PostgreSQL Source Code  git master
execExprInterp.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * execExprInterp.c
4  * Interpreted evaluation of an expression step list.
5  *
6  * This file provides either a "direct threaded" (for gcc, clang and
7  * compatible) or a "switch threaded" (for all compilers) implementation of
8  * expression evaluation. The former is amongst the fastest known methods
9  * of interpreting programs without resorting to assembly level work, or
10  * just-in-time compilation, but it requires support for computed gotos.
11  * The latter is amongst the fastest approaches doable in standard C.
12  *
13  * In either case we use ExprEvalStep->opcode to dispatch to the code block
14  * within ExecInterpExpr() that implements the specific opcode type.
15  *
16  * Switch-threading uses a plain switch() statement to perform the
17  * dispatch. This has the advantages of being plain C and allowing the
18  * compiler to warn if implementation of a specific opcode has been forgotten.
19  * The disadvantage is that dispatches will, as commonly implemented by
20  * compilers, happen from a single location, requiring more jumps and causing
21  * bad branch prediction.
22  *
23  * In direct threading, we use gcc's label-as-values extension - also adopted
24  * by some other compilers - to replace ExprEvalStep->opcode with the address
25  * of the block implementing the instruction. Dispatch to the next instruction
26  * is done by a "computed goto". This allows for better branch prediction
27  * (as the jumps are happening from different locations) and fewer jumps
28  * (as no preparatory jump to a common dispatch location is needed).
29  *
30  * When using direct threading, ExecReadyInterpretedExpr will replace
31  * each step's opcode field with the address of the relevant code block and
32  * ExprState->flags will contain EEO_FLAG_DIRECT_THREADED to remember that
33  * that's been done.
34  *
35  * For very simple instructions the overhead of the full interpreter
36  * "startup", as minimal as it is, is noticeable. Therefore
37  * ExecReadyInterpretedExpr will choose to implement certain simple
38  * opcode patterns using special fast-path routines (ExecJust*).
39  *
40  * Complex or uncommon instructions are not implemented in-line in
41  * ExecInterpExpr(), rather we call out to a helper function appearing later
42  * in this file. For one reason, there'd not be a noticeable performance
43  * benefit, but more importantly those complex routines are intended to be
44  * shared between different expression evaluation approaches. For instance
45  * a JIT compiler would generate calls to them. (This is why they are
46  * exported rather than being "static" in this file.)
47  *
48  *
49  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
50  * Portions Copyright (c) 1994, Regents of the University of California
51  *
52  * IDENTIFICATION
53  * src/backend/executor/execExprInterp.c
54  *
55  *-------------------------------------------------------------------------
56  */
57 #include "postgres.h"
58 
59 #include "access/heaptoast.h"
60 #include "catalog/pg_type.h"
61 #include "commands/sequence.h"
62 #include "executor/execExpr.h"
63 #include "executor/nodeSubplan.h"
64 #include "funcapi.h"
65 #include "miscadmin.h"
66 #include "nodes/nodeFuncs.h"
67 #include "parser/parsetree.h"
68 #include "pgstat.h"
69 #include "utils/array.h"
70 #include "utils/builtins.h"
71 #include "utils/date.h"
72 #include "utils/datum.h"
73 #include "utils/expandedrecord.h"
74 #include "utils/lsyscache.h"
75 #include "utils/memutils.h"
76 #include "utils/timestamp.h"
77 #include "utils/typcache.h"
78 #include "utils/xml.h"
79 
80 /*
81  * Use computed-goto-based opcode dispatch when computed gotos are available.
82  * But use a separate symbol so that it's easy to adjust locally in this file
83  * for development and testing.
84  */
85 #ifdef HAVE_COMPUTED_GOTO
86 #define EEO_USE_COMPUTED_GOTO
87 #endif /* HAVE_COMPUTED_GOTO */
88 
89 /*
90  * Macros for opcode dispatch.
91  *
92  * EEO_SWITCH - just hides the switch if not in use.
93  * EEO_CASE - labels the implementation of named expression step type.
94  * EEO_DISPATCH - jump to the implementation of the step type for 'op'.
95  * EEO_OPCODE - compute opcode required by used expression evaluation method.
96  * EEO_NEXT - increment 'op' and jump to correct next step type.
97  * EEO_JUMP - jump to the specified step number within the current expression.
98  */
99 #if defined(EEO_USE_COMPUTED_GOTO)
100 
101 /* struct for jump target -> opcode lookup table */
102 typedef struct ExprEvalOpLookup
103 {
104  const void *opcode;
105  ExprEvalOp op;
106 } ExprEvalOpLookup;
107 
108 /* to make dispatch_table accessible outside ExecInterpExpr() */
109 static const void **dispatch_table = NULL;
110 
111 /* jump target -> opcode lookup table */
112 static ExprEvalOpLookup reverse_dispatch_table[EEOP_LAST];
113 
114 #define EEO_SWITCH()
115 #define EEO_CASE(name) CASE_##name:
116 #define EEO_DISPATCH() goto *((void *) op->opcode)
117 #define EEO_OPCODE(opcode) ((intptr_t) dispatch_table[opcode])
118 
119 #else /* !EEO_USE_COMPUTED_GOTO */
120 
121 #define EEO_SWITCH() starteval: switch ((ExprEvalOp) op->opcode)
122 #define EEO_CASE(name) case name:
123 #define EEO_DISPATCH() goto starteval
124 #define EEO_OPCODE(opcode) (opcode)
125 
126 #endif /* EEO_USE_COMPUTED_GOTO */
127 
128 #define EEO_NEXT() \
129  do { \
130  op++; \
131  EEO_DISPATCH(); \
132  } while (0)
133 
134 #define EEO_JUMP(stepno) \
135  do { \
136  op = &state->steps[stepno]; \
137  EEO_DISPATCH(); \
138  } while (0)
139 
140 
141 static Datum ExecInterpExpr(ExprState *state, ExprContext *econtext, bool *isnull);
142 static void ExecInitInterpreter(void);
143 
144 /* support functions */
145 static void CheckVarSlotCompatibility(TupleTableSlot *slot, int attnum, Oid vartype);
147 static TupleDesc get_cached_rowtype(Oid type_id, int32 typmod,
148  TupleDesc *cache_field, ExprContext *econtext);
149 static void ShutdownTupleDescRef(Datum arg);
151  ExprContext *econtext, bool checkisnull);
152 
153 /* fast-path evaluation functions */
154 static Datum ExecJustInnerVar(ExprState *state, ExprContext *econtext, bool *isnull);
155 static Datum ExecJustOuterVar(ExprState *state, ExprContext *econtext, bool *isnull);
156 static Datum ExecJustScanVar(ExprState *state, ExprContext *econtext, bool *isnull);
157 static Datum ExecJustAssignInnerVar(ExprState *state, ExprContext *econtext, bool *isnull);
158 static Datum ExecJustAssignOuterVar(ExprState *state, ExprContext *econtext, bool *isnull);
159 static Datum ExecJustAssignScanVar(ExprState *state, ExprContext *econtext, bool *isnull);
160 static Datum ExecJustApplyFuncToCase(ExprState *state, ExprContext *econtext, bool *isnull);
161 static Datum ExecJustConst(ExprState *state, ExprContext *econtext, bool *isnull);
162 static Datum ExecJustInnerVarVirt(ExprState *state, ExprContext *econtext, bool *isnull);
163 static Datum ExecJustOuterVarVirt(ExprState *state, ExprContext *econtext, bool *isnull);
164 static Datum ExecJustScanVarVirt(ExprState *state, ExprContext *econtext, bool *isnull);
165 static Datum ExecJustAssignInnerVarVirt(ExprState *state, ExprContext *econtext, bool *isnull);
166 static Datum ExecJustAssignOuterVarVirt(ExprState *state, ExprContext *econtext, bool *isnull);
167 static Datum ExecJustAssignScanVarVirt(ExprState *state, ExprContext *econtext, bool *isnull);
168 
169 /* execution helper functions */
171  AggStatePerTrans pertrans,
172  AggStatePerGroup pergroup,
173  ExprContext *aggcontext,
174  int setno);
176  AggStatePerTrans pertrans,
177  AggStatePerGroup pergroup,
178  ExprContext *aggcontext,
179  int setno);
180 
181 /*
182  * Prepare ExprState for interpreted execution.
183  */
184 void
186 {
187  /* Ensure one-time interpreter setup has been done */
189 
190  /* Simple validity checks on expression */
191  Assert(state->steps_len >= 1);
192  Assert(state->steps[state->steps_len - 1].opcode == EEOP_DONE);
193 
194  /*
195  * Don't perform redundant initialization. This is unreachable in current
196  * cases, but might be hit if there's additional expression evaluation
197  * methods that rely on interpreted execution to work.
198  */
200  return;
201 
202  /*
203  * First time through, check whether attribute matches Var. Might not be
204  * ok anymore, due to schema changes. We do that by setting up a callback
205  * that does checking on the first call, which then sets the evalfunc
206  * callback to the actual method of execution.
207  */
209 
210  /* DIRECT_THREADED should not already be set */
211  Assert((state->flags & EEO_FLAG_DIRECT_THREADED) == 0);
212 
213  /*
214  * There shouldn't be any errors before the expression is fully
215  * initialized, and even if so, it'd lead to the expression being
216  * abandoned. So we can set the flag now and save some code.
217  */
219 
220  /*
221  * Select fast-path evalfuncs for very simple expressions. "Starting up"
222  * the full interpreter is a measurable overhead for these, and these
223  * patterns occur often enough to be worth optimizing.
224  */
225  if (state->steps_len == 3)
226  {
227  ExprEvalOp step0 = state->steps[0].opcode;
228  ExprEvalOp step1 = state->steps[1].opcode;
229 
230  if (step0 == EEOP_INNER_FETCHSOME &&
231  step1 == EEOP_INNER_VAR)
232  {
233  state->evalfunc_private = (void *) ExecJustInnerVar;
234  return;
235  }
236  else if (step0 == EEOP_OUTER_FETCHSOME &&
237  step1 == EEOP_OUTER_VAR)
238  {
239  state->evalfunc_private = (void *) ExecJustOuterVar;
240  return;
241  }
242  else if (step0 == EEOP_SCAN_FETCHSOME &&
243  step1 == EEOP_SCAN_VAR)
244  {
245  state->evalfunc_private = (void *) ExecJustScanVar;
246  return;
247  }
248  else if (step0 == EEOP_INNER_FETCHSOME &&
249  step1 == EEOP_ASSIGN_INNER_VAR)
250  {
251  state->evalfunc_private = (void *) ExecJustAssignInnerVar;
252  return;
253  }
254  else if (step0 == EEOP_OUTER_FETCHSOME &&
255  step1 == EEOP_ASSIGN_OUTER_VAR)
256  {
257  state->evalfunc_private = (void *) ExecJustAssignOuterVar;
258  return;
259  }
260  else if (step0 == EEOP_SCAN_FETCHSOME &&
261  step1 == EEOP_ASSIGN_SCAN_VAR)
262  {
263  state->evalfunc_private = (void *) ExecJustAssignScanVar;
264  return;
265  }
266  else if (step0 == EEOP_CASE_TESTVAL &&
267  step1 == EEOP_FUNCEXPR_STRICT &&
268  state->steps[0].d.casetest.value)
269  {
270  state->evalfunc_private = (void *) ExecJustApplyFuncToCase;
271  return;
272  }
273  }
274  else if (state->steps_len == 2)
275  {
276  ExprEvalOp step0 = state->steps[0].opcode;
277 
278  if (step0 == EEOP_CONST)
279  {
280  state->evalfunc_private = (void *) ExecJustConst;
281  return;
282  }
283  else if (step0 == EEOP_INNER_VAR)
284  {
285  state->evalfunc_private = (void *) ExecJustInnerVarVirt;
286  return;
287  }
288  else if (step0 == EEOP_OUTER_VAR)
289  {
290  state->evalfunc_private = (void *) ExecJustOuterVarVirt;
291  return;
292  }
293  else if (step0 == EEOP_SCAN_VAR)
294  {
295  state->evalfunc_private = (void *) ExecJustScanVarVirt;
296  return;
297  }
298  else if (step0 == EEOP_ASSIGN_INNER_VAR)
299  {
301  return;
302  }
303  else if (step0 == EEOP_ASSIGN_OUTER_VAR)
304  {
306  return;
307  }
308  else if (step0 == EEOP_ASSIGN_SCAN_VAR)
309  {
311  return;
312  }
313  }
314 
315 #if defined(EEO_USE_COMPUTED_GOTO)
316 
317  /*
318  * In the direct-threaded implementation, replace each opcode with the
319  * address to jump to. (Use ExecEvalStepOp() to get back the opcode.)
320  */
321  for (int off = 0; off < state->steps_len; off++)
322  {
323  ExprEvalStep *op = &state->steps[off];
324 
325  op->opcode = EEO_OPCODE(op->opcode);
326  }
327 
329 #endif /* EEO_USE_COMPUTED_GOTO */
330 
331  state->evalfunc_private = (void *) ExecInterpExpr;
332 }
333 
334 
335 /*
336  * Evaluate expression identified by "state" in the execution context
337  * given by "econtext". *isnull is set to the is-null flag for the result,
338  * and the Datum value is the function result.
339  *
340  * As a special case, return the dispatch table's address if state is NULL.
341  * This is used by ExecInitInterpreter to set up the dispatch_table global.
342  * (Only applies when EEO_USE_COMPUTED_GOTO is defined.)
343  */
344 static Datum
345 ExecInterpExpr(ExprState *state, ExprContext *econtext, bool *isnull)
346 {
347  ExprEvalStep *op;
348  TupleTableSlot *resultslot;
349  TupleTableSlot *innerslot;
350  TupleTableSlot *outerslot;
351  TupleTableSlot *scanslot;
352 
353  /*
354  * This array has to be in the same order as enum ExprEvalOp.
355  */
356 #if defined(EEO_USE_COMPUTED_GOTO)
357  static const void *const dispatch_table[] = {
358  &&CASE_EEOP_DONE,
359  &&CASE_EEOP_INNER_FETCHSOME,
360  &&CASE_EEOP_OUTER_FETCHSOME,
361  &&CASE_EEOP_SCAN_FETCHSOME,
362  &&CASE_EEOP_INNER_VAR,
363  &&CASE_EEOP_OUTER_VAR,
364  &&CASE_EEOP_SCAN_VAR,
365  &&CASE_EEOP_INNER_SYSVAR,
366  &&CASE_EEOP_OUTER_SYSVAR,
367  &&CASE_EEOP_SCAN_SYSVAR,
368  &&CASE_EEOP_WHOLEROW,
369  &&CASE_EEOP_ASSIGN_INNER_VAR,
370  &&CASE_EEOP_ASSIGN_OUTER_VAR,
371  &&CASE_EEOP_ASSIGN_SCAN_VAR,
372  &&CASE_EEOP_ASSIGN_TMP,
373  &&CASE_EEOP_ASSIGN_TMP_MAKE_RO,
374  &&CASE_EEOP_CONST,
375  &&CASE_EEOP_FUNCEXPR,
376  &&CASE_EEOP_FUNCEXPR_STRICT,
377  &&CASE_EEOP_FUNCEXPR_FUSAGE,
378  &&CASE_EEOP_FUNCEXPR_STRICT_FUSAGE,
379  &&CASE_EEOP_BOOL_AND_STEP_FIRST,
380  &&CASE_EEOP_BOOL_AND_STEP,
381  &&CASE_EEOP_BOOL_AND_STEP_LAST,
382  &&CASE_EEOP_BOOL_OR_STEP_FIRST,
383  &&CASE_EEOP_BOOL_OR_STEP,
384  &&CASE_EEOP_BOOL_OR_STEP_LAST,
385  &&CASE_EEOP_BOOL_NOT_STEP,
386  &&CASE_EEOP_QUAL,
387  &&CASE_EEOP_JUMP,
388  &&CASE_EEOP_JUMP_IF_NULL,
389  &&CASE_EEOP_JUMP_IF_NOT_NULL,
390  &&CASE_EEOP_JUMP_IF_NOT_TRUE,
391  &&CASE_EEOP_NULLTEST_ISNULL,
392  &&CASE_EEOP_NULLTEST_ISNOTNULL,
393  &&CASE_EEOP_NULLTEST_ROWISNULL,
394  &&CASE_EEOP_NULLTEST_ROWISNOTNULL,
395  &&CASE_EEOP_BOOLTEST_IS_TRUE,
396  &&CASE_EEOP_BOOLTEST_IS_NOT_TRUE,
397  &&CASE_EEOP_BOOLTEST_IS_FALSE,
398  &&CASE_EEOP_BOOLTEST_IS_NOT_FALSE,
399  &&CASE_EEOP_PARAM_EXEC,
400  &&CASE_EEOP_PARAM_EXTERN,
401  &&CASE_EEOP_PARAM_CALLBACK,
402  &&CASE_EEOP_CASE_TESTVAL,
403  &&CASE_EEOP_MAKE_READONLY,
404  &&CASE_EEOP_IOCOERCE,
405  &&CASE_EEOP_DISTINCT,
406  &&CASE_EEOP_NOT_DISTINCT,
407  &&CASE_EEOP_NULLIF,
408  &&CASE_EEOP_SQLVALUEFUNCTION,
409  &&CASE_EEOP_CURRENTOFEXPR,
410  &&CASE_EEOP_NEXTVALUEEXPR,
411  &&CASE_EEOP_ARRAYEXPR,
412  &&CASE_EEOP_ARRAYCOERCE,
413  &&CASE_EEOP_ROW,
414  &&CASE_EEOP_ROWCOMPARE_STEP,
415  &&CASE_EEOP_ROWCOMPARE_FINAL,
416  &&CASE_EEOP_MINMAX,
417  &&CASE_EEOP_FIELDSELECT,
418  &&CASE_EEOP_FIELDSTORE_DEFORM,
419  &&CASE_EEOP_FIELDSTORE_FORM,
420  &&CASE_EEOP_SBSREF_SUBSCRIPT,
421  &&CASE_EEOP_SBSREF_OLD,
422  &&CASE_EEOP_SBSREF_ASSIGN,
423  &&CASE_EEOP_SBSREF_FETCH,
424  &&CASE_EEOP_DOMAIN_TESTVAL,
425  &&CASE_EEOP_DOMAIN_NOTNULL,
426  &&CASE_EEOP_DOMAIN_CHECK,
427  &&CASE_EEOP_CONVERT_ROWTYPE,
428  &&CASE_EEOP_SCALARARRAYOP,
429  &&CASE_EEOP_XMLEXPR,
430  &&CASE_EEOP_AGGREF,
431  &&CASE_EEOP_GROUPING_FUNC,
432  &&CASE_EEOP_WINDOW_FUNC,
433  &&CASE_EEOP_SUBPLAN,
434  &&CASE_EEOP_ALTERNATIVE_SUBPLAN,
435  &&CASE_EEOP_AGG_STRICT_DESERIALIZE,
436  &&CASE_EEOP_AGG_DESERIALIZE,
437  &&CASE_EEOP_AGG_STRICT_INPUT_CHECK_ARGS,
438  &&CASE_EEOP_AGG_STRICT_INPUT_CHECK_NULLS,
439  &&CASE_EEOP_AGG_PLAIN_PERGROUP_NULLCHECK,
440  &&CASE_EEOP_AGG_PLAIN_TRANS_INIT_STRICT_BYVAL,
441  &&CASE_EEOP_AGG_PLAIN_TRANS_STRICT_BYVAL,
442  &&CASE_EEOP_AGG_PLAIN_TRANS_BYVAL,
443  &&CASE_EEOP_AGG_PLAIN_TRANS_INIT_STRICT_BYREF,
444  &&CASE_EEOP_AGG_PLAIN_TRANS_STRICT_BYREF,
445  &&CASE_EEOP_AGG_PLAIN_TRANS_BYREF,
446  &&CASE_EEOP_AGG_ORDERED_TRANS_DATUM,
447  &&CASE_EEOP_AGG_ORDERED_TRANS_TUPLE,
448  &&CASE_EEOP_LAST
449  };
450 
451  StaticAssertStmt(EEOP_LAST + 1 == lengthof(dispatch_table),
452  "dispatch_table out of whack with ExprEvalOp");
453 
454  if (unlikely(state == NULL))
455  return PointerGetDatum(dispatch_table);
456 #else
457  Assert(state != NULL);
458 #endif /* EEO_USE_COMPUTED_GOTO */
459 
460  /* setup state */
461  op = state->steps;
462  resultslot = state->resultslot;
463  innerslot = econtext->ecxt_innertuple;
464  outerslot = econtext->ecxt_outertuple;
465  scanslot = econtext->ecxt_scantuple;
466 
467 #if defined(EEO_USE_COMPUTED_GOTO)
468  EEO_DISPATCH();
469 #endif
470 
471  EEO_SWITCH()
472  {
474  {
475  goto out;
476  }
477 
479  {
480  CheckOpSlotCompatibility(op, innerslot);
481 
482  slot_getsomeattrs(innerslot, op->d.fetch.last_var);
483 
484  EEO_NEXT();
485  }
486 
488  {
489  CheckOpSlotCompatibility(op, outerslot);
490 
491  slot_getsomeattrs(outerslot, op->d.fetch.last_var);
492 
493  EEO_NEXT();
494  }
495 
497  {
498  CheckOpSlotCompatibility(op, scanslot);
499 
500  slot_getsomeattrs(scanslot, op->d.fetch.last_var);
501 
502  EEO_NEXT();
503  }
504 
506  {
507  int attnum = op->d.var.attnum;
508 
509  /*
510  * Since we already extracted all referenced columns from the
511  * tuple with a FETCHSOME step, we can just grab the value
512  * directly out of the slot's decomposed-data arrays. But let's
513  * have an Assert to check that that did happen.
514  */
515  Assert(attnum >= 0 && attnum < innerslot->tts_nvalid);
516  *op->resvalue = innerslot->tts_values[attnum];
517  *op->resnull = innerslot->tts_isnull[attnum];
518 
519  EEO_NEXT();
520  }
521 
523  {
524  int attnum = op->d.var.attnum;
525 
526  /* See EEOP_INNER_VAR comments */
527 
528  Assert(attnum >= 0 && attnum < outerslot->tts_nvalid);
529  *op->resvalue = outerslot->tts_values[attnum];
530  *op->resnull = outerslot->tts_isnull[attnum];
531 
532  EEO_NEXT();
533  }
534 
536  {
537  int attnum = op->d.var.attnum;
538 
539  /* See EEOP_INNER_VAR comments */
540 
541  Assert(attnum >= 0 && attnum < scanslot->tts_nvalid);
542  *op->resvalue = scanslot->tts_values[attnum];
543  *op->resnull = scanslot->tts_isnull[attnum];
544 
545  EEO_NEXT();
546  }
547 
549  {
550  ExecEvalSysVar(state, op, econtext, innerslot);
551  EEO_NEXT();
552  }
553 
555  {
556  ExecEvalSysVar(state, op, econtext, outerslot);
557  EEO_NEXT();
558  }
559 
561  {
562  ExecEvalSysVar(state, op, econtext, scanslot);
563  EEO_NEXT();
564  }
565 
567  {
568  /* too complex for an inline implementation */
569  ExecEvalWholeRowVar(state, op, econtext);
570 
571  EEO_NEXT();
572  }
573 
575  {
576  int resultnum = op->d.assign_var.resultnum;
577  int attnum = op->d.assign_var.attnum;
578 
579  /*
580  * We do not need CheckVarSlotCompatibility here; that was taken
581  * care of at compilation time. But see EEOP_INNER_VAR comments.
582  */
583  Assert(attnum >= 0 && attnum < innerslot->tts_nvalid);
584  resultslot->tts_values[resultnum] = innerslot->tts_values[attnum];
585  resultslot->tts_isnull[resultnum] = innerslot->tts_isnull[attnum];
586 
587  EEO_NEXT();
588  }
589 
591  {
592  int resultnum = op->d.assign_var.resultnum;
593  int attnum = op->d.assign_var.attnum;
594 
595  /*
596  * We do not need CheckVarSlotCompatibility here; that was taken
597  * care of at compilation time. But see EEOP_INNER_VAR comments.
598  */
599  Assert(attnum >= 0 && attnum < outerslot->tts_nvalid);
600  resultslot->tts_values[resultnum] = outerslot->tts_values[attnum];
601  resultslot->tts_isnull[resultnum] = outerslot->tts_isnull[attnum];
602 
603  EEO_NEXT();
604  }
605 
607  {
608  int resultnum = op->d.assign_var.resultnum;
609  int attnum = op->d.assign_var.attnum;
610 
611  /*
612  * We do not need CheckVarSlotCompatibility here; that was taken
613  * care of at compilation time. But see EEOP_INNER_VAR comments.
614  */
615  Assert(attnum >= 0 && attnum < scanslot->tts_nvalid);
616  resultslot->tts_values[resultnum] = scanslot->tts_values[attnum];
617  resultslot->tts_isnull[resultnum] = scanslot->tts_isnull[attnum];
618 
619  EEO_NEXT();
620  }
621 
623  {
624  int resultnum = op->d.assign_tmp.resultnum;
625 
626  resultslot->tts_values[resultnum] = state->resvalue;
627  resultslot->tts_isnull[resultnum] = state->resnull;
628 
629  EEO_NEXT();
630  }
631 
633  {
634  int resultnum = op->d.assign_tmp.resultnum;
635 
636  resultslot->tts_isnull[resultnum] = state->resnull;
637  if (!resultslot->tts_isnull[resultnum])
638  resultslot->tts_values[resultnum] =
640  else
641  resultslot->tts_values[resultnum] = state->resvalue;
642 
643  EEO_NEXT();
644  }
645 
647  {
648  *op->resnull = op->d.constval.isnull;
649  *op->resvalue = op->d.constval.value;
650 
651  EEO_NEXT();
652  }
653 
654  /*
655  * Function-call implementations. Arguments have previously been
656  * evaluated directly into fcinfo->args.
657  *
658  * As both STRICT checks and function-usage are noticeable performance
659  * wise, and function calls are a very hot-path (they also back
660  * operators!), it's worth having so many separate opcodes.
661  *
662  * Note: the reason for using a temporary variable "d", here and in
663  * other places, is that some compilers think "*op->resvalue = f();"
664  * requires them to evaluate op->resvalue into a register before
665  * calling f(), just in case f() is able to modify op->resvalue
666  * somehow. The extra line of code can save a useless register spill
667  * and reload across the function call.
668  */
670  {
671  FunctionCallInfo fcinfo = op->d.func.fcinfo_data;
672  Datum d;
673 
674  fcinfo->isnull = false;
675  d = op->d.func.fn_addr(fcinfo);
676  *op->resvalue = d;
677  *op->resnull = fcinfo->isnull;
678 
679  EEO_NEXT();
680  }
681 
683  {
684  FunctionCallInfo fcinfo = op->d.func.fcinfo_data;
685  NullableDatum *args = fcinfo->args;
686  int nargs = op->d.func.nargs;
687  Datum d;
688 
689  /* strict function, so check for NULL args */
690  for (int argno = 0; argno < nargs; argno++)
691  {
692  if (args[argno].isnull)
693  {
694  *op->resnull = true;
695  goto strictfail;
696  }
697  }
698  fcinfo->isnull = false;
699  d = op->d.func.fn_addr(fcinfo);
700  *op->resvalue = d;
701  *op->resnull = fcinfo->isnull;
702 
703  strictfail:
704  EEO_NEXT();
705  }
706 
708  {
709  /* not common enough to inline */
710  ExecEvalFuncExprFusage(state, op, econtext);
711 
712  EEO_NEXT();
713  }
714 
716  {
717  /* not common enough to inline */
718  ExecEvalFuncExprStrictFusage(state, op, econtext);
719 
720  EEO_NEXT();
721  }
722 
723  /*
724  * If any of its clauses is FALSE, an AND's result is FALSE regardless
725  * of the states of the rest of the clauses, so we can stop evaluating
726  * and return FALSE immediately. If none are FALSE and one or more is
727  * NULL, we return NULL; otherwise we return TRUE. This makes sense
728  * when you interpret NULL as "don't know": perhaps one of the "don't
729  * knows" would have been FALSE if we'd known its value. Only when
730  * all the inputs are known to be TRUE can we state confidently that
731  * the AND's result is TRUE.
732  */
734  {
735  *op->d.boolexpr.anynull = false;
736 
737  /*
738  * EEOP_BOOL_AND_STEP_FIRST resets anynull, otherwise it's the
739  * same as EEOP_BOOL_AND_STEP - so fall through to that.
740  */
741 
742  /* FALL THROUGH */
743  }
744 
746  {
747  if (*op->resnull)
748  {
749  *op->d.boolexpr.anynull = true;
750  }
751  else if (!DatumGetBool(*op->resvalue))
752  {
753  /* result is already set to FALSE, need not change it */
754  /* bail out early */
755  EEO_JUMP(op->d.boolexpr.jumpdone);
756  }
757 
758  EEO_NEXT();
759  }
760 
762  {
763  if (*op->resnull)
764  {
765  /* result is already set to NULL, need not change it */
766  }
767  else if (!DatumGetBool(*op->resvalue))
768  {
769  /* result is already set to FALSE, need not change it */
770 
771  /*
772  * No point jumping early to jumpdone - would be same target
773  * (as this is the last argument to the AND expression),
774  * except more expensive.
775  */
776  }
777  else if (*op->d.boolexpr.anynull)
778  {
779  *op->resvalue = (Datum) 0;
780  *op->resnull = true;
781  }
782  else
783  {
784  /* result is already set to TRUE, need not change it */
785  }
786 
787  EEO_NEXT();
788  }
789 
790  /*
791  * If any of its clauses is TRUE, an OR's result is TRUE regardless of
792  * the states of the rest of the clauses, so we can stop evaluating
793  * and return TRUE immediately. If none are TRUE and one or more is
794  * NULL, we return NULL; otherwise we return FALSE. This makes sense
795  * when you interpret NULL as "don't know": perhaps one of the "don't
796  * knows" would have been TRUE if we'd known its value. Only when all
797  * the inputs are known to be FALSE can we state confidently that the
798  * OR's result is FALSE.
799  */
801  {
802  *op->d.boolexpr.anynull = false;
803 
804  /*
805  * EEOP_BOOL_OR_STEP_FIRST resets anynull, otherwise it's the same
806  * as EEOP_BOOL_OR_STEP - so fall through to that.
807  */
808 
809  /* FALL THROUGH */
810  }
811 
813  {
814  if (*op->resnull)
815  {
816  *op->d.boolexpr.anynull = true;
817  }
818  else if (DatumGetBool(*op->resvalue))
819  {
820  /* result is already set to TRUE, need not change it */
821  /* bail out early */
822  EEO_JUMP(op->d.boolexpr.jumpdone);
823  }
824 
825  EEO_NEXT();
826  }
827 
829  {
830  if (*op->resnull)
831  {
832  /* result is already set to NULL, need not change it */
833  }
834  else if (DatumGetBool(*op->resvalue))
835  {
836  /* result is already set to TRUE, need not change it */
837 
838  /*
839  * No point jumping to jumpdone - would be same target (as
840  * this is the last argument to the AND expression), except
841  * more expensive.
842  */
843  }
844  else if (*op->d.boolexpr.anynull)
845  {
846  *op->resvalue = (Datum) 0;
847  *op->resnull = true;
848  }
849  else
850  {
851  /* result is already set to FALSE, need not change it */
852  }
853 
854  EEO_NEXT();
855  }
856 
858  {
859  /*
860  * Evaluation of 'not' is simple... if expr is false, then return
861  * 'true' and vice versa. It's safe to do this even on a
862  * nominally null value, so we ignore resnull; that means that
863  * NULL in produces NULL out, which is what we want.
864  */
866 
867  EEO_NEXT();
868  }
869 
871  {
872  /* simplified version of BOOL_AND_STEP for use by ExecQual() */
873 
874  /* If argument (also result) is false or null ... */
875  if (*op->resnull ||
876  !DatumGetBool(*op->resvalue))
877  {
878  /* ... bail out early, returning FALSE */
879  *op->resnull = false;
880  *op->resvalue = BoolGetDatum(false);
881  EEO_JUMP(op->d.qualexpr.jumpdone);
882  }
883 
884  /*
885  * Otherwise, leave the TRUE value in place, in case this is the
886  * last qual. Then, TRUE is the correct answer.
887  */
888 
889  EEO_NEXT();
890  }
891 
893  {
894  /* Unconditionally jump to target step */
895  EEO_JUMP(op->d.jump.jumpdone);
896  }
897 
899  {
900  /* Transfer control if current result is null */
901  if (*op->resnull)
902  EEO_JUMP(op->d.jump.jumpdone);
903 
904  EEO_NEXT();
905  }
906 
908  {
909  /* Transfer control if current result is non-null */
910  if (!*op->resnull)
911  EEO_JUMP(op->d.jump.jumpdone);
912 
913  EEO_NEXT();
914  }
915 
917  {
918  /* Transfer control if current result is null or false */
919  if (*op->resnull || !DatumGetBool(*op->resvalue))
920  EEO_JUMP(op->d.jump.jumpdone);
921 
922  EEO_NEXT();
923  }
924 
926  {
927  *op->resvalue = BoolGetDatum(*op->resnull);
928  *op->resnull = false;
929 
930  EEO_NEXT();
931  }
932 
934  {
935  *op->resvalue = BoolGetDatum(!*op->resnull);
936  *op->resnull = false;
937 
938  EEO_NEXT();
939  }
940 
942  {
943  /* out of line implementation: too large */
944  ExecEvalRowNull(state, op, econtext);
945 
946  EEO_NEXT();
947  }
948 
950  {
951  /* out of line implementation: too large */
952  ExecEvalRowNotNull(state, op, econtext);
953 
954  EEO_NEXT();
955  }
956 
957  /* BooleanTest implementations for all booltesttypes */
958 
960  {
961  if (*op->resnull)
962  {
963  *op->resvalue = BoolGetDatum(false);
964  *op->resnull = false;
965  }
966  /* else, input value is the correct output as well */
967 
968  EEO_NEXT();
969  }
970 
972  {
973  if (*op->resnull)
974  {
975  *op->resvalue = BoolGetDatum(true);
976  *op->resnull = false;
977  }
978  else
980 
981  EEO_NEXT();
982  }
983 
985  {
986  if (*op->resnull)
987  {
988  *op->resvalue = BoolGetDatum(false);
989  *op->resnull = false;
990  }
991  else
993 
994  EEO_NEXT();
995  }
996 
998  {
999  if (*op->resnull)
1000  {
1001  *op->resvalue = BoolGetDatum(true);
1002  *op->resnull = false;
1003  }
1004  /* else, input value is the correct output as well */
1005 
1006  EEO_NEXT();
1007  }
1008 
1010  {
1011  /* out of line implementation: too large */
1012  ExecEvalParamExec(state, op, econtext);
1013 
1014  EEO_NEXT();
1015  }
1016 
1018  {
1019  /* out of line implementation: too large */
1020  ExecEvalParamExtern(state, op, econtext);
1021  EEO_NEXT();
1022  }
1023 
1025  {
1026  /* allow an extension module to supply a PARAM_EXTERN value */
1027  op->d.cparam.paramfunc(state, op, econtext);
1028  EEO_NEXT();
1029  }
1030 
1032  {
1033  /*
1034  * Normally upper parts of the expression tree have setup the
1035  * values to be returned here, but some parts of the system
1036  * currently misuse {caseValue,domainValue}_{datum,isNull} to set
1037  * run-time data. So if no values have been set-up, use
1038  * ExprContext's. This isn't pretty, but also not *that* ugly,
1039  * and this is unlikely to be performance sensitive enough to
1040  * worry about an extra branch.
1041  */
1042  if (op->d.casetest.value)
1043  {
1044  *op->resvalue = *op->d.casetest.value;
1045  *op->resnull = *op->d.casetest.isnull;
1046  }
1047  else
1048  {
1049  *op->resvalue = econtext->caseValue_datum;
1050  *op->resnull = econtext->caseValue_isNull;
1051  }
1052 
1053  EEO_NEXT();
1054  }
1055 
1057  {
1058  /*
1059  * See EEOP_CASE_TESTVAL comment.
1060  */
1061  if (op->d.casetest.value)
1062  {
1063  *op->resvalue = *op->d.casetest.value;
1064  *op->resnull = *op->d.casetest.isnull;
1065  }
1066  else
1067  {
1068  *op->resvalue = econtext->domainValue_datum;
1069  *op->resnull = econtext->domainValue_isNull;
1070  }
1071 
1072  EEO_NEXT();
1073  }
1074 
1076  {
1077  /*
1078  * Force a varlena value that might be read multiple times to R/O
1079  */
1080  if (!*op->d.make_readonly.isnull)
1081  *op->resvalue =
1083  *op->resnull = *op->d.make_readonly.isnull;
1084 
1085  EEO_NEXT();
1086  }
1087 
1089  {
1090  /*
1091  * Evaluate a CoerceViaIO node. This can be quite a hot path, so
1092  * inline as much work as possible. The source value is in our
1093  * result variable.
1094  */
1095  char *str;
1096 
1097  /* call output function (similar to OutputFunctionCall) */
1098  if (*op->resnull)
1099  {
1100  /* output functions are not called on nulls */
1101  str = NULL;
1102  }
1103  else
1104  {
1105  FunctionCallInfo fcinfo_out;
1106 
1107  fcinfo_out = op->d.iocoerce.fcinfo_data_out;
1108  fcinfo_out->args[0].value = *op->resvalue;
1109  fcinfo_out->args[0].isnull = false;
1110 
1111  fcinfo_out->isnull = false;
1112  str = DatumGetCString(FunctionCallInvoke(fcinfo_out));
1113 
1114  /* OutputFunctionCall assumes result isn't null */
1115  Assert(!fcinfo_out->isnull);
1116  }
1117 
1118  /* call input function (similar to InputFunctionCall) */
1119  if (!op->d.iocoerce.finfo_in->fn_strict || str != NULL)
1120  {
1121  FunctionCallInfo fcinfo_in;
1122  Datum d;
1123 
1124  fcinfo_in = op->d.iocoerce.fcinfo_data_in;
1125  fcinfo_in->args[0].value = PointerGetDatum(str);
1126  fcinfo_in->args[0].isnull = *op->resnull;
1127  /* second and third arguments are already set up */
1128 
1129  fcinfo_in->isnull = false;
1130  d = FunctionCallInvoke(fcinfo_in);
1131  *op->resvalue = d;
1132 
1133  /* Should get null result if and only if str is NULL */
1134  if (str == NULL)
1135  {
1136  Assert(*op->resnull);
1137  Assert(fcinfo_in->isnull);
1138  }
1139  else
1140  {
1141  Assert(!*op->resnull);
1142  Assert(!fcinfo_in->isnull);
1143  }
1144  }
1145 
1146  EEO_NEXT();
1147  }
1148 
1150  {
1151  /*
1152  * IS DISTINCT FROM must evaluate arguments (already done into
1153  * fcinfo->args) to determine whether they are NULL; if either is
1154  * NULL then the result is determined. If neither is NULL, then
1155  * proceed to evaluate the comparison function, which is just the
1156  * type's standard equality operator. We need not care whether
1157  * that function is strict. Because the handling of nulls is
1158  * different, we can't just reuse EEOP_FUNCEXPR.
1159  */
1160  FunctionCallInfo fcinfo = op->d.func.fcinfo_data;
1161 
1162  /* check function arguments for NULLness */
1163  if (fcinfo->args[0].isnull && fcinfo->args[1].isnull)
1164  {
1165  /* Both NULL? Then is not distinct... */
1166  *op->resvalue = BoolGetDatum(false);
1167  *op->resnull = false;
1168  }
1169  else if (fcinfo->args[0].isnull || fcinfo->args[1].isnull)
1170  {
1171  /* Only one is NULL? Then is distinct... */
1172  *op->resvalue = BoolGetDatum(true);
1173  *op->resnull = false;
1174  }
1175  else
1176  {
1177  /* Neither null, so apply the equality function */
1178  Datum eqresult;
1179 
1180  fcinfo->isnull = false;
1181  eqresult = op->d.func.fn_addr(fcinfo);
1182  /* Must invert result of "="; safe to do even if null */
1183  *op->resvalue = BoolGetDatum(!DatumGetBool(eqresult));
1184  *op->resnull = fcinfo->isnull;
1185  }
1186 
1187  EEO_NEXT();
1188  }
1189 
1190  /* see EEOP_DISTINCT for comments, this is just inverted */
1192  {
1193  FunctionCallInfo fcinfo = op->d.func.fcinfo_data;
1194 
1195  if (fcinfo->args[0].isnull && fcinfo->args[1].isnull)
1196  {
1197  *op->resvalue = BoolGetDatum(true);
1198  *op->resnull = false;
1199  }
1200  else if (fcinfo->args[0].isnull || fcinfo->args[1].isnull)
1201  {
1202  *op->resvalue = BoolGetDatum(false);
1203  *op->resnull = false;
1204  }
1205  else
1206  {
1207  Datum eqresult;
1208 
1209  fcinfo->isnull = false;
1210  eqresult = op->d.func.fn_addr(fcinfo);
1211  *op->resvalue = eqresult;
1212  *op->resnull = fcinfo->isnull;
1213  }
1214 
1215  EEO_NEXT();
1216  }
1217 
1219  {
1220  /*
1221  * The arguments are already evaluated into fcinfo->args.
1222  */
1223  FunctionCallInfo fcinfo = op->d.func.fcinfo_data;
1224 
1225  /* if either argument is NULL they can't be equal */
1226  if (!fcinfo->args[0].isnull && !fcinfo->args[1].isnull)
1227  {
1228  Datum result;
1229 
1230  fcinfo->isnull = false;
1231  result = op->d.func.fn_addr(fcinfo);
1232 
1233  /* if the arguments are equal return null */
1234  if (!fcinfo->isnull && DatumGetBool(result))
1235  {
1236  *op->resvalue = (Datum) 0;
1237  *op->resnull = true;
1238 
1239  EEO_NEXT();
1240  }
1241  }
1242 
1243  /* Arguments aren't equal, so return the first one */
1244  *op->resvalue = fcinfo->args[0].value;
1245  *op->resnull = fcinfo->args[0].isnull;
1246 
1247  EEO_NEXT();
1248  }
1249 
1251  {
1252  /*
1253  * Doesn't seem worthwhile to have an inline implementation
1254  * efficiency-wise.
1255  */
1256  ExecEvalSQLValueFunction(state, op);
1257 
1258  EEO_NEXT();
1259  }
1260 
1262  {
1263  /* error invocation uses space, and shouldn't ever occur */
1264  ExecEvalCurrentOfExpr(state, op);
1265 
1266  EEO_NEXT();
1267  }
1268 
1270  {
1271  /*
1272  * Doesn't seem worthwhile to have an inline implementation
1273  * efficiency-wise.
1274  */
1275  ExecEvalNextValueExpr(state, op);
1276 
1277  EEO_NEXT();
1278  }
1279 
1281  {
1282  /* too complex for an inline implementation */
1283  ExecEvalArrayExpr(state, op);
1284 
1285  EEO_NEXT();
1286  }
1287 
1289  {
1290  /* too complex for an inline implementation */
1291  ExecEvalArrayCoerce(state, op, econtext);
1292 
1293  EEO_NEXT();
1294  }
1295 
1297  {
1298  /* too complex for an inline implementation */
1299  ExecEvalRow(state, op);
1300 
1301  EEO_NEXT();
1302  }
1303 
1305  {
1306  FunctionCallInfo fcinfo = op->d.rowcompare_step.fcinfo_data;
1307  Datum d;
1308 
1309  /* force NULL result if strict fn and NULL input */
1310  if (op->d.rowcompare_step.finfo->fn_strict &&
1311  (fcinfo->args[0].isnull || fcinfo->args[1].isnull))
1312  {
1313  *op->resnull = true;
1314  EEO_JUMP(op->d.rowcompare_step.jumpnull);
1315  }
1316 
1317  /* Apply comparison function */
1318  fcinfo->isnull = false;
1319  d = op->d.rowcompare_step.fn_addr(fcinfo);
1320  *op->resvalue = d;
1321 
1322  /* force NULL result if NULL function result */
1323  if (fcinfo->isnull)
1324  {
1325  *op->resnull = true;
1326  EEO_JUMP(op->d.rowcompare_step.jumpnull);
1327  }
1328  *op->resnull = false;
1329 
1330  /* If unequal, no need to compare remaining columns */
1331  if (DatumGetInt32(*op->resvalue) != 0)
1332  {
1333  EEO_JUMP(op->d.rowcompare_step.jumpdone);
1334  }
1335 
1336  EEO_NEXT();
1337  }
1338 
1340  {
1341  int32 cmpresult = DatumGetInt32(*op->resvalue);
1342  RowCompareType rctype = op->d.rowcompare_final.rctype;
1343 
1344  *op->resnull = false;
1345  switch (rctype)
1346  {
1347  /* EQ and NE cases aren't allowed here */
1348  case ROWCOMPARE_LT:
1349  *op->resvalue = BoolGetDatum(cmpresult < 0);
1350  break;
1351  case ROWCOMPARE_LE:
1352  *op->resvalue = BoolGetDatum(cmpresult <= 0);
1353  break;
1354  case ROWCOMPARE_GE:
1355  *op->resvalue = BoolGetDatum(cmpresult >= 0);
1356  break;
1357  case ROWCOMPARE_GT:
1358  *op->resvalue = BoolGetDatum(cmpresult > 0);
1359  break;
1360  default:
1361  Assert(false);
1362  break;
1363  }
1364 
1365  EEO_NEXT();
1366  }
1367 
1369  {
1370  /* too complex for an inline implementation */
1371  ExecEvalMinMax(state, op);
1372 
1373  EEO_NEXT();
1374  }
1375 
1377  {
1378  /* too complex for an inline implementation */
1379  ExecEvalFieldSelect(state, op, econtext);
1380 
1381  EEO_NEXT();
1382  }
1383 
1385  {
1386  /* too complex for an inline implementation */
1387  ExecEvalFieldStoreDeForm(state, op, econtext);
1388 
1389  EEO_NEXT();
1390  }
1391 
1393  {
1394  /* too complex for an inline implementation */
1395  ExecEvalFieldStoreForm(state, op, econtext);
1396 
1397  EEO_NEXT();
1398  }
1399 
1401  {
1402  /* Process an array subscript */
1403 
1404  /* too complex for an inline implementation */
1405  if (ExecEvalSubscriptingRef(state, op))
1406  {
1407  EEO_NEXT();
1408  }
1409  else
1410  {
1411  /* Subscript is null, short-circuit SubscriptingRef to NULL */
1412  EEO_JUMP(op->d.sbsref_subscript.jumpdone);
1413  }
1414  }
1415 
1417  {
1418  /*
1419  * Fetch the old value in an sbsref assignment, in case it's
1420  * referenced (via a CaseTestExpr) inside the assignment
1421  * expression.
1422  */
1423 
1424  /* too complex for an inline implementation */
1425  ExecEvalSubscriptingRefOld(state, op);
1426 
1427  EEO_NEXT();
1428  }
1429 
1430  /*
1431  * Perform SubscriptingRef assignment
1432  */
1434  {
1435  /* too complex for an inline implementation */
1436  ExecEvalSubscriptingRefAssign(state, op);
1437 
1438  EEO_NEXT();
1439  }
1440 
1441  /*
1442  * Fetch subset of an array.
1443  */
1445  {
1446  /* too complex for an inline implementation */
1447  ExecEvalSubscriptingRefFetch(state, op);
1448 
1449  EEO_NEXT();
1450  }
1451 
1453  {
1454  /* too complex for an inline implementation */
1455  ExecEvalConvertRowtype(state, op, econtext);
1456 
1457  EEO_NEXT();
1458  }
1459 
1461  {
1462  /* too complex for an inline implementation */
1463  ExecEvalScalarArrayOp(state, op);
1464 
1465  EEO_NEXT();
1466  }
1467 
1469  {
1470  /* too complex for an inline implementation */
1471  ExecEvalConstraintNotNull(state, op);
1472 
1473  EEO_NEXT();
1474  }
1475 
1477  {
1478  /* too complex for an inline implementation */
1479  ExecEvalConstraintCheck(state, op);
1480 
1481  EEO_NEXT();
1482  }
1483 
1485  {
1486  /* too complex for an inline implementation */
1487  ExecEvalXmlExpr(state, op);
1488 
1489  EEO_NEXT();
1490  }
1491 
1493  {
1494  /*
1495  * Returns a Datum whose value is the precomputed aggregate value
1496  * found in the given expression context.
1497  */
1498  AggrefExprState *aggref = op->d.aggref.astate;
1499 
1500  Assert(econtext->ecxt_aggvalues != NULL);
1501 
1502  *op->resvalue = econtext->ecxt_aggvalues[aggref->aggno];
1503  *op->resnull = econtext->ecxt_aggnulls[aggref->aggno];
1504 
1505  EEO_NEXT();
1506  }
1507 
1509  {
1510  /* too complex/uncommon for an inline implementation */
1511  ExecEvalGroupingFunc(state, op);
1512 
1513  EEO_NEXT();
1514  }
1515 
1517  {
1518  /*
1519  * Like Aggref, just return a precomputed value from the econtext.
1520  */
1521  WindowFuncExprState *wfunc = op->d.window_func.wfstate;
1522 
1523  Assert(econtext->ecxt_aggvalues != NULL);
1524 
1525  *op->resvalue = econtext->ecxt_aggvalues[wfunc->wfuncno];
1526  *op->resnull = econtext->ecxt_aggnulls[wfunc->wfuncno];
1527 
1528  EEO_NEXT();
1529  }
1530 
1532  {
1533  /* too complex for an inline implementation */
1534  ExecEvalSubPlan(state, op, econtext);
1535 
1536  EEO_NEXT();
1537  }
1538 
1540  {
1541  /* too complex for an inline implementation */
1542  ExecEvalAlternativeSubPlan(state, op, econtext);
1543 
1544  EEO_NEXT();
1545  }
1546 
1547  /* evaluate a strict aggregate deserialization function */
1549  {
1550  /* Don't call a strict deserialization function with NULL input */
1551  if (op->d.agg_deserialize.fcinfo_data->args[0].isnull)
1552  EEO_JUMP(op->d.agg_deserialize.jumpnull);
1553 
1554  /* fallthrough */
1555  }
1556 
1557  /* evaluate aggregate deserialization function (non-strict portion) */
1559  {
1560  FunctionCallInfo fcinfo = op->d.agg_deserialize.fcinfo_data;
1561  AggState *aggstate = castNode(AggState, state->parent);
1562  MemoryContext oldContext;
1563 
1564  /*
1565  * We run the deserialization functions in per-input-tuple memory
1566  * context.
1567  */
1568  oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory);
1569  fcinfo->isnull = false;
1570  *op->resvalue = FunctionCallInvoke(fcinfo);
1571  *op->resnull = fcinfo->isnull;
1572  MemoryContextSwitchTo(oldContext);
1573 
1574  EEO_NEXT();
1575  }
1576 
1577  /*
1578  * Check that a strict aggregate transition / combination function's
1579  * input is not NULL.
1580  */
1581 
1583  {
1585  int nargs = op->d.agg_strict_input_check.nargs;
1586 
1587  for (int argno = 0; argno < nargs; argno++)
1588  {
1589  if (args[argno].isnull)
1590  EEO_JUMP(op->d.agg_strict_input_check.jumpnull);
1591  }
1592  EEO_NEXT();
1593  }
1594 
1596  {
1597  bool *nulls = op->d.agg_strict_input_check.nulls;
1598  int nargs = op->d.agg_strict_input_check.nargs;
1599 
1600  for (int argno = 0; argno < nargs; argno++)
1601  {
1602  if (nulls[argno])
1603  EEO_JUMP(op->d.agg_strict_input_check.jumpnull);
1604  }
1605  EEO_NEXT();
1606  }
1607 
1608  /*
1609  * Check for a NULL pointer to the per-group states.
1610  */
1611 
1613  {
1614  AggState *aggstate = castNode(AggState, state->parent);
1615  AggStatePerGroup pergroup_allaggs =
1616  aggstate->all_pergroups[op->d.agg_plain_pergroup_nullcheck.setoff];
1617 
1618  if (pergroup_allaggs == NULL)
1619  EEO_JUMP(op->d.agg_plain_pergroup_nullcheck.jumpnull);
1620 
1621  EEO_NEXT();
1622  }
1623 
1624  /*
1625  * Different types of aggregate transition functions are implemented
1626  * as different types of steps, to avoid incurring unnecessary
1627  * overhead. There's a step type for each valid combination of having
1628  * a by value / by reference transition type, [not] needing to the
1629  * initialize the transition value for the first row in a group from
1630  * input, and [not] strict transition function.
1631  *
1632  * Could optimize further by splitting off by-reference for
1633  * fixed-length types, but currently that doesn't seem worth it.
1634  */
1635 
1637  {
1638  AggState *aggstate = castNode(AggState, state->parent);
1639  AggStatePerTrans pertrans = op->d.agg_trans.pertrans;
1640  AggStatePerGroup pergroup =
1641  &aggstate->all_pergroups[op->d.agg_trans.setoff][op->d.agg_trans.transno];
1642 
1643  Assert(pertrans->transtypeByVal);
1644 
1645  if (pergroup->noTransValue)
1646  {
1647  /* If transValue has not yet been initialized, do so now. */
1648  ExecAggInitGroup(aggstate, pertrans, pergroup,
1649  op->d.agg_trans.aggcontext);
1650  /* copied trans value from input, done this round */
1651  }
1652  else if (likely(!pergroup->transValueIsNull))
1653  {
1654  /* invoke transition function, unless prevented by strictness */
1655  ExecAggPlainTransByVal(aggstate, pertrans, pergroup,
1656  op->d.agg_trans.aggcontext,
1657  op->d.agg_trans.setno);
1658  }
1659 
1660  EEO_NEXT();
1661  }
1662 
1663  /* see comments above EEOP_AGG_PLAIN_TRANS_INIT_STRICT_BYVAL */
1665  {
1666  AggState *aggstate = castNode(AggState, state->parent);
1667  AggStatePerTrans pertrans = op->d.agg_trans.pertrans;
1668  AggStatePerGroup pergroup =
1669  &aggstate->all_pergroups[op->d.agg_trans.setoff][op->d.agg_trans.transno];
1670 
1671  Assert(pertrans->transtypeByVal);
1672 
1673  if (likely(!pergroup->transValueIsNull))
1674  ExecAggPlainTransByVal(aggstate, pertrans, pergroup,
1675  op->d.agg_trans.aggcontext,
1676  op->d.agg_trans.setno);
1677 
1678  EEO_NEXT();
1679  }
1680 
1681  /* see comments above EEOP_AGG_PLAIN_TRANS_INIT_STRICT_BYVAL */
1683  {
1684  AggState *aggstate = castNode(AggState, state->parent);
1685  AggStatePerTrans pertrans = op->d.agg_trans.pertrans;
1686  AggStatePerGroup pergroup =
1687  &aggstate->all_pergroups[op->d.agg_trans.setoff][op->d.agg_trans.transno];
1688 
1689  Assert(pertrans->transtypeByVal);
1690 
1691  ExecAggPlainTransByVal(aggstate, pertrans, pergroup,
1692  op->d.agg_trans.aggcontext,
1693  op->d.agg_trans.setno);
1694 
1695  EEO_NEXT();
1696  }
1697 
1698  /* see comments above EEOP_AGG_PLAIN_TRANS_INIT_STRICT_BYVAL */
1700  {
1701  AggState *aggstate = castNode(AggState, state->parent);
1702  AggStatePerTrans pertrans = op->d.agg_trans.pertrans;
1703  AggStatePerGroup pergroup =
1704  &aggstate->all_pergroups[op->d.agg_trans.setoff][op->d.agg_trans.transno];
1705 
1706  Assert(!pertrans->transtypeByVal);
1707 
1708  if (pergroup->noTransValue)
1709  ExecAggInitGroup(aggstate, pertrans, pergroup,
1710  op->d.agg_trans.aggcontext);
1711  else if (likely(!pergroup->transValueIsNull))
1712  ExecAggPlainTransByRef(aggstate, pertrans, pergroup,
1713  op->d.agg_trans.aggcontext,
1714  op->d.agg_trans.setno);
1715 
1716  EEO_NEXT();
1717  }
1718 
1719  /* see comments above EEOP_AGG_PLAIN_TRANS_INIT_STRICT_BYVAL */
1721  {
1722  AggState *aggstate = castNode(AggState, state->parent);
1723  AggStatePerTrans pertrans = op->d.agg_trans.pertrans;
1724  AggStatePerGroup pergroup =
1725  &aggstate->all_pergroups[op->d.agg_trans.setoff][op->d.agg_trans.transno];
1726 
1727  Assert(!pertrans->transtypeByVal);
1728 
1729  if (likely(!pergroup->transValueIsNull))
1730  ExecAggPlainTransByRef(aggstate, pertrans, pergroup,
1731  op->d.agg_trans.aggcontext,
1732  op->d.agg_trans.setno);
1733  EEO_NEXT();
1734  }
1735 
1736  /* see comments above EEOP_AGG_PLAIN_TRANS_INIT_STRICT_BYVAL */
1738  {
1739  AggState *aggstate = castNode(AggState, state->parent);
1740  AggStatePerTrans pertrans = op->d.agg_trans.pertrans;
1741  AggStatePerGroup pergroup =
1742  &aggstate->all_pergroups[op->d.agg_trans.setoff][op->d.agg_trans.transno];
1743 
1744  Assert(!pertrans->transtypeByVal);
1745 
1746  ExecAggPlainTransByRef(aggstate, pertrans, pergroup,
1747  op->d.agg_trans.aggcontext,
1748  op->d.agg_trans.setno);
1749 
1750  EEO_NEXT();
1751  }
1752 
1753  /* process single-column ordered aggregate datum */
1755  {
1756  /* too complex for an inline implementation */
1757  ExecEvalAggOrderedTransDatum(state, op, econtext);
1758 
1759  EEO_NEXT();
1760  }
1761 
1762  /* process multi-column ordered aggregate tuple */
1764  {
1765  /* too complex for an inline implementation */
1766  ExecEvalAggOrderedTransTuple(state, op, econtext);
1767 
1768  EEO_NEXT();
1769  }
1770 
1772  {
1773  /* unreachable */
1774  Assert(false);
1775  goto out;
1776  }
1777  }
1778 
1779 out:
1780  *isnull = state->resnull;
1781  return state->resvalue;
1782 }
1783 
1784 /*
1785  * Expression evaluation callback that performs extra checks before executing
1786  * the expression. Declared extern so other methods of execution can use it
1787  * too.
1788  */
1789 Datum
1791 {
1792  /*
1793  * First time through, check whether attribute matches Var. Might not be
1794  * ok anymore, due to schema changes.
1795  */
1796  CheckExprStillValid(state, econtext);
1797 
1798  /* skip the check during further executions */
1799  state->evalfunc = (ExprStateEvalFunc) state->evalfunc_private;
1800 
1801  /* and actually execute */
1802  return state->evalfunc(state, econtext, isNull);
1803 }
1804 
1805 /*
1806  * Check that an expression is still valid in the face of potential schema
1807  * changes since the plan has been created.
1808  */
1809 void
1811 {
1812  TupleTableSlot *innerslot;
1813  TupleTableSlot *outerslot;
1814  TupleTableSlot *scanslot;
1815 
1816  innerslot = econtext->ecxt_innertuple;
1817  outerslot = econtext->ecxt_outertuple;
1818  scanslot = econtext->ecxt_scantuple;
1819 
1820  for (int i = 0; i < state->steps_len; i++)
1821  {
1822  ExprEvalStep *op = &state->steps[i];
1823 
1824  switch (ExecEvalStepOp(state, op))
1825  {
1826  case EEOP_INNER_VAR:
1827  {
1828  int attnum = op->d.var.attnum;
1829 
1830  CheckVarSlotCompatibility(innerslot, attnum + 1, op->d.var.vartype);
1831  break;
1832  }
1833 
1834  case EEOP_OUTER_VAR:
1835  {
1836  int attnum = op->d.var.attnum;
1837 
1838  CheckVarSlotCompatibility(outerslot, attnum + 1, op->d.var.vartype);
1839  break;
1840  }
1841 
1842  case EEOP_SCAN_VAR:
1843  {
1844  int attnum = op->d.var.attnum;
1845 
1846  CheckVarSlotCompatibility(scanslot, attnum + 1, op->d.var.vartype);
1847  break;
1848  }
1849  default:
1850  break;
1851  }
1852  }
1853 }
1854 
1855 /*
1856  * Check whether a user attribute in a slot can be referenced by a Var
1857  * expression. This should succeed unless there have been schema changes
1858  * since the expression tree has been created.
1859  */
1860 static void
1862 {
1863  /*
1864  * What we have to check for here is the possibility of an attribute
1865  * having been dropped or changed in type since the plan tree was created.
1866  * Ideally the plan will get invalidated and not re-used, but just in
1867  * case, we keep these defenses. Fortunately it's sufficient to check
1868  * once on the first time through.
1869  *
1870  * Note: ideally we'd check typmod as well as typid, but that seems
1871  * impractical at the moment: in many cases the tupdesc will have been
1872  * generated by ExecTypeFromTL(), and that can't guarantee to generate an
1873  * accurate typmod in all cases, because some expression node types don't
1874  * carry typmod. Fortunately, for precisely that reason, there should be
1875  * no places with a critical dependency on the typmod of a value.
1876  *
1877  * System attributes don't require checking since their types never
1878  * change.
1879  */
1880  if (attnum > 0)
1881  {
1882  TupleDesc slot_tupdesc = slot->tts_tupleDescriptor;
1883  Form_pg_attribute attr;
1884 
1885  if (attnum > slot_tupdesc->natts) /* should never happen */
1886  elog(ERROR, "attribute number %d exceeds number of columns %d",
1887  attnum, slot_tupdesc->natts);
1888 
1889  attr = TupleDescAttr(slot_tupdesc, attnum - 1);
1890 
1891  if (attr->attisdropped)
1892  ereport(ERROR,
1893  (errcode(ERRCODE_UNDEFINED_COLUMN),
1894  errmsg("attribute %d of type %s has been dropped",
1895  attnum, format_type_be(slot_tupdesc->tdtypeid))));
1896 
1897  if (vartype != attr->atttypid)
1898  ereport(ERROR,
1899  (errcode(ERRCODE_DATATYPE_MISMATCH),
1900  errmsg("attribute %d of type %s has wrong type",
1901  attnum, format_type_be(slot_tupdesc->tdtypeid)),
1902  errdetail("Table has type %s, but query expects %s.",
1903  format_type_be(attr->atttypid),
1904  format_type_be(vartype))));
1905  }
1906 }
1907 
1908 /*
1909  * Verify that the slot is compatible with a EEOP_*_FETCHSOME operation.
1910  */
1911 static void
1913 {
1914 #ifdef USE_ASSERT_CHECKING
1915  /* there's nothing to check */
1916  if (!op->d.fetch.fixed)
1917  return;
1918 
1919  /*
1920  * Should probably fixed at some point, but for now it's easier to allow
1921  * buffer and heap tuples to be used interchangeably.
1922  */
1923  if (slot->tts_ops == &TTSOpsBufferHeapTuple &&
1924  op->d.fetch.kind == &TTSOpsHeapTuple)
1925  return;
1926  if (slot->tts_ops == &TTSOpsHeapTuple &&
1927  op->d.fetch.kind == &TTSOpsBufferHeapTuple)
1928  return;
1929 
1930  /*
1931  * At the moment we consider it OK if a virtual slot is used instead of a
1932  * specific type of slot, as a virtual slot never needs to be deformed.
1933  */
1934  if (slot->tts_ops == &TTSOpsVirtual)
1935  return;
1936 
1937  Assert(op->d.fetch.kind == slot->tts_ops);
1938 #endif
1939 }
1940 
1941 /*
1942  * get_cached_rowtype: utility function to lookup a rowtype tupdesc
1943  *
1944  * type_id, typmod: identity of the rowtype
1945  * cache_field: where to cache the TupleDesc pointer in expression state node
1946  * (field must be initialized to NULL)
1947  * econtext: expression context we are executing in
1948  *
1949  * NOTE: because the shutdown callback will be called during plan rescan,
1950  * must be prepared to re-do this during any node execution; cannot call
1951  * just once during expression initialization.
1952  */
1953 static TupleDesc
1954 get_cached_rowtype(Oid type_id, int32 typmod,
1955  TupleDesc *cache_field, ExprContext *econtext)
1956 {
1957  TupleDesc tupDesc = *cache_field;
1958 
1959  /* Do lookup if no cached value or if requested type changed */
1960  if (tupDesc == NULL ||
1961  type_id != tupDesc->tdtypeid ||
1962  typmod != tupDesc->tdtypmod)
1963  {
1964  tupDesc = lookup_rowtype_tupdesc(type_id, typmod);
1965 
1966  if (*cache_field)
1967  {
1968  /* Release old tupdesc; but callback is already registered */
1969  ReleaseTupleDesc(*cache_field);
1970  }
1971  else
1972  {
1973  /* Need to register shutdown callback to release tupdesc */
1974  RegisterExprContextCallback(econtext,
1976  PointerGetDatum(cache_field));
1977  }
1978  *cache_field = tupDesc;
1979  }
1980  return tupDesc;
1981 }
1982 
1983 /*
1984  * Callback function to release a tupdesc refcount at econtext shutdown
1985  */
1986 static void
1988 {
1989  TupleDesc *cache_field = (TupleDesc *) DatumGetPointer(arg);
1990 
1991  if (*cache_field)
1992  ReleaseTupleDesc(*cache_field);
1993  *cache_field = NULL;
1994 }
1995 
1996 /*
1997  * Fast-path functions, for very simple expressions
1998  */
1999 
2000 /* implementation of ExecJust(Inner|Outer|Scan)Var */
2003 {
2004  ExprEvalStep *op = &state->steps[1];
2005  int attnum = op->d.var.attnum + 1;
2006 
2007  CheckOpSlotCompatibility(&state->steps[0], slot);
2008 
2009  /*
2010  * Since we use slot_getattr(), we don't need to implement the FETCHSOME
2011  * step explicitly, and we also needn't Assert that the attnum is in range
2012  * --- slot_getattr() will take care of any problems.
2013  */
2014  return slot_getattr(slot, attnum, isnull);
2015 }
2016 
2017 /* Simple reference to inner Var */
2018 static Datum
2019 ExecJustInnerVar(ExprState *state, ExprContext *econtext, bool *isnull)
2020 {
2021  return ExecJustVarImpl(state, econtext->ecxt_innertuple, isnull);
2022 }
2023 
2024 /* Simple reference to outer Var */
2025 static Datum
2026 ExecJustOuterVar(ExprState *state, ExprContext *econtext, bool *isnull)
2027 {
2028  return ExecJustVarImpl(state, econtext->ecxt_outertuple, isnull);
2029 }
2030 
2031 /* Simple reference to scan Var */
2032 static Datum
2033 ExecJustScanVar(ExprState *state, ExprContext *econtext, bool *isnull)
2034 {
2035  return ExecJustVarImpl(state, econtext->ecxt_scantuple, isnull);
2036 }
2037 
2038 /* implementation of ExecJustAssign(Inner|Outer|Scan)Var */
2041 {
2042  ExprEvalStep *op = &state->steps[1];
2043  int attnum = op->d.assign_var.attnum + 1;
2044  int resultnum = op->d.assign_var.resultnum;
2045  TupleTableSlot *outslot = state->resultslot;
2046 
2047  CheckOpSlotCompatibility(&state->steps[0], inslot);
2048 
2049  /*
2050  * We do not need CheckVarSlotCompatibility here; that was taken care of
2051  * at compilation time.
2052  *
2053  * Since we use slot_getattr(), we don't need to implement the FETCHSOME
2054  * step explicitly, and we also needn't Assert that the attnum is in range
2055  * --- slot_getattr() will take care of any problems.
2056  */
2057  outslot->tts_values[resultnum] =
2058  slot_getattr(inslot, attnum, &outslot->tts_isnull[resultnum]);
2059  return 0;
2060 }
2061 
2062 /* Evaluate inner Var and assign to appropriate column of result tuple */
2063 static Datum
2065 {
2066  return ExecJustAssignVarImpl(state, econtext->ecxt_innertuple, isnull);
2067 }
2068 
2069 /* Evaluate outer Var and assign to appropriate column of result tuple */
2070 static Datum
2072 {
2073  return ExecJustAssignVarImpl(state, econtext->ecxt_outertuple, isnull);
2074 }
2075 
2076 /* Evaluate scan Var and assign to appropriate column of result tuple */
2077 static Datum
2079 {
2080  return ExecJustAssignVarImpl(state, econtext->ecxt_scantuple, isnull);
2081 }
2082 
2083 /* Evaluate CASE_TESTVAL and apply a strict function to it */
2084 static Datum
2086 {
2087  ExprEvalStep *op = &state->steps[0];
2088  FunctionCallInfo fcinfo;
2090  int nargs;
2091  Datum d;
2092 
2093  /*
2094  * XXX with some redesign of the CaseTestExpr mechanism, maybe we could
2095  * get rid of this data shuffling?
2096  */
2097  *op->resvalue = *op->d.casetest.value;
2098  *op->resnull = *op->d.casetest.isnull;
2099 
2100  op++;
2101 
2102  nargs = op->d.func.nargs;
2103  fcinfo = op->d.func.fcinfo_data;
2104  args = fcinfo->args;
2105 
2106  /* strict function, so check for NULL args */
2107  for (int argno = 0; argno < nargs; argno++)
2108  {
2109  if (args[argno].isnull)
2110  {
2111  *isnull = true;
2112  return (Datum) 0;
2113  }
2114  }
2115  fcinfo->isnull = false;
2116  d = op->d.func.fn_addr(fcinfo);
2117  *isnull = fcinfo->isnull;
2118  return d;
2119 }
2120 
2121 /* Simple Const expression */
2122 static Datum
2123 ExecJustConst(ExprState *state, ExprContext *econtext, bool *isnull)
2124 {
2125  ExprEvalStep *op = &state->steps[0];
2126 
2127  *isnull = op->d.constval.isnull;
2128  return op->d.constval.value;
2129 }
2130 
2131 /* implementation of ExecJust(Inner|Outer|Scan)VarVirt */
2134 {
2135  ExprEvalStep *op = &state->steps[0];
2136  int attnum = op->d.var.attnum;
2137 
2138  /*
2139  * As it is guaranteed that a virtual slot is used, there never is a need
2140  * to perform tuple deforming (nor would it be possible). Therefore
2141  * execExpr.c has not emitted an EEOP_*_FETCHSOME step. Verify, as much as
2142  * possible, that that determination was accurate.
2143  */
2144  Assert(TTS_IS_VIRTUAL(slot));
2145  Assert(TTS_FIXED(slot));
2146  Assert(attnum >= 0 && attnum < slot->tts_nvalid);
2147 
2148  *isnull = slot->tts_isnull[attnum];
2149 
2150  return slot->tts_values[attnum];
2151 }
2152 
2153 /* Like ExecJustInnerVar, optimized for virtual slots */
2154 static Datum
2156 {
2157  return ExecJustVarVirtImpl(state, econtext->ecxt_innertuple, isnull);
2158 }
2159 
2160 /* Like ExecJustOuterVar, optimized for virtual slots */
2161 static Datum
2163 {
2164  return ExecJustVarVirtImpl(state, econtext->ecxt_outertuple, isnull);
2165 }
2166 
2167 /* Like ExecJustScanVar, optimized for virtual slots */
2168 static Datum
2170 {
2171  return ExecJustVarVirtImpl(state, econtext->ecxt_scantuple, isnull);
2172 }
2173 
2174 /* implementation of ExecJustAssign(Inner|Outer|Scan)VarVirt */
2177 {
2178  ExprEvalStep *op = &state->steps[0];
2179  int attnum = op->d.assign_var.attnum;
2180  int resultnum = op->d.assign_var.resultnum;
2181  TupleTableSlot *outslot = state->resultslot;
2182 
2183  /* see ExecJustVarVirtImpl for comments */
2184 
2185  Assert(TTS_IS_VIRTUAL(inslot));
2186  Assert(TTS_FIXED(inslot));
2187  Assert(attnum >= 0 && attnum < inslot->tts_nvalid);
2188 
2189  outslot->tts_values[resultnum] = inslot->tts_values[attnum];
2190  outslot->tts_isnull[resultnum] = inslot->tts_isnull[attnum];
2191 
2192  return 0;
2193 }
2194 
2195 /* Like ExecJustAssignInnerVar, optimized for virtual slots */
2196 static Datum
2198 {
2199  return ExecJustAssignVarVirtImpl(state, econtext->ecxt_innertuple, isnull);
2200 }
2201 
2202 /* Like ExecJustAssignOuterVar, optimized for virtual slots */
2203 static Datum
2205 {
2206  return ExecJustAssignVarVirtImpl(state, econtext->ecxt_outertuple, isnull);
2207 }
2208 
2209 /* Like ExecJustAssignScanVar, optimized for virtual slots */
2210 static Datum
2212 {
2213  return ExecJustAssignVarVirtImpl(state, econtext->ecxt_scantuple, isnull);
2214 }
2215 
2216 #if defined(EEO_USE_COMPUTED_GOTO)
2217 /*
2218  * Comparator used when building address->opcode lookup table for
2219  * ExecEvalStepOp() in the threaded dispatch case.
2220  */
2221 static int
2222 dispatch_compare_ptr(const void *a, const void *b)
2223 {
2224  const ExprEvalOpLookup *la = (const ExprEvalOpLookup *) a;
2225  const ExprEvalOpLookup *lb = (const ExprEvalOpLookup *) b;
2226 
2227  if (la->opcode < lb->opcode)
2228  return -1;
2229  else if (la->opcode > lb->opcode)
2230  return 1;
2231  return 0;
2232 }
2233 #endif
2234 
2235 /*
2236  * Do one-time initialization of interpretation machinery.
2237  */
2238 static void
2240 {
2241 #if defined(EEO_USE_COMPUTED_GOTO)
2242  /* Set up externally-visible pointer to dispatch table */
2243  if (dispatch_table == NULL)
2244  {
2245  dispatch_table = (const void **)
2246  DatumGetPointer(ExecInterpExpr(NULL, NULL, NULL));
2247 
2248  /* build reverse lookup table */
2249  for (int i = 0; i < EEOP_LAST; i++)
2250  {
2251  reverse_dispatch_table[i].opcode = dispatch_table[i];
2252  reverse_dispatch_table[i].op = (ExprEvalOp) i;
2253  }
2254 
2255  /* make it bsearch()able */
2256  qsort(reverse_dispatch_table,
2257  EEOP_LAST /* nmembers */ ,
2258  sizeof(ExprEvalOpLookup),
2259  dispatch_compare_ptr);
2260  }
2261 #endif
2262 }
2263 
2264 /*
2265  * Function to return the opcode of an expression step.
2266  *
2267  * When direct-threading is in use, ExprState->opcode isn't easily
2268  * decipherable. This function returns the appropriate enum member.
2269  */
2270 ExprEvalOp
2272 {
2273 #if defined(EEO_USE_COMPUTED_GOTO)
2274  if (state->flags & EEO_FLAG_DIRECT_THREADED)
2275  {
2276  ExprEvalOpLookup key;
2277  ExprEvalOpLookup *res;
2278 
2279  key.opcode = (void *) op->opcode;
2280  res = bsearch(&key,
2281  reverse_dispatch_table,
2282  EEOP_LAST /* nmembers */ ,
2283  sizeof(ExprEvalOpLookup),
2284  dispatch_compare_ptr);
2285  Assert(res); /* unknown ops shouldn't get looked up */
2286  return res->op;
2287  }
2288 #endif
2289  return (ExprEvalOp) op->opcode;
2290 }
2291 
2292 
2293 /*
2294  * Out-of-line helper functions for complex instructions.
2295  */
2296 
2297 /*
2298  * Evaluate EEOP_FUNCEXPR_FUSAGE
2299  */
2300 void
2302  ExprContext *econtext)
2303 {
2304  FunctionCallInfo fcinfo = op->d.func.fcinfo_data;
2305  PgStat_FunctionCallUsage fcusage;
2306  Datum d;
2307 
2308  pgstat_init_function_usage(fcinfo, &fcusage);
2309 
2310  fcinfo->isnull = false;
2311  d = op->d.func.fn_addr(fcinfo);
2312  *op->resvalue = d;
2313  *op->resnull = fcinfo->isnull;
2314 
2315  pgstat_end_function_usage(&fcusage, true);
2316 }
2317 
2318 /*
2319  * Evaluate EEOP_FUNCEXPR_STRICT_FUSAGE
2320  */
2321 void
2323  ExprContext *econtext)
2324 {
2325 
2326  FunctionCallInfo fcinfo = op->d.func.fcinfo_data;
2327  PgStat_FunctionCallUsage fcusage;
2328  NullableDatum *args = fcinfo->args;
2329  int nargs = op->d.func.nargs;
2330  Datum d;
2331 
2332  /* strict function, so check for NULL args */
2333  for (int argno = 0; argno < nargs; argno++)
2334  {
2335  if (args[argno].isnull)
2336  {
2337  *op->resnull = true;
2338  return;
2339  }
2340  }
2341 
2342  pgstat_init_function_usage(fcinfo, &fcusage);
2343 
2344  fcinfo->isnull = false;
2345  d = op->d.func.fn_addr(fcinfo);
2346  *op->resvalue = d;
2347  *op->resnull = fcinfo->isnull;
2348 
2349  pgstat_end_function_usage(&fcusage, true);
2350 }
2351 
2352 /*
2353  * Evaluate a PARAM_EXEC parameter.
2354  *
2355  * PARAM_EXEC params (internal executor parameters) are stored in the
2356  * ecxt_param_exec_vals array, and can be accessed by array index.
2357  */
2358 void
2360 {
2361  ParamExecData *prm;
2362 
2363  prm = &(econtext->ecxt_param_exec_vals[op->d.param.paramid]);
2364  if (unlikely(prm->execPlan != NULL))
2365  {
2366  /* Parameter not evaluated yet, so go do it */
2367  ExecSetParamPlan(prm->execPlan, econtext);
2368  /* ExecSetParamPlan should have processed this param... */
2369  Assert(prm->execPlan == NULL);
2370  }
2371  *op->resvalue = prm->value;
2372  *op->resnull = prm->isnull;
2373 }
2374 
2375 /*
2376  * Evaluate a PARAM_EXTERN parameter.
2377  *
2378  * PARAM_EXTERN parameters must be sought in ecxt_param_list_info.
2379  */
2380 void
2382 {
2383  ParamListInfo paramInfo = econtext->ecxt_param_list_info;
2384  int paramId = op->d.param.paramid;
2385 
2386  if (likely(paramInfo &&
2387  paramId > 0 && paramId <= paramInfo->numParams))
2388  {
2389  ParamExternData *prm;
2390  ParamExternData prmdata;
2391 
2392  /* give hook a chance in case parameter is dynamic */
2393  if (paramInfo->paramFetch != NULL)
2394  prm = paramInfo->paramFetch(paramInfo, paramId, false, &prmdata);
2395  else
2396  prm = &paramInfo->params[paramId - 1];
2397 
2398  if (likely(OidIsValid(prm->ptype)))
2399  {
2400  /* safety check in case hook did something unexpected */
2401  if (unlikely(prm->ptype != op->d.param.paramtype))
2402  ereport(ERROR,
2403  (errcode(ERRCODE_DATATYPE_MISMATCH),
2404  errmsg("type of parameter %d (%s) does not match that when preparing the plan (%s)",
2405  paramId,
2406  format_type_be(prm->ptype),
2407  format_type_be(op->d.param.paramtype))));
2408  *op->resvalue = prm->value;
2409  *op->resnull = prm->isnull;
2410  return;
2411  }
2412  }
2413 
2414  ereport(ERROR,
2415  (errcode(ERRCODE_UNDEFINED_OBJECT),
2416  errmsg("no value found for parameter %d", paramId)));
2417 }
2418 
2419 /*
2420  * Evaluate a SQLValueFunction expression.
2421  */
2422 void
2424 {
2425  LOCAL_FCINFO(fcinfo, 0);
2426  SQLValueFunction *svf = op->d.sqlvaluefunction.svf;
2427 
2428  *op->resnull = false;
2429 
2430  /*
2431  * Note: current_schema() can return NULL. current_user() etc currently
2432  * cannot, but might as well code those cases the same way for safety.
2433  */
2434  switch (svf->op)
2435  {
2436  case SVFOP_CURRENT_DATE:
2438  break;
2439  case SVFOP_CURRENT_TIME:
2440  case SVFOP_CURRENT_TIME_N:
2442  break;
2446  break;
2447  case SVFOP_LOCALTIME:
2448  case SVFOP_LOCALTIME_N:
2450  break;
2451  case SVFOP_LOCALTIMESTAMP:
2454  break;
2455  case SVFOP_CURRENT_ROLE:
2456  case SVFOP_CURRENT_USER:
2457  case SVFOP_USER:
2458  InitFunctionCallInfoData(*fcinfo, NULL, 0, InvalidOid, NULL, NULL);
2459  *op->resvalue = current_user(fcinfo);
2460  *op->resnull = fcinfo->isnull;
2461  break;
2462  case SVFOP_SESSION_USER:
2463  InitFunctionCallInfoData(*fcinfo, NULL, 0, InvalidOid, NULL, NULL);
2464  *op->resvalue = session_user(fcinfo);
2465  *op->resnull = fcinfo->isnull;
2466  break;
2467  case SVFOP_CURRENT_CATALOG:
2468  InitFunctionCallInfoData(*fcinfo, NULL, 0, InvalidOid, NULL, NULL);
2469  *op->resvalue = current_database(fcinfo);
2470  *op->resnull = fcinfo->isnull;
2471  break;
2472  case SVFOP_CURRENT_SCHEMA:
2473  InitFunctionCallInfoData(*fcinfo, NULL, 0, InvalidOid, NULL, NULL);
2474  *op->resvalue = current_schema(fcinfo);
2475  *op->resnull = fcinfo->isnull;
2476  break;
2477  }
2478 }
2479 
2480 /*
2481  * Raise error if a CURRENT OF expression is evaluated.
2482  *
2483  * The planner should convert CURRENT OF into a TidScan qualification, or some
2484  * other special handling in a ForeignScan node. So we have to be able to do
2485  * ExecInitExpr on a CurrentOfExpr, but we shouldn't ever actually execute it.
2486  * If we get here, we suppose we must be dealing with CURRENT OF on a foreign
2487  * table whose FDW doesn't handle it, and complain accordingly.
2488  */
2489 void
2491 {
2492  ereport(ERROR,
2493  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2494  errmsg("WHERE CURRENT OF is not supported for this table type")));
2495 }
2496 
2497 /*
2498  * Evaluate NextValueExpr.
2499  */
2500 void
2502 {
2503  int64 newval = nextval_internal(op->d.nextvalueexpr.seqid, false);
2504 
2505  switch (op->d.nextvalueexpr.seqtypid)
2506  {
2507  case INT2OID:
2508  *op->resvalue = Int16GetDatum((int16) newval);
2509  break;
2510  case INT4OID:
2511  *op->resvalue = Int32GetDatum((int32) newval);
2512  break;
2513  case INT8OID:
2514  *op->resvalue = Int64GetDatum((int64) newval);
2515  break;
2516  default:
2517  elog(ERROR, "unsupported sequence type %u",
2518  op->d.nextvalueexpr.seqtypid);
2519  }
2520  *op->resnull = false;
2521 }
2522 
2523 /*
2524  * Evaluate NullTest / IS NULL for rows.
2525  */
2526 void
2528 {
2529  ExecEvalRowNullInt(state, op, econtext, true);
2530 }
2531 
2532 /*
2533  * Evaluate NullTest / IS NOT NULL for rows.
2534  */
2535 void
2537 {
2538  ExecEvalRowNullInt(state, op, econtext, false);
2539 }
2540 
2541 /* Common code for IS [NOT] NULL on a row value */
2542 static void
2544  ExprContext *econtext, bool checkisnull)
2545 {
2546  Datum value = *op->resvalue;
2547  bool isnull = *op->resnull;
2548  HeapTupleHeader tuple;
2549  Oid tupType;
2550  int32 tupTypmod;
2551  TupleDesc tupDesc;
2552  HeapTupleData tmptup;
2553 
2554  *op->resnull = false;
2555 
2556  /* NULL row variables are treated just as NULL scalar columns */
2557  if (isnull)
2558  {
2559  *op->resvalue = BoolGetDatum(checkisnull);
2560  return;
2561  }
2562 
2563  /*
2564  * The SQL standard defines IS [NOT] NULL for a non-null rowtype argument
2565  * as:
2566  *
2567  * "R IS NULL" is true if every field is the null value.
2568  *
2569  * "R IS NOT NULL" is true if no field is the null value.
2570  *
2571  * This definition is (apparently intentionally) not recursive; so our
2572  * tests on the fields are primitive attisnull tests, not recursive checks
2573  * to see if they are all-nulls or no-nulls rowtypes.
2574  *
2575  * The standard does not consider the possibility of zero-field rows, but
2576  * here we consider them to vacuously satisfy both predicates.
2577  */
2578 
2579  tuple = DatumGetHeapTupleHeader(value);
2580 
2581  tupType = HeapTupleHeaderGetTypeId(tuple);
2582  tupTypmod = HeapTupleHeaderGetTypMod(tuple);
2583 
2584  /* Lookup tupdesc if first time through or if type changes */
2585  tupDesc = get_cached_rowtype(tupType, tupTypmod,
2586  &op->d.nulltest_row.argdesc,
2587  econtext);
2588 
2589  /*
2590  * heap_attisnull needs a HeapTuple not a bare HeapTupleHeader.
2591  */
2592  tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple);
2593  tmptup.t_data = tuple;
2594 
2595  for (int att = 1; att <= tupDesc->natts; att++)
2596  {
2597  /* ignore dropped columns */
2598  if (TupleDescAttr(tupDesc, att - 1)->attisdropped)
2599  continue;
2600  if (heap_attisnull(&tmptup, att, tupDesc))
2601  {
2602  /* null field disproves IS NOT NULL */
2603  if (!checkisnull)
2604  {
2605  *op->resvalue = BoolGetDatum(false);
2606  return;
2607  }
2608  }
2609  else
2610  {
2611  /* non-null field disproves IS NULL */
2612  if (checkisnull)
2613  {
2614  *op->resvalue = BoolGetDatum(false);
2615  return;
2616  }
2617  }
2618  }
2619 
2620  *op->resvalue = BoolGetDatum(true);
2621 }
2622 
2623 /*
2624  * Evaluate an ARRAY[] expression.
2625  *
2626  * The individual array elements (or subarrays) have already been evaluated
2627  * into op->d.arrayexpr.elemvalues[]/elemnulls[].
2628  */
2629 void
2631 {
2632  ArrayType *result;
2633  Oid element_type = op->d.arrayexpr.elemtype;
2634  int nelems = op->d.arrayexpr.nelems;
2635  int ndims = 0;
2636  int dims[MAXDIM];
2637  int lbs[MAXDIM];
2638 
2639  /* Set non-null as default */
2640  *op->resnull = false;
2641 
2642  if (!op->d.arrayexpr.multidims)
2643  {
2644  /* Elements are presumably of scalar type */
2645  Datum *dvalues = op->d.arrayexpr.elemvalues;
2646  bool *dnulls = op->d.arrayexpr.elemnulls;
2647 
2648  /* setup for 1-D array of the given length */
2649  ndims = 1;
2650  dims[0] = nelems;
2651  lbs[0] = 1;
2652 
2653  result = construct_md_array(dvalues, dnulls, ndims, dims, lbs,
2654  element_type,
2655  op->d.arrayexpr.elemlength,
2656  op->d.arrayexpr.elembyval,
2657  op->d.arrayexpr.elemalign);
2658  }
2659  else
2660  {
2661  /* Must be nested array expressions */
2662  int nbytes = 0;
2663  int nitems = 0;
2664  int outer_nelems = 0;
2665  int elem_ndims = 0;
2666  int *elem_dims = NULL;
2667  int *elem_lbs = NULL;
2668  bool firstone = true;
2669  bool havenulls = false;
2670  bool haveempty = false;
2671  char **subdata;
2672  bits8 **subbitmaps;
2673  int *subbytes;
2674  int *subnitems;
2675  int32 dataoffset;
2676  char *dat;
2677  int iitem;
2678 
2679  subdata = (char **) palloc(nelems * sizeof(char *));
2680  subbitmaps = (bits8 **) palloc(nelems * sizeof(bits8 *));
2681  subbytes = (int *) palloc(nelems * sizeof(int));
2682  subnitems = (int *) palloc(nelems * sizeof(int));
2683 
2684  /* loop through and get data area from each element */
2685  for (int elemoff = 0; elemoff < nelems; elemoff++)
2686  {
2687  Datum arraydatum;
2688  bool eisnull;
2689  ArrayType *array;
2690  int this_ndims;
2691 
2692  arraydatum = op->d.arrayexpr.elemvalues[elemoff];
2693  eisnull = op->d.arrayexpr.elemnulls[elemoff];
2694 
2695  /* temporarily ignore null subarrays */
2696  if (eisnull)
2697  {
2698  haveempty = true;
2699  continue;
2700  }
2701 
2702  array = DatumGetArrayTypeP(arraydatum);
2703 
2704  /* run-time double-check on element type */
2705  if (element_type != ARR_ELEMTYPE(array))
2706  ereport(ERROR,
2707  (errcode(ERRCODE_DATATYPE_MISMATCH),
2708  errmsg("cannot merge incompatible arrays"),
2709  errdetail("Array with element type %s cannot be "
2710  "included in ARRAY construct with element type %s.",
2711  format_type_be(ARR_ELEMTYPE(array)),
2712  format_type_be(element_type))));
2713 
2714  this_ndims = ARR_NDIM(array);
2715  /* temporarily ignore zero-dimensional subarrays */
2716  if (this_ndims <= 0)
2717  {
2718  haveempty = true;
2719  continue;
2720  }
2721 
2722  if (firstone)
2723  {
2724  /* Get sub-array details from first member */
2725  elem_ndims = this_ndims;
2726  ndims = elem_ndims + 1;
2727  if (ndims <= 0 || ndims > MAXDIM)
2728  ereport(ERROR,
2729  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
2730  errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)",
2731  ndims, MAXDIM)));
2732 
2733  elem_dims = (int *) palloc(elem_ndims * sizeof(int));
2734  memcpy(elem_dims, ARR_DIMS(array), elem_ndims * sizeof(int));
2735  elem_lbs = (int *) palloc(elem_ndims * sizeof(int));
2736  memcpy(elem_lbs, ARR_LBOUND(array), elem_ndims * sizeof(int));
2737 
2738  firstone = false;
2739  }
2740  else
2741  {
2742  /* Check other sub-arrays are compatible */
2743  if (elem_ndims != this_ndims ||
2744  memcmp(elem_dims, ARR_DIMS(array),
2745  elem_ndims * sizeof(int)) != 0 ||
2746  memcmp(elem_lbs, ARR_LBOUND(array),
2747  elem_ndims * sizeof(int)) != 0)
2748  ereport(ERROR,
2749  (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
2750  errmsg("multidimensional arrays must have array "
2751  "expressions with matching dimensions")));
2752  }
2753 
2754  subdata[outer_nelems] = ARR_DATA_PTR(array);
2755  subbitmaps[outer_nelems] = ARR_NULLBITMAP(array);
2756  subbytes[outer_nelems] = ARR_SIZE(array) - ARR_DATA_OFFSET(array);
2757  nbytes += subbytes[outer_nelems];
2758  subnitems[outer_nelems] = ArrayGetNItems(this_ndims,
2759  ARR_DIMS(array));
2760  nitems += subnitems[outer_nelems];
2761  havenulls |= ARR_HASNULL(array);
2762  outer_nelems++;
2763  }
2764 
2765  /*
2766  * If all items were null or empty arrays, return an empty array;
2767  * otherwise, if some were and some weren't, raise error. (Note: we
2768  * must special-case this somehow to avoid trying to generate a 1-D
2769  * array formed from empty arrays. It's not ideal...)
2770  */
2771  if (haveempty)
2772  {
2773  if (ndims == 0) /* didn't find any nonempty array */
2774  {
2775  *op->resvalue = PointerGetDatum(construct_empty_array(element_type));
2776  return;
2777  }
2778  ereport(ERROR,
2779  (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
2780  errmsg("multidimensional arrays must have array "
2781  "expressions with matching dimensions")));
2782  }
2783 
2784  /* setup for multi-D array */
2785  dims[0] = outer_nelems;
2786  lbs[0] = 1;
2787  for (int i = 1; i < ndims; i++)
2788  {
2789  dims[i] = elem_dims[i - 1];
2790  lbs[i] = elem_lbs[i - 1];
2791  }
2792 
2793  if (havenulls)
2794  {
2795  dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nitems);
2796  nbytes += dataoffset;
2797  }
2798  else
2799  {
2800  dataoffset = 0; /* marker for no null bitmap */
2801  nbytes += ARR_OVERHEAD_NONULLS(ndims);
2802  }
2803 
2804  result = (ArrayType *) palloc(nbytes);
2805  SET_VARSIZE(result, nbytes);
2806  result->ndim = ndims;
2807  result->dataoffset = dataoffset;
2808  result->elemtype = element_type;
2809  memcpy(ARR_DIMS(result), dims, ndims * sizeof(int));
2810  memcpy(ARR_LBOUND(result), lbs, ndims * sizeof(int));
2811 
2812  dat = ARR_DATA_PTR(result);
2813  iitem = 0;
2814  for (int i = 0; i < outer_nelems; i++)
2815  {
2816  memcpy(dat, subdata[i], subbytes[i]);
2817  dat += subbytes[i];
2818  if (havenulls)
2819  array_bitmap_copy(ARR_NULLBITMAP(result), iitem,
2820  subbitmaps[i], 0,
2821  subnitems[i]);
2822  iitem += subnitems[i];
2823  }
2824  }
2825 
2826  *op->resvalue = PointerGetDatum(result);
2827 }
2828 
2829 /*
2830  * Evaluate an ArrayCoerceExpr expression.
2831  *
2832  * Source array is in step's result variable.
2833  */
2834 void
2836 {
2837  Datum arraydatum;
2838 
2839  /* NULL array -> NULL result */
2840  if (*op->resnull)
2841  return;
2842 
2843  arraydatum = *op->resvalue;
2844 
2845  /*
2846  * If it's binary-compatible, modify the element type in the array header,
2847  * but otherwise leave the array as we received it.
2848  */
2849  if (op->d.arraycoerce.elemexprstate == NULL)
2850  {
2851  /* Detoast input array if necessary, and copy in any case */
2852  ArrayType *array = DatumGetArrayTypePCopy(arraydatum);
2853 
2854  ARR_ELEMTYPE(array) = op->d.arraycoerce.resultelemtype;
2855  *op->resvalue = PointerGetDatum(array);
2856  return;
2857  }
2858 
2859  /*
2860  * Use array_map to apply the sub-expression to each array element.
2861  */
2862  *op->resvalue = array_map(arraydatum,
2863  op->d.arraycoerce.elemexprstate,
2864  econtext,
2865  op->d.arraycoerce.resultelemtype,
2866  op->d.arraycoerce.amstate);
2867 }
2868 
2869 /*
2870  * Evaluate a ROW() expression.
2871  *
2872  * The individual columns have already been evaluated into
2873  * op->d.row.elemvalues[]/elemnulls[].
2874  */
2875 void
2877 {
2878  HeapTuple tuple;
2879 
2880  /* build tuple from evaluated field values */
2881  tuple = heap_form_tuple(op->d.row.tupdesc,
2882  op->d.row.elemvalues,
2883  op->d.row.elemnulls);
2884 
2885  *op->resvalue = HeapTupleGetDatum(tuple);
2886  *op->resnull = false;
2887 }
2888 
2889 /*
2890  * Evaluate GREATEST() or LEAST() expression (note this is *not* MIN()/MAX()).
2891  *
2892  * All of the to-be-compared expressions have already been evaluated into
2893  * op->d.minmax.values[]/nulls[].
2894  */
2895 void
2897 {
2898  Datum *values = op->d.minmax.values;
2899  bool *nulls = op->d.minmax.nulls;
2900  FunctionCallInfo fcinfo = op->d.minmax.fcinfo_data;
2901  MinMaxOp operator = op->d.minmax.op;
2902 
2903  /* set at initialization */
2904  Assert(fcinfo->args[0].isnull == false);
2905  Assert(fcinfo->args[1].isnull == false);
2906 
2907  /* default to null result */
2908  *op->resnull = true;
2909 
2910  for (int off = 0; off < op->d.minmax.nelems; off++)
2911  {
2912  /* ignore NULL inputs */
2913  if (nulls[off])
2914  continue;
2915 
2916  if (*op->resnull)
2917  {
2918  /* first nonnull input, adopt value */
2919  *op->resvalue = values[off];
2920  *op->resnull = false;
2921  }
2922  else
2923  {
2924  int cmpresult;
2925 
2926  /* apply comparison function */
2927  fcinfo->args[0].value = *op->resvalue;
2928  fcinfo->args[1].value = values[off];
2929 
2930  fcinfo->isnull = false;
2931  cmpresult = DatumGetInt32(FunctionCallInvoke(fcinfo));
2932  if (fcinfo->isnull) /* probably should not happen */
2933  continue;
2934 
2935  if (cmpresult > 0 && operator == IS_LEAST)
2936  *op->resvalue = values[off];
2937  else if (cmpresult < 0 && operator == IS_GREATEST)
2938  *op->resvalue = values[off];
2939  }
2940  }
2941 }
2942 
2943 /*
2944  * Evaluate a FieldSelect node.
2945  *
2946  * Source record is in step's result variable.
2947  */
2948 void
2950 {
2951  AttrNumber fieldnum = op->d.fieldselect.fieldnum;
2952  Datum tupDatum;
2953  HeapTupleHeader tuple;
2954  Oid tupType;
2955  int32 tupTypmod;
2956  TupleDesc tupDesc;
2957  Form_pg_attribute attr;
2958  HeapTupleData tmptup;
2959 
2960  /* NULL record -> NULL result */
2961  if (*op->resnull)
2962  return;
2963 
2964  tupDatum = *op->resvalue;
2965 
2966  /* We can special-case expanded records for speed */
2968  {
2970 
2971  Assert(erh->er_magic == ER_MAGIC);
2972 
2973  /* Extract record's TupleDesc */
2974  tupDesc = expanded_record_get_tupdesc(erh);
2975 
2976  /*
2977  * Find field's attr record. Note we don't support system columns
2978  * here: a datum tuple doesn't have valid values for most of the
2979  * interesting system columns anyway.
2980  */
2981  if (fieldnum <= 0) /* should never happen */
2982  elog(ERROR, "unsupported reference to system column %d in FieldSelect",
2983  fieldnum);
2984  if (fieldnum > tupDesc->natts) /* should never happen */
2985  elog(ERROR, "attribute number %d exceeds number of columns %d",
2986  fieldnum, tupDesc->natts);
2987  attr = TupleDescAttr(tupDesc, fieldnum - 1);
2988 
2989  /* Check for dropped column, and force a NULL result if so */
2990  if (attr->attisdropped)
2991  {
2992  *op->resnull = true;
2993  return;
2994  }
2995 
2996  /* Check for type mismatch --- possible after ALTER COLUMN TYPE? */
2997  /* As in CheckVarSlotCompatibility, we should but can't check typmod */
2998  if (op->d.fieldselect.resulttype != attr->atttypid)
2999  ereport(ERROR,
3000  (errcode(ERRCODE_DATATYPE_MISMATCH),
3001  errmsg("attribute %d has wrong type", fieldnum),
3002  errdetail("Table has type %s, but query expects %s.",
3003  format_type_be(attr->atttypid),
3004  format_type_be(op->d.fieldselect.resulttype))));
3005 
3006  /* extract the field */
3007  *op->resvalue = expanded_record_get_field(erh, fieldnum,
3008  op->resnull);
3009  }
3010  else
3011  {
3012  /* Get the composite datum and extract its type fields */
3013  tuple = DatumGetHeapTupleHeader(tupDatum);
3014 
3015  tupType = HeapTupleHeaderGetTypeId(tuple);
3016  tupTypmod = HeapTupleHeaderGetTypMod(tuple);
3017 
3018  /* Lookup tupdesc if first time through or if type changes */
3019  tupDesc = get_cached_rowtype(tupType, tupTypmod,
3020  &op->d.fieldselect.argdesc,
3021  econtext);
3022 
3023  /*
3024  * Find field's attr record. Note we don't support system columns
3025  * here: a datum tuple doesn't have valid values for most of the
3026  * interesting system columns anyway.
3027  */
3028  if (fieldnum <= 0) /* should never happen */
3029  elog(ERROR, "unsupported reference to system column %d in FieldSelect",
3030  fieldnum);
3031  if (fieldnum > tupDesc->natts) /* should never happen */
3032  elog(ERROR, "attribute number %d exceeds number of columns %d",
3033  fieldnum, tupDesc->natts);
3034  attr = TupleDescAttr(tupDesc, fieldnum - 1);
3035 
3036  /* Check for dropped column, and force a NULL result if so */
3037  if (attr->attisdropped)
3038  {
3039  *op->resnull = true;
3040  return;
3041  }
3042 
3043  /* Check for type mismatch --- possible after ALTER COLUMN TYPE? */
3044  /* As in CheckVarSlotCompatibility, we should but can't check typmod */
3045  if (op->d.fieldselect.resulttype != attr->atttypid)
3046  ereport(ERROR,
3047  (errcode(ERRCODE_DATATYPE_MISMATCH),
3048  errmsg("attribute %d has wrong type", fieldnum),
3049  errdetail("Table has type %s, but query expects %s.",
3050  format_type_be(attr->atttypid),
3051  format_type_be(op->d.fieldselect.resulttype))));
3052 
3053  /* heap_getattr needs a HeapTuple not a bare HeapTupleHeader */
3054  tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple);
3055  tmptup.t_data = tuple;
3056 
3057  /* extract the field */
3058  *op->resvalue = heap_getattr(&tmptup,
3059  fieldnum,
3060  tupDesc,
3061  op->resnull);
3062  }
3063 }
3064 
3065 /*
3066  * Deform source tuple, filling in the step's values/nulls arrays, before
3067  * evaluating individual new values as part of a FieldStore expression.
3068  * Subsequent steps will overwrite individual elements of the values/nulls
3069  * arrays with the new field values, and then FIELDSTORE_FORM will build the
3070  * new tuple value.
3071  *
3072  * Source record is in step's result variable.
3073  */
3074 void
3076 {
3077  TupleDesc tupDesc;
3078 
3079  /* Lookup tupdesc if first time through or after rescan */
3080  tupDesc = get_cached_rowtype(op->d.fieldstore.fstore->resulttype, -1,
3081  op->d.fieldstore.argdesc, econtext);
3082 
3083  /* Check that current tupdesc doesn't have more fields than we allocated */
3084  if (unlikely(tupDesc->natts > op->d.fieldstore.ncolumns))
3085  elog(ERROR, "too many columns in composite type %u",
3086  op->d.fieldstore.fstore->resulttype);
3087 
3088  if (*op->resnull)
3089  {
3090  /* Convert null input tuple into an all-nulls row */
3091  memset(op->d.fieldstore.nulls, true,
3092  op->d.fieldstore.ncolumns * sizeof(bool));
3093  }
3094  else
3095  {
3096  /*
3097  * heap_deform_tuple needs a HeapTuple not a bare HeapTupleHeader. We
3098  * set all the fields in the struct just in case.
3099  */
3100  Datum tupDatum = *op->resvalue;
3101  HeapTupleHeader tuphdr;
3102  HeapTupleData tmptup;
3103 
3104  tuphdr = DatumGetHeapTupleHeader(tupDatum);
3105  tmptup.t_len = HeapTupleHeaderGetDatumLength(tuphdr);
3106  ItemPointerSetInvalid(&(tmptup.t_self));
3107  tmptup.t_tableOid = InvalidOid;
3108  tmptup.t_data = tuphdr;
3109 
3110  heap_deform_tuple(&tmptup, tupDesc,
3111  op->d.fieldstore.values,
3112  op->d.fieldstore.nulls);
3113  }
3114 }
3115 
3116 /*
3117  * Compute the new composite datum after each individual field value of a
3118  * FieldStore expression has been evaluated.
3119  */
3120 void
3122 {
3123  HeapTuple tuple;
3124 
3125  /* argdesc should already be valid from the DeForm step */
3126  tuple = heap_form_tuple(*op->d.fieldstore.argdesc,
3127  op->d.fieldstore.values,
3128  op->d.fieldstore.nulls);
3129 
3130  *op->resvalue = HeapTupleGetDatum(tuple);
3131  *op->resnull = false;
3132 }
3133 
3134 /*
3135  * Process a subscript in a SubscriptingRef expression.
3136  *
3137  * If subscript is NULL, throw error in assignment case, or in fetch case
3138  * set result to NULL and return false (instructing caller to skip the rest
3139  * of the SubscriptingRef sequence).
3140  *
3141  * Subscript expression result is in subscriptvalue/subscriptnull.
3142  * On success, integer subscript value has been saved in upperindex[] or
3143  * lowerindex[] for use later.
3144  */
3145 bool
3147 {
3148  SubscriptingRefState *sbsrefstate = op->d.sbsref_subscript.state;
3149  int *indexes;
3150  int off;
3151 
3152  /* If any index expr yields NULL, result is NULL or error */
3153  if (sbsrefstate->subscriptnull)
3154  {
3155  if (sbsrefstate->isassignment)
3156  ereport(ERROR,
3157  (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
3158  errmsg("array subscript in assignment must not be null")));
3159  *op->resnull = true;
3160  return false;
3161  }
3162 
3163  /* Convert datum to int, save in appropriate place */
3164  if (op->d.sbsref_subscript.isupper)
3165  indexes = sbsrefstate->upperindex;
3166  else
3167  indexes = sbsrefstate->lowerindex;
3168  off = op->d.sbsref_subscript.off;
3169 
3170  indexes[off] = DatumGetInt32(sbsrefstate->subscriptvalue);
3171 
3172  return true;
3173 }
3174 
3175 /*
3176  * Evaluate SubscriptingRef fetch.
3177  *
3178  * Source container is in step's result variable.
3179  */
3180 void
3182 {
3183  SubscriptingRefState *sbsrefstate = op->d.sbsref.state;
3184 
3185  /* Should not get here if source container (or any subscript) is null */
3186  Assert(!(*op->resnull));
3187 
3188  if (sbsrefstate->numlower == 0)
3189  {
3190  /* Scalar case */
3191  *op->resvalue = array_get_element(*op->resvalue,
3192  sbsrefstate->numupper,
3193  sbsrefstate->upperindex,
3194  sbsrefstate->refattrlength,
3195  sbsrefstate->refelemlength,
3196  sbsrefstate->refelembyval,
3197  sbsrefstate->refelemalign,
3198  op->resnull);
3199  }
3200  else
3201  {
3202  /* Slice case */
3203  *op->resvalue = array_get_slice(*op->resvalue,
3204  sbsrefstate->numupper,
3205  sbsrefstate->upperindex,
3206  sbsrefstate->lowerindex,
3207  sbsrefstate->upperprovided,
3208  sbsrefstate->lowerprovided,
3209  sbsrefstate->refattrlength,
3210  sbsrefstate->refelemlength,
3211  sbsrefstate->refelembyval,
3212  sbsrefstate->refelemalign);
3213  }
3214 }
3215 
3216 /*
3217  * Compute old container element/slice value for a SubscriptingRef assignment
3218  * expression. Will only be generated if the new-value subexpression
3219  * contains SubscriptingRef or FieldStore. The value is stored into the
3220  * SubscriptingRefState's prevvalue/prevnull fields.
3221  */
3222 void
3224 {
3225  SubscriptingRefState *sbsrefstate = op->d.sbsref.state;
3226 
3227  if (*op->resnull)
3228  {
3229  /* whole array is null, so any element or slice is too */
3230  sbsrefstate->prevvalue = (Datum) 0;
3231  sbsrefstate->prevnull = true;
3232  }
3233  else if (sbsrefstate->numlower == 0)
3234  {
3235  /* Scalar case */
3236  sbsrefstate->prevvalue = array_get_element(*op->resvalue,
3237  sbsrefstate->numupper,
3238  sbsrefstate->upperindex,
3239  sbsrefstate->refattrlength,
3240  sbsrefstate->refelemlength,
3241  sbsrefstate->refelembyval,
3242  sbsrefstate->refelemalign,
3243  &sbsrefstate->prevnull);
3244  }
3245  else
3246  {
3247  /* Slice case */
3248  /* this is currently unreachable */
3249  sbsrefstate->prevvalue = array_get_slice(*op->resvalue,
3250  sbsrefstate->numupper,
3251  sbsrefstate->upperindex,
3252  sbsrefstate->lowerindex,
3253  sbsrefstate->upperprovided,
3254  sbsrefstate->lowerprovided,
3255  sbsrefstate->refattrlength,
3256  sbsrefstate->refelemlength,
3257  sbsrefstate->refelembyval,
3258  sbsrefstate->refelemalign);
3259  sbsrefstate->prevnull = false;
3260  }
3261 }
3262 
3263 /*
3264  * Evaluate SubscriptingRef assignment.
3265  *
3266  * Input container (possibly null) is in result area, replacement value is in
3267  * SubscriptingRefState's replacevalue/replacenull.
3268  */
3269 void
3271 {
3272  SubscriptingRefState *sbsrefstate = op->d.sbsref_subscript.state;
3273 
3274  /*
3275  * For an assignment to a fixed-length container type, both the original
3276  * container and the value to be assigned into it must be non-NULL, else
3277  * we punt and return the original container.
3278  */
3279  if (sbsrefstate->refattrlength > 0)
3280  {
3281  if (*op->resnull || sbsrefstate->replacenull)
3282  return;
3283  }
3284 
3285  /*
3286  * For assignment to varlena arrays, we handle a NULL original array by
3287  * substituting an empty (zero-dimensional) array; insertion of the new
3288  * element will result in a singleton array value. It does not matter
3289  * whether the new element is NULL.
3290  */
3291  if (*op->resnull)
3292  {
3294  *op->resnull = false;
3295  }
3296 
3297  if (sbsrefstate->numlower == 0)
3298  {
3299  /* Scalar case */
3300  *op->resvalue = array_set_element(*op->resvalue,
3301  sbsrefstate->numupper,
3302  sbsrefstate->upperindex,
3303  sbsrefstate->replacevalue,
3304  sbsrefstate->replacenull,
3305  sbsrefstate->refattrlength,
3306  sbsrefstate->refelemlength,
3307  sbsrefstate->refelembyval,
3308  sbsrefstate->refelemalign);
3309  }
3310  else
3311  {
3312  /* Slice case */
3313  *op->resvalue = array_set_slice(*op->resvalue,
3314  sbsrefstate->numupper,
3315  sbsrefstate->upperindex,
3316  sbsrefstate->lowerindex,
3317  sbsrefstate->upperprovided,
3318  sbsrefstate->lowerprovided,
3319  sbsrefstate->replacevalue,
3320  sbsrefstate->replacenull,
3321  sbsrefstate->refattrlength,
3322  sbsrefstate->refelemlength,
3323  sbsrefstate->refelembyval,
3324  sbsrefstate->refelemalign);
3325  }
3326 }
3327 
3328 /*
3329  * Evaluate a rowtype coercion operation.
3330  * This may require rearranging field positions.
3331  *
3332  * Source record is in step's result variable.
3333  */
3334 void
3336 {
3338  HeapTuple result;
3339  Datum tupDatum;
3340  HeapTupleHeader tuple;
3341  HeapTupleData tmptup;
3342  TupleDesc indesc,
3343  outdesc;
3344 
3345  /* NULL in -> NULL out */
3346  if (*op->resnull)
3347  return;
3348 
3349  tupDatum = *op->resvalue;
3350  tuple = DatumGetHeapTupleHeader(tupDatum);
3351 
3352  /* Lookup tupdescs if first time through or after rescan */
3353  if (op->d.convert_rowtype.indesc == NULL)
3354  {
3355  get_cached_rowtype(exprType((Node *) convert->arg), -1,
3356  &op->d.convert_rowtype.indesc,
3357  econtext);
3358  op->d.convert_rowtype.initialized = false;
3359  }
3360  if (op->d.convert_rowtype.outdesc == NULL)
3361  {
3362  get_cached_rowtype(convert->resulttype, -1,
3363  &op->d.convert_rowtype.outdesc,
3364  econtext);
3365  op->d.convert_rowtype.initialized = false;
3366  }
3367 
3368  indesc = op->d.convert_rowtype.indesc;
3369  outdesc = op->d.convert_rowtype.outdesc;
3370 
3371  /*
3372  * We used to be able to assert that incoming tuples are marked with
3373  * exactly the rowtype of indesc. However, now that ExecEvalWholeRowVar
3374  * might change the tuples' marking to plain RECORD due to inserting
3375  * aliases, we can only make this weak test:
3376  */
3377  Assert(HeapTupleHeaderGetTypeId(tuple) == indesc->tdtypeid ||
3378  HeapTupleHeaderGetTypeId(tuple) == RECORDOID);
3379 
3380  /* if first time through, initialize conversion map */
3381  if (!op->d.convert_rowtype.initialized)
3382  {
3383  MemoryContext old_cxt;
3384 
3385  /* allocate map in long-lived memory context */
3386  old_cxt = MemoryContextSwitchTo(econtext->ecxt_per_query_memory);
3387 
3388  /* prepare map from old to new attribute numbers */
3389  op->d.convert_rowtype.map = convert_tuples_by_name(indesc, outdesc);
3390  op->d.convert_rowtype.initialized = true;
3391 
3392  MemoryContextSwitchTo(old_cxt);
3393  }
3394 
3395  /* Following steps need a HeapTuple not a bare HeapTupleHeader */
3396  tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple);
3397  tmptup.t_data = tuple;
3398 
3399  if (op->d.convert_rowtype.map != NULL)
3400  {
3401  /* Full conversion with attribute rearrangement needed */
3402  result = execute_attr_map_tuple(&tmptup, op->d.convert_rowtype.map);
3403  /* Result already has appropriate composite-datum header fields */
3404  *op->resvalue = HeapTupleGetDatum(result);
3405  }
3406  else
3407  {
3408  /*
3409  * The tuple is physically compatible as-is, but we need to insert the
3410  * destination rowtype OID in its composite-datum header field, so we
3411  * have to copy it anyway. heap_copy_tuple_as_datum() is convenient
3412  * for this since it will both make the physical copy and insert the
3413  * correct composite header fields. Note that we aren't expecting to
3414  * have to flatten any toasted fields: the input was a composite
3415  * datum, so it shouldn't contain any. So heap_copy_tuple_as_datum()
3416  * is overkill here, but its check for external fields is cheap.
3417  */
3418  *op->resvalue = heap_copy_tuple_as_datum(&tmptup, outdesc);
3419  }
3420 }
3421 
3422 /*
3423  * Evaluate "scalar op ANY/ALL (array)".
3424  *
3425  * Source array is in our result area, scalar arg is already evaluated into
3426  * fcinfo->args[0].
3427  *
3428  * The operator always yields boolean, and we combine the results across all
3429  * array elements using OR and AND (for ANY and ALL respectively). Of course
3430  * we short-circuit as soon as the result is known.
3431  */
3432 void
3434 {
3435  FunctionCallInfo fcinfo = op->d.scalararrayop.fcinfo_data;
3436  bool useOr = op->d.scalararrayop.useOr;
3437  bool strictfunc = op->d.scalararrayop.finfo->fn_strict;
3438  ArrayType *arr;
3439  int nitems;
3440  Datum result;
3441  bool resultnull;
3442  int16 typlen;
3443  bool typbyval;
3444  char typalign;
3445  char *s;
3446  bits8 *bitmap;
3447  int bitmask;
3448 
3449  /*
3450  * If the array is NULL then we return NULL --- it's not very meaningful
3451  * to do anything else, even if the operator isn't strict.
3452  */
3453  if (*op->resnull)
3454  return;
3455 
3456  /* Else okay to fetch and detoast the array */
3457  arr = DatumGetArrayTypeP(*op->resvalue);
3458 
3459  /*
3460  * If the array is empty, we return either FALSE or TRUE per the useOr
3461  * flag. This is correct even if the scalar is NULL; since we would
3462  * evaluate the operator zero times, it matters not whether it would want
3463  * to return NULL.
3464  */
3465  nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));
3466  if (nitems <= 0)
3467  {
3468  *op->resvalue = BoolGetDatum(!useOr);
3469  *op->resnull = false;
3470  return;
3471  }
3472 
3473  /*
3474  * If the scalar is NULL, and the function is strict, return NULL; no
3475  * point in iterating the loop.
3476  */
3477  if (fcinfo->args[0].isnull && strictfunc)
3478  {
3479  *op->resnull = true;
3480  return;
3481  }
3482 
3483  /*
3484  * We arrange to look up info about the element type only once per series
3485  * of calls, assuming the element type doesn't change underneath us.
3486  */
3487  if (op->d.scalararrayop.element_type != ARR_ELEMTYPE(arr))
3488  {
3490  &op->d.scalararrayop.typlen,
3491  &op->d.scalararrayop.typbyval,
3492  &op->d.scalararrayop.typalign);
3493  op->d.scalararrayop.element_type = ARR_ELEMTYPE(arr);
3494  }
3495 
3496  typlen = op->d.scalararrayop.typlen;
3497  typbyval = op->d.scalararrayop.typbyval;
3498  typalign = op->d.scalararrayop.typalign;
3499 
3500  /* Initialize result appropriately depending on useOr */
3501  result = BoolGetDatum(!useOr);
3502  resultnull = false;
3503 
3504  /* Loop over the array elements */
3505  s = (char *) ARR_DATA_PTR(arr);
3506  bitmap = ARR_NULLBITMAP(arr);
3507  bitmask = 1;
3508 
3509  for (int i = 0; i < nitems; i++)
3510  {
3511  Datum elt;
3512  Datum thisresult;
3513 
3514  /* Get array element, checking for NULL */
3515  if (bitmap && (*bitmap & bitmask) == 0)
3516  {
3517  fcinfo->args[1].value = (Datum) 0;
3518  fcinfo->args[1].isnull = true;
3519  }
3520  else
3521  {
3522  elt = fetch_att(s, typbyval, typlen);
3523  s = att_addlength_pointer(s, typlen, s);
3524  s = (char *) att_align_nominal(s, typalign);
3525  fcinfo->args[1].value = elt;
3526  fcinfo->args[1].isnull = false;
3527  }
3528 
3529  /* Call comparison function */
3530  if (fcinfo->args[1].isnull && strictfunc)
3531  {
3532  fcinfo->isnull = true;
3533  thisresult = (Datum) 0;
3534  }
3535  else
3536  {
3537  fcinfo->isnull = false;
3538  thisresult = op->d.scalararrayop.fn_addr(fcinfo);
3539  }
3540 
3541  /* Combine results per OR or AND semantics */
3542  if (fcinfo->isnull)
3543  resultnull = true;
3544  else if (useOr)
3545  {
3546  if (DatumGetBool(thisresult))
3547  {
3548  result = BoolGetDatum(true);
3549  resultnull = false;
3550  break; /* needn't look at any more elements */
3551  }
3552  }
3553  else
3554  {
3555  if (!DatumGetBool(thisresult))
3556  {
3557  result = BoolGetDatum(false);
3558  resultnull = false;
3559  break; /* needn't look at any more elements */
3560  }
3561  }
3562 
3563  /* advance bitmap pointer if any */
3564  if (bitmap)
3565  {
3566  bitmask <<= 1;
3567  if (bitmask == 0x100)
3568  {
3569  bitmap++;
3570  bitmask = 1;
3571  }
3572  }
3573  }
3574 
3575  *op->resvalue = result;
3576  *op->resnull = resultnull;
3577 }
3578 
3579 /*
3580  * Evaluate a NOT NULL domain constraint.
3581  */
3582 void
3584 {
3585  if (*op->resnull)
3586  ereport(ERROR,
3587  (errcode(ERRCODE_NOT_NULL_VIOLATION),
3588  errmsg("domain %s does not allow null values",
3589  format_type_be(op->d.domaincheck.resulttype)),
3590  errdatatype(op->d.domaincheck.resulttype)));
3591 }
3592 
3593 /*
3594  * Evaluate a CHECK domain constraint.
3595  */
3596 void
3598 {
3599  if (!*op->d.domaincheck.checknull &&
3600  !DatumGetBool(*op->d.domaincheck.checkvalue))
3601  ereport(ERROR,
3602  (errcode(ERRCODE_CHECK_VIOLATION),
3603  errmsg("value for domain %s violates check constraint \"%s\"",
3604  format_type_be(op->d.domaincheck.resulttype),
3605  op->d.domaincheck.constraintname),
3606  errdomainconstraint(op->d.domaincheck.resulttype,
3607  op->d.domaincheck.constraintname)));
3608 }
3609 
3610 /*
3611  * Evaluate the various forms of XmlExpr.
3612  *
3613  * Arguments have been evaluated into named_argvalue/named_argnull
3614  * and/or argvalue/argnull arrays.
3615  */
3616 void
3618 {
3619  XmlExpr *xexpr = op->d.xmlexpr.xexpr;
3620  Datum value;
3621 
3622  *op->resnull = true; /* until we get a result */
3623  *op->resvalue = (Datum) 0;
3624 
3625  switch (xexpr->op)
3626  {
3627  case IS_XMLCONCAT:
3628  {
3629  Datum *argvalue = op->d.xmlexpr.argvalue;
3630  bool *argnull = op->d.xmlexpr.argnull;
3631  List *values = NIL;
3632 
3633  for (int i = 0; i < list_length(xexpr->args); i++)
3634  {
3635  if (!argnull[i])
3636  values = lappend(values, DatumGetPointer(argvalue[i]));
3637  }
3638 
3639  if (values != NIL)
3640  {
3641  *op->resvalue = PointerGetDatum(xmlconcat(values));
3642  *op->resnull = false;
3643  }
3644  }
3645  break;
3646 
3647  case IS_XMLFOREST:
3648  {
3649  Datum *argvalue = op->d.xmlexpr.named_argvalue;
3650  bool *argnull = op->d.xmlexpr.named_argnull;
3652  ListCell *lc;
3653  ListCell *lc2;
3654  int i;
3655 
3656  initStringInfo(&buf);
3657 
3658  i = 0;
3659  forboth(lc, xexpr->named_args, lc2, xexpr->arg_names)
3660  {
3661  Expr *e = (Expr *) lfirst(lc);
3662  char *argname = strVal(lfirst(lc2));
3663 
3664  if (!argnull[i])
3665  {
3666  value = argvalue[i];
3667  appendStringInfo(&buf, "<%s>%s</%s>",
3668  argname,
3670  exprType((Node *) e), true),
3671  argname);
3672  *op->resnull = false;
3673  }
3674  i++;
3675  }
3676 
3677  if (!*op->resnull)
3678  {
3679  text *result;
3680 
3681  result = cstring_to_text_with_len(buf.data, buf.len);
3682  *op->resvalue = PointerGetDatum(result);
3683  }
3684 
3685  pfree(buf.data);
3686  }
3687  break;
3688 
3689  case IS_XMLELEMENT:
3690  *op->resvalue = PointerGetDatum(xmlelement(xexpr,
3691  op->d.xmlexpr.named_argvalue,
3692  op->d.xmlexpr.named_argnull,
3693  op->d.xmlexpr.argvalue,
3694  op->d.xmlexpr.argnull));
3695  *op->resnull = false;
3696  break;
3697 
3698  case IS_XMLPARSE:
3699  {
3700  Datum *argvalue = op->d.xmlexpr.argvalue;
3701  bool *argnull = op->d.xmlexpr.argnull;
3702  text *data;
3703  bool preserve_whitespace;
3704 
3705  /* arguments are known to be text, bool */
3706  Assert(list_length(xexpr->args) == 2);
3707 
3708  if (argnull[0])
3709  return;
3710  value = argvalue[0];
3711  data = DatumGetTextPP(value);
3712 
3713  if (argnull[1]) /* probably can't happen */
3714  return;
3715  value = argvalue[1];
3716  preserve_whitespace = DatumGetBool(value);
3717 
3718  *op->resvalue = PointerGetDatum(xmlparse(data,
3719  xexpr->xmloption,
3720  preserve_whitespace));
3721  *op->resnull = false;
3722  }
3723  break;
3724 
3725  case IS_XMLPI:
3726  {
3727  text *arg;
3728  bool isnull;
3729 
3730  /* optional argument is known to be text */
3731  Assert(list_length(xexpr->args) <= 1);
3732 
3733  if (xexpr->args)
3734  {
3735  isnull = op->d.xmlexpr.argnull[0];
3736  if (isnull)
3737  arg = NULL;
3738  else
3739  arg = DatumGetTextPP(op->d.xmlexpr.argvalue[0]);
3740  }
3741  else
3742  {
3743  arg = NULL;
3744  isnull = false;
3745  }
3746 
3747  *op->resvalue = PointerGetDatum(xmlpi(xexpr->name,
3748  arg,
3749  isnull,
3750  op->resnull));
3751  }
3752  break;
3753 
3754  case IS_XMLROOT:
3755  {
3756  Datum *argvalue = op->d.xmlexpr.argvalue;
3757  bool *argnull = op->d.xmlexpr.argnull;
3758  xmltype *data;
3759  text *version;
3760  int standalone;
3761 
3762  /* arguments are known to be xml, text, int */
3763  Assert(list_length(xexpr->args) == 3);
3764 
3765  if (argnull[0])
3766  return;
3767  data = DatumGetXmlP(argvalue[0]);
3768 
3769  if (argnull[1])
3770  version = NULL;
3771  else
3772  version = DatumGetTextPP(argvalue[1]);
3773 
3774  Assert(!argnull[2]); /* always present */
3775  standalone = DatumGetInt32(argvalue[2]);
3776 
3777  *op->resvalue = PointerGetDatum(xmlroot(data,
3778  version,
3779  standalone));
3780  *op->resnull = false;
3781  }
3782  break;
3783 
3784  case IS_XMLSERIALIZE:
3785  {
3786  Datum *argvalue = op->d.xmlexpr.argvalue;
3787  bool *argnull = op->d.xmlexpr.argnull;
3788 
3789  /* argument type is known to be xml */
3790  Assert(list_length(xexpr->args) == 1);
3791 
3792  if (argnull[0])
3793  return;
3794  value = argvalue[0];
3795 
3797  xexpr->xmloption));
3798  *op->resnull = false;
3799  }
3800  break;
3801 
3802  case IS_DOCUMENT:
3803  {
3804  Datum *argvalue = op->d.xmlexpr.argvalue;
3805  bool *argnull = op->d.xmlexpr.argnull;
3806 
3807  /* optional argument is known to be xml */
3808  Assert(list_length(xexpr->args) == 1);
3809 
3810  if (argnull[0])
3811  return;
3812  value = argvalue[0];
3813 
3814  *op->resvalue =
3816  *op->resnull = false;
3817  }
3818  break;
3819 
3820  default:
3821  elog(ERROR, "unrecognized XML operation");
3822  break;
3823  }
3824 }
3825 
3826 /*
3827  * ExecEvalGroupingFunc
3828  *
3829  * Computes a bitmask with a bit for each (unevaluated) argument expression
3830  * (rightmost arg is least significant bit).
3831  *
3832  * A bit is set if the corresponding expression is NOT part of the set of
3833  * grouping expressions in the current grouping set.
3834  */
3835 void
3837 {
3838  AggState *aggstate = castNode(AggState, state->parent);
3839  int result = 0;
3840  Bitmapset *grouped_cols = aggstate->grouped_cols;
3841  ListCell *lc;
3842 
3843  foreach(lc, op->d.grouping_func.clauses)
3844  {
3845  int attnum = lfirst_int(lc);
3846 
3847  result <<= 1;
3848 
3849  if (!bms_is_member(attnum, grouped_cols))
3850  result |= 1;
3851  }
3852 
3853  *op->resvalue = Int32GetDatum(result);
3854  *op->resnull = false;
3855 }
3856 
3857 /*
3858  * Hand off evaluation of a subplan to nodeSubplan.c
3859  */
3860 void
3862 {
3863  SubPlanState *sstate = op->d.subplan.sstate;
3864 
3865  /* could potentially be nested, so make sure there's enough stack */
3867 
3868  *op->resvalue = ExecSubPlan(sstate, econtext, op->resnull);
3869 }
3870 
3871 /*
3872  * Hand off evaluation of an alternative subplan to nodeSubplan.c
3873  */
3874 void
3876 {
3877  AlternativeSubPlanState *asstate = op->d.alternative_subplan.asstate;
3878 
3879  /* could potentially be nested, so make sure there's enough stack */
3881 
3882  *op->resvalue = ExecAlternativeSubPlan(asstate, econtext, op->resnull);
3883 }
3884 
3885 /*
3886  * Evaluate a wholerow Var expression.
3887  *
3888  * Returns a Datum whose value is the value of a whole-row range variable
3889  * with respect to given expression context.
3890  */
3891 void
3893 {
3894  Var *variable = op->d.wholerow.var;
3895  TupleTableSlot *slot;
3896  TupleDesc output_tupdesc;
3897  MemoryContext oldcontext;
3898  HeapTupleHeader dtuple;
3899  HeapTuple tuple;
3900 
3901  /* This was checked by ExecInitExpr */
3902  Assert(variable->varattno == InvalidAttrNumber);
3903 
3904  /* Get the input slot we want */
3905  switch (variable->varno)
3906  {
3907  case INNER_VAR:
3908  /* get the tuple from the inner node */
3909  slot = econtext->ecxt_innertuple;
3910  break;
3911 
3912  case OUTER_VAR:
3913  /* get the tuple from the outer node */
3914  slot = econtext->ecxt_outertuple;
3915  break;
3916 
3917  /* INDEX_VAR is handled by default case */
3918 
3919  default:
3920  /* get the tuple from the relation being scanned */
3921  slot = econtext->ecxt_scantuple;
3922  break;
3923  }
3924 
3925  /* Apply the junkfilter if any */
3926  if (op->d.wholerow.junkFilter != NULL)
3927  slot = ExecFilterJunk(op->d.wholerow.junkFilter, slot);
3928 
3929  /*
3930  * If first time through, obtain tuple descriptor and check compatibility.
3931  *
3932  * XXX: It'd be great if this could be moved to the expression
3933  * initialization phase, but due to using slots that's currently not
3934  * feasible.
3935  */
3936  if (op->d.wholerow.first)
3937  {
3938  /* optimistically assume we don't need slow path */
3939  op->d.wholerow.slow = false;
3940 
3941  /*
3942  * If the Var identifies a named composite type, we must check that
3943  * the actual tuple type is compatible with it.
3944  */
3945  if (variable->vartype != RECORDOID)
3946  {
3947  TupleDesc var_tupdesc;
3948  TupleDesc slot_tupdesc;
3949 
3950  /*
3951  * We really only care about numbers of attributes and data types.
3952  * Also, we can ignore type mismatch on columns that are dropped
3953  * in the destination type, so long as (1) the physical storage
3954  * matches or (2) the actual column value is NULL. Case (1) is
3955  * helpful in some cases involving out-of-date cached plans, while
3956  * case (2) is expected behavior in situations such as an INSERT
3957  * into a table with dropped columns (the planner typically
3958  * generates an INT4 NULL regardless of the dropped column type).
3959  * If we find a dropped column and cannot verify that case (1)
3960  * holds, we have to use the slow path to check (2) for each row.
3961  *
3962  * If vartype is a domain over composite, just look through that
3963  * to the base composite type.
3964  */
3965  var_tupdesc = lookup_rowtype_tupdesc_domain(variable->vartype,
3966  -1, false);
3967 
3968  slot_tupdesc = slot->tts_tupleDescriptor;
3969 
3970  if (var_tupdesc->natts != slot_tupdesc->natts)
3971  ereport(ERROR,
3972  (errcode(ERRCODE_DATATYPE_MISMATCH),
3973  errmsg("table row type and query-specified row type do not match"),
3974  errdetail_plural("Table row contains %d attribute, but query expects %d.",
3975  "Table row contains %d attributes, but query expects %d.",
3976  slot_tupdesc->natts,
3977  slot_tupdesc->natts,
3978  var_tupdesc->natts)));
3979 
3980  for (int i = 0; i < var_tupdesc->natts; i++)
3981  {
3982  Form_pg_attribute vattr = TupleDescAttr(var_tupdesc, i);
3983  Form_pg_attribute sattr = TupleDescAttr(slot_tupdesc, i);
3984 
3985  if (vattr->atttypid == sattr->atttypid)
3986  continue; /* no worries */
3987  if (!vattr->attisdropped)
3988  ereport(ERROR,
3989  (errcode(ERRCODE_DATATYPE_MISMATCH),
3990  errmsg("table row type and query-specified row type do not match"),
3991  errdetail("Table has type %s at ordinal position %d, but query expects %s.",
3992  format_type_be(sattr->atttypid),
3993  i + 1,
3994  format_type_be(vattr->atttypid))));
3995 
3996  if (vattr->attlen != sattr->attlen ||
3997  vattr->attalign != sattr->attalign)
3998  op->d.wholerow.slow = true; /* need to check for nulls */
3999  }
4000 
4001  /*
4002  * Use the variable's declared rowtype as the descriptor for the
4003  * output values, modulo possibly assigning new column names
4004  * below. In particular, we *must* absorb any attisdropped
4005  * markings.
4006  */
4007  oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory);
4008  output_tupdesc = CreateTupleDescCopy(var_tupdesc);
4009  MemoryContextSwitchTo(oldcontext);
4010 
4011  ReleaseTupleDesc(var_tupdesc);
4012  }
4013  else
4014  {
4015  /*
4016  * In the RECORD case, we use the input slot's rowtype as the
4017  * descriptor for the output values, modulo possibly assigning new
4018  * column names below.
4019  */
4020  oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory);
4021  output_tupdesc = CreateTupleDescCopy(slot->tts_tupleDescriptor);
4022  MemoryContextSwitchTo(oldcontext);
4023  }
4024 
4025  /*
4026  * Construct a tuple descriptor for the composite values we'll
4027  * produce, and make sure its record type is "blessed". The main
4028  * reason to do this is to be sure that operations such as
4029  * row_to_json() will see the desired column names when they look up
4030  * the descriptor from the type information embedded in the composite
4031  * values.
4032  *
4033  * We already got the correct physical datatype info above, but now we
4034  * should try to find the source RTE and adopt its column aliases, in
4035  * case they are different from the original rowtype's names. For
4036  * example, in "SELECT foo(t) FROM tab t(x,y)", the first two columns
4037  * in the composite output should be named "x" and "y" regardless of
4038  * tab's column names.
4039  *
4040  * If we can't locate the RTE, assume the column names we've got are
4041  * OK. (As of this writing, the only cases where we can't locate the
4042  * RTE are in execution of trigger WHEN clauses, and then the Var will
4043  * have the trigger's relation's rowtype, so its names are fine.)
4044  * Also, if the creator of the RTE didn't bother to fill in an eref
4045  * field, assume our column names are OK. (This happens in COPY, and
4046  * perhaps other places.)
4047  */
4048  if (econtext->ecxt_estate &&
4049  variable->varno <= econtext->ecxt_estate->es_range_table_size)
4050  {
4051  RangeTblEntry *rte = exec_rt_fetch(variable->varno,
4052  econtext->ecxt_estate);
4053 
4054  if (rte->eref)
4055  ExecTypeSetColNames(output_tupdesc, rte->eref->colnames);
4056  }
4057 
4058  /* Bless the tupdesc if needed, and save it in the execution state */
4059  op->d.wholerow.tupdesc = BlessTupleDesc(output_tupdesc);
4060 
4061  op->d.wholerow.first = false;
4062  }
4063 
4064  /*
4065  * Make sure all columns of the slot are accessible in the slot's
4066  * Datum/isnull arrays.
4067  */
4068  slot_getallattrs(slot);
4069 
4070  if (op->d.wholerow.slow)
4071  {
4072  /* Check to see if any dropped attributes are non-null */
4073  TupleDesc tupleDesc = slot->tts_tupleDescriptor;
4074  TupleDesc var_tupdesc = op->d.wholerow.tupdesc;
4075 
4076  Assert(var_tupdesc->natts == tupleDesc->natts);
4077 
4078  for (int i = 0; i < var_tupdesc->natts; i++)
4079  {
4080  Form_pg_attribute vattr = TupleDescAttr(var_tupdesc, i);
4081  Form_pg_attribute sattr = TupleDescAttr(tupleDesc, i);
4082 
4083  if (!vattr->attisdropped)
4084  continue; /* already checked non-dropped cols */
4085  if (slot->tts_isnull[i])
4086  continue; /* null is always okay */
4087  if (vattr->attlen != sattr->attlen ||
4088  vattr->attalign != sattr->attalign)
4089  ereport(ERROR,
4090  (errcode(ERRCODE_DATATYPE_MISMATCH),
4091  errmsg("table row type and query-specified row type do not match"),
4092  errdetail("Physical storage mismatch on dropped attribute at ordinal position %d.",
4093  i + 1)));
4094  }
4095  }
4096 
4097  /*
4098  * Build a composite datum, making sure any toasted fields get detoasted.
4099  *
4100  * (Note: it is critical that we not change the slot's state here.)
4101  */
4103  slot->tts_values,
4104  slot->tts_isnull);
4105  dtuple = tuple->t_data;
4106 
4107  /*
4108  * Label the datum with the composite type info we identified before.
4109  *
4110  * (Note: we could skip doing this by passing op->d.wholerow.tupdesc to
4111  * the tuple build step; but that seems a tad risky so let's not.)
4112  */
4113  HeapTupleHeaderSetTypeId(dtuple, op->d.wholerow.tupdesc->tdtypeid);
4114  HeapTupleHeaderSetTypMod(dtuple, op->d.wholerow.tupdesc->tdtypmod);
4115 
4116  *op->resvalue = PointerGetDatum(dtuple);
4117  *op->resnull = false;
4118 }
4119 
4120 void
4122  TupleTableSlot *slot)
4123 {
4124  Datum d;
4125 
4126  /* slot_getsysattr has sufficient defenses against bad attnums */
4127  d = slot_getsysattr(slot,
4128  op->d.var.attnum,
4129  op->resnull);
4130  *op->resvalue = d;
4131  /* this ought to be unreachable, but it's cheap enough to check */
4132  if (unlikely(*op->resnull))
4133  elog(ERROR, "failed to fetch attribute from slot");
4134 }
4135 
4136 /*
4137  * Transition value has not been initialized. This is the first non-NULL input
4138  * value for a group. We use it as the initial value for transValue.
4139  */
4140 void
4142  ExprContext *aggcontext)
4143 {
4144  FunctionCallInfo fcinfo = pertrans->transfn_fcinfo;
4145  MemoryContext oldContext;
4146 
4147  /*
4148  * We must copy the datum into aggcontext if it is pass-by-ref. We do not
4149  * need to pfree the old transValue, since it's NULL. (We already checked
4150  * that the agg's input type is binary-compatible with its transtype, so
4151  * straight copy here is OK.)
4152  */
4153  oldContext = MemoryContextSwitchTo(aggcontext->ecxt_per_tuple_memory);
4154  pergroup->transValue = datumCopy(fcinfo->args[1].value,
4155  pertrans->transtypeByVal,
4156  pertrans->transtypeLen);
4157  pergroup->transValueIsNull = false;
4158  pergroup->noTransValue = false;
4159  MemoryContextSwitchTo(oldContext);
4160 }
4161 
4162 /*
4163  * Ensure that the current transition value is a child of the aggcontext,
4164  * rather than the per-tuple context.
4165  *
4166  * NB: This can change the current memory context.
4167  */
4168 Datum
4170  Datum newValue, bool newValueIsNull,
4171  Datum oldValue, bool oldValueIsNull)
4172 {
4173  Assert(newValue != oldValue);
4174 
4175  if (!newValueIsNull)
4176  {
4178  if (DatumIsReadWriteExpandedObject(newValue,
4179  false,
4180  pertrans->transtypeLen) &&
4181  MemoryContextGetParent(DatumGetEOHP(newValue)->eoh_context) == CurrentMemoryContext)
4182  /* do nothing */ ;
4183  else
4184  newValue = datumCopy(newValue,
4185  pertrans->transtypeByVal,
4186  pertrans->transtypeLen);
4187  }
4188  else
4189  {
4190  /*
4191  * Ensure that AggStatePerGroup->transValue ends up being 0, so
4192  * callers can safely compare newValue/oldValue without having to
4193  * check their respective nullness.
4194  */
4195  newValue = (Datum) 0;
4196  }
4197 
4198  if (!oldValueIsNull)
4199  {
4200  if (DatumIsReadWriteExpandedObject(oldValue,
4201  false,
4202  pertrans->transtypeLen))
4203  DeleteExpandedObject(oldValue);
4204  else
4205  pfree(DatumGetPointer(oldValue));
4206  }
4207 
4208  return newValue;
4209 }
4210 
4211 /*
4212  * Invoke ordered transition function, with a datum argument.
4213  */
4214 void
4216  ExprContext *econtext)
4217 {
4218  AggStatePerTrans pertrans = op->d.agg_trans.pertrans;
4219  int setno = op->d.agg_trans.setno;
4220 
4221  tuplesort_putdatum(pertrans->sortstates[setno],
4222  *op->resvalue, *op->resnull);
4223 }
4224 
4225 /*
4226  * Invoke ordered transition function, with a tuple argument.
4227  */
4228 void
4230  ExprContext *econtext)
4231 {
4232  AggStatePerTrans pertrans = op->d.agg_trans.pertrans;
4233  int setno = op->d.agg_trans.setno;
4234 
4235  ExecClearTuple(pertrans->sortslot);
4236  pertrans->sortslot->tts_nvalid = pertrans->numInputs;
4237  ExecStoreVirtualTuple(pertrans->sortslot);
4238  tuplesort_puttupleslot(pertrans->sortstates[setno], pertrans->sortslot);
4239 }
4240 
4241 /* implementation of transition function invocation for byval types */
4242 static pg_attribute_always_inline void
4244  AggStatePerGroup pergroup,
4245  ExprContext *aggcontext, int setno)
4246 {
4247  FunctionCallInfo fcinfo = pertrans->transfn_fcinfo;
4248  MemoryContext oldContext;
4249  Datum newVal;
4250 
4251  /* cf. select_current_set() */
4252  aggstate->curaggcontext = aggcontext;
4253  aggstate->current_set = setno;
4254 
4255  /* set up aggstate->curpertrans for AggGetAggref() */
4256  aggstate->curpertrans = pertrans;
4257 
4258  /* invoke transition function in per-tuple context */
4259  oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory);
4260 
4261  fcinfo->args[0].value = pergroup->transValue;
4262  fcinfo->args[0].isnull = pergroup->transValueIsNull;
4263  fcinfo->isnull = false; /* just in case transfn doesn't set it */
4264 
4265  newVal = FunctionCallInvoke(fcinfo);
4266 
4267  pergroup->transValue = newVal;
4268  pergroup->transValueIsNull = fcinfo->isnull;
4269 
4270  MemoryContextSwitchTo(oldContext);
4271 }
4272 
4273 /* implementation of transition function invocation for byref types */
4274 static pg_attribute_always_inline void
4276  AggStatePerGroup pergroup,
4277  ExprContext *aggcontext, int setno)
4278 {
4279  FunctionCallInfo fcinfo = pertrans->transfn_fcinfo;
4280  MemoryContext oldContext;
4281  Datum newVal;
4282 
4283  /* cf. select_current_set() */
4284  aggstate->curaggcontext = aggcontext;
4285  aggstate->current_set = setno;
4286 
4287  /* set up aggstate->curpertrans for AggGetAggref() */
4288  aggstate->curpertrans = pertrans;
4289 
4290  /* invoke transition function in per-tuple context */
4291  oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory);
4292 
4293  fcinfo->args[0].value = pergroup->transValue;
4294  fcinfo->args[0].isnull = pergroup->transValueIsNull;
4295  fcinfo->isnull = false; /* just in case transfn doesn't set it */
4296 
4297  newVal = FunctionCallInvoke(fcinfo);
4298 
4299  /*
4300  * For pass-by-ref datatype, must copy the new value into aggcontext and
4301  * free the prior transValue. But if transfn returned a pointer to its
4302  * first input, we don't need to do anything. Also, if transfn returned a
4303  * pointer to a R/W expanded object that is already a child of the
4304  * aggcontext, assume we can adopt that value without copying it.
4305  *
4306  * It's safe to compare newVal with pergroup->transValue without regard
4307  * for either being NULL, because ExecAggTransReparent() takes care to set
4308  * transValue to 0 when NULL. Otherwise we could end up accidentally not
4309  * reparenting, when the transValue has the same numerical value as
4310  * newValue, despite being NULL. This is a somewhat hot path, making it
4311  * undesirable to instead solve this with another branch for the common
4312  * case of the transition function returning its (modified) input
4313  * argument.
4314  */
4315  if (DatumGetPointer(newVal) != DatumGetPointer(pergroup->transValue))
4316  newVal = ExecAggTransReparent(aggstate, pertrans,
4317  newVal, fcinfo->isnull,
4318  pergroup->transValue,
4319  pergroup->transValueIsNull);
4320 
4321  pergroup->transValue = newVal;
4322  pergroup->transValueIsNull = fcinfo->isnull;
4323 
4324  MemoryContextSwitchTo(oldContext);
4325 }
#define TTS_FIXED(slot)
Definition: tuptable.h:109
signed short int16
Definition: c.h:354
struct ExprEvalStep::@51::@71 arraycoerce
struct ExprEvalStep::@51::@63 param
ParamExternData params[FLEXIBLE_ARRAY_MEMBER]
Definition: params.h:125
#define NIL
Definition: pg_list.h:65
void ExecEvalScalarArrayOp(ExprState *state, ExprEvalStep *op)
Datum value
Definition: params.h:92
struct ExprEvalStep::@51::@79 sbsref
Datum ExecInterpExprStillValid(ExprState *state, ExprContext *econtext, bool *isNull)
Datum array_get_slice(Datum arraydatum, int nSubscripts, int *upperIndx, int *lowerIndx, bool *upperProvided, bool *lowerProvided, int arraytyplen, int elmlen, bool elmbyval, char elmalign)
Definition: arrayfuncs.c:2029
struct ExprEvalStep::@51::@86 window_func
void * execPlan
Definition: params.h:148
TupleDesc CreateTupleDescCopy(TupleDesc tupdesc)
Definition: tupdesc.c:110
Datum * ecxt_aggvalues
Definition: execnodes.h:245
struct ExprEvalStep::@51::@74 rowcompare_final
Datum MakeExpandedObjectReadOnlyInternal(Datum d)
Definition: expandeddatum.c:95
struct ExprEvalStep::@51::@70 arrayexpr
#define HeapTupleHeaderSetTypeId(tup, typeid)
Definition: htup_details.h:463
struct PlanState * parent
Definition: execnodes.h:108
#define likely(x)
Definition: c.h:205
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:419
#define ARR_OVERHEAD_NONULLS(ndims)
Definition: array.h:298
void tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull)
Definition: tuplesort.c:1729
Datum current_schema(PG_FUNCTION_ARGS)
Definition: name.c:319
#define att_align_nominal(cur_offset, attalign)
Definition: tupmacs.h:148
static Datum ExecJustOuterVar(ExprState *state, ExprContext *econtext, bool *isnull)
static pg_attribute_always_inline void ExecAggPlainTransByVal(AggState *aggstate, AggStatePerTrans pertrans, AggStatePerGroup pergroup, ExprContext *aggcontext, int setno)
char * name
Definition: primnodes.h:1182
#define ARR_SIZE(a)
Definition: array.h:277
#define VARATT_IS_EXTERNAL_EXPANDED(PTR)
Definition: postgres.h:322
static void ShutdownTupleDescRef(Datum arg)
TupleDesc lookup_rowtype_tupdesc(Oid type_id, int32 typmod)
Definition: typcache.c:1710
static TupleTableSlot * ExecClearTuple(TupleTableSlot *slot)
Definition: tuptable.h:425
static Datum ExecJustScanVar(ExprState *state, ExprContext *econtext, bool *isnull)
Datum * resvalue
Definition: execExpr.h:253
List * colnames
Definition: primnodes.h:43
#define DatumGetInt32(X)
Definition: postgres.h:472
MemoryContext MemoryContextGetParent(MemoryContext context)
Definition: mcxt.c:439
#define MAXDIM
Definition: c.h:535
static Datum ExecJustInnerVarVirt(ExprState *state, ExprContext *econtext, bool *isnull)
struct ExprEvalStep::@51::@80 domaincheck
#define castNode(_type_, nodeptr)
Definition: nodes.h:598
struct ExprEvalStep::@51::@78 sbsref_subscript
static Datum expanded_record_get_field(ExpandedRecordHeader *erh, int fnumber, bool *isnull)
#define EEO_SWITCH()
void get_typlenbyvalalign(Oid typid, int16 *typlen, bool *typbyval, char *typalign)
Definition: lsyscache.c:2159
#define PointerGetDatum(X)
Definition: postgres.h:556
struct ExprEvalStep * steps
Definition: execnodes.h:85
struct ExprEvalStep::@51::@81 convert_rowtype
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
void ExecReadyInterpretedExpr(ExprState *state)
struct ExprEvalStep::@51::@85 grouping_func
const TupleTableSlotOps TTSOpsBufferHeapTuple
Definition: execTuples.c:86
MemoryContext ecxt_per_tuple_memory
Definition: execnodes.h:234
#define EEO_JUMP(stepno)
void array_bitmap_copy(bits8 *destbitmap, int destoffset, const bits8 *srcbitmap, int srcoffset, int nitems)
Definition: arrayfuncs.c:4693
int64 nextval_internal(Oid relid, bool check_permissions)
Definition: sequence.c:579
int32 dataoffset
Definition: array.h:84
struct ExprEvalStep::@51::@57 constval
#define DatumGetTextPP(X)
Definition: fmgr.h:291
void ExecEvalParamExec(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
const TupleTableSlotOps TTSOpsVirtual
Definition: execTuples.c:83
struct ExprEvalStep::@51::@52 fetch
bool * resnull
Definition: execExpr.h:254
int ArrayGetNItems(int ndim, const int *dims)
Definition: arrayutils.c:75
#define TimeTzADTPGetDatum(X)
Definition: date.h:59
struct ExprEvalStep::@51::@77 fieldstore
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
#define Int16GetDatum(X)
Definition: postgres.h:451
ExprEvalOp
Definition: execExpr.h:44
Datum ExecAlternativeSubPlan(AlternativeSubPlanState *node, ExprContext *econtext, bool *isNull)
Definition: nodeSubplan.c:1376
xmltype * xmlconcat(List *args)
Definition: xml.c:512
static void slot_getsomeattrs(TupleTableSlot *slot, int attnum)
Definition: tuptable.h:341
Definition: nodes.h:529
#define strVal(v)
Definition: value.h:54
const TupleTableSlotOps *const tts_ops
Definition: tuptable.h:122
TimestampTz GetSQLCurrentTimestamp(int32 typmod)
Definition: timestamp.c:1592
int errcode(int sqlerrcode)
Definition: elog.c:610
void ExecEvalConvertRowtype(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
#define DateADTGetDatum(X)
Definition: date.h:57
AttrNumber varattno
Definition: primnodes.h:186
char * format_type_be(Oid type_oid)
Definition: format_type.c:339
Datum array_set_element(Datum arraydatum, int nSubscripts, int *indx, Datum dataValue, bool isNull, int arraytyplen, int elmlen, bool elmbyval, char elmalign)
Definition: arrayfuncs.c:2200
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition: heaptuple.c:359
Datum * tts_values
Definition: tuptable.h:126
void ExecEvalSubscriptingRefAssign(ExprState *state, ExprEvalStep *op)
struct ExprEvalStep::@51::@55 assign_var
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
static pg_attribute_always_inline Datum ExecJustAssignVarImpl(ExprState *state, TupleTableSlot *inslot, bool *isnull)
bool ExecEvalSubscriptingRef(ExprState *state, ExprEvalStep *op)
#define lengthof(array)
Definition: c.h:668
ArrayType * construct_empty_array(Oid elmtype)
Definition: arrayfuncs.c:3411
DateADT GetSQLCurrentDate(void)
Definition: date.c:300
TupleTableSlot * resultslot
Definition: execnodes.h:80
struct ExprEvalStep::@51::@67 iocoerce
unsigned int Oid
Definition: postgres_ext.h:31
Datum domainValue_datum
Definition: execnodes.h:257
List * arg_names
Definition: primnodes.h:1184
Definition: primnodes.h:181
struct ExprEvalStep::@51::@58 func
#define DatumGetXmlP(X)
Definition: xml.h:50
int current_set
Definition: execnodes.h:2169
#define OidIsValid(objectId)
Definition: c.h:644
struct ExprEvalStep::@51::@82 scalararrayop
void ExecEvalFieldStoreForm(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
#define DatumGetHeapTupleHeader(X)
Definition: fmgr.h:294
FunctionCallInfo transfn_fcinfo
Definition: nodeAgg.h:162
Datum(* ExprStateEvalFunc)(struct ExprState *expression, struct ExprContext *econtext, bool *isNull)
Definition: execnodes.h:53
#define ARR_OVERHEAD_WITHNULLS(ndims, nitems)
Definition: array.h:300
Datum ExecAggTransReparent(AggState *aggstate, AggStatePerTrans pertrans, Datum newValue, bool newValueIsNull, Datum oldValue, bool oldValueIsNull)
SQLValueFunctionOp op
Definition: primnodes.h:1143
TupleDesc lookup_rowtype_tupdesc_domain(Oid type_id, int32 typmod, bool noError)
Definition: typcache.c:1766
ExprContext * tmpcontext
Definition: execnodes.h:2159
signed int int32
Definition: c.h:355
Datum current_database(PG_FUNCTION_ARGS)
Definition: misc.c:169
xmltype * xmlpi(const char *target, text *arg, bool arg_is_null, bool *result_is_null)
Definition: xml.c:770
struct ExprEvalStep::@51::@72 row
void ExecEvalRow(ExprState *state, ExprEvalStep *op)
#define ARR_DATA_OFFSET(a)
Definition: array.h:304
#define ARR_LBOUND(a)
Definition: array.h:284
HeapTupleHeader t_data
Definition: htup.h:68
#define HeapTupleHeaderGetTypMod(tup)
Definition: htup_details.h:468
static pg_attribute_always_inline Datum ExecJustVarVirtImpl(ExprState *state, TupleTableSlot *slot, bool *isnull)
#define StaticAssertStmt(condition, errmessage)
Definition: c.h:852
void ExecEvalMinMax(ExprState *state, ExprEvalStep *op)
Datum array_set_slice(Datum arraydatum, int nSubscripts, int *upperIndx, int *lowerIndx, bool *upperProvided, bool *lowerProvided, Datum srcArrayDatum, bool isNull, int arraytyplen, int elmlen, bool elmbyval, char elmalign)
Definition: arrayfuncs.c:2760
static void CheckVarSlotCompatibility(TupleTableSlot *slot, int attnum, Oid vartype)
ParamFetchHook paramFetch
Definition: params.h:112
void pfree(void *pointer)
Definition: mcxt.c:1056
ExprEvalOp ExecEvalStepOp(ExprState *state, ExprEvalStep *op)
MinMaxOp
Definition: primnodes.h:1093
static void convert(const int32 val, char *const buf)
Definition: zic.c:2001
char typalign
Definition: pg_type.h:170
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:91
static Datum ExecJustConst(ExprState *state, ExprContext *econtext, bool *isnull)
#define ERROR
Definition: elog.h:43
struct ExprEvalStep::@51::@87 subplan
int errdomainconstraint(Oid datatypeOid, const char *conname)
Definition: domains.c:384
bool resnull
Definition: execnodes.h:72
#define DatumGetCString(X)
Definition: postgres.h:566
void pgstat_init_function_usage(FunctionCallInfo fcinfo, PgStat_FunctionCallUsage *fcu)
Definition: pgstat.c:1675
Oid elemtype
Definition: array.h:85
#define lfirst_int(lc)
Definition: pg_list.h:191
void ExecSetParamPlan(SubPlanState *node, ExprContext *econtext)
Definition: nodeSubplan.c:1050
bool isnull
Definition: params.h:150
Oid vartype
Definition: primnodes.h:188
struct ExprEvalStep::@51::@92 agg_trans
Datum caseValue_datum
Definition: execnodes.h:251
#define TimestampTzGetDatum(X)
Definition: timestamp.h:32
text * xmltotext_with_xmloption(xmltype *data, XmlOptionType xmloption_arg)
Definition: xml.c:615
int32 tdtypmod
Definition: tupdesc.h:83
NullableDatum args[FLEXIBLE_ARRAY_MEMBER]
Definition: fmgr.h:95
#define ARR_DIMS(a)
Definition: array.h:282
TimeTzADT * GetSQLCurrentTime(int32 typmod)
Definition: date.c:322
ItemPointerData t_self
Definition: htup.h:65
void ExecEvalSubscriptingRefFetch(ExprState *state, ExprEvalStep *op)
static void slot_getallattrs(TupleTableSlot *slot)
Definition: tuptable.h:354
TupleDesc BlessTupleDesc(TupleDesc tupdesc)
Definition: execTuples.c:2052
uint32 t_len
Definition: htup.h:64
#define EEO_NEXT()
#define ARR_DATA_PTR(a)
Definition: array.h:310
void ExecEvalRowNull(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
TupleConversionMap * convert_tuples_by_name(TupleDesc indesc, TupleDesc outdesc)
Definition: tupconvert.c:102
Tuplesortstate ** sortstates
Definition: nodeAgg.h:154
ExprStateEvalFunc evalfunc
Definition: execnodes.h:91
#define FunctionCallInvoke(fcinfo)
Definition: fmgr.h:172
static void ExecEvalRowNullInt(ExprState *state, ExprEvalStep *op, ExprContext *econtext, bool checkisnull)
static char * buf
Definition: pg_test_fsync.c:67
Datum current_user(PG_FUNCTION_ARGS)
Definition: name.c:303
text * cstring_to_text_with_len(const char *s, int len)
Definition: varlena.c:184
HeapTuple toast_build_flattened_tuple(TupleDesc tupleDesc, Datum *values, bool *isnull)
Definition: heaptoast.c:563
bool * tts_isnull
Definition: tuptable.h:128
void ExecEvalSysVar(ExprState *state, ExprEvalStep *op, ExprContext *econtext, TupleTableSlot *slot)
static Datum ExecJustInnerVar(ExprState *state, ExprContext *econtext, bool *isnull)
void check_stack_depth(void)
Definition: postgres.c:3312
void ExecAggInitGroup(AggState *aggstate, AggStatePerTrans pertrans, AggStatePerGroup pergroup, ExprContext *aggcontext)
int errdetail(const char *fmt,...)
Definition: elog.c:957
xmltype * xmlroot(xmltype *data, text *version, int standalone)
Definition: xml.c:822
#define DatumGetBool(X)
Definition: postgres.h:393
bool upperprovided[MAXDIM]
Definition: execExpr.h:661
TupleTableSlot * ecxt_innertuple
Definition: execnodes.h:228
void ExecEvalGroupingFunc(ExprState *state, ExprEvalStep *op)
ParamExecData * ecxt_param_exec_vals
Definition: execnodes.h:237
struct EState * ecxt_estate
Definition: execnodes.h:262
static Datum ExecJustAssignOuterVar(ExprState *state, ExprContext *econtext, bool *isnull)
static RangeTblEntry * exec_rt_fetch(Index rti, EState *estate)
Definition: executor.h:543
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:193
Oid t_tableOid
Definition: htup.h:66
#define ARR_HASNULL(a)
Definition: array.h:279
MemoryContext CurrentMemoryContext
Definition: mcxt.c:38
Datum Int64GetDatum(int64 X)
Definition: fmgr.c:1701
HeapTuple execute_attr_map_tuple(HeapTuple tuple, TupleConversionMap *map)
Definition: tupconvert.c:139
struct ExprEvalStep::@51::@76 fieldselect
#define EEO_DISPATCH()
#define att_addlength_pointer(cur_offset, attlen, attptr)
Definition: tupmacs.h:176
struct ExprEvalStep::@51::@68 sqlvaluefunction
Datum value
Definition: postgres.h:378
Bitmapset * grouped_cols
Definition: execnodes.h:2170
struct ExprEvalStep::@51::@90 agg_strict_input_check
Datum datumCopy(Datum value, bool typByVal, int typLen)
Definition: datum.c:131
#define TimestampGetDatum(X)
Definition: timestamp.h:31
static pg_attribute_always_inline Datum ExecJustAssignVarVirtImpl(ExprState *state, TupleTableSlot *inslot, bool *isnull)
void * evalfunc_private
Definition: execnodes.h:97
Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc)
Definition: heaptuple.c:984
static TupleDesc expanded_record_get_tupdesc(ExpandedRecordHeader *erh)
TimeADT GetSQLLocalTime(int32 typmod)
Definition: date.c:348
union ExprEvalStep::@51 d
List * lappend(List *list, void *datum)
Definition: list.c:321
static Datum ExecJustApplyFuncToCase(ExprState *state, ExprContext *econtext, bool *isnull)
bool xml_is_document(xmltype *arg)
Definition: xml.c:888
static Datum ExecJustAssignOuterVarVirt(ExprState *state, ExprContext *econtext, bool *isnull)
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
ExpandedObjectHeader * DatumGetEOHP(Datum d)
Definition: expandeddatum.c:29
Index varno
Definition: primnodes.h:184
#define heap_getattr(tup, attnum, tupleDesc, isnull)
Definition: htup_details.h:762
bool domainValue_isNull
Definition: execnodes.h:259
XmlExprOp op
Definition: primnodes.h:1181
Datum session_user(PG_FUNCTION_ARGS)
Definition: name.c:309
TupleDesc tts_tupleDescriptor
Definition: tuptable.h:124
ExprContext * curaggcontext
Definition: execnodes.h:2161
bool * ecxt_aggnulls
Definition: execnodes.h:247
uint8 bits8
Definition: c.h:374
static TupleDesc get_cached_rowtype(Oid type_id, int32 typmod, TupleDesc *cache_field, ExprContext *econtext)
struct ExprEvalStep::@51::@66 make_readonly
#define TTS_IS_VIRTUAL(slot)
Definition: tuptable.h:228
uintptr_t Datum
Definition: postgres.h:367
TupleTableSlot * ExecFilterJunk(JunkFilter *junkfilter, TupleTableSlot *slot)
Definition: execJunk.c:261
#define ER_MAGIC
void ExecEvalXmlExpr(ExprState *state, ExprEvalStep *op)
#define HeapTupleHeaderSetTypMod(tup, typmod)
Definition: htup_details.h:473
bool lowerprovided[MAXDIM]
Definition: execExpr.h:666
void ExecEvalWholeRowVar(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
#define DatumGetArrayTypePCopy(X)
Definition: array.h:250
#define TimeADTGetDatum(X)
Definition: date.h:58
int errdatatype(Oid datatypeOid)
Definition: domains.c:360
#define HeapTupleHeaderGetTypeId(tup)
Definition: htup_details.h:458
Timestamp GetSQLLocalTimestamp(int32 typmod)
Definition: timestamp.c:1606
struct ExprEvalStep::@51::@59 boolexpr
struct ExprEvalStep::@51::@53 var
struct ExprEvalStep::@51::@69 nextvalueexpr
#define BoolGetDatum(X)
Definition: postgres.h:402
void ExecEvalParamExtern(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
void DeleteExpandedObject(Datum d)
struct ExprEvalStep::@51::@83 xmlexpr
#define InvalidOid
Definition: postgres_ext.h:36
static Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:381
int16 attnum
Definition: pg_attribute.h:79
List * named_args
Definition: primnodes.h:1183
static struct @143 value
#define ereport(elevel,...)
Definition: elog.h:144
RowCompareType
Definition: primnodes.h:1056
static Datum ExecJustScanVarVirt(ExprState *state, ExprContext *econtext, bool *isnull)
#define INNER_VAR
Definition: primnodes.h:171
struct ExprEvalStep::@51::@62 nulltest_row
List * args
Definition: primnodes.h:1185
Datum array_get_element(Datum arraydatum, int nSubscripts, int *indx, int arraytyplen, int elmlen, bool elmbyval, char elmalign, bool *isNull)
Definition: arrayfuncs.c:1820
#define LOCAL_FCINFO(name, nargs)
Definition: fmgr.h:110
Datum array_map(Datum arrayd, ExprState *exprstate, ExprContext *econtext, Oid retType, ArrayMapState *amstate)
Definition: arrayfuncs.c:3132
struct ExprEvalStep::@51::@73 rowcompare_step
TupleTableSlot * ecxt_outertuple
Definition: execnodes.h:230
static Datum ExecJustAssignScanVarVirt(ExprState *state, ExprContext *econtext, bool *isnull)
#define Assert(condition)
Definition: c.h:738
#define lfirst(lc)
Definition: pg_list.h:190
void RegisterExprContextCallback(ExprContext *econtext, ExprContextCallbackFunction function, Datum arg)
Definition: execUtils.c:904
struct ExprEvalStep::@51::@64 cparam
struct ExprEvalStep::@51::@56 assign_tmp
Definition: regguts.h:298
intptr_t opcode
Definition: execExpr.h:250
static Datum ExecJustAssignScanVar(ExprState *state, ExprContext *econtext, bool *isnull)
#define DatumIsReadWriteExpandedObject(d, isnull, typlen)
XmlOptionType xmloption
Definition: primnodes.h:1186
int lowerindex[MAXDIM]
Definition: execExpr.h:667
#define InitFunctionCallInfoData(Fcinfo, Flinfo, Nargs, Collation, Context, Resultinfo)
Definition: fmgr.h:150
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
static void ExecInitInterpreter(void)
static int list_length(const List *l)
Definition: pg_list.h:169
#define newval
int errdetail_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1049
void ExecEvalArrayCoerce(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:226
Index es_range_table_size
Definition: execnodes.h:511
void ExecEvalFuncExprStrictFusage(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
void ExecEvalSubscriptingRefOld(ExprState *state, ExprEvalStep *op)
static pg_attribute_always_inline Datum ExecJustVarImpl(ExprState *state, TupleTableSlot *slot, bool *isnull)
struct ExprEvalStep::@51::@65 casetest
#define HeapTupleGetDatum(tuple)
Definition: funcapi.h:220
MemoryContext ecxt_per_query_memory
Definition: execnodes.h:233
#define ARR_NDIM(a)
Definition: array.h:278
#define InvalidAttrNumber
Definition: attnum.h:23
static Datum ExecInterpExpr(ExprState *state, ExprContext *econtext, bool *isnull)
void ExecEvalAggOrderedTransDatum(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
#define DatumGetPointer(X)
Definition: postgres.h:549
void pgstat_end_function_usage(PgStat_FunctionCallUsage *fcu, bool finalize)
Definition: pgstat.c:1747
int upperindex[MAXDIM]
Definition: execExpr.h:662
void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc, Datum *values, bool *isnull)
Definition: heaptuple.c:1249
void ExecEvalFieldStoreDeForm(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
static Datum values[MAXATTR]
Definition: bootstrap.c:167
struct ExprEvalStep::@51::@84 aggref
Oid tdtypeid
Definition: tupdesc.h:82
void ExecEvalConstraintCheck(ExprState *state, ExprEvalStep *op)
#define Int32GetDatum(X)
Definition: postgres.h:479
e
Definition: preproc-init.c:82
#define ItemPointerSetInvalid(pointer)
Definition: itemptr.h:172
static Datum ExecJustOuterVarVirt(ExprState *state, ExprContext *econtext, bool *isnull)
bool caseValue_isNull
Definition: execnodes.h:253
struct ExprEvalStep::@51::@91 agg_plain_pergroup_nullcheck
void * palloc(Size size)
Definition: mcxt.c:949
int errmsg(const char *fmt,...)
Definition: elog.c:824
#define fetch_att(T, attbyval, attlen)
Definition: tupmacs.h:75
int steps_len
Definition: execnodes.h:104
void ExecEvalRowNotNull(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
void ExecEvalConstraintNotNull(ExprState *state, ExprEvalStep *op)
#define elog(elevel,...)
Definition: elog.h:214
static Datum ExecJustAssignInnerVarVirt(ExprState *state, ExprContext *econtext, bool *isnull)
Datum ExecSubPlan(SubPlanState *node, ExprContext *econtext, bool *isNull)
Definition: nodeSubplan.c:62
int i
struct ExprEvalStep::@51::@88 alternative_subplan
xmltype * xmlelement(XmlExpr *xexpr, Datum *named_argvalue, bool *named_argnull, Datum *argvalue, bool *argnull)
Definition: xml.c:628
const TupleTableSlotOps TTSOpsHeapTuple
Definition: execTuples.c:84
Datum value
Definition: params.h:149
static Datum ExecJustAssignInnerVar(ExprState *state, ExprContext *econtext, bool *isnull)
uint8 flags
Definition: execnodes.h:65
static pg_attribute_always_inline void ExecAggPlainTransByRef(AggState *aggstate, AggStatePerTrans pertrans, AggStatePerGroup pergroup, ExprContext *aggcontext, int setno)
#define pg_attribute_always_inline
Definition: c.h:162
void * arg
struct ExprEvalStep::@51::@61 jump
AggStatePerTrans curpertrans
Definition: execnodes.h:2164
#define unlikely(x)
Definition: c.h:206
Definition: c.h:555
void ExecEvalSubPlan(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
void ExecEvalFuncExprFusage(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
AttrNumber tts_nvalid
Definition: tuptable.h:121
#define SET_VARSIZE(PTR, len)
Definition: postgres.h:329
struct ExprEvalStep::@51::@75 minmax
TupleTableSlot * sortslot
Definition: nodeAgg.h:136
Alias * eref
Definition: parsenodes.h:1115
struct ExprEvalStep::@51::@54 wholerow
#define qsort(a, b, c, d)
Definition: port.h:479
void CheckExprStillValid(ExprState *state, ExprContext *econtext)
#define EEO_OPCODE(opcode)
static Datum slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:402
void ExecEvalCurrentOfExpr(ExprState *state, ExprEvalStep *op)
static void CheckOpSlotCompatibility(ExprEvalStep *op, TupleTableSlot *slot)
ArrayType * construct_md_array(Datum *elems, bool *nulls, int ndims, int *dims, int *lbs, Oid elmtype, int elmlen, bool elmbyval, char elmalign)
Definition: arrayfuncs.c:3327
#define ReleaseTupleDesc(tupdesc)
Definition: tupdesc.h:122
char * map_sql_value_to_xml_value(Datum value, Oid type, bool xml_escape_strings)
Definition: xml.c:2134
ParamListInfo ecxt_param_list_info
Definition: execnodes.h:238
void ExecEvalAlternativeSubPlan(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
Definition: pg_list.h:50
void ExecEvalNextValueExpr(ExprState *state, ExprEvalStep *op)
bool isnull
Definition: params.h:93
#define EEO_CASE(name)
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:427
#define ARR_ELEMTYPE(a)
Definition: array.h:280
Datum resvalue
Definition: execnodes.h:74
#define EEO_FLAG_INTERPRETER_INITIALIZED
Definition: execExpr.h:26
int16 AttrNumber
Definition: attnum.h:21
#define ARR_NULLBITMAP(a)
Definition: array.h:288
#define OUTER_VAR
Definition: primnodes.h:172
void ExecTypeSetColNames(TupleDesc typeInfo, List *namesList)
Definition: execTuples.c:2006
struct ExprEvalStep::@51::@89 agg_deserialize
void ExecEvalAggOrderedTransTuple(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
void ExecEvalFieldSelect(ExprState *state, ExprEvalStep *op, ExprContext *econtext)
xmltype * xmlparse(text *data, XmlOptionType xmloption_arg, bool preserve_whitespace)
Definition: xml.c:752
int ndim
Definition: array.h:83
#define EEO_FLAG_DIRECT_THREADED
Definition: execExpr.h:28
TupleTableSlot * ExecStoreVirtualTuple(TupleTableSlot *slot)
Definition: execTuples.c:1522
struct ExprEvalStep::@51::@60 qualexpr
void tuplesort_puttupleslot(Tuplesortstate *state, TupleTableSlot *slot)
Definition: tuplesort.c:1608
void ExecEvalSQLValueFunction(ExprState *state, ExprEvalStep *op)
AggStatePerGroup * all_pergroups
Definition: execnodes.h:2211
void ExecEvalArrayExpr(ExprState *state, ExprEvalStep *op)
#define HeapTupleHeaderGetDatumLength(tup)
Definition: htup_details.h:452
#define DatumGetArrayTypeP(X)
Definition: array.h:249