only detect sibling pages that have an
1074 * out-of-order keyspace, which can't catch many of the problems that we
1075 * expect to catch here.
1076 *
1077 * The classic example of the kind of inconsistency that we can only catch
1078 * with this check (when in !readonly mode) involves three sibling pages that
1079 * were affected by a faulty page split at some point in the past. The
1080 * effects of the split are reflected in the original page and its new right
1081 * sibling page, with a lack of any accompanying changes for the _original_
1082 * right sibling page. The original right sibling page's left link fails to
1083 * point to the new right sibling page (its left link still points to the
1084 * original page), even though the first phase of a page split is supposed to
1085 * work as a single atomic action. This subtle inconsistency will probably
1086 * only break backwards scans in practice.
1087 *
1088 * Note that this is the only place where amcheck will "couple" buffer locks
1089 * (and only for !readonly callers). In general we prefer to avoid more
1090 * thorough cross-page checks in !readonly mode, but it seems worth the
1091 * complexity here. Also, the performance overhead of performing lock
1092 * coupling here is negligible in practice. Control only reaches here with a
1093 * non-corrupt index when there is a concurrent page split at the instant
1094 * caller crossed over to target page from leftcurrent page.
1095 */
1096static void
1098 BlockNumber btpo_prev_from_target,
1099 BlockNumber leftcurrent)
1100{
1101 /* passing metapage to BTPageGetOpaque() would give irrelevant findings */
1102 Assert(leftcurrent != P_NONE);
1103
1104 if (!state->readonly)
1105 {
1106 Buffer lbuf;
1107 Buffer newtargetbuf;
1108 Page page;
1109 BTPageOpaque opaque;
1110 BlockNumber newtargetblock;
1111
1112 /* Couple locks in the usual order for nbtree: Left to right */
1113 lbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM, leftcurrent,
1114 RBM_NORMAL, state->checkstrategy);
1115 LockBuffer(lbuf, BT_READ);
1116 _bt_checkpage(state->rel, lbuf);
1117 page = BufferGetPage(lbuf);
1118 opaque = BTPageGetOpaque(page);
1119 if (P_ISDELETED(opaque))
1120 {
1121 /*
1122 * Cannot reason about concurrently deleted page -- the left link
1123 * in the page to the right is expected to point to some other
1124 * page to the left (not leftcurrent page).
1125 *
1126 * Note that we deliberately don't give up with a half-dead page.
1127 */
1128 UnlockReleaseBuffer(lbuf);
1129 return;
1130 }
1131
1132 newtargetblock = opaque->btpo_next;
1133 /* Avoid self-deadlock when newtargetblock == leftcurrent */
1134 if (newtargetblock != leftcurrent)
1135 {
1136 newtargetbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM,
1137 newtargetblock, RBM_NORMAL,
1138 state->checkstrategy);
1139 LockBuffer(newtargetbuf, BT_READ);
1140 _bt_checkpage(state->rel, newtargetbuf);
1141 page = BufferGetPage(newtargetbuf);
1142 opaque = BTPageGetOpaque(page);
1143 /* btpo_prev_from_target may have changed; update it */
1144 btpo_prev_from_target = opaque->btpo_prev;
1145 }
1146 else
1147 {
1148 /*
1149 * leftcurrent right sibling points back to leftcurrent block.
1150 * Index is corrupt. Easiest way to handle this is to pretend
1151 * that we actually read from a distinct page that has an invalid
1152 * block number in its btpo_prev.
1153 */
1154 newtargetbuf = InvalidBuffer;
1155 btpo_prev_from_target = InvalidBlockNumber;
1156 }
1157
1158 /*
1159 * No need to check P_ISDELETED here, since new target block cannot be
1160 * marked deleted as long as we hold a lock on lbuf
1161 */
1162 if (BufferIsValid(newtargetbuf))
1163 UnlockReleaseBuffer(newtargetbuf);
1164 UnlockReleaseBuffer(lbuf);
1165
1166 if (btpo_prev_from_target == leftcurrent)
1167 {
1168 /* Report split in left sibling, not target (or new target) */
1170 (errcode(ERRCODE_INTERNAL_ERROR),
1171 errmsg_internal("harmless concurrent page split detected in index \"%s\"",
1173 errdetail_internal("Block=%u new right sibling=%u original right sibling=%u.",
1174 leftcurrent, newtargetblock,
1175 state->targetblock)));
1176 return;
1177 }
1178
1179 /*
1180 * Index is corrupt. Make sure that we report correct target page.
1181 *
1182 * This could have changed in cases where there was a concurrent page
1183 * split, as well as index corruption (at least in theory). Note that
1184 * btpo_prev_from_target was already updated above.
1185 */
1186 state->targetblock = newtargetblock;
1187 }
1188
1189 ereport(ERROR,
1190 (errcode(ERRCODE_INDEX_CORRUPTED),
1191 errmsg("left link/right link pair in index \"%s\" not in agreement",
1193 errdetail_internal("Block=%u left block=%u left link from block=%u.",
1194 state->targetblock, leftcurrent,
1195 btpo_prev_from_target)));
1196}
1197
1198/*
1199 * Function performs the following checks on target page, or pages ancillary to
1200 * target page:
1201 *
1202 * - That every "real" data item is less than or equal to the high key, which
1203 * is an upper bound on the items on the page. Data items should be
1204 * strictly less than the high key when the page is an internal page.
1205 *
1206 * - That within the page, every data item is strictly less than the item
1207 * immediately to its right, if any (i.e., that the items are in order
1208 * within the page, so that the binary searches performed by index scans are
1209 * sane).
1210 *
1211 * - That the last data item stored on the page is strictly less than the
1212 * first data item on the page to the right (when such a first item is
1213 * available).
1214 *
1215 * - Various checks on the structure of tuples themselves. For example, check
1216 * that non-pivot tuples have no truncated attributes.
1217 *
1218 * - For index with unique constraint make sure that only one of table entries
1219 * for equal keys is visible.
1220 *
1221 * Furthermore, when state passed shows ShareLock held, function also checks:
1222 *
1223 * - That all child pages respect strict lower bound from parent's pivot
1224 * tuple.
1225 *
1226 * - That downlink to block was encountered in parent where that's expected.
1227 *
1228 * - That high keys of child pages matches corresponding pivot keys in parent.
1229 *
1230 * This is also where heapallindexed callers use their Bloom filter to
1231 * fingerprint IndexTuples for later table_index_build_scan() verification.
1232 *
1233 * Note: Memory allocated in this routine is expected to be released by caller
1234 * resetting state->targetcontext.
1235 */
1236static void
1238{
1239 OffsetNumber offset;
1240 OffsetNumber max;
1241 BTPageOpaque topaque;
1242
1243 /* Last visible entry info for checking indexes with unique constraint */
1245
1246 topaque = BTPageGetOpaque(state->target);
1247 max = PageGetMaxOffsetNumber(state->target);
1248
1249 elog(DEBUG2, "verifying %u items on %s block %u", max,
1250 P_ISLEAF(topaque) ? "leaf" : "internal", state->targetblock);
1251
1252 /*
1253 * Check the number of attributes in high key. Note, rightmost page
1254 * doesn't contain a high key, so nothing to check
1255 */
1256 if (!P_RIGHTMOST(topaque))
1257 {
1258 ItemId itemid;
1259 IndexTuple itup;
1260
1261 /* Verify line pointer before checking tuple */
1262 itemid = PageGetItemIdCareful(state, state->targetblock,
1263 state->target, P_HIKEY);
1264 if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
1265 P_HIKEY))
1266 {
1267 itup = (IndexTuple) PageGetItem(state->target, itemid);
1268 ereport(ERROR,
1269 (errcode(ERRCODE_INDEX_CORRUPTED),
1270 errmsg("wrong number of high key index tuple attributes in index \"%s\"",
1272 errdetail_internal("Index block=%u natts=%u block type=%s page lsn=%X/%08X.",
1273 state->targetblock,
1274 BTreeTupleGetNAtts(itup, state->rel),
1275 P_ISLEAF(topaque) ? "heap" : "index",
1276 LSN_FORMAT_ARGS(state->targetlsn))));
1277 }
1278 }
1279
1280 /*
1281 * Loop over page items, starting from first non-highkey item, not high
1282 * key (if any). Most tests are not performed for the "negative infinity"
1283 * real item (if any).
1284 */
1285 for (offset = P_FIRSTDATAKEY(topaque);
1286 offset <= max;
1287 offset = OffsetNumberNext(offset))
1288 {
1289 ItemId itemid;
1290 IndexTuple itup;
1291 size_t tupsize;
1292 BTScanInsert skey;
1293 bool lowersizelimit;
1294 ItemPointer scantid;
1295
1296 /*
1297 * True if we already called bt_entry_unique_check() for the current
1298 * item. This helps to avoid visiting the heap for keys, which are
1299 * anyway presented only once and can't comprise a unique violation.
1300 */
1301 bool unique_checked = false;
1302
1304
1305 itemid = PageGetItemIdCareful(state, state->targetblock,
1306 state->target, offset);
1307 itup = (IndexTuple) PageGetItem(state->target, itemid);
1308 tupsize = IndexTupleSize(itup);
1309
1310 /*
1311 * lp_len should match the IndexTuple reported length exactly, since
1312 * lp_len is completely redundant in indexes, and both sources of
1313 * tuple length are MAXALIGN()'d. nbtree does not use lp_len all that
1314 * frequently, and is surprisingly tolerant of corrupt lp_len fields.
1315 */
1316 if (tupsize != ItemIdGetLength(itemid))
1317 ereport(ERROR,
1318 (errcode(ERRCODE_INDEX_CORRUPTED),
1319 errmsg("index tuple size does not equal lp_len in index \"%s\"",
1321 errdetail_internal("Index tid=(%u,%u) tuple size=%zu lp_len=%u page lsn=%X/%08X.",
1322 state->targetblock, offset,
1323 tupsize, ItemIdGetLength(itemid),
1324 LSN_FORMAT_ARGS(state->targetlsn)),
1325 errhint("This could be a torn page problem.")));
1326
1327 /* Check the number of index tuple attributes */
1328 if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
1329 offset))
1330 {
1331 ItemPointer tid;
1332 char *itid,
1333 *htid;
1334
1335 itid = psprintf("(%u,%u)", state->targetblock, offset);
1336 tid = BTreeTupleGetPointsToTID(itup);
1337 htid = psprintf("(%u,%u)",
1340
1341 ereport(ERROR,
1342 (errcode(ERRCODE_INDEX_CORRUPTED),
1343 errmsg("wrong number of index tuple attributes in index \"%s\"",
1345 errdetail_internal("Index tid=%s natts=%u points to %s tid=%s page lsn=%X/%08X.",
1346 itid,
1347 BTreeTupleGetNAtts(itup, state->rel),
1348 P_ISLEAF(topaque) ? "heap" : "index",
1349 htid,
1350 LSN_FORMAT_ARGS(state->targetlsn))));
1351 }
1352
1353 /*
1354 * Don't try to generate scankey using "negative infinity" item on
1355 * internal pages. They are always truncated to zero attributes.
1356 */
1357 if (offset_is_negative_infinity(topaque, offset))
1358 {
1359 /*
1360 * We don't call bt_child_check() for "negative infinity" items.
1361 * But if we're performing downlink connectivity check, we do it
1362 * for every item including "negative infinity" one.
1363 */
1364 if (!P_ISLEAF(topaque) && state->readonly)
1365 {
1367 offset,
1368 NULL,
1369 topaque->btpo_level);
1370 }
1371 continue;
1372 }
1373
1374 /*
1375 * Readonly callers may optionally verify that non-pivot tuples can
1376 * each be found by an independent search that starts from the root.
1377 * Note that we deliberately don't do individual searches for each
1378 * TID, since the posting list itself is validated by other checks.
1379 */
1380 if (state->rootdescend && P_ISLEAF(topaque) &&
1381 !bt_rootdescend(state, itup))
1382 {
1384 char *itid,
1385 *htid;
1386
1387 itid = psprintf("(%u,%u)", state->targetblock, offset);
1388 htid = psprintf("(%u,%u)", ItemPointerGetBlockNumber(tid),
1390
1391 ereport(ERROR,
1392 (errcode(ERRCODE_INDEX_CORRUPTED),
1393 errmsg("could not find tuple using search from root page in index \"%s\"",
1395 errdetail_internal("Index tid=%s points to heap tid=%s page lsn=%X/%08X.",
1396 itid, htid,
1397 LSN_FORMAT_ARGS(state->targetlsn))));
1398 }
1399
1400 /*
1401 * If tuple is a posting list tuple, make sure posting list TIDs are
1402 * in order
1403 */
1404 if (BTreeTupleIsPosting(itup))
1405 {
1406 ItemPointerData last;
1407 ItemPointer current;
1408
1410
1411 for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
1412 {
1413
1414 current = BTreeTupleGetPostingN(itup, i);
1415
1416 if (ItemPointerCompare(current, &last) <= 0)
1417 {
1418 char *itid = psprintf("(%u,%u)", state->targetblock, offset);
1419
1420 ereport(ERROR,
1421 (errcode(ERRCODE_INDEX_CORRUPTED),
1422 errmsg_internal("posting list contains misplaced TID in index \"%s\"",
1424 errdetail_internal("Index tid=%s posting list offset=%d page lsn=%X/%08X.",
1425 itid, i,
1426 LSN_FORMAT_ARGS(state->targetlsn))));
1427 }
1428
1429 ItemPointerCopy(current, &last);
1430 }
1431 }
1432
1433 /* Build insertion scankey for current page offset */
1434 skey = bt_mkscankey_pivotsearch(state->rel, itup);
1435
1436 /*
1437 * Make sure tuple size does not exceed the relevant BTREE_VERSION
1438 * specific limit.
1439 *
1440 * BTREE_VERSION 4 (which introduced heapkeyspace rules) requisitioned
1441 * a small amount of space from BTMaxItemSize() in order to ensure
1442 * that suffix truncation always has enough space to add an explicit
1443 * heap TID back to a tuple -- we pessimistically assume that every
1444 * newly inserted tuple will eventually need to have a heap TID
1445 * appended during a future leaf page split, when the tuple becomes
1446 * the basis of the new high key (pivot tuple) for the leaf page.
1447 *
1448 * Since the reclaimed space is reserved for that purpose, we must not
1449 * enforce the slightly lower limit when the extra space has been used
1450 * as intended. In other words, there is only a cross-version
1451 * difference in the limit on tuple size within leaf pages.
1452 *
1453 * Still, we're particular about the details within BTREE_VERSION 4
1454 * internal pages. Pivot tuples may only use the extra space for its
1455 * designated purpose. Enforce the lower limit for pivot tuples when
1456 * an explicit heap TID isn't actually present. (In all other cases
1457 * suffix truncation is guaranteed to generate a pivot tuple that's no
1458 * larger than the firstright tuple provided to it by its caller.)
1459 */
1460 lowersizelimit = skey->heapkeyspace &&
1461 (P_ISLEAF(topaque) || BTreeTupleGetHeapTID(itup) == NULL);
1462 if (tupsize > (lowersizelimit ? BTMaxItemSize : BTMaxItemSizeNoHeapTid))
1463 {
1465 char *itid,
1466 *htid;
1467
1468 itid = psprintf("(%u,%u)", state->targetblock, offset);
1469 htid = psprintf("(%u,%u)",
1472
1473 ereport(ERROR,
1474 (errcode(ERRCODE_INDEX_CORRUPTED),
1475 errmsg("index row size %zu exceeds maximum for index \"%s\"",
1476 tupsize, RelationGetRelationName(state->rel)),
1477 errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%08X.",
1478 itid,
1479 P_ISLEAF(topaque) ? "heap" : "index",
1480 htid,
1481 LSN_FORMAT_ARGS(state->targetlsn))));
1482 }
1483
1484 /* Fingerprint leaf page tuples (those that point to the heap) */
1485 if (state->heapallindexed && P_ISLEAF(topaque) && !ItemIdIsDead(itemid))
1486 {
1487 IndexTuple norm;
1488
1489 if (BTreeTupleIsPosting(itup))
1490 {
1491 /* Fingerprint all elements as distinct "plain" tuples */
1492 for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
1493 {
1494 IndexTuple logtuple;
1495
1496 logtuple = bt_posting_plain_tuple(itup, i);
1497 norm = bt_normalize_tuple(state, logtuple);
1498 bloom_add_element(state->filter, (unsigned char *) norm,
1499 IndexTupleSize(norm));
1500 /* Be tidy */
1501 if (norm != logtuple)
1502 pfree(norm);
1503 pfree(logtuple);
1504 }
1505 }
1506 else
1507 {
1508 norm = bt_normalize_tuple(state, itup);
1509 bloom_add_element(state->filter, (unsigned char *) norm,
1510 IndexTupleSize(norm));
1511 /* Be tidy */
1512 if (norm != itup)
1513 pfree(norm);
1514 }
1515 }
1516
1517 /*
1518 * * High key check *
1519 *
1520 * If there is a high key (if this is not the rightmost page on its
1521 * entire level), check that high key actually is upper bound on all
1522 * page items. If this is a posting list tuple, we'll need to set
1523 * scantid to be highest TID in posting list.
1524 *
1525 * We prefer to check all items against high key rather than checking
1526 * just the last and trusting that the operator class obeys the
1527 * transitive law (which implies that all previous items also
1528 * respected the high key invariant if they pass the item order
1529 * check).
1530 *
1531 * Ideally, we'd compare every item in the index against every other
1532 * item in the index, and not trust opclass obedience of the
1533 * transitive law to bridge the gap between children and their
1534 * grandparents (as well as great-grandparents, and so on). We don't
1535 * go to those lengths because that would be prohibitively expensive,
1536 * and probably not markedly more effective in practice.
1537 *
1538 * On the leaf level, we check that the key is <= the highkey.
1539 * However, on non-leaf levels we check that the key is < the highkey,
1540 * because the high key is "just another separator" rather than a copy
1541 * of some existing key item; we expect it to be unique among all keys
1542 * on the same level. (Suffix truncation will sometimes produce a
1543 * leaf highkey that is an untruncated copy of the lastleft item, but
1544 * never any other item, which necessitates weakening the leaf level
1545 * check to <=.)
1546 *
1547 * Full explanation for why a highkey is never truly a copy of another
1548 * item from the same level on internal levels:
1549 *
1550 * While the new left page's high key is copied from the first offset
1551 * on the right page during an internal page split, that's not the
1552 * full story. In effect, internal pages are split in the middle of
1553 * the firstright tuple, not between the would-be lastleft and
1554 * firstright tuples: the firstright key ends up on the left side as
1555 * left's new highkey, and the firstright downlink ends up on the
1556 * right side as right's new "negative infinity" item. The negative
1557 * infinity tuple is truncated to zero attributes, so we're only left
1558 * with the downlink. In other words, the copying is just an
1559 * implementation detail of splitting in the middle of a (pivot)
1560 * tuple. (See also: "Notes About Data Representation" in the nbtree
1561 * README.)
1562 */
1563 scantid = skey->scantid;
1564 if (state->heapkeyspace && BTreeTupleIsPosting(itup))
1565 skey->scantid = BTreeTupleGetMaxHeapTID(itup);
1566
1567 if (!P_RIGHTMOST(topaque) &&
1568 !(P_ISLEAF(topaque) ? invariant_leq_offset(state, skey, P_HIKEY) :
1570 {
1572 char *itid,
1573 *htid;
1574
1575 itid = psprintf("(%u,%u)", state->targetblock, offset);
1576 htid = psprintf("(%u,%u)",
1579
1580 ereport(ERROR,
1581 (errcode(ERRCODE_INDEX_CORRUPTED),
1582 errmsg("high key invariant violated for index \"%s\"",
1584 errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%08X.",
1585 itid,
1586 P_ISLEAF(topaque) ? "heap" : "index",
1587 htid,
1588 LSN_FORMAT_ARGS(state->targetlsn))));
1589 }
1590 /* Reset, in case scantid was set to (itup) posting tuple's max TID */
1591 skey->scantid = scantid;
1592
1593 /*
1594 * * Item order check *
1595 *
1596 * Check that items are stored on page in logical order, by checking
1597 * current item is strictly less than next item (if any).
1598 */
1599 if (OffsetNumberNext(offset) <= max &&
1600 !invariant_l_offset(state, skey, OffsetNumberNext(offset)))
1601 {
1602 ItemPointer tid;
1603 char *itid,
1604 *htid,
1605 *nitid,
1606 *nhtid;
1607
1608 itid = psprintf("(%u,%u)", state->targetblock, offset);
1609 tid = BTreeTupleGetPointsToTID(itup);
1610 htid = psprintf("(%u,%u)",
1613 nitid = psprintf("(%u,%u)", state->targetblock,
1614 OffsetNumberNext(offset));
1615
1616 /* Reuse itup to get pointed-to heap location of second item */
1617 itemid = PageGetItemIdCareful(state, state->targetblock,
1618 state->target,
1619 OffsetNumberNext(offset));
1620 itup = (IndexTuple) PageGetItem(state->target, itemid);
1621 tid = BTreeTupleGetPointsToTID(itup);
1622 nhtid = psprintf("(%u,%u)",
1625
1626 ereport(ERROR,
1627 (errcode(ERRCODE_INDEX_CORRUPTED),
1628 errmsg("item order invariant violated for index \"%s\"",
1630 errdetail_internal("Lower index tid=%s (points to %s tid=%s) higher index tid=%s (points to %s tid=%s) page lsn=%X/%08X.",
1631 itid,
1632 P_ISLEAF(topaque) ? "heap" : "index",
1633 htid,
1634 nitid,
1635 P_ISLEAF(topaque) ? "heap" : "index",
1636 nhtid,
1637 LSN_FORMAT_ARGS(state->targetlsn))));
1638 }
1639
1640 /*
1641 * If the index is unique verify entries uniqueness by checking the
1642 * heap tuples visibility. Immediately check posting tuples and
1643 * tuples with repeated keys. Postpone check for keys, which have the
1644 * first appearance.
1645 */
1646 if (state->checkunique && state->indexinfo->ii_Unique &&
1647 P_ISLEAF(topaque) && !skey->anynullkeys &&
1649 {
1650 bt_entry_unique_check(state, itup, state->targetblock, offset,
1651 &lVis);
1652 unique_checked = true;
1653 }
1654
1655 if (state->checkunique && state->indexinfo->ii_Unique &&
1656 P_ISLEAF(topaque) && OffsetNumberNext(offset) <= max)
1657 {
1658 /* Save current scankey tid */
1659 scantid = skey->scantid;
1660
1661 /*
1662 * Invalidate scankey tid to make _bt_compare compare only keys in
1663 * the item to report equality even if heap TIDs are different
1664 */
1665 skey->scantid = NULL;
1666
1667 /*
1668 * If next key tuple is different, invalidate last visible entry
1669 * data (whole index tuple or last posting in index tuple). Key
1670 * containing null value does not violate unique constraint and
1671 * treated as different to any other key.
1672 *
1673 * If the next key is the same as the previous one, do the
1674 * bt_entry_unique_check() call if it was postponed.
1675 */
1676 if (_bt_compare(state->rel, skey, state->target,
1677 OffsetNumberNext(offset)) != 0 || skey->anynullkeys)
1678 {
1681 lVis.postingIndex = -1;
1682 lVis.tid = NULL;
1683 }
1684 else if (!unique_checked)
1685 {
1686 bt_entry_unique_check(state, itup, state->targetblock, offset,
1687 &lVis);
1688 }
1689 skey->scantid = scantid; /* Restore saved scan key state */
1690 }
1691
1692 /*
1693 * * Last item check *
1694 *
1695 * Check last item against next/right page's first data item's when
1696 * last item on page is reached. This additional check will detect
1697 * transposed pages iff the supposed right sibling page happens to
1698 * belong before target in the key space. (Otherwise, a subsequent
1699 * heap verification will probably detect the problem.)
1700 *
1701 * This check is similar to the item order check that will have
1702 * already been performed for every other "real" item on target page
1703 * when last item is checked. The difference is that the next item
1704 * (the item that is compared to target's last item) needs to come
1705 * from the next/sibling page. There may not be such an item
1706 * available from sibling for various reasons, though (e.g., target is
1707 * the rightmost page on level).
1708 */
1709 if (offset == max)
1710 {
1711 BTScanInsert rightkey;
1712
1713 /* first offset on a right index page (log only) */
1714 OffsetNumber rightfirstoffset = InvalidOffsetNumber;
1715
1716 /* Get item in next/right page */
1717 rightkey = bt_right_page_check_scankey(state, &rightfirstoffset);
1718
1719 if (rightkey &&
1720 !invariant_g_offset(state, rightkey, max))
1721 {
1722 /*
1723 * As explained at length in bt_right_page_check_scankey(),
1724 * there is a known !readonly race that could account for
1725 * apparent violation of invariant, which we must check for
1726 * before actually proceeding with raising error. Our canary
1727 * condition is that target page was deleted.
1728 */
1729 if (!state->readonly)
1730 {
1731 /* Get fresh copy of target page */
1732 state->target = palloc_btree_page(state, state->targetblock);
1733 /* Note that we deliberately do not update target LSN */
1734 topaque = BTPageGetOpaque(state->target);
1735
1736 /*
1737 * All !readonly checks now performed; just return
1738 */
1739 if (P_IGNORE(topaque))
1740 return;
1741 }
1742
1743 ereport(ERROR,
1744 (errcode(ERRCODE_INDEX_CORRUPTED),
1745 errmsg("cross page item order invariant violated for index \"%s\"",
1747 errdetail_internal("Last item on page tid=(%u,%u) page lsn=%X/%08X.",
1748 state->targetblock, offset,
1749 LSN_FORMAT_ARGS(state->targetlsn))));
1750 }
1751
1752 /*
1753 * If index has unique constraint make sure that no more than one
1754 * found equal items is visible.
1755 */
1756 if (state->checkunique && state->indexinfo->ii_Unique &&
1757 rightkey && P_ISLEAF(topaque) && !P_RIGHTMOST(topaque))
1758 {
1759 BlockNumber rightblock_number = topaque->btpo_next;
1760
1761 elog(DEBUG2, "check cross page unique condition");
1762
1763 /*
1764 * Make _bt_compare compare only index keys without heap TIDs.
1765 * rightkey->scantid is modified destructively but it is ok
1766 * for it is not used later.
1767 */
1768 rightkey->scantid = NULL;
1769
1770 /* The first key on the next page is the same */
1771 if (_bt_compare(state->rel, rightkey, state->target, max) == 0 &&
1772 !rightkey->anynullkeys)
1773 {
1774 Page rightpage;
1775
1776 /*
1777 * Do the bt_entry_unique_check() call if it was
1778 * postponed.
1779 */
1780 if (!unique_checked)
1781 bt_entry_unique_check(state, itup, state->targetblock,
1782 offset, &lVis);
1783
1784 elog(DEBUG2, "cross page equal keys");
1785 rightpage = palloc_btree_page(state,
1786 rightblock_number);
1787 topaque = BTPageGetOpaque(rightpage);
1788
1789 if (P_IGNORE(topaque))
1790 {
1791 pfree(rightpage);
1792 break;
1793 }
1794
1795 if (unlikely(!P_ISLEAF(topaque)))
1796 ereport(ERROR,
1797 (errcode(ERRCODE_INDEX_CORRUPTED),
1798 errmsg("right block of leaf block is non-leaf for index \"%s\"",
1800 errdetail_internal("Block=%u page lsn=%X/%08X.",
1801 state->targetblock,
1802 LSN_FORMAT_ARGS(state->targetlsn))));
1803
1804 itemid = PageGetItemIdCareful(state, rightblock_number,
1805 rightpage,
1806 rightfirstoffset);
1807 itup = (IndexTuple) PageGetItem(rightpage, itemid);
1808
1809 bt_entry_unique_check(state, itup, rightblock_number, rightfirstoffset, &lVis);
1810
1811 pfree(rightpage);
1812 }
1813 }
1814 }
1815
1816 /*
1817 * * Downlink check *
1818 *
1819 * Additional check of child items iff this is an internal page and
1820 * caller holds a ShareLock. This happens for every downlink (item)
1821 * in target excluding the negative-infinity downlink (again, this is
1822 * because it has no useful value to compare).
1823 */
1824 if (!P_ISLEAF(topaque) && state->readonly)
1825 bt_child_check(state, skey, offset);
1826 }
1827
1828 /*
1829 * Special case bt_child_highkey_check() call
1830 *
1831 * We don't pass a real downlink, but we've to finish the level
1832 * processing. If condition is satisfied, we've already processed all the
1833 * downlinks from the target level. But there still might be pages to the
1834 * right of the child page pointer to by our rightmost downlink. And they
1835 * might have missing downlinks. This final call checks for them.
1836 */
1837 if (!P_ISLEAF(topaque) && P_RIGHTMOST(topaque) && state->readonly)
1838 {
1840 NULL, topaque->btpo_level);
1841 }
1842}
1843
1844/*
1845 * Return a scankey for an item on page to right of current target (or the
1846 * first non-ignorable page), sufficient to check ordering invariant on last
1847 * item in current target page. Returned scankey relies on local memory
1848 * allocated for the child page, which caller cannot pfree(). Caller's memory
1849 * context should be reset between calls here.
1850 *
1851 * This is the first data item, and so all adjacent items are checked against
1852 * their immediate sibling item (which may be on a sibling page, or even a
1853 * "cousin" page at parent boundaries where target's rightlink points to page
1854 * with different parent page). If no such valid item is available, return
1855 * NULL instead.
1856 *
1857 * Note that !readonly callers must reverify that target page has not
1858 * been concurrently deleted.
1859 *
1860 * Save rightfirstoffset for detailed error message.
1861 */
1862static BTScanInsert
1864{
1865 BTPageOpaque opaque;
1866 ItemId rightitem;
1867 IndexTuple firstitup;
1868 BlockNumber targetnext;
1869 Page rightpage;
1870 OffsetNumber nline;
1871
1872 /* Determine target's next block number */
1873 opaque = BTPageGetOpaque(state->target);
1874
1875 /* If target is already rightmost, no right sibling; nothing to do here */
1876 if (P_RIGHTMOST(opaque))
1877 return NULL;
1878
1879 /*
1880 * General notes on concurrent page splits and page deletion:
1881 *
1882 * Routines like _bt_search() don't require *any* page split interlock
1883 * when descending the tree, including something very light like a buffer
1884 * pin. That's why it's okay that we don't either. This avoidance of any
1885 * need to "couple" buffer locks is the raison d' etre of the Lehman & Yao
1886 * algorithm, in fact.
1887 *
1888 * That leaves deletion. A deleted page won't actually be recycled by
1889 * VACUUM early enough for us to fail to at least follow its right link
1890 * (or left link, or downlink) and find its sibling, because recycling
1891 * does not occur until no possible index scan could land on the page.
1892 * Index scans can follow links with nothing more than their snapshot as
1893 * an interlock and be sure of at least that much. (See page
1894 * recycling/"visible to everyone" notes in nbtree README.)
1895 *
1896 * Furthermore, it's okay if we follow a rightlink and find a half-dead or
1897 * dead (ignorable) page one or more times. There will either be a
1898 * further right link to follow that leads to a live page before too long
1899 * (before passing by parent's rightmost child), or we will find the end
1900 * of the entire level instead (possible when parent page is itself the
1901 * rightmost on its level).
1902 */
1903 targetnext = opaque->btpo_next;
1904 for (;;)
1905 {
1907
1908 rightpage = palloc_btree_page(state, targetnext);
1909 opaque = BTPageGetOpaque(rightpage);
1910
1911 if (!P_IGNORE(opaque) || P_RIGHTMOST(opaque))
1912 break;
1913
1914 /*
1915 * We landed on a deleted or half-dead sibling page. Step right until
1916 * we locate a live sibling page.
1917 */
1919 (errcode(ERRCODE_NO_DATA),
1920 errmsg_internal("level %u sibling page in block %u of index \"%s\" was found deleted or half dead",
1921 opaque->btpo_level, targetnext, RelationGetRelationName(state->rel)),
1922 errdetail_internal("Deleted page found when building scankey from right sibling.")));
1923
1924 targetnext = opaque->btpo_next;
1925
1926 /* Be slightly more pro-active in freeing this memory, just in case */
1927 pfree(rightpage);
1928 }
1929
1930 /*
1931 * No ShareLock held case -- why it's safe to proceed.
1932 *
1933 * Problem:
1934 *
1935 * We must avoid false positive reports of corruption when caller treats
1936 * item returned here as an upper bound on target's last item. In
1937 * general, false positives are disallowed. Avoiding them here when
1938 * caller is !readonly is subtle.
1939 *
1940 * A concurrent page deletion by VACUUM of the target page can result in
1941 * the insertion of items on to this right sibling page that would
1942 * previously have been inserted on our target page. There might have
1943 * been insertions that followed the target's downlink after it was made
1944 * to point to right sibling instead of target by page deletion's first
1945 * phase. The inserters insert items that would belong on target page.
1946 * This race is very tight, but it's possible. This is our only problem.
1947 *
1948 * Non-problems:
1949 *
1950 * We are not hindered by a concurrent page split of the target; we'll
1951 * never land on the second half of the page anyway. A concurrent split
1952 * of the right page will also not matter, because the first data item
1953 * remains the same within the left half, which we'll reliably land on. If
1954 * we had to skip over ignorable/deleted pages, it cannot matter because
1955 * their key space has already been atomically merged with the first
1956 * non-ignorable page we eventually find (doesn't matter whether the page
1957 * we eventually find is a true sibling or a cousin of target, which we go
1958 * into below).
1959 *
1960 * Solution:
1961 *
1962 * Caller knows that it should reverify that target is not ignorable
1963 * (half-dead or deleted) when cross-page sibling item comparison appears
1964 * to indicate corruption (invariant fails). This detects the single race
1965 * condition that exists for caller. This is correct because the
1966 * continued existence of target block as non-ignorable (not half-dead or
1967 * deleted) implies that target page was not merged into from the right by
1968 * deletion; the key space at or after target never moved left. Target's
1969 * parent either has the same downlink to target as before, or a <
1970 * downlink due to deletion at the left of target. Target either has the
1971 * same highkey as before, or a highkey < before when there is a page
1972 * split. (The rightmost concurrently-split-from-target-page page will
1973 * still have the same highkey as target was originally found to have,
1974 * which for our purposes is equivalent to target's highkey itself never
1975 * changing, since we reliably skip over
1976 * concurrently-split-from-target-page pages.)
1977 *
1978 * In simpler terms, we allow that the key space of the target may expand
1979 * left (the key space can move left on the left side of target only), but
1980 * the target key space cannot expand right and get ahead of us without
1981 * our detecting it. The key space of the target cannot shrink, unless it
1982 * shrinks to zero due to the deletion of the original page, our canary
1983 * condition. (To be very precise, we're a bit stricter than that because
1984 * it might just have been that the target page split and only the
1985 * original target page was deleted. We can be more strict, just not more
1986 * lax.)
1987 *
1988 * Top level tree walk caller moves on to next page (makes it the new
1989 * target) following recovery from this race. (cf. The rationale for
1990 * child/downlink verification needing a ShareLock within
1991 * bt_child_check(), where page deletion is also the main source of
1992 * trouble.)
1993 *
1994 * Note that it doesn't matter if right sibling page here is actually a
1995 * cousin page, because in order for the key space to be readjusted in a
1996 * way that causes us issues in next level up (guiding problematic
1997 * concurrent insertions to the cousin from the grandparent rather than to
1998 * the sibling from the parent), there'd have to be page deletion of
1999 * target's parent page (affecting target's parent's downlink in target's
2000 * grandparent page). Internal page deletion only occurs when there are
2001 * no child pages (they were all fully deleted), and caller is checking
2002 * that the target's parent has at least one non-deleted (so
2003 * non-ignorable) child: the target page. (Note that the first phase of
2004 * deletion atomically marks the page to be deleted half-dead/ignorable at
2005 * the same time downlink in its parent is removed, so caller will
2006 * definitely not fail to detect that this happened.)
2007 *
2008 * This trick is inspired by the method backward scans use for dealing
2009 * with concurrent page splits; concurrent page deletion is a problem that
2010 * similarly receives special consideration sometimes (it's possible that
2011 * the backwards scan will re-read its "original" block after failing to
2012 * find a right-link to it, having already moved in the opposite direction
2013 * (right/"forwards") a few times to try to locate one). Just like us,
2014 * that happens only to determine if there was a concurrent page deletion
2015 * of a reference page, and just like us if there was a page deletion of
2016 * that reference page it means we can move on from caring about the
2017 * reference page. See the nbtree README for a full description of how
2018 * that works.
2019 */
2020 nline = PageGetMaxOffsetNumber(rightpage);
2021
2022 /*
2023 * Get first data item, if any
2024 */
2025 if (P_ISLEAF(opaque) && nline >= P_FIRSTDATAKEY(opaque))
2026 {
2027 /* Return first data item (if any) */
2028 rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
2029 P_FIRSTDATAKEY(opaque));
2030 *rightfirstoffset = P_FIRSTDATAKEY(opaque);
2031 }
2032 else if (!P_ISLEAF(opaque) &&
2033 nline >= OffsetNumberNext(P_FIRSTDATAKEY(opaque)))
2034 {
2035 /*
2036 * Return first item after the internal page's "negative infinity"
2037 * item
2038 */
2039 rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
2041 }
2042 else
2043 {
2044 /*
2045 * No first item. Page is probably empty leaf page, but it's also
2046 * possible that it's an internal page with only a negative infinity
2047 * item.
2048 */
2050 (errcode(ERRCODE_NO_DATA),
2051 errmsg_internal("%s block %u of index \"%s\" has no first data item",
2052 P_ISLEAF(opaque) ? "leaf" : "internal", targetnext,
2054 return NULL;
2055 }
2056
2057 /*
2058 * Return first real item scankey. Note that this relies on right page
2059 * memory remaining allocated.
2060 */
2061 firstitup = (IndexTuple) PageGetItem(rightpage, rightitem);
2062 return bt_mkscankey_pivotsearch(state->rel, firstitup);
2063}
2064
2065/*
2066 * Check if two tuples are binary identical except the block number. So,
2067 * this function is capable to compare pivot keys on different levels.
2068 */
2069static bool
2070bt_pivot_tuple_identical(bool heapkeyspace, IndexTuple itup1, IndexTuple itup2)
2071{
2072 if (IndexTupleSize(itup1) != IndexTupleSize(itup2))
2073 return false;
2074
2075 if (heapkeyspace)
2076 {
2077 /*
2078 * Offset number will contain important information in heapkeyspace
2079 * indexes: the number of attributes left in the pivot tuple following
2080 * suffix truncation. Don't skip over it (compare it too).
2081 */
2082 if (memcmp(&itup1->t_tid.ip_posid, &itup2->t_tid.ip_posid,
2083 IndexTupleSize(itup1) -
2084 offsetof(ItemPointerData, ip_posid)) != 0)
2085 return false;
2086 }
2087 else
2088 {
2089 /*
2090 * Cannot rely on offset number field having consistent value across
2091 * levels on pg_upgrade'd !heapkeyspace indexes. Compare contents of
2092 * tuple starting from just after item pointer (i.e. after block
2093 * number and offset number).
2094 */
2095 if (memcmp(&itup1->t_info, &itup2->t_info,
2096 IndexTupleSize(itup1) -
2097 offsetof(IndexTupleData, t_info)) != 0)
2098 return false;
2099 }
2100
2101 return true;
2102}
2103
2104/*---
2105 * Check high keys on the child level. Traverse rightlinks from previous
2106 * downlink to the current one. Check that there are no intermediate pages
2107 * with missing downlinks.
2108 *
2109 * If 'loaded_child' is given, it's assumed to be the page pointed to by the
2110 * downlink referenced by 'downlinkoffnum' of the target page.
2111 *
2112 * Basically this function is called for each target downlink and checks two
2113 * invariants:
2114 *
2115 * 1) You can reach the next child from previous one via rightlinks;
2116 * 2) Each child high key have matching pivot key on target level.
2117 *
2118 * Consider the sample tree picture.
2119 *
2120 * 1
2121 * / \
2122 * 2 <-> 3
2123 * / \ / \
2124 * 4 <> 5 <> 6 <> 7 <> 8
2125 *
2126 * This function will be called for blocks 4, 5, 6 and 8. Consider what is
2127 * happening for each function call.
2128 *
2129 * - The function call for block 4 initializes data structure and matches high
2130 * key of block 4 to downlink's pivot key of block 2.
2131 * - The high key of block 5 is matched to the high key of block 2.
2132 * - The block 6 has an incomplete split flag set, so its high key isn't
2133 * matched to anything.
2134 * - The function call for block 8 checks that block 8 can be found while
2135 * following rightlinks from block 6. The high key of block 7 will be
2136 * matched to downlink's pivot key in block 3.
2137 *
2138 * There is also final call of this function, which checks that there is no
2139 * missing downlinks for children to the right of the child referenced by
2140 * rightmost downlink in target level.
2141 */
2142static void
2144 OffsetNumber target_downlinkoffnum,
2145 Page loaded_child,
2146 uint32 target_level)
2147{
2148 BlockNumber blkno = state->prevrightlink;
2149 Page page;
2150 BTPageOpaque opaque;
2151 bool rightsplit = state->previncompletesplit;
2152 bool first = true;
2153 ItemId itemid;
2154 IndexTuple itup;
2155 BlockNumber downlink;
2156
2157 if (OffsetNumberIsValid(target_downlinkoffnum))
2158 {
2159 itemid = PageGetItemIdCareful(state, state->targetblock,
2160 state->target, target_downlinkoffnum);
2161 itup = (IndexTuple) PageGetItem(state->target, itemid);
2162 downlink = BTreeTupleGetDownLink(itup);
2163 }
2164 else
2165 {
2166 downlink = P_NONE;
2167 }
2168
2169 /*
2170 * If no previous rightlink is memorized for current level just below
2171 * target page's level, we are about to start from the leftmost page. We
2172 * can't follow rightlinks from previous page, because there is no
2173 * previous page. But we still can match high key.
2174 *
2175 * So we initialize variables for the loop above like there is previous
2176 * page referencing current child. Also we imply previous page to not
2177 * have incomplete split flag, that would make us require downlink for
2178 * current child. That's correct, because leftmost page on the level
2179 * should always have parent downlink.
2180 */
2181 if (!BlockNumberIsValid(blkno))
2182 {
2183 blkno = downlink;
2184 rightsplit = false;
2185 }
2186
2187 /* Move to the right on the child level */
2188 while (true)
2189 {
2190 /*
2191 * Did we traverse the whole tree level and this is check for pages to
2192 * the right of rightmost downlink?
2193 */
2194 if (blkno == P_NONE && downlink == P_NONE)
2195 {
2196 state->prevrightlink = InvalidBlockNumber;
2197 state->previncompletesplit = false;
2198 return;
2199 }
2200
2201 /* Did we traverse the whole tree level and don't find next downlink? */
2202 if (blkno == P_NONE)
2203 ereport(ERROR,
2204 (errcode(ERRCODE_INDEX_CORRUPTED),
2205 errmsg("can't traverse from downlink %u to downlink %u of index \"%s\"",
2206 state->prevrightlink, downlink,
2208
2209 /* Load page contents */
2210 if (blkno == downlink && loaded_child)
2211 page = loaded_child;
2212 else
2213 page = palloc_btree_page(state, blkno);
2214
2215 opaque = BTPageGetOpaque(page);
2216
2217 /* The first page we visit at the level should be leftmost */
2218 if (first && !BlockNumberIsValid(state->prevrightlink) &&
2219 !bt_leftmost_ignoring_half_dead(state, blkno, opaque))
2220 ereport(ERROR,
2221 (errcode(ERRCODE_INDEX_CORRUPTED),
2222 errmsg("the first child of leftmost target page is not leftmost of its level in index \"%s\"",
2224 errdetail_internal("Target block=%u child block=%u target page lsn=%X/%08X.",
2225 state->targetblock, blkno,
2226 LSN_FORMAT_ARGS(state->targetlsn))));
2227
2228 /* Do level sanity check */
2229 if ((!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque)) &&
2230 opaque->btpo_level != target_level - 1)
2231 ereport(ERROR,
2232 (errcode(ERRCODE_INDEX_CORRUPTED),
2233 errmsg("block found while following rightlinks from child of index \"%s\" has invalid level",
2235 errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
2236 blkno, target_level - 1, opaque->btpo_level)));
2237
2238 /* Try to detect circular links */
2239 if ((!first && blkno == state->prevrightlink) || blkno == opaque->btpo_prev)
2240 ereport(ERROR,
2241 (errcode(ERRCODE_INDEX_CORRUPTED),
2242 errmsg("circular link chain found in block %u of index \"%s\"",
2243 blkno, RelationGetRelationName(state->rel))));
2244
2245 if (blkno != downlink && !P_IGNORE(opaque))
2246 {
2247 /* blkno probably has missing parent downlink */
2248 bt_downlink_missing_check(state, rightsplit, blkno, page);
2249 }
2250
2251 rightsplit = P_INCOMPLETE_SPLIT(opaque);
2252
2253 /*
2254 * If we visit page with high key, check that it is equal to the
2255 * target key next to corresponding downlink.
2256 */
2257 if (!rightsplit && !P_RIGHTMOST(opaque) && !P_ISHALFDEAD(opaque))
2258 {
2259 BTPageOpaque topaque;
2260 IndexTuple highkey;
2261 OffsetNumber pivotkey_offset;
2262
2263 /* Get high key */
2264 itemid = PageGetItemIdCareful(state, blkno, page, P_HIKEY);
2265 highkey = (IndexTuple) PageGetItem(page, itemid);
2266
2267 /*
2268 * There might be two situations when we examine high key. If
2269 * current child page is referenced by given target downlink, we
2270 * should look to the next offset number for matching key from
2271 * target page.
2272 *
2273 * Alternatively, we're following rightlinks somewhere in the
2274 * middle between page referenced by previous target's downlink
2275 * and the page referenced by current target's downlink. If
2276 * current child page hasn't incomplete split flag set, then its
2277 * high key should match to the target's key of current offset
2278 * number. This happens when a previous call here (to
2279 * bt_child_highkey_check()) found an incomplete split, and we
2280 * reach a right sibling page without a downlink -- the right
2281 * sibling page's high key still needs to be matched to a
2282 * separator key on the parent/target level.
2283 *
2284 * Don't apply OffsetNumberNext() to target_downlinkoffnum when we
2285 * already had to step right on the child level. Our traversal of
2286 * the child level must try to move in perfect lockstep behind (to
2287 * the left of) the target/parent level traversal.
2288 */
2289 if (blkno == downlink)
2290 pivotkey_offset = OffsetNumberNext(target_downlinkoffnum);
2291 else
2292 pivotkey_offset = target_downlinkoffnum;
2293
2294 topaque = BTPageGetOpaque(state->target);
2295
2296 if (!offset_is_negative_infinity(topaque, pivotkey_offset))
2297 {
2298 /*
2299 * If we're looking for the next pivot tuple in target page,
2300 * but there is no more pivot tuples, then we should match to
2301 * high key instead.
2302 */
2303 if (pivotkey_offset > PageGetMaxOffsetNumber(state->target))
2304 {
2305 if (P_RIGHTMOST(topaque))
2306 ereport(ERROR,
2307 (errcode(ERRCODE_INDEX_CORRUPTED),
2308 errmsg("child high key is greater than rightmost pivot key on target level in index \"%s\"",
2310 errdetail_internal("Target block=%u child block=%u target page lsn=%X/%08X.",
2311 state->targetblock, blkno,
2312 LSN_FORMAT_ARGS(state->targetlsn))));
2313 pivotkey_offset = P_HIKEY;
2314 }
2315 itemid = PageGetItemIdCareful(state, state->targetblock,
2316 state->target, pivotkey_offset);
2317 itup = (IndexTuple) PageGetItem(state->target, itemid);
2318 }
2319 else
2320 {
2321 /*
2322 * We cannot try to match child's high key to a negative
2323 * infinity key in target, since there is nothing to compare.
2324 * However, it's still possible to match child's high key
2325 * outside of target page. The reason why we're are is that
2326 * bt_child_highkey_check() was previously called for the
2327 * cousin page of 'loaded_child', which is incomplete split.
2328 * So, now we traverse to the right of that cousin page and
2329 * current child level page under consideration still belongs
2330 * to the subtree of target's left sibling. Thus, we need to
2331 * match child's high key to its left uncle page high key.
2332 * Thankfully we saved it, it's called a "low key" of target
2333 * page.
2334 */
2335 if (!state->lowkey)
2336 ereport(ERROR,
2337 (errcode(ERRCODE_INDEX_CORRUPTED),
2338 errmsg("can't find left sibling high key in index \"%s\"",
2340 errdetail_internal("Target block=%u child block=%u target page lsn=%X/%08X.",
2341 state->targetblock, blkno,
2342 LSN_FORMAT_ARGS(state->targetlsn))));
2343 itup = state->lowkey;
2344 }
2345
2346 if (!bt_pivot_tuple_identical(state->heapkeyspace, highkey, itup))
2347 {
2348 ereport(ERROR,
2349 (errcode(ERRCODE_INDEX_CORRUPTED),
2350 errmsg("mismatch between parent key and child high key in index \"%s\"",
2352 errdetail_internal("Target block=%u child block=%u target page lsn=%X/%08X.",
2353 state->targetblock, blkno,
2354 LSN_FORMAT_ARGS(state->targetlsn))));
2355 }
2356 }
2357
2358 /* Exit if we already found next downlink */
2359 if (blkno == downlink)
2360 {
2361 state->prevrightlink = opaque->btpo_next;
2362 state->previncompletesplit = rightsplit;
2363 return;
2364 }
2365
2366 /* Traverse to the next page using rightlink */
2367 blkno = opaque->btpo_next;
2368
2369 /* Free page contents if it's allocated by us */
2370 if (page != loaded_child)
2371 pfree(page);
2372 first = false;
2373 }
2374}
2375
2376/*
2377 * Checks one of target's downlink against its child page.
2378 *
2379 * Conceptually, the target page continues to be what is checked here. The
2380 * target block is still blamed in the event of finding an invariant violation.
2381 * The downlink insertion into the target is probably where any problem raised
2382 * here arises, and there is no such thing as a parent link, so doing the
2383 * verification this way around is much more practical.
2384 *
2385 * This function visits child page and it's sequentially called for each
2386 * downlink of target page. Assuming this we also check downlink connectivity
2387 * here in order to save child page visits.
2388 */
2389static void
2391 OffsetNumber downlinkoffnum)
2392{
2393 ItemId itemid;
2394 IndexTuple itup;
2395 BlockNumber childblock;
2396 OffsetNumber offset;
2397 OffsetNumber maxoffset;
2398 Page child;
2399 BTPageOpaque copaque;
2400 BTPageOpaque topaque;
2401
2402 itemid = PageGetItemIdCareful(state, state->targetblock,
2403 state->target, downlinkoffnum);
2404 itup = (IndexTuple) PageGetItem(state->target, itemid);
2405 childblock = BTreeTupleGetDownLink(itup);
2406
2407 /*
2408 * Caller must have ShareLock on target relation, because of
2409 * considerations around page deletion by VACUUM.
2410 *
2411 * NB: In general, page deletion deletes the right sibling's downlink, not
2412 * the downlink of the page being deleted; the deleted page's downlink is
2413 * reused for its sibling. The key space is thereby consolidated between
2414 * the deleted page and its right sibling. (We cannot delete a parent
2415 * page's rightmost child unless it is the last child page, and we intend
2416 * to also delete the parent itself.)
2417 *
2418 * If this verification happened without a ShareLock, the following race
2419 * condition could cause false positives:
2420 *
2421 * In general, concurrent page deletion might occur, including deletion of
2422 * the left sibling of the child page that is examined here. If such a
2423 * page deletion were to occur, closely followed by an insertion into the
2424 * newly expanded key space of the child, a window for the false positive
2425 * opens up: the stale parent/target downlink originally followed to get
2426 * to the child legitimately ceases to be a lower bound on all items in
2427 * the page, since the key space was concurrently expanded "left".
2428 * (Insertion followed the "new" downlink for the child, not our now-stale
2429 * downlink, which was concurrently physically removed in target/parent as
2430 * part of deletion's first phase.)
2431 *
2432 * While we use various techniques elsewhere to perform cross-page
2433 * verification for !readonly callers, a similar trick seems difficult
2434 * here. The tricks used by bt_recheck_sibling_links and by
2435 * bt_right_page_check_scankey both involve verification of a same-level,
2436 * cross-sibling invariant. Cross-level invariants are far more squishy,
2437 * though. The nbtree REDO routines do not actually couple buffer locks
2438 * across levels during page splits, so making any cross-level check work
2439 * reliably in !readonly mode may be impossible.
2440 */
2441 Assert(state->readonly);
2442
2443 /*
2444 * Verify child page has the downlink key from target page (its parent) as
2445 * a lower bound; downlink must be strictly less than all keys on the
2446 * page.
2447 *
2448 * Check all items, rather than checking just the first and trusting that
2449 * the operator class obeys the transitive law.
2450 */
2451 topaque = BTPageGetOpaque(state->target);
2452 child = palloc_btree_page(state, childblock);
2453 copaque = BTPageGetOpaque(child);
2454 maxoffset = PageGetMaxOffsetNumber(child);
2455
2456 /*
2457 * Since we've already loaded the child block, combine this check with
2458 * check for downlink connectivity.
2459 */
2460 bt_child_highkey_check(state, downlinkoffnum,
2461 child, topaque->btpo_level);
2462
2463 /*
2464 * Since there cannot be a concurrent VACUUM operation in readonly mode,
2465 * and since a page has no links within other pages (siblings and parent)
2466 * once it is marked fully deleted, it should be impossible to land on a
2467 * fully deleted page.
2468 *
2469 * It does not quite make sense to enforce that the page cannot even be
2470 * half-dead, despite the fact the downlink is modified at the same stage
2471 * that the child leaf page is marked half-dead. That's incorrect because
2472 * there may occasionally be multiple downlinks from a chain of pages
2473 * undergoing deletion, where multiple successive calls are made to
2474 * _bt_unlink_halfdead_page() by VACUUM before it can finally safely mark
2475 * the leaf page as fully dead. While _bt_mark_page_halfdead() usually
2476 * removes the downlink to the leaf page that is marked half-dead, that's
2477 * not guaranteed, so it's possible we'll land on a half-dead page with a
2478 * downlink due to an interrupted multi-level page deletion.
2479 *
2480 * We go ahead with our checks if the child page is half-dead. It's safe
2481 * to do so because we do not test the child's high key, so it does not
2482 * matter that the original high key will have been replaced by a dummy
2483 * truncated high key within _bt_mark_page_halfdead(). All other page
2484 * items are left intact on a half-dead page, so there is still something
2485 * to test.
2486 */
2487 if (P_ISDELETED(copaque))
2488 ereport(ERROR,
2489 (errcode(ERRCODE_INDEX_CORRUPTED),
2490 errmsg("downlink to deleted page found in index \"%s\"",
2492 errdetail_internal("Parent block=%u child block=%u parent page lsn=%X/%08X.",
2493 state->targetblock, childblock,
2494 LSN_FORMAT_ARGS(state->targetlsn))));
2495
2496 for (offset = P_FIRSTDATAKEY(copaque);
2497 offset <= maxoffset;
2498 offset = OffsetNumberNext(offset))
2499 {
2500 /*
2501 * Skip comparison of target page key against "negative infinity"
2502 * item, if any. Checking it would indicate that it's not a strict
2503 * lower bound, but that's only because of the hard-coding for
2504 * negative infinity items within _bt_compare().
2505 *
2506 * If nbtree didn't truncate negative infinity tuples during internal
2507 * page splits then we'd expect child's negative infinity key to be
2508 * equal to the scankey/downlink from target/parent (it would be a
2509 * "low key" in this hypothetical scenario, and so it would still need
2510 * to be treated as a special case here).
2511 *
2512 * Negative infinity items can be thought of as a strict lower bound
2513 * that works transitively, with the last non-negative-infinity pivot
2514 * followed during a descent from the root as its "true" strict lower
2515 * bound. Only a small number of negative infinity items are truly
2516 * negative infinity; those that are the first items of leftmost
2517 * internal pages. In more general terms, a negative infinity item is
2518 * only negative infinity with respect to the subtree that the page is
2519 * at the root of.
2520 *
2521 * See also: bt_rootdescend(), which can even detect transitive
2522 * inconsistencies on cousin leaf pages.
2523 */
2524 if (offset_is_negative_infinity(copaque, offset))
2525 continue;
2526
2527 if (!invariant_l_nontarget_offset(state, targetkey, childblock, child,
2528 offset))
2529 ereport(ERROR,
2530 (errcode(ERRCODE_INDEX_CORRUPTED),
2531 errmsg("down-link lower bound invariant violated for index \"%s\"",
2533 errdetail_internal("Parent block=%u child index tid=(%u,%u) parent page lsn=%X/%08X.",
2534 state->targetblock, childblock, offset,
2535 LSN_FORMAT_ARGS(state->targetlsn))));
2536 }
2537
2538 pfree(child);
2539}
2540
2541/*
2542 * Checks if page is missing a downlink that it should have.
2543 *
2544 * A page that lacks a downlink/parent may indicate corruption. However, we
2545 * must account for the fact that a missing downlink can occasionally be
2546 * encountered in a non-corrupt index. This can be due to an interrupted page
2547 * split, or an interrupted multi-level page deletion (i.e. there was a hard
2548 * crash or an error during a page split, or while VACUUM was deleting a
2549 * multi-level chain of pages).
2550 *
2551 * Note that this can only be called in readonly mode, so there is no need to
2552 * be concerned about concurrent page splits or page deletions.
2553 */
2554static void
2556 BlockNumber blkno, Page page)
2557{
2558 BTPageOpaque opaque = BTPageGetOpaque(page);
2559 ItemId itemid;
2560 IndexTuple itup;
2561 Page child;
2562 BTPageOpaque copaque;
2563 uint32 level;
2564 BlockNumber childblk;
2565 XLogRecPtr pagelsn;
2566
2567 Assert(state->readonly);
2568 Assert(!P_IGNORE(opaque));
2569
2570 /* No next level up with downlinks to fingerprint from the true root */
2571 if (P_ISROOT(opaque))
2572 return;
2573
2574 pagelsn = PageGetLSN(page);
2575
2576 /*
2577 * Incomplete (interrupted) page splits can account for the lack of a
2578 * downlink. Some inserting transaction should eventually complete the
2579 * page split in passing, when it notices that the left sibling page is
2580 * P_INCOMPLETE_SPLIT().
2581 *
2582 * In general, VACUUM is not prepared for there to be no downlink to a
2583 * page that it deletes. This is the main reason why the lack of a
2584 * downlink can be reported as corruption here. It's not obvious that an
2585 * invalid missing downlink can result in wrong answers to queries,
2586 * though, since index scans that land on the child may end up
2587 * consistently moving right. The handling of concurrent page splits (and
2588 * page deletions) within _bt_moveright() cannot distinguish
2589 * inconsistencies that last for a moment from inconsistencies that are
2590 * permanent and irrecoverable.
2591 *
2592 * VACUUM isn't even prepared to delete pages that have no downlink due to
2593 * an incomplete page split, but it can detect and reason about that case
2594 * by design, so it shouldn't be taken to indicate corruption. See
2595 * _bt_pagedel() for full details.
2596 */
2597 if (rightsplit)
2598 {
2600 (errcode(ERRCODE_NO_DATA),
2601 errmsg_internal("harmless interrupted page split detected in index \"%s\"",
2603 errdetail_internal("Block=%u level=%u left sibling=%u page lsn=%X/%08X.",
2604 blkno, opaque->btpo_level,
2605 opaque->btpo_prev,
2606 LSN_FORMAT_ARGS(pagelsn))));
2607 return;
2608 }
2609
2610 /*
2611 * Page under check is probably the "top parent" of a multi-level page
2612 * deletion. We'll need to descend the subtree to make sure that
2613 * descendant pages are consistent with that, though.
2614 *
2615 * If the page (which must be non-ignorable) is a leaf page, then clearly
2616 * it can't be the top parent. The lack of a downlink is probably a
2617 * symptom of a broad problem that could just as easily cause
2618 * inconsistencies anywhere else.
2619 */
2620 if (P_ISLEAF(opaque))
2621 ereport(ERROR,
2622 (errcode(ERRCODE_INDEX_CORRUPTED),
2623 errmsg("leaf index block lacks downlink in index \"%s\"",
2625 errdetail_internal("Block=%u page lsn=%X/%08X.",
2626 blkno,
2627 LSN_FORMAT_ARGS(pagelsn))));
2628
2629 /* Descend from the given page, which is an internal page */
2630 elog(DEBUG1, "checking for interrupted multi-level deletion due to missing downlink in index \"%s\"",
2632
2633 level = opaque->btpo_level;
2634 itemid = PageGetItemIdCareful(state, blkno, page, P_FIRSTDATAKEY(opaque));
2635 itup = (IndexTuple) PageGetItem(page, itemid);
2636 childblk = BTreeTupleGetDownLink(itup);
2637 for (;;)
2638 {
2640
2641 child = palloc_btree_page(state, childblk);
2642 copaque = BTPageGetOpaque(child);
2643
2644 if (P_ISLEAF(copaque))
2645 break;
2646
2647 /* Do an extra sanity check in passing on internal pages */
2648 if (copaque->btpo_level != level - 1)
2649 ereport(ERROR,
2650 (errcode(ERRCODE_INDEX_CORRUPTED),
2651 errmsg_internal("downlink points to block in index \"%s\" whose level is not one level down",
2653 errdetail_internal("Top parent/under check block=%u block pointed to=%u expected level=%u level in pointed to block=%u.",
2654 blkno, childblk,
2655 level - 1, copaque->btpo_level)));
2656
2657 level = copaque->btpo_level;
2658 itemid = PageGetItemIdCareful(state, childblk, child,
2659 P_FIRSTDATAKEY(copaque));
2660 itup = (IndexTuple) PageGetItem(child, itemid);
2661 childblk = BTreeTupleGetDownLink(itup);
2662 /* Be slightly more pro-active in freeing this memory, just in case */
2663 pfree(child);
2664 }
2665
2666 /*
2667 * Since there cannot be a concurrent VACUUM operation in readonly mode,
2668 * and since a page has no links within other pages (siblings and parent)
2669 * once it is marked fully deleted, it should be impossible to land on a
2670 * fully deleted page. See bt_child_check() for further details.
2671 *
2672 * The bt_child_check() P_ISDELETED() check is repeated here because
2673 * bt_child_check() does not visit pages reachable through negative
2674 * infinity items. Besides, bt_child_check() is unwilling to descend
2675 * multiple levels. (The similar bt_child_check() P_ISDELETED() check
2676 * within bt_check_level_from_leftmost() won't reach the page either,
2677 * since the leaf's live siblings should have their sibling links updated
2678 * to bypass the deletion target page when it is marked fully dead.)
2679 *
2680 * If this error is raised, it might be due to a previous multi-level page
2681 * deletion that failed to realize that it wasn't yet safe to mark the
2682 * leaf page as fully dead. A "dangling downlink" will still remain when
2683 * this happens. The fact that the dangling downlink's page (the leaf's
2684 * parent/ancestor page) lacked a downlink is incidental.
2685 */
2686 if (P_ISDELETED(copaque))
2687 ereport(ERROR,
2688 (errcode(ERRCODE_INDEX_CORRUPTED),
2689 errmsg_internal("downlink to deleted leaf page found in index \"%s\"",
2691 errdetail_internal("Top parent/target block=%u leaf block=%u top parent/under check lsn=%X/%08X.",
2692 blkno, childblk,
2693 LSN_FORMAT_ARGS(pagelsn))));
2694
2695 /*
2696 * Iff leaf page is half-dead, its high key top parent link should point
2697 * to what VACUUM considered to be the top parent page at the instant it
2698 * was interrupted. Provided the high key link actually points to the
2699 * page under check, the missing downlink we detected is consistent with
2700 * there having been an interrupted multi-level page deletion. This means
2701 * that the subtree with the page under check at its root (a page deletion
2702 * chain) is in a consistent state, enabling VACUUM to resume deleting the
2703 * entire chain the next time it encounters the half-dead leaf page.
2704 */
2705 if (P_ISHALFDEAD(copaque) && !P_RIGHTMOST(copaque))
2706 {
2707 itemid = PageGetItemIdCareful(state, childblk, child, P_HIKEY);
2708 itup = (IndexTuple) PageGetItem(child, itemid);
2709 if (BTreeTupleGetTopParent(itup) == blkno)
2710 return;
2711 }
2712
2713 ereport(ERROR,
2714 (errcode(ERRCODE_INDEX_CORRUPTED),
2715 errmsg("internal index block lacks downlink in index \"%s\"",
2717 errdetail_internal("Block=%u level=%u page lsn=%X/%08X.",
2718 blkno, opaque->btpo_level,
2719 LSN_FORMAT_ARGS(pagelsn))));
2720}
2721
2722/*
2723 * Per-tuple callback from table_index_build_scan, used to determine if index has
2724 * all the entries that definitely should have been observed in leaf pages of
2725 * the target index (that is, all IndexTuples that were fingerprinted by our
2726 * Bloom filter). All heapallindexed checks occur here.
2727 *
2728 * The redundancy between an index and the table it indexes provides a good
2729 * opportunity to detect corruption, especially corruption within the table.
2730 * The high level principle behind the verification performed here is that any
2731 * IndexTuple that should be in an index following a fresh CREATE INDEX (based
2732 * on the same index definition) should also have been in the original,
2733 * existing index, which should have used exactly the same representation
2734 *
2735 * Since the overall structure of the index has already been verified, the most
2736 * likely explanation for error here is a corrupt heap page (could be logical
2737 * or physical corruption). Index corruption may still be detected here,
2738 * though. Only readonly callers will have verified that left links and right
2739 * links are in agreement, and so it's possible that a leaf page transposition
2740 * within index is actually the source of corruption detected here (for
2741 * !readonly callers). The checks performed only for readonly callers might
2742 * more accurately frame the problem as a cross-page invariant issue (this
2743 * could even be due to recovery not replaying all WAL records). The !readonly
2744 * ERROR message raised here includes a HINT about retrying with readonly
2745 * verification, just in case it's a cross-page invariant issue, though that
2746 * isn't particularly likely.
2747 *
2748 * table_index_build_scan() expects to be able to find the root tuple when a
2749 * heap-only tuple (the live tuple at the end of some HOT chain) needs to be
2750 * indexed, in order to replace the actual tuple's TID with the root tuple's
2751 * TID (which is what we're actually passed back here). The index build heap
2752 * scan code will raise an error when a tuple that claims to be the root of the
2753 * heap-only tuple's HOT chain cannot be located. This catches cases where the
2754 * original root item offset/root tuple for a HOT chain indicates (for whatever
2755 * reason) that the entire HOT chain is dead, despite the fact that the latest
2756 * heap-only tuple should be indexed. When this happens, sequential scans may
2757 * always give correct answers, and all indexes may be considered structurally
2758 * consistent (i.e. the nbtree structural checks would not detect corruption).
2759 * It may be the case that only index scans give wrong answers, and yet heap or
2760 * SLRU corruption is the real culprit. (While it's true that LP_DEAD bit
2761 * setting will probably also leave the index in a corrupt state before too
2762 * long, the problem is nonetheless that there is heap corruption.)
2763 *
2764 * Heap-only tuple handling within table_index_build_scan() works in a way that
2765 * helps us to detect index tuples that contain the wrong values (values that
2766 * don't match the latest tuple in the HOT chain). This can happen when there
2767 * is no superseding index tuple due to a faulty assessment of HOT safety,
2768 * perhaps during the original CREATE INDEX. Because the latest tuple's
2769 * contents are used with the root TID, an error will be raised when a tuple
2770 * with the same TID but non-matching attribute values is passed back to us.
2771 * Faulty assessment of HOT-safety was behind at least two distinct CREATE
2772 * INDEX CONCURRENTLY bugs that made it into stable releases, one of which was
2773 * undetected for many years. In short, the same principle that allows a
2774 * REINDEX to repair corruption when there was an (undetected) broken HOT chain
2775 * also allows us to detect the corruption in many cases.
2776 */
2777static void
2779 bool *isnull, bool tupleIsAlive, void *checkstate)
2780{
2781 BtreeCheckState *state = (BtreeCheckState *) checkstate;
2782 IndexTuple itup,
2783 norm;
2784
2785 Assert(state->heapallindexed);
2786
2787 /* Generate a normalized index tuple for fingerprinting */
2789 itup->t_tid = *tid;
2790 norm = bt_normalize_tuple(state, itup);
2791
2792 /* Probe Bloom filter -- tuple should be present */
2793 if (bloom_lacks_element(state->filter, (unsigned char *) norm,
2794 IndexTupleSize(norm)))
2795 ereport(ERROR,
2797 errmsg("heap tuple (%u,%u) from table \"%s\" lacks matching index tuple within index \"%s\"",
2802 !state->readonly
2803 ? errhint("Retrying verification using the function bt_index_parent_check() might provide a more specific error.")
2804 : 0));
2805
2806 state->heaptuplespresent++;
2807 pfree(itup);
2808 /* Cannot leak memory here */
2809 if (norm != itup)
2810 pfree(norm);
2811}
2812
2813/*
2814 * Normalize an index tuple for fingerprinting.
2815 *
2816 * In general, index tuple formation is assumed to be deterministic by
2817 * heapallindexed verification, and IndexTuples are assumed immutable. While
2818 * the LP_DEAD bit is mutable in leaf pages, that's ItemId metadata, which is
2819 * not fingerprinted. Normalization is required to compensate for corner
2820 * cases where the determinism assumption doesn't quite work.
2821 *
2822 * There is currently one such case: index_form_tuple() does not try to hide
2823 * the source TOAST state of input datums. The executor applies TOAST
2824 * compression for heap tuples based on different criteria to the compression
2825 * applied within btinsert()'s call to index_form_tuple(): it sometimes
2826 * compresses more aggressively, resulting in compressed heap tuple datums but
2827 * uncompressed corresponding index tuple datums. A subsequent heapallindexed
2828 * verification will get a logically equivalent though bitwise unequal tuple
2829 * from index_form_tuple(). False positive heapallindexed corruption reports
2830 * could occur without normalizing away the inconsistency.
2831 *
2832 * Returned tuple is often caller's own original tuple. Otherwise, it is a
2833 * new representation of caller's original index tuple, palloc()'d in caller's
2834 * memory context.
2835 *
2836 * Note: This routine is not concerned with distinctions about the
2837 * representation of tuples beyond those that might break heapallindexed
2838 * verification. In particular, it won't try to normalize opclass-equal
2839 * datums with potentially distinct representations (e.g., btree/numeric_ops
2840 * index datums will not get their display scale normalized-away here).
2841 * Caller does normalization for non-pivot tuples that have a posting list,
2842 * since dummy CREATE INDEX callback code generates new tuples with the same
2843 * normalized representation.
2844 */
2845static IndexTuple
2847{
2848 TupleDesc tupleDescriptor = RelationGetDescr(state->rel);
2849 Datum normalized[INDEX_MAX_KEYS];
2850 bool isnull[INDEX_MAX_KEYS];
2851 bool need_free[INDEX_MAX_KEYS];
2852 bool formnewtup = false;
2853 IndexTuple reformed;
2854 int i;
2855
2856 /* Caller should only pass "logical" non-pivot tuples here */
2858
2859 /* Easy case: It's immediately clear that tuple has no varlena datums */
2860 if (!IndexTupleHasVarwidths(itup))
2861 return itup;
2862
2863 for (i = 0; i < tupleDescriptor->natts; i++)
2864 {
2866
2867 att = TupleDescAttr(tupleDescriptor, i);
2868
2869 /* Assume untoasted/already normalized datum initially */
2870 need_free[i] = false;
2871 normalized[i] = index_getattr(itup, att->attnum,
2872 tupleDescriptor,
2873 &isnull[i]);
2874 if (att->attbyval || att->attlen != -1 || isnull[i])
2875 continue;
2876
2877 /*
2878 * Callers always pass a tuple that could safely be inserted into the
2879 * index without further processing, so an external varlena header
2880 * should never be encountered here
2881 */
2882 if (VARATT_IS_EXTERNAL(DatumGetPointer(normalized[i])))
2883 ereport(ERROR,
2884 (errcode(ERRCODE_INDEX_CORRUPTED),
2885 errmsg("external varlena datum in tuple that references heap row (%u,%u) in index \"%s\"",
2889 else if (!VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])) &&
2890 VARSIZE(DatumGetPointer(normalized[i])) > TOAST_INDEX_TARGET &&
2891 (att->attstorage == TYPSTORAGE_EXTENDED ||
2892 att->attstorage == TYPSTORAGE_MAIN))
2893 {
2894 /*
2895 * This value will be compressed by index_form_tuple() with the
2896 * current storage settings. We may be here because this tuple
2897 * was formed with different storage settings. So, force forming.
2898 */
2899 formnewtup = true;
2900 }
2901 else if (VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])))
2902 {
2903 formnewtup = true;
2904 normalized[i] = PointerGetDatum(PG_DETOAST_DATUM(normalized[i]));
2905 need_free[i] = true;
2906 }
2907
2908 /*
2909 * Short tuples may have 1B or 4B header. Convert 4B header of short
2910 * tuples to 1B
2911 */
2912 else if (VARATT_CAN_MAKE_SHORT(DatumGetPointer(normalized[i])))
2913 {
2914 /* convert to short varlena */
2916 char *data = palloc(len);
2917
2919 memcpy(data + 1, VARDATA(DatumGetPointer(normalized[i])), len - 1);
2920
2921 formnewtup = true;
2922 normalized[i] = PointerGetDatum(data);
2923 need_free[i] = true;
2924 }
2925 }
2926
2927 /*
2928 * Easier case: Tuple has varlena datums, none of which are compressed or
2929 * short with 4B header
2930 */
2931 if (!formnewtup)
2932 return itup;
2933
2934 /*
2935 * Hard case: Tuple had compressed varlena datums that necessitate
2936 * creating normalized version of the tuple from uncompressed input datums
2937 * (normalized input datums). This is rather naive, but shouldn't be
2938 * necessary too often.
2939 *
2940 * In the heap, tuples may contain short varlena datums with both 1B
2941 * header and 4B headers. But the corresponding index tuple should always
2942 * have such varlena's with 1B headers. So, if there is a short varlena
2943 * with 4B header, we need to convert it for fingerprinting.
2944 *
2945 * Note that we rely on deterministic index_form_tuple() TOAST compression
2946 * of normalized input.
2947 */
2948 reformed = index_form_tuple(tupleDescriptor, normalized, isnull);
2949 reformed->t_tid = itup->t_tid;
2950
2951 /* Cannot leak memory here */
2952 for (i = 0; i < tupleDescriptor->natts; i++)
2953 if (need_free[i])
2954 pfree(DatumGetPointer(normalized[i]));
2955
2956 return reformed;
2957}
2958
2959/*
2960 * Produce palloc()'d "plain" tuple for nth posting list entry/TID.
2961 *
2962 * In general, deduplication is not supposed to change the logical contents of
2963 * an index. Multiple index tuples are merged together into one equivalent
2964 * posting list index tuple when convenient.
2965 *
2966 * heapallindexed verification must normalize-away this variation in
2967 * representation by converting posting list tuples into two or more "plain"
2968 * tuples. Each tuple must be fingerprinted separately -- there must be one
2969 * tuple for each corresponding Bloom filter probe during the heap scan.
2970 *
2971 * Note: Caller still needs to call bt_normalize_tuple() with returned tuple.
2972 */
2973static inline IndexTuple
2975{
2977
2978 /* Returns non-posting-list tuple */
2979 return _bt_form_posting(itup, BTreeTupleGetPostingN(itup, n), 1);
2980}
2981
2982/*
2983 * Search for itup in index, starting from fast root page. itup must be a
2984 * non-pivot tuple. This is only supported with heapkeyspace indexes, since
2985 * we rely on having fully unique keys to find a match with only a single
2986 * visit to a leaf page, barring an interrupted page split, where we may have
2987 * to move right. (A concurrent page split is impossible because caller must
2988 * be readonly caller.)
2989 *
2990 * This routine can detect very subtle transitive consistency issues across
2991 * more than one level of the tree. Leaf pages all have a high key (even the
2992 * rightmost page has a conceptual positive infinity high key), but not a low
2993 * key. Their downlink in parent is a lower bound, which along with the high
2994 * key is almost enough to detect every possible inconsistency. A downlink
2995 * separator key value won't always be available from parent, though, because
2996 * the first items of internal pages are negative infinity items, truncated
2997 * down to zero attributes during internal page splits. While it's true that
2998 * bt_child_check() and the high key check can detect most imaginable key
2999 * space problems, there are remaining problems it won't detect with non-pivot
3000 * tuples in cousin leaf pages. Starting a search from the root for every
3001 * existing leaf tuple detects small inconsistencies in upper levels of the
3002 * tree that cannot be detected any other way. (Besides all this, this is
3003 * probably also useful as a direct test of the code used by index scans
3004 * themselves.)
3005 */
3006static bool
3008{
3010 BTStack stack;
3011 Buffer lbuf;
3012 bool exists;
3013
3014 key = _bt_mkscankey(state->rel, itup);
3015 Assert(key->heapkeyspace && key->scantid != NULL);
3016
3017 /*
3018 * Search from root.
3019 *
3020 * Ideally, we would arrange to only move right within _bt_search() when
3021 * an interrupted page split is detected (i.e. when the incomplete split
3022 * bit is found to be set), but for now we accept the possibility that
3023 * that could conceal an inconsistency.
3024 */
3025 Assert(state->readonly && state->rootdescend);
3026 exists = false;
3027 stack = _bt_search(state->rel, NULL, key, &lbuf, BT_READ);
3028
3029 if (BufferIsValid(lbuf))
3030 {
3031 BTInsertStateData insertstate;
3032 OffsetNumber offnum;
3033 Page page;
3034
3035 insertstate.itup = itup;
3036 insertstate.itemsz = MAXALIGN(IndexTupleSize(itup));
3037 insertstate.itup_key = key;
3038 insertstate.postingoff = 0;
3039 insertstate.bounds_valid = false;
3040 insertstate.buf = lbuf;
3041
3042 /* Get matching tuple on leaf page */
3043 offnum = _bt_binsrch_insert(state->rel, &insertstate);
3044 /* Compare first >= matching item on leaf page, if any */
3045 page = BufferGetPage(lbuf);
3046 /* Should match on first heap TID when tuple has a posting list */
3047 if (offnum <= PageGetMaxOffsetNumber(page) &&
3048 insertstate.postingoff <= 0 &&
3049 _bt_compare(state->rel, key, page, offnum) == 0)
3050 exists = true;
3051 _bt_relbuf(state->rel, lbuf);
3052 }
3053
3054 _bt_freestack(stack);
3055 pfree(key);
3056
3057 return exists;
3058}
3059
3060/*
3061 * Is particular offset within page (whose special state is passed by caller)
3062 * the page negative-infinity item?
3063 *
3064 * As noted in comments above _bt_compare(), there is special handling of the
3065 * first data item as a "negative infinity" item. The hard-coding within
3066 * _bt_compare() makes comparing this item for the purposes of verification
3067 * pointless at best, since the IndexTuple only contains a valid TID (a
3068 * reference TID to child page).
3069 */
3070static inline bool
3072{
3073 /*
3074 * For internal pages only, the first item after high key, if any, is
3075 * negative infinity item. Internal pages always have a negative infinity
3076 * item, whereas leaf pages never have one. This implies that negative
3077 * infinity item is either first or second line item, or there is none
3078 * within page.
3079 *
3080 * Negative infinity items are a special case among pivot tuples. They
3081 * always have zero attributes, while all other pivot tuples always have
3082 * nkeyatts attributes.
3083 *
3084 * Right-most pages don't have a high key, but could be said to
3085 * conceptually have a "positive infinity" high key. Thus, there is a
3086 * symmetry between down link items in parent pages, and high keys in
3087 * children. Together, they represent the part of the key space that
3088 * belongs to each page in the index. For example, all children of the
3089 * root page will have negative infinity as a lower bound from root
3090 * negative infinity downlink, and positive infinity as an upper bound
3091 * (implicitly, from "imaginary" positive infinity high key in root).
3092 */
3093 return !P_ISLEAF(opaque) && offset == P_FIRSTDATAKEY(opaque);
3094}
3095
3096/*
3097 * Does the invariant hold that the key is strictly less than a given upper
3098 * bound offset item?
3099 *
3100 * Verifies line pointer on behalf of caller.
3101 *
3102 * If this function returns false, convention is that caller throws error due
3103 * to corruption.
3104 */
3105static inline bool
3107 OffsetNumber upperbound)
3108{
3109 ItemId itemid;
3110 int32 cmp;
3111
3112 Assert(!key->nextkey && key->backward);
3113
3114 /* Verify line pointer before checking tuple */
3115 itemid = PageGetItemIdCareful(state, state->targetblock, state->target,
3116 upperbound);
3117 /* pg_upgrade'd indexes may legally have equal sibling tuples */
3118 if (!key->heapkeyspace)
3119 return invariant_leq_offset(state, key, upperbound);
3120
3121 cmp = _bt_compare(state->rel, key, state->target, upperbound);
3122
3123 /*
3124 * _bt_compare() is capable of determining that a scankey with a
3125 * filled-out attribute is greater than pivot tuples where the comparison
3126 * is resolved at a truncated attribute (value of attribute in pivot is
3127 * minus infinity). However, it is not capable of determining that a
3128 * scankey is _less than_ a tuple on the basis of a comparison resolved at
3129 * _scankey_ minus infinity attribute. Complete an extra step to simulate
3130 * having minus infinity values for omitted scankey attribute(s).
3131 */
3132 if (cmp == 0)
3133 {
3134 BTPageOpaque topaque;
3135 IndexTuple ritup;
3136 int uppnkeyatts;
3137 ItemPointer rheaptid;
3138 bool nonpivot;
3139
3140 ritup = (IndexTuple) PageGetItem(state->target, itemid);
3141 topaque = BTPageGetOpaque(state->target);
3142 nonpivot = P_ISLEAF(topaque) && upperbound >= P_FIRSTDATAKEY(topaque);
3143
3144 /* Get number of keys + heap TID for item to the right */
3145 uppnkeyatts = BTreeTupleGetNKeyAtts(ritup, state->rel);
3146 rheaptid = BTreeTupleGetHeapTIDCareful(state, ritup, nonpivot);
3147
3148 /* Heap TID is tiebreaker key attribute */
3149 if (key->keysz == uppnkeyatts)
3150 return key->scantid == NULL && rheaptid != NULL;
3151
3152 return key->keysz < uppnkeyatts;
3153 }
3154
3155 return cmp < 0;
3156}
3157
3158/*
3159 * Does the invariant hold that the key is less than or equal to a given upper
3160 * bound offset item?
3161 *
3162 * Caller should have verified that upperbound's line pointer is consistent
3163 * using PageGetItemIdCareful() call.
3164 *
3165 * If this function returns false, convention is that caller throws error due
3166 * to corruption.
3167 */
3168static inline bool
3170 OffsetNumber upperbound)
3171{
3172 int32 cmp;
3173
3174 Assert(!key->nextkey && key->backward);
3175
3176 cmp = _bt_compare(state->rel, key, state->target, upperbound);
3177
3178 return cmp <= 0;
3179}
3180
3181/*
3182 * Does the invariant hold that the key is strictly greater than a given lower
3183 * bound offset item?
3184 *
3185 * Caller should have verified that lowerbound's line pointer is consistent
3186 * using PageGetItemIdCareful() call.
3187 *
3188 * If this function returns false, convention is that caller throws error due
3189 * to corruption.
3190 */
3191static inline bool
3193 OffsetNumber lowerbound)
3194{
3195 int32 cmp;
3196
3197 Assert(!key->nextkey && key->backward);
3198
3199 cmp = _bt_compare(state->rel, key, state->target, lowerbound);
3200
3201 /* pg_upgrade'd indexes may legally have equal sibling tuples */
3202 if (!key->heapkeyspace)
3203 return cmp >= 0;
3204
3205 /*
3206 * No need to consider the possibility that scankey has attributes that we
3207 * need to force to be interpreted as negative infinity. _bt_compare() is
3208 * able to determine that scankey is greater than negative infinity. The
3209 * distinction between "==" and "<" isn't interesting here, since
3210 * corruption is indicated either way.
3211 */
3212 return cmp > 0;
3213}
3214
3215/*
3216 * Does the invariant hold that the key is strictly less than a given upper
3217 * bound offset item, with the offset relating to a caller-supplied page that
3218 * is not the current target page?
3219 *
3220 * Caller's non-target page is a child page of the target, checked as part of
3221 * checking a property of the target page (i.e. the key comes from the
3222 * target). Verifies line pointer on behalf of caller.
3223 *
3224 * If this function returns false, convention is that caller throws error due
3225 * to corruption.
3226 */
3227static inline bool
3229 BlockNumber nontargetblock, Page nontarget,
3230 OffsetNumber upperbound)
3231{
3232 ItemId itemid;
3233 int32 cmp;
3234
3235 Assert(!key->nextkey && key->backward);
3236
3237 /* Verify line pointer before checking tuple */
3238 itemid = PageGetItemIdCareful(state, nontargetblock, nontarget,
3239 upperbound);
3240 cmp = _bt_compare(state->rel, key, nontarget, upperbound);
3241
3242 /* pg_upgrade'd indexes may legally have equal sibling tuples */
3243 if (!key->heapkeyspace)
3244 return cmp <= 0;
3245
3246 /* See invariant_l_offset() for an explanation of this extra step */
3247 if (cmp == 0)
3248 {
3249 IndexTuple child;
3250 int uppnkeyatts;
3251 ItemPointer childheaptid;
3252 BTPageOpaque copaque;
3253 bool nonpivot;
3254
3255 child = (IndexTuple) PageGetItem(nontarget, itemid);
3256 copaque = BTPageGetOpaque(nontarget);
3257 nonpivot = P_ISLEAF(copaque) && upperbound >= P_FIRSTDATAKEY(copaque);
3258
3259 /* Get number of keys + heap TID for child/non-target item */
3260 uppnkeyatts = BTreeTupleGetNKeyAtts(child, state->rel);
3261 childheaptid = BTreeTupleGetHeapTIDCareful(state, child, nonpivot);
3262
3263 /* Heap TID is tiebreaker key attribute */
3264 if (key->keysz == uppnkeyatts)
3265 return key->scantid == NULL && childheaptid != NULL;
3266
3267 return key->keysz < uppnkeyatts;
3268 }
3269
3270 return cmp < 0;
3271}
3272
3273/*
3274 * Given a block number of a B-Tree page, return page in palloc()'d memory.
3275 * While at it, perform some basic checks of the page.
3276 *
3277 * There is never an attempt to get a consistent view of multiple pages using
3278 * multiple concurrent buffer locks; in general, we only acquire a single pin
3279 * and buffer lock at a time, which is often all that the nbtree code requires.
3280 * (Actually, bt_recheck_sibling_links couples buffer locks, which is the only
3281 * exception to this general rule.)
3282 *
3283 * Operating on a copy of the page is useful because it prevents control
3284 * getting stuck in an uninterruptible state when an underlying operator class
3285 * misbehaves.
3286 */
3287static Page
3289{
3290 Buffer buffer;
3291 Page page;
3292 BTPageOpaque opaque;
3293 OffsetNumber maxoffset;
3294
3295 page = palloc(BLCKSZ);
3296
3297 /*
3298 * We copy the page into local storage to avoid holding pin on the buffer
3299 * longer than we must.
3300 */
3301 buffer = ReadBufferExtended(state->rel, MAIN_FORKNUM, blocknum, RBM_NORMAL,
3302 state->checkstrategy);
3303 LockBuffer(buffer, BT_READ);
3304
3305 /*
3306 * Perform the same basic sanity checking that nbtree itself performs for
3307 * every page:
3308 */
3309 _bt_checkpage(state->rel, buffer);
3310
3311 /* Only use copy of page in palloc()'d memory */
3312 memcpy(page, BufferGetPage(buffer), BLCKSZ);
3313 UnlockReleaseBuffer(buffer);
3314
3315 opaque = BTPageGetOpaque(page);
3316
3317 if (P_ISMETA(opaque) && blocknum != BTREE_METAPAGE)
3318 ereport(ERROR,
3319 (errcode(ERRCODE_INDEX_CORRUPTED),
3320 errmsg("invalid meta page found at block %u in index \"%s\"",
3321 blocknum, RelationGetRelationName(state->rel))));
3322
3323 /* Check page from block that ought to be meta page */
3324 if (blocknum == BTREE_METAPAGE)
3325 {
3326 BTMetaPageData *metad = BTPageGetMeta(page);
3327
3328 if (!P_ISMETA(opaque) ||
3329 metad->btm_magic != BTREE_MAGIC)
3330 ereport(ERROR,
3331 (errcode(ERRCODE_INDEX_CORRUPTED),
3332 errmsg("index \"%s\" meta page is corrupt",
3334
3335 if (metad->btm_version < BTREE_MIN_VERSION ||
3336 metad->btm_version > BTREE_VERSION)
3337 ereport(ERROR,
3338 (errcode(ERRCODE_INDEX_CORRUPTED),
3339 errmsg("version mismatch in index \"%s\": file version %d, "
3340 "current version %d, minimum supported version %d",
3342 metad->btm_version, BTREE_VERSION,
3344
3345 /* Finished with metapage checks */
3346 return page;
3347 }
3348
3349 /*
3350 * Deleted pages that still use the old 32-bit XID representation have no
3351 * sane "level" field because they type pun the field, but all other pages
3352 * (including pages deleted on Postgres 14+) have a valid value.
3353 */
3354 if (!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque))
3355 {
3356 /* Okay, no reason not to trust btpo_level field from page */
3357
3358 if (P_ISLEAF(opaque) && opaque->btpo_level != 0)
3359 ereport(ERROR,
3360 (errcode(ERRCODE_INDEX_CORRUPTED),
3361 errmsg_internal("invalid leaf page level %u for block %u in index \"%s\"",
3362 opaque->btpo_level, blocknum,
3364
3365 if (!P_ISLEAF(opaque) && opaque->btpo_level == 0)
3366 ereport(ERROR,
3367 (errcode(ERRCODE_INDEX_CORRUPTED),
3368 errmsg_internal("invalid internal page level 0 for block %u in index \"%s\"",
3369 blocknum,
3371 }
3372
3373 /*
3374 * Sanity checks for number of items on page.
3375 *
3376 * As noted at the beginning of _bt_binsrch(), an internal page must have
3377 * children, since there must always be a negative infinity downlink
3378 * (there may also be a highkey). In the case of non-rightmost leaf
3379 * pages, there must be at least a highkey. The exceptions are deleted
3380 * pages, which contain no items.
3381 *
3382 * This is correct when pages are half-dead, since internal pages are
3383 * never half-dead, and leaf pages must have a high key when half-dead
3384 * (the rightmost page can never be deleted). It's also correct with
3385 * fully deleted pages: _bt_unlink_halfdead_page() doesn't change anything
3386 * about the target page other than setting the page as fully dead, and
3387 * setting its xact field. In particular, it doesn't change the sibling
3388 * links in the deletion target itself, since they're required when index
3389 * scans land on the deletion target, and then need to move right (or need
3390 * to move left, in the case of backward index scans).
3391 */
3392 maxoffset = PageGetMaxOffsetNumber(page);
3393 if (maxoffset > MaxIndexTuplesPerPage)
3394 ereport(ERROR,
3395 (errcode(ERRCODE_INDEX_CORRUPTED),
3396 errmsg("Number of items on block %u of index \"%s\" exceeds MaxIndexTuplesPerPage (%u)",
3397 blocknum, RelationGetRelationName(state->rel),
3399
3400 if (!P_ISLEAF(opaque) && !P_ISDELETED(opaque) && maxoffset < P_FIRSTDATAKEY(opaque))
3401 ereport(ERROR,
3402 (errcode(ERRCODE_INDEX_CORRUPTED),
3403 errmsg("internal block %u in index \"%s\" lacks high key and/or at least one downlink",
3404 blocknum, RelationGetRelationName(state->rel))));
3405
3406 if (P_ISLEAF(opaque) && !P_ISDELETED(opaque) && !P_RIGHTMOST(opaque) && maxoffset < P_HIKEY)
3407 ereport(ERROR,
3408 (errcode(ERRCODE_INDEX_CORRUPTED),
3409 errmsg("non-rightmost leaf block %u in index \"%s\" lacks high key item",
3410 blocknum, RelationGetRelationName(state->rel))));
3411
3412 /*
3413 * In general, internal pages are never marked half-dead, except on
3414 * versions of Postgres prior to 9.4, where it can be valid transient
3415 * state. This state is nonetheless treated as corruption by VACUUM on
3416 * from version 9.4 on, so do the same here. See _bt_pagedel() for full
3417 * details.
3418 */
3419 if (!P_ISLEAF(opaque) && P_ISHALFDEAD(opaque))
3420 ereport(ERROR,
3421 (errcode(ERRCODE_INDEX_CORRUPTED),
3422 errmsg("internal page block %u in index \"%s\" is half-dead",
3423 blocknum, RelationGetRelationName(state->rel)),
3424 errhint("This can be caused by an interrupted VACUUM in version 9.3 or older, before upgrade. Please REINDEX it.")));
3425
3426 /*
3427 * Check that internal pages have no garbage items, and that no page has
3428 * an invalid combination of deletion-related page level flags
3429 */
3430 if (!P_ISLEAF(opaque) && P_HAS_GARBAGE(opaque))
3431 ereport(ERROR,
3432 (errcode(ERRCODE_INDEX_CORRUPTED),
3433 errmsg_internal("internal page block %u in index \"%s\" has garbage items",
3434 blocknum, RelationGetRelationName(state->rel))));
3435
3436 if (P_HAS_FULLXID(opaque) && !P_ISDELETED(opaque))
3437 ereport(ERROR,
3438 (errcode(ERRCODE_INDEX_CORRUPTED),
3439 errmsg_internal("full transaction id page flag appears in non-deleted block %u in index \"%s\"",
3440 blocknum, RelationGetRelationName(state->rel))));
3441
3442 if (P_ISDELETED(opaque) && P_ISHALFDEAD(opaque))
3443 ereport(ERROR,
3444 (errcode(ERRCODE_INDEX_CORRUPTED),
3445 errmsg_internal("deleted page block %u in index \"%s\" is half-dead",
3446 blocknum, RelationGetRelationName(state->rel))));
3447
3448 return page;
3449}
3450
3451/*
3452 * _bt_mkscankey() wrapper that automatically prevents insertion scankey from
3453 * being considered greater than the pivot tuple that its values originated
3454 * from (or some other identical pivot tuple) in the common case where there
3455 * are truncated/minus infinity attributes. Without this extra step, there
3456 * are forms of corruption that amcheck could theoretically fail to report.
3457 *
3458 * For example, invariant_g_offset() might miss a cross-page invariant failure
3459 * on an internal level if the scankey built from the first item on the
3460 * target's right sibling page happened to be equal to (not greater than) the
3461 * last item on target page. The !backward tiebreaker in _bt_compare() might
3462 * otherwise cause amcheck to assume (rather than actually verify) that the
3463 * scankey is greater.
3464 */
3465static inline BTScanInsert
3467{
3468 BTScanInsert skey;
3469
3470 skey = _bt_mkscankey(rel, itup);
3471 skey->backward = true;
3472
3473 return skey;
3474}
3475
3476/*
3477 * PageGetItemId() wrapper that validates returned line pointer.
3478 *
3479 * Buffer page/page item access macros generally trust that line pointers are
3480 * not corrupt, which might cause problems for verification itself. For
3481 * example, there is no bounds checking in PageGetItem(). Passing it a
3482 * corrupt line pointer can cause it to return a tuple/pointer that is unsafe
3483 * to dereference.
3484 *
3485 * Validating line pointers before tuples avoids undefined behavior and
3486 * assertion failures with corrupt indexes, making the verification process
3487 * more robust and predictable.
3488 */
3489static ItemId
3491 OffsetNumber offset)
3492{
3493 ItemId itemid = PageGetItemId(page, offset);
3494
3495 if (ItemIdGetOffset(itemid) + ItemIdGetLength(itemid) >
3496 BLCKSZ - MAXALIGN(sizeof(BTPageOpaqueData)))
3497 ereport(ERROR,
3498 (errcode(ERRCODE_INDEX_CORRUPTED),
3499 errmsg("line pointer points past end of tuple space in index \"%s\"",
3501 errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
3502 block, offset, ItemIdGetOffset(itemid),
3503 ItemIdGetLength(itemid),
3504 ItemIdGetFlags(itemid))));
3505
3506 /*
3507 * Verify that line pointer isn't LP_REDIRECT or LP_UNUSED, since nbtree
3508 * never uses either. Verify that line pointer has storage, too, since
3509 * even LP_DEAD items should within nbtree.
3510 */
3511 if (ItemIdIsRedirected(itemid) || !ItemIdIsUsed(itemid) ||
3512 ItemIdGetLength(itemid) == 0)
3513 ereport(ERROR,
3514 (errcode(ERRCODE_INDEX_CORRUPTED),
3515 errmsg("invalid line pointer storage in index \"%s\"",
3517 errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
3518 block, offset, ItemIdGetOffset(itemid),
3519 ItemIdGetLength(itemid),
3520 ItemIdGetFlags(itemid))));
3521
3522 return itemid;
3523}
3524
3525/*
3526 * BTreeTupleGetHeapTID() wrapper that enforces that a heap TID is present in
3527 * cases where that is mandatory (i.e. for non-pivot tuples)
3528 */
3529static inline ItemPointer
3531 bool nonpivot)
3532{
3533 ItemPointer htid;
3534
3535 /*
3536 * Caller determines whether this is supposed to be a pivot or non-pivot
3537 * tuple using page type and item offset number. Verify that tuple
3538 * metadata agrees with this.
3539 */
3540 Assert(state->heapkeyspace);
3541 if (BTreeTupleIsPivot(itup) && nonpivot)
3542 ereport(ERROR,
3543 (errcode(ERRCODE_INDEX_CORRUPTED),
3544 errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected pivot tuple",
3545 state->targetblock,
3547
3548 if (!BTreeTupleIsPivot(itup) && !nonpivot)
3549 ereport(ERROR,
3550 (errcode(ERRCODE_INDEX_CORRUPTED),
3551 errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected non-pivot tuple",
3552 state->targetblock,
3554
3555 htid = BTreeTupleGetHeapTID(itup);
3556 if (!ItemPointerIsValid(htid) && nonpivot)
3557 ereport(ERROR,
3558 (errcode(ERRCODE_INDEX_CORRUPTED),
3559 errmsg("block %u or its right sibling block or child block in index \"%s\" contains non-pivot tuple that lacks a heap TID",
3560 state->targetblock,
3562
3563 return htid;
3564}
3565
3566/*
3567 * Return the "pointed to" TID for itup, which is used to generate a
3568 * descriptive error message. itup must be a "data item" tuple (it wouldn't
3569 * make much sense to call here with a high key tuple, since there won't be a
3570 * valid downlink/block number to display).
3571 *
3572 * Returns either a heap TID (which will be the first heap TID in posting list
3573 * if itup is posting list tuple), or a TID that contains downlink block
3574 * number, plus some encoded metadata (e.g., the number of attributes present
3575 * in itup).
3576 */
3577static inline ItemPointer
3579{
3580 /*
3581 * Rely on the assumption that !heapkeyspace internal page data items will
3582 * correctly return TID with downlink here -- BTreeTupleGetHeapTID() won't
3583 * recognize it as a pivot tuple, but everything still works out because
3584 * the t_tid field is still returned
3585 */
3586 if (!BTreeTupleIsPivot(itup))
3587 return BTreeTupleGetHeapTID(itup);
3588
3589 /* Pivot tuple returns TID with downlink block (heapkeyspace variant) */
3590 return &itup->t_tid;
3591}
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
static bool BlockNumberIsValid(BlockNumber blockNumber)
Definition: block.h:71
void bloom_free(bloom_filter *filter)
Definition: bloomfilter.c:126
bloom_filter * bloom_create(int64 total_elems, int bloom_work_mem, uint64 seed)
Definition: bloomfilter.c:87
double bloom_prop_bits_set(bloom_filter *filter)
Definition: bloomfilter.c:187
bool bloom_lacks_element(bloom_filter *filter, unsigned char *elem, size_t len)
Definition: bloomfilter.c:157
void bloom_add_element(bloom_filter *filter, unsigned char *elem, size_t len)
Definition: bloomfilter.c:135
static Datum values[MAXATTR]
Definition: bootstrap.c:153
int Buffer
Definition: buf.h:23
#define InvalidBuffer
Definition: buf.h:25
void LockBuffer(Buffer buffer, BufferLockMode mode)
Definition: bufmgr.c:5604
void UnlockReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:5383
Buffer ReadBufferExtended(Relation reln, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy)
Definition: bufmgr.c:792
@ BAS_BULKREAD
Definition: bufmgr.h:37
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:294
static Page BufferGetPage(Buffer buffer)
Definition: bufmgr.h:436
@ RBM_NORMAL
Definition: bufmgr.h:46
static bool BufferIsValid(Buffer bufnum)
Definition: bufmgr.h:387
static void * PageGetItem(const PageData *page, const ItemIdData *itemId)
Definition: bufpage.h:353
static ItemId PageGetItemId(Page page, OffsetNumber offsetNumber)
Definition: bufpage.h:243
PageData * Page
Definition: bufpage.h:81
static XLogRecPtr PageGetLSN(const PageData *page)
Definition: bufpage.h:385
static OffsetNumber PageGetMaxOffsetNumber(const PageData *page)
Definition: bufpage.h:371
#define MAXALIGN(LEN)
Definition: c.h:813
#define Max(x, y)
Definition: c.h:1000
#define INT64_FORMAT
Definition: c.h:559
int64_t int64
Definition: c.h:538
int32_t int32
Definition: c.h:537
uint64_t uint64
Definition: c.h:542
#define unlikely(x)
Definition: c.h:407
uint32_t uint32
Definition: c.h:541
size_t Size
Definition: c.h:613
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1243
int errdetail(const char *fmt,...)
Definition: elog.c:1216
int errhint(const char *fmt,...)
Definition: elog.c:1330
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1443
#define PG_RETURN_VOID()
Definition: fmgr.h:349
#define PG_GETARG_OID(n)
Definition: fmgr.h:275
#define PG_NARGS()
Definition: fmgr.h:203
#define PG_DETOAST_DATUM(datum)
Definition: fmgr.h:240
#define PG_GETARG_BOOL(n)
Definition: fmgr.h:274
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
BufferAccessStrategy GetAccessStrategy(BufferAccessStrategyType btype)
Definition: freelist.c:461
int maintenance_work_mem
Definition: globals.c:133
Assert(PointerIsAligned(start, uint64))
return str start
#define TOAST_INDEX_TARGET
Definition: heaptoast.h:68
static TransactionId HeapTupleHeaderGetXmin(const HeapTupleHeaderData *tup)
Definition: htup_details.h:324
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2428
IndexTuple index_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: indextuple.c:44
int i
Definition: isn.c:77
#define ItemIdGetLength(itemId)
Definition: itemid.h:59
#define ItemIdGetOffset(itemId)
Definition: itemid.h:65
#define ItemIdIsDead(itemId)
Definition: itemid.h:113
#define ItemIdIsUsed(itemId)
Definition: itemid.h:92
#define ItemIdIsRedirected(itemId)
Definition: itemid.h:106
#define ItemIdGetFlags(itemId)
Definition: itemid.h:71
int32 ItemPointerCompare(const ItemPointerData *arg1, const ItemPointerData *arg2)
Definition: itemptr.c:51
static OffsetNumber ItemPointerGetOffsetNumber(const ItemPointerData *pointer)
Definition: itemptr.h:124
static OffsetNumber ItemPointerGetOffsetNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:114
static BlockNumber ItemPointerGetBlockNumber(const ItemPointerData *pointer)
Definition: itemptr.h:103
static BlockNumber ItemPointerGetBlockNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:93
static void ItemPointerCopy(const ItemPointerData *fromPointer, ItemPointerData *toPointer)
Definition: itemptr.h:172
static bool ItemPointerIsValid(const ItemPointerData *pointer)
Definition: itemptr.h:83
static bool IndexTupleHasVarwidths(const IndexTupleData *itup)
Definition: itup.h:83
IndexTupleData * IndexTuple
Definition: itup.h:53
static Datum index_getattr(IndexTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: itup.h:131
static Size IndexTupleSize(const IndexTupleData *itup)
Definition: itup.h:71
#define MaxIndexTuplesPerPage
Definition: itup.h:181
#define AccessShareLock
Definition: lockdefs.h:36
#define ShareLock
Definition: lockdefs.h:40
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1229
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:400
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc0(Size size)
Definition: mcxt.c:1395
void * palloc(Size size)
Definition: mcxt.c:1365
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:469
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
IndexTuple _bt_form_posting(IndexTuple base, const ItemPointerData *htids, int nhtids)
Definition: nbtdedup.c:862
void _bt_relbuf(Relation rel, Buffer buf)
Definition: nbtpage.c:1024
void _bt_checkpage(Relation rel, Buffer buf)
Definition: nbtpage.c:798
void _bt_metaversion(Relation rel, bool *heapkeyspace, bool *allequalimage)
Definition: nbtpage.c:740
#define P_HAS_FULLXID(opaque)
Definition: nbtree.h:229
#define P_ISHALFDEAD(opaque)
Definition: nbtree.h:225
static uint16 BTreeTupleGetNPosting(IndexTuple posting)
Definition: nbtree.h:519
static bool BTreeTupleIsPivot(IndexTuple itup)
Definition: nbtree.h:481
#define BTPageGetMeta(p)
Definition: nbtree.h:122
#define P_ISLEAF(opaque)
Definition: nbtree.h:221
#define BTREE_MIN_VERSION
Definition: nbtree.h:152
#define P_HIKEY
Definition: nbtree.h:368
#define P_HAS_GARBAGE(opaque)
Definition: nbtree.h:227
#define P_ISMETA(opaque)
Definition: nbtree.h:224
#define BTPageGetOpaque(page)
Definition: nbtree.h:74
#define P_ISDELETED(opaque)
Definition: nbtree.h:223
#define BTREE_MAGIC
Definition: nbtree.h:150
#define BTREE_VERSION
Definition: nbtree.h:151
static BlockNumber BTreeTupleGetTopParent(IndexTuple leafhikey)
Definition: nbtree.h:621
#define MaxTIDsPerBTreePage
Definition: nbtree.h:186
#define P_FIRSTDATAKEY(opaque)
Definition: nbtree.h:370
#define P_ISROOT(opaque)
Definition: nbtree.h:222
#define P_NONE
Definition: nbtree.h:213
#define P_RIGHTMOST(opaque)
Definition: nbtree.h:220
#define P_INCOMPLETE_SPLIT(opaque)
Definition: nbtree.h:228
#define BTREE_METAPAGE
Definition: nbtree.h:149
static ItemPointer BTreeTupleGetPostingN(IndexTuple posting, int n)
Definition: nbtree.h:545
#define BT_READ
Definition: nbtree.h:730
static BlockNumber BTreeTupleGetDownLink(IndexTuple pivot)
Definition: nbtree.h:557
#define P_IGNORE(opaque)
Definition: nbtree.h:226
static ItemPointer BTreeTupleGetMaxHeapTID(IndexTuple itup)
Definition: nbtree.h:665
static bool BTreeTupleIsPosting(IndexTuple itup)
Definition: nbtree.h:493
#define BTMaxItemSizeNoHeapTid
Definition: nbtree.h:170
static ItemPointer BTreeTupleGetHeapTID(IndexTuple itup)
Definition: nbtree.h:639
#define BTMaxItemSize
Definition: nbtree.h:165
#define BTreeTupleGetNAtts(itup, rel)
Definition: nbtree.h:578
BTStack _bt_search(Relation rel, Relation heaprel, BTScanInsert key, Buffer *bufP, int access)
Definition: nbtsearch.c:107
OffsetNumber _bt_binsrch_insert(Relation rel, BTInsertState insertstate)
Definition: nbtsearch.c:479
int32 _bt_compare(Relation rel, BTScanInsert key, Page page, OffsetNumber offnum)
Definition: nbtsearch.c:693
void _bt_freestack(BTStack stack)
Definition: nbtutils.c:189
BTScanInsert _bt_mkscankey(Relation rel, IndexTuple itup)
Definition: nbtutils.c:97
bool _bt_check_natts(Relation rel, bool heapkeyspace, Page page, OffsetNumber offnum)
Definition: nbtutils.c:4149
bool _bt_allequalimage(Relation rel, bool debugmessage)
Definition: nbtutils.c:4366
#define InvalidOffsetNumber
Definition: off.h:26
#define OffsetNumberIsValid(offsetNumber)
Definition: off.h:39
#define OffsetNumberNext(offsetNumber)
Definition: off.h:52
uint16 OffsetNumber
Definition: off.h:24
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:202
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:42
#define INDEX_MAX_KEYS
const void size_t len
const void * data
uint64 pg_prng_uint64(pg_prng_state *state)
Definition: pg_prng.c:134
pg_prng_state pg_global_prng_state
Definition: pg_prng.c:34
#define ERRCODE_T_R_SERIALIZATION_FAILURE
Definition: pgbench.c:77
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:332
uint64_t Datum
Definition: postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:322
unsigned int Oid
Definition: postgres_ext.h:32
char * psprintf(const char *fmt,...)
Definition: psprintf.c:43
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:743
static SMgrRelation RelationGetSmgr(Relation rel)
Definition: rel.h:577
#define RelationGetDescr(relation)
Definition: rel.h:541
#define RelationGetRelationName(relation)
Definition: rel.h:549
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:534
@ MAIN_FORKNUM
Definition: relpath.h:58
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:462
TransactionId RecentXmin
Definition: snapmgr.c:160
Snapshot GetTransactionSnapshot(void)
Definition: snapmgr.c:272
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:866
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:824
#define InvalidSnapshot
Definition: snapshot.h:119
bool bounds_valid
Definition: nbtree.h:834
IndexTuple itup
Definition: nbtree.h:822
BTScanInsert itup_key
Definition: nbtree.h:824
uint32 btm_level
Definition: nbtree.h:109
BlockNumber btm_fastroot
Definition: nbtree.h:110
uint32 btm_version
Definition: nbtree.h:107
uint32 btm_magic
Definition: nbtree.h:106
BlockNumber btm_root
Definition: nbtree.h:108
uint32 btm_fastlevel
Definition: nbtree.h:111
BlockNumber btpo_next
Definition: nbtree.h:66
BlockNumber btpo_prev
Definition: nbtree.h:65
uint32 btpo_level
Definition: nbtree.h:67
ItemPointer scantid
Definition: nbtree.h:802
bool heapkeyspace
Definition: nbtree.h:797
bool anynullkeys
Definition: nbtree.h:799
BufferAccessStrategy checkstrategy
Definition: verify_nbtree.c:92
Snapshot snapshot
Definition: verify_nbtree.c:98
bloom_filter * filter
BlockNumber targetblock
BlockNumber prevrightlink
XLogRecPtr targetlsn
MemoryContext targetcontext
Definition: verify_nbtree.c:90
IndexTuple lowkey
Relation heaprel
Definition: verify_nbtree.c:78
IndexInfo * indexinfo
Definition: verify_nbtree.c:97
bool istruerootlevel
uint32 level
BlockNumber leftmost
HeapTupleHeader t_data
Definition: htup.h:68
bool ii_Unique
Definition: execnodes.h:200
uint16 * ii_ExclusionStrats
Definition: execnodes.h:192
Oid * ii_ExclusionOps
Definition: execnodes.h:188
bool ii_Concurrent
Definition: execnodes.h:210
Oid * ii_ExclusionProcs
Definition: execnodes.h:190
ItemPointerData t_tid
Definition: itup.h:37
unsigned short t_info
Definition: itup.h:49
OffsetNumber ip_posid
Definition: itemptr.h:39
struct HeapTupleData * rd_indextuple
Definition: rel.h:194
Form_pg_index rd_index
Definition: rel.h:192
Oid * rd_opfamily
Definition: rel.h:207
Definition: type.h:96
Definition: regguts.h:323
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:92
static double table_index_build_scan(Relation table_rel, Relation index_rel, IndexInfo *index_info, bool allow_sync, bool progress, IndexBuildCallback callback, void *callback_state, TableScanDesc scan)
Definition: tableam.h:1754
static TableScanDesc table_beginscan_strat(Relation rel, Snapshot snapshot, int nkeys, ScanKeyData *key, bool allow_strat, bool allow_sync)
Definition: tableam.h:900
static bool table_tuple_fetch_row_version(Relation rel, ItemPointer tid, Snapshot snapshot, TupleTableSlot *slot)
Definition: tableam.h:1263
#define TransactionIdIsValid(xid)
Definition: transam.h:41
static bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.h:263
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:160
static bool VARATT_CAN_MAKE_SHORT(const void *PTR)
Definition: varatt.h:417
static bool VARATT_IS_EXTERNAL(const void *PTR)
Definition: varatt.h:354
static Size VARSIZE(const void *PTR)
Definition: varatt.h:298
static char * VARDATA(const void *PTR)
Definition: varatt.h:305
static Size VARATT_CONVERTED_SHORT_SIZE(const void *PTR)
Definition: varatt.h:425
static bool VARATT_IS_COMPRESSED(const void *PTR)
Definition: varatt.h:347
static void SET_VARSIZE_SHORT(void *PTR, Size len)
Definition: varatt.h:439
void amcheck_lock_relation_and_check(Oid indrelid, Oid am_id, IndexDoCheckCallback check, LOCKMODE lockmode, void *state)
Definition: verify_common.c:62
static bool offset_is_negative_infinity(BTPageOpaque opaque, OffsetNumber offset)
static bool bt_leftmost_ignoring_half_dead(BtreeCheckState *state, BlockNumber start, BTPageOpaque start_opaque)
static bool invariant_l_offset(BtreeCheckState *state, BTScanInsert key, OffsetNumber upperbound)
static ItemPointer BTreeTupleGetPointsToTID(IndexTuple itup)
struct BtreeCheckState BtreeCheckState
PG_MODULE_MAGIC_EXT(.name="amcheck",.version=PG_VERSION)
static IndexTuple bt_posting_plain_tuple(IndexTuple itup, int n)
struct BTCallbackState BTCallbackState
struct BtreeLastVisibleEntry BtreeLastVisibleEntry
static void bt_target_page_check(BtreeCheckState *state)
static void bt_check_every_level(Relation rel, Relation heaprel, bool heapkeyspace, bool readonly, bool heapallindexed, bool rootdescend, bool checkunique)
static void bt_report_duplicate(BtreeCheckState *state, BtreeLastVisibleEntry *lVis, ItemPointer nexttid, BlockNumber nblock, OffsetNumber noffset, int nposting)
static bool bt_pivot_tuple_identical(bool heapkeyspace, IndexTuple itup1, IndexTuple itup2)
static bool invariant_leq_offset(BtreeCheckState *state, BTScanInsert key, OffsetNumber upperbound)
Datum bt_index_parent_check(PG_FUNCTION_ARGS)
static void bt_child_highkey_check(BtreeCheckState *state, OffsetNumber target_downlinkoffnum, Page loaded_child, uint32 target_level)
static bool heap_entry_is_visible(BtreeCheckState *state, ItemPointer tid)
static BTScanInsert bt_mkscankey_pivotsearch(Relation rel, IndexTuple itup)
Datum bt_index_check(PG_FUNCTION_ARGS)
static BtreeLevel bt_check_level_from_leftmost(BtreeCheckState *state, BtreeLevel level)
static void bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit, BlockNumber blkno, Page page)
PG_FUNCTION_INFO_V1(bt_index_check)
static ItemId PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block, Page page, OffsetNumber offset)
static void bt_tuple_present_callback(Relation index, ItemPointer tid, Datum *values, bool *isnull, bool tupleIsAlive, void *checkstate)
static void bt_index_check_callback(Relation indrel, Relation heaprel, void *state, bool readonly)
static bool bt_rootdescend(BtreeCheckState *state, IndexTuple itup)
static BTScanInsert bt_right_page_check_scankey(BtreeCheckState *state, OffsetNumber *rightfirstoffset)
static bool invariant_g_offset(BtreeCheckState *state, BTScanInsert key, OffsetNumber lowerbound)
#define InvalidBtreeLevel
Definition: verify_nbtree.c:55
static Page palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum)
static IndexTuple bt_normalize_tuple(BtreeCheckState *state, IndexTuple itup)
static void bt_recheck_sibling_links(BtreeCheckState *state, BlockNumber btpo_prev_from_target, BlockNumber leftcurrent)
static ItemPointer BTreeTupleGetHeapTIDCareful(BtreeCheckState *state, IndexTuple itup, bool nonpivot)
#define BTreeTupleGetNKeyAtts(itup, rel)
Definition: verify_nbtree.c:56
static void bt_child_check(BtreeCheckState *state, BTScanInsert targetkey, OffsetNumber downlinkoffnum)
static void bt_entry_unique_check(BtreeCheckState *state, IndexTuple itup, BlockNumber targetblock, OffsetNumber offset, BtreeLastVisibleEntry *lVis)
static bool invariant_l_nontarget_offset(BtreeCheckState *state, BTScanInsert key, BlockNumber nontargetblock, Page nontarget, OffsetNumber upperbound)
struct BtreeLevel BtreeLevel
const char * name
#define IsolationUsesXactSnapshot()
Definition: xact.h:52
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:47
uint64 XLogRecPtr
Definition: xlogdefs.h:21